From 6e56981212e9a20a10308360075f0830b03485e3 Mon Sep 17 00:00:00 2001 From: winsdominoes Date: Sat, 23 Nov 2024 22:45:10 +0700 Subject: [PATCH] Push updates --- .../.ipynb_checkpoints/Game-checkpoint.ipynb | 365 ++++++++++++++++++ .../.~lock.mat-204-00010 - probability.odt# | 2 +- .../00010/mat-204-00010 - probability.odt | Bin 50854 -> 50891 bytes fall-2024/math/mat-204/Game.ipynb | 127 ++---- 4 files changed, 399 insertions(+), 95 deletions(-) create mode 100644 fall-2024/math/mat-204/.ipynb_checkpoints/Game-checkpoint.ipynb diff --git a/fall-2024/math/mat-204/.ipynb_checkpoints/Game-checkpoint.ipynb b/fall-2024/math/mat-204/.ipynb_checkpoints/Game-checkpoint.ipynb new file mode 100644 index 0000000..9d389de --- /dev/null +++ b/fall-2024/math/mat-204/.ipynb_checkpoints/Game-checkpoint.ipynb @@ -0,0 +1,365 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# MAT-204:00010 - Probability\n", + "Author: Thanawin Pattanaphol - Date: 23th December 2024 - Description: Basic probability calculations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Importing Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'pandas'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m \n\u001b[1;32m 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib_venn\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m venn3\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m pyplot \u001b[38;5;28;01mas\u001b[39;00m plt \n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'pandas'" + ] + } + ], + "source": [ + "import pandas as pd \n", + "from matplotlib_venn import venn3\n", + "from matplotlib import pyplot as plt \n", + "\n", + "Dat = pd.read_csv('DataLoL.csv')\n", + "\n", + "num_games = len(Dat)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Questions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Probability: Blue Team wins" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Probability that Blue Team wins is: 0.4990383642069035\n" + ] + } + ], + "source": [ + "# Calculating the probability by diving the amount of games that blue won\n", + "# dividing it by the amount of total games\n", + "# Thus: p = Number of time an event occurs / Total nmumber of possible events\n", + "prob_blue_wins = len(Dat[Dat['blueWins'] == 1]) / num_games\n", + "print(\"Probability that Blue Team wins:\", prob_blue_wins)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Probability: Blue Team wins and kills the dragon" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Probability that Blue Team wins and kills the dragon is: 0.23200728818706348\n" + ] + } + ], + "source": [ + "# Doing a similar calculation with the difference being\n", + "# the number of time an event occurs now only counts\n", + "# the number of times blue team wins and kills the dragon\n", + "\n", + "prob_blue_wins_dragons = len(Dat[(Dat['blueWins'] == 1) & (Dat['blueDragons'] == 1)]) / num_games\n", + "print(\"Probability that Blue Team wins and kills the dragon:\", prob_blue_wins_dragons)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Probability: Blue Team wins and kills the herald" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Probability that Blue Team wins and kills the herald is: 0.11185342646016803\n" + ] + } + ], + "source": [ + "# Similar calculation but with the number of events that\n", + "# team blue wins and kills the herald\n", + "\n", + "prob_blue_wins_heralds = len(Dat[(Dat['blueWins'] == 1) & (Dat['blueHeralds'] == 1)]) / num_games\n", + "print(\"Probability that Blue Team wins and kills the herald:\", prob_blue_wins_heralds)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Count: All possible cases (Venn Diagram)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAGFCAYAAADaTwWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMGklEQVR4nO3dd3gc9bn3//fM9qJVL1axbFnu2BgbbAPGYHpLc0IJ5EmcEwiHkEIKhJRfyCGFh5MQQnLSOISShEBwQs9DYmoAm2aCTXHBvVtdWml7md8fg2QLuajs7szs3q/r0mVLu5Zuectnvl3RNE1DCCGEGCPV6AKEEELkBwkUIYQQGSGBIoQQIiMkUIQQQmSEBIoQQoiMkEARQgiRERIoQgghMkICRQghREZIoAghhMgICRQhhBAZIYEihBAiIyRQhBBCZIQEihBCiIyQQBFCCJEREihCCCEyQgJFCCFERkigCCGEyAgJFCGEEBkhgSKEECIjJFCEEEJkhASKEEKIjJBAEUIIkRESKEIIITJCAsVAv/71r1EUhQULFhhdihBCjJmiaZpmdBGF6uSTT2bv3r1s376dTZs20dzcbHRJQggxatJCMci2bdtYtWoVP/vZz6isrOS+++4zuiQhhBgTCRSD3HfffZSWlnLBBRfwiU98QgJFCGF5EigGue+++1i6dClOp5NPfvKTbNq0iddff93osoQQYtQkUAzwxhtvsGHDBi699FIAFi1aRH19vbRShBCWJoFigPvuu4/q6mqWLFkCgKIoXHLJJTzwwAOkUimjyxNCiFGRQMmxVCrFAw88wJIlS9i2bRubN29m8+bNLFiwgJaWFp555hmjSxRCiFGRacM59tRTT3H22Wcf9vZPf/rT3HvvvTmtSQghMkECJceWLVvGk08+ya9+9ashtz300EM88cQTtLS04PF4DKlPCCFGSwIlhyKRCNXV1Vx00UX8/ve/H3L7qlWrOPnkk3nggQe45JJLDKlRCCFGS8ZQcuixxx6jt7eXD3/4w4e8feHChbLIUQhhWXajCygk9913H263m7POOuuQt6uqygUXXMB9991HR0cH5eXlOa8xp5JJiMf1j1hs8J/xONhsYLeDw6H/2f/R//nBX1fl2kgIo0mXl8i8RAK6uqCzU/8zFBoaHPE4ZHKKtKrqAeN0QlHRgY9A4MCfMi4lRFZJoIjRSyahu/tAcPSHSF+f0ZUdmsMBpaUHPsrKoKQE/H6jKxMiL0igiOEJhWD//gPh0dkJvb2QD08fpxMqKqCuTv+orARFMboqISxHAkUcWiwGe/fCnj36R0+P0RXljtMJNTUHAqaszOiKhLAECRSh0zRoaYGdO2H3bujoyI/WRya43VBbeyBgAgGjKxLClCRQClk8rofHjh2waxdEo0ZXZA1+vx4wDQ3Q2KjPMhNCSKAUnEQCtmzRP/btg3Ta6IqszemEpiaYOhWqq42uRghDSaAUivZ2WL8eNm/WQ0VkXnExTJmif/h8Rlcj3nfPPffw2c9+dtDXKisrmTlzJtdffz3nnXeeYbXlG2mr57NEQg+Q9ev1QBHZ1dMDr78Oq1frYy1TpsDEifoCTWG4m266iYkTJ6JpGi0tLdxzzz2cf/75PP7441x44YVGl5cXJFDyUXs7rFund2tJayT3NE0fm9q9W+8SmzRJ7xKrqjK6soJ23nnncfzxxw98/rnPfY7q6mruv/9+CZQMkUDJF9IaMad4XH9M1q/XF1FOn65/yEC+4UpKSvB4PNjlscgY+Z+0up4eWLtWWiNW0N0NL78Ma9bAscfCjBkSLDnU09NDe3s7mqbR2trKL3/5S/r6+vjUpz5ldGl5Q57NVhUKwRtvwHvvyUwtq4lE4JVX9AuBOXOkxZIjZ5555qDPXS4Xd91112E3axUjJ89iq4lG9Svcd9/N7OaKIvciEb3FsnbtgRaLDOBnza9+9SumTJkCQEtLC3/605+44oorKCoqYunSpUaXlxdk2rBVJBLw9tvw1lt6v7zIP17vgRaLBEvG9E8bfv311wcNyqfTaY477jja2trYvn07TqfT0DrzgRwiYXaplB4k99+vT0eVMMlf4TCsWqU/1u+8Iy3QLFNVlSVLlrBv3z42bdpkdDl5Qbq8zErTYONG+Pe/zbsdvMiO/mBZswaOO05vscgBYlmRTCYB6JPXWEZIoJjR1q16a6S72+hKhJHCYVi5EjZsgFNOkXUsGZZIJFixYgVOp5Pp06cbXU5ekEAxk95e+Ne/9G3jhejX0QGPPKK3VBYs0BdLjoGmaSTSCWyKDZtaOGM1Tz75JBs2bACgtbWVP//5z2zatIkbbriBgOwgnRESKGaxbh28+qqsJRGHt349bN8OCxfC5MkDXw4nwgRjQYKxIOFEmHgqPugjlowN+jyRHvwcs6t2bIoNu2rX/64e9HfFhtvupshVRMAVoMhZRJGrCJ/Dh2KxQ8i+973vDfzd7XYzbdo0fvOb33DVVVcZWlc+kVleRuvr01sle/YYXYkwMQ1Ieh0kvDbibpVoRTFr/Sn2xDpJppM5r8em2PA7/YOCpthdTJWvCq/Dm/N6hDlIoBhpwwZ9HYK0SsQHpBwq0RIXUS/EbSkSSgKNwS9VTVXZ4XexUY0YVuehFDmLqPZXU+OvodpXTZmnzHKtGTE6EihGCIX0Vsnu3UZXIkxCUyBW7CJSZCPqTBJn+NPDw24Xa1wpepXct1SGw2lzUuWrotqnh0yVrwqHzWF0WSILJFBybeNGvVUi60kKXsLrIFLsIOpOE1VjQ1ogI2HW1sqhKCiMKxpHU2kTE0sm4nF4jC5JZIgESq6EQvDCC/pRu6IgaapCpMxFxKcQtSdIkvkWRdDjZrUzRkKxxstawiW/SKDkwubN8NJL0iopUAmvg75yByFnjBTZX/0edzh40wfdWGtsTkGhxl+jh0vpRBnctyAJlGxKp/XurXffNboSkWOaqhAud9PnTxFVc38hkVZV3ityskOJ5vxnZ0J/uEyvnE5TaROqIjsFWIEESrZEo/D007JIscDkujVyNPuKvLythtEsPMnK6/Ays3Im0yun47a7jS5HHIEESja0t8OKFbIHV4HQFAhXuOkr0ogqMaPLGaLP7eZ1d5w41j43x67amVw2mVnVsyhxlxhdjjgECZRM27JFnxKcNOcUTpE5abtKsMZNn8scrZEjSTjsrPEpdFpsXOVwGgINzKqeRX2g3uhSxEEkUDJp9Wp9d2CR1zRVobfaQ9Br/iA5mKYqbPK72WaBqcXDVeouZXb1bKaUT5HFkyYggZIJ6bTeKpEzFfKaBoSqPPQUZWfKb660+r2ssVl7XOWDSt2lLKxfSENxg9GlFDQJlLGKx/XxEhl8z2uRMjddpWkSI1jBbmZBj5tXXVGLj6oMVR+oZ2H9Qso8ZUaXUpAkUMaitxeefFLOLcljsYCT7grFlIPtY9XncfOKM0bKIosgh0tBYWrFVE6oPUEWSuaYBMpotbfrYRLJn/5ocUDC66C72kZYteY6juEKud284o6RHMO2L2blUB3MqZnDrOpZ2FU5qSMXJFBGo7MTnnhCX2si8kraptBd56bXUTgXCmGXi1fcccts1zJSfqefE2pPYHL55GHcW4yFBMpIdXfD449LyyQPRUtcdJSnLD3gPloRl4tXPAnLr1U5kvpAPYsbF+N3+o0uJW9JoIxEMAiPPaaf9S3yRiG2Sg4l6nTyiidJTMnfUHHanCysX8i0imlGl5KXJFCGq69PDxNZ/Z5XCrlVcigxp5NXvEnyb/7XYA2BBhY3Lsbn9BldSl6RQBmOcFgPk2DQ6EpEhmgKdNd7CTqltflBcYeDV31pwhZatDkaLpuLxY2LmVg60ehS8oYEytFEIvqYiUwNzhsJr4P2ccqITkUsNAmHg1e9aUJKfocKwLSKaZzUcJLMBMsACZQjiUb12VydnUZXIjKkr9pDpz86ptMRC0Xc4WClL5XXA/X9StwlnD7xdCq8FUaXYmkSKIcTj+th0t5udCUiA9KqQud4NyFbYQ+8j1TI7WaVO99HVHQ2xcapE06luazZ6FIsSwLlUBIJ+PvfobXV6EpEBqQcKm0NDmJ5uNo9Fzp8HlYX0Ay4eePmMa92ntFlWJIEygel03qY7NtndCUiAxIeO621yCyuMdpR5GFDAbXumsuaObXxVGyqzehSLEXO1fygl1+WMMkTsYCTllpNwiQDGnsjNGiFc1ri5s7NPPHeE0QShROimSCBcrBNm+T89zwRrnDTUpmw1HklZje9N04ZDqPLyJmWUAuPbHiErkiX0aVYhgRKv85OePFFo6sQGRCs8dBWLDO5Mk1JpzmuT8NL4XQD9cZ7eXTjo+wO7ja6FEuQQOGgM03k2F5L04DOBg9dPummyBZ7MskJERt28uh0rqOIp+I8uelJ1rWtM7oU05NAAXjuOVkFb3FpVaF9optep4RJtrljcY6PF854CoCGxks7X+KtlreMLsXUJFD+/W/YscPoKsQYpBwqrROceX92iZkUhyMcm/QaXUbOvbL7Fd5tlXHWwynsQNm9G954w+gqxBikVUXWmBikpi9MfQHN/Oq3ctdK1retN7oMUyrcQOnrg2efBVmGY1maAu2NLgkTA03rS+AuwLeRF3e+yMb2jUaXYTqF90wASKX0QXg5cdHSOho9RKSby1C2VIp5MafRZRjihR0vsLlzs9FlmEphBsrKlbJHl8V1NXhlXy6T8EeiTE17jC4j5zQ0ntv2HFu7thpdimkUXqBs3gwbNhhdhRiDnlo5x8RsGvuilGqFs+ixn4bGs9ueZXv3dqNLMYXCCpRoFFatMroKMQZ91R66PRImZqOkNY6NKAX2hqJLa2me3vo0e4J7jC7FcIX1+L/6qoybWFi43E2HX7q5zMoVjzMzVXhTiTkoVIKxwl7PVjiBsm8fbJRZGVYVLXHRXiKzucyuti9cUPt9HSyWirFiywqS6cLdcaMwAiWdln26LCzud9JWnpC9uaxAg9nhwuz6AuiMdPLctueMLsMwhfG4r1kjZ8JbVNqu0ladJl0QZwbmB1c8zoxk4c366retextv7nvT6DIMkf+BEgzCm4X54OaDznqXnGdiQXWhSEHO+uq3eu9qdvbsNLqMnMv/QHnxRX0ho7CcvmqPrDWxKg2mx/L/7eVw+qcT90R7jC4lp/L7Ed+8GfbIVD4rSngddPplRp6VFUVj1Gouo8swTDwV559b/kk8FTe6lJzJ30CJxfTjfIXlaAq0j1NkED4PTIkU9mPYHe0uqEH6/A2UV1+FiHSXWFF3vZc4hXNVl89c8TiTCnBbloPt6NlRMBtJ5meg7N8v26tYVKTMLduq5JkJ4QQ2rXBOeDyUl3e/TDiR/8/r/AwU6eqypJTLRkdpwugyRIbZk0mmFXgrJZ6K88KOF4wuI+vyL1B27IC2NqOrEKPQXusghczIy0e1oWhBnptysJ09O9nUscnoMrIq/x7h1auNrkCMQrDWS1TONslbajrNjGThne74Qat2rcrrrq/8CpRt26Cjw+gqxAglvA7ZQbgAVIbCBLAbXYahYqkYL+18yegysia/AkXOh7ekzmqbTBAuBBrMiBfu6vl+27u3s6Vzi9FlZEX+BMrWrdDZaXQVYoTC5W7p6iogxeEI1QW82LHfyl0riSbz73mfP4Hy738bXYEYIU1V6CqRfboKTXO8sKcQA0STUVbtyr/D/vIjUHbulNaJBQXHeWTjxwLkj0QLfiwFYHPnZjrC+TXmmx+Bsnat0RWIEUq67fS4ZSeDQjUpIWMpAK/tec3oEjLK+oHS2qqfxigspbvaIXt1FbCKSAxHga+eB9gV3MXe3r1Gl5Ex1g+UNWuMrkCMUNzvIGSX1kkhU9NpmjRZl0KetVKsHSjd3frKeGEp3ZU2o0sQJlAbkfEzgNZQK9u7txtdRkZYO1Defhs06TaxkmiJi4hMExaAM5GgTlopALy+53W0PHgvs26gpFKwJT8XB+Wz7jLrv2hE5kyQUwoA6Ip2sanT+vt8WTdQduyAuDwbrSRS6iamyGMmDpApxAes3ruaVNram6NaN1A2WT/NC01vsbROxFAyhVjXF+9jfft6o8sYE2sGSjQKu3YZXYUYgaTHTsQWM7oMYUIyhfiAt1vetvRYijUDZetWSKeNrkKMQG+F0+gShEnJFOIDeuO97Apa92LZmoEi3V2WklYV+pwys0scXnVMLhD7vdv6rtEljJr1AiUYhJYWo6sQIxCqcpNG3jDE4XliMbzI+iTeXz0fjAWNLmNUrBco0jqxnF6ftWeuiNyoT0u3aL91beuMLmFUJFBEVkVLXCSQqcLi6Crj0ort917He5acQmytQGlt1bu8hGX0lsrsHTE8/lgMp8XekrIlmoyypct6C7et9ehJ68RSkm47YdlmRQyXBvVymuMAKw7OWydQ0mnZasVieiulT1yMTFXC6ArMoy3cRluozegyRsQ6gbJnj76gUViCpkDIKQsZxcgEojFssshxgNVWzltnE509e4yuYIibn3ySh958kw379+NxOjmpqYlbli5lak3NwH2iiQRfX76cB1avJpZMcs6MGfz6ssuoDgQG7qNcddWQ733/FVdw6QknAPD8xo0s+dnPhtxn33//NzXFxVn7/cYiVuwihQSKGBklnaYWN7uQi0eA7d3bOWX8KSiKNULWOoFiwlMZ//Xee1xz2mmcMGECyVSKbz/yCGfffjvrvv99fC69L/irDz7I399+m+Wf/zzFHg9fvP9+lv72t6y8/vpB3+vuz3yGc2fOHPi8xOsd8vM23nQTAfeBFcVVRUVZ/f3GIlJkncavMJeapMIu2d4L3h+cbwm1UOOvGca9jWeNQEkkoL3d6CqG+MdXvjLo83uWLaPqG9/gjR07WDxlCj2RCL9fuZI/f+5znD5tGgB3L1vG9Btv5JWtW1nY1DTwb0u83qO2NqqKig4ZNGYUccrhSWJ0iqNxFLvebSr0VopVAsUal5H791viIK2eiH6sbZnPB8AbO3aQSKU4c/r0gftMq6lhfFkZL2/dOujfXnP//VR87WvMv/lm7lq58pAbxM354Q8Zd911nPXzn7Ny8+as/z6jlfA6SCCjq2J0bKkU1YrM9upnpdMcrdFCMWF31wel02muffBBTp40iWPq6gDYHwzitNuHtCqqAwH29/QMfH7Thz/M6VOn4nU6WbFuHV/485/pi8X48umnAzCuuJjfXn45xzc2EksmufOllzjt1lt59VvfYu748Tn+TY8uUuIACRQxBjVJG/ut8e6UdcFYkO5oNyXuEqNLOSprPGQWCJRr7r+fd/bu5aXrrhvxv/3/Lrhg4O/HjR9PKB7nJytWDATK1JqaQQP9J02axJa2Nm57+mn++B//kaHfIHMibuut8BXmUpRIWuXdKSe2d29nTs0co8s4KvN3eSWT0GbuudhfvP9+nnj7bZ772teoLy0d+HpNIEA8maQ7HB50/5Zg8IjjJQsmTmR3VxexxOGv8udPmMDm1tYM/QaZk7arxBSZ3SXGxpNIWODNKXes0u1l/sespcW0Z59omsYX77+fh9es4dmvfpWJFRWDbp/X2IjDZuOZDRsGvrZx/352dnZy4kED8h+0ZtcuSr1eXI7DT3VZs3s340w4ZThS6sL8o13C7JS0RrkmU736tYXaiCQiRpdxVOZvVJq4u+ua++/nz6+9xqNf+AJFbvfAuEixx4PH6aTY4+FzJ5/M15Yvp8znI+B286UHHuDEpqaBGV6Pr11LS28vCydOxO1w8NT69fz4ySf5xllnDfycnz/9NBMrKphZW0s0keDOl17i2Q0bWPGBWWZmEPFKnIjMKE/babPJWByAhsaOnh1Mq5hmdClHJIEyBr/5178AOO3WWwd9/e7PfIZlJ50EwG0XX4yqKHz8t78dtLCxn8Nm41fPP89XH3wQDWiurORnF13ElYsWDdwnnkrx9b/+lT3d3XidTmbX1fH0V7/KkqlTc/a7DocGROyys7DIjJIUyBEpB+zoNn+gKJqZDzBOpeCee/Q/helFi120VMj4iciMpM3OM0Wynqmf0+Zk2ZxlRpdxROYeQ2ltlTCxkGiRXE6KzLGnkrhN/haVS/FUnO5ot9FlHJG5Hy0Td3eJoWIOCX+RWeWa7Fh9sJY+cx9/bu5A6ew0ugIxAglVuidEZpWkzf0WlWstIXMHirkH5eV0RstIOVRSFFYL5dW33uOOB1fw9qadtHb08Lv/uppzTj6w+GzCmUN3kQb41pVLueqSc3h5zUY++Y2hu0gDPPo/3+LYaRMAWL91N9/7xf2s3bid8pIiPvPRJfznJedk6bcyl6JkWgbmD2L2FooEisiIhM8BBbZdfTgaZ3pTPRedezL/+f3fDrn9tQf/e9Dnz7/2Dt+89Y+cd8pcAObNnDTkPj+7+zFWvrmB2VMbAegNRfg/37ydRXOn8aNrL2fDtj1c/9N7Cfg8XHbh4qz+fmbgTaZAtvUa0B3tJplOYlfN+dZtzqpAP0wrLlNQrSLuKbzLyCXzj2HJ/GMOe3tV2eCFp0+tWsuJc6YwvrYSAKfDPug+iWSKp15ey2c+umTg/ItHnnmNRDLJf3/jMzgddqZMqGXd5l3c+benCyJQHIkEDk0hoZh3MmouaWh0Rjqp8lUZXcohmbeDUlonlpJwmHM3A7No6wry3Ktvc8m5iw57n6dXraUr2MdF55w08LU3121l/qzJOB0Hrv0WnzCTrbta6OkNZb1uMwggK+YP1h4231Ee/czbQpFAsZS4XQLlSP624mV8XjfnnHLcYe/zl3+sZPHxMxlXeWA/uLauHuprBm/pU1mqH6zW1hmkuMiXxarNwYtKR5a+93v/fo8Vf1zBzvU76Wnv4eqfXs2c0w6Mg2maxuO/e5wXH36RSF+EScdO4rIbLqN6fPXAfXZu2MlDv3iI7eu2o9pUjjv9OC766kW4ve5BP2vV46t4+r6nadnZgsfnYe6Zc7nsm5cxUh3hbP1vjJ20UMSYaUBCkS0yjuTBf6zko6fPx+089NX2vrYuXlj9Lpece3LOazM7TxZP2opH4tRPrueT3/zkIW//573/5NkHnuXyb13ODffcgMvt4hdf+gWJmP58727r5rYv3EZlQyU33HMDX/7Fl9m3ZR/3fv/eQd/nqT89xaO/fpRzl53L9x/8Ptf++lpmLpx5yJ95NB0R8waKtFDEmCW9djRkyvDhvPb2JrbuauF/vnvlYe+z/J+rKA34OfOkYwd9vbK0mPauwa+Ftq5e/bayQJYqNhd3FgPlmJOP4ZiTDz0Opmkaz9z/DOd/7vyBVstnb/os3zj7G6x5fg0nnHMCb734Fja7jU9+85Ooqn59fvm3L+emS2+idVcrVQ1VhIIhHv3No1xz2zVMn3/gsL36yfWjqrkr0jWqf5cL0kIRYxb3Sh/3kfzlyZXMmjKeGZMaDnm7pmks/8cqlp61EId98OSG42Y08drbm0gkD0zJfumNdTQ1VBdEdxeAK2XMgHz7nnaCHcFBIeDxe5h4zES2vq2fuJqMJ7E77ANhAuBw6a+HzWv0U1XXv7oeTdPobu3mxk/cyDfP/yZ33HAHnftHt84ukU4QT5lzwpJ5A6W31+gKxDAl3IV5+HcoEuXdzbt4d/MuAHbta+fdzbvY03LgjaI3FOH/vfAGl5x3+MH4VW9uYNf+9kPe5yOnz8dht/PNn/6B97bv5fHnXufuh5/lio+fmaXfynxcaWMCJdihX9QGyge3BANlAXo69J3Fp50wjZ72Hv75h3+STCQJBUM8/MuHAehp1+/TvqcdLa3x5N1PcvHXL+aqW64iFAzx82t+TjIxupZ9KG7OCRnm7PJKpSBkzv8wMVShzvB6a+OOQQsTf/jb5QB8/OwTufV6fRO/x597HU3T+PCS+Yf9Pn95ciXzZk6ieXzNkNsCfg9/vOUrfO8X93Ph1T+irNjPlz91QUFMGe7nMPF+frWTavnsf32W5bct55FfPYKqqiy5dAmB8sDA1O90Ok0qmeLS6y5lxsIZAFzxoyu47pzr2Lh6IzNPHPlYSigRotRTOox75pY5A0W6uywlqRZmoJw4Zyrbn/7dEe9z2YWLj/rm/4vvXHHE26c31bP85yM/Wjpf2A0KlP6WSbAjSHHFgfVCwc4gDVMOdF/OP3c+88+dT7AjiNPjRFEUnr7vaSrr9fVG/f923MRxA/+mqLQIf4l/1N1eZm2hmLPLSwLFUlIUZqCI3FDTaRxZHJg/nIq6CgLlATa8fuDE1UhfhG3vbKNp1tATVwPlAdxeN6tXrMbhdDB9gT720nxsMwD7d+wfuG+oJ0Rfdx/l48pHVVsoYc5AMWcLRcZPLCUtM7xElvkUO91kfmp6NBylbVfbwOfte9rZtXEXvmIfZTVlnPHJM/h/v/9/VDVUUVFXwaO/eZSSypJBa1We+8tzTDp2Ei6Pi3WvruNvt/+NpV9airfIC0B1YzXHnnosD/70QT71nU/h9rl5+FcPUzOhhqnHj+6QvHAinIHfPvPMecDWv/8Nq1cbXYUYhrRdZVejtFBEdr1d7GKvkvm94jau3sjP/nPoBp0nXngiy76/bNDCxnBvmOY5zVz2zcuobjywsPHu793N2yvfJhaOUTOhhrM+dRYLL1g46PtF+iIs/9ly3nzuTRRVYfLcyVzy9UsoqykbVd2NxY2c02y+DULNGSivvgpr1xpdhRiGhMfO3lppoYjs2lLsYbMSMboM06jwVrB0+lKjyxjCnGMoCVl1bRVpZ+FtCilyz5UuzKnphyOD8iMhgWIZaZu80EX22UzYkWKkSDJCWjNfV7MEihgTCRSRC/IsGyqZNl9XszkDJWm+/yhxaJo5n0EizygSKUOYcfjbnG8HEiiWkVblhS6EETQkUIYnbb6+QXFo0kIRuSCXLUNJC2W4TPgfJQ4tbc5nkMg78p7wQdJCGS4JFCHEweQtYQiZ5TVc0uVlGYpBW4uLwtK/c68wN3MGirRQLEMxYNM+UXgUeU8YQloowyVPHstQpYUickAuW4aSQXmRdxTzXSSJPGS+t07jyaD8cLlcRlcghklaKCIXFHmaDWHGxZ7mDBS32+gKxDAp5j2dVeQRGZMfymU334W3BIoYE2mhiFxISqIMoioqbrv53iclUMSYKCkZRBHZFzPnO5VhXDbztU6QQBFjpSQlUET2xUw4AG0kj8NjdAmHZM5AkUF5y1BT8kIX2ReVUflBzNjdhWkDRVoolqFIoIgciMjsj0E8dmmhDJ8EimXIoLzIhYgJV4UbSbq8RkICxVLs2I0uQeS5KNJCOZh0eY2EBIqlONI2o0sQeSxlsyFbxg0mXV4j4XLJSiYLcSQlUET2JG3y/Pog6fIaCUUBp9PoKsQwOeIyjiKyJ6ma823KSAFXwOgSDsm8j5R0e1mGIyoDpiJ74jbprTiYqqiUuEuMLuOQzBsofr/RFYhhcoQSRpcg8lhcur8HKXGXoCrmfOs2Z1UA5eVGVyCGSU2msSH93CI7YpIng5R7zPveaN5AKSszugIxAg5Npg6L7OhVpUv1YOVeCZSRkxaKpTiS5n0qCWvrQrpUD1bmMe/FtnnfBUpLQWZ3WIYjbnQFIh+lVZWQbLsyiHR5jYaqQok5ZzKIoWSml8iGmMNhdAmm4rF7TLsGBVMHCtLtZSWOsHRLiMwL2839FpVrZu7uAky+CVN5OWzaZHQVYhhscX2mV8qSey4ppBU3Kc1JSnGR0hyk0nbSmu2ge2gcOMJbe/+vGooCNiWBXYlhI4qqRVCQ1lqm9MrkwUHMPCCPJQJFWIY76SBkN2+gpHCTUALEUx4SKSfJpEoypZAcc8mDuyDsdnDY0zhsKey2JDYljkMJYdeCyAzYkelSzft8MkKlt9LoEo5IAkVkjCesEDLNjhAKCaWYWLqIWNJNJGYjlaP3pmQSkkmVCCrgeD9wilGVWtzuNG57FKcawkk3iiVbdDmiQIeWQFJYp6BQF6gzuowjMneguN3g9UI4bHQlYhjc3TEwMFDSiouIVkE47iMaVTHbUS1pDcIRlTBewItCJR5PGo8jgksJ4qDH6BJNJeZwklJk+mC/Cm+Fabet72fuQOH9VooEiiXYEmlcmpNYDt8ENOxEqCQU9xOOWKvDXeP9gIn4AB8OxziKPGG8ahs2LWJ0eYbrc1jr8cy2huIGo0s4KmsEyq5dRlchhskdsxHL8kWUho2YUkEoHiAUtmGyhsioJRLQmfDSSSNedxqfK4iHtoLtFuu25csjmxkNAQmUsZNxFEvx9KXpyVKgJJUiehNV9IUdpuvOyrRwVCUcLUFVSvD7EvjsXTi1TqPLyqkOWdA4wGVzUeWrMrqMozJ/oNTV6eejaHn+DpInnD0x1AqVdAanziYopideSShi/qdrpqU1CPY5CFKF01FJibcHN/vzfpw6rap0y5YrA+oCdSgW2HXZ/K9QtxsqK6G11ehKxDAogDvlImwb+xhAXCmjJ1ZuubGRbIknFFp7SnA5iinxdePWWowuKWt63S40RcaR+lmhuwtLBArA+PESKBbiCWuEi0b/7+NKOd3RciJRWSV9KLGEQkt3KS5nCSXeLtxa/r02WmXHlUHqA/VGlzAs1njFNjYaXYEYAXfP6Loq4koJLZGp7OuulDAZhlhcoaW7jJbIVGJUGF1ORu0hZnQJplHmKcPn9BldxrBYo4VSXg4+H4RCRlcihsEeS+HQHCSU4QWLhp2e1Hh6+pxZry0fReMK++MVeFxllHn2Ydd6jS5pTCIuFzFFAqXf+OLxRpcwbNa5DBxvnf9UAd748PosolSxN9QsYZIBkZjK3u46+rQGrLy8vMMpY2YHm1I+xegShk0CRWSFr/PIrZMUbjoSk2npKSOZzFlZeU8DOoI+WiJTSCpjGMgy0B5VVsf3q/HXUOK2zjEe1gmUujqwyZWLVTjCCVyaa8jXNSBEHXt7J9AXlsczW6Jx5f3WynhLtVYSDjvdilxh9JtaPtXoEkbEOoFit0NtrdFViBHw9w1+eqUVD23RKbT3FJGWHd6zTm+teC3VWul2SddnP4fqoKm0yegyRsQ6gYJ0e1mNtz2K+v5TLEY5e3sbicSs9ZTLBwOtFcw/9XS/bFc/YFLZJBw2a82fttarW6YPW4qa1vAmXfRqDezvqczZ9vFiKA3o6PHTlZyEhjm7GjVVZb8qs7v6Wa27C8sFit8PZeY+AlMckFYcRHqOoTNojTn0hSAYctAaaSatmO9c8qDLKWddvq/EXUK1v9roMkbMWoGCdHtZRdJexH77IlLdZbhVc5/hUGiicYV9vY0kKDa6lEHandaZPJBt0yqmGV3CqFgvUJqbja5AHEXcWc5+bQGJhD7AGkiY5hhH8b5kCvYHxxHDHEfKaqrKDqJGl2EKqqJaau3JwawXKGVlUGX+bZwLVdRVQ0tyLqnUgX56d7cbm2LOfvtCltZgf085YYyfPdnpcZFQZEdxgIklE01/MuPhWC9QAKZZszmY7yLuelrjs0mnBz+tFE2hOG2u7hVxQFtPgF7N2K7kbXaZsdFv7ri5RpcwatYMlEmTwGGt6XT5LuSZQFt0Jpp26H5wf7dfWikm1hn0EtKMmVYccbnokLPjAWgqbaLUU2p0GaNmzUBxOPRQEaYQdjfSHpl6xKN4lZRCsSatFDNrD/oJMy7nP3ePy5pvQ9kwb9w8o0sYE2vsNnwo06bBhg1GV1Hwoq5a2mPDmy/v6/bRXdpNWrPu5NC7/3I39zx4z6Cvja8dzx9/+UeCvUHu+stdrF67mpb2FkoCJSyav4jPXfo5/D4/AJu3b+a+h+7j7Q1v09PbQ01lDR85+yN84sJPGPQbDdbWU0x1cQo3uTljJWWzsV2RwXjyoHWCpQOlqkrf1r6jw+hKClbMWUlb4pjDdnN9kJpUKdaK6aIr67Vl08SGidx6460Dn9ve32Ouvaudjs4Orv701UxomEBLWwu3/u5WOjo7uOm6mwDYuGUjpcWlfPcr36WqvIp3Nr7DT3/7U1RVZen5Sw37nQ7W2lNGTUkKp5b911aHx0VKCWf955idgmL51gmWDhSAY46Bf/3L6CoKUsJRQlvqWNLpka0d8Pf46SnpsXQrxWazUV5aPuTrTeOb+MH1Pxj4vK6mjisuu4If3f4jkqkkdpudC864YNC/qa2p5d333uWFV18wTaBoQEtPJdXFKZxad1Z/1ha7jJ0ATCydaPnWCZYPlOZmeO01iMjZ07mUUt20avMGTQ0eLjVh/VbK7n27WXrFUpwOJzOnzuTzl3+e6spDr2oOhUN4vV7stsO/1ELhEAG/udbqpDVoDdZQHUjj0IJZ+Rkht5ugrD3Jm9YJlh2U72ezwfTpRldRUDRU2h0nkEyO/lqkqLMIu2LNa5npk6dzwxdv4Cff/Qlf+/zX2Ne6jy9990uEI0O7bbqD3fxh+R/40JkfOuz3e2fDOzy78lk+dNbh72OUVBpae2tJK0OPIciEXdn5tpaTL60TLB8oADNmgGr9X8MqurxziMa8Y/oeSlqhNGXNF9DCuQtZctISJk2YxPzj5nPLd26hL9zHcyufG3S/UDjEDT++gcaGRj57yWcP+b227tzKt2/5NssuXsYJc07I0W8wMskUdMTGH3EG36i+r83OTmmd5FXrhLwIFK9XphDnSJ+nmd5wZrbq8HR6cKnWv0Qt8hVRP66ePfv3DHwtHAlz3Q+vw+v28sPrf4jdPrQ1tn3Xdr72/a/xoTM/xKc/8ekcVz0y4YiNULoho9+zzetkmHM58tq0iml50zohLwIFYNYsoyvIe3FnBZ3RzB32o6BQGrH+CykcCbO3ZS9lpfou2KFwiK/f9HUcdgc//taPcTmHhua2ndu49sZrOee0c7jy8isNqHrkOnp9xJXMHEWbVlU2qtI6cdvdzK+bb3QZGWXNjuwPqqiACRNg+3ajK8lLmmKjXZs17OnBw+XqdeH3+OlL92X0+2bTr+/9NScdfxLVldV0dHZw11/uQlVVzlx0JqFwiG/c9A2isSjf/cp3CYVDhMIhAEoCJdhsNrbu3MpXb/wqJ8w5gYs/dDEdXfrUXJtqo6TY3GeHt/XVUOsLozC2mVn7fG5iMlWYBXULcNmt30o/WH4ECsD8+bBjB2iywVymdXmOJRHOztGsJcESwkVhy0wjbuto46bbbiLYG6QkUMKs6bP4zc2/oaS4hDffeZN1m9YBcNk1lw36dw/85gHGVY3jXy//i+5gN0+98BRPvfDUwO01lTX85bd/yfnvMxLJJHQmGil3bBr190jZbGywyazMal81Uyusd4DW0SialkfvwC++COvXG11FXom4ammNZbdLsa+8jw5FFqhaRUWgD5+ye1T/dnvAw0a1sANFVVQ+Nu1jlHuHrmWyuvwYQ+k3bx4cYgBUjE5KddGRyv60bF+HTw7hspCOoJ+EMvJ1MwmHnU0FHiYAs6tn52WYkHeB4vXC7NlGV5E3ul2zSY1hvclwKSiU95ajINN+rEADuqI1I/53272Ogj/it8RdklfThD8ovwIF4NhjwWO+87KtJuasoi9SlrOfZ4/YKdWsP+urUESiKlFl+Geex5xOtirSOlncuBibmr/HOORfoDgcMNe6B9SYgYZCJ7nfgaCosygv1qYUio6+UjSG9+a4xZN/bzUjNbNyJjX+kbfsrCQ/H+Xp06FYzt4YrT7PZOJxA8Y0NCjvK0dV8vNpmW+SSehL1x31fhGXi10FvkV9maeMBfULjC4j6/LzlauqcII5t7Iwu5Tqoidu3HGwjrCD8mR+Dljmo+4+L2nlyF3M7xV4D7TT5uSsprOwq/k/YSg/AwWgqUk/M0WMSNA9Y1S7CGeSt8tLkVpkaA1ieNIadCcO30rp87jZTyynNZnNqY2nUuwujB6T/A0UgIULja7AUlI2D72RzOzVNValHaU4VIfRZYhh6A3ZD70tiwLrnCkjSjKN2dWzmVg60egycia/A6WmRt+SRQxL0DUt49urjJaSUqjsq5TxFIvoCg+d8bXP76VLSRhSjxnU+Gvybq+uo8n/V+tJJ4EzO9uG5JOUzWua1kk/R9hBeUrGU6wgGleIceCxijscvGMr3P26PHYPZzadWXAXRPn/2/r9cPLJRldhemZqnRzM2+mlWC2M/mer640fWLe0zqsW7CJGBYUzms7A6xjbuUFWlP+BAjB5MkwsnH7MkUqrTnojFUaXcVglbSV4bYX34rSaUMRGUimi3eehRSncgfgT6k6gtqjW6DIMURiBAnDKKfrWLGKIPvckU7ZOBmhQ0V4hix4toDNVzVv2wl1z0lTaxJyaOUaXYZjCCRS3GxYvNroKU+pLjDO6hKNSUgqVPZXYlPzdtiIf7LQ3kKYwN/qsD9Rz+sTTjS7DUIUTKADjx8O0aUZXYSoRdx2JhDWm59piNqrD1QU30GkVsaISOtJOXOnMnexpFdW+as6edHbBPzcL77c/8UQIjHzr7XzVS6PRJYyII+SgMm6u2WgCNIeLnar+uopHaiikA+PLPGWcN/m8glgJfzSFFygOB5x2GiiF84Q/nKTNRyRqvRXp7h431cnh73Qrsk1hv6+c1PvHDySTdtwcfY+vfBBwBbhg8gU4bbI0gYIMFN5f8HjssUZXYbiwy1qtk4O5u91UpWRrHTMIB0rp0T7QbRrP/1lOPoePC6dciMdR4JuVHaQwAwXg+OOhvLAXzYWS1u468nR5qExb+3ewurTbwy5laCs3HivO67cXt93NBVMuwO/0G12KqeTvI340qgpLloCtMGcNJe1FxmxRn2HeTi8VafOuoclrDifbXZVoh7gpnVZxafnZLelQHZzXfB4l7kPsX1bgCjdQAMrK9K1ZClDY2WB0CRnj6/RRoUmo5JSqssdXSfwIxzbbUvl3mJTb7ub8yedT6ZOW8aEUdqDw/mFcBXgOfTiVX2/Avg4fVakqOZc+RzoCVfRqR57VlIjl15HOAVeAj0z9CNX+/Gx5ZYIECsCCBQW1K3FadRKL5d9AoqfLQ3Vc1qlkWyhQTpt29F0LEgkHDvKjW6jSW8lHpn6kYM41GS155YE+hfj006GyMJqxUaf5V8aPlivooiZcIyvqsyThC7BLGf5AtCNl/enDDYEGPjT1QzKbaxgkUPrZ7XDOOfruxHkuqub37DZHyMG43nFyQFeGaS432+wja3Gk4tZ+rk2rmMY5zefIosVhkkA5mNcL556b9+enRBP5v1OALWqjpqsGt2r9mWymYLez3VNJeoRjVLGYB9Wie3vNGzePxY2LpQt1BOR/6oPKyuDMM/VpxXkoZfOQSBTGrr1qQqWqrYqAmv8BmlWKyj5/FTFtdK8Jh8WmdauKyqmNpzKvdp7RpVhOfr5rjlV9PSxaZHQVWRFzFNYMFUVTKG0tpUKrkBlgo9RVXDl0JfwI2DTrzPbyOrycP/l8plZMNboUS5KOwcOZNg16emDtWqMryah4gV6t+zp8OP1OWj2tJLWk0eVYRiRQRos2ti6rVNIPFpgj0VjcyKkTTsVtt2YXnRlIoBzJggUQDMK2bUZXkjHxdP5POjgcR5+DcbFxtJe1E0lFjC7H9GJFJew4xLYqI