From 5e059a1bb2b87a0447d2854886a61e9de23e5db0 Mon Sep 17 00:00:00 2001 From: Win Date: Fri, 29 Nov 2024 23:54:08 +0700 Subject: [PATCH] Almost finished stuff --- ...ised and Unsupervised Machine Learning.pdf | Bin 0 -> 87895 bytes ...ised and Unsupervised Machine Learning.odt | Bin 39028 -> 38625 bytes ...ised and Unsupervised Machine Learning.pdf | Bin 0 -> 87849 bytes .../aicore/aic-501/00010/tourism-data.csv | 17 + .../AIC-201:00020 - Thanawin Pattanaphol.odt | Bin 0 -> 42449 bytes .../AIC-201:00020 - Thanawin Pattanaphol.pdf | Bin 0 -> 75944 bytes .../aicore/aic-501/00020/tweets_data.csv | 27 + ...30 - Thanawin Pattanaphol - 01324096.ipynb | 201 ++ .../ANN_Fashion_MNIST_Classification.ipynb | 1 + ...ing Classification using ANN - Keras.ipynb | 1 + .../aicore/aic-501/00030/iris_dataset.csv | 151 ++ ....HCD-201:00020 - Thanawin Pattanaphol.odt# | 1 + .../HCD-201:00020 - Thanawin Pattanaphol.odt | Bin 0 -> 47463 bytes .../HCD-201:00020 - Thanawin Pattanaphol.pdf | Bin 0 -> 101859 bytes fall-2024/math/mat-206/00010/DataWhr2024.csv | 2364 +++++++++++++++++ .../math/mat-206/00010/MAT-206-00010.ipynb | 866 ++++++ .../MAT-206:00010 - Thanawin Pattanaphol.odt | Bin 0 -> 154576 bytes .../MAT-206:00010 - Thanawin Pattanaphol.pdf | Bin 0 -> 194468 bytes fall-2024/math/mat-206/00010/UnM49.csv | 249 ++ fall-2024/math/mat-206/00020/DataWhr2024.csv | 2364 +++++++++++++++++ .../math/mat-206/00020/MAT-206-00020.ipynb | 402 +++ .../MAT-206:00020 - Thanawin Pattanaphol.odt | Bin 0 -> 39191 bytes .../MAT-206:00020 - Thanawin Pattanaphol.pdf | Bin 0 -> 97532 bytes fall-2024/math/mat-206/00020/UnM49.csv | 249 ++ fall-2024/math/mat-206/00030/DataWhr2024.csv | 2364 +++++++++++++++++ .../math/mat-206/00030/MAT-206-00030.ipynb | 1361 ++++++++++ .../MAT-206:00030 - Thanawin Pattanaphol.odt | Bin 0 -> 216893 bytes .../MAT-206:00030 - Thanawin Pattanaphol.pdf | Bin 0 -> 269591 bytes fall-2024/math/mat-206/00030/UnM49.csv | 249 ++ 29 files changed, 10867 insertions(+) create mode 100644 fall-2024/aicore/aic-501/00010/AIC-201 - Supervised and Unsupervised Machine Learning.pdf create mode 100644 fall-2024/aicore/aic-501/00010/AIC-501 - Supervised and Unsupervised Machine Learning.pdf create mode 100644 fall-2024/aicore/aic-501/00010/tourism-data.csv create mode 100644 fall-2024/aicore/aic-501/00020/AIC-201:00020 - Thanawin Pattanaphol.odt create mode 100644 fall-2024/aicore/aic-501/00020/AIC-201:00020 - Thanawin Pattanaphol.pdf create mode 100644 fall-2024/aicore/aic-501/00020/tweets_data.csv create mode 100644 fall-2024/aicore/aic-501/00030/AIC-201-00030 - Thanawin Pattanaphol - 01324096.ipynb create mode 100644 fall-2024/aicore/aic-501/00030/ANN_Fashion_MNIST_Classification.ipynb create mode 100644 fall-2024/aicore/aic-501/00030/MNIST Handwriting Classification using ANN - Keras.ipynb create mode 100644 fall-2024/aicore/aic-501/00030/iris_dataset.csv create mode 100644 fall-2024/hcd/hcd-201/00020/.~lock.HCD-201:00020 - Thanawin Pattanaphol.odt# create mode 100644 fall-2024/hcd/hcd-201/00020/HCD-201:00020 - Thanawin Pattanaphol.odt create mode 100644 fall-2024/hcd/hcd-201/00020/HCD-201:00020 - Thanawin Pattanaphol.pdf create mode 100644 fall-2024/math/mat-206/00010/DataWhr2024.csv create mode 100644 fall-2024/math/mat-206/00010/MAT-206-00010.ipynb create mode 100644 fall-2024/math/mat-206/00010/MAT-206:00010 - Thanawin Pattanaphol.odt create mode 100644 fall-2024/math/mat-206/00010/MAT-206:00010 - Thanawin Pattanaphol.pdf create mode 100644 fall-2024/math/mat-206/00010/UnM49.csv create mode 100644 fall-2024/math/mat-206/00020/DataWhr2024.csv create mode 100644 fall-2024/math/mat-206/00020/MAT-206-00020.ipynb create mode 100644 fall-2024/math/mat-206/00020/MAT-206:00020 - Thanawin Pattanaphol.odt create mode 100644 fall-2024/math/mat-206/00020/MAT-206:00020 - Thanawin Pattanaphol.pdf create mode 100644 fall-2024/math/mat-206/00020/UnM49.csv create mode 100644 fall-2024/math/mat-206/00030/DataWhr2024.csv create mode 100644 fall-2024/math/mat-206/00030/MAT-206-00030.ipynb create mode 100644 fall-2024/math/mat-206/00030/MAT-206:00030 - Thanawin Pattanaphol.odt create mode 100644 fall-2024/math/mat-206/00030/MAT-206:00030 - Thanawin Pattanaphol.pdf create mode 100644 fall-2024/math/mat-206/00030/UnM49.csv diff --git a/fall-2024/aicore/aic-501/00010/AIC-201 - Supervised and Unsupervised Machine Learning.pdf b/fall-2024/aicore/aic-501/00010/AIC-201 - Supervised and Unsupervised Machine Learning.pdf new file mode 100644 index 0000000000000000000000000000000000000000..c3aa1aee9993ff03bead71fbb00518a40daf5de6 GIT binary patch literal 87895 zcma&NV~i-k(ylwUZQHhO+qUhQHMVW6v2EM7ZQEz`?#O8Q@?o_f2Q zR6#_HmXVGfigfVrVAo*FU>+0`0Rw@(krfmV550`3owZjIvAu~YA0L#ni<7CLEtE%giq^Oli8w;{tNPP=n3~v;lIk4GQ=~1=o*@Vy1U}2k z6vIfgEurz(Yb>etbTJ8-^mg$@nZ`r62cm6b&~TFzZw~hSmOjd8JnYA0( zrY*plE38eHoIk(+#@EC4%jSucdraQ??d{F)=jGz|Y@B|NpSREZ$7$>Ic9=h3&t3B^ zKQEuJ*A5Qc<|3(9iT|uVTj?h(N2l{9*!IlZ_4ne-4VZS{_4jEvV9*Gbc^6~}WA*ve zeD>73&eZZ&UpjMuC1C%Ay?C$e3!MBbh{aiCac}e7f-4KUm$-U9_ttMu`;Pq%J&y39 z`(7(-I_?awH^FLOxaS9?_=oMj$wrXv8~q=>-Jw6o+3!{w!9eIAm?UKmZ_huYTZ;wE z$*FT8Ioc(pd7+{TF2_*p9bpS%KRQ#2Ut9~+?f9^y#~>OIJ7Kt}d`+Efe7K`?{~FN%*$B`_}+ZV84pv^0wV(%1O7 zdw9D(zke@h594%BF0bOP=u5XW2YS$SNj`u}_yO(+bjfkPNw^43rgARM_U1xUVRZST zl*;$R0_8_D>Yj6!8oi()Zben^zq!&vN-OBB;vX>&4l(2$t7DCY5{^x%D;LXbc9Wl^T0$NCClN5rd8Z0ra$%M>!ZtG}{ zxbZKFq})p7C;SOujlA_2(%xlwA5UK~TzNlu0f|(DGQZ|TMCc*kgi`8+fX@bknVllG zLjPOyoo#fS4;3CumB0?D1VL{kZj}I^d7YuAz&wNQ{B4;(iIBC*z5|a7%yI4y?}IrH zuEGoiHOaEj@lGIWqC<_Ogb}VHYN7-zk|YS3X@N+ z*SqF4uCz@mrHg&_jHi$yj#gIL`J~nxn>z!KJ4n$DiASMXS2P3F{^!AtCC@vPM=dNmwO_9gSR?Hl%t(%>?c$ zs#=PA$&{*Gp?+L_RJP-__qvJFAf}|I_VnFLO%C5>{#cG>`)|=Ol9y z&JWBWu2M+*hST~JDo|2vokQwYw{h@RpK);AL+<{w41kFgW};|Ve? z!5;_m#!iExOHcm?n)}KosJm402OSGTQf1HBB^g#*DN89esqO;?P@-x{C|o0eOqkjD z^YY1+z65f$XQH;}etyVGq7tPbO+{J@gejGy#!2Nut{cL6uFA!LN(TLr{N`jM%CPLF ztlU1R#*PW1!3{D@eYN3?$~&zQ0&W{!9@?5x6xl}s0YsW+hK3{ZD58mxhQ?l^YgC|# zHEWdHKpAo202hx-aSez(i_z8G*g}gbu33m$E-}pvOOfRlDf=VLWuyl80`=0|V|Aig zrDBoT9CRGQz%I6P_0;Hng$SA9tU@+-XD&;>Acb? zKsBb-L*SMF-4`pGm~D7Lf^^RVvUt_=%LA@eNYikRy?N1%XeiPmC#B*Ol9(2JcQQ&R zDPSfLI3Z(@VlC~aN|K`quqeDb67IxMHL3GcM>#M|Z6r>%f;>ygMx2`Bq4=k-I<1K> zok~YiFnq931hG4pT@oJ2np5AeF#?|**J9`Vtk*)Hd~!@sUJ=Nuqsd!AN|S|c66GkU z)CP4lJU;2o1%QIfot+WijB4kX4a>q{8ZJVK%{a-y0EVQlFVIlCDI;QO?bK`by2Ef7 zM~MB!>Dp^VF7Hf#(}k!bjXxl0)q=!y20zVxru#T=WcgJj?uq4Tdoup?? zSD{2$+eWa=C6!1b6#m!{Go%|{uKtJ<-NeT5*xynr>8kBoNU`FAZ=_DP^Y1psil>A$ zkM^rMvkfg=c^kwbTtQ(JXca--7m)Mq%I4YQsff=yl%&I+dNVmX#J<24fiCLB&PrR5 zXYLaS1{iSXb}DuBtSMcsML-%6U0dX1at*`C+XbDF@4ZkiVT_98j%wx;j19^|XY&He zNYucI<_JGXS+oIjZw#4bXvv&8j{AQ>`23L)S7vKqpUyT)2!SIXe+YOJd(8YXAJ0K34;s3r#2+_jh z$H=ESk*H?em^AO!rfCepSI!G6>9xzKCGq)HB&FoIP}rVtSfk}w5`1#RPxn;B4W`B2 zb4QQ*?v(G^|AHf#u8BgK+L`^z*j47g&2{^&Rw=d$(Om{ustKuZ{dqjL ze4VAQINc5rlfAuqb${*sesXzz4SU7U#n zw0WU?s&2u>jId2lB8&F8E>Aei88>H;ZG+$Nos-`;ogxe>EnwQs`BvG|FR3EHq>GEF zu}|d%>f3^?U(&+6wL}8&*RTk9PS|1XN^P!0|Bp@6dObZSr_J1GC67C-DZ~2gzdwG3* zYnJxw{_0z6C>B|zRk^8t`;@TP!q3LR)5i_E#AnSI8g``C6V$_66(!x=8l zg#y^-B3D6hHhGwmLJA5cwx}#(2v4vZFh<8?&VI?@_hX6@w0V$uzS3BSGIrpr!`aIr zQII>`UxntfU0xV#`r3@=O=$*6R9fk!)KE-8U@_2pu%_k|XNe_l5u<^u578$u>uBCE z5XYg(X5@V>)y3L;3Ti)v-+g^W<{JYw7^)VZC#lE4Fjw}_Rl;|ylz(&)vM}1?_;Mr$ zhd2fZK?~@miV*HgDzAI|MkkZr1FMjvi<)2z;Mg^VM2MN@XF$oV7&v^|a$(X9+p8ihdOMJ0qimk)f18teZisRgAMVnoRr(f6K@B4Z3{3_;~rxW(S+- zptH(zs%bDICCNq(_t08o;nxww+MK7RX!C0VF~S>BGHrAyu(z59uc$tVtR09-*k|(M z@PLvXGnX@fmxTs>_I=5d2y)nJl3W)7>$ZeYg2vzn)zTYkq7A90Wf?s#w=~(&2&|ro zc!}sVX97U+wz?2CZ`lBnHOT;u*yQq_iGk+u^SG@C0SUNMkQt@dw_H%X*=v$nF9H8f zDH)d5ZkCKzsX|MHv{O!RLm-_rs=z0*8JjYbt|v0i^W$5v*Ceu@0_JZq6$bO!XY*MP z|M$4O7>|HH8lN0NxbjSEL=eaP3! zT7~EEd+Hy*XVgVTp~e3?S7sMspUdhh?8^LG=z9B4nT)Pafm?TXB@CGhl5%;fQskQmq|6 z`0W>tqULRA0IWTci%?6DK#N&a&?!BIUnq);Qvx-m`r_@y))!T3LiI^bAu($b(8P75 z+vA&xP#RO6wdjC^&aFt~T@S4)wqgpDq|s5@0cH4zQTMRLSKH+g=0l0167A8RaJUeD zHdQ#BLT{11o7HwoBs~&{xv;^y%h*N{Xpdu_njkbKvX2&j^(+(I^YHw!(Z@!F7;;J6 z{!}qxnIOYj<0FH%Idy*FWlD&ew<}~ipfNGs$0B4_;^7Y40cC*lF(U6)YXVE4zz+H!xb6St6 z(I6Q0a8k$2n)Kt?th)eI9i}7GqScd>wWS=d;{b4Jx3U$%vd>^W1c7;VG$5(paP02< z_~_X$nx?|dzxMgeUt8W~#LkUB&Vxr+SI&jC(SAr(DQq*vN!kQcK~UR*UE@~W#yB|3 z>d?QA5-dp+Zf4#Nh(Z^1)xKK=7mIb6eW6D<9Oxv92=g%pTozhP1|&V72EY2`lxxq5 zQC~ANnqC9L+dG{3csY~Wz*VnL{>b+DL4^4a{D^<6@1~_9cx>Xya#9#8L6KK|Ss&x$X4KSiqk}$T z(FB*8N}uKVz>&83`z1Zo>SaU)PPCUq_93T<>Dw8~Oy^e^(p!oxyIW;ETvANqT#jS= z_qfdHLDBRt1uBEYLw2cg%sxTDIpwvIs+5w@F9NfO4n&^&1|Gi++O=PO3{h!UwIp=s zRE5)O1`VgJ0#ZO$dHi#YV2b65tjZp-_-W3nxgy~um1R)|l=N{rq@}a!PBgM*nlAnj)gi4T3%UknGMql-(XzMd*ppsRc&P@H+^V+8F-Y8(g=?l>;AZbe=b< zt?|c*PSGFUH`LD*u(p5YQfa^W><+(wn~S{u7Ke+o~p1~?20j2 z!fD8q6c!fCnUx7IEu%qpy}=uFla8q{+FKSy@4jLZa`$0%fljuM!