{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "# Gamma function\n", "from scipy.special import gamma\n", "\n", "# To calculate statistics\n", "from scipy.stats import norm\n", "from scipy.stats import hmean, trim_mean, iqr, median_abs_deviation, skew, kurtosis\n", "from scipy.stats.mstats import gmean, winsorize" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Reading and preprocessing data" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "DataWhr2024 = pd.read_csv(\"DataWhr2024.csv\")\n", "UnM49 = pd.read_csv(\"UnM49.csv\", sep=';')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "UnM49 = UnM49[['Country or Area', 'Sub-region Name', 'Region Name']]\n", "UnM49 = UnM49.rename({'Country or Area':'Country name', 'Sub-region Name':'Subregion', 'Region Name':'Continent'}, axis=1)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "DataWhr2024.loc[DataWhr2024[\"Country name\"].str.startswith(\"Hong\"), \"Country name\"] = \"Hong Kong\"\n", "DataWhr2024.loc[DataWhr2024[\"Country name\"].str.startswith(\"Somaliland\"), \"Country name\"] = \"Somaliland\"\n", "DataWhr2024.loc[DataWhr2024[\"Country name\"].str.startswith(\"Taiwan\"), \"Country name\"] = \"Taiwan\"" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "UnM49.loc[97, \"Country name\"] = \"Bolivia\"\n", "UnM49.loc[33, \"Country name\"] = \"Congo (Brazzaville)\"\n", "UnM49.loc[34, \"Country name\"] = \"Congo (Kinshasa)\"\n", "UnM49.loc[124, \"Country name\"] = \"Hong Kong\"\n", "UnM49.loc[125, \"Country name\"] = \"Macao\"\n", "UnM49.loc[126, \"Country name\"] = \"North Korea\"\n", "UnM49.loc[145, \"Country name\"] = \"Iran\"\n", "UnM49.loc[46, \"Country name\"] = \"Ivory Coast\"\n", "UnM49.loc[133, \"Country name\"] = \"Laos\"\n", "UnM49.loc[129, \"Country name\"] = \"South Korea\"\n", "UnM49.loc[173, \"Country name\"] = \"Moldova\"\n", "UnM49.loc[217, \"Country name\"] = \"Netherlands\"\n", "UnM49.loc[175, \"Country name\"] = \"Russia\"\n", "UnM49.loc[164, \"Country name\"] = \"Syria\"\n", "UnM49.loc[26, \"Country name\"] = \"Tanzania\"\n", "UnM49.loc[116, \"Country name\"] = \"United States\"\n", "UnM49.loc[193, \"Country name\"] = \"United Kingdom\"\n", "UnM49.loc[111, \"Country name\"] = \"Venezuela\"\n", "UnM49.loc[140, \"Country name\"] = \"Vietnam\"" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "_ = pd.DataFrame(\n", " {\n", " \"Country name\": [\"Kosovo\", \"Somaliland\", \"Taiwan\"],\n", " \"Subregion\": [\"Southern Europe\", \"Sub-Saharan Africa\", \"Eastern Asia\"],\n", " \"Continent\": [\"Europe\", \"Africa\", \"Asia\"],\n", " }\n", ")\n", "\n", "UnM49 = pd.concat([UnM49, _], axis=0)\n", "UnM49 = UnM49.reset_index(drop=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Data\n", "Dat = pd.merge(DataWhr2024, UnM49)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# Data of 2023\n", "Dat2023 = Dat[Dat['year'] == 2023]\n", "Dat2023 = Dat2023.reset_index(drop=True)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['Iceland',\n", " 'India',\n", " 'Indonesia',\n", " 'Iran',\n", " 'Iraq',\n", " 'Ireland',\n", " 'Israel',\n", " 'Italy',\n", " 'Ivory Coast']" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Countries that starts with the same letter that your name\n", "StartsWith = 'I' # The first letter of your name\n", "list(Dat[Dat['Country name'].str.startswith(StartsWith)]['Country name'].unique())" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# Data of 2023 from the region selected\n", "CountrySelected = 'Iraq' # Change to the country that you selected\n", "SubregionSelected = Dat[Dat['Country name']==CountrySelected]['Subregion'].unique()[0]\n", "\n", "DatSelected = Dat2023[Dat2023['Subregion']==SubregionSelected]\n", "DatSelected = DatSelected.reset_index(drop=True)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.5" } }, "nbformat": 4, "nbformat_minor": 2 }