5WMe8HEvaw2xcaC+gUcU3WM0aVYngTK0SxZAuEwtLQYXUlGJJKFPfVRTahUtlQSKg/RqXSiHXLjEBHzl7BNzcyai1TKjoqbNOY7ybHEXcIZE8+g3Gvt2WhmIWMoR2O3w3nnQbX1xx5SqotkUq4hFBT8HX5qQ7VyrPAhxP3FbLNldgGfw4TjKFPLp7J0+lIJkwxSNE2TS7ThSCTgH/+AffuMrmTUoq5xtMRyu83MbY/fxu1P3D7oa03VTTx707MAtPa0cvPfbubF9S8SioZoqm7ii+d/kfPmnjdw/yt+dQXrdq2jvbedYm8xi6Yv4oalN1BdMvaQ1xSN3opeurSuMX+vfBD3F7PVlvnV7Z7AdiLqxox/39Fw2pycMv4UJpVNMrqUvCOXq8PlcOgtlX/+E/bsMbqaUUmqxoyfTKmdwp+u/dPA53bbgafd1+/+OsFIkDu/cCdl/jIefe1RrrnjGh779mMcM17v0144dSFfOO8LVBVX0dLdwo/++iOu/t3VPPTNh8Zcm6IpBNoCuP1u2r3tJNKJMX9PK1n77lruf/R+3tv6Hh1dHVz9X79jzsnnDNwejYR4+M5bWLNyBaFgFxU1DSz52DJO/dCnBu7T09nK3+64mfVvvEg0EqK6vonzL/sicxcfuCgg5TNFf0hDoIFF4xdR5LLewXJWYIKH2ELsdn3hY3290ZWMStKgBWY21UZVcdXAR5m/bOC2N7a+wWeWfIY5E+cwvnI8X7rgSwS8Ad7Z+c7Afa448wrmNs2lvryeeZPmcfW5V/PmtjdJpDL35u/sczKufRyllBbU9OJILELzhGau+dJ3Dnn78t/8kHdf/xf/ccNtfP+upzl96X/wwC9vZO2qpwbuc/ctX6dl11a+8IM7+d4d/+S4Redyxw+vYeemA4+hlvLm5Pc5nCJnEWdPOpvzJp8nYZJFEigjZbPpW7RYcDPJlEGBsr11O/Ovn88p3zmFr/z+K+zpPNDCm9c0jydWP0F3qJt0Os1jrz9GLBFj4ZSFh/xe3aFuHnn1EeY1zcNhy+zWKkpaIdAeoK6vDq/N2DfAXFk4dyGfuup66hYvPeTtW9e9wYlnf5ypc06koqaBxRdeRv2k6WzbcGA6/dZ332DJRz/DxGlzqKwdzwWf+hJeX2BQoKTTxnSG2FU788bN4+KZFzOhxHqvWauRQBkNmw3OOktfq2IhyWHsEJtpcybO4afLfsq9X76XH172Q3a17+Lin1xMX7QPgP/5/P+QSCWY87U5TLlmCt/503f43dW/Y0LV4Bf/zX+7melfms6cr81hb+de/vcL/5u1mm1RG5UtlVQnqvN+D6dwoJzt6uGv2JtmzGPtqqfpat+PpmlsXLOKlt3bmHH8KQfuM3Meq59/glBQvyh4/bnHSCRiTDn2wEVBOp37hSgTSiZw8cyLmVc7D5tqgYUweUAG5cfqtddgzRqjqxiWvY4lJBLG7lPWE+5h0bcW8d2Lvssliy7hxvtvZM32NVz/0esp9ZeyYs0Kfv/M71l+3XKm1R0I7M6+TrpD3ezp2MPtT9xOkaeIu754F4qS3e4pTdXoLeulR+khraWz+rNyrS9QwW7FN/D5VWdOGDKGkojH+NNt3+KVpx5CtdlRVZVPffVmTjz74wP3Cff18L8/+CLr3ngR1WbH6fJw1fd+xYzjFw/cR1HSaMVPkQsl7hJOajiJ+oA1u6atLL8vv3Jh/nx9U8lVq4yu5KhSKeMf7mJvMROrJ7K9bTs72nZw7/P3suLGFUypnQLAjIYZvL75df7w/B/48eU/Hvh3Zf4yyvxlNFU30TyumRNvOJF/b/038yZld7+l/m4wv8NPb0kvPVqP9deuKCrdgQr2c/Q1Sc89ci/b1q/hCz+4k/LqOja99Rr3//J7lJRXM32evj3Ro3f/jHAoyLX/fR/+4lLWrFzBHT+4hutuW05dk35RoGnq+x0i2Qtlp83JcTXHMat6lmzoaBDj32HywTHHgNsNzz8PafNexWpp419koWiIHW07+NjCjxGJ66vVP/jiV1UVLX34N+3+lkI8Gc9ytQfVlFApbiumyFlEsCRIMB20ZrDYHez1VxIcxt5c8ViUR+76CVd//3fMWng6APVN09m1ZR0rlt/B9HmLaNu7g+cfvZcb71xB7QT9oqBh0gw2v/06zz/2By6/9sBFgU1zkVIyv0OB1+FlVtUsZlTOyPi4mhgZCZRMaW4Gnw+eeUZfWW8yGqohb38/+uuPOGP2GdSV1dHa08ptj9+GTbXx4RM+TMAbYELVBL79p2/z7U98e6DL66X1L3HXNXcB8Oa2N3lr+1sc33w8xd5idrbt5NbHbqWxspG5TXNz/vuocZWS1hKK3EUEA3qwWEXa42W7s4K4NrxuwlQyQSqZQFEH319VVfp7yuNRPSCUQ1wUpD9wUaAqLlJkLlACrgDHVh/LlPIpMkZiEhIomTRuHCxdCs8+C3v3Gl3NIJpqz2Zvw2Ht69rHl+/8Mt2hbsr8ZRzffDwP3/Aw5UX66uS7v3g3tzx8C1f86gpCsRCNVY3cuuxWlsxaAoDH6eEfb/6D2x6/jXAsTFVxFafOPJUvXfklXA7jVrnbojZKo6UEXAFCgRBBgqS0lGH1HE20qITtagA+MCU6GgnRtmf7wOft+3axa/O7+IpKKKuuY8rsBfztjptxON2UV9fz3luv8MpTD3HRf34XgJrxk6iqm8Cffv5tPnHVt/EH9C6v9f9+iWt+eNegn6Vqrg/++FEp95Qzp2YOTaVNWR9DEyMjg/LZoGmwejW8+abRlQxIql72pE8Zxj3FaGiqRrg4TI+jx1yLIxWVruLKw+4YvHHNy/zsG58c8vUTz/44y66/lZ7OVh7+/X+zfvWLhHq7Kauu45QLLuPMj39u4M28Zfc2Hr7zFja/s5pYNERVbSNnXfR5Fp41eCqyu3gdUWXXqH+Vcf5xzKmZQ0Nxw6i/h8guCZRs2rULnnsOosZvipdwFLM3cei1HSJzNDTiRXF6Pb2E0iFji3E42eOrpFczR0eEp3gTEWXriP6Ny+ZiUtkkppRPocpXlbXaRGZIoGRbKARPP234bsUJRwl7EwsMraHQpJwpIkUR+mx9xNKx3P5sj5cdzgriJlr1P9xAsSk2GksaaS5rZnzxeJmxZSESKLmQTuvrVd56y7ASErYi9qZOMuznF7qkJ0nYH6ZX6SWZzu4BX9Gi0vcXK5onTADcxRuJKtsPe3ttUS3NZc00lTbhtBm7XkqMjjnawvlOVWHhQqip0acWx3M33XWgBMw7YFwI7BE7gUiAIopI+BNEPVHCSjizLRfVRlegYswnLGbP0OdguaecSWWTaC5rxu8s3MPf8oW0UHItGNS7wNrbc/pjU4qL3dppOf2Z4uhSrhRRX5SIPUJEi4x6NX7K42OXs5Soic/adRe/g+LopC5QR32gnvpAPV5HYeyZVigkUIyQSsGrr8K77+ozwnIgrdjZpZ2Rk58lRkdTNeK+OHFnnJgtRlSLHn0qsmqjp6iMfZjzjdmGDWfKhRJzceJchUl1stNvPpMuLyPYbHDSSTBlCrz0ErS2Zv1HKiZeIyF0SlrB1evChYsi9DfepCdJ3B0n7ogTI0Zciw+0YlIeH7tdZUQ0cwxa27BhTztQUw6IOkn0ukhGHANLGUsL+/TpgiCBYqSKCvjoR2HDBn3QPovTixU0VCVN2iRvPmJ47BE79ogd7/stEA2NhBc2u710pNwQT+CyJ0kpSZJkd7AfQEXFrjmwpewoSQdazE4y4iAZsZNKH3mkzinj7HlPAsUMpk3Tz1d57TU9XLLEZk+SNni3YTE2PR4/b8VKiYSHjpUoqobNlUJR06j2NIpNA1saxZYGRdP/VNOklTSomh5PGqgoaJqCoin64WKagpZSIa1CUkVLqaRTKomwnXTSxminlLiM29hA5IgEilm43bB4sR4uL72UlUF7mxongQSKFcUdDt6zlbIncvh+Iy2tkIyY8yXtdOqnaIv8Zs5nXyGrqoKPfQzWrYPXX8/oFGObaqItQcSwpGw2djqL2RTxoyXMta5kJAIBoysQuSCBYkaKAjNnQlOTPhvsvfcy8m1tSu7Xv4jR0RSFFncR62PFxCPWH/eSQCkMEihm5vHAaafp3WAvvwxtbWP6dnYt82dRiMzr8Xh5N1FKr0m7r0ZDAqUw5M8zNp/V1OjdYHv26McN79kzqm/jSPdmvDSROUG3l03pYtoj+TfOJYFSGCRQrKSuTv9oa9ODZfv2ES2MdCQ6s1qeGJ2e94OkI5p/QdJPAqUwSKBYUWUlnHUWdHfD2rWwadOwjh62paPYbClSKfNuz1FIetxe3ksV05nHQdJPAqUwSKBYWUkJnHoqHH88vP02rF8PiSPP5HI4oqRSvpyVKAbTVJVOl4/NySK6o4Uxj9blAr/s+1gQJFDygc+n72Z83HH6/mDvvHPYVfcOJUQUCZRcSzgc7HX42Rr158WsrZGoknOxCoYESj5xuWDuXJg9GzZu1Ffdd3QMuouTICCv8Fzpc3vYrhWxJ+aBAl0GVFNjdAUiVyRQ8pHdrq9jmTkTOjv1dSybN0M4jDvRCjQbXWFeizsctNl97Ej46I3KS6y62ugKRK7I9vWFQtP06cabNrF7x0RSceuuujajlM1Gp8vHzoSX9oRsWtVPVWHZMv0aR+Q/eZgLhaJAfT3U17P1uTTR3RFqCBOIRlDkmmJUUjYbQaebPZqPvVE3WlhC+oPKyyVMCok81AWopk7l+U0+tuPDrqQZ545RpUQoTkRwJLO/BbqVxRwOuhxe9iU9tMWdaBEJkSOR7q7CIoFSgOrqDvw9qansinrYhb6LbbEjwThHhPJ0FF8sWvCtl7SqEnK66FA87El46EvYC3ZwfTQaGoyuQOSSBEoB8vmgtBS6uobe1pNw0JNwAAFsikalK0a5LU4gHcOXiGFL5ffJj0m7nT6Hi25ctCVddCackL1zz/Ka0zn44kXkPwmUAjVpEqxefeT7pDSF/TE3+3EPfC1gT1DhiFNKDH8qjjOZQB3GKn0zStpsRB1OQqqDoOakNeGiL2knBwcfFoTGRn1QXhQOCZQCNZxAOZRg0kEw6YCDFkd61SQljgQBWwK/lsCbTuBMJLGlzdGaSdrtxG12oqqdXhz0pJ10JhzEUjaOeGatGJOJE42uQOSaBEqBKi7Wj7TPxMGQ4bSdcMzOXgafJmhTNLxqEp89hUdJ4VFTuLQkLlLYtTS2tIaqpVE1DTWdRk3rx9IeTVpRSdtUUqpCCpWUqpJEJamqxLAR1WxE0nb6Ujb6knbSSUVaHTnmcMj4SSGSQClgzc1ZOWl4QEpT6E056E0Nf88qm6JhU/SzzvujRUMZ2FRZAzRNAsLsGhrAJnuQFhzp4SxgTU1GVzBUSlOIp1USmkry/Y+UppBG/9CQabpWYMbnlsg+CZQC5vfLPksi8zwemDDB6CqEESRQCtzUqUZXIPLN9Okyu6tQycNe4CZPBq/X6CpEvlBVmDHD6CqEUSRQCpyq6psSC5EJEyfKBUohk0ARzJghG/iJzJCLk8ImgSJwuWDKFKOrEFZXUSGTPAqdBIoAYNYsfYd7IUZr9myjKxBGk0AR8P7K+cZGo6sQVlVeri+UFYVNAkUMmD9fpnuK0Zk/3+gKhBnI24cYUFIC06YZXYWwmnHjZN8uoZNAEYMcf7x+joUQw7VggdEVCLOQQBGDuN0wZ47RVQirmDABqqqMrkKYhQSKGGLWLCgqMroKYXaqKmMnYjAJFDGEzSZvFOLojjtOH3cTop8EijikSZNg/HijqxBmVVamB4oQB5NAEYe1eLG+il6IgykKnHaaTDEXQ8lTQhyW1wuLFhldhTCbY4/Vt1kR4oMkUMQRTZqkfwjB+2uV5s0zugphVhIo4qgWLZItyYXexXXqqXJWvDg8CRRxVC6XPp4iCtvChVBdbXQVwswkUMSwjB8Pc+caXYUwSnMzHHOM0VUIs5NAEcN2/PH6iXyisJSXSwtVDI8EihiRJUv0NQiiMLhccPbZcqKnGB4JFDEidjuce66+55fIb4oCZ5wh2/CI4ZNAESPm9+tXrbKwLb+deCLU1xtdhbASeUsQo1JTo08hlWOD89PcuTIIL0ZOAkWM2uTJMlibj2bM0CdgCDFSMtQmxmTqVNA0eOEFoyvJrMcf/z5PPPFfg75WXT2Vm27aMPD5li0v8+ij32HbtldRVRv19XP4ylf+idPpGfTvEokY//f/LmD37rV897tv0tBg3gNnpkyR7XbE6EmgiDGbNg3SaXjpJaMryaza2plce+3TA5/bbAdeLlu2vMwvfnEu5533LS699Jeoqp3du9eiKEMb/Q89dD0lJbXs3r02Z7WPRnOz3o0pxGhJoIiMmDFDb6msXGl0JZmjqnaKi2sOedvy5V/l9NO/zLnn3jDwtZqaqUPu9847T7Ju3QquuupvvPPOk1mtdywmT9Z3EJYxMTEWEigiY2bO1N+QVq7Uw8XqWls3cf31tTgcbpqaTuRjH7uZsrLxBIOtbNv2KvPnX84tt5xEW9sWamqm8dGP/ojm5gP9RcFgC3/845VcffUjOJ3m3QztuOPghBOMrkLkAxmUFxk1Y4a+TsXhMLqSsZk4cQHLlt3Dl7/8Dy677De0t2/jJz85hWi0l/b2rQA88cT3WbToSr785X8wfvxcbrvtDFpaNgGgaRr33LOMxYv/kwkTzDnCrShwyikSJiJzpIUiMq6hAT7yEfjHP6Cvz+hqRueYY84b+Ht9/WwmTlzAt77VyOrVDzJu3HQATjnlKk4++bMAjB9/HBs2PMOqVXfxsY/dzHPP/ZJotJfzzvuWYb/DkdjtcOaZciqnyCwJFJEVZWXw0Y/CihXQ2mp0NWPn9ZZQXT2FtrbNTJt2OgDjxs0YdJ+amul0du4EYMOGZ9m69WWuuWbwkZc//vHxzJ9/OZ/97L05rH4wj0dvRVZWGlaCyFMSKCJrvF648EJ4/nnYutXoasYmGu2jrW0LCxf+H8rLJ1BSUktLy8ZB92ltfY+ZM/WWzaWX/oKPfOSHA7f19Ozl9tvP4cor/8LEiQtyXn+/6mp9OxW/37ASRB6TQBFZ1d+18tZb8Npr+vRiK/jrX7/B7NkfoqyskZ6evTz++I2oqo0TTvgkiqJw1lnX8fjjN1JffywNDXN4+eV72b9/A1dd9VcAysoG9yW5XPo7eGXlJEpLc7+fiaLoR/cef7xsmSOyRwJF5MTs2TBuHDzzDASDRldzdF1du7nzzk8SCnXg91fS3LyIG254haIivZ/ozDOvJZmMsnz5VwmFOqmvP5Zrr32KykrznZfs9eq7RNfVGV2JyHeKpuXDBE9hFYkEvPwybNgwjDuLMWto0NeXeDzDuLMQYySBIgyxc6e+XUs4bHQl+cnp1Lu3ZINHkUsSKMIwsRi8/jqsX58fCyHNorlZP//da961lCJPSaAIw3V2wqpVsHev0ZVYW0mJvrFjba3RlYhCJYEiTGPbNnjlFejtNboSa7HbYd48mDVLZnAJY0mgCFNJpfQpxmvXQjxudDXmZrfrW93Mni3dW8IcJFCEKcXjsG4dvPOODNx/kMOhb8Q5eza43UZXI8QBEijC1FIp2LRJb7H09BhdjbGcTn3W1qxZ4HIN4x8IkWMSKMISNE0fY3nrrfzYG2wkKir0kzEnT9ZDRQizkkARltPdrbdaNm/O3wF8l0sPkKlTobzc6GqEGB4JFGFp+/fr4bJ1q76uxcpsNn17lClToLFR/1wIK5FAEXkhldLXsezeDXv26GtbrCAQ0LdHaWjQ14/YZXc9YWESKCIvRSJ6wOzZo4eMWQ768nr1MZH6ej1EiouNrkiIzJFAEQUhHNZbLV1d+kf/3xOJ7P3M4mI9PMrLD/wpmzSKfCaBIgpaX5++nX40qrdqotHBf+8PHEUZ+qGq+joQj0f/0+fTP/x+/U/pvhKFRgJFCCFERsjOP0IIITJCAkUIIURGSKAIIYTICAkUIYQQGSGBIoQQIiMkUIQQQmSEBIoQQoiMkEARQgiRERIoQhzFli1buOqqq2hqasLtdhMIBDj55JO5/fbbiUQiRpcnhGnI5hBCHMHf//53LrroIlwuF5/+9Kc55phjiMfjvPTSS1x33XW8++673HHHHUaXKYQpyNYrQhzGtm3bmD17NvX19Tz77LOMGzdu0O2bN2/m73//O1/5ylcMq1EIM5FAEeIwrr76an7729+ycuVKTjrpJKPLEcL0JFCEOIz6+npcLhdbtmwxuhQhLEEG5YU4hGAwyJ49e5g1a5bRpQhhGRIoQhxCMBgEoKioyOhShLAMCRQhDiEQCADQ29trdClCWIaMoQhxGHV1dXg8HjZv3mx0KUJYgrRQhDiMCy+8kC1btvDyyy8bXYoQliCBIsRhXH/99fh8Pq644gpaWlqG3L5lyxZuv/12Q2oTwoxkpbwQhzFp0iT+/Oc/c8kllzB9+vRBK+VXrVrF8uXLWbZsmdFlCmEaMoYixFFs2rSJn/zkJzz11FPs3bsXl8vF7NmzufTSS7nyyitxuVxGlyiEKUigCCGEyAgZQxFCCJEREihCCCEyQgJFCCFERkigCCGEyAgJFCGEEBkhgSKEECIjJFCEEEJkhASKEEKIjJBAEUIIkRESKEIIITJCAkUIIURGSKAIIYTICAkUIYQQGSGBIoQQIiP+f+MebTYmpjZ8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Declaring variable for each set\n", + "# Loop through the whole games dataset and if the item-\n", + "# -matches the condition, add it to the set for that\n", + "# condition list\n", + "\n", + "game_blue_wins, game_blue_dragon, game_blue_herald = set()\n", + "\n", + "for game in range(num_games):\n", + " if(Dat['blueWins'][game] == 1):\n", + " game_blue_wins.add(game)\n", + " if(Dat['blueDragons'][game] == 1):\n", + " game_blue_dragon.add(game)\n", + " if(Dat['blueHeralds'][game] == 1):\n", + " game_blue_herald.add(game)\n", + "\n", + "venn3([game_blue_wins, game_blue_dragon, game_blue_herald], ('A', 'B', 'C'))\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Probability: Each possible events (Venn Diagram)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAGFCAYAAADaTwWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABO20lEQVR4nO3dd3xb9b3/8dc52pIt7xHbCY6z7OxAQiChKZCUTRmFQktL4QKX9nfvhXuhUFpa7u2gpZdC14XSQhltQylQKFBKSgibBAgJYYTsvbyHbGtL5/eHYifGduIh6ZwjfZ6Phx9OZNn62Jb1Pt+taJqmIYQQQoySqncBQgghMoMEihBCiKSQQBFCCJEUEihCCCGSQgJFCCFEUkigCCGESAoJFCGEEEkhgSKEECIpJFCEEEIkhQSKEEKIpJBAEUIIkRQSKEIIIZJCAkUIIURSSKAIIYRICgkUIYQQSSGBIoQQIikkUIQQQiSFBIoQQoikkEARQgiRFBIoQgghkkICRQghRFJIoAghhEgKCRQhhBBJIYGio3vvvRdFUZg/f77epQghxKgpmqZpeheRrRYuXMj+/fvZuXMnW7ZsYeLEiXqXJIQQIyYtFJ3s2LGDlStXcvfdd1NSUsLSpUv1LkkIIUZFAkUnS5cupaCggLPPPpuLLrpIAkUIYXoSKDpZunQpF154IXa7nS996Uts2bKF1atX612WEEKMmASKDtasWcPGjRu59NJLATjppJOoqqqSVooQwtQkUHSwdOlSysrKOOWUUwBQFIVLLrmExx57jFgspnd5QggxIhIoaRaLxXjsscc45ZRT2LFjB1u3bmXr1q3Mnz+fhoYGVqxYoXeJQggxIjJtOM2WL1/OaaedNujHL7/8ch555JG01iSEEMkggZJmV1xxBS+88AL33HNPv4899dRT/P3vf6ehoQGXy6VLfUIIMVISKGkUCAQoKyvj4osv5ve//32/j69cuZKFCxfy2GOPcckll+hSoxBCjJSMoaTRs88+S2dnJ5///OcH/PgJJ5wgixyFEKZl1buAbLJ06VKcTief+9znBvy4qqqcffbZLF26lJaWFoqKitJeY1rF4xAKJd7C4b7vIxFQVbBawWZLvD/835++TVH0/m6EyHrS5SWSLxqFtrbEW2sr+P19g6MnNJI5RdpiSYSL3Q65uYfevN5D72VcSoiUkkARIxeLQXv7oeDoed/ZqXdlA7PZoKCg/1tOjt6VCZERJFDE0Pj9UF/fNzh8PsiEp4/dDsXFUFEBlZVQUpLobhNCDIsEihhYOAz79yfe9u5NtESyhc0GY8YcCphMH8sSIkkkUESCpkFTE+zaBfv2Jf4tT40EpzMRLj0Bk5end0VCGJIESjaLRBLhsWsX7N4NgYDeFZlDTk4iXKqqoLo6MRlACCGBknWiUdi+HbZuhQMHkjvTKhvZbFBTA1OmQHm53tUIoSsJlGzR2gobNsCWLYnxEZF8Xi9Mnpx4k5ljhvHwww9z5ZVX9rmtpKSEadOmcfPNN3PmmWfqVlumkbZ6JotGYdu2RJA0NupdTebz+eC992DNmkSX2OTJMH68dIkZxA9+8APGjx+Ppmk0NDTw8MMPc9ZZZ/Hcc89xzjnn6F1eRpBneiZqbYVPPkl0a0lrJP00LTE2tW8fvPVWokts8mTpEtPZmWeeydy5c3v/f9VVV1FWVsaf//xnCZQkkUDJFNFoIkA2bpTWiJGEw4nfycaNidlhdXUwdaq0WgwgPz8fl8uFVX4XSSM/SbPr7IQPPpDWiBl0dMDbb8O6dTBrFkybJsGSRh0dHTQ3N6NpGo2Njfz617+mq6uLr3zlK3qXljHk2WxWfj+sXZu48o3H9a5GDEcwCO+8k7gQkGBJmyVLlvT5v8Ph4MEHHxx0s1YxfPIsNptQKPFC9PHHiW4uYV49wfLhh4lgka6wlLrnnnuYPHkyAA0NDfzpT3/i6quvJjc3lwsvvFDv8jKCTBs2i2g0ESLr1knXVqZyuSRYUqBn2vDq1av7DMrH43HmzJlDU1MTO3fuxG6361pnJpAd8IwuHof16+Gxx+DddyVMMlkgkBhj+fOfE60WaYGmlKqqnHLKKRw4cIAtW7boXU5GkMsgo9K0xED7e+8Zdzt4kRo9wfLhhzB7dqLFIrsfp0T0YGh3dXXpXUpGkEAxop07E0HS2qp3JUJPfj+sXJlYmPqZz8g6liSLRCK8+OKL2O126urq9C4nI0igGEl3N7z2WmK7eCF6tLXBs88m9gubPz+x+/EoRWIRVEXFolqSUqIZvPDCC2zcuBGAxsZGHn30UbZs2cItt9yC1+vVu7yMIIFiFJs2wapVMkYiBrdpU2Jn6PnzE+FyUCASoCPUgS/kwx/xE46Fj/p2OKtqxapasSiWxHvV0uc2h9WB1+El155LriMXr8OLx+ZBURQdfggjd9ttt/X+2+l0Ultby29+8xuuvfZaXevKJDLLS2/d3fD667Bnj96VCIOLuqyE3RYiTgvBYi8f5mrsDbUSiUfSXouqqOTYc/A6vL1h43V4KfWU4rF70l6PMAYJFD1t3pzoI5dWifiUmE0lmOcg5IawNUZEiRKn7wJWTVXY43GxUfWjGaixkGPPocxTRnlOOWU5ZRS5ikzXmhEjI4GiB78f3ngj0X0hBKApEPI6COZaCNqjhJShX2QEHA7WuWL4MOY0Y5tqo8RTQnlOOeU55ZR6SrFbZM1HJpJASbetWxM70IZCelcidBZ1WQnk2Qi6NIJquF8LZDiM2loZiIJCWU4ZNQU1jM8fL11kGUQCJV0CgUSrZOdOvSsROtEUCBY4CeQoBGwRoiloUXS5nKx2hAmPIpzSrTynXMIlQ0igpMP27fDmm4m9m0TWibqsdBbZ6HaEiZH6I5cjNivrPAqtpH+wfrTKPAdbLgXjybHLqZdmI4GSSpp2aPM/kVU0BQJFTjpzIaim/0JCUxW25DjZoQbS/tjJUuoppba4lkmFk7JqvYyZSaCkSigEK1bIIsUsk+7WyNE05rhZZzH+uMqROK1OppZMZVrJNFw2l97liCOQQEmF1lZ48cXEGeMi4+ndGjkav9PBameEoInGVQZiUSxMKJzAzLKZFLoK9S5HDEACJdl27IBXX4WI+fqvxfDEVYXOMS46nSFDtEaOJGq18kGOSjOZseapIreCGaUzOCb/GL1LEYeRQEmm99+H1av1rkKkmKZAV5mLDo8xurWGSlMUtnudbFXMO67yaXmOPGaUzaC2uBZVkR2Z9SaBkgzxeGIW18GN50Tm6i520ZEXJWLCGVQ9Wjwu1toCJu8A6yvPkcf8qvlU51frXUpWk0AZrXAYXnpJBt8zXKDAQXuBRngYK9iNrMvp5G1HiJiSWX/+Y3LGcELVCZR4SvQuJStJoIxGVxcsWybnlmSwcK6dtmLVkIPto9XtdPK2M0SUzHsJmFQ4iXmV82QtS5pJoIxUayv84x+JfblExom4rHSUWum2Zl6QHC7gcLDKGSaSYS0VDm7LP6N0BrPLZ2Oz2PQuJytIoIxEezs891xiOxWRUeKqQkeli067PwOv2wcWdNhZ5YqaaruW4XBZXcytmEttca3sepxiEijD5fMlTs+TlknGCeU5aCmOm3rAfaRCdjtvu6OmX6tyJOU55Xz2mM+S58zTu5SMJYEyHF1diTDp6tK7EpFEPa0Snz27LxJCdjvvuGIEFPNMhR4uq2plXsU8ppdOl9ZKCkigDFV3d6KbS1a/Z5RsbpUMJGyz8Y4njt9E62tGojynnJOrT8brkLPkk0kCZSgCgUSYtLfrXYlIEg3oqHLT4cjuVslAIjYr73qgy6AHdiWLTbWxcNxCJhdN1ruUjCGBcjTBIPz97zI1OINEnVaaKyyEFDnkbDBRq5XVORj2FMhkmlAwgc8c8xk5RTIJJFCOJBxOhElzs96ViCTpLnHR6g2N6nTEbBGxWVnpiWf0QH2PHHsOp44/lfKccr1LMTUJlMFEIvD889DYqHclIgk0BVrHueiyylTv4Qg4HLzpCmVBpICqqCwYu4CpJVP1LsW0JFAGEo0mFi3W1+tdiUiCuFWlaZyNoHRxjUi728U79uwJ4hmlMzih6gSZBTYCEiifFo/DCy/Avn16VyKSIOq00lipEsmQbdv1sj/XzUeW7JnAMC5vHIvHL5YV9sMk+z1/2jvvSJhkiHCOnfpKTcIkCSo6/VRr2XNa4u6O3Tyz6Rm6wrLmbDgkUA63fTt89JHeVYgkCBQ6aSiLmuq8EqOb3BmklOyZCdUaaOVvG/9GU3eT3qWYhgRKj/Z2eO01vasQSdBV5qKpICgzuZJMiWvM7IyRg1XvUtLGH/Hz3Obn2N62Xe9STEEChYMzul58UY7tzQDtVW5acgJZs7FjulliMeb6VWxa9gxYR+NRXtr+Eu8feF/vUgxPAgUSZ8DLKnhT0xRornbJyvc0cITDHB92kIE73h/R6v2rWb1Pjvg+EgmUDz6AHTv0rkKMQtyi0DjeQbcle6a26i0nEGROzK13GWn3fv37rNm/Ru8yDCu7A2X/fnj3Xb2rEKOgqQpNx9hljYkOSrqya+ZXjzUH1rCufp3eZRhS9gZKdzesWAGyDMe0NKB5nFPCREeTOkN4NIveZaTdu/ve5cOGD/Uuw3CyM1DicXjpJTlx0eTaxrnwSzeXrtR4nGND1qwbTwF4e+/brG9cr3cZhpKdgbJqFTQ06F2FGIX2ShedNgkTI3AHQ0yNZ994CsBbe95iQ9MGvcswjOwLlO3bYb1cVZhZZ7mLDqeEiZFUdfkp0bJn0ePh3tj9BpuaN+ldhiFkV6CEw7Bypd5ViFHoLnHR6pEwMRwNpvs1LFm0PuVwr+96XRY/Zl2gvPsu+GWdglkFCpy0eCVMjMoeiTAj6tS7DF1oaLy681VaA9l9EF/2BEpjI2yQvk6zCnntNBeGZQW8wZV1B7Jqv6/DReNR/rn1nwSjQb1L0U12BEo8Dq+/LlOETSrittFUEpO9uUxiWnf2dn11hjtZsX0F2XoqSHYEykcfyZnwJhVXFZrGILsGm4g9EmFGLPsWPPbY17mPt/e+rXcZusj8QOnqgjWyVYJZtY11EkE27TSbsiye9QXwUeNHbGnZoncZaZf5gfLmm4kjfYXpdBfLGfBmVhfMzm6vHq/vep1mf7PeZaRVZgfK9u2we7feVYgRiDqttObJlipm5gqFOEbLzllfADEtxovbXiQQyZ6LoswNFFlzYloa0FxhkUH4DDDBH8vgF5mj6wp38dL2l7JmkD5zf9erV8uaE5PqqHITkg0fM4ItEmFSPHsH6AEOdB3Imo0kMzNQmprgk0/0rkKMQDDfIYdkZZix3WHsGfpSM1Tv7X+P9mDmH+KXmb/llStlzYkJxWwqzUUyPTjTWGIx6rJ0BX2PmBbjtZ2vZXzXV+YFyp49spOwSbVW2YkhM/IyUZk/kJXnphyuobuBjxs/1ruMlMq8QJE1J6bUWe7Cr2bvlhWZTolrTItm77qUHqv3r8YX8uldRspkVqDs3p3Ys0uYStRppc0jYZLpCroDFGLTuwxdReNRXtv5mt5lpExmBcp77+ldgRiBtnIrmmz7mBWmBrO724uDs74y9aTHzAmUnTuhObtWpWaCQIEDv0VaJ9nCEwxSmcWLHXu8s+8dOkOdepeRdJkTKGvX6l2BGCZNgbZCWbyYbWqC8juPxqO8sfsNvctIuswIlL17pXViQp1j3LLxYxZyh8IUZfHGkT32+vay17dX7zKSKjMCZd06vSsQwxSzW+hwSVdXtqqJyFgKwOp9q/UuIanMHyhNTbB/v95ViGHqKLfLXl1ZrCAQxJkBLz+j1eRvyqiz6M3/G/3gA70rEMMUcVnpsmXPDqyiP0XTmBCTwXkOtlLiWmZcXJk7UHw+2LFD7yrEMLWXWWWSsKA8EDb5C1BydIQ62NyyWe8yksLcv88PP5Q9u0wm5LXLNGEBgDUaZZyW3TsR91izfw2xuPn3sTNvoMRisG2b3lWIYWovzu5T/ERfY4PmfxFNhu5Id0bs82XeQNm9G0JyZoaZhPIcBOWcE3EYmUJ8yLr6dYRjYb3LGBXzBsqWLXpXIIapM19aJ6I/mUKcEIqF+KDe3JOMzBkooVBim3phGjGHBb9Vxk5EfzKF+JBPmj4hGjfvEQ7m/C1u354YQxGm0VnikJldYkAyhfiQUCzEtlbzjg2bM1Cku8tUNAW6HDJ2IgZXEjLvVXmyrW8y707E5guUzk6or9e7CjEM/mIXMaRFKQbnCIfxYtW7DENo9jfT2G3Oc53MFyhbt+pdgRimzlwJE3F0Y2My26vHJ02f6F3CiJgvUKS7y1RCXjshxdxTIUV6FIXlwqPHttZtBKPmm8RirkBpbob2dr2rEMPQWShTQsXQuEIh3MjzBSCmxdjUvEnvMobNXIGyOTP2u8kWMbsFv0U2gRRDVxWXbq8enzR9gmayraXMEyiaJlutmEyXTBUWw1QalmdMj85wJ3t85lpvZ55A2b8fAnK1ayadThk7EcPjCQWxm+hlKdXMNjhvnnl6+/bpXUEf97zyCncuX059Rwezqqr49aWXcvz48QPe9/433uAPb7/NxwcPAjtu3Dh+fP75fe6vaRr//dxz3P/GG7QHAiycMIHffPnLTCor673P5oYGbvrrX3lr61bCsRgzKyv54XnnccqUKWn4jocn5LUTQwJFDJMGVZqD7YpcPHLwmOBILILNYtO7lCExz6XAgQN6V9DrL6tXc8OTT/LfZ5/N2ltvZVZVFaf/6lc0+nwD3v/VzZv50rx5vHLDDaz61rcYW1DAab/8Jfva2nrv87///Ce/evll7rvsMt655RY8Dgen/+pXBCOHzlw/5//+j2gsxss33MCa73yHWVVVnPN//0d9R0davu/hCHjNc60ijKU0MoQ7ZYm4FjdVt5c5AiUaTRz1axB3v/QS15x0ElcuXMjUigruu+wy3HY7D65cOeD9l151Ff/v5JOZPXYsteXlPHD55cQ1jRUbN8LB1skvVqzgu2edxXmzZzOzqoo/XHkl+9vb+du6dQA0d3WxpbGRW844g5lVVUwqK+OOCy/EHw73tnyMJOCQlc9iZLzBEBZNNhLtsat9l94lDJk5AqWhAeLGOCIzHI2yZvdultTV9d6mqipLamtZtX1oZ0P7w2EisRiFHg8AO5qbqff5+nzNPJeL+ePH937NIo+HKWVl/OHtt+kOhYjGYvz29dcpzc3luHHjkv59jkbUaSUs3V1ihJR4nAocepdhGLs7dpvmiGBz9EsYqLuruauLWDxOWW5un9vLvF42DnFLmG899RQVeXm9AVJ/sKuszOvt9zV7urMUReGl//ovzr/3XnKvvx5VUSjNzWXZdddRcDCYjCKQbwOkhSJGriyqsMccwwYpF4qFqO+qpyK3Qu9SjsocLRQDdumM1B3LlvHY6tU8/Y1v4LQN/S9G0zT+7c9/ptTr5Y1vfpN3v/1tzp89m3PvuYcDBhtDCbhk6qcYnZywXJAczizdXsYPlFjMUOMnxTk5WFSVhs7OPrc3+HyU5+Ud8XN/9uKL3LFsGS9efz0zq6p6by8/2DJp+NSg/uFf8+WNG/n7hx/y2NVXs3DiRI4dN457v/xlXHY7j6xalcTvcHTiqkJQlZ2Fxeg4IhFsMo7Sa2f7Tr1LGBLjB0pjo6HOPrFbrRw3bhwrNmzovS0ej7Ni40ZOrKkZ9PP+95//5IfPP8+y665jbnV1n4+NLy6m3OvtHaQH8AUCvLNjR+/X9IcTYxKq0vePTFUU4gYZXwIIFjjQZDmjSIISORq4V2e4k9ZAq95lHJXxx1AMNH7S44YlS/jaww8zt7qa46ur+cWKFXSHw1y5YAEAlz/0EJX5+fzkggsA+OmyZdz23HM8etVVVBcV9Y6L5Dgc5DidKIrCfy5ezI/+8Q8mlZYyvriY7z3zDBX5+Zw/ezYAJ06YQIHbzdcefpjbzj4bl93O/W+8wY7mZs6eMUPHn0ZfgRy5qhTJUaxZyJzO7tHb1b6LQleh3mUckfEDxYDjJ5fMm0dTVxe3Pfss9T4fs6uqWHbddb2D6rtbW/u0JH7z+uuEo1Eu+u1v+3yd/z7nHP7n3HMBuPn00+kOh/nXP/2Jdr+fkyZOZNl11/WOsxTn5LDsuuu49ZlnOPXnPycSizFtzBie+X//j1ljx6b1+z+SgFVmd4nk8EbiyF6Rh+zq2MWcMXP0LuOIFM3Iu4/F4/Dww4l1KMLwQrk26mVVmkiSuKqy3Guc7ly9KShcMfsKQ6+aN/YYSmOjhImJBL3GfaIL81HjcfI0eU710NBo8htngtJAjB0octSvqYRtcjUpkqvABL3y6dTQ1aB3CUdk7EBpadG7AjEMYYu0JkVy5cdkksfhjH7WvLHjf5DNFoXxxFWFaBatjv/DM6/w28eX09TaQd2EKr7/75cyu3bg3aY379zP3Q8/y0dbdrOvoYXvfeNirvrCkj73WXjZd9jX0P8C6quf/yw/vO7LAOza38Ttv32S9z7eSjgS5bNzp/E//3EpJQXefp+XKXKicaO/SqVVQ7e0UEZOAsU0IjnZ09f93Cur+dF9T3L9V8/m+ftuZWpNFZff8iua2wZ+vgaCYcaNKeZbV19ASeHAL/7P3vNt3n38f3vf/vTT/wTgrEXHAeAPhPjqt36BosCjd97Ak7+4mXA0ytXfvcdQ65CSzRmRSR6HC0aDdIY6h3BPfRg3UMJhCMmKa7MIu7NnfucDf32JS886iS+esZBJx1Rw+39ehsth5/FlA+82Pau2mu9cexGfP2Ue9kG22ynKz6W0MK/3bcU7H3JMRQknzJoMwHvrt7G3oYWf3XQFtTWV1NZUctfNV/Lh5l2sfN98Z48PlSUWw6Nlz3NrKFoCxh0KMG6gSOvEVCJZsqg5HIny8ebdLDy2727TC4+tZe0nQ9tteiiP8beX3uGLZyxAObieKRyJoKBgtx3q/3HYraiKwuqPtyblcY3KK4tR+mjxGzdQjNs7KYFiKmFr5na7HK6tI7HbdHFB392mSwq8bNuTnFmJL761Dl9XgItOW9B725y6GtxOO3c88BQ3/8sFaJrGTx94ilg8TmOrsTYHTTaXpkIKxuZfefwVlv9xOR0tHVRNquLSmy5l/PSBx8H2b9vPs/c9y+6Nu2k50MLFN1zMki/3HQfbvHYzL/7xRXZv2E1Hcwff+Nk3mH3y7D73WfvyWl7/6+vs3rib7o5uvrv0u4ydMryFydJCGQkJFFOJKNLXnSx/eeEtTj5+GmXF+b23FeXncs9t17Ji1YdMPfc6Zpz3n/i6A0yfNK7f/m6ZxqUl/2Vq9YurefLnT3L2NWdz659upWpyFb/6j1/hax34dSccDFNcVcwF/34B3qKBx8HCgTBVk6r40re+NOjjhgNhJs6eyIX/ceGIa2/2N4/4c1NNWihi1KJOK/EsmeFVkJfYbbq5re/AaFObj5KCI+82PRR7G1p46/0N3PffX+/3sUVzp/L6H2+ntaMLi0UlL8fN3Itv4tyTi0f9uEbmiGtJ34LlpaUvcdL5J7Hw8wsBuOzbl/Hxmx+z8tmVnHHFGf3uXz2tmuppiU1dn/6/pwf8mtMXTmf6wulHfNwTzj4BgOb9Iw+FrnCXYc+ZlxaKGLVsGpC326xMnzyOlWv77ja98v2NHDt18N2mh+qJZSspys/l1BMG3/CzMC+HvBw3K9/fSEt7J0sWzBr14xqZI57c3aGikSi7N+6mbn7fcbDa42vZ/mFyxsFSrTvSrXcJA5IWihi1iCt7AgXg6i8s4cb/fZgZU6qZPaWa3z+1An8wzMVnJMY8brjjIcqK8/nW1YndpsORKFt2JXbNjkSjNDS3s37rHjwuB9WVpb1fNx6P8+Q/V/KFz52I1dL/Z/r4sreYOG4MRfm5rP1kG9+/53Gu+sJiJowtT9v3rgdbLLnjc13tXcRjcXIL+46DeQu91O80x+4c/oiffGf+EO6ZXsYMlHgcuo2ZwKK/iM24+4umwrmnzKO1o4ufP/wsTW0+6iZU8chPrutdYLivsRVFPTSu0dDSztlf/1Hv/3/3xHJ+98Ry5s+czF/uvrH39jfXbmRfYytfPHPhgI+7fU8D//v7v9HR2U1VWRH/ftmZ/RZIZiK7gc5DMorusDFfH40ZKD4fGHgTZNFXVM2OGV6H+9r5p/C1808Z8GOHhwTA2PJidr702wHve7hFc6ce8X63XHMht1wz8sFcs7LEYqhAsp5lOfk5qBaVzta+42C+Vh95RaMfB0sHo3Z5GXMMRbq7TCWmyBWkSC1XEhc3Wm1WxtWOY8O7fcfBNq7eSM3M0Y+DpYO0UIajq0vvCsQwxJN27SjEwDyKhW6Sd+Gy5LIlPPw/D1M9NTF7a8WjKwgHwiw4NzEO9tBtD5Ffms8F/54YB4tGohzYfqD33+1N7ezZtAeH20Hp2MQ4WNAfpGnPoe3lm/c1s2fTHjx5HgrLEyctdnd001rfSntTOwD1uxJjNt4iL3nFQ28dGbWFYsxAkS1XTENTFQkUkXLuJC9unHfaPLraunj2vmfxtfiomlzFdb++rneNSWt933Gw9qZ2fnTZoXGw5X9czvI/LmfysZO58XeJLs5dn+zi7q/f3XufJ37+BAAnnnMiV/zPFQB88PoHPPL9R3rv88B3HgDgnGvO4dxrzx1y/UZtoRjzxMZ334V16/SuQgxB1GFhX5V0eYnU2uV1s1H1612GYbhtbr4y8yt6l9GPMcdQZIdR04jbs2vKsNCHUxrBfQQiAeKa8X4oEihiVGLWzN72QxiDxYAdKXrS0AhEAnqX0Y8EihgVTZVAEaknz7L+InHjvU5KoIhRkUARQh9GHP42ZqBEs2OjwUwQlyEUkQZy2dKfhgTK0GTwkaaZRlooIi0MeDWuN2mhDJUBf1BiYHFFfldC6EFaKEMlgWIa0kIR6aBk+CFiIyHThodKAsU01Jj8rkTqSUPYHCRQxKgoxrtIEiIrSAtlqCRQTEOVX5VIA+nw6k8G5UXGUaTLSwhdyKD8UDkcelcghigLz9YSejDg1bjoz5iB4nTqXYEYIiUuf+gi9aTLqz+n1Xivk8YMFGmhmIbM8hLpEJVpw/24rC69S+jHmIEiLRTTUGLS5yVSLyLrnfqRFspQSaCYhhKVQBGpFzTmK5VunFanIRd7GvPXJIFiGjIoL9IhZMAZTXoyYusECRQxWtJCEekQkhW0fRhx/ATDBooMypuGAigyB0ekmF8CpQ+XTQJl6KSFYipWrHqXIDJcQIvpXYKhSJfXcEigmIpNTtkSqaRIl9enSZfXcDgcYMAZDGJgtogxn0YiM0RVuWD5NGmhDIeigN2udxViiKxhmYEjUidqkUD5NK/Dq3cJAzJmoCDdXmZiD0j/tkidqMW4L1N6KXIX6V3CgIz7m/J49K5ADJG1O6J3CSKDhaX3uw+n1Ynb5ta7jAEZN1CKjJnAoj81rslML5EyYdW4L1N6KHQV6l3CoIz7m5JAMRWrzPQSKdIlp7j1UeQy7mujBIpICntUAkWkRrsiY3SHM+r4CYYOlIICkKauadhkppdIBQXalLDeVRiKdHmNhKpCfr7eVYghsgZl4ZlIvrDVhjyzDlFQKHAW6F3GoIwbKEi3l5nY/DLTSyRfwCaTPQ6X78zHYuCFnsb+bRUVwZYtelchhsASiWPFSpSo3qUMW1yxEcdJTLMTV+zE4jZicQuxwycaKKCgHXrfc7OiYVGiWNUwFi2IRQmiaiF9vpEM1GWROcOHM3