{#)UHCJk z!L%YhlubJ&vzgd(Br<^}a+_zEwOi^+9*Q6L@nNG8kaWB9Y*;=)(>h7HM>lzj+-@Pi zRj?yc&1mTG1ZWvODXE^|Zhjzf~YKTi?AD5O+`rJN)TaO4wsNpC0~6b6FwH*yi((tp}`BzuaTlVDTz%%L(Y2MPfn z6}h?o)zkq6!hMuSk-M^*$R8;(<%j~rhcFr9i1%I9UvTd2`L_QbF8qIR@4sZo!ol(X zk|7fd$Nxr#Oe~!L2QvI0ag33Gm5Gs)>HjN*U3Yu>s4Ty8_{_9lUb&Mctus3(NsHt&ZLg%{vFQ7P z3PJfeseWFZl%V3vQo9nkSd)81Yr*2}%KC{1zLM|r`agfnNUMXFLf-vg{VlJu*4=rU zKfbjSw?O|J=T>Fk(PUfW3LQ6Rd%35(J=fHu>GwXMKlmvZ9ICsvvN7)oP9;b9baiXt zq3!Lg{hKE0z5neTOoJbQ9~$+e35asez3(BIY?8EY)Vz)xxtMZ1^Wx$ABfyZ199!1z zIsX-?VK^Uu;4waDSUf16oT46$!|Ek-yymEi9$hQ9B$FQgy6vf0k^JzS0UJ_ zNZo-sD`6`XHQ)KgYQd8Ehb^CND@7~4gVfdgg7ArfYwVk6IgW-RAa&4{=Q-l8a|wT5 z;qAct%FHxXqPE_=lR2+>^*O3@@VKwg^8z&j@=-Wf=F3`%U%>ohgBaaF^Ww zpIC=}i^MNoC!HttOZ7p&ykY6t0&Z_`S>fZh;4|M0e7^GR)uB7;CmPhI z->pq0I|_Yoa=!yKlC@Emk5F`0Ys8+JcwFqV;t>)|48qF zN~boVH-VmmK5cZkJwXR`wXa#Iyv4b5Z)5g50{*V{fzslXX&=t8^)CHRc%O5>$s(nP znD`z26z_`u#-BVQk)7mL;zs(V;* zJnKkW?tmscX!0bool=K*b;{LAyPdnu?go8pb1SdCaf`D}sVgJy&eJD4?os)T^o#6= z?+5q?*s%UC@-Ei`Z8d5&%J*QmSaHF_vV}$5D%matPQrdn8jw3r{Bxc;gC$PhLEX7| z%g+Ux^7Q*C?I`wRK5>>y9P^o>}dRbOZ#EmF;g^j)Q?&=(^?YV6T`%YkpEJ8D1MHvkW?0)xl~A!^v>3(0cdJ)UMO3gVYz zsRrrPSk9ry+L72j?v3)DcOzKuc=`t<4!{*3h)-c~8U!ETU#=FcVF9x{)C z0`%OQXy343gxB!M|L>G4})Q$KKTv$-QI^JejB_EjXFgww> z{maC(A~qDT2~Y4@1hORckn!>Y6YzK54DlO`t=_o}(6unW&`a?OEM=VT1ToI}HS=42=TJyZ#GXoov{aah11*F>^2M=crb|^V>*Wry67DSUJ+SzNg^)^dr zTG%d09j!-au{pj_S}iPgx`?{-O&*5qt4jip4kLuSlG{6zavxxNgpR92A)Cy?L0hp} z`cYE)?pJFyZnqhY49qNPJJ?tRuy3g-GI|}xOeWpPSdJe&s7}PItTb06tAeRi)sWRG zYP}~Gw9lFyV%Kb<~8jUC&WOYT@)7zPy^av6-GC2Z&v|LBOLgu$_E)1FqER`&3 zv9HrRn@95$zJr8AQ?FFBwFYmRxn26KCP6Y64PlJtDOr5&I!qa96pvbv>!2=jNdWB!Tez{dM@+;c^4LJGuvFkm{LC$Z#zSPNGopM$bn$Ob3Zl>^2oNu zX%v1UC?xJlVyqDC`nK;q+#MN35iNTDzOwerXnj7q&Yn1<&?=g_Q!i|}eSh-VX?@#(MZzTF zjSB*jqZSj+Cxxup^#Oi~gfCEi6Ja#Qed@T{wKcg^JK58noqq@8K9ow&)vp-uGW4cy z>hJq+55c3mWXNf9 z7He7XhS2a8eY+X-1wBhiJ!MazvZD&)z9MG#LEy*`uJsDJo^`Lsz8H-B>vw||p7`@$ zD6~ZwlN5l7yAOPN(2^MSo_9&Cy>zs033%F}2qB?3LJV#MXl37uCoGOX12RpG_<*8pZf-hZe7iXT|N_gwr=4XDd2)(QcJ}djt!5ETl_y#$izE zC=L30y$YR+1Ug88$ygnoshEyI1)&xrm8g8Cy7S0|CTTO*PQI zzU)2eJL~+^KRb#P702+vS*ho-!`x`1&VTGr=AxgS`YL&s`ji3^w?w6dL?Jgq89e_; za)yzx6r}AX6)uV2$e9rS;U6b#9LgISqmLSp9KZ!Em;+G`HXK7&pHX{OpH`YtnZBwO zS_Ys#-D5NIs9|2!1Yn2p^^iM`&6S2YqyG1vaenosH%1NQEQkE#41e0FjYIgcdNXnaT!iu>jzc zQ8#ylD4!Ji>i?`&4fDoh*s=~_#S&+oe~q>JgLSC-eeaR7&~^{wTdnkQj+@!hF`=p% zk&}|L`EGcBt&X!vt<=O1fy#3qy{t)C=^%XXA;E~+PwGal3+7VHEdUABMr)lB^YbYuf~ zUK@C8GUs?r^CsHpw42`PXfEnBaiE~K=A`z+iD~y)6+Qktq#XVofgkT^dHyIzBx2l* z>SYsXSlDKGIHg5#y(q{ysuY!d11oBEO)D}DZr8BWZ;Uth796kD6kV|?|5^h=U_ib= z{7W7M_YR+q>%_nLY<1lpeLRVWLndKFGHd;~(7j*kmiSYN9LW_W(u26iL()-{R9}-R zCQnO=o_$Dtg7$uT<$5KpN`I{sGsUgDoBr96UKEU*HdtG62-J=G+Pw43p^w+BkrAZf6NBu! zwsliDyETqy{*c;GBDHSyQ)=o26540iIZOyiY87-DEpt*R+f*WHAsAqLwnP!9m`}cl zPbx>4%_PW$=2^moLnA&*J|Pz^5(sPI^bv)6|C@w`0(hn_6?88S5}MYHkD8$?&ln?X zSDa364H}uEWN2yaZf%jV0BNp#)s7t6$hVxGbCz?ffX996hk(f9#=1u?`T7)qZ9b1#pYRSSa zrivn3^iibTfrpa*(Zj$h`TE79h*2*23Z(CW2`i#f%h6$aQM|-O2DkmCTD7g~CA6~T z#O0H%%k2XL3vi1WcMeSb6ntY{0AwY8`U#;@F@uLfo< z1Mn0>0?dH|7|yKk4@~+9I|55GAUN}$0GN#|>0%u%aEp0gEKGXpZa@mmS_&XH^BxTW zMv;va*wsWp4rU!}c+f%IRw-~v&(bXtGi^&G&<~0K!V~$ecf}p{ew9>L0~YIhU`51X z;eLENF3?d@9R}Z3KNhkAc5kkZ~W*cE7J_S(2|rppJ#0T-sJ5|&d3sxm{4a{MvK zZ5~NBODO?%QJ`5S@*5dtDZrT2BMg=g0fZ*5z+WCK6C~Df_6kJ%0bP9BzFNXA=xafe zzzRiN2uzlCoJ>k33}vOY{4oj?&!>WW9s21EM;`WRgmM zPREn4yz|JqJU!R`Ug$OHj?Wr=FWs8bskA&#Pk(-d9)et@NBnLJez?bbr0H{fXKlZG z!7*WF!xETaR5D|n?)HP(1BKQJkXWH&N zf}xQi1KvSW*T%r5G=zlgMfxj+qlrGuB})D{ z3|r{?tN@6yjT$sl zlm<>r#xK$ydr_2*wllI}Ii%rGy&vs~kIUD8#`X5Q`P>LU_FSgkUin8&)yJ0iI&L1e z?R*;0#~Q$CJ1Rcp9HB>kJQXazd9TXrd_x$F3mTlQJ~EPx$4QoT1&EA`3{mA)4iMRs zsTK|<#|87IldWbJHcsE zb;Y8%2oC6+^+`BNHWWVXKj1ZO(hV~2C%bLZ3uX_LRGQjj_%`=6H96t z@e3`OrE|WGWr>4n_}TLks#(X#;-mCTVW500GPVga!eqMy1Ptu$clFc`9VZ-hP4^>NU=<4o?{(ng_dxX zwwJu26-H%4>!QCWcOG@(44pr|lhG)w=^{TOA49>t9j>Dag}5d%jC1jN_b}{wIle#{ zhPc|gmCjjq^K25DXmbYZG9}_N0FHuuVEmM6ER1n+r9(J(5g;fgn)bsiA|=5FlNor^ zq3hy41Cp0tAjZoV%U4cH=0%9EH%N*C5i%S)8b|vC(u6ho-dx$_Osru&Q~%XaE^zfWdk=2k|qG0 z<;<_>)A;(~^I6;(#eif3`(pkC?)mu%=-nM%<1k18N^>hkUqTT6&JGRYT##WC-{6~i zod%yfa_e-u!q}>a#Z)+fmA`eH%G$ZkZiFbg+KyO{Lc4L!@MS2)W-b97fFh{!Ab=T* ztFV}RvV#U$0|)Y|f+PgYV=>?&9lVY?;{leWqni!vH)i3{xf`PzRm7nN$pG9<>-rjY ze*`w3TKl}Oy(}y!xaH5=a^QHEDmZc_*GGcOsqA_5_Mbl8Ifp0teTmERYRB&fsdOye z;5n`YKVNeMb_k)$$Jv8=Ys549;i`!OBLGx5G*6HGGYKa{1!h19d;*JMF<_(+0T})- z6))GsZ|ued0FB9zC)nCWC+7f0fE55DASMahA&glU5BPXqK6mD|NHOtzDbp$AEwf!x zRN^jMDvQJa1==0@WukS}q{)W#gXloM^)UvZoU` z&izG`F~I?>j6$`qUA%l6#x;!qZrZwi?HB@r zV9LwZIBnOwYBDkX5-qrE=g==wwv&4+Jy&u^YOzc!iqg_%nWRyMaPhaOHiR{nG;TP* zFfW8HK4dz3{~KBsqB*@>0OHmh*+$A1lcS2GV6Ip_{aM2`n zIxzz|C0)4*yngU%0d&zQUWT1W0G2G^!g(C#-1!qYYe&!P*JgN2yUWdLw8-abrqp`V zELC@YSFmQcuIJ=M{|O(HrGuTkO7yP;Az5Q!!lcNk`=cG)U?ckV30*y~8irQPthX!g zs3h6Ux}`kVlvzWcVcc58w`3X};9RD!EYw&e5&2ZWK2_JWILRuFz6n*E%SYbvj z+36ngo4h#OPQCGbZSRHuWzvzkB&HN64&e`i0~2J zms7YISvi*^n&UWr;!G54xn38O{%0t%v|d|p^+9961I{h2fkhK^Y>rfW;!e$5gxIrP z4c$LbwO37C+t~pLz!V#{jN0IcjjTcG)s{wdRjp|081or-ipVbvkuMAvY>XZMvEuWM zp|Mev{Ck;XJ51dy4Bf18 z2hUcWdH?haTan;kbAc6iNPljiw~vfJ8*Ua+c_uCyvT2&lWXjQqDiU$!3eq`1ZGyt( zbTb3&g@Oh~TJdbA;Tx9qovk~J2!knz!g%3?5uppaTnZ;mP1P8IZDXa9YsrL8Yv3ks zVXU}=rf&^Z3ygpNV4T1R=CJ>(Q097K(eTV5S@1C|*%do7GdyJ(x^W+Jp>2twuSl}c zw}n<(Y*|amHCJ{w(%tjc&5W7=9v~sv6{^r28`i7A!9@{DP@KqD+gC>n4FfokQE<#m zn^i=j8kNY%J5$`#9ad+~BkI}3_iy)y6Ir7v><6RZ!QY63385Luo*;m&+imIiMr7z* z^lm!`M;6B-T7k%+dyWGN_}OylMD3_j6s2_oBD=W}N9uQl%gLl*vVLiO#OX{KG;Zs~ z`7|@MAxHV7qq%WVe~mcpY6Xak>;JJYiCtuRyxGJeEi$fhHhKr0+m!1+6>Y3iM|*hk zuiSgS$CzW^v-~}^a>B4?aHLJh3z2w1k~R z-lKhFFT3xU|JhrgtJv29N<(19 zM^^=lAK1@%r&FR{rVz$Y5Trq)OAjd|S)(Rc##$9ePHfMTOS)ORffp-n{lZmU z6loVu95-&J&RHt9uB8>T%Ld1Q={T|}s~pVM%vvU7XMD|ghGkC2%10`4#|8E%qP=3F ztT|E#Ad#K8S+gA7@e}=@409}O-|ragef$ywfINSoe=~~NS3meuy(H;=isFVBCGO%U zn98MkSyrm!2}_U|dGY|?y(>|n+$!k#RCqFf;PNy@d?DWS$EdC-q_4^xnt z*UpL#iI%K%ZwL|B5d4K4-J$=>SO!o zOu892JsRz6)7n*rk<5Df=@qah=nx>|f?7|1Q2#VZ&7vm3m(E-~ z5_@;sl+Z}3QBW%Kwv&}k0VIM468Y3?A z+c};PRj{eeDzULK(d(*;n^LKpmXm3+7LGWX+hwrJG;EWwuR`9HC7`O1rg`III(<&L zwzB&q`cQfT_k4}{#xRTNWOXTWn7FgzYxr}l@BWg6x$8B*W!hk)aPvQ7Qlj06>FH<| z!D)5Yne;h<(U|rbf!ToV(_$5My;>0A2hj0PiB_{QpTvtZ4&$25BOlPfk-{GvW=$f5 z>xcz)G%cTt=yg~2MJgxiSXby$HB0I)&_#$RQe7u>6c;U6CsHWl(%9NY)L6`|q?Rp7 zk&=vK=wkFW{msN6RoZhI5E3Qj%58jwU!NnyC9(#n7Q5EXpkxB9$m1-}UKlP(GOsuz z!fNV9#t3fg((#ON3&d;glSZE~BF>plIG&kjD2?FSR*{rS?u)K4y_BlyZZZG;sq#>K z``Mm&I{_bi$kEVB>+&@JbvI810qATc*M8GUU+z%A;7>Sfq7qJlPCkdyuXd{>DTJ#R zbDn6JbRs)yD(_VBta7)x6S@uQ2YWZVG`c<5!}6?d7S+7f#pbE#x$)b4b=!NslYAY& zgJdoCD)iBbFpoPLrAm5-P7$5(PVGG*L5*7cHyTga(RK*APCIr}JFdg|XnqFt4L02u zy_WZziAjAD>{;GEIaMhWsfOH9b;oC`6X5glnO5~a-Be4llhxc~)E5Q`ehuhMK0`%* zd@2a)OFN=358hpbaXaAcz|I%*4pB4Wic#WL?z|BQV+PHXPCI50f(F6NG?@Hj(b`xh zBQ#<|h}&tAXY6k>VSzuRl4xzsIAs9H)#Kl%UfQE<<8^5i^_RidRvf!A`WP90j$k-I zh9+&@R!d}nwy)}7JR?2q_9f)o%9>3R_U{hQ=%QU|ts704KJF9b^(Hz=Xq7=NryyV!?LWNfNM^b?Jx6UPQM9Dy22tbIW=pIs6X=#Dph zn-DBS0_Z9k;O5iCup)6LMmQKQMgZk~rCcjMP#7X&Vl0TGDZXRUfz4By zuedjTE9Phc~@{pI(W&I`J zd6WElUc}7@SD&E5da_}@>o}ePf7SP0S+bp1ITQ^;jfheK(J>tCyXEJ-`|JS#NxRjI zC)4*dnGK}Da3%tRfRhAf%&VX<0agM;6u+J9ICuM9AAAJ&C2E*h60*pq$I4@5Ch~MR z;;iG*PIXjVj8l1~Mpd@2#DJk-2+RONzz|FiV$n4JXQvX!lp!SAqQN(Q3I#33NmZBx zWhISX{yYx~dP!q#V|`7%J>65CI%$)}S);&q?2e){dtJ9>vAN%-*-rPH8MtZd&T%sa zcj^4Mpq){j0gYiebPq#F7>KUNMg)cx*laD-4t58Fq#r2G)}pNr038DF&xETD48nl0 z?0#LCF$osnaE!5JU5c1t7 zAfENaUN;%ACfrh%kp%>vQ1dOyU>Jih^R$gbKF#W$diw}LW@Y^t@bjD)$4Q}>$`f@O zVR}ay)}$c6`?Psf3UR7_6|LqpkECY0P{taK6m$$TD>ku34aXPtcg%g#(+F9NT&)>D zhygGz7IX5TM|??oLs!+jA&`t*lFB2r@l;#*xj(7w^W}?|2R*JlrSw!Bt=~w?(W!b9 zAEW)tf#bNVvzD6f`}!}>+wk)M;iz()`>sAG*sq`As_Cl#a}avcZyWZn+PcG|C^8q> za!sUH)!>N-V3gRrnA=C=8k~11Z(S;z7zS8k z^otB$x=qjBmdI@Mhw?j5nSavG(Yh_S3)3)bJSeBvC}v8!-pbIu%|R(5JKG zfV_dW|EL7OYs4VVTM-1P3P<2oe9BN`$YNxuELxW!lkJ!=$d=5xFoBkpys$8vl22zs z%8`|5u`n(dTBiCVL@hms?do6{1U^bi87`|%b;&4GgLw?wIj@~j)lfh)kyCZChTAkS zhnGdxx4l`#*PLZLk|38u3zpHj1F3mnYyeED+J8=y!mm)K>P0yZW^=YiUv{^;Uwm{V z;2ypFWH8^ZU`rgU+be2XF+DwWGEi|T!uiqHPs12%{HY#b8z+l)iG$G~!EU25fC)xzNQTPvu480YtP~*W|4-Vyf(b&66pucBGT&1^9HAOX5MZk1 zDwkAOF@=3(ETv0Q7L*pxN(_jOu43B&LF zTKKH(wLevdzZuzze85u_rW=C!C)N5>3{mYnMw3n`T;CawW;eF3n6lj%^7$fFp_m}+pKG5|;7 z4Q}ZOhHaL!jNU=?ypwJPRdw#mqZbElmg9y*J63GgYIzL*a}X9)V{>+u?z(O} zS}T1soYKn6Q|NY*b7{t#@)hDh!EHX$a8x;pCrgHJPvvd36uuFM=lQEYY?P|0HldZeUembZN@T_?SE}HWIjj|#iH2Vq>FfJ~yad`T zNNMQ>0IX&TA1lxy5hPOk zmS&jy`PLxO+r%C z1zpiAlk!qAfv}}OcOTteYL*@Ik~^zjuT+)}o4rs>HmkEvUFBN};%}O-Nb?toD-cN{ z@)+n0U@T<-qw)ir31u`V&<}-*wIar(5=E2?RUZ+lWB#IZ|E9UfOik^HdXl ze2F)>1vrY)nZ+t3x(R0sSA{XkU`>Fk#2OA(QPW}*NEH<19|*rmLYoNm`916_G7V}LW&q1Rx20I_lnk&=Xdv?_NJs>pRbm&xRS0e5Gl<( zue?`*&Y^q0oCX>{d}FO11S98A4qf#@;X<>l!3&72Y2k)JLOvc65}0~XTeUoV;S7niu4KJ2RZU&l>OfrvS5HCDe${fEs5C|KbJI41$2BY4)y+4pQ_-1e zLAx6BoQ9F^fyVKcW#4Ywu+NdbK{mGy2ztXY_}7Fmud|!h!E`(X!$IOdm!^+B!bgNh zY1)g-j_a8>Fxw5)*I#v5Rmifnxqf?*514jo z#YMLtthC(Q-R=0lXA5boH9GhI`h57^FH0!>!%lDSSNE3f+nzWbui=MV9q;On-(l5H zHJWyJjknQO9NC{oUnyx-h^h{z)k-lGazd+Mwtno<^KTBSVp-u*xBEB7NCvLN1(<3& zbY?HUBnHmxp|MkufrAMm=mEP6@x>i*N$bt5Cr-Gc-p6CHcaG_}lMyCq8BFqMWO(S= z$gpDc<20cK7V99_9^Y!$kZ-0{Q%&}c*tQ+$E_5E;I==q}Z9tO0Yk4M%gw2X9iZ6!( z?ocQohXNcXav;Rn!U{#&IwyAaVc&jQPDBgVgNfBV2;s~b2$vSh6SjJDhxc`8c#3rR zFu5A3NWo(gR_Fd|vV^pfs|ZgHk$e=vx9SMS(5p&0Gcd@XVi@JsP-?qbfcG>rfv2>@m(AbFXg;{P~;tOJG)Hp6N{FnG3T0H!n-Hvqxl;$nJ#VVbWSfMnRZ z%LX7Bpj-TtuI-H8Qcup|L~j(Pyty* zP7=%(PJ(gAW_y|A-5kerHbks8Ug8du!$?L1?@5>u&qEaSvYGEAE1wYrb0Q~FVKxR7 zvnHMB3mBTs0Un*ONr}8@h18WhQrhJpn&|AVKtv%b;fQ98Ko$US@&NsY?6>#foeW?8 zMn`cvp6DAR-&fdhqMWHZ3v(E40ebteI1d=(a5#*WSX=6yeXdHNzc&(=@=7jmXeGzz z;Dhu}W)R2%bZ=-Hi?BTa-o26bqNLRVvPj$sPUIk{^8c zg%^60Bk_`lxdZ1ed^mYOAp7_F*CJgm^iw{Bib+)CM9)|vJ`6KepC&1b3w*}TA|D-a zi|A16b27f;WaF;W=PZd^io(>!uFlTc?QS$1V>a;F6yQ{t4~J}dlw>J;J{E5*quUWq zmFe~gaVq^O$KN=vy#2E@cgiTl$4oM%0L**npz35g|8L24a9&@_sx&jB#FVjt8J2S^S*jk&APyIpXVtLH+IMhkrajN>`Uy# zZV%B+@awawltNbb(rhC&g&B+}lEH`~8B_iUu0)oMc$SRKl9r5k7GO_K9~&g0C47pH z_;!_G7#sJa{RIY<78s;hV2Gdv9Zo~=QJo1Vaqf!0XpERl&BshXDVW|NqVEqmm1bjy zQ6X@yXzD~yt}3bq*V+hEKz+CzPexW0QXL*V5il*6lgXMfT%oD?=rG#$lxJJhyenpp z!lMqaKX499FWh?S^2`4Iz>{y0S03)Xbl>CKuDBo1Q!d*ufTuG7PqP6}b5LJtx&4nJea!rDMN)<{uf=vqIXBqg#Z`6sE1 zT=Uhn+zM%hyvDUc?UXl#u9L41y(z!paZ1cwsnD=eiqfGoNTFO7K#MioMxbCp{Q43N zQxYblkhCxNL0=9Uz6vt1rXWLJD(FxcDkvB!z`&qxr=Ov;r|c>L&NZedY+yv#z=$wl z#9@|B7*{52)!rrER_|3_-mB;lpfz+82QOPD^Rn$l-aeAw6HiY~G`T8M(mJIHSxmUf zM4E$ixa%!cqiU{U3e%veiBV$%me_V8Ih0h1+O>a5p8Ua$A3pVV|LD3~X0<=`z~z@c!Oyd=89sCP_)q@0d};Duzus}` zN<1BJ!;k;;vFFac-S|X9-+gxh;y{~Mr#|HN^5fBP?)@Hbdh?+H_yMRH&6=qwqZ={_ zIX0+!2H^Y*IGO?HWx%-^u$opOZ>#6?+<9Y77n&yJ*XK3oZ8P0sx;FojtRI#<$JtEY zfX_R8ddZt!AqZm)QOdB{w^&|mT5MiyS!`WwTO+SAtue2$tg)`K^~QP&9aPtzKV($? zB6EXfMQlY;XS6fFEC0LZd#$$@-C6Rz;SZS~w?0_-P*G3pXE9Ha!OZgvAZh^l2EgJ_ zl*luHr~%{~Kn~rF?+RBgk_!v0Wm-34tz5Sue*NSm5&6*}tY-mpyK$9t^qZUo6 z_^{FGJ@v%_R+ikt;)Ct8Ds&YvR^KqHt(9D!5Bx zPQ|5UDV&&RQ-jDHqMW--nOQAEk1R>^T{z^C1q zv{M|v`s%9(%+lzX)V{HCu$@|ZMpqas90mgv6|ujz2n83ltYRDBtM@r>ynNfGBMZL! z!rgT>V~TH^cg2qvIlHYLE!)<3Jf*>FpS`ob<%KI={XM=Qw6?u@(gjgpLD{scXHD5! z6p2s0e3ftR;<=-vp`0vpetFHd#fx@d^dxYd*}!#90oMtT(j&-g>_Mdxt|4(7fFr$O z)Bv0S92~IUO;p&ga$pA?6K10}#39}lvPixVZ^8C#NoICYR!#NJ)bN^F20I1d_!}=U zZVjVa8FftRFne=!WVO2bTpK2iAOL-Kq?7)TwCr==u-xq&|3|U(r7~kFJ>Z? zVD>>%nN?7LSp`iCWg9b%Y-7C4)=4V2K0E(a3Db2AqHnrod(9!4Y*iIEZZyPsV?VCG#$g~W zMQN^TZ_cMbdMo*__K$9S>W`79{Z}oz;faT?U2_Y*&il-(I0u`b#N_Iy?+>nB_x$T` zKKC7H(=6bzUBc_gi$^8GZWDI+OZ~(B34fda`__AHkK5#ct;p8xKkDcGlsQELk%}DI z##tR9GtMS)cNWiy$h_N)-Ki|CrJkwJO7Q7{)N3@TSJ$>%>b(U#;>hh-Gwc|l8+OD) zk&0ai`xA@_Cv4P)!_9PiMNF@k$E-R^biLkZx=p29x2gQt*nR&#n~_kJJrjS>gFgQe zd+&m8MH65>D+4H?%i2|Yc|hV92`?Nchak`a`)`qxVB>Q zMXn#1Cof&L^V~`*dt3*t{{nCUC;A{Ut~3iPJdW}e{6u~pzmo6dMUzuD$tGKt(_}-O zj4jM$51CCxyJRfqsaZISAXG7p<GVcF1n=4O*G?W$+?j znq}qH`|@A2V8xQKEVXo5cx`RU!d6NwY!Ij00GU)^F%07@#*&DI&J)-ML1q@fwhne; zCo#HJ)>(_Q9Jvf#I&YjEpm(6QtFJu0^_$Z*CjNS^fROXsQYMYl5e%bBYlcy!Ymiap z=U+Ff^fC77){H8{QwASAkYQBG{7$m<+jNkjk=3>yWtvvzMzuXgFbFFsnpeodn4F#f z;GvK9w(ni`^u|Q;vmYN>ODY!Jw)x42H*J1WIMn~oTkCFpxg+^$^35OMJDy!|)A3hc zd*L|6q6x`4+{Zv^VVEC&kXUN5fZSmzaL=&RxerG=K& zmM_i!%(f4UmK2VUjxU^1xT|DOi8LyA)R5|u$(G5vwL|9T&L7euEzey(WNArP$yB05X=)<^Q6b-e0$*O7AY z5l6M74#s~20Uf$+z_5A;JG{aXU;=3#6G-U^Glm$-Yylkpcu8k&#o%L7KnB%S6PXqP z%p`!ZowL+9`=qX^IH~Q{+z5lFmkM(1RH8yn6+uT#@5pkeCfH?KT&{fDQZ}*kiW_`( zyt(@ir#JlS<|CIq()@=#Kl%9XN3PiR*i)BX`q;w2oPx3yi$-_fgsa}Z3*()4b)8%D z`Ky=ykSqSx(Pw}0{0q-hj{X>kHrLV9;?R?cJW&YC@~skcMF)DD`dnx&j=oOv?6oq%rJga#{j(%qTVJ;uF# z?mg1oKU+BTRC4T7{V-0ER6jyO1KY)FC(CPcKxX+o13d@MJ~Cza3mGs!VDXYx1&e%I zCv5Dm6O6MiAew0G3FHU1#}TXHi3dCf&I0flOwpg64rEFFSL4oZE_^gg(KV`Kc^ z{6#U{CzQ)&<#O~q367NiiY$ElhyCBb|M&RscTa{9pW2b&Bgsi*5x(Q#mYZ*)XF=Wp zwD*x_?*&}`se=@C5<}RL1^nb_eRO5C!*s1lYzb@<+DsjmYlLeoVxh;x`3j4}o*Zg| z`C$eofB4Pi{e-XHWXf`di;IU0L7KHnBph}k**C~q#h1azeQ9eIbGLS}FDa!1uH-=Oq8&Jjh1%uKZtot+4Rq6|3)(}nC%62hXnb`|X%Ni(wGJZqv zmu52I|Jdy1n_HIR=P`R>)}or}R;JD%Z2?1fF9Ek<2hgzrA2Uq=TT7=_Edz_Gb`r(8 zW!lnLEDDUNY&2CVQ}_-Nd+e2tm8-71^`fqy?o56cUvTx93#U*1&V9*0;PscpCN3H~ z|9d-=PYH(_4mMx%NO|Fru2p-Nj^O4xJu7EUYaQ~{9?3dp?c}*zM^J9PKJ|fc5N1CG zcx56GbO*D^(n5TRoP}Lnem=@|c}W2ZGffjELlAMW=ndPs+^}fEI96DYKd685Gx{e# z-9NVae3j#X>lZF%YeXkmGc)$0FBZMUnwhZ|rk5e@U4^(X$LP5nqvvw;o-^0y#8fjj zYdfUr+9lIXnf)={gx9dyovCO$$Qt#HEmc${YfLbyU3*$1W1J&4iH` zkR6M}L+pkiS~|z_>$kfi932%_5IKAwyv3TuC2Ra_p#*X zT}`90llJjS=;O`M$2q8f|8lY>hjyoS5GOnQUFwC2jnBzheqh|&MB3`4r2d2*H z?)Ju1nD3>#TV~WP`@_o@59)3cr5JW{G=ni_0S7yWOiUR_zPQ@U;_qhv_ z&%bvn`P=V5jVC_$M_e-Q+4ASU`}kiLuYdpg2megSh)=)zDcc)|e(&O^09GYw*GmQbz3t#wvzwl!rX&;b*AN*&Nbq`Eh#Zd>V#LlgE> zAtK;oGK5b#bJ9<3sZIra$|(kcRB=k%drc(@nMxD_h!oUR0zpmaxmH#3vFY7*kRf~n zGQ?qR2TbZiYMRp!Hx|gtD)YN z9XWha|J|Fe-nN;n{p#mWPiUA&X@E)}#UOnM=%$1f6P^nTNM;AGkVp4RByBUy8T8Gi z2V(9&9*EC=!~Rq}pZ)3kjoP3~1$!#m-|-yzHAqbVcnWd}&=XgHR?TGQ5hM>j(W2&S zCuy*)zv)voh$p@E3uS0OQ4%$Ep))j|j8 zx8u+@;Eur+*wRi-h+8edxw3ns2Y#38#$Q06yV zuebgjn$kMWI?cfi;R|df_J!QV{ASyw_U$&=LIkVhHW5P1w( z%ZPn~D)-?L`>iIkF`3tA>(CO^impO?U@Y5X(NA4vryJfHz41E9alkYG#b3%D(2;u6)Y+zOz<(>*Tj$e><$x&-Et ztDPZqE%=B$FYw}M(-dAP5Qmx|+LraC5*3@^a63nbAkNg~Jd1%esK#cVdg z3y?ixKLIIQEXd6FVFwH*JX1O4$@DE-Wvh^E)+Ysa*|5!G2o)AXIcu@%>MTnEN*`85 zj8Kx^`vT(#-eoNN(}S)@eB+>NZ4Ns0YqZ5*i zXX)JJO#D=OT!E3r%Z3&{Q}mM*xk|3$*j?wgw&^AuFy}7#aBcq#*KsAiq#MIG!x$Gw-_Ic>zoqbBBs6E)5l|A-a z47#J7l4j+4o5!--1G%}~RqO^|o!#f7AOCG{P>W7C^f&6z#x#Sak{5=tFp4GT4ZZk@ zkCJQfv+pGDze+fC?g;KqZth<}B9|pErqt;GD)~FeWD2ny0oIVF0VRDhnrXn3``Y9t z+kq`2PfQ{aZ6FKilbX^vJL!o{1B1^vT-cH4XH`zj_E#=)+`-==!;IB&R5&Ugm0od} z90^ZlfXgyv+XBi+Jl1kGzQrP!x-Q}yqz21E`r?c9px5B8UARBMqD9w;A@k2|LMVDp^}20 z-zIOvH@*GV*yKl~2q(XoGJHb$S4nICFY$#9$wrD(hv2pyI6j985ghUoTCVbkmJh6?7@C&G^wuEbB=z)$tj5NTSqjQ6 z^vf|kM2?#(<%i|pVu{kjGfH*^DREVrsIhz0 zRf)-1lbOIcS%3-5a|osjCZtJ-!#v&G1T#{$DTN(^7q^>1By{x3vLuLy32;Ba`!$ObAI7=(j1g8umMnIH^4p5O&k9@*!uWSjNPo=O6P5(#()SO*<(Mq)8a z&soLNsPf$GBJxnj!ekw{qW`C@Ti4*f-piC(mbF(!Ka?wL~xTYu_jg6G*Prn)|Cj3mVDQmnPbPrA6_=LW%sVTJ;&er z_>rX#bk4eP>AK{dzzzwTnrz`t@Z*t!LioFhbrupQ#lCT5I@xL!tFx>9)BU@`d%{9R zRzvDDG!;KR%) zAk2&c9Ly-dkv0l&Frxs6N4Ez}YLje-hZ+Sq4D(bLo#~exo#(MC(kTkCUIazJBG;Ha^gw`{bn^k37A3(}T$tB9EJehhb??@|s6(`Enxn)bZob zzxc+RF9H#m5E3TSJyK+7k5FQ4bTW?8;Q`Q(=#d8IAr z-pp=8U5--k8=g4dkmU`)95A>zji#&QaK3R?LH=OfoQvwGm`y@jIaivgmDANu`K1Cb zMnznKxzsw`y3~3j@bF#Mqt??_i)x*1B|NdnMBf->!d45C*>5-KB3?eoW~wZ>Wm!NN zt3+@UBA6hnk5n^~P0ccHCNkScRa7}!#$EC*8Qw8Y*hr$NatXn=lHG(5>f=;}*#a33 z6Z&1kQQ@>8z@+|$9?R0lv`PI&x?`6*AKeEF@>{@v%2&-~H+|KbE?R4oc6Y{)BOnLN z6#u@@rI+$UzMKp^cb>kl%8R0CIQg#DC%sk_3=d<6NM~h{1;d89a>Jrf z6n5FdCaW=*J-~L~#~s=!YDA-2W?2IO3v~E68J z1vYpKKV2t0MbGQkbzskgHBFXY5K$}0NoKz0Ft)wv`BOiRT8iaSPns?LGMi1^vsq0C z>StsIc~R}v@k~dtaOOx49^#qinHGEB`q6N~G#p=nuE5*)PI;rH-MYzknfE5N1MlRo zm#?;5YrWofv-cOy7qVPd6!sx2sI{Ty?|PX}jiK{n%6Ax$03aIOMK1d)|6?&&oT8lpMR^NDBDE(OZ9t=dZr@ znkCD(UwbY!b64FXUEg`)F(jZZsh7pwAZu8FPJ*Zqm18Mk-sRsFAgkp-FxW@#NjQ9d zx6kMI1+yLgz=*i(2-%HHxEWc=?u3O4`28FX`g{dN)IS3L!^rM^1(wheau14Qghr5i zdh(teDbn|Bcy~aOCMpMQsxYLGGnyPix5AxDPYO?I`maiT-zM;u5yO2GwJN7?w{dIeB<-~?X6DEP<@@_x( zC;Z-hcS68+2pCH}Ya15vi+=FOpFMl%r5EteI=_E&N9R4abbQ$%n!flKzU96@(0~{5 zvCi-B?4$vRq#j7l!DHF)wYYF|Pg>oS9^%r6Ql-z&O)unVM=aHrItxcv4-%u<4}NH?2}~PiVa(GKW|q6`5J`*7Y<3x6v-q>zPksGo z-q;+1{_rgO88=itlS(jgW^|FpAsBSGE3$S-j9pe7FDLA2iy~pGd*l zaRl^)ED8Gh`rhQ~yit+Sqk7A0?wrPd^s8Tearxc$X}9x>zuI$b<_bFJqq})?g-1{r zKi`v;KGDelvJAU9mjPrM;+zYBLF+SgSC);L35V?FaCUacMUNP;IC#3z6((HLppCg~ z&hBFj{dn2{rT>^h=S#svg-f#lW%ucUtvNe#?#OyH>v`*&);|PgQJj=!29Qb<>bId;b{_~wf5gB|A#h{ZY8mlrl)jGj}z;bfCJS;Bg zx}`M7?llb;hFj=S-kh;xk}bgLE83YyQ^2$*D>plr(@qqn=nz}*yk(KiL2ybE9l<8t@hNj(W02Tvq^`-vY;|f%` zsCGTCu);~-a|$aI{prx35dOQKoR}64@fH0^!xPg0D6n4`x=@{GSsYp)YBybK-|D!| ze1qdo+vAQt$A|V0911WN)#-3MoernNYH|fhZop#}UGyvq!Dljgya9jM`xD>;1E>5P zO=L66XfMjmV^+F8pTl97!-I5HgT(}0SGB)B9JAjm8vFZ1W655m8-4xEs*fG&FE*$O`TYrx^I_|OaS^etzD*s8JZjq-AWXvWHW?Jx4S;|hX z&Vjryta?<4~LN@t$G(gn_*2vsV1Zg3HB z=^tEf$T0Ntdc0XtZWt+yMWgHlbB4;f_mdsResS5$ug@%6Fe7#5xdj_88k#%(Px$`p z?wEDwgUR8-p}L=Mz4y(Wg8W&Vk{j`eYj=*ZNd23*^3hwTtY+sBt>Zqz7YHvwcXcLW zuS1Y1xQMue+E(ipiA zA@+-I)*o!uc0&Rqr>8>$3HN6%gQ1sTGTOco{_w_)lr;kdvL&%?KaIpME*UkF<3In^ z!`F|SGh~Wq39}YKsSijcNH#DNpud9s&OW#H`_-zu@=gvDZa4QdN4U)hyCF8g5YNng zh{%Vy4?n&iA*Q5J=;!I! zelO`te%1Gfr|`%4#d~R4AAqvb-vqLtpCq!G4Sm{x-fRlP43nJ~?N(eB(tPeh)vVfx zIbi#LX-_|3>S{85i_NQb+{NE&QGe#-H|$(9t?F~LAK>%P-N(hx{f4`iTGm%TnY29x zy!H~VhiqY1Ll(4&&N4sO4@dqykrx|MVG+%efOw1qL9~2gl4a;1B*|4~hi2PBd6&&m zVR{F1d=;`nf` z2YXMSPJX1_5n>pN#NXc&XmXEQ;;8zk9F(aqdf+dG#Yq37QlPY1cmqHai?4qtjZe-( z6OCBu5aVx>2wuXA=w7}9T_`?*w!?EesYD0C(f!}sq??f+zld%C|Lydh{|g#UVfaQA z>d}1=FQ2}Hn*{N$0l&onUjuG3ggp!K?gMxMxOc(TgR24;(EVoe2vvid4RNy|{p-N* zdTCB-L9fEkvA&nY%FXB5= z=OFGPa8n@-6FlchIcN)hG4%k=8`8TU%Dax%6W*I3&I9DP=n`m?QTPIq;(sl?CuYGl zPdY81GZXUy^Lv&**gtnXtgLdbcioURBU|-kc}IHxhjymyDP4$cwpoMBY!e#^yuMZ znkvtX{rR|itDYY37~eGh?(v^iH&-9jdutLJ1Nce*2vSffYJl=SYxw~D2>6X9KS9*` zo(2b4ERKC=W^Ww(%1-iim_w6DnGW+1XR{6q$Va+#ScLd@>9B-WkVkY_M#DL?4x7*p zZmbU5Y%%Vbfmhh3e5}KOR?dIvFi?&2oDOp+&&BC5j|5kN4hzWYD%N2UNv=^kETIvu z3v^gUKGy~vHlbSA^*U@5zw3GhQpP+-kM;9k!eH7$ihm7*Mdp7QgC*vFJ%eQi-@#xL zZA1SfIt*f zL+|J?v|-L_2AgR)i*I4Dg_f=O9tK;P{}T+hGxz|56=s{8J^7$do$cuu$VBjKvUsu8TdA%E#OnfQr`gi8u`qC z)VD&~n;;z((rtw_ThMZVmjm1eVeRRB)O6{Gv(m@XZ=+EOD?