J3F4YPlEJj//BEX86IjS6bMQNFA2JKLhFyCEedhKM2IjGVWBTiox7+cQCH1k2pCtisGlZbHJsaxapGsKl+bFoHCjLAPBwdcuBOHyWeEr1LOCJjB4p0eZmKy6/Rlad3FQkaFsLkE4p7CEachEJqEoJjaOIahCIKoYgFsBwMnBygFKddw2kP47D6sWttqMiA85E0yYB8H1XeKr1LOCJjB4rLBW43+P16VyKGwNkeRslDt7P1YoqLQLyY7pCbYMiYXSXBsEIw7DgYMgU47BouRwiXpRO71op+Pz3jiVgsBKVF18ttc0uX16gVFUmgmIQajWPXHISU9I0hxBUHAa2Y7qCHQMjYc0wGEgorhMJO2nFisZSQ6w7hVluw4dO7NN35HXYgoHcZhjHWO1bvEo7KHIGyZ4/eVYghcoUshFK8r2dcsRHUiukO5+IPmC9EBhOLQXung3YqcNjHkOvsxqU2Ze0gv89qzFamXsbmSaCMnoyjmIqzMwopCpSIko8vXEy335rxHUOJlksOkEOOO4bH1oGDZpQsWpXRJivkeykoVOZW6l3GURk/UCoq9K5ADIPdF8ZSYiGWxL7vsFJIR6g4o1ojw9Hlt9BFIVZLIfmeLtzKgcyfLabIgPzhSj2lOKwOvcs4KuMHissFJSXQ1KR3JWIIFMAZs9NtGX3fd0gppiNYSCCYnUHyadEYNPtysFonke/pxM2BjG2xdDucRAnqXYZhmKG7C1MECsAxx0igmIjTD925I/tcDQhRSkeggKAchDGgaBSaO3KxWnMp8PhwcyDjZoc12+Ui4nBGny7cwxy/tXHj9K5ADIOrY2RdFSGKaPBPoaGjUMJkCKJRaOrwcsA/hYAy5mD7MDPsV6W7q4fT6qTEbewFjT3M0UIpLpb1KCZiCcWwYyc8xEV7Gnbao2PxddtSXlsmCkegsT0Pu81LsacRm9amd0mjErbZ8CF7w/Wo8lahKOa4WDBHCwVppZiNKzS0a5UA5ezrqpEwSYJwRGF/exkd8fFoGHcDwaNpc8hz4XBTiqboXcKQSaCIlPC0HLl1EsNNU3gSjR35xDJ8wlK6tXc6OOCfRFgx9qrqwdRbjLkfnB5y7blUeo0/XbiHeQKlqgos5r3qyja2QBSnNtA0R4UubSz7fePwB+T3mSqRCBxoLzVdayWuqjTI/ma9JhdN1ruEYTFPoFitMGaM3lWIYfB09X16xXDTEJhMi8+Tto0as117p4N6E7VWfE4HmjmGC1JOQWFKsXm6uzBVoHBw+rAwDXdzEPXgUyyklHCgc5zM3tJBuLe1Um34mWBNMnzSq9JbSY49R+8yhsVcgSLjKKaixjXcEQe++DHUtxcRy8w1eKbR3umkKTyJuGLQV20F9pGd+5YNpLa4Vu8Shs1cgZKbCwXGPU9Z9BVTHfjbZ9LW6dK7FHGQP6BS3z2BqDLClacp5Lc7CCly1cHBtSfV+dV6lzFs5goUpJViFhFbPg2WhcR9+bhUCRQjiUTggK+SkFKsdyl9tMjq+F4TCyeiKub7eZiv4gkT9K5AHEXIXkp9bB6RSKJrJTdsvKvhbBePQ317MX4MsvmqAjstMrurhxm7uzBloBQXJ96EIQUdFTRGZxOPH3pqOTucWBVzbMqQbZo6vHRq+k928Tmd+DN9B+UhKvOUGf5kxsGYL1AAas2Z3pnO7xxHY3g68XjfmUSKppAXN8hh86KfVp+L9liNrjXstuv68IZy7Jhj9S5hxMwZKBMnJtalCMPock2gOViHNsgiAk+bB4tingV22aajy05HfLwujx2xWdmnyFb1HDz3xCxb1Q/EnIFit8tYioF0u6ppCUw84gbqSlwhT5NWipG1dzro1NI/6aXeJc2THseNOU7vEkbFvJf5tbWwaZPeVWS9gLOSlsDQVvN62j20F7QT18wxNfTpF57msWceo7W9lQnVE7j+quupm1Q36P1fWfkKD/75Qeqb6qkcU8nXv/J1TjjuhN6P/+TXP2HZq8v6fM7xs4/nzu/d2fv/b//k22zduZX2jnZyPDkcN/M4vv7Vr1NcmJ5xw1afGzWvEg/70vJ4mqKwXZXWCRnQOgFQNE0z7yYYTz4Jra16V5G1Qo4yGsKzBu3mGkhnSSetmvF/Zy+/9TI//tWPueHaG5g6aSpP/P0JXl31Kn/69Z8oyOu/FurjjR9z3feu45rLruHEuSey4o0VPPq3R7n/zvupGZcYn/jJr39Ca0crt/zbLb2fZ7fZyc05NAvu8eceZ9qUaRTlF9Hc2sy9f7gXgHt/fG9avu8epXntuKhP+eO0u128Yx/96Z6Z4MyJZ5o+UMzZ5dVj+nS9K8haYVshjZGZwwoTDrZSzDC//vHnHuecJedw1qlnUT22mhuvvRGnw8k/VvxjwPs/+fyTHD/neL50/peorqrmqi9dxeTxk3n6haf73M9utVNUUNT7dniYAHzx3C8ybfI0ykvLmV47ncsuuIxPNn9CNJreHXgbO/IJKqUpf5ydNnO0VlMtE1onmD5QJk0Cp1PvKrJOzOKiUZvTZ2rwUKkR1fBjKZFIhM3bNnPczEP92aqqctzM41i/ef2An7N+8/o+9weYN3se6zf1vf+69es478rz+Mp/fIW7fnsXHZ0dg9bh6/Sx/PXlTJ8yHasOk1Aa2wsJUZSyrx+y22lQZKsVgLkVc/UuISnMO4YCie3s6+rg/ff1riRraKg0WecRG+IBWgPJbc2ls6iTqGbMcy86OjuIxWMU5Pft2irIK2D3vt0Dfk5re2u/rrCC/AJa2w917x0/53gWnbCI8tJy9tfv5/5H7+fmH93MvT++F8thRzPc98f7ePqFpwmGgkydPJU7vnNH0r/HodCAxs4SKrxBLFp30r/+fqfM+uPguhOznBl/NOZuoQBMnQqq+b8Ns2hzHUsoNLqtVJS4QkEs+/ZkW3zSYhbOW8iEYybwmfmf4Y5v38HGrRtZt35dn/tdet6lPPCzB/jZbT/Dolr48a9+jF5DnfE4NPur0JL8UqGpKjtkqjAAx1WYe2bX4cz/SuzxQI2+i7KyRZdrEp2B5HSBuFpdONSBDuDSX15uHhbVQlt737PZ2zraKMwfeAVzYX4hbR2fun/74PcHqCivIM+bx776vjOq8r35jK0Yy7xZ87jthtt4e+3bg3a1pUMwrOCLJXc1favLQUQx73ygZBnrHZsxrRMyIlCQwfl0CNlLaA0kL7gVFAoCxmyl2Gw2Jk+YzJqP1vTeFo/HWfvhWqZNnjbg50ybPI01H67pc9t7H77HtCkD3x+gsaURX6ePooLBQ1o7eBJZJBIZwXeSPO1dDoIkaZBegY02fb8fI7AoFhaOW6h3GUmVGYFSWiq7EKdQXLHSos044sLFkXB0OshRjXmA0BfP/SLPv/Q8y15Zxs69O7n7d3cTCAU489QzAbj9V7fzuz/9rvf+F519Ee+ue5e/PPsXdu3dxUN/eYhN2zZxwZkXAOAP+PnNI79h/eb1HGg8wJoP13DrHbdSWV7JvNnzAPhk8yc89Y+n2LJjC/WN9az9aC0/+PkPqCyvPGIwpUtzZyExZfQ7Rzd53HRhzPGzdJpVPguvw6t3GUll7kH5w82fD3v2gImX1RhVu3M2kUBqDmXK9+Xjz/UbbrHjqQtPpb2jnQcfe5DW9lYmjp/Ind+9s7cLq7G5sc/05+m10/nef36P3//599y/9H6qxlRx+823965BsagWtu3axrJXl9Hl76K4oJi5s+Zy1Zeuwm5LrBR3OBy8/s7rPPSXhwiGghQWFHL87OO5/KLLe++jp1gcWgJjKXVuOThkP3yaqrLBIjO7cu25zC6frXcZSWfuhY2f9tprsno+yQLOKhqDqb067irqokVpSeljiOQpyA3iVXeO6HMP5Lr50OJPek1mc8bEMxiXl3m9KpnR5dVj7lzZNDKJYqqDlkjqd3b2tHhwqrKeyCzaOp0jWp8Ss1jYaJGZXRMKJmRkmJBxgeLxyAB9ErU5ZhGLpX6tgIJCUWcRCsNbdS/00+ovToyuD8N+j4MwxuraTDen1ZlxA/GHy6xAAZg9W1bPJ0HIUUZ3GmdhWQNWCjDmrC/RXzii0K1VDvn+UauVTYrs2bVg7AKc1sx9fcq8QLHb4VjzHlBjBBoKrdrgu+qmSm5LrmHXpoj+2rpy0BjaZIFdLiuxLF93Mi5vHBMLJ+pdRkplXqBwcPW8N7Om46VTl2sy4bAOL+waFHUVmWLzSJGY9dURO/qivLDNxrYs36LebXOz6JhFepeRcpn5l6uqMG+e3lWYUkx10h7Sb8DQ5rdRFEvdhoQiuTq67ESV3CPeZ4fbwjA3pc4oqqKyePxi3Da33qWkXGYGCiROdCwp0bsK0/E560a0i3AyuVvd5KpHfpESxtEWGjPox4J2OzuzfM+ueRXzGJM7+M8ok2RuoHBwsaMYspjFRWfAGCFc0FKAXdV/MZ84On9AHfTslM2uLG6aANX51cwqn6V3GWmT2YFSUSFbsgyDz1E37AOzUkWJKRR3FctUYpNo6y7sN4241ePiQBafd+J1eDm5+mS9y0irzA4UgAULwJaabUMySczipjOQnnPLh8rmt1EUl/EUMwhHIEBZ7/9jFgsf2LI3TKyqlc/VfA67Jbta2ZkfKF4vnHii3lUYns9Ra5jWyeE8rR68qszYMwNf4NBJnFtybFm9iHHh2IUUubPvYijzAwWgthaOSe55DpkkrtoN1zo5XEFTAW5L5s+QMbtgWCFEIT6Xk11ZPBBfW1zLlOIpepehi+wIFIBFi2QF/SC6nBMM2TrppUFRS5EsejQBX6SYDxzZe9ZJqaeUhWMzd2uVo8meQHG54DOf0bsKQ+oMG39KoxpVKekowaLIOeRGtt9WTkQz5hk3qVboKuTMiWdiUbP3OZo9gQIwfjxMnqx3FYYScFYSjZpj0oIlZKE0UCor6Q0q6s6lHhe2WPYdye11eDlr0lk4rNndis6+v8wFCyAnO6+gBtKJucaW7F12SiLGWCsjDmO1stuW2Nwz6C9G0bLnKt1tc3PWpLOyYiX80WRfoNjtcHJ2zQ0fTNTiIRA034p0Z7uT0liSzjcXSdGcU0z44DqUeFzFyXi9S0oLh8XB2ZPOzrijfEcq+wKFgwseZ8zQuwrd+R3map0cztXmoiQuLRUjCOV4adb6dvVooXLd6kkXm2rjzElnUuCSYxd6ZGegABx/PBRk9xOh2+RdR+5WN8Vx4053zgaazcFuS36/24MhD4pmjrG5kbAoFk6feDqlHmkpHy57A8VigVNOSexMnIUiVi/hiPmnUXtaPRRrEiq6UC3scZcQG2h7HA2cDP0ALjNRFZXFNYupyK3QuxTDyc5X0x7FxVm7gWTAfvRzLMzC0+KhSMu+Vcn6Umj0luLnCIPv0cy7ercoFk4dfyrV+dV6l2JI2R0okBhLmTpV7yrSzh/LrKv6nJYcSmLm7sIzE19eMa3akfepCge9ZNJBKA6Lg7Mnn01NQfZNix4qCRSAhQth7Fi9q0ibuGonFHLpXUbSudvclEfKZZ1KioVy8tnP0afIxmIWHErZUe9nBjn2HD4/5fOU52T+ZIPRkL88AEWBJUugsFDvStIiaMvcPwpHh4OyQJmsqE+RuMvNTkveEO6ZYIma/7lW5Cri/NrzZTbXEEig9LDZ4MwzwZ35i5OClszq7vo0e5ed8q5yrKpV71Iyi83GDkcR2jA+JRIy94twlbeKz0/5vCxaHCIJlMN5PHDGGWDN7BeiYDTzF2FZA1bGtI/BqZp/JpshqBb2ekqJaMN7yYhE7Fgx5/NtctFkzph4BjZL5k5/TjYJlE8rLobFixPdYBkopjqJhLNjvyE1rFLaXCrn0ydBs7eELm1kF1pWEy5AnVM+h5OrT5bxuGGSn9ZAjjkmYw/lCtkzY5B0qJS4QmFjIUXItOKR6sor6rcSfjjU+NDHXPRmU22cUn0K8yrn6V2KKWV2385oTJ8OPh98/LHelSRVWDXPH3cy5TTnYMu10eRsIqbF9C7HNCI5XvYyus1UoxGPKV5pit3FLB6/mDxndv6NJIMJfs06OvHERKjs3q13JUkTiXv0LkE3jk4HFaEKmvObCcQDepdjeFF3Ltstox9Uj0Rc4FRAGc5wfnrNKJ3B/Kr50sU1SvLTO5Ke6cTFmTMrKhzN7tkqaliltKmUQrJjivhIRd05bLMVDmtG12C0uIJNMeZVv9Pq5MyJZ3Li2BMlTJJAfoJHY7XC2WdnRKjEVTvRqDRK0SC3OZeKQAV29cirvbNRzJ3DNtvwpgcfjUXrv4Gk3ipzK7lo6kWMzcueRc2ppmiaZtx2qJGEw/CPf0Bjo96VjFjQUU5DaFbKvv4fXvkDv13+W5o6mqirquP7l36f2eNnD3r/59c8z13P3MXelr2MLx3PLRfewikzTun9+I0P38hfV/21z+csmrqIP1z/h97/f7z7Y+546g4+2PkBFtXCmXPO5LsXfxePc2hde5qq4Svy0a61j+h7zjQxt4dttiLiA234OAru3P34LR8l9WuOlKqozK2Yy6yyWSgZOptTLxIowxEOw7JlUF+vdyUj0uWaSEtgQkq+9nOrn+PGh2/kR1/+EXPGz+HBFQ/y/Nrnefn7L1Ps7d+6W7NtDV/82Re5+fybWTxzMc+8+wz3/fM+/n7r35lSOQUOBkqzr5k7v3Zn7+c5rA7yPInuk4b2Bk77/mmcM/cc/mXxv9AV7OIHj/+A0rxSfnPtb4ZVf9gbpsnZRDQeHfXPwqiefuFpHnvmMVrbW5lQPYHrr7qeukl1vR+PuTxssx8KkzWvPc8zD99FS/1eSivHc+E1tzBj/qHAX/vGMl7/+1J2b/6I7s52vnvf84ydOK3PYzbt38WTv72dbetXE4kEmHbiNC696VK8RfqsTSl0FbLomEWy7XyKSJfXcNjtidX0Y8boXcmIxJTU7d/1wEsPcOlJl/LFhV9kUsUkbr/sdlx2F4+vfHzA+z+44kE+O+2zXHv6tUwcM5Ebz7uRaeOm8cirj/S5n91qpzSvtPetJ0wAVny4ApvFxg+/9EMmlE9gVvUsbr/sdl5Y+wI7G3cOq367z05FSwX5ivG6ZpLh5bde5p6H7+FrX/wa9995PxOOmcA3f/hN2jraoGfM5LAw2bZ+DQ/cfh0Lz7iE7973D2YvPI3f/Pe/sm/Hpt6vGQ76mTh9Lhdec8uAjxkK+PnFt74KisJNP3+Em39/M9FIlHv+6x7i8XiavvMEu8XOgrEL+ELdFyRMUkgCZbh6tmipMt/279FRrCU4knA0zMe7P2Zh3cLe21RVZWHtQtZuXzvg57y//X0W1i7sc9uiqYv63f/tzW9z3DeP49TbTuXWpbfS1tXW53FtVhvqYWfaOG2JlfGrt64e9vehxBTymvKo7K7EZcmszTMff+5xzllyDmedehbVY6u58dobcTqc/GPFP4h4vP26uVY89SDT5n2W0y+5ljHHTOS8K29k3MRpvPrMocA/4XMXcs5Xr6f22IUDPua29e/R0rCXK276GRXV06icWMmV37+SXRt2sWn1pgE/JxVqi2u5dPqlTC+dLl1cKSaBMhJWa2KLlgmp6T5KlViKAqWtq41YPEZxbt+urRJvCU0dTQN+TpOvqV9XWIm3hOaO5t7/f3baZ7n7yrtZ+l9L+daF3+KdLe9wxa+vIBZPrCNZULuApo4mfvvP3xKOhuno7uCnT/8UgMaOkY91WQNWShtKKY2VYlXMP4khEomwedtmjpt5XO9tqqpy3Mzj+GjbZrZZ8/sNwG//5P1+QTF13iK2fzLwBcLAjxtGQcFqsxM/uGWL1W5FURW2rts6yu/q6ErcJZxfez6LjlmE0ypb8KSDBMpIqWpii5bp0/WuZMiicXPtSfT5eZ/nc7M+R21lLafPPp0H/+1BPtj5AW9vehuAyRWTuevKu7j/pfup+4865t08j7FFYyn2FidlCqirzUVFa6IbTEnyIHU6dXR2EIvHKMjvu6bEWzKGA+1tMMD35mtrwlvQN/C9+SV0tDb3u+9gaurmYHe6eeqBOwj5g4T9UZ78xZPEY3E6mjtG8R0dmdPqZNExi7ig7gLp3koz819+6W3BAnC5YPXwu1jSLR5Lza+7IKcAi2qhubPvi02Tr4mSvIH3cSrxltDs63//4rzBp2ePKxlHYU4hO5t29navnXf8eZx3/Hk0+Zpw290oisIDLz3AuJJxSfneerrBcu25+PJ9dMRT90KYTl15RXQoqd3TLTe/iGtvu4elv/wurzz9MIqqMO+0eYyrHYeiJj+gVUWlrriOeZXzsFtkOrgeJFCSYc6cRKi88QYYeNJcPJaaBqndamf6uOms3LCS02efnniseJyVG1dy+SmXD/g5c2rmsHLjSq5aclXvbW9ueJNja44d9HEOtB2grbuN0rz+V50l3kRwPf7W4zhsDk6qOykJ39khalglvzGfXGcuHbkddGqdSf36qZSXm4dFtdDW3gaqhabcElpw4GtrIq9g4MD3FpTga+sb+L72JvIKh7cea+rcRdz+x9fp6mjFUbgOW26Em06/ieLK5K3rsqpWaotrmVk2kxz76LaJEaMjXV7JUlubGFdxGHMnXw0FLYXdNlcvuZo/v/lnnlz1JFsPbOXWR2/FH/Zz8YKLAbjhoRt6xzcA/mXxv/Da+te4f/n9bK3fys+f+zkf7fqIr538NQC6g938+Mkfs3b7WvY07+GtDW9xzb3XUF1SzaKpi3q/ziOvPMLHuz9me8N2/vDKH7jtz7dx8wU3k+dOzcpsS9BCYVMhld2V5KjmePGy2WxMnjCZNZ+sY3fuGFpwEI/H2fj+SmqmDhzgNVPnsPH9lX1u27DmzUHvfzQ5eYXk5BSycfVGOls7mbVo9OuhHBYHx445li/P+DILxi6QMDEAaaEk09ix8IUvwEsvGW4BpKZYSerS5085d965tHa18vNnf06TL7Gw8ZHrHultOexr3ddnhs1xE47jl1f/krueuYs7/3Yn1aXV/O4bv+tdg2JRLWzYt4G/vv1XfH4fpfmlLKpbxA3n3YDDdii0P9j5AT9/7uf4Q35qymv48Vd+zIUnXJi6b/Qga8BKUaCIfGc+nd5OOrVO4lp6p8IOxxcuupw7fvbf5E09geops1nx1O8JB/0sOCMR+A/dcQP5xWVccPW3AFh84b/wsxsuYfkT9zNj/imsfuU5dm3+iK/81096v2a3r53Wxn20tySe6/V7tgPgLSwhrzDRinxr2eOMGTeR3Pwidr/1Jkvv/h2Lv7yY8uqRn+TosXmYUTaDuuI6OavEYGRhYyrE4/D224baqThmcbE3tmgI9xQjEbfG8ef56bB0GG5xZFdeEXvJ4ZW/PcKLj/8OX1sTVRPquPTf/ofxdXMAuOuGSygqr+KKm+/q/bw1rz3PMw/dRUvDXkorq7nwmm/3Wdi48p9P8MidN/V7vHO+ej3nfu2/AHjq/jtY9eKTdHd2UFxRymcuPJElly0Z0fTdPEces8pnMblosuy7ZVASKKm0Ywe89lpihb3OotZc9kUX6F1G5lMgmBfEZ/fpv6PxYeMlRuDy7iKgbhzW56iKyri8cUwumswxecfIOhKDky6vVBo/HoqKYPlyaGnRtRRNrujSQwNnuxMnTmLOGP4cP11qF+F4ei8qNLuD3e4SApolrY+bLOU55UwsnMiEggk4rMYIRHF00kJJh1gMVq6EDRt0KyFqzWFfdOAVzSL1wjlh/G4/XVpXyg/4inpy2WEtIGawtTMu73YC6pZBP57vzGdi4UQmFU4i1yHHNpuRtFDSwWKBz3wGyssTU4uj6e9jVwzWr59t7F127F128pQ8wt4wAUeAbq2bqJbM34tCl7eIvYpRD1HrP2nBbXNTU1DDpMJJlHjMd/a86EsCJZ0mTUqcq7J8ObSnd7t0ZYA/ZpF+iqbg6HDgwEE++URdUYKeIH7VP6oxF83uZL+7iE7NwH/SSgyLYqE8p5wqbxWV3kqK3eY/Z0gcIl1eeohG4a23YFP6NsjTUNnN59L2eGL4NKtGyBMiZAsRUkME40G0o871VvB7C9mj5KRyVviIKSjYNQeWsINZtXHqqr1YVQOHnhgV+c3qwWqFz34WpkyBN9+E1taUP6S0UIxPiSo4OxID+gCaohF1Rwk7w4QsIUKE+gzuG61VoqBg1axY4zaUsINYt4OQz05IS4zlFM8Bq8wNyWjGeCZmq/JyuPBCWL8e3nsPIpGUPpzFEiMWM+esn2ykaAq2bhu2bhseEuMimqoRccXY7XRxQHGiRWPYLVGiRImn5aJBwapZsGo21KgNLWIlHrQSDdiIhaxEgMGexQbdREIkkQSK3lQVZsxIbIW/ahVs25a6h7JEJVBMLmBz8WG4kI7u/ivEVVsMqzOGYomjWOKgxlEsGooaR1PjoGpoyqH32sHNeBQU0A7+S0v8W4mraDEVet7HVKJBK9GAlaimMJKpBHbZrzHjSaAYhdud2A6/ri7RDZaCQXurGiFikEVuYnhiFgs77PlsCwy+X1U8YiEcMeYFg6IknuIis0mPptFUVMBFF8HxxyfGWpLIgv4r9sXwaIrCAXcer8YrjhgmRufxJBrjIrNJC8WIVBVmz4aJExPdYDt2JOXLWtRQUr6OSI82l4f14Xy6/eb/M81LzebPwmDM/0zNZDk58LnPwZ49iWAZZTeYVdN5bykxJAGHgw1aAU2BzOme9Hr1rkCkgwSKGYwdC1VVsHMnrFsHTQOf03401rh5DoXKRkG7g21qHnuDLr1LSToJlOwggWIWipLYbHL8eNi/PxEse/cO60vYI6lf7yKGL+BwsJU89ocyL0h6SKBkBwkUM6qoSLw1NyeCZceOIR09rMbDWKxRYlH5tRuB3+FkG3nsDzn1LiXlJFCyg7yymFlxMSxZAh0d8MEHsGVLYmfjI7BbgwSi5p0tZH4KHS4XO+O51GdBkHBwjkl+vt5ViHSQvbwyid8PH30En3wy6Kr7NvdsfP6ytJeW7WIWC02OHLaGcuiOZdd1XFkZnHee3lWIdMiuZ3amc7th/nyYMycRKhs3gs/X5y52rQOQQEmXoN3OXksuO4MeYn5jnU+SLmXydMsa0kLJdPX1ia6wbdsgHCZq8bAvdpLeVWW0mMVCq8PNnqiHpnDmTP0dqdNOg+pqvasQ6SCBki1iMdi1C7ZsYd/+SUQNukWHWWmKQofTzT7Nw/6gk7jBTkvU01e/Cq7MncAmDiNdXtnCYoGaGqipYc/rMQK7ApRp3XiCocRB6GLYNEWh2+GkXnGzO+gmEpC9RT7N65UwySYSKFmouMLCyxtz2EIOTjVGhSNIsRbAGwliOcossWwXs1hot7to1FzsDzmJBiVEjqS8XO8KRDpJoGShyspD/w7GLWwPeNiOBwWNYnuYcmuQglgAV0j2/gKFoN1Oq9XFgaiL5rAdZAebIauq0rsCkU4SKFnI5YKiImhp6Xu7hkJT2HFwIDkPhxqjzB6iUA2RGwvjCodQMnzITVNV/HY7HaqTlpiDxrCdaFhFNmoePosFjjlG7ypEOkmgZKkJE/oHyqeF4hZ2B93sJnGQhYJGkT1CkSVEPiHc0TD2SNS0YzCaohCy2fBb7HQqNpqjTlrCNrSgDKgnQ1UV2PqfAyYymARKlpowAd59d3ifo6HQHLbTjB3IBUBFI88WIc8aIZcIHi2CMx7BETZO0GiKQthmJaTa6FJsdGp22mI2fBErWljCI1XGj9e7ApFuEihZKjcXSkuhsXF0XyeOQlvETluk//muLksMjyWGW43iUmI4lRgOLYpdi2GJx1E1rfe9Eh/eeeiaqhJTFGIWlbiiEkUlpqqEsBBULATjVvxxC76olWDcIl1WaaaqsvYkG0mgZLGJE0cfKEcSiFkIxCzA0A4TtylxbKqGRdHQSOx3qWmJnZZ7/w9E4irx+MGWhUxKM6SKCjlDPhtJoGSxmprEuV1GGWePaCoRCYiMUFOjdwVCDzKJPou53YkrSSGSyW5PjNGJ7COBkuWmTNG7ApFpJk+W2V3ZSgIly9XUgMejdxUik0ybpncFQi8SKFlOVWH6dL2rEJli7FjIy9O7CqEXCRRBXZ10UYjkkIuT7CaBIrDbobZW7yqE2eXlJVooIntJoAgAZswARRaNi1GYMUPvCoTeJFAEADk5snZAjJzXK61cIYEiDjN3bmKQXojhmjdPnjtCAkUcJi8Ppk7VuwphNsXFspBRJEigiD6OOw4cDr2rEGZy/PF6VyCMQgJF9OFwwLHH6l2FMIvKSjmVURwigSL6mTZNFqeJo1MUmD9f7yqEkUigiH5UVV4oxNHNmJEYPxGihwSKGFB1tRyQJAbn9SZmBQpxOAkUMahFi8Dl0rsKYUSf/SxY5TQl8SkSKGJQTid85jN6VyGMZupUGDNG7yqEEUmgiCOqrk6cbyEEB3dUkPE1MRgJFHFUCxYkXkhEdlOURFeX7EwtBiOBIo7Kbk+8kIjsdtxxiXUnQgxGAkUMSWVlYr8mkZ2qq2XBqzg6CRQxZHPmwMSJelch0i0/H04+We8qhBlIoIhhWbQISkr0rkKki80Gp52W6PYU4mgkUMSwWK1w+ungdutdiUiHU05JtFCEGAoJFDFsbnfiqtVi0bsSkUrz5sluCWJ4JFDEiJSWJq5e5djgzDRjRmLMTIjhkEARI1ZTI6GSiSZNghNP1LsKYUayG48YlYkTQdPg1VcT783olVfuYfnyO+noqKeqahaXXvprxo8f/NSoNWue4JlnvkdLy05KSydx4YU/ZcaMs3o//vDDV7Bq1SN9Pmfq1NO5/vplAGza9Cp3333KgF/7299+l+pq/eZn19TIjC4xcoqmmfVlQBjJ5s3w2mvmC5XVq//Cww9fzpe/fB/jx89nxYpfsHbtE3z/+5vwekv73X/btpX87GeLOP/8nzBz5jm8++6j/POfP+XWW9dSWTkdDgaKz9fA1772UO/nWa0OPJ4CAKLRMN3drX2+7rPPfo+NG1fwox9tQ9GpyTd+PCxeLGfDi5GTp45IismTzbmR5Esv3c1JJ13DwoVXUlExlcsuuw+73c3KlQ8OeP8VK37JtGlncPrpNzFmTB3nnfdDxo07lldf/b8+97NaHeTllfe+9YRJ4mP2Ph/LySnigw+eYcGCK3ULk5oaCRMxevL0EUlTW5vYosUsL0rRaJjdu9dQV7ek9zZVVamtXcL27asG/Jzt21dRW7ukz21Tp57e7/6bN7/KN79Zym23TWHp0m/Q1dUyaB0ffPAsXV0tLFhw5ai/p5GYMUPCRCSHjKGIpJoyJbGR5PLlEA7rXc2RdXU1E4/HyM0t63O711tGff3GAT/H56vH6+1//46O+t7/T5t2BnPmXEhx8Xiamrbxt799h1//+ky+9a1VqGr/udZvvfV7pk07nYKC9B7OrihwwgmJQBEiGSRQRNJVVsL558OyZeDz6V1N+s2bd2nvvysrZ1BZOZPvfncCmza9Sl3d4j73bWvby/r1/+Rf//XxtNZoscCppybGTYRIFmnkipTIz0+ESnm53pUMLienGFW10NnZ0Od2n6+BvLyBC/d6y/H5hn5/gJKSGnJyimlq2trvYytXPkROThGzZn1+xN/HcDmdcPbZEiYi+SRQRMr0vHBNmqR3JQOzWu2MG3ccGzas6L0tHo+zceMKamoGXohRU3MiGzeu6HPbhg3LB70/B1sh3d0t5OX1PeZQ0zRWrnyIE064HIslPYeMFBcbP+iFeUmgiJSyWBKLHxcsMOZWLUuW3MCbb97PqlWPcODABh599BuEw929A+QPPXQ5Tz/97d77L158PevXL2P58ruor9/Ic8/9D7t2vcfJJ/87AMFgF08+eRPbt79Nc/NONmxYwb33nkdJyUSmTj29z2Nv3Pgyzc07OOmkq9Pyvc6cmQgTrzctDyeykIyhiLSYPh0qKuCll6C9Xe9qDpk37xK6upp49tnb8PnqqaqazXXXLesdeG9t3Y2iHLrumjBhAVdf/SjPPPNd/va371BaOolvfONvvWtQVNXCvn0f8vbbj+D3t5OfX0Fd3Wmcd94PsdkcfR77rbd+z4QJCygvr03p9+h0JhYrjhuX0ocRQhY2ivSKRuGdd2D9er0ryQ4VFYnBd9kdWqSDBIrQxb59iZX1XV16V5KZrFaYOzcxJVj2WhPpIoEidBMOw3vvwSefQDyudzWZo6Ymsbmjx6N3JSLbSKAI3bW3w8qVsHev3pWYW14eLFwIVeldHylELwkUYRi7d8OqVdDRoXcl5mK1wuzZMGuWMWfSiewhgSIMJR6Hjz+G99+HUEjvaozNYoG6ukSQSPeWMAIJFGFIkQhs2AAffQTd3XpXYyxWK0ydmlhXIrO3hJFIoAhDi8dh61ZYt85Y61f0YLPBtGmJIHE69a5GiP4kUIRp7NoFH3wA9fVDuHMGKSxMHA0waRI4HEP4BCF0IoEiTMfngy1bEm+Zupux3Z44Xrm2NrH/lhBmIIEiTK2xMREs27ZBMKh3NaNjscCYMYnTL8ePlxlbwnwkUERGiMdh//7ECvx9+6C5We+KhiY3F8aOTeyzVVGRGHAXwqwkUERGCgb7BoxRusbc7kQXVmVlIkjy8/WuSIjkkUARWSEQgLY2aG3t+z6VxxTn5UFRUSJAet67XKl7PCH0JoEislp3d6L1EggkWjU9bz3/D4cTmyt++o2DYx4ORyIkXK5E68PjgZycxHvpvhLZRgJFCCFEUsiJjUIIIZJCAkUIIURSSKAIIYRICgkUIYQQSSGBIoQQIikkUIQQQiSFBIoQQoikkEARQgiRFBIoQhzFtm3buPbaa6mpqcHpdOL1elm4cCG//OUvCQQCepcnhGHI5hBCHMHzzz/PxRdfjMPh4PLLL2f69OmEw2HefPNNbrrpJtavX8/vfvc7vcsUwhBk6xUhBrFjxw5mzpxJVVUVL7/8MmPGjOnz8a1bt/L8889z/fXX61ajEEYigSLEIL7xjW9w33338dZbb7FgwQK9yxHC8CRQhBhEVVUVDoeDbdu26V2KEKYgg/JCDMDn87Fv3z5mzJihdylCmIYEihAD8B084jE3N1fvUoQwDQkUIQbg9XoB6Ozs1LsUIUxDxlCEGERlZSUul4utW7fqXYoQpiAtFCEGcc4557Bt2zZWrVqldylCmIIEihCDuPnmm/F4PFx99dU0NDT0+/i2bdv45S9/qUttQhiRrJQXYhATJkzg0Ucf5ZJLLqGurq7PSvmVK1fyxBNPcMUVV+hdphCGIWMoQhzFli1buPPOO1m+fDn79+/H4XAwc+ZMLr30Uq655hocDofeJQphCBIoQgghkkLGUIQQQiSFBIoQQoikkEARQgiRFBIoQgghkkICRQghRFJIoAghhEgKCRQhhBBJIYEihBAiKSRQhBBCJIUEihBCiKSQQBFCCJEUEihCCCGSQgJFCCFEUkigCCGESIr/D4hDhdeVVcYLAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Setting the variable for each section of the venn diagram\n", + "# Use these values to calculate its probability by\n", + "# diving with the total amount of games\n", + "# Produce venn diagram of the values\n", + "\n", + "count_a = 2055\n", + "count_b = 1096\n", + "count_c = 564\n", + "\n", + "count_ab = 1770\n", + "count_ac = 583\n", + "count_bc = 188\n", + "\n", + "count_abc = 522\n", + "\n", + "p_a = round(2055 / num_games, 3)\n", + "p_b = round(1096 / num_games, 3)\n", + "p_c = round(564 / num_games, 3)\n", + "\n", + "p_ab = round(1770 / num_games, 3)\n", + "p_ac = round(583 / num_games, 3)\n", + "p_bc = round(188 / num_games, 3)\n", + "\n", + "p_abc = round(522 / num_games, 3)\n", + "\n", + "venn = venn3(subsets=(p_a, p_b, p_ab, p_c, p_ac, p_bc, p_abc), set_labels=('A', 'B', 'C'))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Probability: Blue Team does not manage to do any of the events (Outer White Section)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Probabilty that Blue Team loses, doesn't kill dragons and heralds: 0.3138981678307521\n" + ] + } + ], + "source": [ + "# Calculate the total amount of the games in the venn diagram\n", + "# Find the complement of (A ∪ B ∪ C)\n", + "\n", + "count_all = count_a + count_b + count_c + count_ab + count_abc + count_ac + count_bc\n", + "did_not_win_all = num_games - p_all_wins\n", + "\n", + "print(\"Probabilty that Blue Team loses, doesn't kill dragons and heralds:\", did_not_win_all / num_games)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Probability: Blue Team wins and kills dragon and herald" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Probability that blue team wins, kills dragon and herald: 0.053\n" + ] + } + ], + "source": [ + "# The probability of this event is essentially the intersection of\n", + "# A (Blue Team Wins), B (Kills Dragon) and C (Kills Herald)\n", + "\n", + "print(\"Probability that blue team wins, kills dragon and herald:\", p_abc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Probability: Blue Team does not win but kills dragon and the herald " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Probability that blue team kills dragon and the herald but does not win: 0.019\n" + ] + } + ], + "source": [ + "# Same with above but only with the intersection between\n", + "# B (Kills Dragon) and C (Kills Herald)\n", + "\n", + "print(\"Probability that blue team does not win but kills dragon and the herald :\", p_bc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Probability: Blue Team wins but does not kill dragon and herald. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Probability that blue team wins without killing the graon and the herald: 0.208\n" + ] + } + ], + "source": [ + "# Same with above but only with the A section (Blue Team wins)\n", + "\n", + "print(\"Probability that blue team wins without killing the dragon and the herald:\", p_a)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/fall-2024/math/mat-204/00010/.~lock.mat-204-00010 - probability.odt# b/fall-2024/math/mat-204/00010/.~lock.mat-204-00010 - probability.odt# index 140582b..6ab7a46 100644 --- a/fall-2024/math/mat-204/00010/.~lock.mat-204-00010 - probability.odt# +++ b/fall-2024/math/mat-204/00010/.~lock.mat-204-00010 - probability.odt# @@ -1 +1 @@ -,winsdominoes,fedora,23.11.2024 20:14,file:///home/winsdominoes/.var/app/org.libreoffice.LibreOffice/config/libreoffice/4; \ No newline at end of file +,winsdominoes,fedora,23.11.2024 22:44,file:///home/winsdominoes/.var/app/org.libreoffice.LibreOffice/config/libreoffice/4; \ No newline at end of file diff --git a/fall-2024/math/mat-204/00010/mat-204-00010 - probability.odt b/fall-2024/math/mat-204/00010/mat-204-00010 - probability.odt index 36050e68e5ee03cc201ba219b5f8980591c20c99..2f5ef2c2789bfaced6cdf7282672c7e9c3f14909 100644 GIT binary patch delta 29155 zcmafaWl$ac*CehNw~M<=a4zod?gV!T8k~#k#hu{p5?q73yE_E8Ai@4ssj_kU`tq%++A z98#qa4Wgj@7qC86is>NWznn>Nf(HE$=r}a?KUK;$wBWxxCuph^AsBq{w*W7FsQ~3lYMdZlKB&~coiCQRX^0UDi+{c!sVgYDhKQK~FIdXXy?B}mlk@I}Vk-$2BqKoUbaitU z^-I*$BuxwR$nxZ!q^t#{#e@P+DvY<~Fry1Jm&-I#@_L;0YE2=u*o-LUpnmg%7w$|r zD-ak}0O^YpTPw3WO_?-GBfzKhDl(sQDhjGlD%r`N#IbAqfrumnX1(krO~fX;gF0(u zP!e!zU8)3EcazZgs719-M#7}HCn5bEFK$hUNJS*U(IEYfO!!k7z$W!>fiR(~zs`Hh z(^8^c*0Dj8#%-HfqTl_bw!DG+X^&kjz88!*HLqqK?664pK!{w(oIc!dorNFCY90E4 zrYJ|vY#xGx!%=!?z*D#+ctj>&$T{z5q0am@d%=MF=b=NB#0aj=C@_32)+O_3b(c|i zVn6AXb;u-66e}~edF&Luw1GwZ9k>K5ucCV>S_C-(yWTGCd23m)-u95Hn31XV+=Hpd ze-X*Zcq5_CP@79x?|Zb{_i>Vyd=n!nASp&n?Um{vPQ6xJC`v{EP+@eQ`LX&<@QZXy zy%|naJ{+D7ivH#4e4Dc~AaIS^{VXrIKW=uepZOy?P*nVSCl}ptNP3sKq-4g1#DFa+^7YjVNU#b}1F_EXih0As^d2bI*`YU0e8ef%oe9yG}-#MBA=q6#K_k&q71 zS?e#tcvGKZb?gr>HD}*Na3jIh`HCS^LuX-&D4;$jCdx`$Pbf zRVq8ALg0EMQB=bHO%@R$_73v0MVD202oQ5^&* z&(=vJAE*tu-^1_qvmCmy1PhoHkOKC#(8K2ZToC-h9n4n|{4BRSu-2714H|<zcC7;gDv&`wYEgSQU zJ+xy1M%v4vZBs9z6JQcShDOFL=MqkTF`6{tsOWR+B^&8pFZFCQv~|oPmQS=T<}?kD zck!vx!nQC*I9~G+@E26A8n^JC5>D^6!!-S06RWp>;-`i*VCyH1bt{|JQT;SwTC;dK zMT*2K7pqJb_sYB(meJHn=L&HOW}3dHIHVpba<$3jo`*Am5e3IM*1P=}zaa-o>nxvH zBElY5)~wbkFrmc8xnRKln0f!)#x2lN=~-7qju{$*L^o+E+H5p|q6^)c>h4N(q58hO zRTW5iL~;8`?SPlKl-RN>b>b^Bt*pny?DA;50{!z+*<8RIYm1>Kfwt8dLu`w(sbsTE zz=`!-qL)(#pc}05qnfR4rnqg$UYR6E#7c2V#ZwXD99~_-rd9X-S!t!!3Z`a9KSV{R z4&r#L$a%LezmoO&Vsd@%JvnZYEM=Q4nHh;~2ZL{s-qtpc>u;V!3Q{_(Mi+j36ZAfa zh6qvh9X7dZOZP!|Dz&h_rlBmRw_;%8FwirT>DkYRlnPutnA7sQt=(4aqh%2SBjB*6 zkmt1% z=^=1nfz}R2E1p%j5X_W1=~bKjTzyl(A;mB$JJUi=1$E1dWn&I&b=n;HKQsV3Z8hHwo)iTmt&h^YpR7h3 z1x)ko_H{u8qrt>w>rUx~J>V;K?(9)H^x{y7`DPh_e{MR^KSB*&* z`&*UqgfCR2m1u^AGg#2t%#}RJr9zUdX9Ji4g#5+%Y)aI?oW2PUGHei6h)y7QDTbpYF4B2fY5WD0# z>ad}wk|zu`7FNxcbA&mz6ae>1&8A)xp9TL&wimI(A8VFTy;x@p)*Z+(@SHoucjbOsFTRnjE6(%fUr4pHMePm*d<=BhcB*;&*0@!