<~c&<1f;$hQgdp=m5f zYxTGn!rN-_rJB)XFi)C)(X~gD)<}yF%8N@Tc?G6w}G|oIQD%ri_whML!PvySFpRP zm&k~#GXD4bU1C&sW0LqWAew)=sU^UoEW8vslP#@S&~N!Ekpr%c-4(w6MC) zgZlt(&=wehDxs~)U^Jo_rLs2I$}mXl@y;|BuViKIWUWTu+gKXwA+!@N4PTbAZw-vA zMGFAiYBKP{2x((|xdL)o&QjFsu!ZHdoYC6(^3~p37!9st)TZUy2{9<{(eO5%+EhlX zEA+ft^c0rsX*IL^Fop?VuQ`pejzLB6-H<_a@onYW@Qt+p^H$2FI-{@K8J!t@XJE_u zYp>=0&2o*)XaiaktuCD`KLZcj8KrJzt=9_ezkzY5rf;pO*3wObT2T7l?GFO z*QRqlTH4KN?A6ktF)45T_kCoeXDospvVV)X>+`m|>)$=A`j*4fts-ZuEaM8)et&qs#!F{<{&-z^`u~1&!XDou-41 z3{I`#mxeLTdVZ@IW^T}_rG(YHT_2$|zDzkp6YB%5uMMo+z`k$Od7G94<&fHlv>}Zx zO=v(8Fw*@0us_nR)WquEs&iw58?0bHo1kqpj2{>sRL1Yu>3CCQl=0j9mvQ((vH zkc>8>y{wh6We`pL$LTRH-NL>zVxON^m3)m?8EyaduW74k+%dD>M!5#$v;oT5l%{c` z4@(&LZe_WwOusj0ULM!z$Ru(O0M>^(UexmhZsovuqj8fL6%V5y< zU|jmoTXi4@qn4TD#$cQtXo)SX9oPR~_M^eusT{dMZ<)d4X)DrX%Yk-T12L9oj0Bzk zh9_%$dDzROKMT^L-`1jq zERR}9Z61p`m!&-ud}qM3R*y%&m}{Y{T2D=6wV|y_+h7vFGr>(sx7}QJ*UBvU(RLq_oi|= zMRUjU_LeqUL6*mg=FX;;bsfWM+FP2|&23(_Xgs^MKfELx3|(S9 z=JpPn%&1{wMlz3?^R*A4oK0$Hd((>M^-b+-)z+2Y-p1b+koIFOJgL2DOUs5;YTe3} zPz`mcI=6LM%La8;%ktH&>zX=B)Y(m)?Jdh&n$&qstT8&&5tU=g8d^80>zlT!o1osE zw1ro;Zs=5-I@Gr2_Vq2DozN`Hwz77sT`;4DH3xlZYj0h#X?dp#Ic!-CS!8?*&z23# z*KMLL+S#hEXz6H!UQ?SktbngtAi{Ep)x4o|n5r6?w{BRsRV`{6qIE@PS{sbm=Pi=f zbF|j&%^kFMv{^E;htJb#jbkM!YJprjo7dAeY;S>FSF~=~u&%W!GgByZlU7u~7^rV6 zWCiz4oo#@5E1Eac=7l(`o7c5{twuJp%}jf1W$U_it*ke6lqyk|HFZFNS~sLo&_K4L z)t#MfV@pe$Hw@d-vbLqIc|}Xpu-5ifrSz>7VlL5+((Oq2Ze}Qf*lWZBs;398_O*p3VebAHqtsqM6d4))VKAr*3KKTur?*u&PAIDq4CY zcwGyiqn0;Kt6gJ*ki#b0iX6dEi37>nKek;Ca6%y>Jmy8ko2-mo#5F)J#{>R z8kR!EJDP#7LJG9E^;SA>QP~GHON}=4mS%<6vbuHszo{d|_D$^@pfEa}wgR(cWm(g_ zywgCj0ZaxQU(v$oYpj9hP0Lz0H)n8jU`LcTScxb#wGH5k9@MeA3F@`1c@T*ZeVroun4l%!BvB67`~K z^QYD=n6E;Nxiz!qH>h=!)tXri>hx)|CY7kQ3un)*oi|Udo2yQnIeW&mTJW1TYvPOr zlcvp@qE3MCX4S#4F%9Su5}jYC(hT*arq#})iOsB?J8>$!)=Zc-W7_b#~3%`O_u>51p&dUNCod-Mm`Jei9@*Yuc>Ib0L@7nYFX#4})C6Ppz$o7j@p$ zni(@#Ry7Nt^mAGHCf3bvm^*FC)cNYvx*3yd!E-__l&ogLj9M)#sMN$6HPdF6sFP}D z)=a5oU)4b>b6GUKbQevnWnPe94g61>Kdo*St;WQzp7fqX2TcXy? zoi>j)$mF?okUVWp_@a&_0^iN5)l#8Ntq$rDh(g~N%&Q$J%cRjQgRk*i; zdm7xc;CQrz3xmG`_p88lfqNRCqf~^EK~*83T`*J6EuX&;X?b=h*DF?`Qck? z+3euF=u>bha2%A=3%Pnx9k?anZUwg+oXFx)pH^^JfqNF*X%>>;y!&o1hq8P3-NYU} zYu1&q*Cy?CaU*-}xu`*V&YYt?Cr#6$jn$%!sL;HJP0*f&CEC+fP}W7CW?R|O8V~1z zN>Y>QHn?MQ3^_1H5wwTPM%~~DC+a>4&efA2E8G1n$0N)U4g&&2Qb#$w&*m(vF_RSe z6uD4@d_qoXA>>q#-C4G~=0fsk^fb6ws1#f^xFz6rgL@X-r{E;=Hry5RM{1ML?i8*DN5~)Hu8==Kwf+Ei z2YCyix5!&iwAc5It}HvqfOx46L<)4k8`J@pr>u|sdfyjA0Hb2i(|}QjxjZx;m2-Lf z3Pu3>`Sw+{MEb~IdenGiPt9=h2I>Y!pd@cV&Tk+U+-z`5!L@-C0eTalH&GY3UEubB z>jno{26qLVN?r!{3vh3u;ouVBW`mQ-Yx^LZKJx0m*n~)phy0Sfh`i9^$H~vx^B3d= z_I!o>j6Gk1XBeI@lNa`dBdEp#;RwD_;Hki~6v74a)1G`+Bvs=i&qCWp;9d%@8eAQ? zCE#uaCz5AL-o6zP7bJ2Ry(}Y$xetBBo{yjhWRzGFNyH`s0;=>D8+!pjaNDi!j*&#{ zj=SNN-eR}h4iLS?uH6X`y~QrO8X$U$t=kL`y~S3n0f^pWiox(sc-T9l>35an}R5 zs~LA)iMy`GT~)a265JKXT_M~R#$5^Abr_Fvf_LSj-Xb(h)=VE(L$H%1+N3gljq^egDaQhCUTUJ z5?7{jw}!AIjO)UwFd2SGS!&KE#y|py2&p6dF#F}fOX@$ z_QeiIYO?X2D9mH_3&=5C0M9X~gT0SLA(=iaP>B2xo@M(&_3)WvU#ui@2;1pb2O?jD zPDVZo^$`F+3>}XAR_){QzQ}LD=Z6O(Z-j1)yj0pJgU^vzABM*vl|?-m8WVZyWft{n z2)Jio{-(Y9+5EE9Ag>dxY(lj-v&;OX5*mu$TQ zbYwyB@EdGw+qRudY-3|*vq?6#Z9Cc6wr$(CZTn^a{N8)t%=Ed9s_wdHy829?xm~}! zld<{By1QJ@WnL4-Cd3S%Hl4Yd`xlhfq5h&L$&!|hyuG=$f)xyg_3#@yxa~DrtK+_J z&U~wx z{q9Z!mqBJ+JsrL(73=5#Bt%)Ed)K9PdW?2*ER!C)$elMF8Co#GCPcIc7}Zcwh_gF) z9zld^A#eR}lpV=fXdkGpkS6XL6iL*@kN%fID3PtlC0-)@A-+BAB!)`Ms73n7MRtF! zRnNJ@h0e=LGwwC2t<1w{46J>j6;d)o4r`uyv$E)UnBPd-N{~=L|3(;`% zBZl=h&KX{_t>*sbRnxirpiHVd8Zm^?vq1-4w7RMIWs6jGunF_gbfC2&*y>e#;iF8yM`Al!nD7;mkN5;gP`yWEO~`DZCg5N{DTDyU12qL;WieJ z1FUd3v03YXo5I0?q~;1bT{|5McG3(TfFtY--4lYfXUsrRZnl&dq1-Ms%FKT9Y$LRD zbIgD*UEV}lzxh|MUW&}+N67^gI%7i{nJTQMM}__p&FH@lpg2PTSe#)dQql|C6}*Y*!Qp!IxJw zI3xb$f`jq5 z`4$Ea#v;Z>*1wGZPmH5Zf^2jeBVy3iJ9N}qAM`m>HI1mm%CA_v#o~kt|K2kSEmc3vm;YOZwguUwDTS+B6uWWn>MqSTq4tm^KneWD!C`NN$$BQln zUmFb>@wEH+1WgNi2z#!p7IEk9&CXiM;;;1=Me$z=zx0wf8Two#v%Jouc3xewj`TiH zhu9|KTjkun;T-`@cgc^ZEE8^k`<=&XK&J3$mrwN2xpLW35cS6V+uFL5m)TIbJiDuI zQCeXM3jgER1`SPN`sBux6I2d)z+sDf6{yz1tWRJ&1dkmseS$FzeWE3N|@3`W9&^_ASW84qTY!NNZ@Z&-SQOdy#Lfw6u$jn`K(i(_7abS{^wr)+4XJj|JeUehJ}rl zQ0G5=`+rv(!v9>3l%N?@tbbaW{qx%Is(%jt|M7X2|NWl+%jcQD`}-FAzxe(Cz+72a zI2jrL&sE?X=BlkC-pHx@^J%lw)BURO1g_e8ZkiU(Z#s-JHk=kok;n%;j>vBsS`1jj za9k##9D9QFH_KUs4EapNNI!aQb|^}%%JyLU}pMPEIkthPFqo~D;77fo_GmRga3diopu5)cj%mUKpiOeDi_=F>} zFz+%H*mT)81$0v&B5N%@R<0e}{GKNyrGhj=uUM-#zNq;A=PM${6*8y2AY-R7YOCRW zIbxbPTl|hYXLt0tfmo=3H(`#O1OA&$|GFrwFd1+wjN`Vtc5b5Qf-#EPWoxvS*paNc z1?C|dRJ*>>$fTY6wC_RL=VDLX!S?~$CAh*Az@AZf(c!tXxx{BoKs;|EIQ+^{+;^SB z4-UjuFT<%j9ik~&#DOXMJA5HYU*3UJ$4XwwZj`p_T>7D?0D_r$=Btdq7b#(U)+=Eg zLV;PRCO)2O6^%!7%~TEmVo*>_^~vIgFWl9WqAr&A46`qiWyF!`Uy2kB0JY=_A)nS6 zj>4Y7w-7cP_EpXOGY%?;xDjy`t%LN2sN-WLjxd-xxHJea@K$kbe9vWbeZ?y#Y6`Yp zC1P+-^o0K>Y9qMblxH?Cuo$050mlso;J|k!;GCPaebo;LR=haYJg)kYm{YraS5rrc zvoU^!9wjZGyEe_Dj$$6|n4>|7c0t;+yjH`X3-m{fUnCk>UXXW^K@i};)e5}fzp*|B zv=N9eq-a4%r`>Xm8=(@ZnqyUubs+*VUA7!_7O>ZQvfN~JMFJ-!kkYM;@rpP#FgDWH zPSi;GsO3P#9pMFkSCD1Y$Cueh%Y zo4jgi3zR&QC()~rPtMn~<+&O?|I5GGUqGcGp}L@&H;iuZ9l#x3{+~XZ1+SnV4E@R5 zWBLhR?Vwws-Vxqm-jV!%8pMy1WH6Fo5v#(l0&+`nJi{4`ujbcWVqVgp0-r*kgHYPk z9MNn2A3otWM(a$MQ|*BW*L5#k9(3MN1pbLsi1et~0pbDTffxaEsmQXyg=%-cE)^~v zk6Yxm6rX%yxfwGO4yX=lFsTk`61#85g41sl`f$2np`Xy40AE1h&ue{xNubVfTeQla zv73QsEzXFlfwh~9XM7KSFGPNL79TD|Bo~A@=2?MNiND(Njqz7;6x;Rz?LwR6LnBn% z>mx5MgdD+Thx9x22dxJ1pzEraZZYSU>%f<6mvEP!m!OxZ<*D&m0|>WjH&3^3FBH#u zFk=Cc*RBdKa+nxibm?f5e?kWHBp3J17R~Wz+G+muyBcP=#6K54Z>{R4N7VV+yS6qF zT2=RG>;u)@tzA>HiBA*_D@hKNJaLF`*;EI`ycLR z!5#KP|aUeE};o8S1vadJ@Paib9CmVhFT6_F0 zrrU!uvw6bQ^ELYQ0_F0$@(=<^vK7O7;yVd0cDts&s8mtMz+gaWgrj{n9CKlM3^zgP zzJKCszM`wQ!h1*pt2^Sg{&37L>pA;AUD=NxqJy!9d?wfhw8~%u{|SQNFB$j0bp(1PYYJ+17?o>xF4&=8m$E&CF=R4}(4h@8>kf4OLb*I> zc8#(n#4k9+)Fby-ktd=m(Cd%DWErqKLHV|$3+f;4ZgZ2oZ`PTt3joXK2KCqs!KK1> z`{e0(itqw+j|Sph2uv5u(=&)(43DvwS0xys2bwo9tfx-Z<_r8*t`EH)vuHQirxJ~J zK0ryK=9)rALC!(c0&ub$)r*hf|7x(@5jPFyf?{J3&1`E^g?;jvM&`>K`wb8T+1FlIG8kOcKlkmDe)O1Bq<5UWj+;r2X02 zE;#Dd!k_hGzluv!Ls4S2uu^$Zl!3<^^mPQ48o4vK9%wwR`WQJ8$5OdFy#l{KH9-nlY;Q&kQyH!n0& z_h+;c?RQ;}Txub9u%fYE1$3~5u4$Z{#+lh3eRDH^z2_F5Q~+KrtbzbON%?9Gm*svr z*5E{otiz1hEjcYze%3xj#@r~}G>%>d-eeVKIt=2ZUxwaClMfZuteF`|DqRB{yEl}< zMiencN}DUo`%j`$@$VCsXd}VrrY0XricQ3ACXM@txV7p(d+?c4_I!Fc@gU_Jm_l-t ziwnJ^YX92pSAhqH3|}zY%HfGBTObie>q8+sEm${C4ao zkCt;|rOnpn7X|EkHoPDgQGZG1W610)A~OfF<}{4LyJP;fsMF=+jB_f zD&EC&l-3rhmGI+(srF{WqK+~?2qJ{Un(se)6eBssq!NFSUMs?%hycQ3waSok1KiOe zVt)8G!L;}#v5=vV(a>fk(PmK!7655Y_8Q4`PMy{j_JM*{nHXEWmlJ0*#EwVzsh^8H z&W4C=?6-7g-VD^VDAD8 z$AQr{KO{G_`4Rdj9iUvY(4_$^SN2oY6|pLxSs?TKm6SAV-xC&8)76-fV3RB`enT|r zeat?t(5Hqb#l>APbT~)|s~tj7kzxr`F7r|lEQ#F1vBhdsD+D89gh!dWZp5mik~%)d z1ZBy4r`{AM5x(8La6aqnfeb-SiFz}$-pnT*kNqN|pY(b#Zs+Bu#^q{@A4Z`#?&zPm zb^#%s%E|1L2#JhF4-f(gF`Cbsv@4juge4M0It?J&2_SR{RLxQ2q`MXd5m5*b*6i&7 zZAJDC3Bn1U4jQH;!1G6rZhhf$|H)->8eS$$WeO5RY@-1QZObx=8s(t~=21Vei9wID z>2tTSHX4Rgkao_&^_c6<${)YEzd8RE89!SfBV5QdmU)1Q3SNK%R`HjRI|EA21byUi z7K}-`S*=;iE%2>GmvW$?TeBlj7Xg?*WODEnx<(t~Ho!;7w$;wHLXv4ks4#Wmx3>A< zZ?YLQ=I9+6vW29wz45HSsyXuC7=ie#hjajwv+z8OrG!Wal>x^0luD+1$NJfe=Mf57BQ_Y!e@U4xI_j3gZ-@i%3+ zD|c&w&@4PKo`T_^%L|#%g3k(uGsdm zLIi!?`Z|9Ia$njAs7J&OnFFj=WY+68U3}?=Z{-d6CM~F`G^}#Ykk%cL*AdG_p_XwQ z(ZRL!`MD#M4EIPD4M+PzQjEh!l*Y~J2K*MGTN>0G3Vtu3qID$f%MnXL{mrDwA$eXB zx~MHU%q`5LgxW3mB|%k#Vk;d0*7SO~5_X6-k%p5iO;C2|;N^0#^r z|EHvlU~@}}GR{YLWCKIj-AmvYOr8n7gFeygL5BM4M$T-wnl8HT*Tp`9?#J=X;|!Z| z)*@JOmo}Pv7Do?tiokDYN;b7qr{l*x&|P4&t`oD9qd2F;hLxFfjRPH%3kL_cMc0Ob ze03K2RFiV@g;c4M(Pq6@FjvvLxcj&pyjz}$wAnPVvH`NT?+Ap%c%-RpBxY#D)-2;DuxpNb@!b!Xb8dfrl$0m;iZttI_3WP znCq%4O(+1p*?POUk+$W=^9sfbbB0Tmvns@fGI-@m+{(TBI*-pOb=9}!{bwrJI1(rC z`mSARvDw!x<7iBOh2RGnf)6Zdy;Lkc#TI!Rr1&#aI$JBY$2Dflxmg9N{;!y6mS(75 zL6YHysEAhw#(>_tb}i>0SHXAXfBMPBPC5s8=Zoly!b%oiJyat(opm)8i7-Msy|=2` zm`3E|u4!th$KZ)L1m*OSdBC^;G7QJ*(Co&p64lK(iR;HWnLMdt+jm47n zJb3N?*enkx(lzHRZ6Awk^y=u`?^zXVO`f+T7DIAOZoE6EWmP4UV=2)jRdAcQ!c(IB zVV#j*F&=ACbQpo9@fLL$m8-WdSK;PgucfxiZ|n2B3T~ULk>bvlA0G#p${(**=b)Xw z2!s%B0=BvqIwl(=HgSU$R77Np*h)s8Ss{l^%-QO$9iS)37fu=ZlGPB%CpO3ZRLDh)7B95b9^<+Ya!<{(JvESW(stI@L-4J+0(G<(qzlKidK zs#|~^z-Moj$u&b#rMaUC-t8Orf^Lx;NF=^lQ!<>EZIy@(F`#m#t*p1(jzBZtuSqv3?32uY%8 zH`H+F5T9I0&QecM>(p5$8YPx-y+k}ekZZSbw80r}FUlFp$YLLEzZX#PKBHvC?QeT*X;iy4VIq zn0FNU;^Ri*L-8#7bI>2WzB41<#nJlJ)6uPnRc;GDz7Z97gMdIHeQsYMrRP!QkYyWv zfMn2hiFJat_gB2EVUKKINH($3X^~{Gh*jRztMIL5$8y8A?`YRV%&3-&OHon^ij11v zd^r7Cd)GWvn|MQLqE1S~%1%hGvkY^bTq~nwK}3cgr{S?^U6M%K)M(8ztUO4fMB@+s z_)mK^<}tLo5nSv-ae0{Pj@93wq0zT)Y2i`;Sq5T)N$LBA)asFV4)cfdObvIFo4Rp8 zg&}Kj{bd6E&&wXHnprAFr-4f)=8FP)<0LG6Npu%dE$NhsBsoSCeNb|sKCu*F(j-v) z32|~oB50$>2}nfNRx97DDFW-vsacS{b;+7@S^Whzu) zTchO-8PdDPkxu%Mt&c0I5BT@KDUQTGMB!eYolXtB^}nmcoiWlJtR_x z8z4zC&4TJQu+Z9>6(jRzrwupUBNo@#!xce)eG{<%5aD8zq$ScS_Dc*QMbe{4qEqRe zCc2E&O*AfvsjfAyz^_KFxTJxBF%DVy#t_+@|7fcy2)3UPxE(c{83_oI-R%yBoYn5{}kpRS*@O3&tnG+=Irjd zdm~wG{A2CB7IfyzkL#4Ev;BuhDn12Os8AsV1L^F_EjWZ!XjP#_E<@=^3%i(l=jqY064Ww*l#mx{na6%0wD+N^+F;nE5~8kRNwQ2 z%mh--9(j=vkD9JvMjx>+k5jVdBsOZPk17_i99W&2T?tyv?ze>XJ@#E>SS&{`(R41& z!on%%2Ih#`JulVbU4aMP)Qz|Vptpu-z~XQCwoh^Q&9tS9*)p2L93A7ardKK0ueIIZ zCIYIzeS^RNh;bk=ta0n87CEm4ncLgfhXD#Dls&;Wb2DP;H+Nuikt4U%kD`KZC|3ZD zli>-nI+ZV12+Ap=b6ASpiQrffc}rED65<8PUlL&wd$UX@D3aGw6|?MSnAAVyNP3wv zSxCyO>#&10x4Wy52hCI9A{Rq~1?S(4G#)%9GZf9bsOM-NoK#=J_l^eU7W8+nW%^As#~|; z*)zhfN_%AMf5;u8h6R(`vtgQ7gF+}By_9-HHm|Jswxyd?!}CC0-4w))|H$+G<)$jk zs+w3*b*C@?(@&jy2IQ+8QB1ZlNmi0I=5@gIx6?33;b95wv`pRsO5P@G1MCes9gQTA zwpIU~Qkl{f(`L%6(rH==wq9w^@EtyPG=)KxK%m1CrsHAKZnKv0!Tdd9IG!?ZwVFPg z+rHKfA|R40fQ~k4AM3XtC?k_<63I8GQT{GKt|v!eDN3jaO8Z2SFpA0DCWGRT=w_tOChlXp&UuX74f;wsyp(bGhCo@Z9?DB| z-do|J)ve)>wacwZyk^!eDa)tQ3zG2Yr*LZK%IzkQUJ2Kd;|fJ(XuDg{a+=VnUp~8@l9JJFt3MoE(~I`W;P69h@Xbggl3T6VUrlA3 zP`;Vw+wGV=iks&#H$~Uz4upk47QQUd4m2<`41Cj-tgT~|l+Pm@$j6Y?e~~yEXT}1h z-kL02$`6oq%F?j{PG=otqoY0kU_#Es!a0Fr z<8n=jihF3?kJSn%^WuFlzxEC{Eb|$Rl{J@I4n3T4H}czAM)U|2N9rc%Ssg;&yd4V!B5TRlZ`B#bk)7jP*2#awJ^Y!J66H0V>WMi z2AgCZ+00Jy^2;-uvJQ#_4_*vU{~}{=FH6#C zu_E_)T$`HB0B(U&X&Gcu@TF9tX(s3FA_Hx)W=9!1eZIo%6?Rm49Rv2AmX zR8zx4MV&F6^mbzAX^x({5+8CF(rgKb?rFhoqCa@^IaU{WOJz(-n#t zm?fYk!%UIFDNHtUpcBfb**=qJLqjGY^QHT3!#dbEC#~lP|yDTW@&5Xk33RT z`p4bOOR|M_(~&K`3p@75dy{+W+NEC01FVvo(q7ODR*3Y>S&I*Q_K^#`pE6`l{yrE{ zM!UX&M6Q-HuNuBoCS1eyw1nnHR(`Z2FT;rg6lqG6gl`>k&C~PSQ^h6^4~u7`QErY?Zr$DZdDTT{?afbC$X=A|?}%eF{7v1l*C-SIvT~ z7+kMXVVZCnv87+X-L9O(AwLtAU$ZPkh9MT~T0x3t)1I;ClDl*Q%?U#2YsCpFA0i0B zR8jn(KyXh%=0tQnkEYT?9m| z1O$cVQ^h=O6``WjjoZDUF7-L5v}>zH&Ms>~ebY?4?UvnZXNRJcw>FEs?R1C}^}H4l z0B$3^x*RI(mZJN&v6{efNUTSeF0k5H|8*4dt@?re9ae;&*o)nb`Zf4CEB6b2^xD_0TFk&D{ykMj|1rx@R|vUq;X>b%m5tJc=od`0ezqubbi{u+5;xfGm= z&_F=$@%Oof+`y~%y}zKbAc|V8E@zC8z8Z}yOnd#eL7i)xP2LOn6G`JoR9|BeZd~Zg zbw1)mR{e@_p^zH@({T#AX59h~D_S4FeZt4E?lcypSOS<=r5T6!1qs$1TDDfXzaG7} zpO*wI;?$N)@_uC_v#{2lqtu2M-ph?zLXW&Y9k%oenNaPjki9|w;Q;uq?Jg|fxe?|_ z5rUuM6+_wGa%o|WzDg@CkMp&=fX|iR6<9a|0aRkeD%HKB>DLMcKNZdQR&JgpTSbI&$&oVwK^4Byh}Gc&uQMI(0ai6^6|pITYzo#LMMc!+v9y zbvi&!g4qAp$Uj;l2(c}$XTE7BndbgNs;0Pr2cdth`lZ@sZr%7wN-w#AeK~RHaxdMl zj|R}QQ#9yUj+w;rdJu3086uBEh%lCP)P@%^G~N&kIaKDfHM_$fsz z&)f6q+_B=!YGnqivy$4#YnL|5DC(>BjllhOv8fv0-OFQX1tyEHwsZfQj@)h|y7S5Z zil6tL4{=d-dFax&VWJxbA&)l35C-?98y7AVJD8|nP3Gp8o&p7Y!$`m5JyH2EfBI0l z{MbU~a11(Cb1@}5J3?Uy2quC&dt7M(rwr+qcP=ZYQ(mY!N=W_rzKE}qxV@>y5ojFy?Fmu^e`KiVy| zwhv9zmno*?WnKJjzeXzg6opDJyGV;pU)?DtdsAJF2x8U(u6h7B(qu5bgy&1fDHwl~ zQd1{#d5~H-#fj}!kLutA_hSxjY&JQ6Af@-oUXfo~${La71 z+LwrtLW4Fz#7L?j&N9;M+7Su+t~t**ua?#olrCAR@ zs%#mbfFPIIuQD0gNn*pu*YvhNw=QfOpsB{|fSE1gaIH%uwF2N)AKr1F5Q>M8`xq1H z5%vmRFc1`M)tTjlDcFIR9NmtgAiz5pKY^WC*gtrI3n|+1Ty}+|RNrMni|FFu{EV*!1 zN0+^8^)TCFjMAo`-^4ipX8TcCNt_eY5g4w=MnR75H~LoYwFElw1h2b7K&j`@v%aJk z-T4JXP~3L&8dRT5JAkq9zH>gO&6a4v*B|`kTgC2ouvJ0(0@PLYLAz5Y@@cXU>btz| zr$s!G^b@KKccQXwgfG>--Wg{wziId?U`yH>YZGI0$wR;XeCgBgJ?&8RVhr3s!9D)a zjn2dvpmCLdTYZI1Zj`MQW zzR5f`R4F}HFgzHSRsqRHHHx$q=MeA*+;115BmKpBruxbtJvdo3AJnuDU!?D{nh-{@ z-X7=oC^8*6jf;bW3(rK2B8AWm>HI3AsKT+T8hN~BNY5~@t$0201(mO8NLe;>J$-ER z_4Jn<$#vcm$`A+&2w|khMFA*wHP*{w20{Dk3oIbf`^@aqaoF8`*^J?JEzzr7)$eU7 zwZae&%rPe6U#QYgL$?>pE-kl%Ok%+M89*Zs75O*KN}jmoqp`8!YUB#Ll|K!iiMGL!Msbo7MsWZ%Rl7}~H4li(-e88S4c0f*}JPmMr`p?Kan zVCcC$3fmb99YP0^WQk|J(6*kiVA>-b_t$lM65r-bC7Op%EF6XpJiI=DzjnkLd?^?1 z#mVI@9DnaDtTIbRRg8l$W&HF3s&7u8R3%h8=*89wukLg*iIQ-g z$MsnJVT4Pqjr5%b?LW&H~mDpo|o*JC(T@o2zPvle@vhs>NR6Dnbzt5-KB zAQm2rxg|4-xhTTAmuiHqTi3A^ZR`!`AMETu0g=v_^ODm)7e)I}?b-hr6M<^G@k{Sm zTmkSb8@8_AA~z0_z&mjW``?2+9_l)9rb7X&*l*q{RGlgW^&a0o+$E;;HnH7yUKY!i zqQ$ztob>jL&85Ab7GL95$;{-tsd66|%n3eaZ{KkUB0IyS2`nFFdAlnl%r)EZmHY)7 zW`M9~M>nlE^3F$5y(i<{`}>}sp6PDt6{o}SHw#AQQFC5a$(pgeArQh^f#AdLu0d*` z8PKj~yenU{6J}q0{#L-;z&ISdLvMt)JEc^{S}!_Y<2b7AmN`1#y7!Z`Ha%~hO`b;J zGW0@?_l$WoR>m+a{Jc>jzFMT4u9()TT$|#b=*s2klP2D%w4i@gy?8dwjX$JF5b1C#itH*_)lQ%vHGCUVL3@~)c4{QdCJr9uZ6RV2m$O3ODoRBkJgox3H*qDU` z5ogtuoF(BDv%sA}m5QNqvus{$UUC7s&&pfKSCB8WELun&ad34-1w3_H#E0V(uW!pu zGD04doWUTtB_gh~x~63d#TS8_)VMXeC{aiQ*n5zMk=pKxmY(R+*dGjDDf|Ck%q|bv zg16JT;dDN)B;U*)^F0?Hf9`dWdG(5VN6+QX_E*_D-kY_S&fC?dY2vQ;TwjZ|($I1Z|kEScjnBcFlP!fGK4a*Ggt6Gn%o$7_Ef~tc`m`W&YfHz}eKSgVCJ_^m`cD)jec2w?= z>NxYjIo=+yOaIPeQM%=(Ke0ix*me8v4^c(gWihgDuoKev6zsn?)LI^j(zT-((m1KB zth!`2?^}Ka{BfhKv8P8x9y({bk*++pRv(axgWYf8vjAG^H_7 z7nVOc`V)L_ztT^CJq~Y%vrS|JU+JUF*%{UbtYWFolgl?^rn{><_o+J8BdLM2i!LPK z%G0FAGmbYe)_hd&_7J{}_yf5h#uMp1z;K)f5-9~B@}^zfg41}nLNp7B5TwH<9fZtV zFM_HQU?0XsDy%I5J%A>H)FrAKy1f+Fe~_=#F7Ki84(1x{A+U+@C3lZSs;o_|OLd7z zK!W|fO&u|^VhkZ?pe8cSdrFv}tbV|!jVDh>{Fvw`+8JKazKmojZ8n)wt=7BC>k4_E z^jzwE=;bM!AoHGUZ8&e*!hcsDY1#TCHWSYJB;XO%gMYJM1wl+oA66-FaO7ohP17Zi zT;NN+W1`PIaQu6CZ5Vid>M2i1qKuFa@_WCH)0d=cJ*pl6ee|?qz(T(X0+zzn{NBf1+ z%A*U>8hx1aH7NQl`%d$e3DArGEw+-n3V*eFiq9;RLVH-r6iQKC_vlffyZwF)_}ZJ^in*}V18`#+67 zaFEq4L7$LvyE+8Y_+Z10kmqZVhl=Y->EP{6kw!xMcx&SyY}EzmYuVtV1Dx!__o`xf9sq;S#7_3ei z!OCSb!*+ff6x3q`+obLPzQw?g{T zms4g4PmtdavKENFfomJ?*L(=KBIfNuF@&Qqwt$ubLm5@D5<&O<3iyK#tPy*CLJr(@ ztRmlh1?cPd#FjD`?(^{k*MtA*Gi8~duib1jSRb)X61>vNz7jkZ5At%) zo}!ZDJ=6KfUjqNo{=gdPj)H}v} zG~Vr}7vr`r^Rj!;@tdd6{;J0uHO~%QY-ExgPtRMGm-i@S#xX|JTwC!lGo!ojz%qSP zpCHtCWE>eef0|f$C+kkFV8hOLs~h0`j!(kTIKu) zY-+;45uy4E$q00N<}1(7a2AUWJOXa|^Jj%RBb<0_H;>)i!Z6XuOig15NEkG8qCAr-RIyP zIj^1Q0G*qLDP!(c(6hyX-(7wU4z(|hJ?q8rOEs~t>e3i#=AgV&Cy15*P6AAv#9yUZQ0h6<7UK)E^1S|qS7rWI3&B*=HCDVk`RAZNwC)aXYd3EZh zyeJoUgil*hzZgH9tV<#H za6Cjc0`+J1r8f`q^uW{G_?mv|qAxgEvbfTVGU(p~l#KGuAalkgGcfg3%#MDgEnfrB&&~>`UywWMar3-{)iEo}VG1#2$ z+QF!m#a^6euLFS@Z|QmiQ1c!b`pqP_>eHAUiT-<5xIUXHtk$k zE@gJ?L7_;>!|tQcqG2lEUni6(+r@s!0^+k_vU7iY2rLe zOBz1SS4W(J(b58Lz9Dmd)Jkj%=gIOEa$dOf`{A2}#`+w4q@G_{U;LFr2??vq z>+ZXoF0(ie)v1Cpk)=0BP7orQE z$EBT_S|!i#-b&M}o=YWHyc1KUWFMmDj`&8FT3jyD4`Ah1p7*g28Lu|_#58z*!pqMg zo(9gNod$2(6*|Erp0Pz>pw)Rp+ZXaHE-^B6?tY9bvCG^rnys-op6Df?wjhz4aCvV1 zEtxwatw|ZN-TSh`qwwU3q-fiVOKHh^BxD=prAU78nE_Z*U_Mg-G#>WwEWqR6mi)Z0 z4=tz75$<@8qGuP5P3^WgDe^`-PSVp0-x5<)KF0Nm&l<=9Pj^?jmU?xip32C_CaJ3v zZfbOr8`4ErGhbSCe><1xe2+s7=X0qkbzl`$_{vIxxUp9jgvY2Ue+pQF&Hn-t6K?18 zuUHY(92%(z)xpL%?zZ@3SF8i> zYK$ALlps7IMXCHObO^U_qY9Mhc3B*C6-`|fslf0ZO@Ul(!J=PsGD)}u|5Xp!n$Ewo zOv5|Do7)S`Urpvl1MR3jVkG2I=8ZObDCeQviEQ7|XQ_LT!N^{97XpO3q35o6Ym6=L^rH>sDmBR z50Cc^a1IX+Q%Pg&7BOdSi;nR3V-Gu@Hd|;rQ7g4G&7|#x4DA|~7jVuTN~y+{T5jMF z`*3_`t*Zx*nVWQ;31WpCM;N2Psb~ko50*G?JO^Z!8y9>R$-)=2nUhwoBl_a}cqKJ; zWqO;89a#;0p0~S|Y&fl}YwW`}NWeu9;E8YU;BTvaF%@{r>x&pk5N$lYp0_|5;*NRk zZkv5kXomFc`*=IXk0xsujKe{~Ay?9ecAdGdW!TH4j8g}bs^gUe3K z`YNc>h957($=(ZwC(F1Ue@I=7X*0W4dkZvT?j^Vi(i*7DfH}j=UqzRtJVvf6s#1_& z*&+r5k{s6I>~&QD2#@P_6;MqzeegKh*y+eAFl^TBO)(~v4P)_Y%-j}`V#v% ze_^hknxgV&!rRCpoKAMs>2iG)U;(Wc(%)g=1lE54|EcXd;G#Ibzg>eU8b!ngh}ebO zy}R8zVxb9GP!Kyd0;ggDLs9r?RP3TrVq!NoNbE7T7+azyM(o5IY%xlV8e=yqM)|*) z-G$qkz1;)z&*zgnZk&BH@6Bs7^PSmG+BFVB#K6(LZXK~aUznIObwHoN z`!?=fyFK7^^O2JigXc~7DCO3I%L_kYhn!!$W%#H?BRA!5cRrOE_BUHBl!PJz1z$oUvG>b;QxB_lx`>T_iiuv`Cj6qHO~{T9WU5>c}C~D-dU$?MK{Phm^!WS~kzA*5&x3HZg$HRM9-98;O;9B@n&&3z|@Zsq_FI))TvYX2FV9eLpvr z`L;vD7j98Lu}t?u$IZv~wtVLCxlhQjGKGQbm#6j7?-;${E4K|VeB1r`_u~P7wX76& zG-BkUZ_Ya3Uo?E^>ywLoZ=WhyGOXvD-xj(4`sc`1-WyhKT^Q~3@DG>ARbM4eY}8>@ zpO;l%*84uy_n)*Y_0NoV8vFIP_uOu0T|A%r{>t*Eb5~AZxTq_S|2Z+HHQWQ?Cvk_G*@A-!Uex`oSpy zy;qGNb|`np)vPf?T28wc64LuDd@Rf;x5&l2=hOY>)^5LSJhk?~!KmA1x3>+gu=G}V zo9rl$zo$QI(4?B~S@QzV?7B_njh{AtO!o1r?b_0XUcbrVYco$Sc{{W2t*h;_>NH(GKIGJU6+17TzOU*9|HjP^w+XqG zStWUV{mg4Ks;s^=H~(~WvV4FAkpXmfQZPYZcn?WxF*R=X~!EF6&z6Kjpe!X!%iv3jbSD zHg0LfnP&daa)|N zUA>owc?~AepV%!WZgQ^w;{4`|9jC0G(&_i1pEUWOr)5y{$d3Os?mEcp z==#i@`uT14UVXN;>GpqJ9{;=e@xOgWG^*e1XwNM7t>^v?>c^(df9n*S?=;-UZ(7^H zK|!zl9!0Uid)yyp{tFl2rTiFF$k1dD`4{@5^fWahV;u{~XaW|BU~GDHB#Wu3i=Rwn^%i>6smB zo*CTuOb_Q~-9KBGJ0T||r0eI?b7qC^nCe+?S-bXA&i5F&@ zJzFpI>9SSnZ*^%)9Oq`Ij<)zdDSvfZhl<(J$t!N>1UG8XV(l0A8>RLBr%}^=$KsFl z%Fb@J=XiVX4(&SdliZrEJFzG6)BWAOcVtE#Ouz3n?wO8pmFZe-l12(aQ0Su{AjW09T9@YVu{h#cxsE>J=p*ZnCCe#bZS5_7zc`?esy9IA#3e+NfL|D~@oyT^($8MXXAD%ZT5PW&!&c&Z>ekwJMd}mFEywKiebp^RW$vA5BLeu78^%xB7>E&XucObM>q; z9j8SEO>T_;)@4))hrbUupOOAyUG%Xe!m<1jT{!y4syj5}1L)JgXBIx0wBL|l?`rn+ z1B)DgZ@nlX&~3+rR=%g7Z2HAx(WJ_M$GqD8%dXZxI5=;cpm+GDK|#!`GEYW4p0zt? z!0j?F;Z@^|@b-}L9>2KXHHS8yI%w*%kWhy0)9H^>A8z@sPuu40n>kcIQmZjDa)fcb zv9j?@+_b67YSn|6>(%spnsuXp?w0#|s;yk*HzlmX$}b&TdU@34D@+{gJt3e;cHi#D zR>j`BwEb~X-pe7}_s05*JLLzQ)OT-|)wtZ;TTPGD=$qfJ`iAD2+p4rZ*QWc&_n*zH za69ejqa7m_eObYyu$qipto(7T!YH+$EAwEXk)sf*799G{#&waGb; z%pc1h$~v{NSM^$+*ZG1-&$W}TjBMgr>&{BoV>vTNjcSrrXZyMk_G0RZCjZtxzB;1j z#P@qYh{$o8m)bqx>HG`#x7B>8&uquutmc1_UBJ}e-X(;cc(;xI=E9s4k!OESy`Y!uF0~btb@7DW`0y_zVm?>pTDU7@TlKgmm00tAN}A-U8lT}cb}bUb{B3B zoamN$V!x-wH^b@mk84sJt$Fp?^^fnu`{`zWKc*n^`uGDo4(!gK7YECt2VaDZnpN}R zt|xWVdUkqLJ?-g%@_U*ccys;B>s-Qt-Chmvh3xwJTTJWTX}eRM6K3r0J8{u*ms5RSw>kdtqRwTU*Ju4XdBTo!N7v8W+PdD4y}hE^ zws}y;$Ju30)s8n@Bi_8-(`XXwavg^XY3+eNzu#;jR7 zV_o-^hw22Zn)c>>u5sTkxjkxkx-lX&?8grW)N)M-F^`k`{Vj;agIlaU#QmU*_qTvhwsdI z*tB7A-F*o!=C7NlEWBK&-<(Y?Pd^?0Nr!cBzN~jCS?9HV-B)W`B)WfT?