+baSTgv76FyPO%xmcnl&S z&da<+35e8&5em@4)|?o=;f;lVWtS4p@s*ONBx5`km(28At_=4tGF>b=Dd@v_pSm#Q z*xe^O;6B$#Y-YAyLygrUYK}e=`m3%wa}<8;Ye$;ZmL=<6IhDAV=>U|Mq!UE|V+tdm zmXaG?nN1DVZ=_Vxuk*mQ%uYIZ=Z~eEA?g<`H&6|cO*nm9XMMd_EtN`P!5URW>(u*m zR*Z9CJ&U_qAovMA-2B`29G6~Uhp4FP+LA}FQ89Fwdj{t8Pw%LqaK(0*@08e|j0RkK z(BI;!kTR49^fC8D20oCh;$Gd#z-Mw>iUupqDr5u%&<2$PtAN{A)5j`pYoo_Z?e6BF zZt6lCDC1F0zI@ncOZ(sJ_v@RykK9U2U!S{wib~JO``-^);O-gt8Ct{_WZ#HJit5{T z^VWT?pSE9hkPYzaDwVhFl`cp%STyH{{^;vc+h;qRA#Ts|>na8jHyqq7fYT#mjhARc zO33~1y?^;U)f&Ai3vu^df9808xuLH4ylnd%XE5jYMQxmnPQ6)Z?k2YYx_WXNy}uoP zysM=u_{nk~{+Fj< z-hxhUlb1{IiLrmNL98FKyl)|5-IrDpz@oGt;)50=Q>vC?5${tS<|jM6l2??| zF&b3rd)}@%VwDH@nA3G$6pJ;hmB}5x7?pKu;>!5>Czaw1-bhbJ5^m* z5!E~7xwkFy`UyL|6fegJdvZ(=g{y;wFUFmWUhG$hn$cLaTWbn@6WiqsuCdB z7Xbz1xgFDe<)Z7ae%|2i;p;z7(3n%3U&v6!$ufD3#y7= z9}$`@uxiKjq@GY@OLAhSz=}o&GW^rK?`^bZ{z+CSS4EOSp-OXSbSUzs{zr)LeU9(TJhGh^jJxKa9U|0Br8kV zx(aOh-SuycqOg0x3zkvmC%%QRKB)Eti2nXKy^-?IhaX)LJCRbm%jZz%HRY-H8IlO9 z^WHz19%daTU+W%hr4kvV=88(vXNRAPCX1`tc-oZO)KJ+($zV1tR(8$VM^@WTVZ$X&Wm8w7m96rud{CD4JB=CH&pDNCvrcQtP_xQ zxWzXoxzpF_wY1Z?7V2xa%@z?=&du61?G@3Xpf5{x^3bn`9K2|x>ID704wS5^V|7K9 zWaS_0qjnj(8BbApDQZm`cAL}pqrR2t-sEKpX3^?)2=Ew125E>IyFy1jjR9jAB|6~m z1)Y2o@!mMr+y{)^ybd9f^^E*gyfq#TyAnh23#KSWM%741a(`Z7UO~tC3-R4T z-*IhN=!o(!!6qVy(~>lBY3w9@4^9V9yt~HEV4#mh*p^_p(e<-eBv_BftrswKC>N9p zt4$l{MSf_*Ch33LPHc#DGr-fzE8g;Ba%Xy~&{BOcPr&#^{&+c|r;}6sfoPRBnB@Pw z`Xeb}m(=5m*Nl8CUtUn^d%iE}MC|Fam)uE0wRzps{tu20{1EsR_6qfc;JYTUDvKM& zaDO6(qkLeUh35~{*3&%Zr$Nc#60-6%c#d@X;FLuj!e{rv#QcM=wFY;|_Sp^wY}v@b zK1qlllF+Iw2%|)+94&g!I%UsT$aZCjRY6VS*mA?oMP~FnY_DV2CV+`4^^_rI;pO2( z*{f`sbFE1H#sea3{&ET)aN`A+E?y!}3M+#rM>AUA`CYqqqxFogkjuN&*PPkW$}#bm zh&_tozFe(S>EGk3dS}WbGGNoLJr4#yZdRvCKM3%PmyW}0O%#EVFX}bQycVWP zSykgxqeT5s7VS-%E}80?3D?4Pw0rvi3oNVNM7EZnf-wvz=_I+1yxyT_Qd!V81k9Zg zHQ+-Cw!U_33-W231!|b-aXkhZ^hFB?i9lqks2ZxavX+%D8DmgOU+Ph2;Yh#sb9P0V z{s;?kh~trD8aHZ@gOdeI>YM+FY4=y=4fGeL@OI0KuG+)?+y|Xlf6l?JI#^i7RieM) zGr?o={g)7dc7|xVG&Eu-=v*!g8=*Ysi9}OyM)^MEghh>3x!w56j9Dw@vDpqw(ClPK zvqo^_L>}gCBwMTjkuJNztpGLtEB>n57D0#Zv@Lw@M5B>0)1p)&`!NMxE;T_P01IWA}BQ)w9JPKqJo;@l)WIPlB- z8EhfMuRJb(SK;em3$a|N!&66~>?gPpzVd_LCq-iMvj}eQR6!6`365TxFkKr-??+Aw zqtIm>Y0*Fq3VIt@ejiG)yqH62vu+XMkqZKt!{{E4UY9Ta?!1X#OyClWQ`AU|u?N02 zQFi+fV&-iS%Mx72Ej9(`^kPz|4&N2AkIcXP{CgS>Q>I1Re-&(|8;* zDy@EkUhlC=GYeMFLR0X6;a-IV^0vWNGp}^Bb6#e|j6XiEUKeDfx@n?xqG(xdSHB5l zX6xOnKM+tdS$t^o`0lfqJx^J~A~rRBmV@f7JH*Bi6)x@{hs@GUVVXj@g=qk@PaWB3ZZ2()qsZh1 zzZ<$|3!+p=k$;Hshli$(!q_B?j?i5^TaB~p1IwnP=CQaSzYkSoH;5^mXROeur#0_s zON3J}xp%(QvPlNJ80^xIaIIn@1p za#y~Mh8w;(-_^bBhKeG?Nw8ws>!zxskAz~dXC77k3)FvPdX{+U`{&2`Z}>&6k`EH{ zQRC53@ZDlOVnVYBUut>WpqG$do83dfuN_){-g}WZ`jlk<*}L>ovBzl%R@&hB%Je}M z4HDeY&-NV-5C9xIxOkq{W!2QV`5Ma`W5GyVEsG@;{jw^I@I7n@jBtO-+qQa#R{sN4 zf8TIj-9y+J;k@hkjy+yxdabCJlMJn#Z*>&}K2QHxe!P;c8Ez@NW{PO9x3fW==4=R| z$Cp?Ob6t8NP_2Kz`8IC(dWFH~>cPcQh_+N?;xKqu)5Ckz71LaD(E?|@SNdtHQ7~6$#3u+s$%pGKKd<3Z;{~Zb(u2w2+YU&mK8^kp{Gj- zp1WnS@J=$cd3IFo4HTpMnV4adz|yNGI1r z-eP8d7?m1o$RfrkSy>r>Q-=$i_K zFbIjkDbw+r6u9Bf0Wo7&D!pnE_6S7A((qGT(|9uNEsqw9} z^FB+hYV99?%cfrPG+ruA@}wPb%_+iW+?W0ht}1*ZQHrVdCT^Z_VJ6ykp`Mv@`P5O{ zKZXAucPwdmXfQrpN)BE_3>*kG9M zO-{`oe_)lZqfwUKdr$QUB2=P$!jA)Ne& z)*x97+>YdTlNb*AuoN2ei_8OMiA9p>wNn&@w?7Ax%boi*2cvA$y=JfO_rDwdn$Z27 zK*^a-=%2iZ zB9T}(Mmo)Tvbun+;zzXTjBK1zoJTu;^PRIAO;qKDN+#7FF<%!{)pX&-&yHRTWZ4E| zJ7=)jj6`ekTgkJ<v&?NNTfqq1e8>^U&-Cvjc9J|=8RI{xl&eQ?Y!L-Awl-uQTNGba60WlL??n-OPG7qgs%xwD6AbHrD@^%hDZ+{>7%NvKz17 zaoLAie*I{66g;flvHYx}nt-~IIOZIio-*+=zAHU0z^`@t+K)Z&Ns`ZkNDkueC|Cji)83zgU9yh#=!cLC48=wmk4$JB3;X7tw3k&;gMX&hjTu+1Cfg0n9SJOlT+EGER zS|3ahK}^hzWfWEUh4O~By5pMzJh6o1 zYsVjSz<30*z~J#TyhRE=jF&R+Uc*^DcP+J@BsmNu9Z9TDo6&*F4u_${j&kE~R_|he zWkxt`6@-kijp!@$lYY3YsV5>8;95-+V{)vOab&`Pl0CASQU_xi@y?EP)<(-3qi<4aNBEOG@W`-DfxHj+Sk{`;TQEAy1N8XTyi1}A`53^I4=ILW zFy4bDvjeW=90n%;3kl}QpBza>f*7HXNs0wA0He*bCYE}KmE7v7i?UsA`OubxWrVkc zKKvc%=y-W-v`1MiMHPn3*h;+=IONc9PvA6*8lZef zf?v4t4f@c;^q`p(y=)$y(7dUB>t;-})lX{v;jnMeAan8~O3ubEx zE;Ug8sSo6S5ptVc3#1xNkwituLZvM+7y4m2GpWu1AD?Ik4jCf%IlAB{d~R@GTZ+oj z-T{M{Kr4UkP6iif7{a3g67!CxO&`psz4X|pF}Q}_4#^_FA*F}nV=8KD-W<5-ch1RC zExk_9gmWnTubX^X#**n>nwPQkV4xEFRC6MrQb;TuNPO@T|C}APeL>lRm{K&PbG#;F9mINB3i)qlIe+a9dVqvlIif@({8)=+Y6jp5Otejm9k*A{{2Sg ztV-GUN0r}f@MT+st9V38PgVIWfCzPV&gUzqstuWwH_RgjsXu7OJm97PTx_m_?oRN{ zZ?zBZbMgJ)-pqbM)FMbPZ*h2ua!Lo;y8YNc#0p&<6`6uOfFjWFfPZzt>1^%fW4}3% z@yaMm@UXG^J`4UFAUFs%mc`+U57nSPAd6bF9p;3>7{zmstbiqbLHXG+QluyTP)2rHqNP!z5z7Dkz-_4I!%eckI&{(?3=?{JNU*hcb#{y;5A{w zHx8u>7Betf>CPC#kRR32Zf56r#vk9VJvL(5 zTZGtbe5x|v7)=r#+%E3NpEqvQhb!!YImeh=!2ckT8WRKkt)E@DD?9$z3+g@fCQn!l z=Wuu~kwO{ckTIb;xS!JmJ5XbkNj1(_dA#utUiy0R2A18@=iP4}NiV>2BX-TeU`CWaQmGb97%xLIvX=|nRzHQ_&5LeLqQpii}W;lEj9LeM!=8d{G?fB!cWma73 z&#y%O5Hb1Q0fW%DNVU|E7DUSjdSIr|aBpwmDV)`!T%DT+e|=64o|Z2Z1@~tXv1F#Y zJ5?wLy)OO8l{O7cxRW0&RkPXQ2n2>-K4q*1a_a0nS#(bR{l}L>MEZv8sk4O$1r^Wt zKSu#5`2T!I&?G>;Cy(}T+7E$Z1MX-*LG7f_JE_AG6B9T2IX%F@#m_cYq-0Z*fj2ID zP@ApB^~qMU1CL!3n%0pK4l=F2@E(5;zXDne?`4{XP{xWm%3=nG%Hx$y=!jJ*=*kcF ztzn0WGrP^&X0M%4GS4SR6QJUD&I2JfOU{dn>MZ)$#aWcuNra^n+7x!Iig4P=9%0@f^t5?va=crcC7t~>}Etpx!&uRLYpi zsjFbhXImhBtFaJ$6aeL41M3q4ST+c=X0M}1-X*^ff4l%A17uaWTeQDfno?`r>Oz^K zGQ6ayEtjexjo5*{%=aNR2bZLS|tAfq>LmI0RxKtYbsT zH%pdyQgC!_2de2^yfXc;<|w;zm1AZ$*3Oa^JCqEDAKiFV?KIGa-MIwXi>KH;8A)c~ zX@$g3UQd1`^)=j_^iucn_jtC%$VqnG^cyd zsY=dyoV=NLsI6U}WtCU{`+WhC-@1k^ROuHbGmXPxC(Y6|OoR1HJ3h)-8j)q4N?$L~ zp}7?7>s^2Fs}{C62Uq(ghClrTh5fOGLr0aM&w}W(W+rUy8wFgtZ|x*bd4Bt4{$@;1 zNazd=|FMS7Play4S6A)f{eh5mihb8|FOp4*L1yINe5cLYQ$;<5Z3C-pI2kVsL3SL?|$74(I3KbXR%rapW!MFl=(8QY$gpi+T=>O_ z&*WLO@SEKl+x5}~Ce%g9t`SDEpDm@v62?P{0Irl~Z680R&>nrJfE=+9})JEuZZNH&_+$xXT8DCfilRao%EqLw?Q_E{zNZsXW zN~4yD{t(?P)Hw8=#NC~fO>NpeO@|m3jo7P2&9LRG!eM2SU!6zG@X8d`dr3C9@!Tbm zB`GX4bb*mMjk8!;#xM)ssE$cFvid`Z2|uqiHA^uKIkIgZS=K)bd1yk7r(1iafHkvT z;wQHTCjQT=<;qMXgPolLg!fmCKQ#et-0Nmtq&lDOh!ygOy$@KA36Gmd=ad9D+KfbH z7nNTB&t4AxUtKy97ZRs}K`s&X1`uH>XOCI~pTtyuEzTcudiq+jJnW+J)+MvizGhsy zT5@^4ZD5nT(VkN*C~$_hyjH7=7QfsgY)0+g)mA-qbFE{7{QDhmw`I+gFI~rW;@!C)g?Qn+L%E8>}q~9_ddEe8W5VQ_RtO+15b-i9^9QP^qpF zoIm`<>TQfJdGOb)@Jg)tvhBMQLr3MPV4M4?jxoGoThqR5ekOW7SuiK$x#r!&q=I!f zx-R~BCWw+ZA{f5jHL=Wq%mH76hB72gS|dBx&1{eNOu#yqAY$0mL4-65bGU*53XH%p zqP}4-U1N1r6t8ZX1bd{5XkyBjV}t7jc-sy|nz<-Rtxzd7&_XAoHo@CUM4+}?*g`m_ zYT?bI;i#*$P4m--Fwm&g^j=$n@~T98p~9$2)meQFrvm~=k#8>9!+2G+2-tGT+RZi^ zDSt`V+Q&BdZ{*EgjpJC84CZeHZoycdrJh0caZ3nU+Apq4v z%m70S41M3_daiMzBP7Hz>!ax#-AmA0W=oLHT=ZJ8Wpi=1P%xd7BE`5(0NQO{+;QPV zW^nOw46HR4C@5)$5njhzX&eLa&g`Hvpe(%hDiS(9#E4OWC#QYPvBFge9B{sX$5P#y1&(liLMtXO>Y z5ZRCa84hG5{TTO`$itV)Q(6z1%4J72!1+l(Ar>DQC}bk-HA-W#?dW0xI}Kp(C)8#_ z9A0{pD@E1PKd>AA0c{xyF6k7*gocd8Es!W~Awfl>bhkgK{ozi?I*0yc9)ETYjqFr| z0(i_kQzFF)R=5_7q;{BY6BpBA(%grEoewq~ZWv3vLTW3*N56+sXoB!N1z$tTx5g{n zM%2giVpJ?jz)aB%Nud=?)vq&Dz!&d{=k=lyO#=#`;klNGSwaRloCHWr5>$ADn)YQM z$)VP;N^|9@+~nW_$-aR)?b9^?sCMsGnnGBu_A$C7Znipex|Gr9@!g1?D$0gvG&Yi( z?%}1cHOTm4a9Fbaqa(LXct2k*F{LuswpO?UPh5!k)cOB z?NMi!R>Ga4v7G{Ew(bB!Ofc=_q_7Y&BH?E(GDk34Tq>VQc@GOTQu^_S9_w(`8e2}Y z`DH$%w>l0_ys;o5T_a_nxzJ(73Ng`v25l-lrciRlgk}n9T>A*mLn4W63e`*RXM!5} zBeZn_1%HzhkALr}XZhAw>Xo2z@l@}~9dS|CSQEJVqPhyMRWbOiW}i31frfX&Y zE5gci-8VfchPqQtB?ncGL?QL?(;+}~pZSl=7P9PcLwNbvSI$w*4cX0{K)4hmDi-ev z5ACj;!N7MM`bScj!=Thh?a0$5C*n1k>LruOE_!CTk%r2tvf1U8r?%x8Qoo^*QS70f zj7tIX!cSgcEC@d-48k?{%zapzD(}47H<$&I8#)t9-iMsUYG%G=6Y(^|r^N{S4DpPq zm|^}rbwp#uritzuJW{3d$n}1*r!J@MLdm-#4LrTIE4&7)Upr1F#RK-lBE{WJrUfvF ze^7{#c^=r6Y1*|;Iz9$^g|KKNI!#JWz67o6UC0@OU%k?;i1$W3HB&DXj$tJxS1Ne$ zZ#iTb%UK64f)(a|YR`(9v;tX2SrmQ=<5>-vPoM>Qh=xb%^L)`yZ%MGz?{rQltzG}e zd#f5D?VFgq(s$|Q;Nj8G6dxN>5)25T1Y|}+R&PvQHBE#1IW3)Jt-Ber;U@|qT*_sQ z9E`c(BhzI8#?twXXa=7R6q7z=Zz>Dux~1ap22#m#EA~j#84NbuM69sNOIT%(iMGGc zwL2wk^-8g7vd#gjFco#i1ZZ`NylS{rSuT5TZ<%hsP?;*E z5z{4&Z*_z$7C{6ipxPnQB!E34p0J*8lDr|OudvP$j42t+kEs5~Z~>GwRlzf9H`pBc zjlt$8VJ*gAXthb^wLkK&8QjDW8sJorX(>ZdDLm( zI!QXUY}2!3%X?dDFR{OXDms0J-As+0hcr_*o)%{<1Uua?rw|Z-R={{qRq*$=47Q=cbVLv) z;^tDv6A3}vLct>MJ%69a-Y858ZS56owx5En0D|@$PAGKGLei4epn~)b5#TX+oO0?C zPLRc8raL0aC79hJA%ts4+^EIlXN4K*X`QMN)qF=n=)A*Tq;L1JffeY|h!@FJ8+H#8 zh?S!&%Q~pYD^VIi83pJykNp@uE*^nCW1N9s{06_2Fh&eaYf9emSB*a zW3!XOo7%#1LX;7;u*-297!ovDguMr+v!{CqLDd=M(MhY%DL3JUON3(v5EDV;z<#g-2o z1tiFQ4~EQ8mg@-0hB3Ac3wsFZC|h1ln(VsHxt7Ry)2TvW)h6i!8=%#;l$RRWCI0mbFJA8M&)3Fpu z>Gg|!unNz0RMFI=urli z{ARI_cA*blkNKE}xxs(U6pq|KQS1qHJ2ub1NC_N!rP+c8ZZOyuf)LicX%kyY@a9@a z;^VG@#9=TjVDvX^ryt=Lw{en#OFq#oD3DGFD_ttWSDd1Qz*zl-rqo5U*|NzzLN3Ly z@w%X+6APG~{zPl(lb{=WWND{>*`h}pP1EqcD0ya;F>;WVlb3`uf6NFoPGSqlc2?tp zZ(xgpydg69Mea}->)0IuKoJm|Twq&vE1&Q;TIMM&I$~RFrRrkOq1@GoP(SQs{cAz3 z92tj33g{paObtN!m! z#D5G6$xLT&x&pVfFJ2@Nxs_rcdAGVHkrYVd_zSi%UovF zGSk*gczWsi1wTb;iY4*25d$(_wTH}@LUd&{>IfA>HDwu3@7KzM%ONiNyc*24}S!ZGLlzZ!_6BY^`GK751f*iVHQB zNAE0C`C2FWg_7B>zQwZ9=5&tdi1N|QoI@?Fe3^=rT#8j#R9p3-hye8mZCk34bf>oh z`4??)%`tAR0YY%fs!mzhL!O-XYDEh>u3vt}b9=6-;|P(368W@JCL;u5rx6K^a&d)3 zm?LG;d)CmTV2|KO>)IW$RcI@bM}r*Sg9^D-qLKJ%JQ~ShD|h0O;6kxv42m)swz^hbKgvs!~YvwN8QnpRpbwAjD;iw;YhLz^27B_>0gJ~k- zBMl07&+f_EG?mqHR-7du%j{+I9(1Nh*v|o01s#P7r|M|wQdlD!X_VsP@fEUfAcQg* zd3KidK zOqpM{ehh{u74#Gal@Z}L+iHl*U|L(UOC)+%j~`37Rt(F4L};GTHr#LnX%!Z8*cgRKo^Wi35r3!EqDU*@mTyqH@qdY~X4D%vb=u5H6JQ?jdi8 zS&3XAd_=H;Q*vDyUNbx%Di5kh=-sk@1}WJLQD8_l(eS1pu~Wm${$=toIO1`*LEAHa zBrRwsaa?DPZ^Y-K$AL>uf-$YCICv7PyK0jopJyhnHU*tdfIMf^r3cU!h2Sps*^_|V z@`iM2{fLzt(*;Qi{s!q8ZEgZY8w>ALJRjObr>hV<;5Oef&R2L%Yhw{4c<4!yZZO~w z{-ot%YcEyh3Y3+2btUnI`Rn%^ z-4NCh((r}kPBahpM?>)29x-9$*NLF=6v;6z^tZ9UA}U(LSMq`RwV@0505DR&9;L>U zjm(>recHB7nnPlh8|D?$Tb{wwkH1a>uVojY5r#1230y=>J=SGqzcJ&u3_=9Wyd=`Ylue~X zkbG940PJQC6FCyH;H}mY1U0dQDUJbIDC*ujK~|XWGiR+ho&aPYYHMoC!#J~|_)>M* zc1jU<`#g*>ihW2jf^G4r%*NivQ@3q9vA58}0QEPFHhFDD5{-CTUK#y8x?8qV^`)<& zmyv=9GU{SqaOaSY_+e~#3DBdA2wH&MBWGVTJ*XGI^DRJsfJ1fhiB8EokAQ>S-vKqB z%@Nt~;0Ie%EKWKH*GESsh=HNYsYLXG4B|XRKgt&&C<-J*trP+w&=*H0No$lq^CU*x zxlR1UiIttm!XiG(I%IQfq#nk6qNnG7>Q#t|JUO*!KVPpbaGVUqXKpZ;C`hc!zXqddK)I9$9&0MpA2+g=x^o=Mdt(;3Sn#hfhIBV#*UG z!&k@`@R-(VuL^j~G#U+xgkPnSkaAGk5huB!#G9~zI4ZrWu2<=&kxD58cH~et%)k}3 zIbA}9c?$>yySNk8y&>$BGW;w$UoQiG5oju5T`mY^OMBjczbjf$*MZAR_}K_fmZ7iu7n zTudxJ#j>PxnX5W#!gE!OhBORpP{U!#;F-+cKwpMbN>iPSlMiqb z6Ony8I?ACcMu?BP`0@hDs!t!O&sTh5zc30+a+$bK@`J&vW*X@`++op7pL_fTh4><0If0AoCUF|vqRB6W~#B6how_uzCR`_dzq(QTWWY`s5ID-Uy zSn&c5Ou}dJm9d*d&_IW`p%7`Mg~G;hl(I6XwnIt$4E*Z#MmynFg>6m>D|I!5ccc|u z7BZNlfeYV+7^q7u`1o6+qfvR1TP3JjTwA!ineDcn%!H-SVNY<+f?|6S9?7O-aAhfu zfw$^oI@g6S#pC0SZ2s6#-b;Qv!aSf zQ4}=_yTk-(2jQ$7A=?o)2(&}_;LYr>$XxmYv?KhSQUol$$*5n5?BEU%{!)WEyWA`; zFXTd?a}f7VlY>=hR6v+~G}o;`MV?k_uyZb!#A4Zrc+iN1+b~la1umw4G`P$`ESQo5 zB^f=Dv7G+M#;Hcs%8jPpPn~=L5(`KprHJRpek1{HC3|5WTb}q)IdnO0WXDh}xKL*_ zzInH39DBAfxgq z0D*~ZS~m*9Y(7S{k<%y0G~evK4kAjX577eH65ey0;=-2~3}HQxU9WU1e%IYH-vb`j z(V(AKq7lPjX^k=A#DN5ab}mezex4mjAzw>fG-sl133b?6t#`!HcTaVXKt_sqyS*j1?BwG%0= zp%D`-3OjDhMg5p+C)wT)WM+0*tr8+)$e3$+D?+sywDC+eS>>aMrln+^uMDM#UDrbn8J-_ zH;ve9G9Btj)wmFsly$d-_%|{wmI=q{whHBRYhA~;4^1yWeR{jkmwU|XiP?FW&fKyQ z9%v?WPpu&<^bnNW<@Vb~TkM&|es$w9cWtI?%nWd{`A@0`{x7lK|H$h;`)-!OO}%kk z(6TzGAeLjFwF3~c!vIE8aTH0LF)ztY_SSp|ttX=w|*{N;f0@ld2 z&NWKk_)~9w|A+5_Qd2WCZSqVa*2L3qIPjNIPG%Ofk*Ui|5NP|Wke$m1ANai2VbtGg zKN$&CV|hIJbw{gJ_#rNL?CM3zFKX`^3fQr5rS8C1MbEors^}EYxMGSFwnqfZ^=@m9 z?#a;mp!4&{!9dR0?2%|WGBFPdn~zj1wDn;-P54=ixIL7QJgX6LM3U+^p^`}h%!6vYzaJRdx}a^WSqWh>BA7k! z79*+MfQ$6TG&?FB0qxu*BM--c21M~PX1P0%v%y$YBfv67Z%9Z#xO89W7X|SqM}Xa2 zZY|A$Oa8TMZ4YDF7h8^i2ainiS1D3xemnNE1b)mzp$>g~qVE60d=GkaR6+++Q%o3)SggmD0>2)>=^#9e zff)IgwdFq=%|gi-ESRls@PUc=BYb`-7pF1w+_@WjQ3v<`PxrpwG75ZMP9Jyr2SXv&B9UeS`91T6QOP&T-wwP8UD`gb1?D`>h+6z`XCuG zI~%f-@(d+7qgFYcYm(#RIv*mSXzQuRa8ZU}nq6`cE~ZyKgQF+nb=`MebKH{$NCf~3 zhK|UtC?*Nf-Z42-qtnQ$Bk-+>hQ>Uff^E{!$a7J+F6(xlmKfoU(g^3Vyk}(8Y|@)%QA5+ zF)wh1d%D}D!34O?ItHm;(V41BiHZ_8iN`F@lomqm`Q0y@9PP^s%j8YrOV59vE^H=wbh-q1BWn2>p;dDN-ALx{CN2>P1nxA&`-H{OL%80Uu=F>U6GX7{Tl2T(HPtLyK6ntEdA=p zs;$kE^2Q*nLF1PV&U~zH!-hK2AYHV@LNU;aeH(e0e!F_l+pLTGgWLVGx2-u#Bcle^ zX2rZd`Y6)mp5FmAk@A-?t0R@MffNwn)kpE$<_h<*{iwp~xIn8gRs0G%tgCqE3PC>J zacLM;+VE@fM9a?Lc6GCjW~6!Vs(~0;+kZD@3kJhzn3_ z>(UAhYEKiBBn?mt@w{LFn+ZrSP(>v22>xi&-^AE2!7S;?uLGnYzw@YD`slF6 zD+#f`qiN0=U|E)yIbEWTPwBBQ8q5Ps;!dx;=wHChjdFkXznC{LDkVQu_GuOfil!BB zDhy`(Jr33gY0UurD55MW&rWZzMww3t^Q}Y&)iw=IVScEk#=T;C+n?%7ZJi;ei%YQv z?!H8(ESghzV`+sOGC8QD#5|)K|M9CS9v{|5NjqVVp9f7*yj7H%z`arIl|mulTG~cF zLt&!69(@u$-Uwc>IO0=vcPOmrO-tXD6VHin{Eov$8`N?2E8L)%;T8owd#g*a5X}q8 z{*N>Pa^}p?P%npjUd|vI{*A5y@-D0P?*OdwXydQ3Ta7^@@JSj{e29^GS-bk+-#2f) z(y<*_Yd0|@yKeB07Od-0YT{$nKy;}St60^mD8-41Vw9i+R zvG-ga(Jcc(?BVlNxL0&Hkg(nx^DD8Zj|_f_!fq-BnZ*NSAUW1RZ&oybs?bi&<`Vh6 z=}?8-^Dr2Z^HBz-2abbRSf@yfX8Ip-On&TkspgF|N+}&V?kE*K99!;zm#TI54$2I1 zy=GB;`^k}fw9olue^4-6lx|?}U~QLM$L0)Vh5eGktA5`6N*nu>?XVcXXhbme z%wc6+8j1mrcYA$0u~aWvHezRAN)b5T_)HG|-qQAoB3}iad|YYiR^xg>FYml>VrFc3 z&?&S<&eOfy(Ubhj<=tW%ZQ7krNvH2`{Lc6lU%I_dQD(dU5mN;GS5VP^MhiueAr`_^ z^zud%!|@NQfhvabSYqWCk_9N1t78VRJzitwVOE()&$%>mPN4|K!P-@cAC8FFA(sfx zr5x#9lw8(_pu9{s_iH_wz_}$)^lhigtoZED|8fWC{=|n&jm9vf|125{m?{7M(gV=m z+ZXngN1Rn?5!?S9{SrXN8A>R&$Z_(XLdkiE5r}B2<|J`wdG2KGBOpi_oZ7D+ZHQ%v zMTx?Xy(`N8*?ahva*eehp)>o96qjM z7eE78s~a6>CwKUhp5r2fkyx{}0hx>&UEGVHEXaC`SUk#uql>P|R)AOLK6^KxpL+kG z`j>Y#MDrf9^!d@a0z%NA_P zs4JEBc7I9e2UglI0{h&xfz_ytvH=eLE?P$Z7Q`>oHsN=@;ADbi z-KBfa^(qDZ`s*juN1mR$5a`VwRh&fJpnLbpDqeUj1w9l#D8Vc3NfeqNuoZ(o-no7~ zdO$>&%k7K~Y?sZH%SZlH0-5{MMcCcxr*&AvdbY;$o1`40L)SLmBjqBwGfm*;d-_FE=>4(zUZv7d?QK#XF>mL8qsw#_n;V)9YA2$MOXu#rWTiM&st zr@;1MN81AocUYrjqU-Lf-YhEG_dzlca)HAq_ov`Q5N2Y(rUJ^&HaFm;>51KDHWo46*ivuA^^*$y%-y*U;EuIZHN~U%C!Xo>R zn)Br)wIXGrF&H9i(5{#v9ZGY+h_ljnVq}LN2q@2RQl49kl97(|r0tIURC84tNfYOP zlo1=>TucPqb*Rv-ejAj!mOzM6&xf;7)V<=b?`v-~toI@)=}nsttznEX^4=T(;Ie?tJ&$aAj_FasWu9n z-=XfG`r4gt$G+9^hw_J?0ix{Y3of<(dzBYeeXQW+g*hiK-?>F^s8pnR zRvahiV>j_T&fuC#TY#iTr~=kZ{m=4qV*Udq-8-??nOupKkzumt_2RU=}Xg`nJwe_ddbTp zjRa7vcSl)wIjcCjbCwBTb#^tnXVwfKhsS$!N?oPeBF6uc33e}BZT)_52znn6y^LKy zO$7EnJ$^5{);qxLXxz^TVQ*MHD}asijsm`*3t$GOM&;Z@gu0#V8nIr~M9 zhgc|ZKlb#OX6@nl=@$C11l+c)!&`vOOcC_-HQ&&t>iNC*@mtWwRY3tN6L-J|s=U3j z=xvL>4H<4D53{(>se351fag5@rhwi!_ndv|+2pKm&K&CW!(#*kCpeih zU9h>u*79+B$V%SBydWip&w_MMztEo;zLBZQ|@fqIPl;~lrR+Dp106euo z;lAq^n@|{rIefA1?zZl(3V`36XmGRq{hn?SY*Sfaj>h3!eyUw{1ZqgB5XjwPh z!wa0h2}zp;u4dNHK0lpIJPuKq!v|#UK3hDUJRKgB)AeQ5Qvy$hJvZ);J%)J?Ar?2q z&?j4W>EPo-_X!AimfyFgCkdGIIKXE?%ep53HV%5W?R&P@@3K#B2IwF65V{bYoR`Ua zf593~>^aA=xIuFdz4+0y&kevhpZW|Rj3*8Kz2R4Uk!RTlIND#kX7ru5D0$ybXg>X% zcst?$c)1Mx`K}4<-stBa?^Coa+DLVu;~)e*jd$?EzXPX@nGcbG%-wr2%Etz(xQFTT zI*K?c6DQ+a-Y$NA>-Q=2D@ch!uv zm6^ra<#qQyw*}^Bd4$pSzR?*cuuI*S*#;~wMxA&?jSzvXF`i|@f)>ozrm))2|GGGs zn&Z2gF4}5X;yhZXx^^O4VG{)Wo-!7wjS8c$sINVwo?ecoUv^pahbxHk`CX}gmhx{? zxl3TCl=yZdQVbeD(R$VScFJGqf^&3%Xhf*0vdTzT(-cU2(W0wybQ-v}8QT*Zf4{(# z=z`1XdQCd+w0|2gT#6DnoWR(fK5>DLZzvK}{%bR17k1G0Sz{T65ZJ>_KYBE%GMy(I)9ar)C$BZ39fBDr(@3rXsc|j5M>pT- z?rt*Zf^m~O8tImoM{h!{1{$T>GGbLG9#4GHw}B7Q!=a-5(|IF(4QxSE$89A&t9rp_oS`45l9CjK8+S7~4_k!&7iBf@q zKq}tWaNW^~^W9&~@mg_=QccOwv5mO&;1P)&zpr6l{H692>eJ!S6C;(*TI$REg}o0w z)B66RirXHMXL|=R!zxl&7wq`A1c< zFK9i|xi+OYjU6jEk^2HA0*T(9PP{1%NQ_$Z-1*+B?`xYMJ(~W+JJTH^ z&bSILxJo`?mi_Wl=W*e6QAhD}Gi>tARNx{AR$p&Dm@R!!>E$)Q-I$q>k+B2;9vc&a z6X(2-YxdCVSm;%-%t`0?eKN0-2AaX~J46OAL4D~lESF4$q4zwdYNF(#uN*1P!c1hz zKF2ioCgtQY#U6Uu*>m~kDbl_BbT$8a-`>!n%bE=HZW}`}`C%M)cy1cn4IgBs&V&iA z;l-9ZaG`By8v=V(Q1~Km$Q6+J_M{0>%MfVDjWdOWO@7o|V?vm(=Bw4KQB(X7tw-r1 zPe%ow#}|;Z%L`4ZCsL86BMP~jUlVt=Cy&Rxk4)=#rNHlC=#`qeRLjBG%IytX-7`vm z(GQ1+)kv^}l65A;H0ZcvH!l=_GGO0uqI#6h;frBpV+7PNKYV=$SSzdM$+ZafJ9gzi zzWtdT1w6}Kmvs2@614Z3UXfXrFE4n%@>hf?d;MYIMt(PFJqfq<7itbk5}uwO2IlZ$ zr;P3q0+@Nj3{qmEl*}FP*%nzuBCBm_0x= zry{D7G5+{_(^z(Ugv;(cdv*1hrfL5l5e4>tsl9ZzuE-SOJNt!*G` zk1TN#*$6M*bu-{T@}&U6-V}I&r?##q{knj;AHdEV^RxBtdxFrvm9`R(lPMnR3gGqI zdFa7}4BS@c)K=z7i6C?lfSvSsb(jpOSX2vA=Cj<~WiHb)rSe~0>In24=^vetod7p& z>JZ7N*;(xtu#eQmp~aKt(_sD`@W^{R@dQ7Re!8Q---Z%g%`VbE%-#zAqG&kGrXzX%75=3(T4Zh2nbz6Ew=f^ToCO3Jm3^3d6(PkU>9p6U>L-2ThGYqPgqH_s%mFXdi> zNFmqK*Y_CaPrZ4U$%qZyvd`PCEt!tX%Nb3n)m#PGh$2mV$Z<#cb)*&gwg`LG`r8R_ zwfUs-H$kBtXOf5V%z40V6zu(0IEHy{U;EYG(@mej{)AK%E1-u`tbP7rYDNZri*dY8 zAFHq&N^i_p@AowPK+yFVC4Cys@~jHc4n4e=fHoSn#3H}19dA$9fx2(~z~U)V1|H7w zutCsG=QHzw!GyG@D@fVK)a_~f_gdj>J(03^SKqVu@`HG!r^K|1$anZvK@(lT#ub67 zV2BO+HcSW%xCd+~>nQBw@gjy5>s0$wIE@BW83jdua4t zSJ}rMc2$FhT7TS+M@-%#t()#$Py56TmBsi?#=*Q{+A>$SRavh&1I&THH*4KU!+uQ- zuh*|l-~mV1Ql~j5cRll6Fb9v5V6?byhpx-S&>`RedY>42lldf3*MS&kQFT(pJ|}rd z))drrz?hoF#kA=C)JgE3Vb`Um6zGkLGS4v{Us%jKbV{HLR%-D$jq$jU|7d*;g~r-k=Hunvj&@$$OHWr^YdcbN8oGH~EQ08D>@T>ft1THDVXC3GuKQQ`4frhCvOQtzU?H{uWfT_gu?g{EH7k* z$$Kt78kbd57glt{M=~3m*u~JKGFpLNP!x(=6=4lg3<$?<2?$n1s8(a21IZ_FWd*v9E5ZfZ_^1stToU zRc`0~>9>7f>{}s3ZGbWM9n(T9IsSdv7l2w#4lBY$>zjIGayqk4)24@UEBKuB6haQ0 z1X0*pBC*hm2fJ5Qnow0)su%C!lAa#oS=1pA%$v%IXA1d<#QrFDQ89%a!BIOOwfU`BN9d_>*rfA&gD~K`{UZf8yIyq z6h9VzuTBe+C4@AEv6;MUWI++t!P+~bJnF{#&>);sQYD8+*sL~u^Sh{_(vGa@^;cA! z=hBfqB7K4F$UYd&WyU2gru7Zcpboghsk4s~+zBr?SwCV6w@miYBT6S0k2R-&Gq15L z|GmPvUAmxVpKKZblEcSvnhmOkS%Bf=1zjH2Yc)3!*Il3TK6VU~^!c7Y%9`A5&%PN8 zz|!7y)CzE`Kyyz}DQy>7$&rSur%o~cRDmm>QO#_E<8dK4#3if$u_|d zACko%FJaFFhSO;LIT^h@(1nS-#ysUNTfa*WGFg}n$}S-exfYaN+Di`BgWq&2WFGe0jHAypM7c0FOE3* zn&WyEYoVCmhmM7G0W|JrfPw6~6+~IgCOi+t-rq!rFl-;yqxCO$jL);+bO!6$B?nGg z%r)F$xo*bFgd*g0H9ZNoxHx=VfS?81VVI%xvrK?tY*6ls?g3Q2tY6?2LQQ5#JR$=ESY6!!@)TUmO^a!%rQDZ*39~#g*?nRRwi{Nj?PJXVx&B`pPFh&k)d`%= zA!As9Cf05u&9C1SxSx`}G>=dd^pFr!>kMl%?=;E^*K4 zeYK_TQL~wN(V4mgls6O<+C^}`E!18(s-AD9d&ot$p7rIl;VPf{#mKM0Ir+}lGwdie z>S0kw{(cJnAZu`{Q%En>)+@Ax8(<02bnA9{alunf4B z#EJciiu}M5X^GwzS)8s|X=v;XpI4^#?B!D`NEF5hzzlc?299m{*ynNTBMaoc3@P*{ zd*Z&#S5Z3#@x^_0=qk$ftak}-k;7wM3L|qS#p|8)=KU&A#z>$|#K73?>s9|z{27KY zHJF+il8V=0_>u~VZIsKdjAoC)AhS09O(lo3S_P~zR```v&g)mBsYwcx#E!)sQGJLU zVX&-qt$g<13P4=&mo&%>^kDn)N`J~BaBKxdGrBfv>1Vfo9-D-sp0+hDt*doJqw=hj zker5{0jeWjQt%H{Pq8cv$>c_4vOKE2bnt0j3kItIIeGfovaw)N$#a|1JOg`&k~Myu zxj`dO-YO2`HW%5=a&+_0rO)vyIP>IU!UPNzt_pc{mH-{2uOB!Fv@F$_xQf4Ahaiu> zl)Nex{cHxY$KZGId5Kx6@;sW>6iKllQGw1CS4ez_YTrdYc4h$ee&zHWlky#;vQ!*yAJFQ z-gyhGgayLQvGC*;VGXh?|jkeJe zE6phF`T6zmoRbW)aCAo2jZwpaa>N^?vBVheq-^c4k6Vk;Pl2w2qwro@?iD_F{RkJ8@NsOTol2^UyM~i1_esV zw0MRGMpzbVi2{s|hMtjJYT$e%D&dyHH{nO2@c1<>-tJ|I%TzC7nKa@lCL+H5K?G9e zlphw)9;=K}2jDGu9 zptW?CN!L9q0<;Prn`BneB32IB6)qIB&}&;7de!UwU*VC@5^4POp0pqG zu8}4F@G(UDw-34iJNMrKbKWMqmB?n&jU=5pb%nE^P8BS-d6{vlMzB$&wt91l{d6F{ zv2KPv|0qeor&LlAc=Q4psD>GOv zObI<~9K_dqaF&%)JUr#ye74Lil2t$-G;BrNBabrf`9l?$F~4|&j4?%_CP!>5AlIETzf{_s)FxHvwdhtcgZ^8 z2EC{xoBNZP`6xlVO~b)^C7YOb$Kg-hO~YWP3r=6+if0K75tc~1>vxc!d)}0B0+F8S zjU4b;S4AfUOh*g9JQ4rFo%(5>wTug%yw=TbiL*pfzuYiUE{p^^x3?KAk&D2Xm8!H@ zn&Y=wOB%N0o%4FO_2(IYH^gWBa?)H&Yi1$Ny6dNO2$AJC^QP@e>v-L8OAObwr}xhW zaEnqLFT~rX&<`a#X8(-)h|jK~r#$>s9N0*X_=RNG7L6MxQIANd4b7q?ASg4qF6ZPJBxEY9?{ zIZKFsi&WRwy0br~F$jxXh^&$+FG1Bv9Qx+{}D;< zZ;8%&Yr2Q5s6iHe0|Btt9C;L0NA&Cdz2dDL&bLePgUa#F!whMAXk7Y7n_tU)_WeL7hnzd50l#pCbkt!L_Fn%*HT(EVjJSijhu>! z<~RwY1~hm!BhwYiXlyEY;8_#Cj_`4I9tD(vcrtTh2#G&IoOp`IcSCes1*(*KO-x(z zJQKZuwTR}WGkI(>Y?Rcg?Of&(59^(e8jL|i=4AwVOnXc`3g|%TJbdDO#A5>=f1|!o zozw^%n`<10Me4_%aTeXJXTAUBH<=gOe&#T?7xFA~T*cjIdhNxeLM_AcGkGp)ClV#t zE2;Wnaf9^$_R*i3o9|Y{SBp?$2*8-^n;G+cO~0cjKG%LtWbjc{hx7)^KFa^{q3G+a z7}kr~%;D_TDvSbj&B(uMsCy?+xqS>Gf zD!mC){Us^|N$nLK_X2W*SI)f38V`Tl0_Y_9RsZq@xzwY7BlBZ}6;o8hBFkMo82oBx zP(_@pI_=bYQDAN_85~D*@=F40z_KF+s#$V`YPmZ>K1)PO zvfJ7iY3B0_n~ZO5190AsqFwnD#f=)t)jg!uU-SMp%4j9_o3>mxkEdFd>?QBVJG>uw zq9jS;tL~Jo!YfCUeAj^DX$!iEV3Ysl`5k>#-O7=NY0MwhJu4$H!j>#Yc=wD_NR6dd zV3;o=T^kMfwsD-Lbf+`P#=>G(>PA(PReo4jgDP?6Xw}IHJ8B;PmgEJJyJANnVp_my zmF3{JILADXQzw`RNKBiju!k7_GAe8v-Pv8U+fa#PS}PG2POc{P7pRTFtcGT`7dff% z=%44HrhSd%tj$(l9Q&) z;J<8b8d;nTmRZMJ5z3 z%_YZ$Ny}@KuFMybzP%&SlkZX zP=L2Sg$?)2x_43b#VhM({ps*-!FV#Xdm{5@5bBh^a5C)KAHzvSQ0QQhz|<+b_y zr2!mmvj44s!-n6aIGgF0KsiFgl9*nkOw}X*+mAlD*@Q_2%GXYL4i+vmen^6f)W3jQ zoPx#`#jLRKo3BNQXqEa{Xp3~jl8HYXY_m>L0j=xfT@gxAHI$OBa)lWC|4)Pk0kZ16fdbGUre#T003iqrAgc6xKb!CrrbX|Ogg?;lT%Kj!&6 zNC*F}Bl9&@=evjTx3^@{GesnB*I{l;eha^US@QmM6Fa=5MhiKVTzOV*cFZ{DxtCDM z(dP^eCEwx6q}R!4j@MIGw~GW*ml`L?1{`BZV{WgRaCmPShF^Z0UA z>QFzGG+;OCfN6tW=zaVcqzy2Cq-*zaxHU8xnz$Bed|AaQS0=S~x%pU-Ci^tTyzzZ2 z@TFgUi_41<((T7mEY*4b0TL(NC5oh1OXpaE90rQ*ulS$Eb3dQ?LfBRi=R16@0O%{F z0)KvS(qp)7Obd9K+wP1jDYsO&hlTSDbG-S+E>LIQE`fwzOU#FEMal!}2?#_IEozp?|xgcG&xZGr$N#Nww-*a}=PsdT>_fuyEpeyPgAz)# zqAMFYpcOuqN&iWHjU{F#>L>zZB+_%jXux3Fs+we_jc^`=so>JX49QftU<2jCs(a`K zPk^WDi#^3=1!gS7LH4-+W;@~3kY&)qN_sqR&ZZbA{it zTA@!AJUQR&74Y%9M<_8x7G}om)Fhyq#*)xmr3*swsjcYJV3vre?v+9i6cvs528FEM zr{Lu&2B;yo6+iE-;TRF!Er`15r^0h$glWCOo>|)<6zj??&p=Hf|2v`__sxkX?$efy zQiaRrd-*zRtSccfwTMMp8J8i7)N&8H~>Jl}QwsYp2rCuxX%)#$Z$95ZH zl{Pj?c7E$xmfo6`bYX1?)YLr{}bvx>! zf_iMq)Bne;3P=lT%P8pRpvvz&A`UYMAhz(?q1=})GTj$wPn76TNx#b1PkRN!nEcW# z(VwvVutHcq8A&!{0l0Zj7thiPcu>81gE57bq7EU0)1CJ4@1f!nP(fTd-%*i;KT{XN zW+z2o4fiBXH(WvD7+3`G#f;i1SJ>WPiC2&*44RB@NT$9^fh-5DVBOfZH|8h}bA3LA z)I3LG)>MosPe-bDWk9E1jMb-OrzL*5b(kZB+;PExhzFJbnDsge^Jta)wO7`Nww^8} zhT>$gdKD(Q=}~0t;CIO~qR6mGb|rV&0&Vq=HVWHs$?S27GG0&v9W*sg?})Nek@geD z^B{%Oirk+mpN;ErmWnDI>QaPPZ7`=;+om`Ws$jQ)`%3g&Gc*Z4gd9!+Jh+t<5KkTB z=L?Uq%FD{_P%;w75)&-JB7YbN*9Vu3LyjfKj?+;*C1nc55of`$*9QHd=ZmyG`ZOOa z@}M(nQHDp5?xik3QEc)49xqHY?CUF(3sNUBog$(N_qG1O{qXug^lBO^E6%iDkEMRb z%^|(S02nfyeqfIW^TYJ3C9jd$)HtFDt%_a+vC@_e)cjLPtqsZ|4uuQ`PFZS_fxR@z z*HRxRROK3#3qHtCG2;!{J|)mmg4y{ks~FT`nSqGlf^fIO z`gM@Y6_59kim7fQHRLNTx-2$UOIjhlcy1~tA*W3=9?ulqNMiR^?7%v=`^!6|2& zEpp7+rH5PF2?mUJ&XD#*oXX%?jNA7e^Vi!t*PGN_zk9x{hpbH48YTGt5O&xXZ?=Vx zZRLLFBr{C$#*k`EQ-1EjYeHFX`TmbwFFW?Impm|9ty^n3eS=^rw`S4yuH zYvmyk|AVUIb#KCdP<5>J{X-*|$~OQ`;D6JEq*e_+H~y!n`PyL`4FOIZi2x_Y{WqdP z5Xcn)SnX=*=4fZ@?Ze|`W2dEtgiHz|1^tUz#NYV8k*z@>1oghvb{^AOEHz4|%?M)qV%Rb}Gk`p??`B4qqG w07V3dBIUoe2m`d%TY}*st*2LCC6KCc=&-dNC)_d2w=pVfr z`)5^m?Ojz<@z7=Q&;V5hXc%k=2m}a-e%mB~0@OdV9?!pX64!sNDU!~y|7%N;@?{7K z=|8}F6e&88|K6oILh}7j$OI(jzXv}d1^@e;B1H%a7u0X-tq1WR1L>c&yN9oXr8|p{ zqr)}O-hHd%&L0#mo#nBKmMSUVM$P@Clr!6EYyS1*DkrE1EGsJxjR8b&srh(gF{VNg z8D5`I67+OBVHvzJ!