%|i- zw{uche!YT__D;3*Oz++enl@c#^m7Bq^2 zYLyL@hPSF-v7F-xpIc2crZ4}OjcGk6CI5N3&R;KHb8yeECw!lL$n|aVutDelHLyIW zeS82{XXcsTQ+qWSf4j-NcD2S#DRi53c+S++K3bq=WzyD@x zV`I(1KYE4r?A5sQl~L_`lc|5=aRq}pR2jn2H$AcUKrzwMSjukEsB-Ol)w&q_ro-w(7jL6k!4j6K6rL*&%QY`&dp4kImhs<@cfm^3$K5i+^XTRD@WI)4=K!c zFVkRn@V&uD(jQOMEm(25QlqcnRZ|V_4=Wt)QLu6S)W?POYEEnK_3PWzt#3BJPCr&L z;;+}YzBt%HTYl=!RxP_fI$K!TvupNF#XG0ay+!C^ zHpXN$@K*Pl8H?{YD!PlR_^PDhi`fFKE@o>JkT5FN*6nO854W@NaCMY$JDZU!z>AKtkbNA;j2fV1!c!$B!^Ch9v>_Z<7n!}<<&a@Hs+EnhsW zMarpiQJS)jD&Cf6fUDDFx22)m%FqpB__i^to5oN%zO@Y9UMAj@riWX{&@E*6wlZ`Z znOKg#5e@0qHGJcl_#C>aOrnjx(f{!84*1qGu?_S$qKm%qv*@NY_*>})Gi0~K4Q9v) z2)i&93ow|0OU{r$;r24PC=FjiN7ObK)fTQygIb6HG!vef5EE%hj`9f)3ijz~NlhMT zeLJGn-H3RY!lQ>-e8Qs>(Y1@LL1?pwB`F~#F~*VvL{U3Ee8McTana~TM|3wN$FT0a znH}iUGy20MpGai-i77G30+A$i(On>1g$D%TdGs_GvUE2iqnCVJ+qORcPwk_dBc=8k zJ(j&y4@fl?`rdJrWi;^N)AhqqAV7CvbbP{xxeGVV`E&usWnwHAzrco^Ok{F&d~9@L zETSciN)au8ci_D{Tn3nykdo{ZJ}NrKG8%;C6EG?vW+W13bYgO+_*gU`I&VFP2G6Sh zAbTM=NCK3%EHc1|{kGpBMaVvS0hzFiU41f%gby%}v*H|zLgP|t~ z**_Z0y9@{8tuu+NpsNb4SOLSgV^mm$Q85yP>>m~OT}FlRHW)-!IHCuLEXqD?C|E#3 zY#P#QC1&8FSFm??f*|Q~#aiNe%3?|{K)mDmwhs|byxUWY)WJ=jqy>A7%Axx2f- zDM1xKU|UjMQIyf!^lNrR8NrUh%EZVi@JsXpx1iDsNmzOXhm9RHGGlDwBw_S`3Spbk z1qTqID)3HFHLAN&Nl_^e3R4Lp9m0z%w)-bjRLVF@q^L#F1+NWRO&K}$04Fg+=>RZ8 zgi20b<*k|FD1TfcW{Nx=O!Q<{hw0juXR*~Ou!Fl#`6N_Pg&&v&T^?>N(C?K<1cJ zLeKF7DkF)a3#?revqnioc0?CpSr}Ru=PZ~Fk~iFfN-rc~3GeBUXLG{pHv~_SO_?I# z2UG~#j4n8UKsN>638C@oZd7#0Jmo>bArom3ukL276_uxqQyK+3mWQp@BVidqCL-9S zu*1{A)*qn*U7}ziLQY9tv^!LlC65;0R0U0{Vp-USU8A}Nv*JG_#8;EGxb#8ZB| zOB5C>C=jotmL{YcDpUneXF^_#$fIHEFJst*w8AzeYnhv<>1QcrPDFG}*LD|*BDxYg zxcj6xz!g;pVxv`(ITkBW6F4P}RwD=^PiNc4?C^AgPC@H<*vQt^$Eiq2N=^ei38YF& zK@&fqB`l@Y8SKOmRnala)CxbKLKO+i_FfMyEO?7r-00|0;<}cw1O=%(j(y-{#jHSJ zo{$`FMx`r~Nh@w-iG&6INx~XND8vQ@8^jxHAUQz*1XYuUnu(^3J7(?wz?~9_qeZmq`a#R3V6U$V3IZE>T#lKuzG3plVjn3PhQkse}Ml%!uG_Mv7s(e=?a< zL9BE#hgrT%L}m?xknC599o&6V=D4D5o`j_>MVX7<0QZQZs*yPec5B8SOK!KYej;O- zfw$h-Ep*CmN-16`0Wh_ygG1+u(T5(1& zV=yu?#0lII#)iqObV1TjlY+~}E*f|ew2dUJVZ}D%3l1TODrTIZ3j334%7vE$DSsm= z6)mu?3FG8@PC^)k#zkY1skVlVNTQ+!4E!C64-hhOI3-w8_fdjoQO*f6Y=NYxUb22N zI`vp1dQe73#Tjs+M0yLaqE(f+wGV~2&!SFQ`v*z%c1+SF3=iO6U>^mRV+o!#EKu-J zj7~xNuvbFRQuhyXo@}atS=Xp7Cua}W=4r6fd$f?3sqHw zB>Frh@k@?}klyphS>nw072uM?irqM%rE{ zcvJUQf;Uw*0BM#a^ot%_b)O;mR2uQnB?=~Z@?K(OgKa&Ljer13_zw(#m|rnk_>E%m zQyvgDktJ}3oG~pFhMECLF;W?Yfqj;3k>S9v5`XLo{X*z~C@qC)217ql+*ZVJ2+gVV zsYrrKfmR5tI4QvXfXE7j;H*L%i&Dvx;NXwxDlTncke~`((US<6LTj}HJtku^M&{V2 zCD&uhh)d*21bi>#2C(1_Yu&J}F4sJasI=XcqLiOeVvLa>Mg&cbG|J`>NI*yMp5_z+)%FnumLOYBSxax9!Qz+1vI2J!BPqzj#wDb4kBz#61~w-*CKbM#2cfG zs>4-nb7*sRB8VAzAw?7@V;}yFvBpyfU_=CuCvBhv5IDvfDo8it#A4Yia>FPh?--1%RFM!Fii^d=NWdFi0(2NBxk$BaMEm) z#go-Z2fI-J83ABdl2L{M1wTvXSQ_}pol8mKF5V)ZT6AZsj80G_Xoi zs-d1SDN94a2v{_@kmU1fXImhKO8m z(g2davour;RuN>$Xy6EyrGb)saf!V|xAaIZL6UWCE=LRTT#XqjT-l0lN)W5$VckfKruJv;_V{=2OWDtp?`v zou#2>u%foeRa665t1OMuMi_EZqXDV?FQj41U=FI(J!^v{k5(}nNNh<(OE4di zOGCwA6;a9z#@(n4kJ9pnfTAviG{^~p2Acf8kcKUTRm2-HSPfOA@s4v?3Gy$f0h+@q z0@4``D6X=K;z@Za28EobXaLm2K@mV>_BAJ0QI$m}3Ew790yRLd%F-x-1<4GSoFHf* z2H#m4Y6hz~qu0O`D@sE^|JpZLGHH+#1Pyfde<2N92CIl%hIJ}~@PVxG5jE^n4 zmP^O5((10++swlcaRra{)|)s7p8#}MnvwJ7-3>aEH>CVVqtROrN5Oe-vk^0eSAV5d za_O|2F!w+nOFA?m_)6@<6xYo)aM-e45ez`LbAB!8Cm{yu=j#@VP$7qqrSgf3GlA%-T~R#>=6AR&GjY-@BJ4cEgY z#U&x-WdwLU$rpJTR;Z>%yZ8z^6~^oWdlrFI7zt|)7zFarBddYVRb-a6h7c9&1#BP5 zEMKT*n^|1r~J)qfXFH|TlkwjK$01ON;2Tq0bXs_GYu(K!N4o*GkW2TjH- zqXqL9&}L?Z*b7Hd1=h(a60U4pex*?VxTF~A+?V1R02TvpZ8vE{9Td_lI73Bbv@FK* z{ztTlRD{KFIoq@;RV(pMlMrkIEJG6#EhyR;sBmMged3H4Y(wB0e2l_*E>;UiC^=#l zE>2=u0RSuSZfS>G zobv-Hi#)|6G-JCQ3j`N63v!gE;-NV(`IZ4I{=oJA2(@eOgK(qj-A+}5kIdr1dX z>Hwjr+(_k==Ai<4l|B?l7iFnQClN%Ar&vT!sgM_~MImuOVMY?4;@KM3KIAlOjV_kF z4Z!xvnMw(;)2uaiS|V8@jV_v)k%ysJd||4Jz(f}y+<+>#DPW59_!_WgnO9cAHkXJg zSWOYYNPt8GBpl$6$O9TIZbOB;B5hOVkCni~a<_>qt56k`Od2S3rL^=nD4BFatv9<8y$RlB#g3zMUR2kAyBC%El@YJ_7N-H?EJj4(i;1Y1w+L3^E-IlIt;9Ge zTA_G|L-bzwz(Ws|AEVYqti5A#vefT<90ILDU85niJu!2#}hv-evVIN>kJnMqH7R zPQEkZacSuscJa3$2kC$?BhKoiBbLOsgK!uUjhgtJXsXhAG+W;T9T*sK>2#BHY|8dG zhRuSJ2{f&$W;1wXd@bBWN3HV6(EsmQ2Mnk`a_$>gC z;J1kV5YQgzx7ZJHz!>qa7Dn7wl=crK6PETmguR0vV86nOQ1Q1gTGH~Qv;2$UVU7ULiOyWg_M}A8=C^2BQVbQp z9i-m_9R|u$8N{u1s6j7hf=waneN5mV<6@IQPXx~(8a2FnDlj1hy~oL#CvTM9Zg6J!hWEvBM)Vtw^T6A#VpC!)QawYUP=|xM zxIWY~!1Ej@{twS{diWp8p^8oqA9|q2c7$(}_znM#f5X3_IxLhM;eYh+dZ1$jdgvQJ z2lQ|qC_~>RZQp?Ug8COE{Le$bIOvPSCvOHGu_#~&f})cx&4YZwS`2WXh8e;hZ(v*L z_+~m?vldozOii>5g~-8j1_$Vp_#d3DHA1R0)LkfpHwz*oMgO_Si)HXP3Mle2mPPnf zS(!;^KwGr3GR|Z~+xYS_1HN@dR%SHnP@IvKaRwcVV6rl!5nodvE92m0Ze*W1Sb8A) zXEd@XsgpkoxdG^vi@JxWjH&zf{-EsQ9`fr=>8p*)Bv;}AHPDAUt=Z!*%l zVKSi1P4+CO<7l~h;>JZdJNvix=#)M7)$jfv*N_^yH zkYmy9@+bi#>Om-@%J5`KUJu+KMGvxHs$HEKC3W&=A#bGlU=fUysAoXwJ5i>mY#RJH z-7dr#iZ{K&ct8$D`g=}qLUJcrwfQOj^=}f=t$Pnh2tX!0WOpHabw8S!L>s0XPW^(Cr-*ybaDw#U6;#lwadG6Xjz$jz^On zIXzyF76yni$aASO{7PD)9==~nR%SGq5h6iW25ypyM>+%Ti#eW08-B89IY@WuzR)=m zq!F|~1(!qfWhnqOG+py=u8dZfyGtl!7UXR|CEw?vb z55`ZGnP_@?o|=R428JGA2uBn>m{gPgln38L#v>lm7t+V_1_gaKV(600wqOcD#dsd# z0@a2QX38YLM#x&JG6R*f@-TrXeHah!k7|PhMIh;MELzHy_Zbp=(*N;B6YZOf3bx9b zshkkFrQ#OP@wDD^96d%5w#Zlku9%v0LUusgDi}Y-n~C;oJQyLxuL%^NlnW1@gDTUb zT?V=QV2ViTGbjvQkDe#<5GyF1<&LR73(y?f%ouG$a-!3nM zDW`(`UL@uI!92)% zP)6yq5!TJfHemUR$_XKTrfeT(LR6k;f+bY4T@#ofRR-abv^P+DYh6oDjE);+NklIj zkBs{t+I2I)hFb!xVWZxmoj|l`48LGp@vk7*9%&oI1_s08U4V)6XM%zuQRD;7!2vpm zer98kIhbqjpj`z}em<}X893Y$GcqYHWE2K7bGM b*RvRvl7#SsczM+Xai4ea^6J<<*x~;G^E{H_ literal 0 HcmV?d00001 diff --git a/fall-2024/aicore/aic-501/00010/AIC-501 - Supervised and Unsupervised Machine Learning.odt b/fall-2024/aicore/aic-501/00010/AIC-501 - Supervised and Unsupervised Machine Learning.odt index e80fe380e95b85b46a695bfd6bf87598e61e2d24..8033f30208e924340caed75afc20c0af590aad56 100644 GIT binary patch delta 36721 zcmaI7bC701vp3i_rfu6#+qP}nHlMa_W7_U%+jdV++n%IKe{m+<`NRmPZiuqrx|A;?R5&ox2QX=R7W6eGl4)`ByFfcIx znOqy>e>`yiXjeCHJ9Ae?FMGR7{0*0b*2f;hB4rESOK@?OWOM1byfvN~w~ehCh08nv z3u4q{B~=J$5C+@6UT99#?&v3nys}3NO6@&8X9uo!z|QxLmy`r@rnAUmwKEs&C|Rxq z8|CR0(B|Xyipr7uYwyi-XYn#!%!^==T5wm*OD`97T2d(Y&VBe*PA~3R#LRX_kT4yA%EK{p9wkmjB9!w&3WvKet=r`Z3bC_icVw-1n!WI<<w6Vnkg_8$^+eEGcM`WC0uvT!AHX# zKq7@f(p(CH&^BhQ4GiwaQg66l2;Sxw5k#!hkq|{(dxcC{UYo(Z_0+vzY z@+@0O$jpT~m@Fvmy@I0}y&^9BTx#jVVbO=QxJ}x8xqg^k&GcyeJ_aucmZ?#LILKWC zbzZCPW+Kg!b`7fNE=zPO1FpxlWeqG(z+He4yFap4VbL(^N~!!`R@6Z?`iPJzmKkKc zX{dL+^h5~_J6Hv~Vf0bkrBIdYe*R<;^Pg+$MavfmrA=0|qbnX^n<`oaZPbGXvBjZ= z!1_n(aLKnebYJ#>DVX3=_@ASs_);#kWBMwvw;o)O{6##sWP5%W&rRP_kOW&lfvIhg zFZ`3#->N}HzyQ&t;*Fep6;SKQT{Ns0CETPXt&OUmiOvT{n$D3N-CzuJCT)Lwk5WiVNM3bM$?XptzkheG9#|Vhz36 zHflw=6dQFmKTia6U(`5;y4Oo{VB%ROESP-lpD=idYvw<9p(0DK4jhJhg|A-ZD?alqJz)WWs=Cvknr9Kng>Rx;ZunvwKuA0NXtJ6 z9|TtqaH5T99-dN@nA9-o;|ONo8;A}!e`4xY0P__xsW`+N z$N`IFD87o%G`guyRK%>qi7qlD6maCX{HgG?N8q}srd7(y$(KnOg=(9C*updj!DJW> zm!86YT4-TmRwhcLVzoOMnLKr;B(_l(;iMdV&pHjo>N4{Yb2krLgF@LQJhVw}DA|(V zk33;+O0ems)hucIVX={%Kn#95co>KR+`~h7gz!bVieC_=UHF$qFy%JH!5CTqqo>za z048R`wD)snsZF|$hkPP59iz;~ltvUysqQo&Q%{N^_D6AKSiqWYQj zLJO?{nlAC_#L6({JbxuTqtLZLysV}M?Ra9N%1gi|-q6x)kAQ1n1GN9Tn06_mLm)TmMJ zQ7|T~%8tTFG%Rr}X@Fd7Hn$2(7zykfpW^ZOr&EYcg31zM(P5;*ho1gLos;60>ay%X zcMTH3Qtj#`yB1!v<;5Gl^@_&mU<{(XrMCUjw_X_AB)XO27Fl{~9vU^Evs@|NiaUx0 zYwplUS8oUxm`m~ZQ0!|Q5-4xL&uh-pWbV#Qkj+r_xoXH5&cz;qY`3F?XiKsnK{@tdxHV+#fhMN&i? zIu3uejV^zSAtuXHS~Ql0_#OfSeyVNBwASX~dP8Iu)2>gY)|Eqw95h!67^#=!{&k&N zGwaP{ob<7rMQZ3qaNe(q@na4`{AyO1J$$=(8B#8PzPO;d@{Pxv<@#EpGu%t#U0amN z*&fFLs`7VQ*^5)GSH$0&*b6!1VyP({1Y6b|4^7`GCkbs3%NH|o@zARp#oJhoEPqXJ zzs`9l8#!ylOPph{cyT+|ho9L_?%EdDZCOBvoEbD3Mvt7OtJjcx{+=z;_J+*&rQx7g zaeyr5k^6E9Bt9w`0^&NVN#Y&~ofj9c2?qrOoy`exjb@f187(S*;IgX0in7RBb24p@H{RkwI!ZTP1Ky)i=4opPl}MS5Gu|R39$c1CqhlI!PsjgE?;u@y)!j z)6#$;_dJs09-FZg2elgmO5%59WdgRDBA8E>r?W41({1&$*&B^Fq_AM?9!B@G*^m>W zc9D96$?#Q-eU3jjPK978s(hoE10$ZB?qhj^LUfLRs$R%dHy8RuNINh*e-Cvgc+GpT ztgLAS4v{!_33kCQJVGjW1vW#7Lu_9>51>=~GoaXJP&~y6H@rQ;2^efs-1lP5gZi9| z$zGc>HXT^thoHN zFSdH~p*ah=me2PZ4g+lORQ$=~7-?`URK3PimmW#$lsNS(gg5O5G#8*iyi8|%Tl7aS) zDHNApFUymmKSYr3zNaj4Xem|(S|kTBGq}_!z}I7BI?-1|$_4^DLfb?$m+K&`&3y=W z@xU*zqhjW;e+qpqh8t%mS<^X%cv%-3vGnMrdKtE{F(x&~94Pt&`%y0y` zP>iB0tv2kK!^EX;xL=cC=mqBZtrP zfe(6U( zM$lx5$Oj7i-&2EsNDxy;2RCyExBtow^mSbiS}_8y>-#I3@+?ME#U`*O;_{p~9l9%iB5nG$o$Rf8zZF8OVbl}<@Gz8w` zLzxYh?2~rdw$FHkG>oGG1rj7Y}{K>sUHRoH_ZC$m>Q{~w_XtQN~ z(-M3M?(H6-8`saeW$f2gFX5G2%R7C(-xGLEi9CEN*%E{~33r~rgh^iHFodP>ue@~o zS)O;&O)l04r&WmI%x8`KLuM(Kq=nkT=<1EgaJem;YmH(0$zh=Gg}<#(lcUpVWAQIX zXFI7!uaH>Z+UvrFkL#{yZD2L3xuz^eMMM4%QbQ!@Rl+PcM%^dxS?#s7eDz%fNGmIB z)fwo4yPu1-)e02A6}e+2Xuh{@?b`-+Xr14u8tI!J@bBoV6N*)eQ(o=LMm{ z^Z6y9;;mIL8b20nl!fZ0UIP9=S=PIy)|zwaP@iJ6C?r)dp_fx!8y>loC3L=ZPp6QiE(wK-kFK;#4kAHBuSN~t7&~b5jsCbwb4@*XzB9j= z=8t;#Db{}Wb{WtHXIh?UsC0doy^L26%-47}6q3Y{)KpGZtj3FphX0*&UOfc|Uq`Iz zJiw;U(6=iysgX8Rg z4&(1kQ*tvz9h?dw>8=6U8=Au!*tcd_ja+vt>S_Rm_ zhq|A^f_5!O9nDLDZui9Q?_omTt=el*W$Esvo&Fp$x&j6PG{s*ZghyF}MU^}@42h>P zid|0reMKE|1657Gj9L^pk<{WiXWVtGk3ru|9!>g<5W^uu9J*|OFvpRAnFuNNG1zi$ zeYuBE3p_RUzBP5!Gy$V__^UyuHXY1cn(`L>tH^Su2qi5Zj>WlqHZ=&iXv?o;8@*fX z-~IGBRQq04at$0eL#w-)c`OZ1rq6S|^H}R$kKJdxXR}tg?|q7<&w+RU8}ol5momItI1E6N zId%=JCyAWeOG%Wcl}#%0GUEefCjMHwugtR;YqyrIBE!ZUbH>&5HnYC!jezEHlP-WJ zWTwFJ@~*VfY<3Y#rKTTqkRRR`PUJV@=^^Dn2Jm?$@2uzaA?2Si5K$xpXV{HuZ&03> zF1${egq>yvAGi%JKL%!`N4C?TEa+RW3Puz6$EFVo)y&2#pw=<6qRDS20#OiWo;Hb? z#K~x6Zv)OfaG(3kivU1b1P$MuI**$YWHOF|;ua6HiL8J*(t?R>%J=O|7{vDcCANdE zaWoRLYvs#Uxi#AH+rmd+K6zN$c$=LZmEQQ<58v#O*hrFvP*&l$26O!5hYHv#!q7G8SHMcEc8JNS>_zqlFXcf{Q<5@w;OzO zo2-sxZe22&rXBCIu+IC=x8LF?uslU;FnTk62*ajj*aI;@0j8T13VoIAk(kM0QpkY* z3dEOkF%?IPLB0LB8Ttro=pQfG0NN0ofi6cflUCN~kB5W4iJipgSdW_tDXJf76{(0D zD;2b;ck%=_^CRTWk=bFY$wa6rLdHs*D_H0-te1L0X=2f$>!W@wMP5Ug59CSnPnC>6 zzoJuus4p6UP()6D5R%O>gLdw*3qU~Cfq=AK6QL!#a zV)Bcp{1M|Y!Al}gH^29DjD=R1AoKzE6=Fy$$1q)|v z{Y|p>doxBJkXpj%K1p&8j_JAx$YDX7X8({gE?BY!_DOrP{k7dQ6r$WWMm1q-^Ivdi zi{s;Y8vDaZRsn_)Pg{IW@<~MrKl&647@(y>zz32nv0?7RD;Y%35~ZRI65A%rn9wm~ z(Me@Cmu+LCBS(6bEI?TC&*}sYcBw^1t?v~TT}%Fe3gv;}qO^r*BrXZ!QnK0HT#~#= zdFVF-LYe->FO1Vm;B;*oBr!lY`Di$NBZSis{2UUmjtkHmEQ!h|Y>0Tta_$>x; zqaqx*hO})(&|t}`!dwDj@c^m1peXnyX~`o#8mnMIo=%@WXgc}Q7KYszrym$pMmJax zj&qZi6p0T3IxXASU&e2WRF{VsfzX75DP$4_Jd_LjurqK?2yqE<4u&d^wnxW+NV=LP z!HhLhxc79CUDV`iuEr;kJs)#7P}QmtYXN)=9D@$ITW~Uax!Jq;DA6F9;Gvt!)Nh?N z+f%Wy@1a~`wdtFtzx&M#@BBr&7!eW!pi`^`#UGbSvrEc1$o{qc!&vfCO%nL?hl*hn zFsX@Td3@U_0$dc-qpw825Vf$bsI$L-5}zrBysX4(z7d^4iG{#b%~6aI`2~V+($Y*s zD3wU(Dd7l{C89&t8X8|tB*@HSI2A+A#pdUVR5UqMc$3x<^J-u4mbkY#cw-Pe8fjsh zbNdYp3&`pONcW8;pe2Uw3$%TlZ5{Iv$ls9k@XIndEPbChQve(r!QHj6Qr^@tJ-WG? zdCI`wt|#r&`*z#>-9fmf)!f+1$M<@4dj?u{tQxSpQ3Xzz0WHO>pAE`j#2R+>apr|f zK0Oe7R0sML3c1L@a%Bt#wyZX6YrT~5^8h^5wJzNT06l-_1;Rjt1JPzgM^al0bW$Iw zZxXCU7Wg8?i{y7V{wKUVj?=~RgHBr5P#B#Ee9nXbA=s+3VG7rOCvVsg9-T0HMrj;9 zNvpc8E?VglfPHuqM0*g36UU!xdRQ5$1G?j`+EX2vHN59h;p;-cD1!AGe3S21*ooLK_*f(Ix(k5PjRKcD zow{EozZfHkD!v$F$6n5}aYyvE;}*Ah%_gK*i;>tdRdtXKCj&>*X@b-rMDlPw&eUwKN=s+?LfFyfhHP-s zx1I#}m`YKzKu54 z)d(u+-H;yHFun)GELJiO2$lrwF&Lc53uJC^P{#T}ltqK}Fj(~_nbdpxThm&vIZCUG z3mPdhSv3h0h;PVbHpqWTyHr~K`C&*J4H5FJqrUdH~T-RLZI+xcs6cCgWwdlQb_%+>&W<-o>h>X?0$oa!A=+U zyx3qp+Am37D-Oq0g&6*1>$iodONcpmJMxzxS`IZZ)1$%Yen3e>t94AiYg{x9 zw~3h2+Zq=NlMht)rS6<`306-HdkXe4gkITSyQZ86R>(bMS4-H^Vp!SX+!&n$^8WHENf?$OYwd!`?7Av8L@rSjWgFh z7P7zRSEI>fq-*}L9uqvT8-yuAt6$q=m?J58PdKR6JPIB>7Z?1 zTC=h}&=F4Z2k5RppVYq!w+A4v5J~2}>ZATE;G42fYT!#%owZkMlXWaq0uKc4Y%eOA=%a=(z^@JO@iggLQ=?4?dXut^vHSQd| zFW09d{NhD8W!Xt}5L$h1x$kKUeRzBr(UUD3vJZ_FqJfY=xa@iLY2yZrviGu;lYv(v;5&-N?ODbj*(%{fUF zj%$MJqJo%>%=g!v6TJ)WSk&}0cRp$N8iq>4#^EbeL~IGd^K$AuU`9%>FpFapvQn?l zvzKqJ2$*)~9nvSh_DucG&FyEj2{%$*QN-Z<5ihVu*72*#aM$?~kEzA}t*>i~Nm zArVnoFz}MBMb0L=ekudsv8V8x>x4snE2NC{M&&ux!TmIP?F_}_*PByrWykz}9_xp( z$%&1FNxb=_sM7p^n$3iD$!od-#_u;HN;Di{eh%gIz$Zzh?lFoh#NIl6eik3n+py`g zP85aCP9P?1duPHKC1j6Z?U#!?KVYhWkFJtPP{U%o{L#i;pr9|WpoiTXbGE4(eyV z)TSm(E%+z?DzK;U^YQR8pp*Q7I&^FG-=M;xy51&`@aJN^2OYLDpU;Nnhin@)wu=QT zqRZH}aKcWAchF(=bh0&B7567i-N^Y+CjCuTY3dd3rK-IlPv0GK?11%N*^O3jzvN9P z4O}yuDUTpJQrO_-t|rJR?3&V6VA>|SU{Hw1=1J>1N*u=0Eg6^GwPdi z;WW^+zGgh!hnEtY_@}dHCibyZL`9Qc?pRmCJj%fHJorso`%K=H&~T=n^YJ%k5~s)5 zb^`LI{}`gM@F9tVu3vw{V?D^Jke4;K6_C>{^iGs7*m7qGonIL$WKvBG9?F7yj|55p z0V0!ZUE;mtR{}zfj)ZODVy`FQ4=KSeG!#c(rNkvWbCCcCCE6ZXP z8=qg6t%tvUN&O}K5Bf{w`a9?>3g5-PkfyiHdA}XpjGtA|#f%}Xu9zlp@+kZYwZMr7 z1q`BiCa@Gbx?^Dn!aMt0zcw5?I60-QlyMLkl_3(1R;#GVVjF&2D?2@o0O)oxIf5PQ53=0Gx;@=6imnoOOfS%)xxJG>kiK^9@L z=u$*r?ZLKLOQdXhK~#GzHs8VQCeVBWdmOqV-U=_QqhcZ{!U6LXq4~y1@UKgz1eI{k zxo&3Q$RD4j>zZ33cESrDGt<8r^9$VQcsMLKw((Lg-1kgk_{Z{ic4@E$puU=1~ml2$@F!4Rga> zsE<2Eao*OZPMtSr#43xZ{DWYkZ|WAWODT=PhfGGNstA%lKn+$Lo+8rJ2wNuqwW#Su z$XaaDdnj**yS*Wp^DBfj0v;G)_@NeIuI+>(S&w20*)tKkFTBGg?UXuZ4g7=dMtUgK zM+-I?L0r{pxKk%eYZdk9aX|QW6uN6cbJ=;`Sq%n~919gG;1r2nQ8-nB=%?#@9b-tV^Q8D^RyI zJLP5;U4|^1REQ460wdiNHu5xA=qpV=k42MyvrH~}gCjcR zC11$y^5AL3(iKGiTn^+yR|I4ieI#nL8uFumzq4WH7u{W$=Z6#Odx1T2$_wCIHUfJ+=T(`hA_j-y&T+Gh zY*PcUr@7^#xsah3T{|y$LbquL5ZcZZ8y-k-Nk9&3k%t}W_)d5_=?HX(1Y^&$24~Yc zSP83X3$zO-8#uql9@&@=GE;F;kcEaN=+dFQur<-479g@;;Z8c%e`X5z9cA?Sbe6^* zC}EF6RH60vHUQmvd5X|oXo9C=;_jd_!{ioWBCp^Lhpp8 znYHfa@9Vp+o~XznhY;VHp0k9fgR?Y*4t~KH*uNA>N&!cmx$j_W98CxYxOb>|%t1Q< zEfaMG3ra0Y`qOIkAO%(J_|BKTTTZ)i4eE>{k%2b*_PRUgmS&g(o()iGPw@Ud65;v^ z_^N~g48?h|z=l(6HL|lr@T?a|jegH#I7(7gzvrQ4iy(p-?XJzNIa0)o1pppa4@&xY z?%T)`7jQTbkB@0=F$+G^1Oy3;rxZ3@luoRY8mEB(d(>uS-gz4+9N^}`Q1nyI*|so=5TvBmgC|K1~z18Qh&XlzOD{{KJV zKiK~Z1pa@Kx2CdgH-^|-nc+FwM+T6$L?i_uq<6n=$n^#Vybl)F0CWa0j zaOw;Gt0!Hhf$xh`vYWimmB(`+2X~bSopDpIcOX_JU5`Zz_oBEDNE{p9yoQGPTLoVY zHzq@R`2q1`moA#4+Q7c{iyo$+UOo@7AFEV50{Z!ciLN0|U#%Sp36BokENA=NzjZ zdu^9@AVykk^yf zoO4(you`2e;;F&fz_s);Rx)ZXWW;QaPh`|G9A1od>dkyJV?#I>%GIIa>_Bxazbl-M zuPTQNZbjWDZm|PpQg5nxN);LN?ke@RJkqrDrbWHR5&FzaulHq)&jTDX-g#yf3eNny z?S598=kB*2K?CoN6w>o~QIf-B`cgV~s>7OUH-(W4rzA33=-e~rmZ2asPDUCj_=lnW z%{c*#sruEZ&qoGJzEsO@HlFz?z7AB6-|!NGTLpsV3PtyxDy?1QbHzKFgOa29NyFow zr+OF3MB&=w>i1q}rd|E*7OcGR0UXo$PsY|u$jJ{yAaAEy(4VZ-q) zzY48O{6eR=!(=tjDfnOq+XbOr0Fwf6Hm;j8POFIn2g?woqA=LL|1Zr~Fpvd0ULe1t;J(cEEY5lw|U zI9-N>GIB#t;g)e#EeJz{#c{3}Y62UwR!CK8CKP8szrpg8>IC;0A57Kf8yR)qd8G_@ zzJccj=N+Fj)}OUkYdhPAwXGjlL%nX@->wATV1QJwz5zkUXf0>Ijs3XqQi+q(^`{%L z->q!8)uIfpk#nIfB%Ii#PJG~X?V(AW>^$W+MN?ctg+z-abEW(s+@a}V;j#0ru<8uE zyA+Sgbdli#JQvl7Y=yohOUGyf1GVvKY(RrED|uh6F z6!URKpHvOPmrBD^nu;kIXmR_Xyg|^>ruCM<&Z+vCxRW>ppB{}~dd6JN<*Sv5N3lRB z2LGO1>6g&lBU+(zh?eO*!a=Y}#v>8Cf(L6Sh*MI99sv+fY{*{|{chOR$l`iOyTHMM zBySE{4z$^@0)h&e9Ik#ZTFtsbaYeoe-?O_s0a=e@$Oq+}D_Y~%i|dOJT?)Xc>aca1 z7Z^j^i39}O(UJj6ng@<1c#VH(*MrfUXgiZD?GS=LGX9U${aszZYpra}IE}p%9aMBDJRWCg~oWMaz$P3X$U!x!~1%Q`9w6A`$4w2l(n+uwnVWF}%({$6oyG;Ce)2e>L0yzm`g z`~h3M`5u8wL`di)@#N-d^5};wg6jiiY1%<0x?P~_;|22S${ey|xDGn1I@eFL$>Jgb z+ADipj#%g{gix-;^a4J6?%hXuU`^dz)lvGZsLpu;k+EmMRk{2b8p{g8 z6+hrj_Us&ZTU-hE>R40%4WxYh<{$X`Jvj9>eiDl?aoAI85nKYcVu6;N7_)(;=;w#vl? zYM$e0;By;rUJ&=czj9X=D<`{3fL&!LPS^-WX_;<|Z#z(k-CYN1bhJ+zCOw43Ij(#z^Fn=;$^OJ37rO>_& z;ycBlt@DLK@?0jh34d#`+cEzv8{u3xkQ_Fq`PzW#?|u0^7ymm5FFo6PHsR*f2R@3Tj&cOkJJ}M3sL%82u9b?B z%~v3b%Z_N-mgJ7RpbfM#_8SRjs$9s-f$0w5X)<;-kw(IW>Ok0|ZSrgAmyr@giXE2v zvu!;xw3L6D-M&{gTL%_*)XYkHPk&*e$%WPTWFITaR=A~tioF6)VyU=b+0^^uMxpBsv#EDa4n z9kBq|Q1gO~F%Jvn)Xd;;6!HQnppx*Yj-Z1F&Y`&I2DX+c&ePQZS|+3FDrK)ehYg!9d|0 ztCG(y!iG2N#yQBbBDC@cmFLNzNDK|I3}}rNvcre=pOk@!pNw#k%@vb%ZB1?bO3uJ)l_mf+C%Q2^tSz#R{o)m_OAoHGY40-r#& zgP1T!bvQX$u#f??Y%2KpBty|e&=TRkwF4}(Avkt_4{2hPx+35iL}l;|nmho1LePZ( zyJRS}6;hCKE`JM+R)c(Kxy1(U6TRDiZzzKjX`#!&naG8PsMUFwHdk+oov3}PfYvR` zhg`Vgu><2+UMi@;I}lCKjJ(iyl?CB$5WsRB77Erhlr|MX6)Fjlup&RKmRkFs7kh5^ z4<7Z8>OVtVRt@nbYcn6})fj;B4jY2+ugF!Gek)%ZEuY$a#eEv+K3`v$FJ#jm(BS{4 zt@K|B!-ufZU*%8Wf=eGHc3%G2?vYjJ4rnZ{6`lr>{If5DYRR=kZSe<^QS;Wkf9ei+ ztZC+(et$&-$akLCXwmxDQ%U`244x@)%;G~-MzFsfRYye! z_~RXXs-NrnbmvW7vhGYAJXs4yVty#N8xeiTvB61d`54te2IL|+0_iy^U7py;pj?7x zPZf4c8C62e9EZK3^YGr>%l*ZQj`jICysiF)Q|NV-6~YyNDyA~qBkJMsg_EPJ?25-W zMAtfTiie;0!Yg__dYG;rWkc@Hihpi70|&tU(k>?W&FDl6V~&rRBk4N@4B4CF@zOb` zT2N$kDY%<~yA})=;)b)`5)b)oE8_@lB2|HB>py!e!gX+X?$??9A)V$NWL2d9q6IKu zb!~HOW^=ZQ6N+u(FY)B#YNo^1fw7-Be5dE{J(fjyB_EgULM_G&j4Os`j!GP-(o!PY z>7M6p-^WCXWsxrZrMRE;Q5$`N&&7l-TLVPH9^L2wad@Bq>PTC>_1xvZQKL zIFO$nHK2aU2!0EHyJ_X*}eIlGs!ZypzuRzFeFxFYkdSiv*(*Zi%1sq*Bs=*JY7ld+bR4 z?V)Q1-iXj)({RHgk6?F-GA$NMqjrt5Dw$&_qxwsr^a&twX~ef_B** zvrQ#ptfdP3v@UX}Q~HD#roc*Hx~3c-vi$%acA3pd`SU7N*{#fi7=wBwR5mAV2%#taC{tZZX?1%Wi!QSmO9ztiT7JP6f3teK7*IKa~ntqaHPxzu#l#-p%jAw%;ucpDri+ zC_PS)A;H!3T7Z#n&K=u=&f@R6-;DYbZ#6;L9ACfh4*GY?*)Fy_2jkm8PGiWpHJS1L zHFpaA@TcLxBu0fzY}h2_kE!qs<8CCAg{NI{9cFhM2Yc-Gx&b-Jk*t_K=(VXN!w!Ks zgQ-hfW1FIDV6(v@TP7aNjs(Ftvk^v&gUE;)p<|3j%eFKNk_E%8m}Xa+!e5~!F#3q7 zLxE=G4kZQs7c*vqJi6Eb%)^WD-)5$P3@tv&ydlTspw_s0D44cyP(Cb;{e#E2JeTX@ ztQe6t(AeL?7Q+jF4*-xm-#m6EGy6RBNUQTCaZ=va!%e9jkO0!(Y-`WP(Ow|&>_$QU zmO=j3gj&RC(AYZ$X1GcJ{0U+Scd0ywBNaSEJf()IOSubtY$DjZIG9fOuR}6mS&LL^ zI|6-!v#V)P_-_-MxqlO4B(zmsrexF7BXZ`yuo(2)T6mfUefnd11>Q0o6`0xkaJUcm zRRjSEu&+`2J37aUd9SvJeB zW?d3DO-bKxHvq0^({H13NFT(vXbKG1BK#Mo`dNbU|A*lBDW4 zDL^Oo(VDQB-$Jiz#sy#G<0P1*&V;6I)yNs6+H1}9?_U3x>cFl8wL8#tPkRyDg1k;B zzSvl!j@_9bpC5k>s4-`B(s+_fzd=3O!VZ`zwaibmH30u5hwt`56;#w^ENYFNy3SH% zI8zmdR%yzo5Ol0Lx47^mXq~AdnxxC2AuOZwTSM+grOOzcof-i$AOI6PUTK?fO8^m4 zIVtmRof~U&B0mfFMG;W#Q|>ob0()j3GWKQI<%6q?S84&2gyJi+3WG&i4X5Gk2kmcL z$IJPO05I_K*qdK;^~lGVFx@dE3P;CErp2rz*1M ztnd=Y5ap#%9e7)OuR;xc)?66r5U?xdWTP>&CCOlv^nE7(Yn%-$Pn9T_N?nV5wtX4| zqd#vL{WqI&N0G4izt&SF%cuQQ1~_nlsR_q82j^vAGkYv|to>eCF>`+nxZ6je?_;sy zojUU#9#`mIN1GHM;_e^kq~1YCk?HSfF@5pMdNU)ck;!&0j7~ug#$@3mJYw|&9Ycm^QA(W|N?AHr<)-rWLkhX(rD{X1p>Bqj91*kr{P97=t_V^^@N z696q_a8gDy&wAJf-{Kv}fv6AELnMC!#zf|7e0kP#v~^GU>mq6=BBhpV%-#fbQoRJ% zzvKwiXuQe+_8kO4&biWjf0Z>C|2#3?Y}(jDi^ln!;oSGc_xD`C`?*q;K%zw6wus9*Yej8{pk=6$fK<6T%E{Ep$bn(@N z!glNVI`n6+7UISvE1le5ET6#JEeglrcwGUHmb@(B%!yDr?&Ch2KJ|m8 zaDLr+H<8iD80zQhohjR*oFoP*Y`#8jCr&;UHaY;o%O21VL?TnT^LcNc zrcGM8%S1pB;>RZmOHLMH)Koy=?IVR<@m84;8qTST9pF#pBqAc6M9DZ+z`|!Xhh#0v z+Aw<~s3mn)o0t45EB2)tUb4FmTqPd$2*@AQsG{X`@YwomTwQ;JLzX~YAzo+_s}mNd z=&xLmg=JLd>ODd?Jp*8v9&|Q4`7!?r7?