+RezgWTyR%}4ckjPh01^%F*=ZN5V&XIGHz>L&Sne`^kE0RDA( z==OH#re-&$Wnw|)!x3Xq#y+JaQ-1KwJ#}{#-a$^PEnhmk%+=7s^6SQa$Pi5ZJ=#AXxU1l49Y*uw3-=TSJxwN3&DrA~HOUP_4!U}Yo-2fPOP!-G;3fe~(0$jHcB?luSZ?>J7kAkQQi)}L z{k@x8_}vIIM@%n-r5voZ*g&!myf)xC{GfK9aIh)N4S540yv0H zLV_RNY&-X^I3sFfIb@rhPhzK#TksQ)+K{sn7ct#%YTMYULYWOnO{;<}#gF?_Vei|? zC!Xm{#~?~zYvEPa4mYR(8RT*X`{gu-{eSR8J0nAdB-pP&9|QTW_u&&CHH|}3q))|$ z2HPRX1|xgEL>-RJcCC{f+Gapqs2vGkGM>_S`kF`CVUc;u4cvuo*L#3#Nt`-oG?d&2 z1Wt(DA2wz=wxx5fe z2Gv40opuc%g$Bk3L$~vepRo)J$5n*(%x(aA`BI&;sFgo7KHzJ+ObgbM=APP#jn=Q= zSOy>EJ_w;Wj>1v8k{76J6NGX*vWO;0m(1skclA=;{vFbQQ6VklRWlzUXgUei&3raS z#fhJ05zQ0fse^3nA-ZQ7z2W%LOnaY3DeX)g^g(W*XO2Yc=t7;FJElVa19xUI(wosV zIeR%P*%SIelkLk36Nu4)oTU#x;CYXDKl0?)ca65ON)886wd7#E)B=WMRX4IC@Dst| zl^+xISXTlX$}l}NJOnKxs-+MB&|V{Ju6EXGF$s+mqCTMXcF;&d?W7HAoArPj?|@GhMvQPLA58ViD_-C>sH5gW^kbL3HnW&4lAe% zST+#j`uoCZWgP>|GYV0g{i9xB?ku*mXlp^d;I#e(j?Li4Nc;w)w2cE_UkKjn^J%2}$W7n5-9Plw>_L*J&|i>N`r z1mg94sDpHjos49hW4M!j_yPyhEAkG~@qa?;$Qi{LO8v^JaEygn@8yh9R<4ONyj7sM z+YnnN_*z|UV-rw0Xqh}_hUS> zOTa;4lF%0>vshr$8LQxH`MWgb2x$XFQ|_75RzOon97}Zt&zK&QGZRq5E9ompd2gEF z^~jJWXpAI*uh%iJo_*JS+GX^%UfUO}b+hbdiucWLCH|pDxJZ6FDN>uHd^T6-kGg8i zh@J>xZN|i&-)=9;t-|L3FRYQ4-x$pAx1R5@BNr!HR#QPvr}IodFz0&V2~OxiOL*`o zv49Q})rIgypScd(o=(%h9R^=O8+}|KpGUtdEJK<3!GM)~XK~#@j$D{yi_R^qnlos< zhlY@hg*vgeEK*UJ5c9?w$i1eu`Ek{iaBvyd-OsSMqdhPYHfYDy7sa^sd~dxhCExug z1zz$&{(DBmMrwi{xkquIY43L~iz{;VkElwqHGWmp{u?I)k%9|R+ygKupf`++X(z&& zm@{>#^cANmfAtvx&m!3vg1~5{aD7L-042DvZL{>Aqt8(vZDhI@u02lO3npVd_wf}n zxwN=Sdjn##G#NY@)0KwP%P^&}+GC*ipkwJfsqevPe^Xv>a1VY;>O>Ut_w1qNO~;34ETKJ4V)9y zY8aR@ttLyw@m)tkWF=0?AC-QRE#DHcrwgd3L#yly^XWRcDjl(5+(h2lbn3i2!uXWB zV5qL4HqT3?84x$uJ)S_1_FSH(on0RKCyp2F&6;)vK8%345)ix2F5-AL%n^rk;}e_J zr_T3@NBe8S5Rubk?w&-8p~lFXc{^RigYQ%3Il|1d%irarXb94-OW}TMf1VeoToqY2 z+0W-$N1FLgJB<^tECld;QCUy*2(x66xk(uIo*ijg-`~L8Ky}7Ceds$A7YW5${aVrH z@6CnnpHBEnSJp^z?ACfhv}B~ZcpTd+Z4YoP_s-sr)3~6T(`VbM6Ei%|=z=qNZxZJ( zQoB`85uN*A2Pe}Ul z+P@G4ywy1cua+rHa>o;$6_o}$_QrdzYIZ%oGS}l8@%~iG+)mpfH&oC8cNq-?$3c1J zrp|2f-YJ6qEJc`J#8%*Ri20TlY*2OSYh!l!^sMIsdtCbL#+DW@(p|@xR3j%@+3m9? zq|~*~z&Q$pXhXPR1CYX6A@by&Uc8e#IQME55t_S3_=~`;YPLh!<_QO{W1sjyCS-ev zQ#BYQ+dlm^vclQ`&}NK=*3{ZzuA2G@Tk1GhodSr*X#Ct2mAV~+p~_Eo#?E>ZkJf9z zKP~a19%g1;+sNjPRY=s8JB??%>t}Iy(GYIy?kQoBqoG@R^;_XiXXodG1o{jYsxGUeSm@`Wl__c*=CKuuh<`eT2ffva%qp#tW`4gw zKd<-g+V8WkRK%bAritpdZ40z8*8A8zveJJmD)((1Xw^Zzc;O!qmXG`OmkUg}GRW(5 z48CQamP$nFm2sCFE}MV8aCN+*sVcxD1b*Nau?-_bK%k33K>Rn`KtMqFhix?bq6$O) zOA|WKNI{POPymcSJ72+SV|m?Ks#Mfdjmzu2YuiTUj>$W@KQo*OqG03{MT22Q6}rCe z!iuWTS67Z}l^>pjIzn~F{tSGACCl{QWmbsDkJ8klbT)4FE~*6>IxG8FLuO*odhW>GVw>470bLu z<&c;}-V~SRdxeY|7wQAs2qC;mDpSyw8xyk8&2d!ulC6!kpt=-VRKgG_=;QVqcF8d0 zvAlWyH*TFbAsv}qM7=8L$KrXV_Tfr8GooQpt(*=B-QuB!wl51hZ;9fL0Dk6#s^AW z=3UMU*E3&sFRC|^VWAgVhI8jNUrXW1=oraXMPC(IrGof@K2~ke`UfLwDF<|1T=_H; zYD$>X$;vO;EmhRblD3$b(sBC?agnYW#-Iqa#ah>l>F$yl$rB$HPO$jl#70D;ZMr^;6c>R-&fYN z{ZFwqC#Y@y z*y|wK6Z&SB)kYOpr4)j8S75Z{pcaC}K%0~u!YMR``qFgi#92|HT2xFYf4a2Q{ztLg zvO&tc=a9gE_DkdLpaitHQxk2Ueq1t97oEjA^$RRj#<~yu*B& zNlUYJtc93{`ygkQM=%A3Vn6OM4*J70gyrBsHyIaeL9QsZ9IxAk5=?{nz{hRN1_wuz z1HzlX6>X8f&q+0A;}3bk!l!$NJp9kZwZFb;O$fVGv=v;P!SZ@sdXqI9EU%Nb}RS+&#f2{Ji1TV?3lE7)5xMy`o@)J|fMi4{XKoDs2_H#7^B zv_e&&)BCK_GR+rujgmY+4*mXU;b0MmIBd%Tsa8%##4QbMWb*U+!CXWkFKLe6NRuC7 z$?~>#aCo`vc1dh@01$QbADW^Ml+BmBYly6rhqx8$;}cjQgzrim!2=c0u7_Ms{TF>k zn9DEUS-bCF#w-!xyZG*@#1TU^l)V#df!4IP(e9X0NVJ;uPYr1l+`n5KF$7Jmb~S1Q zM^EGiALF?pDOJK+O)bS_oEGDT7NMWd#(vT&Nc;Zr#SZk^5(M#Wbx2S~A=DVU$BpgP zSHIYu!DLVD5`{9~b(Q*d`7ZR-@(jar%j7`-F)AjnrgQD_^M|;sxK2-WJ5{c5 z(}>}0go(EPsCqWLk0Ql>rpM58%6P>0dI?0qiI0scJSoWH_;D^5`b8etA@HIw%Q z5~JsD63O7*#4k02bNevKR7UQK*hUv#Pye2!LHL?^13|rt-j8KD8DI7X3@WY6SQfRO zP1bXQRgb=M?_X}!{uDb6Nv(?6*CMlX+@0oaT#Sf8PX5BK&3Nrp6rW^`=kw zbDz(61pn+hv*8w0j=tD0+ygAe z1juer?FWS@!0^yZ;tb-Tv(OKtm@+PB>YDa3zF@$}3?X7-Ditw4##3dI309ke$Ex{gpUMc?fdYJttEOIUJzOo5Lxyy}Ttx<1t$I znFsm(!W1Fm|Nfchk`PpIf?3LSQ7z8I7ZO2-E5S;S8pBR%wqXzhfI;^*-N#xtU=iGW zL~x&3*kLot#}~{vdZz7)6hYjpJ$>x$#0vu*~kz042qCmum}M` zJs$o^MozQMxJ2W`mRZUvHuNW&sH=G9;!tW}q5z+;uT|@qgMkqC zz&>f0zn+L;N(D)Ra=o#V)l$h>2kvH0x!A-wzL7Q2rB~7Yxgzs!T0x;*wP}FvEltur zTB6@F9UL~Z62Z_bap33j10pwXq16op=S>bqfGZd6F5WZxfhKHvXjyS(G|--UnLpug z&qlDlc1-^k#1lCD$W%YpLj0PlbxktKRb~qEzOGjhd5(SjbU}OfGYMpKlgW2Ebr2s=XT6&oNE6K)dOgU|_q4zv90$O#V zF@LkkjZfB=V>8cVkIxiLv`%Z&z{bRE|6r}v!5oX+X=&!n&7;;5F`S(_fpsX4+kutC zh9{aIlr6n9y1hKNmko)$(6CLAp$?X#eB-pi%OALl&$vif(Vn!z%gwbX5FcU#NlFkB z7*GPo=&O>B5+YfVBIX8aI%2%VoVhuBG>Dfz0L1PgS-6j81IC>WK>Mmv-P+9^p5i2I z1j3FOfmBIE{f-Rj^Doad3UsA5S1g+5)ABva?8ioC7B*EnPr9GZVZPqxQLpbagG&Ya zZT>U*Y3638V8JVx_Sr!Y6{71~>M-CGkb+R2ikpdPSR@#uj^xES!XDcz5E~O` z0Xy4XB8lwi23wi?<3;t!OQ`zoE_L2n?%w_BWgf(e1(Jd`YV9?hyB)3-3&kTc5UvUh z|7GrW6iJ~*xX+p>|D5s3N&h6(<~y|BzWM>TuPW{1x)(Bt>mtSnMujoHwQEbWa2Y_UAny3X~694HJLiLPuJ%Z%6(RjxP{+@Pkbu;EKEiwl6=SHXo<2 zrMH)tik*y_)EKhGwR18k=d%LWf9G<|p5#A03*@GT)*TNL1s06*BdTf@d9xz^e7CO# z{c9N?scYapNC=1rXw?7RG*YaI$U*Le`~c98A4Nm{^0Hf0mYdrUh$uRk_+&HNy;(+( zeLmO3TSS8(P_p;FTR@A4SZ{gQ2%}z;NKo>0`R-TD-zNk$Dbk?2<(+)(o!|sTrr(e5 z$EM37oi!gpzqe>Pv&IoF8l#(FTE4jM3A4C5-+EqOBrRY?vs!4c#k(x7w1Q;&R{}M8 z>CcYsf3HB(2`xI#xHIwj*Dd^~S~h zo|oTOfAU?YdZ;{*S6h~VNBiTiJohgK9R*>gksoiG*dlSnWZXL1hM+20KZnAg5j zPwVJcJNWk9Rqwds%P0rhu$Z+zPIN23 zHp(|zo=o|9%+$KM(Y@I1=~lD%GK)Fx=HpE!w0=!<7FMbSwBe0^rrA*bxW7Lr0^a?I zlarRU`?+T|`W9-YuEV5wVjyi9ZTx&`uI5bm;K4Pvv#eksxwC%lU*F5x`JO-&5;88a z-S)Egg7J${Q~=$W5Uv))uuArykQI|LL~gA1M1lthNJ;@>BS69K?vQf^AWcQ&d3 zYV@V;3x|B>bj$c948fZ>(9z_VZl zp3=#}sKykXFh}7#Y~ceSfnowmIFqI$%P}5av{xEi>yj@?h?wehjxR*S&otFih76zL z!Ru@9<5II;4Ukv$xopu1pU~ z4f2XS&&~}4Z?F;h$3isM;yNK#6YgUna}wQ?hR?}7PMCryQV-nx1Q_kHLzfcK`CozP zCr`N&^mxfapHpOuvT^iQXc`!5U6u%IHZG2~dFB1vViplT;sUXIYom`*e4MF>;f9$c zW$K(!o}ml;PFYl1w;XXbio*NeaK#95gvv-WlQfw;uPR^neW&AMUXytnZGD_Uj-#kC zKo(%ooe_wbWHKa{&o3UI@l1&Z8|`gWPP|x1`Q2Ggj8;71v6yi07F}}W>F!#fBqUwd zh}0ph5njtXXx4NcWd@JwH!cim0_X^7ub#j;u()D=EKghk zgTVujj2&TwAe2Be+Dyyx9hfA8I-Q%X{-b4CPYVQZXa}v(nH`~b#^o#MCbJYoQ{Ie) zjEaE_TjD14cRV*EA0r-ZmWFV5aAC zK5Wn&TXtcNEjfX>Z!i)&?(j$g+C{MN8G9N$cAPdCTskYB7ocXvwCu@#ARTEbhw6Q^ zupV45qpgbO8{?WAsg)2Q=WW=KJsO}G&#PF34LkS*QXL|ugIWJePvbzaOT5TwHxu?- zGgYLd@fMI~&HBLga5l(U@x}IbpD*QiXecN@hMymsMq77n9LAvdamZxWRCU;wFEfA1 za*g~^8_}vm3lvg{wtxUh<{U^CWU$Y_wqSI={`P6AJBRI6H`9BktMxh!r4`Y8w_8^p zO)yrl9OVN+!K2^E)j!lx#1=&}Kd!?!w}LwYcw_$Yv9iQ$35**78lztoz^o6k};tTmi;pcup=Uk`&NAlO*= z)#qWT6K5L!w^2}FetS{GlISt9vJcb%Q&ZzH(G3Tb} zl0gneqw{W}aOtY+tOM03Umg)A_-;VbBB8&PYAE?miKNPz$neT|HfE3st8lAgvtnTP zG;lH~>wabs$?x1498-iLRM70S{SFNhv%>g*T`gD)DyTQNSU(1D@oNYWzam*4s(Q$sPoeTM&oRLMRIq19m#?;vKD#*Yq?NPHJi?CG(O zfIFlHpkGY1oJ-8zCY%n38oCX7NcWmhVD_DLJaM*;S~HcN0iW|QmIexSUS588`#nc5RPbcWUx8xD40TT`5cZkfdO54!>M8IiKN#&; zHcJWd1f5xRc!OBAfBshJss{Zd$-yI>YBCUR!9zgA^8T+l00IH#-->|dK*~Kilz;R0 zEvueeALbv7!zX*kDRooU%!6(JFZzxngi5HA1NNQT{@U89u!pScJ#3NxBY!$!ka#sy{vvzH>q zA;!@wnJC&qnM0Y&W8wclfd9h&f56f}5VG_=dwLs&1U~O(q&vCa=~jk*%k0bU*0GqVf87_6VInObt7+tfpr1HV{%@wD~{ac zP^1HM9I3!&-yAA2eXHa)nQC_qndr(FE=@PtHOffQuXp?*7@n0a*C8CIo|md_k#C!% z91ypK{Nq>_71|VBU{`9nmm5`hP}SE&6F#?+%GymTXriQ$A5aiEViTm{RV?A+YzafY zhjpSv_}Wlr!VXaQoT=I75Tg!Ihj#r4H}i$l$%F%BStJ5|=on3btE;X|flR(Rh_X<@ zVrbnXEWAL>C}d}o`EZL&xY1RZ(Usu+i$)3J$gV^a7%1+yZ$|RcmPWf^kflY#=MEH# z$I-W6m6vEU?pRr_I-+bQ8eDAn2W&&5)=-D^!2@XEdx8NIVe?>=bdQv{jl!*bQ~P}Q z2A{}P(P8sQw)miKyBcd>Xd8GDvUkVzXof>A|N}pr5p^{AgxZ zmYMr{{e`29JrY6AL)8feNZ#m>1?|A)ij8Z7I5>$79-^3}7p0#K3tuNmRAR+g)ZF!~ zP4}I|c4S}TLH(go>rg=rdvB^yBq5w}6wYw3F1Y(-?17Vv)QyXj{5r(EVDypG%-i9B zKqsjO;wG2F#hTm!eUP#;T}YF$1Yb^EO`RSQ9*L5YRS~Ynh%*=fve@y$5%a*}EFvVv zgA!{F%lOB@iGA26BWe|{yCg}DFY5mB1gd{+{r}<;pAgdXtz9k)PS?c@6M8>hNP1T{ zvz46W>^?HmcBa_PeF-eGpY_P~h;*n6z3_s$W5-%mMeCNy+&!V5Msz{N%qv6wIN$4u z@sBGiCUvG8xpaaXtK%E}dLT#+O{_g>hG${O8ja{2xYOFeIEUtt41XeQV*nuK%? zEE{608J_TPr{NG21^W)?Nr;T)`hOUg*P2;f&vfAQ&6@wt)gF1%KNZlRjc4zK4;?^cZHW>D z$+XIhlY!@3Xxex>c}Lm2y4R_0Ayf+SHHtT^3oc`&r-z|B`#y^fh!G)1Gc>5K@+}~fE~ietiol4=y%(VsNiJ?7%&DvsF`KgJe-Z<1xheXZWzRUc4CS*a z+mT|bnka}D1c<^tGbRr`Wwog$Ig*8!=ynVR{0?n?%ET%KD-lc{7Hg<+Fi4AFk)(9m zblr3bC*@JtD&M+AJM#k5!#Z5M>Q!Z1A#S(1w7RzSY&}recTG-hV$@{nWEYoziV;fH ztr{k57@LEqv`TG3t-JCggUzWN?v)(-w>(1oQLLO`U4p8J_DRAP*axk%TsWk`1H)DU z94xV^E&KK0uX>Xz8>iwa#BEzazcGJQJz_^-)zi<>sdx%;Ufb-teR3#ao#*`LyAJx# zhy7ZEZLo@n)xI`f3-5c;=m2)Py;4_H)#{tvkss@x-5yh{K*E}#z{=tZO8siNrG z=v&A>-JxQtUS9R^{PF&aZ?@T;JO0q&7zDI(h>Q?$8;N*ms>Z^XjL}pn76h6jVpK}G zn96QdY=CIKlN$3Rr0kXmoe@wUE`4oTC`Qe5ZgA%0vMrGwRkD0G6=vp*RXmO+JyDQa`q=VF8uY)M*^Lbl>`y}>HBr`Y_KaaBq$EUWQmAP@l z7s`NYbcT_nS>n)0L9-L=)1l1pp+5+M7pOYY&O-RWezIu!>%uoV(Km&UVbzTJSntd&g0 z_+?La51l>~0Ljd}L{>w&&98qdH&bYQ)aMlrqf&djy~Tx1?ofFn%NNHnn3%e$#?8q* z+4GGc*cJFY?z&rdDoGc0%ww31HIWcT0xWq<`A0Tu0t|U0Glk(gjo|B$I!);%ZGROp zq=(WDvfLo84Dd4VM{kNKl|Sx*ORl6MyDzQZhQdEfHt8*h5Z#y;g(x9ME1YdaC=8=m zQ$1wDWmBk*?VcnnCx5geaYe-)(rZ(cwTwg3ow35z9Drz&FuE!*LnFsnh(Lh^phn5x z3;`RS@@6CmCKla zxdDl9?nKAtg>c{@{~7DZOd{yfe41&{M{=?FV;71;s85|9j=wN*x=-5Ad2b7{z+KNz zw#UzTPvVbAwDs^G&{yZyW491jq;Mbo?)%M-hja6@qlSCv1kHATBkS@22JI6$$kK=z zEs8@pBQnOnbxjGz5Y4-$slyo}p+jtV}?QtvT@@Z9*jbRXc8n;NVsq$5~YAn}{f1e~=k%ZTH*VGg+ z)~t%DdtEoZgpe-T67|AkQryvHLn@J$0l)RHj(aT1PR^f5$W$#y;eTV*cCVy}&rK+T zucq|Os~oWO(mjg(D&3ZWQOKnZ8rt^4W~(XzwgX~KI4nFi^fBiaN?VRIrOYE#Dd*{e znJ|Lb1gcIHel2BNZalFYbvUuO<7XWuYgb8+WR1Ry_wns!Ru$XZk2Vifa9%%RM9iC$ z^m{#^KvMp$gqJWg8I3K{D*&F>5pC#ls|)x9B_8OSBKGV$zXA};IAm5o`bUrGI)hin$K4>}43c{QkF1W<#SduVp8A*#=c9@XRA$i#hYk&NQC;U^ ztgtW%V07vnBbdC^4PGJ;N0>W!6Ln`BLV+BbyRI=Kl`655?N5;TYwZ(HXbt%(hK0!a zJ+&Vdy@D|ztWyCbDR2cyLMX=YM4m9qgs!Foli|b2z5u_$A)R3W$nMXyvJ1rzEG10D z3I!|MCn@k{Z==rDMeXnzR9z<3CE4D91+(dOfN02-ql)|z#ap%nf>EDIZj{@KXsB+2 zhI)w8kn`Vw3z;L7IB_npj)i8SQ=Wez*aoEr30j{(=0x(}LN^D;U2!~dJ@LZ9D z$3awv#i4}4)}d)i65ZRy^`c7XD@^j|BL`E2=wC17amkzbRzU5^N`BV}o_ubjLFSKI zfOn^g!UTCxZ7YdEn&VZ|7nBWT`R7o?u8wjPbjtB>PNPms{l%_}t}|w$<#PPJv9C z8}=9@F3tVxniUI1WfiRcgER6YBa8uKmq^l`7oeQ<^2c$@v8SNC;CzX+z+xk zG%$a<+)wwWa?$o5DGj^`B@5i0)6{5|BaF0cUXRkpy6UsFzlaP}KEB&aXU#y;ijLfM zW9|!?g!j*y(4rQJEf_SInva6HVkl*J_F?(sLEM9{-!Qyt%c)bQ*FUi%z2IL?rq+of zc0nIiUzvP*;6L_JJ9_e-ETKk)W>TcxTOTnu@N^53sknoqDZ^#?>R?8ZlQiM&UkVVk zLJVwO7zVcG2&tk?{%A71(S@hNL=i&c()n#6r&~Cu=J48dFISSpko;QCU_pozQ$y+? zLfnQM$(D8FZAWro8>Bx~doqC^VI|_G-UGFo)6_1%OFzDemkzFLm($bH&(oV!m9z1w znh*fooIGxl=$i#bKVX4qWYOIP9cm`Yo9j!-!pxewS0v=Me6B4~CJ2NMNs1ikcIcAd z5a5p@B%Eq9QvK3;p#+HaiU!k$BR?#mrE?<*ykbOqM{Ww|P2r>SY|*szeizoei-K&B z`=B1O-Rr^V_=Lb*B(AP8Wq_GW$czXZw`@@dyq^ub;VPsx2j}5wojakv!#MwQr5wTs zX>NJdN!BB@tO}VQi|}Zxt(iG(G;aQZ@}-al3n(iX@;CcxNi_;h;icmHSD-rmr6HGI zyV^xaa}fM5m3o*!05>$_iwU0nYL|6r}lPMK!-bH8>>J@FKX}E}3KP1>+ zx?qw*Dj7WrOY9nla!v}La9!igvThR`hC^J%{FTMTa4T&8gNVYYo@pD?-y^F9eq(l1 z$0YSF^$==`hvNUt+5St!_{^xwzROSu0Cn%1NH*P1$S1p(@+fkQN|(!Abt?#90kaI^ zpOZSC2!jarQs$YHj;4A`<#U`PhQJKS^-SA*U%T^9+SS|leK zfq#RmZSJ-tabzq?hqXEh%N$teNn8PR_a}a#`|9nvxr{gi)s(jU9e7(lMsYaApj`QW ziPEFR49zGs>Y-V3wUj%i_yG{1Kw1qub5B0INXu{Lv-BBWDY&@n z2`kC$;|>UoB@9gcq!fPNe6!^pHJ)*H)51dIZzV~7#qBcqS+^Ac2mR@|-vQsR7p_Je zb$@!yPU_XjHqx!V1!>LmsX5drgMLP!^(XYlNA|2d%m?sOiWt+N%8>8-a*r9X-nbgA zVDFL$4`uebDk`sWWw`UoIFmElmbY3onxD;wQ(_pM5%+w}qGoW_R4Jq^rLbi$&{1GL z$=bso8ng{65b^}1^DT0K5=g%_ihr$5rS z)$j4M#?0S%n5?;%-Qu*FL;EM}88yWHRH%CFm-X>u`pRPc4OQ3E4;NCmm zC%GyE0g@ejk`iKwzw=FipszI4fV0PC9m1^&#M-T)AYmRYH3bUC*akM4Em+7T*EYg@Q9p}qSkczQKNN`BrHcmE{1qV^lGNm- zUz9<&-92Q=9HM466DUO5sCA+)ChmkRb4SfBte=?WXOKD3nazj-B6X|Yj_8}k)cF`% zX$=467h|U#I@rG;8<7yHU$}dIK(eNxq=u#KBp$aCZ0_cc<-(QlUdJ)NjUOUVv6D@bX3 z)vvou%+OJ(7ldC0AY6oE-xlIjX7^<*^jgiKY45uF-fUVMk}C*WSC1ddx23Er07(t2 zM27)y{qY4o@rm`xNLR>y$|G5kqD#YRahU}APU^Nn3{U+0wlABuU{A?Q0SUH?;Gi`l zsPRujA3BJxt}#!TA=#u4OaOFi*FObZA#E7Y^h{@Pht4a*dS`*evgN7^%C>Q>c&W^mcdD>pnijX9Tmr>onOi%f5!z}SUX8!XGnMMrfoB_9CHQUy$Bip#SW#<-*Y(_Ia6go50DOKKvmR-ful3cn?gi zJyPN_7dD-rx>-K3TK%UZg|Z$sL;VR0-xg7F)*kgcKd4@0s!PIjc56NDI+Xgx16Ror z;Q9X8b&}HoU|{UN35L{k9RD!0YI{Uv&Z$;5e&62NP~6krbY<0Cn$5ZDQjp^%1lV-q z864))x(2YcFt|Y;+USfdcxa?Dw%`jsdmsj4sUN#FPcw^7TJl#TDbs|I#QpRdIQA%| zhzp9f1-(m+h5<&YseyW+j^t1MM}-X5QU-O?>B zh0C&8bFPviF5$IJoP_nPeu1kBja0^-3?5>e^Jp5MS!_ZiN-|rN`F!?X1g2EoWuew=9`px+c z^~wzmVU%FK991zAJJ;6Q{qokrBmQw?C>E|biFgE(15K7S`LZa~``INc~v- zg-bW@cThrh{e-!9q|PCBS0^riBP=q#?PY_2;xylTir7DHLYxEHe45LN?Iy-NFGouO z%fQQPl4`zh7vVizUYS)oJ6FRYt9@z=8XkD`>p#bRV~gZHF6=fn3GNV2yFzwUGi7#S z<)e${+e;-pvr0&bf-u!?tkz@)oZLfBhM2&^%?6{gSrFp0QG-cxaa3+?Akd;|O4)nR zBsguMTA4MO3m^LTs$gg;JPCYa=Zn9E!&|NKmD*q>yU@LcwV#?88c@eaBoE$zSjjlx zNZ=AOAoZbSh-1|c9yyus(fF+WFOqB~&D(m#itw>?Wy8vyHBkdqxVQTc6-6aHRp;>W z=K)kH<~o_7r!oSJ7buz2RlR>(T^FZ)*_T5N4J|skgTQNP@}&s@lDg-e&Ty zHD5JnDK+5grf-vPU7&}wEnLVVf?^LJIgw=ThzkIG3%4SKBt&80`yEjKYv0mCz)(Nk zS=@JbrV$Blg>_i?@AEBwk56N#QI(&|;jw*|36aZwaL`W-2g)5tUM4CA(-SW9Hs)mn z@2~P9*kc>JY`O(4Ic+mP8Te#Y0j#N?MF%qS941*fUZieuHA*HSA zv$cZ^z1x!}+U;rVPI-Tx?;JwcALak>XX}!BSSseu5jTI+@p`pl-~r(jk#*tt7TjN1 z0Z@UD!|H{)B3FHJ%9{ZRU{8piN-J2F`v5zp9UmL5iaYq&!q8C+CnR+= zMuD!NxC0U^mb&ZeF# z%_vdEq%ug@Arm`S&A!fD%(;&N^y{Pb?Ck;gRHvYDY)WEHf}Ex zHi7$x)GoWKXeB>Qf7`QTWi*ENy_8k3H$u$S6+n7@Y_lfc284goh4zLhBQMgxk_qOsCdw|YS_ zmkW9_kZ8W&`b5ig=oM2!nS}i}f7(lc5gOe2z6Bx&gg0D-HCwvZjqi;itza%dVb&t^ za(2o97zePR=OTgSnk-*L&@D(Pwt=`tEai9W*9O_uAQ;iP*v$&5cWhfhGE6z*T$tV$)(7c@d%XpOqV^3f8Mt75wjoV>QlYdIw?8Y z$(1}3=`Be4|6Z!Ek$1@S6lyG`F4YtkwWSFBKL_If9fiM!5ZjK+tPGdiP^wwhrQdFJ$3N+=mOs7!KfuEGHkHL?L&#c;p+ykHft0d0Ua_-h9Ua z@V{8jd5tQ9)_NEZt=hws9=;q1c&t0$Ft#2_{^1^3k@vG56NMXPD*SO~c8xVF(9Zx| z_2kpP{y-P;((^s83-DX}ux@v`_%xTmiL}q0vHVGr;Luli{Thb`TVSt~d<3br{IC%z^v&9c%O+VH5tE|Q{ zb~UH+0_p?m*x3m?rr1{~ZDjTqi&fXhu>Z-Za9npG)GyPrU!oMxPXA^iHGg0@cZEBh zdA~pdK~MJ*8;OT$@c1y0{l(lTN2r^&3FLU|3N^Lf!oeRJj}VOufnsW2K4(d?snCq^ zQ4)%NXyY=>ki&57t?I*+$-|mrYZ5_^#|zc;NGK~*rQC$^R<<=I)=+0K45%9Xa^q6< zDr)Fl&_*akgTr|CTRKAXJ&HY$@N_(laMtV_C^Qm@2%a*HoUmlXZUl>^7kn3d%O&F( zDKagC9irySS52}eY(C~*rw?4ZkS)yH;24`(@Ea!iEh7;r@k|_&WY40{Xc#w*ASYaB z_ATmo#1`DxW)_fo`7`+8x&hCSFu@8gvn5jmHKy_*Ngl7FsY99c&%Qt))qaRAO58XK zD1sj;AX-R3jOHJxV0NUUXQD6rn8$C`^{LE0Azt^;DY3l^fA>gbR3!7aJpqW&S;g4% zP(yYSrX^nCMmKLM0>k+@e!i5`C@(4SKdMtE0;C2&|9fA6<~L9y$O4K?WfwDW;j9N{E;+ z7mw#|DgT{{5+dq!;Y_;5a1bSK8qG?RzLhSn3hyf%|&wYewR|D&$2 zj%%aq)(r$Nt|?BT#oeuF@#4iLEyW#*%b=w|C=`l&DemqN94fdw1b272yx;fx?m6d5 z{z|WR9 z-nf(WY9`wJS(V_!a$l1B!(sC}b7VDHdnEAj zDI#sp6@Q)0r30ut4Wix%Y>j5PiG(chw=825IP_VYcf})^xnZAh+uvj^+!WH;HJIz~ zQM>(&o_k(aV^-;AoD-jJdZap+&*7+fK>=Y^`!%9AX5V*4(99S=xboxVq*-`Y;mo}< zf7*_?zm+a}{P~~FT8DrbzBxTP8+*aJ)yT$=27Z``vr8b6#h~7miuLbB@<))wGc0}M z?{a22Xs@CN45_=0**G3wF)6b_@qJ^OAj#&#xUhR3-r);o(&{&6{kB)DRYj^E)9jt% zF}?VxF+v$WGt+UpXiUgyK~h5SO}(10x`=Olu~s?VUVGeapPkT4iUSsmob$(|ytwQ` zF2Sx)RdfIo`yByk$nTg#BNAAJhDq>x+OfXExFj9FT*OEAI4yf|5pr-NrH`aj!`jymdwyS|VOzTeR%tirh8mzOc^YOL=%cat9u_LDmtmEG&h$IAl>CiyZ z;nK_F(SM_K=xOcVB%3phM6-g0p&i3lM{@Fk-sw5eD0(DiWH06|AB9U?@@o-n+P%X9 z%TG{lC|gBs$ap?Ira)?)1ZE;_ErQ=sQudrPVsh~HHHMLO^z)=4OX#Nwpy9m7jGhYq zX=qdhvyh>L^nLBv^=cksp#M~>Fh#a1^0Qw@sNgqrR387b<3}}{hotQ$@)Qy1bbeI? zOH&5eMxGJ)#d5aWeULUyFV6u1&j=c1j_F8V>N!+?CjD$%I)j8MGW>^nf~G9 zj4(=lHTmO4N}r`GSuI2nmw1HtBQ4|#J?QDl#2kx|W_)((f-zF>*7M6>t2?ev%0yt7 zQP6iyT=l3wV%cN@S>${b_sPFpKgGG)0g7^fx$$z^6zSKks~ zPlA(m__JpRLZtV@6rPB^tsM$o zS{5KNN?UxLT<47qV-|g-IX&3Q=4CO{aWd&pYY_7;!Z~|U(}TMW)s@Y5p}fLgR-gV$ zq$M)9rgLiN#J3N1z0H1(^R-5qjlvE9XlOWbNBQe7<7QEFw|Bc&$x-*7?po^axuznU zRev6mzVZ`nHT=K8M*qenecFfXHJ+ObG&BiJ!UCq z0xnY0N?fa{IhBe}CpCl~haIUP@*IB!(4Hczet-34yzoXK)(Up0Hbb+&W?W>#9Z z@6nA1n#E*aaZMIA8yapP>taG0*vR{I?M?ZiW`$Yd7?iAAn(?g@CMQ4s&f`ck6NED~ z$V%otPn1+J=s{AQR1)0@D`|w22w?2T5s59!-jVvuNEZ%{}IECNWqnX z3@;INC{#}IBV>g`t)_KfeshX&Je`qa7p0*BcJaV~1T!GnXxoyryaJh7N_hf!n1q0AI-G;-MO^<#Z2h zxpEnZPHnZ^vU#7`N{BQtsRk9hKkHEwWB`Rl5@rPjv}}%m2kD^ZSj-Ha0Fq383IiBG4y zDH3&72QSUoV+4M0_&Hp`*eYup)2WRJIKL=~J=%uOje&D}(^TIh>88(56 zR`kJxfDb?jm;i~76!RqtsPT5KP)!ADM8q~|KP}s6MQ%eCk?T~F&5ayn-$(IUBG7q4 zuVqtdebqRhv-g86q9fgEzS-*a!(Wu%cl8TCDe7}`)AVlsM8wbdI9m1>eLQlI#t}qM zK(hG7=DDBZ^odob2Z^Vvj$s&fbw7BG_f zq}bi9h_gcE6o%);uX~?%u3_|y@lwL+&3+FD8z_{qSDc>ut$@F|ZuQ8K&~+~+jMbjY z9iq7@uv-*47diIKN^bO0cFeRQl+TQe+T)Oj4;LA7*!&n_b*ajh0eOD4O@i@k#`7rp z0GP?nGeG8h%^m1$uC$|R=AGjSMckLUv5|Hjbt@^Bddm$y{#p>N)#fcyUA!-R`lBr> zBgfLA{RL=?PrXq|E>+akoa%z>AsW%;IN2*Mj?~xpx0amB+!Y-SPL)PRdIpW6hNPrhChD%(9CC)r^}v zl-^vG!b_vkk_9Pl4z}w{O?(a`ySMBqN1;+~8pX#?hgbRM&>|q5<8D4#rjpM%IX-?p z#>&$cODK!Tbg<#4_47wYV5J;xjEecgtcjCQ5u)ufjOixZ#bdUhlAkER!_kML5#kBP zS6mm9n!8O~^X+1{pu2Rxp*H{}VnI~N$B?_UVCg#7ui1*<9nUV!V5e{@9uxN4mKlU_ zd|U=wJ`P^CBQDzxJr<9_5;X_n6C% zSLfHK9_4b`6*B{OZD((%-w3Jt+aM!c-lF9#-A8%cEjr%qFEu`fEjnL>`Fl|1oi^7J z=S8n>$gf<6pVAm#@7T?0-`T66F!#nALX3x7Xes?M6Xhx;FIQFOk)jOV_G*3p4T! zHMt3IujPR~NAb)2*EeRsL->;K!R71AL;w5j_!I+$;m~Kmry*&nR*Y_>2a_|k1FsQ9 z%2QS%NTO{!=Lp5g!5GE&ao{|G?BVM1HWk2ZTrqlxrEow+9o5{#ZFR_k!in6gIicEvdTl4#N#|!+j;2Yq9L%eD{+&s z>3=Bi;iZ)=Jb{9!<-AED^E=-)ecXF0fASF9oN7B2l{8)Wvodv$-J4j(CcAy7s$2NY zOzc?8(QEgqhrXqgx_T4O-_e;S7uy_wMrsr=ITqP=BW!vat>$;`>c2lT^iX?vMNWzR zxQ5c3ch|Z%XH6}(cnb=>pq7S{o6#xExe9u#B*@!F8I)QL|6QFO&9n(U7X}yYRPZsJm17sOFrp>7xD~9 zaX#SrQMqqju@&aMdUkEE+P0N4o0~^_ei`#dc?w5>6U$1N}e@;KAT+an>4(jdKkum z8MkUOsx9n|w1F{u2c6r_nF7W{wMPLC(=)2ScbYuzC_Ha%b_gfO!MYz*_qDY|eKS0+ zejI+FZ}%M%x9w7z6Az6`Y2wLnc2LWxG*fWgK5hBj6?y~bDo{I> z!}b@hHY*mQBDC<{U_6tjv(uLTSc=ZcHg{^gp-q7z(dg{7otVdQ_II0C)a-h2f8?{^ zfZp|JM%!WA(i6_<7C-q}ab+uzo_44^#WttK+SqWp_GrS$RTg2DHusiKr)aBf$^Vw# zaxl$njYGkbTKM#$e#zseBUfUjPT0+KH>JtagKOrkhnXk_F6Ji3m{p6d#vws?^MUso z0eqD}!E$i9owwa@DVR)$y}!uPM$K&JlnA1hjcWRronMvI<)N)UM-l|!TB-|3iY#xI z@iMBvKJYoZ6QSsil9=7I^*P*qrJLS5nt#}C=hQnYzPA5XG+n9@GM2+Aw+&yaFaKej zh;vhZ@JYsWrzn-;M`e4*)oQ#fA}8aeRE4+|v$?jVH%n=z9t@*|K#Dq@zh>O@j9?PNE z7gu3*hT*Ru(a0jv(l%e9Htc;{ofqA+e9(M%ehNY1ZkP7HGkc&}HGNJD+5h6HXaBon z0&oBrp!WI>ET~D`jG12EWj;h?3LQrc$-YI^Ir!4sk91j)`}91J1f3Rs5~w`%^K>N) z35Lf`zEAX)L)EuS&A%&W=q}vy^`nI6LvrR_M50)eEMot+1`cxFr$Ucdz$pj0(#`t*EB1h>`za|rL%vIqBq~9IapNY!HXV(=eLGB3MwmupDN3v?PAW>ARNwM$~^Q$O$Gx zIrQiwaV&Unw~=|jAqecJFWqI{H**@4Odf?Z?xOT+F#wM?&1N6@@~BM|dZSw!?pv3^ zL$@mgus#}c(IQeHxQvnd-sf@K^m+uf{VEh7v_RcLN^>8a0F}kW7Du=~BIDz7jGpj21s@zmriZzY25g1s=D) zikh^Vn(hN2j=={<2|o#MzqZp%iMy+pqg_mFcwl0h7Bk(Z`{<|n=>5&=?a<G(q2IFQ#&!-X8iCznuqHs^?B#MI3mat@cLdtVoK@0vTr!V2Fj&Kg4IHIxJCODrBa@8>qJ@BBk4@A|BnlL9aQ(!Fjq9n6TY%uiJEb%TdzZ`l!l* z7DUxH;%OlHE1nZnx^d*1<=!sH2$AsKeGeo18@(s@R^2X=MbPZKb_i`jeI3HEX0OaQ z+oGqQI!buB+994OesVK6yDn3|+uWBQjOF(&t1omwIsOOniCpOkM=dT(r>%xy*uI5X zyvYO4mFLXwL(lEsrVpcuRM-c8KyiRGH~G*_o+Gec?>|=WzuSH~I@i7~;X4zU@e0>YQtCV5)+^p|c*L?1@$?{nu&FK8By zOB_wz6!!r(2TZPv619ipCOhA``j)fu);)b-KR2MezSY-y?6p24mxCVA*I(?gWUUa@ z`uW+*^P*^)FNqEB;00>_d+&Ts+M~t)`H>JM8N%t7s$7IgeO?oqWqjUOZV-&bu>KCX zYh=V5L@XIVvwVH;%*y@Gi)mYLCTMQ2HgPAbmt3HfYo8(mkDoHx*D8%F(7iZq2$4Cm z8Nk4d`_pPZ0xG7T45ZJ({NjkqonvA5vEAbq|F6ozf8FdW<1*g1Q_me23)F~PGh(hY zW@CsBtycJERREpnb$Fzcns9OTx}JGoC_*r__%5AI9CVKOY+lR8?`c-3e4gB_#gncmqwhfbp(=(U?Vb zvkmS*Ws3fTGQPEQt0WCIXhJc^6Ny~URv-Rg{4-B0{>}I+z9f!u>|BaFPym6pM!1Eh znA`lAQA3GS%|*Oimrc1o@O=3hOI0?$`a2nBCMor2J28p^Rk5-*0+bxT6J#=wssD6R zlP~{ZW6N6WnqQo?Dbne+fs8^o(6Btw;**@{7($y2a~Qo9T6c*`W2F|T#n6xG1eics zW*NsF8uA6_tp{N45E~mN=O$OzVX0G|tLc{q3J0#}ze>@$1NLmxfb`^T_1_7H%Nwy% zUdgWI%pZ3^pde7{bFmS&@9fVTz9}gsdj0)%5o|R?H<>>ddT!03t{RaZ*A95T3+V;!;{V-z%(>|J}@o2^0o&v|Zp`sSSYHQ1< z+b4;48p~FaaA|y~23mrssd4*@8P_Zd0?15%Z$u8i)ChV-G!S#jAFEp^m4Q)H&R2%9 z3Cf`uFp;Yw`^KF&-(ZOORA)Q%QMgF94HMQRNzs-bkAdCYa$upjX+2@H6q3gs^3dYQie>=tMf3ak`HeQ&|)_vS6yMv3;A zNT^1^gzMf2L|;=XzSwJ+NHSaxNg}}2&)S5~q$d!gWQic9v3o1Opc*iF*$=4| zm{md#5)7==byO${E|6R&oEXHU&jEKW$?Q8G#G8{=7h)^$I;*#$FM)U6NeYY-(cUDX zRN+8u8Z@0*nECtnJ5_E~FWo^^f?-Ah+_5aV$j6u|Dgbov8;=uresxb7?R#4%{(=yn zgueLNwv7<6Qf@&CgM9X3!7D5V&W_yY4OD5l#*zZ)H)TSY`?b%WRSELQZ3Z+8+nzqv zD7X1`Fg>kqa>tbx2VVU8I`UE|O)$Y}t~JZAxY#{S(|wO=`tK)#^DYa_w+k4C#TWs# z>H)FsC2#-|q7OSoa;t_aJZH})&^y5v_H0ze)-(xt)!hJAJ%e)P9{g~1XRMYoK(mU5 zLq40yeDv0xwAwv4)q&z`)qj9zYuW6!xJcR16dI7Gp&=(~V?woZmp|>ltA+l-{l%3U z7xg~FhP z;%iFi&}9wqW@e#8cH291@78tDg2VOQFwk7hO;EwR@6POnkY{R=DKwg)>C0(~s|A}p zv`z_F)^0S}I~#+4Mq_ToJUgE2c;uoLhv!BpRaj6hZQxz$@&C7C_3H+ zr~sb=eQya4LbLd_Hs>8QP)!LdYH`6PkIV6sNZLkX!}S5WMhjw=D%c>1Xg!}yjGJ;vK7y1 zmA=|;*KVhP^g8bUj^Jk#WZMFK&%pA*^4 zavk&^WfN0zS$GKxR#Ie~xhRDa=eb^p(0bNl>pYdKF3+V&ZfoXRDB)?Vv&sz-!PzFg zwlp2FJwO}?_yP$@)`(L1hIs~hUoL-f$+^lJxyVFn+u%!ll?^t2RfWF}##~r6WPq2Q z3%&NvFpPS-dHfGE$`Tu``mPyZid{NJs`Xj=7??!V#f%v9*^Dxhe(sM(EZ? zwZ!3V*w^X06SO(YH#6D4SQdpqfq5>Lq=XQ>t;JQkU+$Bl+tep;Fahbqr{>{w%CKd~ z*RyNQM23o#K^e0)V-#U_tlr^w1o^l%{)z6Ht^_N}WL>B&XfO)~-#lFMg%Kt4o^&GZ^a@!BCw2@OCh4s2`+fJx z0Koq zfxe%*Xmo>gNUAA;Kl=ja*H{*GO7?gv>; zsx+7l%JChQCA9{13PMrK=6_f+Y7y6pT*9exNDRO%1jHsgZk7S)z-YHzxw;UVHaQjTm=Xv(21Z>y8N(k;DJdB!gT>@eUbPNF8@QR&)rt^G{C37{&N_atx9`F<_$Rh< zI&tb8UiV#nUN2(d-Dl5Ey+gFUKNZNc*eoJbIg14I4oC&Gq)N`BH4pL*ws>nXOsqHo zk$pdxeFHjCI}>l=0DqdOg?%{9d;$n_N0ZEg?_%*>8;hBlq<3i*I=&`9I@NDvR9_Ht z#NVWo5W-nID*2gISq0V5cG*snWCZgkUnkj!`A4ap6Nk3kKLog(!thV_!Egd^9alQ)OI^RL==i)scF!r--}tSyFC zERrSQ1pjOQy9{64lU>ODzzUk3pie%LwY*kAuEhzE-nHyve zwVyEm9FXr1$yZe8aPnRCzCiidxuf^F-wg8&KhYisqU&JRQ$p~Rzg~$=z4IUtDj)>t zAxG4Hh~({8L4g`kg@lwnTHblm=((dzw0(2}_Ro{9TII3odL&^nTW;B5k8l)M&duzu z*7Py34GOK__z&-mqS!_$Zw#Yv-oeJ9v6HIU6^=)SVwV}@FF!$+CBA2XQ@&^ldUga@ zct@0s;)#1V@=~()HQCmoh|%KzL5T${M1_U$K|dyF$HZLGKEySBStBaXtwN^@W_j-| z#pax_+hHwFj1(nLrS5Hvpu}5Y?J|UkjV;M?$)%eA{4i_>nu##)m<1BKlA>Y9mJ3+x8 zn80iyN{ z^6sK}8KBt%JV&J-@IVBXBbhHdHyp>@H%qfRLm&RZ5t@YFQH#opJt>=JDl{d1P z%nto@w4y<&7G4d~Ra*X};s%@n-9Jza116*Pfg%PY9CaBYM5lnZfg-SjFZGHrCQcH@ zCA1!p{qglBWT~p%Gnl665641Bnf9Xy)Y#e;fA^ef0Hct z1R`yU@}CnfE6`^AmUbJ)W^D+IV6_72_fvj+|K%+Ya>WW?eyB)VVdyE{uzPM69E&cI z4*9-kSuy+j=%|YXqO$nc7MEG5d&g7Vf-N3$R}FW4!H=d_##?}S;}h3H4!gDv>EvL# zo0mU>NoY^t1oQ8|8>CH>p=}KXlr4~?`wm`?VwI8zHzm_oKOO&n%sZcK16E`(oPEao zilcG{=HkNH#!RM`3pA%E&etNER|gAf@?Af-3laYUbCl2<$-V&^ruGd~%dRN9 zGAdn&99NJ_zd)M4-2)VpuMsMF7XYZbL zb_?3C!FokWmhRN-Gdh`SDhI|~VV@D1BuEHizG;=ydF@}#8Pvu8KN<>_g_ zeJVqC>pu#a)!#(<7+dGtsS-g#;GhXpkTLA&D#EYNg1Plx$^gK-H*p)2tTa9j%cDF_ zCg$sdZ{%uA8Ug}2dYQ5Hh?8|W=c7R2CjbyKHx?OaSs+G1>{yKFE&ZS%H%QK_AUzQ) zY}<(9T8jlI!zL=azlHIA2D--Ve4UC=^h&Wbb6I1VIedntMQhx-3#SYdj^m2rhfX!t zz!FH3BDF0Se zWHnkx3`h(645%EV)@WLVrMkzN>4p9VzvYM^7aDPP2NqzIf>e|si>H=%M7}|<{8KvK zp}1?!3~ixNL*QrF>@yeD7pH_!DDHiKs9dyK!rTwsqPT(=umV?XWiDh(AA%nipH@R| zr4_d_s#7fDQ#Viyvaq{aNUg)9sTLLWS3+vlb3XhIDZ=8H#}AW<^6L=X8=0zc@r?Mj z+%}K;D(EHP##KXT9!`I>LktI{v$8l64dBwUIz=N<2f>1qrf9HxokA!UV;RzdU&2e7 z`vo_%!mj^3$FZSvS2x5OTjZj|L2rG-j>+)Xsp{PaF&)?U^AITxX>(pqVs9#C*pdax zlpB85OqQH<2S#2<4x~<>zo|Adc|sk+8x=>^Ebs$RAS7lV#O#u~)84uLna$GGMIQ5_ zfpHgkQ^<2@lLOa?yo}iy#A89Y$%Y+toeX1tA;`PWBfvQ>z#bm`kr36WCe)0&N`Nrl zWKE|?lH~?1r`hc#@|om&%3t|-g2=FU_)7Y|)#_1+S_t;fJEV+kVVAudO(kgey&bJB z0>l%*iBU!~CAW6xZ_PS+%-x%rV&RKlE}qU~dhZv~H@_}5UFc74y7d>=Ki8e@RIE_a zUs@6%6Z8->zWcZ?$G1$OlQMd91B{hs{_)1vwDtyRy|dA)B`8i&*)I1kr_1at7HOKJ~yn;FwM9x7*3;UN@|MG4j! z2jrz>bhRfbf%UB0blmX-2jagS-6|$V+qOKJmr+ z9DyyX{-(G?f!)#*1zeEwoP$i4e_9DTHmbmrWF2dzDI!4pgvoEIMk}ib{VhJzh)SCM zoJhs;Et~4Ly44RtPgxP_(iQ8CK%T%-V*oef<5@iDz9;wHo#Z*4)A67`M?nk3K(0my zh8Icf&97x6GD}2KndsYd_rRp?Wvjn@%(l#0fy#Y;=F|LEm8Yc7v6zH( z8b(P^zC@u1b;c?M9Uzwty6nEkd<1+vqUUI_LC`Z?aT#Lg63+_Vm_LD)KpF*ngRaMT z?2|Q`y!X=A_$#TP0X%E_`@|UbGi6TsJ>@~eDE_|j=pt9xL;vdfR^P0d$w8@UpThfJ z&KZfhX=e4d^J6#F#s&8mD23xS;)AHyjTdfFS+CiX;#?nZ5n~C{$qaeU zb?Vidgxi6%uwjvl%c;kxcOwtp{`WQ8Jr+YWcy|Jt3rg1OZ?!z_f*-^4-_T%p1kgda zP{5y|@Zl`ToV}o9Fm!Kf{?8mOWPR6Sw%2PYsmhB2CFc=m-#@95j?1MWIyXf)zb+0J zE*X2@>6`HDqAKE4f-E?90al_sJGP~=hM3Rkr-b3*(mBIhcb^Rnc^50&;cp#9Oqr)e2hfn`7T&pW1Arpg$ zLI0K_@zDP-D&&7NVgHvU_&Ml*^J4#>R{xzhkq!I5Y@R+nr+CshH2?I;+QIT)Du@3u z{kPI$+)@uE5=Y!!j~MO$AXj`MScLqKZt(5n9PP<*|6~2{;l>5@QX)ymrS~$S4L?;) HfI$BXu0>OY diff --git a/fall-2024/math/mat-204/Game.ipynb b/fall-2024/math/mat-204/Game.ipynb index 21399be..881f4f8 100644 --- a/fall-2024/math/mat-204/Game.ipynb +++ b/fall-2024/math/mat-204/Game.ipynb @@ -17,9 +17,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "ModuleNotFoundError", + "evalue": "No module named 'PIL'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[3], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mpd\u001b[39;00m \n\u001b[0;32m----> 2\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib_venn\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m venn3\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m pyplot \u001b[38;5;28;01mas\u001b[39;00m plt \n\u001b[1;32m 5\u001b[0m Dat \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mread_csv(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mDataLoL.csv\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "File \u001b[0;32m~/.local/lib/python3.12/site-packages/matplotlib_venn/__init__.py:56\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 2\u001b[0m \u001b[38;5;124;03mVenn diagram plotting routines.\u001b[39;00m\n\u001b[1;32m 3\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[38;5;124;03m arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5',color='gray'))\u001b[39;00m\n\u001b[1;32m 54\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m---> 56\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib_venn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_venn2\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m venn2, venn2_circles\n\u001b[1;32m 57\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib_venn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_venn3\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m venn3, venn3_circles\n\u001b[1;32m 58\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib_venn\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_util\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m venn2_unweighted, venn3_unweighted\n", + "File \u001b[0;32m~/.local/lib/python3.12/site-packages/matplotlib_venn/_venn2.py:24\u001b[0m\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mwarnings\u001b[39;00m\n\u001b[1;32m 22\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mcollections\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Counter\n\u001b[0;32m---> 24\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01maxes\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Axes\n\u001b[1;32m 25\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpatches\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Circle\n\u001b[1;32m 26\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcolors\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ColorConverter\n", + "File \u001b[0;32m~/.local/lib/python3.12/site-packages/matplotlib/__init__.py:159\u001b[0m\n\u001b[1;32m 155\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mpackaging\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mversion\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m parse \u001b[38;5;28;01mas\u001b[39;00m parse_version\n\u001b[1;32m 157\u001b[0m \u001b[38;5;66;03m# cbook must import matplotlib only within function\u001b[39;00m\n\u001b[1;32m 158\u001b[0m \u001b[38;5;66;03m# definitions, so it is safe to import from it here.\u001b[39;00m\n\u001b[0;32m--> 159\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m _api, _version, cbook, _docstring, rcsetup\n\u001b[1;32m 160\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcbook\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m sanitize_sequence\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_api\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m MatplotlibDeprecationWarning\n", + "File \u001b[0;32m~/.local/lib/python3.12/site-packages/matplotlib/rcsetup.py:28\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mbackends\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m BackendFilter, backend_registry\n\u001b[1;32m 27\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcbook\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m ls_mapper\n\u001b[0;32m---> 28\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcolors\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Colormap, is_color_like\n\u001b[1;32m 29\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_fontconfig_pattern\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m parse_fontconfig_pattern\n\u001b[1;32m 30\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_enums\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m JoinStyle, CapStyle\n", + "File \u001b[0;32m~/.local/lib/python3.12/site-packages/matplotlib/colors.py:52\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mnumbers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Real\n\u001b[1;32m 50\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mre\u001b[39;00m\n\u001b[0;32m---> 52\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPIL\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Image\n\u001b[1;32m 53\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPIL\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mPngImagePlugin\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m PngInfo\n\u001b[1;32m 55\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mmpl\u001b[39;00m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'PIL'" + ] + } + ], "source": [ "import pandas as pd \n", "from matplotlib_venn import venn3\n", @@ -48,15 +65,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Probability that Blue Team wins is: 0.4990383642069035\n" - ] - } - ], + "outputs": [], "source": [ "# Calculating the probability by diving the amount of games that blue won\n", "# dividing it by the amount of total games\n", @@ -76,15 +85,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Probability that Blue Team wins and kills the dragon is: 0.23200728818706348\n" - ] - } - ], + "outputs": [], "source": [ "# Doing a similar calculation with the difference being\n", "# the number of time an event occurs now only counts\n", @@ -105,15 +106,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Probability that Blue Team wins and kills the herald is: 0.11185342646016803\n" - ] - } - ], + "outputs": [], "source": [ "# Similar calculation but with the number of events that\n", "# team blue wins and kills the herald\n", @@ -133,18 +126,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAGFCAYAAADaTwWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMGklEQVR4nO3dd3gc9bn3//fM9qJVL1axbFnu2BgbbAPGYHpLc0IJ5EmcEwiHkEIKhJRfyCGFh5MQQnLSOISShEBwQs9DYmoAm2aCTXHBvVtdWml7md8fg2QLuajs7szs3q/r0mVLu5Zuectnvl3RNE1DCCGEGCPV6AKEEELkBwkUIYQQGSGBIoQQIiMkUIQQQmSEBIoQQoiMkEARQgiRERIoQgghMkICRQghREZIoAghhMgICRQhhBAZIYEihBAiIyRQhBBCZIQEihBCiIyQQBFCCJEREihCCCEyQgJFCCFERkigCCGEyAgJFCGEEBkhgSKEECIjJFCEEEJkhASKEEKIjJBAEUIIkRESKEIIITJCAsVAv/71r1EUhQULFhhdihBCjJmiaZpmdBGF6uSTT2bv3r1s376dTZs20dzcbHRJQggxatJCMci2bdtYtWoVP/vZz6isrOS+++4zuiQhhBgTCRSD3HfffZSWlnLBBRfwiU98QgJFCGF5EigGue+++1i6dClOp5NPfvKTbNq0iddff93osoQQYtQkUAzwxhtvsGHDBi699FIAFi1aRH19vbRShBCWJoFigPvuu4/q6mqWLFkCgKIoXHLJJTzwwAOkUimjyxNCiFGRQMmxVCrFAw88wJIlS9i2bRubN29m8+bNLFiwgJaWFp555hmjSxRCiFGRacM59tRTT3H22Wcf9vZPf/rT3HvvvTmtSQghMkECJceWLVvGk08+ya9+9ashtz300EM88cQTtLS04PF4DKlPCCFGSwIlhyKRCNXV1Vx00UX8/ve/H3L7qlWrOPnkk3nggQe45JJLDKlRCCFGS8ZQcuixxx6jt7eXD3/4w4e8feHChbLIUQhhWXajCygk9913H263m7POOuuQt6uqygUXXMB9991HR0cH5eXlOa8xp5JJiMf1j1hs8J/xONhsYLeDw6H/2f/R//nBX1fl2kgIo0mXl8i8RAK6uqCzU/8zFBoaHPE4ZHKKtKrqAeN0QlHRgY9A4MCfMi4lRFZJoIjRSyahu/tAcPSHSF+f0ZUdmsMBpaUHPsrKoKQE/H6jKxMiL0igiOEJhWD//gPh0dkJvb2QD08fpxMqKqCuTv+orARFMboqISxHAkUcWiwGe/fCnj36R0+P0RXljtMJNTUHAqaszOiKhLAECRSh0zRoaYGdO2H3bujoyI/WRya43VBbeyBgAgGjKxLClCRQClk8rofHjh2waxdEo0ZXZA1+vx4wDQ3Q2KjPMhNCSKAUnEQCtmzRP/btg3Ta6IqszemEpiaYOhWqq42uRghDSaAUivZ2WL8eNm/WQ0VkXnExTJmif/h8Rlcj3nfPPffw2c9+dtDXKisrmTlzJtdffz3nnXeeYbXlG2mr57NEQg+Q9ev1QBHZ1dMDr78Oq1frYy1TpsDEifoCTWG4m266iYkTJ6JpGi0tLdxzzz2cf/75PP7441x44YVGl5cXJFDyUXs7rFund2tJayT3NE0fm9q9W+8SmzRJ7xKrqjK6soJ23nnncfzxxw98/rnPfY7q6mruv/9+CZQMkUDJF9IaMad4XH9M1q/XF1FOn65/yEC+4UpKSvB4PNjlscgY+Z+0up4eWLtWWiNW0N0NL78Ma9bAscfCjBkSLDnU09NDe3s7mqbR2trKL3/5S/r6+vjUpz5ldGl5Q57NVhUKwRtvwHvvyUwtq4lE4JVX9AuBOXOkxZIjZ5555qDPXS4Xd91112E3axUjJ89iq4lG9Svcd9/N7OaKIvciEb3FsnbtgRaLDOBnza9+9SumTJkCQEtLC3/605+44oorKCoqYunSpUaXlxdk2rBVJBLw9tvw1lt6v7zIP17vgRaLBEvG9E8bfv311wcNyqfTaY477jja2trYvn07TqfT0DrzgRwiYXaplB4k99+vT0eVMMlf4TCsWqU/1u+8Iy3QLFNVlSVLlrBv3z42bdpkdDl5Qbq8zErTYONG+Pe/zbsdvMiO/mBZswaOO05vscgBYlmRTCYB6JPXWEZIoJjR1q16a6S72+hKhJHCYVi5EjZsgFNOkXUsGZZIJFixYgVOp5Pp06cbXU5ekEAxk95e+Ne/9G3jhejX0QGPPKK3VBYs0BdLjoGmaSTSCWyKDZtaOGM1Tz75JBs2bACgtbWVP//5z2zatIkbbriBgOwgnRESKGaxbh28+qqsJRGHt349bN8OCxfC5MkDXw4nwgRjQYKxIOFEmHgqPugjlowN+jyRHvwcs6t2bIoNu2rX/64e9HfFhtvupshVRMAVoMhZRJGrCJ/Dh2KxQ8i+973vDfzd7XYzbdo0fvOb33DVVVcZWlc+kVleRuvr01sle/YYXYkwMQ1Ieh0kvDbibpVoRTFr/Sn2xDpJppM5r8em2PA7/YOCpthdTJWvCq/Dm/N6hDlIoBhpwwZ9HYK0SsQHpBwq0RIXUS/EbSkSSgKNwS9VTVXZ4XexUY0YVuehFDmLqPZXU+OvodpXTZmnzHKtGTE6EihGCIX0Vsnu3UZXIkxCUyBW7CJSZCPqTBJn+NPDw24Xa1wpepXct1SGw2lzUuWrotqnh0yVrwqHzWF0WSILJFBybeNGvVUi60kKXsLrIFLsIOpOE1VjQ1ogI2HW1sqhKCiMKxpHU2kTE0sm4nF4jC5JZIgESq6EQvDCC/pRu6IgaapCpMxFxKcQtSdIkvkWRdDjZrUzRkKxxstawiW/SKDkwubN8NJL0iopUAmvg75yByFnjBTZX/0edzh40wfdWGtsTkGhxl+jh0vpRBnctyAJlGxKp/XurXffNboSkWOaqhAud9PnTxFVc38hkVZV3ityskOJ5vxnZ0J/uEyvnE5TaROqIjsFWIEESrZEo/D007JIscDkujVyNPuKvLythtEsPMnK6/Ays3Im0yun47a7jS5HHIEESja0t8OKFbIHV4HQFAhXuOkr0ogqMaPLGaLP7eZ1d5w41j43x67amVw2mVnVsyhxlxhdjjgECZRM27JFnxKcNOcUTpE5abtKsMZNn8scrZEjSTjsrPEpdFpsXOVwGgINzKqeRX2g3uhSxEEkUDJp9Wp9d2CR1zRVobfaQ9Br/iA5mKYqbPK72WaBqcXDVeouZXb1bKaUT5HFkyYggZIJ6bTeKpEzFfKaBoSqPPQUZWfKb660+r2ssVl7XOWDSt2lLKxfSENxg9GlFDQJlLGKx/XxEhl8z2uRMjddpWkSI1jBbmZBj5tXXVGLj6oMVR+oZ2H9Qso8ZUaXUpAkUMaitxeefFLOLcljsYCT7grFlIPtY9XncfOKM0bKIosgh0tBYWrFVE6oPUEWSuaYBMpotbfrYRLJn/5ocUDC66C72kZYteY6juEKud284o6RHMO2L2blUB3MqZnDrOpZ2FU5qSMXJFBGo7MTnnhCX2si8kraptBd56bXUTgXCmGXi1fcccts1zJSfqefE2pPYHL55GHcW4yFBMpIdXfD449LyyQPRUtcdJSnLD3gPloRl4tXPAnLr1U5kvpAPYsbF+N3+o0uJW9JoIxEMAiPPaaf9S3yRiG2Sg4l6nTyiidJTMnfUHHanCysX8i0imlGl5KXJFCGq69PDxNZ/Z5XCrlVcigxp5NXvEnyb/7XYA2BBhY3Lsbn9BldSl6RQBmOcFgPk2DQ6EpEhmgKdNd7CTqltflBcYeDV31pwhZatDkaLpuLxY2LmVg60ehS8oYEytFEIvqYiUwNzhsJr4P2ccqITkUsNAmHg1e9aUJKfocKwLSKaZzUcJLMBMsACZQjiUb12VydnUZXIjKkr9pDpz86ptMRC0Xc4WClL5XXA/X9StwlnD7xdCq8FUaXYmkSKIcTj+th0t5udCUiA9KqQud4NyFbYQ+8j1TI7WaVO99HVHQ2xcapE06luazZ6FIsSwLlUBIJ+PvfobXV6EpEBqQcKm0NDmJ5uNo9Fzp8HlYX0Ay4eePmMa92ntFlWJIEygel03qY7NtndCUiAxIeO621yCyuMdpR5GFDAbXumsuaObXxVGyqzehSLEXO1fygl1+WMMkTsYCTllpNwiQDGnsjNGiFc1ri5s7NPPHeE0QShROimSCBcrBNm+T89zwRrnDTUpmw1HklZje9N04ZDqPLyJmWUAuPbHiErkiX0aVYhgRKv85OePFFo6sQGRCs8dBWLDO5Mk1JpzmuT8NL4XQD9cZ7eXTjo+wO7ja6FEuQQOGgM03k2F5L04DOBg9dPummyBZ7MskJERt28uh0rqOIp+I8uelJ1rWtM7oU05NAAXjuOVkFb3FpVaF9optep4RJtrljcY6PF854CoCGxks7X+KtlreMLsXUJFD+/W/YscPoKsQYpBwqrROceX92iZkUhyMcm/QaXUbOvbL7Fd5tlXHWwynsQNm9G954w+gqxBikVUXWmBikpi9MfQHN/Oq3ctdK1retN7oMUyrcQOnrg2efBVmGY1maAu2NLgkTA03rS+AuwLeRF3e+yMb2jUaXYTqF90wASKX0QXg5cdHSOho9RKSby1C2VIp5MafRZRjihR0vsLlzs9FlmEphBsrKlbJHl8V1NXhlXy6T8EeiTE17jC4j5zQ0ntv2HFu7thpdimkUXqBs3gwbNhhdhRiDnlo5x8RsGvuilGqFs+ixn4bGs9ueZXv3dqNLMYXCCpRoFFatMroKMQZ91R66PRImZqOkNY6NKAX2hqJLa2me3vo0e4J7jC7FcIX1+L/6qoybWFi43E2HX7q5zMoVjzMzVXhTiTkoVIKxwl7PVjiBsm8fbJRZGVYVLXHRXiKzucyuti9cUPt9HSyWirFiywqS6cLdcaMwAiWdln26LCzud9JWnpC9uaxAg9nhwuz6AuiMdPLctueMLsMwhfG4r1kjZ8JbVNqu0ladJl0QZwbmB1c8zoxk4c366retextv7nvT6DIMkf+BEgzCm4X54OaDznqXnGdiQXWhSEHO+uq3eu9qdvbsNLqMnMv/QHnxRX0ho7CcvmqPrDWxKg2mx/L/7eVw+qcT90R7jC4lp/L7Ed+8GfbIVD4rSngddPplRp6VFUVj1Gouo8swTDwV559b/kk8FTe6lJzJ30CJxfTjfIXlaAq0j1NkED4PTIkU9mPYHe0uqEH6/A2UV1+FiHSXWFF3vZc4hXNVl89c8TiTCnBbloPt6NlRMBtJ5meg7N8v26tYVKTMLduq5JkJ4QQ2rXBOeDyUl3e/TDiR/8/r/AwU6eqypJTLRkdpwugyRIbZk0mmFXgrJZ6K88KOF4wuI+vyL1B27IC2NqOrEKPQXusghczIy0e1oWhBnptysJ09O9nUscnoMrIq/x7h1auNrkCMQrDWS1TONslbajrNjGThne74Qat2rcrrrq/8CpRt26Cjw+gqxAglvA7ZQbgAVIbCBLAbXYahYqkYL+18yegysia/AkXOh7ekzmqbTBAuBBrMiBfu6vl+27u3s6Vzi9FlZEX+BMrWrdDZaXQVYoTC5W7p6iogxeEI1QW82LHfyl0riSbz73mfP4Hy738bXYEYIU1V6CqRfboKTXO8sKcQA0STUVbtyr/D/vIjUHbulNaJBQXHeWTjxwLkj0QLfiwFYHPnZjrC+TXmmx+Bsnat0RWIEUq67fS4ZSeDQjUpIWMpAK/tec3oEjLK+oHS2qqfxigspbvaIXt1FbCKSAxHga+eB9gV3MXe3r1Gl5Ex1g+UNWuMrkCMUNzvIGSX1kkhU9NpmjRZl0KetVKsHSjd3frKeGEp3ZU2o0sQJlAbkfEzgNZQK9u7txtdRkZYO1Defhs06TaxkmiJi4hMExaAM5GgTlopALy+53W0PHgvs26gpFKwJT8XB+Wz7jLrv2hE5kyQUwoA6Ip2sanT+vt8WTdQduyAuDwbrSRS6iamyGMmDpApxAes3ruaVNram6NaN1A2WT/NC01vsbROxFAyhVjXF+9jfft6o8sYE2sGSjQKu3YZXYUYgaTHTsQWM7oMYUIyhfiAt1vetvRYijUDZetWSKeNrkKMQG+F0+gShEnJFOIDeuO97Apa92LZmoEi3V2WklYV+pwys0scXnVMLhD7vdv6rtEljJr1AiUYhJYWo6sQIxCqcpNG3jDE4XliMbzI+iTeXz0fjAWNLmNUrBco0jqxnF6ftWeuiNyoT0u3aL91beuMLmFUJFBEVkVLXCSQqcLi6Crj0ort917He5acQmytQGlt1bu8hGX0lsrsHTE8/lgMp8XekrIlmoyypct6C7et9ehJ68RSkm47YdlmRQyXBvVymuMAKw7OWydQ0mnZasVieiulT1yMTFXC6ArMoy3cRluozegyRsQ6gbJnj76gUViCpkDIKQsZxcgEojFssshxgNVWzltnE509e4yuYIibn3ySh958kw379+NxOjmpqYlbli5lak3NwH2iiQRfX76cB1avJpZMcs6MGfz6ssuoDgQG7qNcddWQ733/FVdw6QknAPD8xo0s+dnPhtxn33//NzXFxVn7/cYiVuwihQSKGBklnaYWN7uQi0eA7d3bOWX8KSiKNULWOoFiwlMZ//Xee1xz2mmcMGECyVSKbz/yCGfffjvrvv99fC69L/irDz7I399+m+Wf/zzFHg9fvP9+lv72t6y8/vpB3+vuz3yGc2fOHPi8xOsd8vM23nQTAfeBFcVVRUVZ/f3GIlJkncavMJeapMIu2d4L3h+cbwm1UOOvGca9jWeNQEkkoL3d6CqG+MdXvjLo83uWLaPqG9/gjR07WDxlCj2RCL9fuZI/f+5znD5tGgB3L1vG9Btv5JWtW1nY1DTwb0u83qO2NqqKig4ZNGYUccrhSWJ0iqNxFLvebSr0VopVAsUal5H791viIK2eiH6sbZnPB8AbO3aQSKU4c/r0gftMq6lhfFkZL2/dOujfXnP//VR87WvMv/lm7lq58pAbxM354Q8Zd911nPXzn7Ny8+as/z6jlfA6SCCjq2J0bKkU1YrM9upnpdMcrdFCMWF31wel02muffBBTp40iWPq6gDYHwzitNuHtCqqAwH29/QMfH7Thz/M6VOn4nU6WbFuHV/485/pi8X48umnAzCuuJjfXn45xzc2EksmufOllzjt1lt59VvfYu748Tn+TY8uUuIACRQxBjVJG/ut8e6UdcFYkO5oNyXuEqNLOSprPGQWCJRr7r+fd/bu5aXrrhvxv/3/Lrhg4O/HjR9PKB7nJytWDATK1JqaQQP9J02axJa2Nm57+mn++B//kaHfIHMibuut8BXmUpRIWuXdKSe2d29nTs0co8s4KvN3eSWT0GbuudhfvP9+nnj7bZ772teoLy0d+HpNIEA8maQ7HB50/5Zg8IjjJQsmTmR3VxexxOGv8udPmMDm1tYM/QaZk7arxBSZ3SXGxpNIWODNKXes0u1l/sespcW0Z59omsYX77+fh9es4dmvfpWJFRWDbp/X2IjDZuOZDRsGvrZx/352dnZy4kED8h+0ZtcuSr1eXI7DT3VZs3s340w4ZThS6sL8o13C7JS0RrkmU736tYXaiCQiRpdxVOZvVJq4u+ua++/nz6+9xqNf+AJFbvfAuEixx4PH6aTY4+FzJ5/M15Yvp8znI+B286UHHuDEpqaBGV6Pr11LS28vCydOxO1w8NT69fz4ySf5xllnDfycnz/9NBMrKphZW0s0keDOl17i2Q0bWPGBWWZmEPFKnIjMKE/babPJWByAhsaOnh1Mq5hmdClHJIEyBr/5178AOO3WWwd9/e7PfIZlJ50EwG0XX4yqKHz8t78dtLCxn8Nm41fPP89XH3wQDWiurORnF13ElYsWDdwnnkrx9b/+lT3d3XidTmbX1fH0V7/KkqlTc/a7DocGROyys7DIjJIUyBEpB+zoNn+gKJqZDzBOpeCee/Q/helFi120VMj4iciMpM3OM0Wynqmf0+Zk2ZxlRpdxROYeQ2ltlTCxkGiRXE6KzLGnkrhN/haVS/FUnO5ot9FlHJG5Hy0Td3eJoWIOCX+RWeWa7Fh9sJY+cx9/bu5A6ew0ugIxAglVuidEZpWkzf0WlWstIXMHirkH5eV0RstIOVRSFFYL5dW33uOOB1fw9qadtHb08Lv/uppzTj6w+GzCmUN3kQb41pVLueqSc3h5zUY++Y2hu0gDPPo/3+LYaRMAWL91N9/7xf2s3bid8pIiPvPRJfznJedk6bcyl6JkWgbmD2L2FooEisiIhM8BBbZdfTgaZ3pTPRedezL/+f3fDrn9tQf/e9Dnz7/2Dt+89Y+cd8pcAObNnDTkPj+7+zFWvrmB2VMbAegNRfg/37ydRXOn8aNrL2fDtj1c/9N7Cfg8XHbh4qz+fmbgTaZAtvUa0B3tJplOYlfN+dZtzqpAP0wrLlNQrSLuKbzLyCXzj2HJ/GMOe3tV2eCFp0+tWsuJc6YwvrYSAKfDPug+iWSKp15ey2c+umTg/ItHnnmNRDLJf3/jMzgddqZMqGXd5l3c+benCyJQHIkEDk0hoZh3MmouaWh0Rjqp8lUZXcohmbeDUlonlpJwmHM3A7No6wry3Ktvc8m5iw57n6dXraUr2MdF55w08LU3121l/qzJOB0Hrv0WnzCTrbta6OkNZb1uMwggK+YP1h4231Ee/czbQpFAsZS4XQLlSP624mV8XjfnnHLcYe/zl3+sZPHxMxlXeWA/uLauHuprBm/pU1mqH6zW1hmkuMiXxarNwYtKR5a+93v/fo8Vf1zBzvU76Wnv4eqfXs2c0w6Mg2maxuO/e5wXH36RSF+EScdO4rIbLqN6fPXAfXZu2MlDv3iI7eu2o9pUjjv9OC766kW4ve5BP2vV46t4+r6nadnZgsfnYe6Zc7nsm5cxUh3hbP1vjJ20UMSYaUBCkS0yjuTBf6zko6fPx+089NX2vrYuXlj9Lpece3LOazM7TxZP2opH4tRPrueT3/zkIW//573/5NkHnuXyb13ODffcgMvt4hdf+gWJmP58727r5rYv3EZlQyU33HMDX/7Fl9m3ZR/3fv/eQd/nqT89xaO/fpRzl53L9x/8Ptf++lpmLpx5yJ95NB0R8waKtFDEmCW9djRkyvDhvPb2JrbuauF/vnvlYe+z/J+rKA34OfOkYwd9vbK0mPauwa+Ftq5e/bayQJYqNhd3FgPlmJOP4ZiTDz0Opmkaz9z/DOd/7vyBVstnb/os3zj7G6x5fg0nnHMCb734Fja7jU9+85Ooqn59fvm3L+emS2+idVcrVQ1VhIIhHv3No1xz2zVMn3/gsL36yfWjqrkr0jWqf5cL0kIRYxb3Sh/3kfzlyZXMmjKeGZMaDnm7pmks/8cqlp61EId98OSG42Y08drbm0gkD0zJfumNdTQ1VBdEdxeAK2XMgHz7nnaCHcFBIeDxe5h4zES2vq2fuJqMJ7E77ANhAuBw6a+HzWv0U1XXv7oeTdPobu3mxk/cyDfP/yZ33HAHnftHt84ukU4QT5lzwpJ5A6W31+gKxDAl3IV5+HcoEuXdzbt4d/MuAHbta+fdzbvY03LgjaI3FOH/vfAGl5x3+MH4VW9uYNf+9kPe5yOnz8dht/PNn/6B97bv5fHnXufuh5/lio+fmaXfynxcaWMCJdihX9QGyge3BANlAXo69J3Fp50wjZ72Hv75h3+STCQJBUM8/MuHAehp1+/TvqcdLa3x5N1PcvHXL+aqW64iFAzx82t+TjIxupZ9KG7OCRnm7PJKpSBkzv8wMVShzvB6a+OOQQsTf/jb5QB8/OwTufV6fRO/x597HU3T+PCS+Yf9Pn95ciXzZk6ieXzNkNsCfg9/vOUrfO8X93Ph1T+irNjPlz91QUFMGe7nMPF+frWTavnsf32W5bct55FfPYKqqiy5dAmB8sDA1O90Ok0qmeLS6y5lxsIZAFzxoyu47pzr2Lh6IzNPHPlYSigRotRTOox75pY5A0W6uywlqRZmoJw4Zyrbn/7dEe9z2YWLj/rm/4vvXHHE26c31bP85yM/Wjpf2A0KlP6WSbAjSHHFgfVCwc4gDVMOdF/OP3c+88+dT7AjiNPjRFEUnr7vaSrr9fVG/f923MRxA/+mqLQIf4l/1N1eZm2hmLPLSwLFUlIUZqCI3FDTaRxZHJg/nIq6CgLlATa8fuDE1UhfhG3vbKNp1tATVwPlAdxeN6tXrMbhdDB9gT720nxsMwD7d+wfuG+oJ0Rfdx/l48pHVVsoYc5AMWcLRcZPLCUtM7xElvkUO91kfmp6NBylbVfbwOfte9rZtXEXvmIfZTVlnPHJM/h/v/9/VDVUUVFXwaO/eZSSypJBa1We+8tzTDp2Ei6Pi3WvruNvt/+NpV9airfIC0B1YzXHnnosD/70QT71nU/h9rl5+FcPUzOhhqnHj+6QvHAinIHfPvPMecDWv/8Nq1cbXYUYhrRdZVejtFBEdr1d7GKvkvm94jau3sjP/nPoBp0nXngiy76/bNDCxnBvmOY5zVz2zcuobjywsPHu793N2yvfJhaOUTOhhrM+dRYLL1g46PtF+iIs/9ly3nzuTRRVYfLcyVzy9UsoqykbVd2NxY2c02y+DULNGSivvgpr1xpdhRiGhMfO3lppoYjs2lLsYbMSMboM06jwVrB0+lKjyxjCnGMoCVl1bRVpZ+FtCilyz5UuzKnphyOD8iMhgWIZaZu80EX22UzYkWKkSDJCWjNfV7MEihgTCRSRC/IsGyqZNl9XszkDJWm+/yhxaJo5n0EizygSKUOYcfjbnG8HEiiWkVblhS6EETQkUIYnbb6+QXFo0kIRuSCXLUNJC2W4TPgfJQ4tbc5nkMg78p7wQdJCGS4JFCHEweQtYQiZ5TVc0uVlGYpBW4uLwtK/c68wN3MGirRQLEMxYNM+UXgUeU8YQloowyVPHstQpYUickAuW4aSQXmRdxTzXSSJPGS+t07jyaD8cLlcRlcghklaKCIXFHmaDWHGxZ7mDBS32+gKxDAp5j2dVeQRGZMfymU334W3BIoYE2mhiFxISqIMoioqbrv53iclUMSYKCkZRBHZFzPnO5VhXDbztU6QQBFjpSQlUET2xUw4AG0kj8NjdAmHZM5AkUF5y1BT8kIX2ReVUflBzNjdhWkDRVoolqFIoIgciMjsj0E8dmmhDJ8EimXIoLzIhYgJV4UbSbq8RkICxVLs2I0uQeS5KNJCOZh0eY2EBIqlONI2o0sQeSxlsyFbxg0mXV4j4XLJSiYLcSQlUET2JG3y/Pog6fIaCUUBp9PoKsQwOeIyjiKyJ6ma823KSAFXwOgSDsm8j5R0e1mGIyoDpiJ74jbprTiYqqiUuEuMLuOQzBsofr/RFYhhcoQSRpcg8lhcur8HKXGXoCrmfOs2Z1UA5eVGVyCGSU2msSH93CI7YpIng5R7zPveaN5AKSszugIxAg5Npg6L7OhVpUv1YOVeCZSRkxaKpTiS5n0qCWvrQrpUD1bmMe/FtnnfBUpLQWZ3WIYjbnQFIh+lVZWQbLsyiHR5jYaqQok5ZzKIoWSml8iGmMNhdAmm4rF7TLsGBVMHCtLtZSWOsHRLiMwL2839FpVrZu7uAky+CVN5OWzaZHQVYhhscX2mV8qSey4ppBU3Kc1JSnGR0hyk0nbSmu2ge2gcOMJbe/+vGooCNiWBXYlhI4qqRVCQ1lqm9MrkwUHMPCCPJQJFWIY76SBkN2+gpHCTUALEUx4SKSfJpEoypZAcc8mDuyDsdnDY0zhsKey2JDYljkMJYdeCyAzYkelSzft8MkKlt9LoEo5IAkVkjCesEDLNjhAKCaWYWLqIWNJNJGYjlaP3pmQSkkmVCCrgeD9wilGVWtzuNG57FKcawkk3iiVbdDmiQIeWQFJYp6BQF6gzuowjMneguN3g9UI4bHQlYhjc3TEwMFDSiouIVkE47iMaVTHbUS1pDcIRlTBewItCJR5PGo8jgksJ4qDH6BJNJeZwklJk+mC/Cm+Fabet72fuQOH9VooEiiXYEmlcmpNYDt8ENOxEqCQU9xOOWKvDXeP9gIn4AB8OxziKPGG8ahs2LWJ0eYbrc1jr8cy2huIGo0s4KmsEyq5dRlchhskdsxHL8kWUho2YUkEoHiAUtmGyhsioJRLQmfDSSSNedxqfK4iHtoLtFuu25csjmxkNAQmUsZNxFEvx9KXpyVKgJJUiehNV9IUdpuvOyrRwVCUcLUFVSvD7EvjsXTi1TqPLyqkOWdA4wGVzUeWrMrqMozJ/oNTV6eejaHn+DpInnD0x1AqVdAanziYopideSShi/qdrpqU1CPY5CFKF01FJibcHN/vzfpw6rap0y5YrA+oCdSgW2HXZ/K9QtxsqK6G11ehKxDAogDvlImwb+xhAXCmjJ1ZuubGRbIknFFp7SnA5iinxdePWWowuKWt63S40RcaR+lmhuwtLBArA+PESKBbiCWuEi0b/7+NKOd3RciJRWSV9KLGEQkt3KS5nCSXeLtxa/r02WmXHlUHqA/VGlzAs1njFNjYaXYEYAXfP6Loq4koJLZGp7OuulDAZhlhcoaW7jJbIVGJUGF1ORu0hZnQJplHmKcPn9BldxrBYo4VSXg4+H4RCRlcihsEeS+HQHCSU4QWLhp2e1Hh6+pxZry0fReMK++MVeFxllHn2Ydd6jS5pTCIuFzFFAqXf+OLxRpcwbNa5DBxvnf9UAd748PosolSxN9QsYZIBkZjK3u46+rQGrLy8vMMpY2YHm1I+xegShk0CRWSFr/PIrZMUbjoSk2npKSOZzFlZeU8DOoI+WiJTSCpjGMgy0B5VVsf3q/HXUOK2zjEe1gmUujqwyZWLVTjCCVyaa8jXNSBEHXt7J9AXlsczW6Jx5f3WynhLtVYSDjvdilxh9JtaPtXoEkbEOoFit0NtrdFViBHw9w1+eqUVD23RKbT3FJGWHd6zTm+teC3VWul2SddnP4fqoKm0yegyRsQ6gYJ0e1mNtz2K+v5TLEY5e3sbicSs9ZTLBwOtFcw/9XS/bFc/YFLZJBw2a82fttarW6YPW4qa1vAmXfRqDezvqczZ9vFiKA3o6PHTlZyEhjm7GjVVZb8qs7v6Wa27C8sFit8PZeY+AlMckFYcRHqOoTNojTn0hSAYctAaaSatmO9c8qDLKWddvq/EXUK1v9roMkbMWoGCdHtZRdJexH77IlLdZbhVc5/hUGiicYV9vY0kKDa6lEHandaZPJBt0yqmGV3CqFgvUJqbja5AHEXcWc5+bQGJhD7AGkiY5hhH8b5kCvYHxxHDHEfKaqrKDqJGl2EKqqJaau3JwawXKGVlUGX+bZwLVdRVQ0tyLqnUgX56d7cbm2LOfvtCltZgf085YYyfPdnpcZFQZEdxgIklE01/MuPhWC9QAKZZszmY7yLuelrjs0mnBz+tFE2hOG2u7hVxQFtPgF7N2K7kbXaZsdFv7ri5RpcwatYMlEmTwGGt6XT5LuSZQFt0Jpp26H5wf7dfWikm1hn0EtKMmVYccbnokLPjAWgqbaLUU2p0GaNmzUBxOPRQEaYQdjfSHpl6xKN4lZRCsSatFDNrD/oJMy7nP3ePy5pvQ9kwb9w8o0sYE2vsNnwo06bBhg1GV1Hwoq5a2mPDmy/v6/bRXdpNWrPu5NC7/3I39zx4z6Cvja8dzx9/+UeCvUHu+stdrF67mpb2FkoCJSyav4jPXfo5/D4/AJu3b+a+h+7j7Q1v09PbQ01lDR85+yN84sJPGPQbDdbWU0x1cQo3uTljJWWzsV2RwXjyoHWCpQOlqkrf1r6jw+hKClbMWUlb4pjDdnN9kJpUKdaK6aIr67Vl08SGidx6460Dn9ve32Ouvaudjs4Orv701UxomEBLWwu3/u5WOjo7uOm6mwDYuGUjpcWlfPcr36WqvIp3Nr7DT3/7U1RVZen5Sw37nQ7W2lNGTUkKp5b911aHx0VKCWf955idgmL51gmWDhSAY46Bf/3L6CoKUsJRQlvqWNLpka0d8Pf46SnpsXQrxWazUV5aPuTrTeOb+MH1Pxj4vK6mjisuu4If3f4jkqkkdpudC864YNC/qa2p5d333uWFV18wTaBoQEtPJdXFKZxad1Z/1ha7jJ0ATCydaPnWCZYPlOZmeO01iMjZ07mUUt20avMGTQ0eLjVh/VbK7n27WXrFUpwOJzOnzuTzl3+e6spDr2oOhUN4vV7stsO/1ELhEAG/udbqpDVoDdZQHUjj0IJZ+Rkht5ugrD3Jm9YJlh2U72ezwfTpRldRUDRU2h0nkEyO/lqkqLMIu2LNa5npk6dzwxdv4Cff/Qlf+/zX2Ne6jy9990uEI0O7bbqD3fxh+R/40JkfOuz3e2fDOzy78lk+dNbh72OUVBpae2tJK0OPIciEXdn5tpaTL60TLB8oADNmgGr9X8MqurxziMa8Y/oeSlqhNGXNF9DCuQtZctISJk2YxPzj5nPLd26hL9zHcyufG3S/UDjEDT++gcaGRj57yWcP+b227tzKt2/5NssuXsYJc07I0W8wMskUdMTGH3EG36i+r83OTmmd5FXrhLwIFK9XphDnSJ+nmd5wZrbq8HR6cKnWv0Qt8hVRP66ePfv3DHwtHAlz3Q+vw+v28sPrf4jdPrQ1tn3Xdr72/a/xoTM/xKc/8ekcVz0y4YiNULoho9+zzetkmHM58tq0iml50zohLwIFYNYsoyvIe3FnBZ3RzB32o6BQGrH+CykcCbO3ZS9lpfou2KFwiK/f9HUcdgc//taPcTmHhua2ndu49sZrOee0c7jy8isNqHrkOnp9xJXMHEWbVlU2qtI6cdvdzK+bb3QZGWXNjuwPqqiACRNg+3ajK8lLmmKjXZs17OnBw+XqdeH3+OlL92X0+2bTr+/9NScdfxLVldV0dHZw11/uQlVVzlx0JqFwiG/c9A2isSjf/cp3CYVDhMIhAEoCJdhsNrbu3MpXb/wqJ8w5gYs/dDEdXfrUXJtqo6TY3GeHt/XVUOsLozC2mVn7fG5iMlWYBXULcNmt30o/WH4ECsD8+bBjB2iywVymdXmOJRHOztGsJcESwkVhy0wjbuto46bbbiLYG6QkUMKs6bP4zc2/oaS4hDffeZN1m9YBcNk1lw36dw/85gHGVY3jXy//i+5gN0+98BRPvfDUwO01lTX85bd/yfnvMxLJJHQmGil3bBr190jZbGywyazMal81Uyusd4DW0SialkfvwC++COvXG11FXom4ammNZbdLsa+8jw5FFqhaRUWgD5+ye1T/dnvAw0a1sANFVVQ+Nu1jlHuHrmWyuvwYQ+k3bx4cYgBUjE5KddGRyv60bF+HTw7hspCOoJ+EMvJ1MwmHnU0FHiYAs6tn52WYkHeB4vXC7NlGV5E3ul2zSY1hvclwKSiU95ajINN+rEADuqI1I/53272Ogj/it8RdklfThD8ovwIF4NhjwWO+87KtJuasoi9SlrOfZ4/YKdWsP+urUESiKlFl+Geex5xOtirSOlncuBibmr/HOORfoDgcMNe6B9SYgYZCJ7nfgaCosygv1qYUio6+UjSG9+a4xZN/bzUjNbNyJjX+kbfsrCQ/H+Xp06FYzt4YrT7PZOJxA8Y0NCjvK0dV8vNpmW+SSehL1x31fhGXi10FvkV9maeMBfULjC4j6/LzlauqcII5t7Iwu5Tqoidu3HGwjrCD8mR+Dljmo+4+L2nlyF3M7xV4D7TT5uSsprOwq/k/YSg/AwWgqUk/M0WMSNA9Y1S7CGeSt8tLkVpkaA1ieNIadCcO30rp87jZTyynNZnNqY2nUuwujB6T/A0UgIULja7AUlI2D72RzOzVNValHaU4VIfRZYhh6A3ZD70tiwLrnCkjSjKN2dWzmVg60egycia/A6WmRt+SRQxL0DUt49urjJaSUqjsq5TxFIvoCg+d8bXP76VLSRhSjxnU+Gvybq+uo8n/V+tJJ4EzO9uG5JOUzWua1kk/R9hBeUrGU6wgGleIceCxijscvGMr3P26PHYPZzadWXAXRPn/2/r9cPLJRldhemZqnRzM2+mlWC2M/mer640fWLe0zqsW7CJGBYUzms7A6xjbuUFWlP+BAjB5MkwsnH7MkUqrTnojFUaXcVglbSV4bYX34rSaUMRGUimi3eehRSncgfgT6k6gtqjW6DIMURiBAnDKKfrWLGKIPvckU7ZOBmhQ0V4hix4toDNVzVv2wl1z0lTaxJyaOUaXYZjCCRS3GxYvNroKU+pLjDO6hKNSUgqVPZXYlPzdtiIf7LQ3kKYwN/qsD9Rz+sTTjS7DUIUTKADjx8O0aUZXYSoRdx2JhDWm59piNqrD1QU30GkVsaISOtJOXOnMnexpFdW+as6edHbBPzcL77c/8UQIjHzr7XzVS6PRJYyII+SgMm6u2WgCNIeLnar+uopHaiikA+PLPGWcN/m8glgJfzSFFygOB5x2GiiF84Q/nKTNRyRqvRXp7h431cnh73Qrsk1hv6+c1PvHDySTdtwcfY+vfBBwBbhg8gU4bbI0gYIMFN5f8HjssUZXYbiwy1qtk4O5u91UpWRrHTMIB0rp0T7QbRrP/1lOPoePC6dciMdR4JuVHaQwAwXg+OOhvLAXzYWS1u468nR5qExb+3ewurTbwy5laCs3HivO67cXt93NBVMuwO/0G12KqeTvI340qgpLloCtMGcNJe1FxmxRn2HeTi8VafOuoclrDifbXZVoh7gpnVZxafnZLelQHZzXfB4l7kPsX1bgCjdQAMrK9K1ZClDY2WB0CRnj6/RRoUmo5JSqssdXSfwIxzbbUvl3mJTb7ub8yedT6ZOW8aEUdqDw/mFcBXgOfTiVX2/Avg4fVakqOZc+RzoCVfRqR57VlIjl15HOAVeAj0z9CNX+/Gx5ZYIECsCCBQW1K3FadRKL5d9AoqfLQ3Vc1qlkWyhQTpt29F0LEgkHDvKjW6jSW8lHpn6kYM41GS155YE+hfj006GyMJqxUaf5V8aPlivooiZcIyvqsyThC7BLGf5AtCNl/enDDYEGPjT1QzKbaxgkUPrZ7XDOOfruxHkuqub37DZHyMG43nFyQFeGaS432+wja3Gk4tZ+rk2rmMY5zefIosVhkkA5mNcL556b9+enRBP5v1OALWqjpqsGt2r9mWymYLez3VNJeoRjVLGYB9Wie3vNGzePxY2LpQt1BOR/6oPKyuDMM/VpxXkoZfOQSBTGrr1qQqWqrYqAmv8BmlWKyj5/FTFtdK8Jh8WmdauKyqmNpzKvdp7RpVhOfr5rjlV9PSxaZHQVWRFzFNYMFUVTKG0tpUKrkBlgo9RVXDl0JfwI2DTrzPbyOrycP/l8plZMNboUS5KOwcOZNg16emDtWqMryah4gV6t+zp8OP1OWj2tJLWk0eVYRiRQRos2ti6rVNIPFpgj0VjcyKkTTsVtt2YXnRlIoBzJggUQDMK2bUZXkjHxdP5POjgcR5+DcbFxtJe1E0lFjC7H9GJFJew4xLYqI5WMe8HEvaw2xcaC+gUcU3WM0aVYngTK0SxZAuEwtLQYXUlGJJKFPfVRTahUtlQSKg/RqXSiHXLjEBHzl7BNzcyai1TKjoqbNOY7ybHEXcIZE8+g3Gvt2WhmIWMoR2O3w3nnQbX1xx5SqotkUq4hFBT8HX5qQ7VyrPAhxP3FbLNldgGfw4TjKFPLp7J0+lIJkwxSNE2TS7ThSCTgH/+AffuMrmTUoq5xtMRyu83MbY/fxu1P3D7oa03VTTx707MAtPa0cvPfbubF9S8SioZoqm7ii+d/kfPmnjdw/yt+dQXrdq2jvbedYm8xi6Yv4oalN1BdMvaQ1xSN3opeurSuMX+vfBD3F7PVlvnV7Z7AdiLqxox/39Fw2pycMv4UJpVNMrqUvCOXq8PlcOgtlX/+E/bsMbqaUUmqxoyfTKmdwp+u/dPA53bbgafd1+/+OsFIkDu/cCdl/jIefe1RrrnjGh779mMcM17v0144dSFfOO8LVBVX0dLdwo/++iOu/t3VPPTNh8Zcm6IpBNoCuP1u2r3tJNKJMX9PK1n77lruf/R+3tv6Hh1dHVz9X79jzsnnDNwejYR4+M5bWLNyBaFgFxU1DSz52DJO/dCnBu7T09nK3+64mfVvvEg0EqK6vonzL/sicxcfuCgg5TNFf0hDoIFF4xdR5LLewXJWYIKH2ELsdn3hY3290ZWMStKgBWY21UZVcdXAR5m/bOC2N7a+wWeWfIY5E+cwvnI8X7rgSwS8Ad7Z+c7Afa448wrmNs2lvryeeZPmcfW5V/PmtjdJpDL35u/sczKufRyllBbU9OJILELzhGau+dJ3Dnn78t/8kHdf/xf/ccNtfP+upzl96X/wwC9vZO2qpwbuc/ctX6dl11a+8IM7+d4d/+S4Redyxw+vYeemA4+hlvLm5Pc5nCJnEWdPOpvzJp8nYZJFEigjZbPpW7RYcDPJlEGBsr11O/Ovn88p3zmFr/z+K+zpPNDCm9c0jydWP0F3qJt0Os1jrz9GLBFj4ZSFh/xe3aFuHnn1EeY1zcNhy+zWKkpaIdAeoK6vDq/N2DfAXFk4dyGfuup66hYvPeTtW9e9wYlnf5ypc06koqaBxRdeRv2k6WzbcGA6/dZ332DJRz/DxGlzqKwdzwWf+hJeX2BQoKTTxnSG2FU788bN4+KZFzOhxHqvWauRQBkNmw3OOktfq2IhyWHsEJtpcybO4afLfsq9X76XH172Q3a17+Lin1xMX7QPgP/5/P+QSCWY87U5TLlmCt/503f43dW/Y0LV4Bf/zX+7melfms6cr81hb+de/vcL/5u1mm1RG5UtlVQnqvN+D6dwoJzt6uGv2JtmzGPtqqfpat+PpmlsXLOKlt3bmHH8KQfuM3Meq59/glBQvyh4/bnHSCRiTDn2wEVBOp37hSgTSiZw8cyLmVc7D5tqgYUweUAG5cfqtddgzRqjqxiWvY4lJBLG7lPWE+5h0bcW8d2Lvssliy7hxvtvZM32NVz/0esp9ZeyYs0Kfv/M71l+3XKm1R0I7M6+TrpD3ezp2MPtT9xOkaeIu754F4qS3e4pTdXoLeulR+khraWz+rNyrS9QwW7FN/D5VWdOGDKGkojH+NNt3+KVpx5CtdlRVZVPffVmTjz74wP3Cff18L8/+CLr3ngR1WbH6fJw1fd+xYzjFw/cR1HSaMVPkQsl7hJOajiJ+oA1u6atLL8vv3Jh/nx9U8lVq4yu5KhSKeMf7mJvMROrJ7K9bTs72nZw7/P3suLGFUypnQLAjIYZvL75df7w/B/48eU/Hvh3Zf4yyvxlNFU30TyumRNvOJF/b/038yZld7+l/m4wv8NPb0kvPVqP9deuKCrdgQr2c/Q1Sc89ci/b1q/hCz+4k/LqOja99Rr3//J7lJRXM32evj3Ro3f/jHAoyLX/fR/+4lLWrFzBHT+4hutuW05dk35RoGnq+x0i2Qtlp83JcTXHMat6lmzoaBDj32HywTHHgNsNzz8PafNexWpp419koWiIHW07+NjCjxGJ66vVP/jiV1UVLX34N+3+lkI8Gc9ytQfVlFApbiumyFlEsCRIMB20ZrDYHez1VxIcxt5c8ViUR+76CVd//3fMWng6APVN09m1ZR0rlt/B9HmLaNu7g+cfvZcb71xB7QT9oqBh0gw2v/06zz/2By6/9sBFgU1zkVIyv0OB1+FlVtUsZlTOyPi4mhgZCZRMaW4Gnw+eeUZfWW8yGqohb38/+uuPOGP2GdSV1dHa08ptj9+GTbXx4RM+TMAbYELVBL79p2/z7U98e6DL66X1L3HXNXcB8Oa2N3lr+1sc33w8xd5idrbt5NbHbqWxspG5TXNz/vuocZWS1hKK3EUEA3qwWEXa42W7s4K4NrxuwlQyQSqZQFEH319VVfp7yuNRPSCUQ1wUpD9wUaAqLlJkLlACrgDHVh/LlPIpMkZiEhIomTRuHCxdCs8+C3v3Gl3NIJpqz2Zvw2Ht69rHl+/8Mt2hbsr8ZRzffDwP3/Aw5UX66uS7v3g3tzx8C1f86gpCsRCNVY3cuuxWlsxaAoDH6eEfb/6D2x6/jXAsTFVxFafOPJUvXfklXA7jVrnbojZKo6UEXAFCgRBBgqS0lGH1HE20qITtagA+MCU6GgnRtmf7wOft+3axa/O7+IpKKKuuY8rsBfztjptxON2UV9fz3luv8MpTD3HRf34XgJrxk6iqm8Cffv5tPnHVt/EH9C6v9f9+iWt+eNegn6Vqrg/++FEp95Qzp2YOTaVNWR9DEyMjg/LZoGmwejW8+abRlQxIql72pE8Zxj3FaGiqRrg4TI+jx1yLIxWVruLKw+4YvHHNy/zsG58c8vUTz/44y66/lZ7OVh7+/X+zfvWLhHq7Kauu45QLLuPMj39u4M28Zfc2Hr7zFja/s5pYNERVbSNnXfR5Fp41eCqyu3gdUWXXqH+Vcf5xzKmZQ0Nxw6i/h8guCZRs2rULnnsOosZvipdwFLM3cei1HSJzNDTiRXF6Pb2E0iFji3E42eOrpFczR0eEp3gTEWXriP6Ny+ZiUtkkppRPocpXlbXaRGZIoGRbKARPP234bsUJRwl7EwsMraHQpJwpIkUR+mx9xNKx3P5sj5cdzgriJlr1P9xAsSk2GksaaS5rZnzxeJmxZSESKLmQTuvrVd56y7ASErYi9qZOMuznF7qkJ0nYH6ZX6SWZzu4BX9Gi0vcXK5onTADcxRuJKtsPe3ttUS3NZc00lTbhtBm7XkqMjjnawvlOVWHhQqip0acWx3M33XWgBMw7YFwI7BE7gUiAIopI+BNEPVHCSjizLRfVRlegYswnLGbP0OdguaecSWWTaC5rxu8s3MPf8oW0UHItGNS7wNrbc/pjU4qL3dppOf2Z4uhSrhRRX5SIPUJEi4x6NX7K42OXs5Soic/adRe/g+LopC5QR32gnvpAPV5HYeyZVigkUIyQSsGrr8K77+ozwnIgrdjZpZ2Rk58lRkdTNeK+OHFnnJgtRlSLHn0qsmqjp6iMfZjzjdmGDWfKhRJzceJchUl1stNvPpMuLyPYbHDSSTBlCrz0ErS2Zv1HKiZeIyF0SlrB1evChYsi9DfepCdJ3B0n7ogTI0Zciw+0YlIeH7tdZUQ0cwxa27BhTztQUw6IOkn0ukhGHANLGUsL+/TpgiCBYqSKCvjoR2HDBn3QPovTixU0VCVN2iRvPmJ47BE79ogd7/stEA2NhBc2u710pNwQT+CyJ0kpSZJkd7AfQEXFrjmwpewoSQdazE4y4iAZsZNKH3mkzinj7HlPAsUMpk3Tz1d57TU9XLLEZk+SNni3YTE2PR4/b8VKiYSHjpUoqobNlUJR06j2NIpNA1saxZYGRdP/VNOklTSomh5PGqgoaJqCoin64WKagpZSIa1CUkVLqaRTKomwnXTSxminlLiM29hA5IgEilm43bB4sR4uL72UlUF7mxongQSKFcUdDt6zlbIncvh+Iy2tkIyY8yXtdOqnaIv8Zs5nXyGrqoKPfQzWrYPXX8/oFGObaqItQcSwpGw2djqL2RTxoyXMta5kJAIBoysQuSCBYkaKAjNnQlOTPhvsvfcy8m1tSu7Xv4jR0RSFFncR62PFxCPWH/eSQCkMEihm5vHAaafp3WAvvwxtbWP6dnYt82dRiMzr8Xh5N1FKr0m7r0ZDAqUw5M8zNp/V1OjdYHv26McN79kzqm/jSPdmvDSROUG3l03pYtoj+TfOJYFSGCRQrKSuTv9oa9ODZfv2ES2MdCQ6s1qeGJ2e94OkI5p/QdJPAqUwSKBYUWUlnHUWdHfD2rWwadOwjh62paPYbClSKfNuz1FIetxe3ksV05nHQdJPAqUwSKBYWUkJnHoqHH88vP02rF8PiSPP5HI4oqRSvpyVKAbTVJVOl4/NySK6o4Uxj9blAr/s+1gQJFDygc+n72Z83HH6/mDvvHPYVfcOJUQUCZRcSzgc7HX42Rr158WsrZGoknOxCoYESj5xuWDuXJg9GzZu1Ffdd3QMuouTICCv8Fzpc3vYrhWxJ+aBAl0GVFNjdAUiVyRQ8pHdrq9jmTkTOjv1dSybN0M4jDvRCjQbXWFeizsctNl97Ej46I3KS6y62ugKRK7I9vWFQtP06cabNrF7x0RSceuuujajlM1Gp8vHzoSX9oRsWtVPVWHZMv0aR+Q/eZgLhaJAfT3U17P1uTTR3RFqCBOIRlDkmmJUUjYbQaebPZqPvVE3WlhC+oPKyyVMCok81AWopk7l+U0+tuPDrqQZ545RpUQoTkRwJLO/BbqVxRwOuhxe9iU9tMWdaBEJkSOR7q7CIoFSgOrqDvw9qansinrYhb6LbbEjwThHhPJ0FF8sWvCtl7SqEnK66FA87El46EvYC3ZwfTQaGoyuQOSSBEoB8vmgtBS6uobe1pNw0JNwAAFsikalK0a5LU4gHcOXiGFL5ffJj0m7nT6Hi25ctCVddCackL1zz/Ka0zn44kXkPwmUAjVpEqxefeT7pDSF/TE3+3EPfC1gT1DhiFNKDH8qjjOZQB3GKn0zStpsRB1OQqqDoOakNeGiL2knBwcfFoTGRn1QXhQOCZQCNZxAOZRg0kEw6YCDFkd61SQljgQBWwK/lsCbTuBMJLGlzdGaSdrtxG12oqqdXhz0pJ10JhzEUjaOeGatGJOJE42uQOSaBEqBKi7Wj7TPxMGQ4bSdcMzOXgafJmhTNLxqEp89hUdJ4VFTuLQkLlLYtTS2tIaqpVE1DTWdRk3rx9IeTVpRSdtUUqpCCpWUqpJEJamqxLAR1WxE0nb6Ujb6knbSSUVaHTnmcMj4SSGSQClgzc1ZOWl4QEpT6E056E0Nf88qm6JhU/SzzvujRUMZ2FRZAzRNAsLsGhrAJnuQFhzp4SxgTU1GVzBUSlOIp1USmkry/Y+UppBG/9CQabpWYMbnlsg+CZQC5vfLPksi8zwemDDB6CqEESRQCtzUqUZXIPLN9Okyu6tQycNe4CZPBq/X6CpEvlBVmDHD6CqEUSRQCpyq6psSC5EJEyfKBUohk0ARzJghG/iJzJCLk8ImgSJwuWDKFKOrEFZXUSGTPAqdBIoAYNYsfYd7IUZr9myjKxBGk0AR8P7K+cZGo6sQVlVeri+UFYVNAkUMmD9fpnuK0Zk/3+gKhBnI24cYUFIC06YZXYWwmnHjZN8uoZNAEYMcf7x+joUQw7VggdEVCLOQQBGDuN0wZ47RVQirmDABqqqMrkKYhQSKGGLWLCgqMroKYXaqKmMnYjAJFDGEzSZvFOLojjtOH3cTop8EijikSZNg/HijqxBmVVamB4oQB5NAEYe1eLG+il6IgykKnHaaTDEXQ8lTQhyW1wuLFhldhTCbY4/Vt1kR4oMkUMQRTZqkfwjB+2uV5s0zugphVhIo4qgWLZItyYXexXXqqXJWvDg8CRRxVC6XPp4iCtvChVBdbXQVwswkUMSwjB8Pc+caXYUwSnMzHHOM0VUIs5NAEcN2/PH6iXyisJSXSwtVDI8EihiRJUv0NQiiMLhccPbZcqKnGB4JFDEidjuce66+55fIb4oCZ5wh2/CI4ZNAESPm9+tXrbKwLb+deCLU1xtdhbASeUsQo1JTo08hlWOD89PcuTIIL0ZOAkWM2uTJMlibj2bM0CdgCDFSMtQmxmTqVNA0eOEFoyvJrMcf/z5PPPFfg75WXT2Vm27aMPD5li0v8+ij32HbtldRVRv19XP4ylf+idPpGfTvEokY//f/LmD37rV897tv0tBg3gNnpkyR7XbE6EmgiDGbNg3SaXjpJaMryaza2plce+3TA5/bbAdeLlu2vMwvfnEu5533LS699Jeoqp3du9eiKEMb/Q89dD0lJbXs3r02Z7WPRnOz3o0pxGhJoIiMmDFDb6msXGl0JZmjqnaKi2sOedvy5V/l9NO/zLnn3jDwtZqaqUPu9847T7Ju3QquuupvvPPOk1mtdywmT9Z3EJYxMTEWEigiY2bO1N+QVq7Uw8XqWls3cf31tTgcbpqaTuRjH7uZsrLxBIOtbNv2KvPnX84tt5xEW9sWamqm8dGP/ojm5gP9RcFgC3/845VcffUjOJ3m3QztuOPghBOMrkLkAxmUFxk1Y4a+TsXhMLqSsZk4cQHLlt3Dl7/8Dy677De0t2/jJz85hWi0l/b2rQA88cT3WbToSr785X8wfvxcbrvtDFpaNgGgaRr33LOMxYv/kwkTzDnCrShwyikSJiJzpIUiMq6hAT7yEfjHP6Cvz+hqRueYY84b+Ht9/WwmTlzAt77VyOrVDzJu3HQATjnlKk4++bMAjB9/HBs2PMOqVXfxsY/dzHPP/ZJotJfzzvuWYb/DkdjtcOaZciqnyCwJFJEVZWXw0Y/CihXQ2mp0NWPn9ZZQXT2FtrbNTJt2OgDjxs0YdJ+amul0du4EYMOGZ9m69WWuuWbwkZc//vHxzJ9/OZ/97L05rH4wj0dvRVZWGlaCyFMSKCJrvF648EJ4/nnYutXoasYmGu2jrW0LCxf+H8rLJ1BSUktLy8ZB92ltfY+ZM/WWzaWX/oKPfOSHA7f19Ozl9tvP4cor/8LEiQtyXn+/6mp9OxW/37ASRB6TQBFZ1d+18tZb8Npr+vRiK/jrX7/B7NkfoqyskZ6evTz++I2oqo0TTvgkiqJw1lnX8fjjN1JffywNDXN4+eV72b9/A1dd9VcAysoG9yW5XPo7eGXlJEpLc7+fiaLoR/cef7xsmSOyRwJF5MTs2TBuHDzzDASDRldzdF1du7nzzk8SCnXg91fS3LyIG254haIivZ/ozDOvJZmMsnz5VwmFOqmvP5Zrr32KykrznZfs9eq7RNfVGV2JyHeKpuXDBE9hFYkEvPwybNgwjDuLMWto0NeXeDzDuLMQYySBIgyxc6e+XUs4bHQl+cnp1Lu3ZINHkUsSKMIwsRi8/jqsX58fCyHNorlZP//da961lCJPSaAIw3V2wqpVsHev0ZVYW0mJvrFjba3RlYhCJYEiTGPbNnjlFejtNboSa7HbYd48mDVLZnAJY0mgCFNJpfQpxmvXQjxudDXmZrfrW93Mni3dW8IcJFCEKcXjsG4dvPOODNx/kMOhb8Q5eza43UZXI8QBEijC1FIp2LRJb7H09BhdjbGcTn3W1qxZ4HIN4x8IkWMSKMISNE0fY3nrrfzYG2wkKir0kzEnT9ZDRQizkkARltPdrbdaNm/O3wF8l0sPkKlTobzc6GqEGB4JFGFp+/fr4bJ1q76uxcpsNn17lClToLFR/1wIK5FAEXkhldLXsezeDXv26GtbrCAQ0LdHaWjQ14/YZXc9YWESKCIvRSJ6wOzZo4eMWQ768nr1MZH6ej1EiouNrkiIzJFAEQUhHNZbLV1d+kf/3xOJ7P3M4mI9PMrLD/wpmzSKfCaBIgpaX5++nX40qrdqotHBf+8PHEUZ+qGq+joQj0f/0+fTP/x+/U/pvhKFRgJFCCFERsjOP0IIITJCAkUIIURGSKAIIYTICAkUIYQQGSGBIoQQIiMkUIQQQmSEBIoQQoiMkEARQgiRERIoQhzFli1buOqqq2hqasLtdhMIBDj55JO5/fbbiUQiRpcnhGnI5hBCHMHf//53LrroIlwuF5/+9Kc55phjiMfjvPTSS1x33XW8++673HHHHUaXKYQpyNYrQhzGtm3bmD17NvX19Tz77LOMGzdu0O2bN2/m73//O1/5ylcMq1EIM5FAEeIwrr76an7729+ycuVKTjrpJKPLEcL0JFCEOIz6+npcLhdbtmwxuhQhLEEG5YU4hGAwyJ49e5g1a5bRpQhhGRIoQhxCMBgEoKioyOhShLAMCRQhDiEQCADQ29trdClCWIaMoQhxGHV1dXg8HjZv3mx0KUJYgrRQhDiMCy+8kC1btvDyyy8bXYoQliCBIsRhXH/99fh8Pq644gpaWlqG3L5lyxZuv/12Q2oTwoxkpbwQhzFp0iT+/Oc/c8kllzB9+vRBK+VXrVrF8uXLWbZsmdFlCmEaMoYixFFs2rSJn/zkJzz11FPs3bsXl8vF7NmzufTSS7nyyitxuVxGlyiEKUigCCGEyAgZQxFCCJEREihCCCEyQgJFCCFERkigCCGEyAgJFCGEEBkhgSKEECIjJFCEEEJkhASKEEKIjJBAEUIIkRESKEIIITJCAkUIIURGSKAIIYTICAkUIYQQGSGBIoQQIiP+f+MebTYmpjZ8AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Declaring variable for each set\n", "# Loop through the whole games dataset and if the item-\n", @@ -156,9 +138,9 @@ "for game in range(num_games):\n", " if(Dat['blueWins'][game] == 1):\n", " game_blue_wins.add(game)\n", - " else if(Dat['blueDragons'][game] == 1):\n", + " if(Dat['blueDragons'][game] == 1):\n", " game_blue_dragon.add(game)\n", - " else if(Dat['blueHeralds'][game] == 1):\n", + " if(Dat['blueHeralds'][game] == 1):\n", " game_blue_herald.add(game)\n", "\n", "venn3([game_blue_wins, game_blue_dragon, game_blue_herald], ('A', 'B', 'C'))\n", @@ -177,18 +159,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAGFCAYAAADaTwWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABO20lEQVR4nO3dd3xb9b3/8dc52pIt7xHbCY6z7OxAQiChKZCUTRmFQktL4QKX9nfvhXuhUFpa7u2gpZdC14XSQhltQylQKFBKSgibBAgJYYTsvbyHbGtL5/eHYifGduIh6ZwjfZ6Phx9OZNn62Jb1Pt+taJqmIYQQQoySqncBQgghMoMEihBCiKSQQBFCCJEUEihCCCGSQgJFCCFEUkigCCGESAoJFCGEEEkhgSKEECIpJFCEEEIkhQSKEEKIpJBAEUIIkRQSKEIIIZJCAkUIIURSSKAIIYRICgkUIYQQSSGBIoQQIikkUIQQQiSFBIoQQoikkEARQgiRFBIoQgghkkICRQghRFJIoAghhEgKCRQhhBBJIYGio3vvvRdFUZg/f77epQghxKgpmqZpeheRrRYuXMj+/fvZuXMnW7ZsYeLEiXqXJIQQIyYtFJ3s2LGDlStXcvfdd1NSUsLSpUv1LkkIIUZFAkUnS5cupaCggLPPPpuLLrpIAkUIYXoSKDpZunQpF154IXa7nS996Uts2bKF1atX612WEEKMmASKDtasWcPGjRu59NJLATjppJOoqqqSVooQwtQkUHSwdOlSysrKOOWUUwBQFIVLLrmExx57jFgspnd5QggxIhIoaRaLxXjsscc45ZRT2LFjB1u3bmXr1q3Mnz+fhoYGVqxYoXeJQggxIjJtOM2WL1/OaaedNujHL7/8ch555JG01iSEEMkggZJmV1xxBS+88AL33HNPv4899dRT/P3vf6ehoQGXy6VLfUIIMVISKGkUCAQoKyvj4osv5ve//32/j69cuZKFCxfy2GOPcckll+hSoxBCjJSMoaTRs88+S2dnJ5///OcH/PgJJ5wgixyFEKZl1buAbLJ06VKcTief+9znBvy4qqqcffbZLF26lJaWFoqKitJeY1rF4xAKJd7C4b7vIxFQVbBawWZLvD/835++TVH0/m6EyHrS5SWSLxqFtrbEW2sr+P19g6MnNJI5RdpiSYSL3Q65uYfevN5D72VcSoiUkkARIxeLQXv7oeDoed/ZqXdlA7PZoKCg/1tOjt6VCZERJFDE0Pj9UF/fNzh8PsiEp4/dDsXFUFEBlZVQUpLobhNCDIsEihhYOAz79yfe9u5NtESyhc0GY8YcCphMH8sSIkkkUESCpkFTE+zaBfv2Jf4tT40EpzMRLj0Bk5end0VCGJIESjaLRBLhsWsX7N4NgYDeFZlDTk4iXKqqoLo6MRlACCGBknWiUdi+HbZuhQMHkjvTKhvZbFBTA1OmQHm53tUIoSsJlGzR2gobNsCWLYnxEZF8Xi9Mnpx4k5ljhvHwww9z5ZVX9rmtpKSEadOmcfPNN3PmmWfqVlumkbZ6JotGYdu2RJA0NupdTebz+eC992DNmkSX2OTJMH68dIkZxA9+8APGjx+Ppmk0NDTw8MMPc9ZZZ/Hcc89xzjnn6F1eRpBneiZqbYVPPkl0a0lrJP00LTE2tW8fvPVWokts8mTpEtPZmWeeydy5c3v/f9VVV1FWVsaf//xnCZQkkUDJFNFoIkA2bpTWiJGEw4nfycaNidlhdXUwdaq0WgwgPz8fl8uFVX4XSSM/SbPr7IQPPpDWiBl0dMDbb8O6dTBrFkybJsGSRh0dHTQ3N6NpGo2Njfz617+mq6uLr3zlK3qXljHk2WxWfj+sXZu48o3H9a5GDEcwCO+8k7gQkGBJmyVLlvT5v8Ph4MEHHxx0s1YxfPIsNptQKPFC9PHHiW4uYV49wfLhh4lgka6wlLrnnnuYPHkyAA0NDfzpT3/i6quvJjc3lwsvvFDv8jKCTBs2i2g0ESLr1knXVqZyuSRYUqBn2vDq1av7DMrH43HmzJlDU1MTO3fuxG6361pnJpAd8IwuHof16+Gxx+DddyVMMlkgkBhj+fOfE60WaYGmlKqqnHLKKRw4cIAtW7boXU5GkMsgo9K0xED7e+8Zdzt4kRo9wfLhhzB7dqLFIrsfp0T0YGh3dXXpXUpGkEAxop07E0HS2qp3JUJPfj+sXJlYmPqZz8g6liSLRCK8+OKL2O126urq9C4nI0igGEl3N7z2WmK7eCF6tLXBs88m9gubPz+x+/EoRWIRVEXFolqSUqIZvPDCC2zcuBGAxsZGHn30UbZs2cItt9yC1+vVu7yMIIFiFJs2wapVMkYiBrdpU2Jn6PnzE+FyUCASoCPUgS/kwx/xE46Fj/p2OKtqxapasSiWxHvV0uc2h9WB1+El155LriMXr8OLx+ZBURQdfggjd9ttt/X+2+l0Ultby29+8xuuvfZaXevKJDLLS2/d3fD667Bnj96VCIOLuqyE3RYiTgvBYi8f5mrsDbUSiUfSXouqqOTYc/A6vL1h43V4KfWU4rF70l6PMAYJFD1t3pzoI5dWifiUmE0lmOcg5IawNUZEiRKn7wJWTVXY43GxUfWjGaixkGPPocxTRnlOOWU5ZRS5ikzXmhEjI4GiB78f3ngj0X0hBKApEPI6COZaCNqjhJShX2QEHA7WuWL4MOY0Y5tqo8RTQnlOOeU55ZR6SrFbZM1HJpJASbetWxM70IZCelcidBZ1WQnk2Qi6NIJquF8LZDiM2loZiIJCWU4ZNQU1jM8fL11kGUQCJV0CgUSrZOdOvSsROtEUCBY4CeQoBGwRoiloUXS5nKx2hAmPIpzSrTynXMIlQ0igpMP27fDmm4m9m0TWibqsdBbZ6HaEiZH6I5cjNivrPAqtpH+wfrTKPAdbLgXjybHLqZdmI4GSSpp2aPM/kVU0BQJFTjpzIaim/0JCUxW25DjZoQbS/tjJUuoppba4lkmFk7JqvYyZSaCkSigEK1bIIsUsk+7WyNE05rhZZzH+uMqROK1OppZMZVrJNFw2l97liCOQQEmF1lZ48cXEGeMi4+ndGjkav9PBameEoInGVQZiUSxMKJzAzLKZFLoK9S5HDEACJdl27IBXX4WI+fqvxfDEVYXOMS46nSFDtEaOJGq18kGOSjOZseapIreCGaUzOCb/GL1LEYeRQEmm99+H1av1rkKkmKZAV5mLDo8xurWGSlMUtnudbFXMO67yaXmOPGaUzaC2uBZVkR2Z9SaBkgzxeGIW18GN50Tm6i520ZEXJWLCGVQ9Wjwu1toCJu8A6yvPkcf8qvlU51frXUpWk0AZrXAYXnpJBt8zXKDAQXuBRngYK9iNrMvp5G1HiJiSWX/+Y3LGcELVCZR4SvQuJStJoIxGVxcsWybnlmSwcK6dtmLVkIPto9XtdPK2M0SUzHsJmFQ4iXmV82QtS5pJoIxUayv84x+JfblExom4rHSUWum2Zl6QHC7gcLDKGSaSYS0VDm7LP6N0BrPLZ2Oz2PQuJytIoIxEezs891xiOxWRUeKqQkeli067PwOv2wcWdNhZ5YqaaruW4XBZXcytmEttca3sepxiEijD5fMlTs+TlknGCeU5aCmOm3rAfaRCdjtvu6OmX6tyJOU55Xz2mM+S58zTu5SMJYEyHF1diTDp6tK7EpFEPa0Snz27LxJCdjvvuGIEFPNMhR4uq2plXsU8ppdOl9ZKCkigDFV3d6KbS1a/Z5RsbpUMJGyz8Y4njt9E62tGojynnJOrT8brkLPkk0kCZSgCgUSYtLfrXYlIEg3oqHLT4cjuVslAIjYr73qgy6AHdiWLTbWxcNxCJhdN1ruUjCGBcjTBIPz97zI1OINEnVaaKyyEFDnkbDBRq5XVORj2FMhkmlAwgc8c8xk5RTIJJFCOJBxOhElzs96ViCTpLnHR6g2N6nTEbBGxWVnpiWf0QH2PHHsOp44/lfKccr1LMTUJlMFEIvD889DYqHclIgk0BVrHueiyylTv4Qg4HLzpCmVBpICqqCwYu4CpJVP1LsW0JFAGEo0mFi3W1+tdiUiCuFWlaZyNoHRxjUi728U79uwJ4hmlMzih6gSZBTYCEiifFo/DCy/Avn16VyKSIOq00lipEsmQbdv1sj/XzUeW7JnAMC5vHIvHL5YV9sMk+z1/2jvvSJhkiHCOnfpKTcIkCSo6/VRr2XNa4u6O3Tyz6Rm6wrLmbDgkUA63fTt89JHeVYgkCBQ6aSiLmuq8EqOb3BmklOyZCdUaaOVvG/9GU3eT3qWYhgRKj/Z2eO01vasQSdBV5qKpICgzuZJMiWvM7IyRg1XvUtLGH/Hz3Obn2N62Xe9STEEChYMzul58UY7tzQDtVW5acgJZs7FjulliMeb6VWxa9gxYR+NRXtr+Eu8feF/vUgxPAgUSZ8DLKnhT0xRornbJyvc0cITDHB92kIE73h/R6v2rWb1Pjvg+EgmUDz6AHTv0rkKMQtyi0DjeQbcle6a26i0nEGROzK13GWn3fv37rNm/Ru8yDCu7A2X/fnj3Xb2rEKOgqQpNx9hljYkOSrqya+ZXjzUH1rCufp3eZRhS9gZKdzesWAGyDMe0NKB5nFPCREeTOkN4NIveZaTdu/ve5cOGD/Uuw3CyM1DicXjpJTlx0eTaxrnwSzeXrtR4nGND1qwbTwF4e+/brG9cr3cZhpKdgbJqFTQ06F2FGIX2ShedNgkTI3AHQ0yNZ994CsBbe95iQ9MGvcswjOwLlO3bYb1cVZhZZ7mLDqeEiZFUdfkp0bJn0ePh3tj9BpuaN+ldhiFkV6CEw7Bypd5ViFHoLnHR6pEwMRwNpvs1LFm0PuVwr+96XRY/Zl2gvPsu+GWdglkFCpy0eCVMjMoeiTAj6tS7DF1oaLy681VaA9l9EF/2BEpjI2yQvk6zCnntNBeGZQW8wZV1B7Jqv6/DReNR/rn1nwSjQb1L0U12BEo8Dq+/LlOETSrittFUEpO9uUxiWnf2dn11hjtZsX0F2XoqSHYEykcfyZnwJhVXFZrGILsGm4g9EmFGLPsWPPbY17mPt/e+rXcZusj8QOnqgjWyVYJZtY11EkE27TSbsiye9QXwUeNHbGnZoncZaZf5gfLmm4kjfYXpdBfLGfBmVhfMzm6vHq/vep1mf7PeZaRVZgfK9u2we7feVYgRiDqttObJlipm5gqFOEbLzllfADEtxovbXiQQyZ6LoswNFFlzYloa0FxhkUH4DDDBH8vgF5mj6wp38dL2l7JmkD5zf9erV8uaE5PqqHITkg0fM4ItEmFSPHsH6AEOdB3Imo0kMzNQmprgk0/0rkKMQDDfIYdkZZix3WHsGfpSM1Tv7X+P9mDmH+KXmb/llStlzYkJxWwqzUUyPTjTWGIx6rJ0BX2PmBbjtZ2vZXzXV+YFyp49spOwSbVW2YkhM/IyUZk/kJXnphyuobuBjxs/1ruMlMq8QJE1J6bUWe7Cr2bvlhWZTolrTItm77qUHqv3r8YX8uldRspkVqDs3p3Ys0uYStRppc0jYZLpCroDFGLTuwxdReNRXtv5mt5lpExmBcp77+ldgRiBtnIrmmz7mBWmBrO724uDs74y9aTHzAmUnTuhObtWpWaCQIEDv0VaJ9nCEwxSmcWLHXu8s+8dOkOdepeRdJkTKGvX6l2BGCZNgbZCWbyYbWqC8juPxqO8sfsNvctIuswIlL17pXViQp1j3LLxYxZyh8IUZfHGkT32+vay17dX7zKSKjMCZd06vSsQwxSzW+hwSVdXtqqJyFgKwOp9q/UuIanMHyhNTbB/v95ViGHqKLfLXl1ZrCAQxJkBLz+j1eRvyqiz6M3/G/3gA70rEMMUcVnpsmXPDqyiP0XTmBCTwXkOtlLiWmZcXJk7UHw+2LFD7yrEMLWXWWWSsKA8EDb5C1BydIQ62NyyWe8yksLcv88PP5Q9u0wm5LXLNGEBgDUaZZyW3TsR91izfw2xuPn3sTNvoMRisG2b3lWIYWovzu5T/ERfY4PmfxFNhu5Id0bs82XeQNm9G0JyZoaZhPIcBOWcE3EYmUJ8yLr6dYRjYb3LGBXzBsqWLXpXIIapM19aJ6I/mUKcEIqF+KDe3JOMzBkooVBim3phGjGHBb9Vxk5EfzKF+JBPmj4hGjfvEQ7m/C1u354YQxGm0VnikJldYkAyhfiQUCzEtlbzjg2bM1Cku8tUNAW6HDJ2IgZXEjLvVXmyrW8y707E5guUzk6or9e7CjEM/mIXMaRFKQbnCIfxYtW7DENo9jfT2G3Oc53MFyhbt+pdgRimzlwJE3F0Y2My26vHJ02f6F3CiJgvUKS7y1RCXjshxdxTIUV6FIXlwqPHttZtBKPmm8RirkBpbob2dr2rEMPQWShTQsXQuEIh3MjzBSCmxdjUvEnvMobNXIGyOTP2u8kWMbsFv0U2gRRDVxWXbq8enzR9gmayraXMEyiaJlutmEyXTBUWw1QalmdMj85wJ3t85lpvZ55A2b8fAnK1ayadThk7EcPjCQWxm+hlKdXMNjhvnnl6+/bpXUEf97zyCncuX059Rwezqqr49aWXcvz48QPe9/433uAPb7/NxwcPAjtu3Dh+fP75fe6vaRr//dxz3P/GG7QHAiycMIHffPnLTCor673P5oYGbvrrX3lr61bCsRgzKyv54XnnccqUKWn4jocn5LUTQwJFDJMGVZqD7YpcPHLwmOBILILNYtO7lCExz6XAgQN6V9DrL6tXc8OTT/LfZ5/N2ltvZVZVFaf/6lc0+nwD3v/VzZv50rx5vHLDDaz61rcYW1DAab/8Jfva2nrv87///Ce/evll7rvsMt655RY8Dgen/+pXBCOHzlw/5//+j2gsxss33MCa73yHWVVVnPN//0d9R0davu/hCHjNc60ijKU0MoQ7ZYm4FjdVt5c5AiUaTRz1axB3v/QS15x0ElcuXMjUigruu+wy3HY7D65cOeD9l151Ff/v5JOZPXYsteXlPHD55cQ1jRUbN8LB1skvVqzgu2edxXmzZzOzqoo/XHkl+9vb+du6dQA0d3WxpbGRW844g5lVVUwqK+OOCy/EHw73tnyMJOCQlc9iZLzBEBZNNhLtsat9l94lDJk5AqWhAeLGOCIzHI2yZvdultTV9d6mqipLamtZtX1oZ0P7w2EisRiFHg8AO5qbqff5+nzNPJeL+ePH937NIo+HKWVl/OHtt+kOhYjGYvz29dcpzc3luHHjkv59jkbUaSUs3V1ihJR4nAocepdhGLs7dpvmiGBz9EsYqLuruauLWDxOWW5un9vLvF42DnFLmG899RQVeXm9AVJ/sKuszOvt9zV7urMUReGl//ovzr/3XnKvvx5VUSjNzWXZdddRcDCYjCKQbwOkhSJGriyqsMccwwYpF4qFqO+qpyK3Qu9SjsocLRQDdumM1B3LlvHY6tU8/Y1v4LQN/S9G0zT+7c9/ptTr5Y1vfpN3v/1tzp89m3PvuYcDBhtDCbhk6qcYnZywXJAczizdXsYPlFjMUOMnxTk5WFSVhs7OPrc3+HyU5+Ud8XN/9uKL3LFsGS9efz0zq6p6by8/2DJp+NSg/uFf8+WNG/n7hx/y2NVXs3DiRI4dN457v/xlXHY7j6xalcTvcHTiqkJQlZ2Fxeg4IhFsMo7Sa2f7Tr1LGBLjB0pjo6HOPrFbrRw3bhwrNmzovS0ej7Ni40ZOrKkZ9PP+95//5IfPP8+y665jbnV1n4+NLy6m3OvtHaQH8AUCvLNjR+/X9IcTYxKq0vePTFUU4gYZXwIIFjjQZDmjSIISORq4V2e4k9ZAq95lHJXxx1AMNH7S44YlS/jaww8zt7qa46ur+cWKFXSHw1y5YAEAlz/0EJX5+fzkggsA+OmyZdz23HM8etVVVBcV9Y6L5Dgc5DidKIrCfy5ezI/+8Q8mlZYyvriY7z3zDBX5+Zw/ezYAJ06YQIHbzdcefpjbzj4bl93O/W+8wY7mZs6eMUPHn0ZfgRy5qhTJUaxZyJzO7tHb1b6LQleh3mUckfEDxYDjJ5fMm0dTVxe3Pfss9T4fs6uqWHbddb2D6rtbW/u0JH7z+uuEo1Eu+u1v+3yd/z7nHP7n3HMBuPn00+kOh/nXP/2Jdr+fkyZOZNl11/WOsxTn5LDsuuu49ZlnOPXnPycSizFtzBie+X//j1ljx6b1+z+SgFVmd4nk8EbiyF6Rh+zq2MWcMXP0LuOIFM3Iu4/F4/Dww4l1KMLwQrk26mVVmkiSuKqy3Guc7ly9KShcMfsKQ6+aN/YYSmOjhImJBL3GfaIL81HjcfI0eU710NBo8htngtJAjB0octSvqYRtcjUpkqvABL3y6dTQ1aB3CUdk7EBpadG7AjEMYYu0JkVy5cdkksfhjH7WvLHjf5DNFoXxxFWFaBatjv/DM6/w28eX09TaQd2EKr7/75cyu3bg3aY379zP3Q8/y0dbdrOvoYXvfeNirvrCkj73WXjZd9jX0P8C6quf/yw/vO7LAOza38Ttv32S9z7eSjgS5bNzp/E//3EpJQXefp+XKXKicaO/SqVVQ7e0UEZOAsU0IjnZ09f93Cur+dF9T3L9V8/m+ftuZWpNFZff8iua2wZ+vgaCYcaNKeZbV19ASeHAL/7P3vNt3n38f3vf/vTT/wTgrEXHAeAPhPjqt36BosCjd97Ak7+4mXA0ytXfvcdQ65CSzRmRSR6HC0aDdIY6h3BPfRg3UMJhCMmKa7MIu7NnfucDf32JS886iS+esZBJx1Rw+39ehsth5/FlA+82Pau2mu9cexGfP2Ue9kG22ynKz6W0MK/3bcU7H3JMRQknzJoMwHvrt7G3oYWf3XQFtTWV1NZUctfNV/Lh5l2sfN98Z48PlSUWw6Nlz3NrKFoCxh0KMG6gSOvEVCJZsqg5HIny8ebdLDy2727TC4+tZe0nQ9tteiiP8beX3uGLZyxAObieKRyJoKBgtx3q/3HYraiKwuqPtyblcY3KK4tR+mjxGzdQjNs7KYFiKmFr5na7HK6tI7HbdHFB392mSwq8bNuTnFmJL761Dl9XgItOW9B725y6GtxOO3c88BQ3/8sFaJrGTx94ilg8TmOrsTYHTTaXpkIKxuZfefwVlv9xOR0tHVRNquLSmy5l/PSBx8H2b9vPs/c9y+6Nu2k50MLFN1zMki/3HQfbvHYzL/7xRXZv2E1Hcwff+Nk3mH3y7D73WfvyWl7/6+vs3rib7o5uvrv0u4ydMryFydJCGQkJFFOJKNLXnSx/eeEtTj5+GmXF+b23FeXncs9t17Ji1YdMPfc6Zpz3n/i6A0yfNK7f/m6ZxqUl/2Vq9YurefLnT3L2NWdz659upWpyFb/6j1/hax34dSccDFNcVcwF/34B3qKBx8HCgTBVk6r40re+NOjjhgNhJs6eyIX/ceGIa2/2N4/4c1NNWihi1KJOK/EsmeFVkJfYbbq5re/AaFObj5KCI+82PRR7G1p46/0N3PffX+/3sUVzp/L6H2+ntaMLi0UlL8fN3Itv4tyTi0f9uEbmiGtJ34LlpaUvcdL5J7Hw8wsBuOzbl/Hxmx+z8tmVnHHFGf3uXz2tmuppiU1dn/6/pwf8mtMXTmf6wulHfNwTzj4BgOb9Iw+FrnCXYc+ZlxaKGLVsGpC326xMnzyOlWv77ja98v2NHDt18N2mh+qJZSspys/l1BMG3/CzMC+HvBw3K9/fSEt7J0sWzBr14xqZI57c3aGikSi7N+6mbn7fcbDa42vZ/mFyxsFSrTvSrXcJA5IWihi1iCt7AgXg6i8s4cb/fZgZU6qZPaWa3z+1An8wzMVnJMY8brjjIcqK8/nW1YndpsORKFt2JXbNjkSjNDS3s37rHjwuB9WVpb1fNx6P8+Q/V/KFz52I1dL/Z/r4sreYOG4MRfm5rP1kG9+/53Gu+sJiJowtT9v3rgdbLLnjc13tXcRjcXIL+46DeQu91O80x+4c/oiffGf+EO6ZXsYMlHgcuo2ZwKK/iM24+4umwrmnzKO1o4ufP/wsTW0+6iZU8chPrutdYLivsRVFPTSu0dDSztlf/1Hv/3/3xHJ+98Ry5s+czF/uvrH39jfXbmRfYytfPHPhgI+7fU8D//v7v9HR2U1VWRH/ftmZ/RZIZiK7gc5DMorusDFfH40ZKD4fGHgTZNFXVM2OGV6H+9r5p/C1808Z8GOHhwTA2PJidr702wHve7hFc6ce8X63XHMht1wz8sFcs7LEYqhAsp5lOfk5qBaVzta+42C+Vh95RaMfB0sHo3Z5GXMMRbq7TCWmyBWkSC1XEhc3Wm1WxtWOY8O7fcfBNq7eSM3M0Y+DpYO0UIajq0vvCsQwxJN27SjEwDyKhW6Sd+Gy5LIlPPw/D1M9NTF7a8WjKwgHwiw4NzEO9tBtD5Ffms8F/54YB4tGohzYfqD33+1N7ezZtAeH20Hp2MQ4WNAfpGnPoe3lm/c1s2fTHjx5HgrLEyctdnd001rfSntTOwD1uxJjNt4iL3nFQ28dGbWFYsxAkS1XTENTFQkUkXLuJC9unHfaPLraunj2vmfxtfiomlzFdb++rneNSWt933Gw9qZ2fnTZoXGw5X9czvI/LmfysZO58XeJLs5dn+zi7q/f3XufJ37+BAAnnnMiV/zPFQB88PoHPPL9R3rv88B3HgDgnGvO4dxrzx1y/UZtoRjzxMZ334V16/SuQgxB1GFhX5V0eYnU2uV1s1H1612GYbhtbr4y8yt6l9GPMcdQZIdR04jbs2vKsNCHUxrBfQQiAeKa8X4oEihiVGLWzN72QxiDxYAdKXrS0AhEAnqX0Y8EihgVTZVAEaknz7L+InHjvU5KoIhRkUARQh9GHP42ZqBEs2OjwUwQlyEUkQZy2dKfhgTK0GTwkaaZRlooIi0MeDWuN2mhDJUBf1BiYHFFfldC6EFaKEMlgWIa0kIR6aBk+CFiIyHThodKAsU01Jj8rkTqSUPYHCRQxKgoxrtIEiIrSAtlqCRQTEOVX5VIA+nw6k8G5UXGUaTLSwhdyKD8UDkcelcghigLz9YSejDg1bjoz5iB4nTqXYEYIiUuf+gi9aTLqz+n1Xivk8YMFGmhmIbM8hLpEJVpw/24rC69S+jHmIEiLRTTUGLS5yVSLyLrnfqRFspQSaCYhhKVQBGpFzTmK5VunFanIRd7GvPXJIFiGjIoL9IhZMAZTXoyYusECRQxWtJCEekQkhW0fRhx/ATDBooMypuGAigyB0ekmF8CpQ+XTQJl6KSFYipWrHqXIDJcQIvpXYKhSJfXcEigmIpNTtkSqaRIl9enSZfXcDgcYMAZDGJgtogxn0YiM0RVuWD5NGmhDIeigN2udxViiKxhmYEjUidqkUD5NK/Dq3cJAzJmoCDdXmZiD0j/tkidqMW4L1N6KXIX6V3CgIz7m/J49K5ADJG1O6J3CSKDhaX3uw+n1Ynb5ta7jAEZN1CKjJnAoj81rslML5EyYdW4L1N6KHQV6l3CoIz7m5JAMRWrzPQSKdIlp7j1UeQy7mujBIpICntUAkWkRrsiY3SHM+r4CYYOlIICkKauadhkppdIBQXalLDeVRiKdHmNhKpCfr7eVYghsgZl4ZlIvrDVhjyzDlFQKHAW6F3GoIwbKEi3l5nY/DLTSyRfwCaTPQ6X78zHYuCFnsb+bRUVwZYtelchhsASiWPFSpSo3qUMW1yxEcdJTLMTV+zE4jZicQuxwycaKKCgHXrfc7OiYVGiWNUwFi2IRQmiaiF9vpEM1GWROcOHM3J3F4YPlEJj//BEX86IjS6bMQNFA2JKLhFyCEedhKM2IjGVWBTiox7+cQCH1k2pCtisGlZbHJsaxapGsKl+bFoHCjLAPBwdcuBOHyWeEr1LOCJjB4p0eZmKy6/Rlad3FQkaFsLkE4p7CEachEJqEoJjaOIahCIKoYgFsBwMnBygFKddw2kP47D6sWttqMiA85E0yYB8H1XeKr1LOCJjB4rLBW43+P16VyKGwNkeRslDt7P1YoqLQLyY7pCbYMiYXSXBsEIw7DgYMgU47BouRwiXpRO71op+Pz3jiVgsBKVF18ttc0uX16gVFUmgmIQajWPXHISU9I0hxBUHAa2Y7qCHQMjYc0wGEgorhMJO2nFisZSQ6w7hVluw4dO7NN35HXYgoHcZhjHWO1bvEo7KHIGyZ4/eVYghcoUshFK8r2dcsRHUiukO5+IPmC9EBhOLQXung3YqcNjHkOvsxqU2Ze0gv89qzFamXsbmSaCMnoyjmIqzMwopCpSIko8vXEy335rxHUOJlksOkEOOO4bH1oGDZpQsWpXRJivkeykoVOZW6l3GURk/UCoq9K5ADIPdF8ZSYiGWxL7vsFJIR6g4o1ojw9Hlt9BFIVZLIfmeLtzKgcyfLabIgPzhSj2lOKwOvcs4KuMHissFJSXQ1KR3JWIIFMAZs9NtGX3fd0gppiNYSCCYnUHyadEYNPtysFonke/pxM2BjG2xdDucRAnqXYZhmKG7C1MECsAxx0igmIjTD925I/tcDQhRSkeggKAchDGgaBSaO3KxWnMp8PhwcyDjZoc12+Ui4nBGny7cwxy/tXHj9K5ADIOrY2RdFSGKaPBPoaGjUMJkCKJRaOrwcsA/hYAy5mD7MDPsV6W7q4fT6qTEbewFjT3M0UIpLpb1KCZiCcWwYyc8xEV7Gnbao2PxddtSXlsmCkegsT0Pu81LsacRm9amd0mjErbZ8CF7w/Wo8lahKOa4WDBHCwVppZiNKzS0a5UA5ezrqpEwSYJwRGF/exkd8fFoGHcDwaNpc8hz4XBTiqboXcKQSaCIlPC0HLl1EsNNU3gSjR35xDJ8wlK6tXc6OOCfRFgx9qrqwdRbjLkfnB5y7blUeo0/XbiHeQKlqgos5r3qyja2QBSnNtA0R4UubSz7fePwB+T3mSqRCBxoLzVdayWuqjTI/ma9JhdN1ruEYTFPoFitMGaM3lWIYfB09X16xXDTEJhMi8+Tto0as117p4N6E7VWfE4HmjmGC1JOQWFKsXm6uzBVoHBw+rAwDXdzEPXgUyyklHCgc5zM3tJBuLe1Um34mWBNMnzSq9JbSY49R+8yhsVcgSLjKKaixjXcEQe++DHUtxcRy8w1eKbR3umkKTyJuGLQV20F9pGd+5YNpLa4Vu8Shs1cgZKbCwXGPU9Z9BVTHfjbZ9LW6dK7FHGQP6BS3z2BqDLClacp5Lc7CCly1cHBtSfV+dV6lzFs5goUpJViFhFbPg2WhcR9+bhUCRQjiUTggK+SkFKsdyl9tMjq+F4TCyeiKub7eZiv4gkT9K5AHEXIXkp9bB6RSKJrJTdsvKvhbBePQ317MX4MsvmqAjstMrurhxm7uzBloBQXJ96EIQUdFTRGZxOPH3pqOTucWBVzbMqQbZo6vHRq+k928Tmd+DN9B+UhKvOUGf5kxsGYL1AAas2Z3pnO7xxHY3g68XjfmUSKppAXN8hh86KfVp+L9liNrjXstuv68IZy7Jhj9S5hxMwZKBMnJtalCMPock2gOViHNsgiAk+bB4tingV22aajy05HfLwujx2xWdmnyFb1HDz3xCxb1Q/EnIFit8tYioF0u6ppCUw84gbqSlwhT5NWipG1dzro1NI/6aXeJc2THseNOU7vEkbFvJf5tbWwaZPeVWS9gLOSlsDQVvN62j20F7QT18wxNfTpF57msWceo7W9lQnVE7j+quupm1Q36P1fWfkKD/75Qeqb6qkcU8nXv/J1TjjuhN6P/+TXP2HZq8v6fM7xs4/nzu/d2fv/b//k22zduZX2jnZyPDkcN/M4vv7Vr1NcmJ5xw1afGzWvEg/70vJ4mqKwXZXWCRnQOgFQNE0z7yYYTz4Jra16V5G1Qo4yGsKzBu3mGkhnSSetmvF/Zy+/9TI//tWPueHaG5g6aSpP/P0JXl31Kn/69Z8oyOu/FurjjR9z3feu45rLruHEuSey4o0VPPq3R7n/zvupGZcYn/jJr39Ca0crt/zbLb2fZ7fZyc05NAvu8eceZ9qUaRTlF9Hc2sy9f7gXgHt/fG9avu8epXntuKhP+eO0u128Yx/96Z6Z4MyJZ5o+UMzZ5dVj+nS9K8haYVshjZGZwwoTDrZSzDC//vHnHuecJedw1qlnUT22mhuvvRGnw8k/VvxjwPs/+fyTHD/neL50/peorqrmqi9dxeTxk3n6haf73M9utVNUUNT7dniYAHzx3C8ybfI0ykvLmV47ncsuuIxPNn9CNJreHXgbO/IJKqUpf5ydNnO0VlMtE1onmD5QJk0Cp1PvKrJOzOKiUZvTZ2rwUKkR1fBjKZFIhM3bNnPczEP92aqqctzM41i/ef2An7N+8/o+9weYN3se6zf1vf+69es478rz+Mp/fIW7fnsXHZ0dg9bh6/Sx/PXlTJ8yHasOk1Aa2wsJUZSyrx+y22lQZKsVgLkVc/UuISnMO4YCie3s6+rg/ff1riRraKg0WecRG+IBWgPJbc2ls6iTqGbMcy86OjuIxWMU5Pft2irIK2D3vt0Dfk5re2u/rrCC/AJa2w917x0/53gWnbCI8tJy9tfv5/5H7+fmH93MvT++F8thRzPc98f7ePqFpwmGgkydPJU7vnNH0r/HodCAxs4SKrxBLFp30r/+fqfM+uPguhOznBl/NOZuoQBMnQqq+b8Ns2hzHUsoNLqtVJS4QkEs+/ZkW3zSYhbOW8iEYybwmfmf4Y5v38HGrRtZt35dn/tdet6lPPCzB/jZbT/Dolr48a9+jF5DnfE4NPur0JL8UqGpKjtkqjAAx1WYe2bX4cz/SuzxQI2+i7KyRZdrEp2B5HSBuFpdONSBDuDSX15uHhbVQlt737PZ2zraKMwfeAVzYX4hbR2fun/74PcHqCivIM+bx776vjOq8r35jK0Yy7xZ87jthtt4e+3bg3a1pUMwrOCLJXc1favLQUQx73ygZBnrHZsxrRMyIlCQwfl0CNlLaA0kL7gVFAoCxmyl2Gw2Jk+YzJqP1vTeFo/HWfvhWqZNnjbg50ybPI01H67pc9t7H77HtCkD3x+gsaURX6ePooLBQ1o7eBJZJBIZwXeSPO1dDoIkaZBegY02fb8fI7AoFhaOW6h3GUmVGYFSWiq7EKdQXLHSos044sLFkXB0OshRjXmA0BfP/SLPv/Q8y15Zxs69O7n7d3cTCAU489QzAbj9V7fzuz/9rvf+F519Ee+ue5e/PPsXdu3dxUN/eYhN2zZxwZkXAOAP+PnNI79h/eb1HGg8wJoP13DrHbdSWV7JvNnzAPhk8yc89Y+n2LJjC/WN9az9aC0/+PkPqCyvPGIwpUtzZyExZfQ7Rzd53HRhzPGzdJpVPguvw6t3GUll7kH5w82fD3v2gImX1RhVu3M2kUBqDmXK9+Xjz/UbbrHjqQtPpb2jnQcfe5DW9lYmjp/Ind+9s7cLq7G5sc/05+m10/nef36P3//599y/9H6qxlRx+823965BsagWtu3axrJXl9Hl76K4oJi5s+Zy1Zeuwm5LrBR3OBy8/s7rPPSXhwiGghQWFHL87OO5/KLLe++jp1gcWgJjKXVuOThkP3yaqrLBIjO7cu25zC6frXcZSWfuhY2f9tprsno+yQLOKhqDqb067irqokVpSeljiOQpyA3iVXeO6HMP5Lr50OJPek1mc8bEMxiXl3m9KpnR5dVj7lzZNDKJYqqDlkjqd3b2tHhwqrKeyCzaOp0jWp8Ss1jYaJGZXRMKJmRkmJBxgeLxyAB9ErU5ZhGLpX6tgIJCUWcRCsNbdS/00+ovToyuD8N+j4MwxuraTDen1ZlxA/GHy6xAAZg9W1bPJ0HIUUZ3GmdhWQNWCjDmrC/RXzii0K1VDvn+UauVTYrs2bVg7AKc1sx9fcq8QLHb4VjzHlBjBBoKrdrgu+qmSm5LrmHXpoj+2rpy0BjaZIFdLiuxLF93Mi5vHBMLJ+pdRkplXqBwcPW8N7Om46VTl2sy4bAOL+waFHUVmWLzSJGY9dURO/qivLDNxrYs36LebXOz6JhFepeRcpn5l6uqMG+e3lWYUkx10h7Sb8DQ5rdRFEvdhoQiuTq67ESV3CPeZ4fbwjA3pc4oqqKyePxi3Da33qWkXGYGCiROdCwp0bsK0/E560a0i3AyuVvd5KpHfpESxtEWGjPox4J2OzuzfM+ueRXzGJM7+M8ok2RuoHBwsaMYspjFRWfAGCFc0FKAXdV/MZ84On9AHfTslM2uLG6aANX51cwqn6V3GWmT2YFSUSFbsgyDz1E37AOzUkWJKRR3FctUYpNo6y7sN4241ePiQBafd+J1eDm5+mS9y0irzA4UgAULwJaabUMySczipjOQnnPLh8rmt1EUl/EUMwhHIEBZ7/9jFgsf2LI3TKyqlc/VfA67Jbta2ZkfKF4vnHii3lUYns9Ra5jWyeE8rR68qszYMwNf4NBJnFtybFm9iHHh2IUUubPvYijzAwWgthaOSe55DpkkrtoN1zo5XEFTAW5L5s+QMbtgWCFEIT6Xk11ZPBBfW1zLlOIpepehi+wIFIBFi2QF/SC6nBMM2TrppUFRS5EsejQBX6SYDxzZe9ZJqaeUhWMzd2uVo8meQHG54DOf0bsKQ+oMG39KoxpVKekowaLIOeRGtt9WTkQz5hk3qVboKuTMiWdiUbP3OZo9gQIwfjxMnqx3FYYScFYSjZpj0oIlZKE0UCor6Q0q6s6lHhe2WPYdye11eDlr0lk4rNndis6+v8wFCyAnO6+gBtKJucaW7F12SiLGWCsjDmO1stuW2Nwz6C9G0bLnKt1tc3PWpLOyYiX80WRfoNjtcHJ2zQ0fTNTiIRA034p0Z7uT0liSzjcXSdGcU0z44DqUeFzFyXi9S0oLh8XB2ZPOzrijfEcq+wKFgwseZ8zQuwrd+R3map0cztXmoiQuLRUjCOV4adb6dvVooXLd6kkXm2rjzElnUuCSYxd6ZGegABx/PBRk9xOh2+RdR+5WN8Vx4053zgaazcFuS36/24MhD4pmjrG5kbAoFk6feDqlHmkpHy57A8VigVNOSexMnIUiVi/hiPmnUXtaPRRrEiq6UC3scZcQG2h7HA2cDP0ALjNRFZXFNYupyK3QuxTDyc5X0x7FxVm7gWTAfvRzLMzC0+KhSMu+Vcn6Umj0luLnCIPv0cy7ercoFk4dfyrV+dV6l2JI2R0okBhLmTpV7yrSzh/LrKv6nJYcSmLm7sIzE19eMa3akfepCge9ZNJBKA6Lg7Mnn01NQfZNix4qCRSAhQth7Fi9q0ibuGonFHLpXUbSudvclEfKZZ1KioVy8tnP0afIxmIWHErZUe9nBjn2HD4/5fOU52T+ZIPRkL88AEWBJUugsFDvStIiaMvcPwpHh4OyQJmsqE+RuMvNTkveEO6ZYIma/7lW5Cri/NrzZTbXEEig9LDZ4MwzwZ35i5OClszq7vo0e5ed8q5yrKpV71Iyi83GDkcR2jA+JRIy94twlbeKz0/5vCxaHCIJlMN5PHDGGWDN7BeiYDTzF2FZA1bGtI/BqZp/JpshqBb2ekqJaMN7yYhE7Fgx5/NtctFkzph4BjZL5k5/TjYJlE8rLobFixPdYBkopjqJhLNjvyE1rFLaXCrn0ydBs7eELm1kF1pWEy5AnVM+h5OrT5bxuGGSn9ZAjjkmYw/lCtkzY5B0qJS4QmFjIUXItOKR6sor6rcSfjjU+NDHXPRmU22cUn0K8yrn6V2KKWV2385oTJ8OPh98/LHelSRVWDXPH3cy5TTnYMu10eRsIqbF9C7HNCI5XvYyus1UoxGPKV5pit3FLB6/mDxndv6NJIMJfs06OvHERKjs3q13JUkTiXv0LkE3jk4HFaEKmvObCcQDepdjeFF3Ltstox9Uj0Rc4FRAGc5wfnrNKJ3B/Kr50sU1SvLTO5Ke6cTFmTMrKhzN7tkqaliltKmUQrJjivhIRd05bLMVDmtG12C0uIJNMeZVv9Pq5MyJZ3Li2BMlTJJAfoJHY7XC2WdnRKjEVTvRqDRK0SC3OZeKQAV29cirvbNRzJ3DNtvwpgcfjUXrv4Gk3ipzK7lo6kWMzcueRc2ppmiaZtx2qJGEw/CPf0Bjo96VjFjQUU5DaFbKvv4fXvkDv13+W5o6mqirquP7l36f2eNnD3r/59c8z13P3MXelr2MLx3PLRfewikzTun9+I0P38hfV/21z+csmrqIP1z/h97/f7z7Y+546g4+2PkBFtXCmXPO5LsXfxePc2hde5qq4Svy0a61j+h7zjQxt4dttiLiA234OAru3P34LR8l9WuOlKqozK2Yy6yyWSgZOptTLxIowxEOw7JlUF+vdyUj0uWaSEtgQkq+9nOrn+PGh2/kR1/+EXPGz+HBFQ/y/Nrnefn7L1Ps7d+6W7NtDV/82Re5+fybWTxzMc+8+wz3/fM+/n7r35lSOQUOBkqzr5k7v3Zn7+c5rA7yPInuk4b2Bk77/mmcM/cc/mXxv9AV7OIHj/+A0rxSfnPtb4ZVf9gbpsnZRDQeHfXPwqiefuFpHnvmMVrbW5lQPYHrr7qeukl1vR+PuTxssx8KkzWvPc8zD99FS/1eSivHc+E1tzBj/qHAX/vGMl7/+1J2b/6I7s52vnvf84ydOK3PYzbt38WTv72dbetXE4kEmHbiNC696VK8RfqsTSl0FbLomEWy7XyKSJfXcNjtidX0Y8boXcmIxJTU7d/1wEsPcOlJl/LFhV9kUsUkbr/sdlx2F4+vfHzA+z+44kE+O+2zXHv6tUwcM5Ebz7uRaeOm8cirj/S5n91qpzSvtPetJ0wAVny4ApvFxg+/9EMmlE9gVvUsbr/sdl5Y+wI7G3cOq367z05FSwX5ivG6ZpLh5bde5p6H7+FrX/wa9995PxOOmcA3f/hN2jraoGfM5LAw2bZ+DQ/cfh0Lz7iE7973D2YvPI3f/Pe/sm/Hpt6vGQ76mTh9Lhdec8uAjxkK+PnFt74KisJNP3+Em39/M9FIlHv+6x7i8XiavvMEu8XOgrEL+ELdFyRMUkgCZbh6tmipMt/279FRrCU4knA0zMe7P2Zh3cLe21RVZWHtQtZuXzvg57y//X0W1i7sc9uiqYv63f/tzW9z3DeP49TbTuXWpbfS1tXW53FtVhvqYWfaOG2JlfGrt64e9vehxBTymvKo7K7EZcmszTMff+5xzllyDmedehbVY6u58dobcTqc/GPFP4h4vP26uVY89SDT5n2W0y+5ljHHTOS8K29k3MRpvPrMocA/4XMXcs5Xr6f22IUDPua29e/R0rCXK276GRXV06icWMmV37+SXRt2sWn1pgE/JxVqi2u5dPqlTC+dLl1cKSaBMhJWa2KLlgmp6T5KlViKAqWtq41YPEZxbt+urRJvCU0dTQN+TpOvqV9XWIm3hOaO5t7/f3baZ7n7yrtZ+l9L+daF3+KdLe9wxa+vIBZPrCNZULuApo4mfvvP3xKOhuno7uCnT/8UgMaOkY91WQNWShtKKY2VYlXMP4khEomwedtmjpt5XO9tqqpy3Mzj+GjbZrZZ8/sNwG//5P1+QTF13iK2fzLwBcLAjxtGQcFqsxM/uGWL1W5FURW2rts6yu/q6ErcJZxfez6LjlmE0ypb8KSDBMpIqWpii5bp0/WuZMiicXPtSfT5eZ/nc7M+R21lLafPPp0H/+1BPtj5AW9vehuAyRWTuevKu7j/pfup+4865t08j7FFYyn2FidlCqirzUVFa6IbTEnyIHU6dXR2EIvHKMjvu6bEWzKGA+1tMMD35mtrwlvQN/C9+SV0tDb3u+9gaurmYHe6eeqBOwj5g4T9UZ78xZPEY3E6mjtG8R0dmdPqZNExi7ig7gLp3koz819+6W3BAnC5YPXwu1jSLR5Lza+7IKcAi2qhubPvi02Tr4mSvIH3cSrxltDs63//4rzBp2ePKxlHYU4hO5t29navnXf8eZx3/Hk0+Zpw290oisIDLz3AuJJxSfneerrBcu25+PJ9dMRT90KYTl15RXQoqd3TLTe/iGtvu4elv/wurzz9MIqqMO+0eYyrHYeiJj+gVUWlrriOeZXzsFtkOrgeJFCSYc6cRKi88QYYeNJcPJaaBqndamf6uOms3LCS02efnniseJyVG1dy+SmXD/g5c2rmsHLjSq5aclXvbW9ueJNja44d9HEOtB2grbuN0rz+V50l3kRwPf7W4zhsDk6qOykJ39khalglvzGfXGcuHbkddGqdSf36qZSXm4dFtdDW3gaqhabcElpw4GtrIq9g4MD3FpTga+sb+L72JvIKh7cea+rcRdz+x9fp6mjFUbgOW26Em06/ieLK5K3rsqpWaotrmVk2kxz76LaJEaMjXV7JUlubGFdxGHMnXw0FLYXdNlcvuZo/v/lnnlz1JFsPbOXWR2/FH/Zz8YKLAbjhoRt6xzcA/mXxv/Da+te4f/n9bK3fys+f+zkf7fqIr538NQC6g938+Mkfs3b7WvY07+GtDW9xzb3XUF1SzaKpi3q/ziOvPMLHuz9me8N2/vDKH7jtz7dx8wU3k+dOzcpsS9BCYVMhld2V5KjmePGy2WxMnjCZNZ+sY3fuGFpwEI/H2fj+SmqmDhzgNVPnsPH9lX1u27DmzUHvfzQ5eYXk5BSycfVGOls7mbVo9OuhHBYHx445li/P+DILxi6QMDEAaaEk09ix8IUvwEsvGW4BpKZYSerS5085d965tHa18vNnf06TL7Gw8ZHrHultOexr3ddnhs1xE47jl1f/krueuYs7/3Yn1aXV/O4bv+tdg2JRLWzYt4G/vv1XfH4fpfmlLKpbxA3n3YDDdii0P9j5AT9/7uf4Q35qymv48Vd+zIUnXJi6b/Qga8BKUaCIfGc+nd5OOrVO4lp6p8IOxxcuupw7fvbf5E09geops1nx1O8JB/0sOCMR+A/dcQP5xWVccPW3AFh84b/wsxsuYfkT9zNj/imsfuU5dm3+iK/81096v2a3r53Wxn20tySe6/V7tgPgLSwhrzDRinxr2eOMGTeR3Pwidr/1Jkvv/h2Lv7yY8uqRn+TosXmYUTaDuuI6OavEYGRhYyrE4/D224baqThmcbE3tmgI9xQjEbfG8ef56bB0GG5xZFdeEXvJ4ZW/PcKLj/8OX1sTVRPquPTf/ofxdXMAuOuGSygqr+KKm+/q/bw1rz3PMw/dRUvDXkorq7nwmm/3Wdi48p9P8MidN/V7vHO+ej3nfu2/AHjq/jtY9eKTdHd2UFxRymcuPJElly0Z0fTdPEces8pnMblosuy7ZVASKKm0Ywe89lpihb3OotZc9kUX6F1G5lMgmBfEZ/fpv6PxYeMlRuDy7iKgbhzW56iKyri8cUwumswxecfIOhKDky6vVBo/HoqKYPlyaGnRtRRNrujSQwNnuxMnTmLOGP4cP11qF+F4ei8qNLuD3e4SApolrY+bLOU55UwsnMiEggk4rMYIRHF00kJJh1gMVq6EDRt0KyFqzWFfdOAVzSL1wjlh/G4/XVpXyg/4inpy2WEtIGawtTMu73YC6pZBP57vzGdi4UQmFU4i1yHHNpuRtFDSwWKBz3wGyssTU4uj6e9jVwzWr59t7F127F128pQ8wt4wAUeAbq2bqJbM34tCl7eIvYpRD1HrP2nBbXNTU1DDpMJJlHjMd/a86EsCJZ0mTUqcq7J8ObSnd7t0ZYA/ZpF+iqbg6HDgwEE++URdUYKeIH7VP6oxF83uZL+7iE7NwH/SSgyLYqE8p5wqbxWV3kqK3eY/Z0gcIl1eeohG4a23YFP6NsjTUNnN59L2eGL4NKtGyBMiZAsRUkME40G0o871VvB7C9mj5KRyVviIKSjYNQeWsINZtXHqqr1YVQOHnhgV+c3qwWqFz34WpkyBN9+E1taUP6S0UIxPiSo4OxID+gCaohF1Rwk7w4QsIUKE+gzuG61VoqBg1axY4zaUsINYt4OQz05IS4zlFM8Bq8wNyWjGeCZmq/JyuPBCWL8e3nsPIpGUPpzFEiMWM+esn2ykaAq2bhu2bhseEuMimqoRccXY7XRxQHGiRWPYLVGiRImn5aJBwapZsGo21KgNLWIlHrQSDdiIhaxEgMGexQbdREIkkQSK3lQVZsxIbIW/ahVs25a6h7JEJVBMLmBz8WG4kI7u/ivEVVsMqzOGYomjWOKgxlEsGooaR1PjoGpoyqH32sHNeBQU0A7+S0v8W4mraDEVet7HVKJBK9GAlaimMJKpBHbZrzHjSaAYhdud2A6/ri7RDZaCQXurGiFikEVuYnhiFgs77PlsCwy+X1U8YiEcMeYFg6IknuIis0mPptFUVMBFF8HxxyfGWpLIgv4r9sXwaIrCAXcer8YrjhgmRufxJBrjIrNJC8WIVBVmz4aJExPdYDt2JOXLWtRQUr6OSI82l4f14Xy6/eb/M81LzebPwmDM/0zNZDk58LnPwZ49iWAZZTeYVdN5bykxJAGHgw1aAU2BzOme9Hr1rkCkgwSKGYwdC1VVsHMnrFsHTQOf03401rh5DoXKRkG7g21qHnuDLr1LSToJlOwggWIWipLYbHL8eNi/PxEse/cO60vYI6lf7yKGL+BwsJU89ocyL0h6SKBkBwkUM6qoSLw1NyeCZceOIR09rMbDWKxRYlH5tRuB3+FkG3nsDzn1LiXlJFCyg7yymFlxMSxZAh0d8MEHsGVLYmfjI7BbgwSi5p0tZH4KHS4XO+O51GdBkHBwjkl+vt5ViHSQvbwyid8PH30En3wy6Kr7NvdsfP6ytJeW7WIWC02OHLaGcuiOZdd1XFkZnHee3lWIdMiuZ3amc7th/nyYMycRKhs3gs/X5y52rQOQQEmXoN3OXksuO4MeYn5jnU+SLmXydMsa0kLJdPX1ia6wbdsgHCZq8bAvdpLeVWW0mMVCq8PNnqiHpnDmTP0dqdNOg+pqvasQ6SCBki1iMdi1C7ZsYd/+SUQNukWHWWmKQofTzT7Nw/6gk7jBTkvU01e/Cq7MncAmDiNdXtnCYoGaGqipYc/rMQK7ApRp3XiCocRB6GLYNEWh2+GkXnGzO+gmEpC9RT7N65UwySYSKFmouMLCyxtz2EIOTjVGhSNIsRbAGwliOcossWwXs1hot7to1FzsDzmJBiVEjqS8XO8KRDpJoGShyspD/w7GLWwPeNiOBwWNYnuYcmuQglgAV0j2/gKFoN1Oq9XFgaiL5rAdZAebIauq0rsCkU4SKFnI5YKiImhp6Xu7hkJT2HFwIDkPhxqjzB6iUA2RGwvjCodQMnzITVNV/HY7HaqTlpiDxrCdaFhFNmoePosFjjlG7ypEOkmgZKkJE/oHyqeF4hZ2B93sJnGQhYJGkT1CkSVEPiHc0TD2SNS0YzCaohCy2fBb7HQqNpqjTlrCNrSgDKgnQ1UV2PqfAyYymARKlpowAd59d3ifo6HQHLbTjB3IBUBFI88WIc8aIZcIHi2CMx7BETZO0GiKQthmJaTa6FJsdGp22mI2fBErWljCI1XGj9e7ApFuEihZKjcXSkuhsXF0XyeOQlvETluk//muLksMjyWGW43iUmI4lRgOLYpdi2GJx1E1rfe9Eh/eeeiaqhJTFGIWlbiiEkUlpqqEsBBULATjVvxxC76olWDcIl1WaaaqsvYkG0mgZLGJE0cfKEcSiFkIxCzA0A4TtylxbKqGRdHQSOx3qWmJnZZ7/w9E4irx+MGWhUxKM6SKCjlDPhtJoGSxmprEuV1GGWePaCoRCYiMUFOjdwVCDzKJPou53YkrSSGSyW5PjNGJ7COBkuWmTNG7ApFpJk+W2V3ZSgIly9XUgMejdxUik0ybpncFQi8SKFlOVWH6dL2rEJli7FjIy9O7CqEXCRRBXZ10UYjkkIuT7CaBIrDbobZW7yqE2eXlJVooIntJoAgAZswARRaNi1GYMUPvCoTeJFAEADk5snZAjJzXK61cIYEiDjN3bmKQXojhmjdPnjtCAkUcJi8Ppk7VuwphNsXFspBRJEigiD6OOw4cDr2rEGZy/PF6VyCMQgJF9OFwwLHH6l2FMIvKSjmVURwigSL6mTZNFqeJo1MUmD9f7yqEkUigiH5UVV4oxNHNmJEYPxGihwSKGFB1tRyQJAbn9SZmBQpxOAkUMahFi8Dl0rsKYUSf/SxY5TQl8SkSKGJQTid85jN6VyGMZupUGDNG7yqEEUmgiCOqrk6cbyEEB3dUkPE1MRgJFHFUCxYkXkhEdlOURFeX7EwtBiOBIo7Kbk+8kIjsdtxxiXUnQgxGAkUMSWVlYr8mkZ2qq2XBqzg6CRQxZHPmwMSJelch0i0/H04+We8qhBlIoIhhWbQISkr0rkKki80Gp52W6PYU4mgkUMSwWK1w+ungdutdiUiHU05JtFCEGAoJFDFsbnfiqtVi0bsSkUrz5sluCWJ4JFDEiJSWJq5e5djgzDRjRmLMTIjhkEARI1ZTI6GSiSZNghNP1LsKYUayG48YlYkTQdPg1VcT783olVfuYfnyO+noqKeqahaXXvprxo8f/NSoNWue4JlnvkdLy05KSydx4YU/ZcaMs3o//vDDV7Bq1SN9Pmfq1NO5/vplAGza9Cp3333KgF/7299+l+pq/eZn19TIjC4xcoqmmfVlQBjJ5s3w2mvmC5XVq//Cww9fzpe/fB/jx89nxYpfsHbtE3z/+5vwekv73X/btpX87GeLOP/8nzBz5jm8++6j/POfP+XWW9dSWTkdDgaKz9fA1772UO/nWa0OPJ4CAKLRMN3drX2+7rPPfo+NG1fwox9tQ9GpyTd+PCxeLGfDi5GTp45IismTzbmR5Esv3c1JJ13DwoVXUlExlcsuuw+73c3KlQ8OeP8VK37JtGlncPrpNzFmTB3nnfdDxo07lldf/b8+97NaHeTllfe+9YRJ4mP2Ph/LySnigw+eYcGCK3ULk5oaCRMxevL0EUlTW5vYosUsL0rRaJjdu9dQV7ek9zZVVamtXcL27asG/Jzt21dRW7ukz21Tp57e7/6bN7/KN79Zym23TWHp0m/Q1dUyaB0ffPAsXV0tLFhw5ai/p5GYMUPCRCSHjKGIpJoyJbGR5PLlEA7rXc2RdXU1E4/HyM0t63O711tGff3GAT/H56vH6+1//46O+t7/T5t2BnPmXEhx8Xiamrbxt799h1//+ky+9a1VqGr/udZvvfV7pk07nYKC9B7OrihwwgmJQBEiGSRQRNJVVsL558OyZeDz6V1N+s2bd2nvvysrZ1BZOZPvfncCmza9Sl3d4j73bWvby/r1/+Rf//XxtNZoscCppybGTYRIFmnkipTIz0+ESnm53pUMLienGFW10NnZ0Od2n6+BvLyBC/d6y/H5hn5/gJKSGnJyimlq2trvYytXPkROThGzZn1+xN/HcDmdcPbZEiYi+SRQRMr0vHBNmqR3JQOzWu2MG3ccGzas6L0tHo+zceMKamoGXohRU3MiGzeu6HPbhg3LB70/B1sh3d0t5OX1PeZQ0zRWrnyIE064HIslPYeMFBcbP+iFeUmgiJSyWBKLHxcsMOZWLUuW3MCbb97PqlWPcODABh599BuEw929A+QPPXQ5Tz/97d77L158PevXL2P58ruor9/Ic8/9D7t2vcfJJ/87AMFgF08+eRPbt79Nc/NONmxYwb33nkdJyUSmTj29z2Nv3Pgyzc07OOmkq9Pyvc6cmQgTrzctDyeykIyhiLSYPh0qKuCll6C9Xe9qDpk37xK6upp49tnb8PnqqaqazXXXLesdeG9t3Y2iHLrumjBhAVdf/SjPPPNd/va371BaOolvfONvvWtQVNXCvn0f8vbbj+D3t5OfX0Fd3Wmcd94PsdkcfR77rbd+z4QJCygvr03p9+h0JhYrjhuX0ocRQhY2ivSKRuGdd2D9er0ryQ4VFYnBd9kdWqSDBIrQxb59iZX1XV16V5KZrFaYOzcxJVj2WhPpIoEidBMOw3vvwSefQDyudzWZo6Ymsbmjx6N3JSLbSKAI3bW3w8qVsHev3pWYW14eLFwIVeldHylELwkUYRi7d8OqVdDRoXcl5mK1wuzZMGuWMWfSiewhgSIMJR6Hjz+G99+HUEjvaozNYoG6ukSQSPeWMAIJFGFIkQhs2AAffQTd3XpXYyxWK0ydmlhXIrO3hJFIoAhDi8dh61ZYt85Y61f0YLPBtGmJIHE69a5GiP4kUIRp7NoFH3wA9fVDuHMGKSxMHA0waRI4HEP4BCF0IoEiTMfngy1bEm+Zupux3Z44Xrm2NrH/lhBmIIEiTK2xMREs27ZBMKh3NaNjscCYMYnTL8ePlxlbwnwkUERGiMdh//7ECvx9+6C5We+KhiY3F8aOTeyzVVGRGHAXwqwkUERGCgb7BoxRusbc7kQXVmVlIkjy8/WuSIjkkUARWSEQgLY2aG3t+z6VxxTn5UFRUSJAet67XKl7PCH0JoEislp3d6L1EggkWjU9bz3/D4cTmyt++o2DYx4ORyIkXK5E68PjgZycxHvpvhLZRgJFCCFEUsiJjUIIIZJCAkUIIURSSKAIIYRICgkUIYQQSSGBIoQQIikkUIQQQiSFBIoQQoikkEARQgiRFBIoQhzFtm3buPbaa6mpqcHpdOL1elm4cCG//OUvCQQCepcnhGHI5hBCHMHzzz/PxRdfjMPh4PLLL2f69OmEw2HefPNNbrrpJtavX8/vfvc7vcsUwhBk6xUhBrFjxw5mzpxJVVUVL7/8MmPGjOnz8a1bt/L8889z/fXX61ajEEYigSLEIL7xjW9w33338dZbb7FgwQK9yxHC8CRQhBhEVVUVDoeDbdu26V2KEKYgg/JCDMDn87Fv3z5mzJihdylCmIYEihAD8B084jE3N1fvUoQwDQkUIQbg9XoB6Ozs1LsUIUxDxlCEGERlZSUul4utW7fqXYoQpiAtFCEGcc4557Bt2zZWrVqldylCmIIEihCDuPnmm/F4PFx99dU0NDT0+/i2bdv45S9/qUttQhiRrJQXYhATJkzg0Ucf5ZJLLqGurq7PSvmVK1fyxBNPcMUVV+hdphCGIWMoQhzFli1buPPOO1m+fDn79+/H4XAwc+ZMLr30Uq655hocDofeJQphCBIoQgghkkLGUIQQQiSFBIoQQoikkEARQgiRFBIoQgghkkICRQghRFJIoAghhEgKCRQhhBBJIYEihBAiKSRQhBBCJIUEihBCiKSQQBFCCJEUEihCCCGSQgJFCCFEUkigCCGESIr/D4hDhdeVVcYLAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Setting the variable for each section of the venn diagram\n", "# Use these values to calculate its probability by\n", @@ -229,15 +200,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Probabilty that Blue Team loses, doesn't kill dragons and heralds: 0.3138981678307521\n" - ] - } - ], + "outputs": [], "source": [ "# Calculate the total amount of the games in the venn diagram\n", "# Find the complement of (A ∪ B ∪ C)\n", @@ -259,15 +222,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Probability that blue team wins, kills dragon and herald: 0.053\n" - ] - } - ], + "outputs": [], "source": [ "# The probability of this event is essentially the intersection of\n", "# A (Blue Team Wins), B (Kills Dragon) and C (Kills Herald)\n", @@ -286,15 +241,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Probability that blue team kills dragon and the herald but does not win: 0.019\n" - ] - } - ], + "outputs": [], "source": [ "# Same with above but only with the intersection between\n", "# B (Kills Dragon) and C (Kills Herald)\n", @@ -313,15 +260,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Probability that blue team wins without killing the graon and the herald: 0.208\n" - ] - } - ], + "outputs": [], "source": [ "# Same with above but only with the A section (Blue Team wins)\n", "\n", @@ -331,7 +270,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -345,9 +284,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.2" + "version": "3.12.7" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 }