$bp1M5=EYn z#SU1%UsgWW)*xQA1Yn&Qg6P?#y zH3Bu`Gmrz@7_wXsUvSzajEobkM=Fmr=bFDqHu;K;a9?VA`~kt zSKhMl!8(Cp;0ploKwAHXISz>%AU4T+o~9awBNzA$dM*KwLk*$uAkTi60xYvk-eqcn zt6I{#&`0CxUBWf`KI$fe+A9UZ%f}Q&sP07sEiiM0jRBn)Q?f%e#21ONJJ)Peksw8d z50G>`9`T+;2_>{HP{;7!=XQ877rlY*#!qilrtoXvJ(! zxXn2)b}_;cF%hcdK}4XrpOiw5bd3uVEz5=tX)3;vpZ#2WqH1rF0EDS}wibue0_r1+ z>>{V05^JbVKtQU$2|OkFer zjoal_(9snn)jvaAO)0(A9MZJKdAMwodmDhdazj=gH(IjNJ(0J2DP;R61a_F< z0U*O0HK6UV8bjDBc{T~bHui_)+>4F93?1j2!dtEi%6feUpGlJg{7euB2Gz4H*K#&v9Q77Bwul67#2-_4W1?TTy48}Zk#FG1jV{U6tEhv z_!Hy+Z<27lbas^_RdR~{#38ENFrvAHlG4tw5WKcuoNfG-c#1`YjV)1la335$DY|t$ z4P+E0`A}FAwmGETe*T~LjN=zg<4=Tt)YBbFWliFQtDQ3<%F|v1kJx4%Pzpn2z__<* z$c2dU(;Afwn*u>7{l5U9KwrP42;U7NO3}6t?RKpx zw2Dz(+Hf(AT*fr{**KN1u+OKvlwiZhN%4{@g}4Z0(BbLH7aiiX3VPF9dN~7sfbq3| zy8yJeR6}T*TTX+mce)VKfKPt_2T)3lT4%DQPFJUML1i zEvp9@|6MqEQU}@dfnVral^JJ4xwDek1=t*=W_5IM3q&JaECGIQE?l&$=A=1;0VN4& zzC6VXE;SSW=o$aH1P>Hp>^2{asxzeTO9onPrK~2=L3Ob}^8|oV&01Z6o}mDL!zG0v zWdL5$F|&XuVQV(#u=)dx|E!H}{N*s!F=K-eG+0xK(l}Z@7&@e9GtDTM7ku zEDh6_rPks2A;5n~IUJaOZ_;;vlwS=-Wk4VHF@O4-I?TYVZlY2dCV5yYAkL z7ew5>&M1&xns8G(!1z+JCl7$kpIhk}s2>NB0n%eqKa?I}ojXA3O3D`81MSHqq6P#J zK$%f_7Cq3}7A_mD@M)>-b0f5|gpT2PfT@7csq6sbONC*;1B^I`0V6kmzD7YZP``Sk zencsE4O9WuKy`MdGE2*Oq#SfIUeA0hQ!guLuPJr7a}ar+ok^{XcdEB?@w{XaPTC0W z{tP3>$M{WM!!_NOk?k=Goz<(mx=H<(xapL6TXmd~cAzO~6pq-gf(U~dI;`F&Rv27d z84H7RIk0DRTnM!_=aJb^(c7|<_lWP|8pO0rwvJ=(RQ zJ2?Und5uiz0KA(SJ{qAnX9R*lF5m>Qg8@Cm4dzK+Gi$6Q?)12(Xdf349$xn`U*fRIxcs0T|FTEaT3RM7Y2a3SG}F5sbDEQv!#nOLA~W z;F8pD_MEx08|6+RYqZBO^+hmHfvRO+9#-Lh!1Z#!g_8?G8Gl|pH7u0b9jKy-lS@_* z^R4$ha_#8X12Vq;5o^&th-dV#);8;VQ&3jD8*lQk_9*`kU^qhMh_{c`-b8Ec zbNya%E$5fLAxDfY9D@f!Vct$ix#Z@UXFuzCZYKTn@iP;lf9fR79bk;X^`K_lco@0j znv2qx1b+q~VUwdl6@SZc(u#B$ezy{Lu9xaEAkkruHOOK(f| zsJH|Lny%2wEu7-^{MZdg4@1pXX%;5p1^Hv=3Un{Qqw$2TK7Vcex;vQu^c>3Gwo=L=zaJY8vkzx=&p;$7X1LHh7{EF*>(On7R2SA1 zf^xiv1B_=d7EJRqhbfF+q@`gS5Ny`UsV9+FqazhEZIb~*6@N?MrJY(9pazh})z$le zxgKzxtPz_;_s<6WQPav4shZQE9e^V;Tzd>tQ}AK}teuCUF|U_t@sRvJC%xIzkjUHavez{g}%a$7L&7mglV9~ zWyZ=*001BWNklh zS!GEyW3+`u69+d!ZA%Y|2?!FGXb}Nr7w!av1gaxfi-%aE7L;zTmQ4JX);NBL2%;Yb zM!n^4Sd~dbn`@B{7~F7@*Cd0ni`k&rSoKO|UVl4dL<2eja|_^Vnx@re(F0UX+9EX@ zJSAmZrGqO8gpiFShI*4{JQ7vWnGwxZaKZQ#`*h$Dh%#(S*UX;kjI6MR*;* zgU{TDfB}50E_DY3hbc|lQqtMw4O$Pt5J7opqdj=x0^e-PT&fO22F@@FO|C-JH4wyZ zSbv7>8@}co`Yr3Clxu80=+gI6No$<5) z|J{Z7PY2$fu|J8|7x&x$&%}E#-z_*by|pH525oTNkI8b8h>}& zKfg^g_Hke8e=HciztfnnKH%2hTk7|Rhokt3V1P=a_Q?u;C8XVG*>l^P=V6O2w-d0$ zBgXI#2cw+SF#E{MK^Fz>Q};|<7!?MC(0c@;rTxel-+8M1$lR*7gA-i-U889ccwf}z z0OR{LD6Mt_0w%{WYjMode0ED!j(-^ulMsPg>eT{5f^Z$$=1EeXX^n1yG+mWp4pW88 z1B~y+LV)&vOARNeqn1&H?10ClsZ2^mq-BvSoJu9aq;NIF!7=4*P(advKLGDboP`67 z?=4nr*Vf77Fy*Px-9!MxuNhF-K%ut;&YFvxaF`0f@8Xh`#1Jn7!*UAM0e_=(Z3h_N zU4nrR|0clcnj57iOLY0?K<7Y)$ZRR?=AZdl=<|01pzvj`3((SMS<`b*@Ahd(Vq z^oM{E&iWK?9)&v?tQ*t0*fjbYNa_k3UaXP}V+JjlqKrUSQfBr6Nxc_n%L5TYo5dJ~ zm}-2;kOgSJOey%ui_>d3!1&j~bkTIrpRxB0&$>1Z1EVVF8MZDC4Q(VPkIu5wnRBg~ z=?MlLUlm-gXibK@t$zU+4Z#oq22x4S1_{D!{ZEVa@)2NQQaIq^w{)V~fw+~!xi0!{ z&Erg#D`O*25}g~oW7Z5$Nyd$a$HlY>211j}Om0CoOj@Q>0a8fS5E!v4;ei8;ujCx! zi~4RGg?*;D_IKD|e_tJby3HZLzfz;B|K$5}1SI@vV6+&Y5`RmV+v?XRj9yKW%+EZ% zvhkJv#0B4Bio4;vyq-+iV=948JRj6v>R2yx&h?j;lJaFb`Nq$8o{87C`u_-qxQeBu z-RbhAXA*#?^7(>o{yOf5`8U$tWPj^Dutx|D>+~nwUd}YSr;VuFGr5$-ec6VUUsi~B zOlLlF2+vNb|9@9tU}`vZ^U+%_J;>~bDH@0bg{J3u7#@bgXsd?#ax%C`$wzLR9ti|} z;I7yqx=&^rHyky?&r%( z86K9^HH9eQhKA{OR=y>s04tWdLie7onCn`IQN&ChsDGITR8)HK!G&RcWNQjtin5>n z|I{|T8&F{;P6_6;iwL;aE20Yvn2Y!;f5@2 zO_e1vpnr^85l|askpXI&bzaIfGsnFqm_8HEB1wBvnPY=GWp#klEiojz|0^(n3@~(1 z*i~F=oSrMhSP5FC!8kDjr(ruK94fGSr}jTeWb;MvOp-M#IE$r7K3t(0`0;Q5Eq~6?7aWO{q1BBB6$GRsua- zVhZdkG#a>!VpG*?Qg4>ea2m7;rIYd|N-C6WlKx+T!4)*)t!J#G-N``n72cE-uc4Kg zqg|xwY7RXk;c&%LTbqiQgNBB!%i>Srt9HBtoc9{Xgi!(z?17g57kb{C3kN|EM!WKq$ zoPV_i26@$o0(sKm*QgSN?2t2(j%Q|y^^=cG2!C!?z1mD+=pJNiVZ6sUaNfj>2sfB3 zKj703KoMgXn0v#A5aC8j${dxQGQ$>-&jJmP6+U{nYlw|wB-k#cEO7H-jO$H~>>FI) z1&A1UfujF^z_@8IAFO+HuGpXD*7I>-v_9VF*W+vUe;u8vf0p&>`@pErjb37oxxMe; z+#jfK8E zW#_H^^A{>_YE!@GEBh`mre}`Zsgz^q&5Hjtb9eJ8`OICx`|#+{roV3bMB%cS$KSX% zz&*{7_34D(N4|c3D;rYyG7CjLw>_^Icz=~>WtV)9ySmsj-i`m5j^+D$#wuhVkEz-S z2wVyT+cJ-g4%8B4#a#5jT;eD}3TUXno2pAgH^V^|iY!^ejIO!`J4^=QXhDW&iTW8;dzLj7T7Xv4+U(&j90+q zNTAV}^q`4aVrAuq0=c_n?|=b9&wr4ClOTP7Mv?_nAY-U>joc3C*XE@~W=C02%z)Mm zuUKRN9W!4l&ZBeV4fU2AE5jP7;m$ey7OYHHWQQIo`GAJCz;A@3z%;KBb13Hxv}fX! zGXRj~ZY@j07ukU9H4>IUg{K(RvRyLu`=bNPQ`hc6X;7}+7F`5A8R===`hO*H>!C8J zxp%BNlW|F_`w7Do#ps*TJ@pKX{irv1V^G+M!D$1ds8O+84eE=9(?mdpgikC8YJ}&& z;v~Ug3Y1XJQWP*mFcBKZWPCv40P1Aa<~6i4Ic=OL#+1hty01hvBf zD$k^LW|R16U>uW$0vH&%q-z5Ge!y!&2L&nx_sv4EIlrZ$=As0sk^eb8L%r-782iza zE--v55Ibn1Yh_A>zEoU*t)m7dK8qpF18A`XlC_z*M6CEl>+@KWS$~JP;)&1(MtU)r zUHj$~j&f(CE`x-iP(l?>bV4R693}?zk_PM1 zwLr^nLzuM@gN4E6cF#jj8m(z-xb{!s8p4q=9;~t~1daYKbAE;eA%R1ZU|=AianjQU zeG0%J-felqh_W46e19%$m+2>ffg^T*lx>*&EyGx9=ZFf#4o6B0BMwN;$Rw`qgK@b5 zZyE_dZW?wLr!#gfow5Q61Fdd3?8VW!3Ll24FmlI?GG67Rp?7iAU<{2F2q4fjoSOm} z(F#hZt07y3Yo*KMBt+QUy$n8&K?jB2M%MA4RNDZxWF@nqh`ctLEG>S6hDKl_}*W#LFU{c7R z0s|7ql%I2^H{#ZYm{vhof&wj|0;P=y7(b#|!M`s+O5f}_hN&M#r~iw3`jTDzRqE{z z1S7R^8&Hfg>dn}KIZV1ya~1e|F3v~!pRk@2@5(umor%lcZ0ZfddGS?E`x{7_ydd&0OJ>8m2?0OALO!QxYnguIQ&#%k3v>vgZw#G*WhEEX z%dw*UEf9YI@uRh=`V@AtVI1dCwU1Mc3aa8#r9HW>H@)E+Z=Y)h^((caj%7?A!86pq z4gQC4_=TkJJq!*&J|2u2J^qp6=^5IikAG6qOW$OxZ$nb5@xbKczzCava!DzR*2`RC zX;sdX=IvDPs?Cz{H^+7M2if~5Frd*%K`X_a4F~a|4Bdj)E(x~f#yLit-*CO3C$!1H zv-pc+u6?-708()yeaIUE7q&9AGLh`1Wd71dzfgjHUXCj-{1T3UwjTwC!4+^j>3`dM zhD?n+qdo6YF^Qpx`kFFMiewHwqlVACy$>*cP;n2=^h%#)M&}a@?IsVL7D6$AFQvR!^j_8qlUv>#5{Y6DIlgGl|a}mzwdQO{Ee3;@HkVgJS03OW+R!qqRVGOWz~uvvhN?VK}SWos#DQR|Tz=6V(Y7e(+2w zlUwneVn%jKVp=$+S*(ocwlPHsW@Zvx9$7)MX*LHs&|F3X@m4*dbfH&2JqFkX^A6&v@ftD0ck z)4X_GNoI|T9+k_~%rGZw#}jaF{s7}3egD^B z^zR~h{cq=kpN{YG0OKeJ7zY?fIlwr;ILZOW0me}dFb*)DOOq_O+kd3Cc{6MDd0GrV zjejpA|2JHn{7#ucMfTaLy`<*<)4GjvTOeEC8VqxL^3+QIb!~a-?py7U(taEmLg#hx z9R-s5-g-6lQQ}BT9~f*lm4<5pdM&Z!m}=-P-*yj=0k`YE5ElQ-v&Cy+X~aCZfcxyw zZC=^ZM~iK=+;7ggaDPfGWj^HT^4dq;AD6KbGq4-%*7SBQ)HPy#nXzi#unr6wSVqGT zsp<9ta1Go7K9$>@JH8X%6>b65?`>9K2?Ar(JlAHFH0=i!PV87S+?6qcD^?K>_)Gpc zFzP5P2Kbv`WWqKKcuBYjOo(_cQnF$xp=A@SUbyg1pS(y{v41qhHV(aHNf+4Ak_W?i z3>;&7_Y~|d=6zymZu#_5msUIja+7kA!57&gzhNf2N ziKRHR7G5rvi0L!v1~(LsXiU9M28QLw)BsV`Z3wq$&MdKQ6Z(qb2nS2iL)C3}cDG-! z0{38gahSVIZVtb&;Hg%w;zIz8dAVAn^jZ>ob#y=_Hh-*8SWWZB;k6W=sHtn1_HqUx z^nOVg{#MydDYqC##{fV|cA5k_FoVQZ33v{4{7vT|28-K(dSFCcR(WV#uX7^=syXyV z(t4#B%~Q_`!p)m<=np{ZfbZ)AWkyA#YGQL@m1Nc@7;eUZ-!jijb%FF77<@>N3&`fe zF@Odu27h26Mq3Q7L@ubyAW;yEK!ecMV(gF|jI4a;nl_7JAw@NHv<(_o#exsPp@>Pm zeDJMuRV+M2Kqat3B`NBRrOjk`Dl3s_jG6%*ntGDq6nuxpa9Wm(*)sr)$d$)Hq5wu; zVhl5bV6>YPgJAjqjujZRiq!bN(Y7Ekvq=CjB7b%Te`klB*~7`IZPEYl(}*k0N`yzFoG~N13HEqoOu|gY@kA7>}Yw3#H=c8 znwm?+(EkEj7G8%cQVBdkVWij%PEmd^Nigm$j76RbF`#cHDmk>f;BvtVc`9XIGF;oP zoPQK4&z*E$3PFl1#FS6oUB6~F+k62M>; zHrier9Hty4PSH&x7;_hsW5pJ-l$AgUcn1)|6&D0fuN^oAU4C`}{&+c7 zVHdSni5WnBiq+m@?R{fv-HK2REXSMeHt1W>)&gk9E_!UL}mwx~> zKR96IKkqooPXePq5xf2KPxWZrp9{u5p2I*3#ERsdLMIAC^`uq#2z>Ap!RSPx3L`zL z6C1-M#F6l8V?e8})^RS52L6d)$XGCg7jy<-a$d}s6{I<&Rk^qul|IT(0V9SLNCO8j z8gN%XleA$}exy~I8+(B9Gkb;xLVqT%(ZVoAXU|B4V=79ZRlvXadNlCQ72q8>6bkTq zqkp+Q(yCYwjp|qNjH4W29ALa)+2Lk8DV(}tUJgvp>-ye}g<$8o_GT=6ZT_ozRMv-a zk5nbSm>_AN@fZ6|e(GPeJMPs?{#6CvOmn=fjb`pQ0;9(=@;+bR7GKshXMc}(n^`Fo z>Wouytw=L+?Exp;fFssEUxwys+S?6hn82z$H*#Btf5?Stji$NK#)9p1GspRL^hbLl zT+?fT6CMqRV_FJp-YMrk+jqNj#Z9>IOLj-huMD?$0+WBhd1%?ddBpuDctXjf_pmcs zs0Zn5`hCFQdIMEgbxB38_(j_Jg* zSea@}@xmjO&yij5MkW}uFy83okVq)0f?I2Msa!EM9E!YgSx)dsEm=a#9~$|jC?{dL z)VL%qTrvAKMq)3RI88`a_`7yToMX2hZXeH*454Vj2;q{EpdH|H=70SSqm?i$Y~}X> z!v~@VCdBJ#&+E8M>1rvjPBPC2sSNWWqGiSbC_n|Ha94*h>oHvv%`t3NMgVJdixY9f zHOI*XH2E7X3ztcou_1@dIA;$R)$9~aGG5#&8R*i``pieXsa&9x#J3a;?|eSf_WQSfWJ2Q0#>%hn9`;$Y{eequqX^VXCc|#(7Ud zhhhJfm2NFQaBUedK+^nTa2YG6`7CJzD(F_X>b!Rt9!O*e29>H`mN`0r^!3 z(9;qzMZxEG$AtDiW5ix_A-Cdi%xyO?&;-~&W3)|;-w6y0ZMF|nLvFzFSeAlDpnC*f ziPnCeUK!%*dC9B0g!(Wp9zM}IdO^QfjM$iI1P6sk)C+U**$;`aJqPuhJ6_0{vRls39*6U}ewrNnZUh4=*rqt`yE(1l zS}9-MENamw5;t%qk6H?hfD7_nMXID zH>Q@CfsS=Rt<3mW7diW4cdRqxGzZ48&9Wdp6w4&&4gw3R{Db}Ft$ZGN~ z3v$`1md?38F8Gcxh^N{>ag{Eoi;KIXhf4JnyMMN$U|_K1NN%u^;dBe4S^M#ryB;Jk zU4}NoU^ZRdA}R{-Ab}5x=UQf-j##Un351|s@mKbsQ#sRf9#*rt*gTkyHBFX=(F4d9 ze4uoxXNT;%TiseP5%gsgFtb`&r*XxEcR>H(I6M(ViiMiEv9@11OkFUWE}I`9D(zYu zsegncL73H$x`ho6F->`rZp%v*fk5L~W-(ha2QtNs@gl51JU~D0i$h;0g?r)hviftD zo;tOJ4d@Be&sh{ZXlEC!EZnmKBz=Tt)FtTR?g zPBQ_p&!EaWQZ|2qp0RbKu}<29?(D7@Tz^Ar2H(n3iA9G{z1Xd;ZcE57SWLni#XUy; zv#UgBtzX+SkVNb}V}cw7iI_jZi$1Y_-%PtI@~rV@$8Mv-y&ppMKiUTbqg%5tr=TpMu2 zA#C4(0}~)>N@~wD?eK--m{1qb3V-yCi6z{b__YWCqpr{%p%MjJa*XId=FWLsB!VHi z&I|B4j2voVBLP9oOT%30()o%}me!U)!dQV|r09q-v;Z*`L&G=06)3rEkbtS`__)qG zNnrIjOl>wI!(iy_yMsX;e0>(ZLkHQ$<{foL1A&CQW&cYB_#lk7LEEzckAIZ-tc$jO z@GdE9h!W9}img*C#QahzTLxz&DNeNwstPq09DxKAgX_5$E*}`27_WdKThlFA%Ab|! z3|yVyGm`dHkd9$_JS8T~4aX&BF;ht~Ugv>o3GFI3nF;sKX98TEQCY=k@DETs98jU9 z(c5#@37?1~DrcY-h%#em4Sx^|_*Q&ql#^1zzZ`C7lBe*zq<<|Ka|-=&PN03J-}Tqp z;gb^E$(s;sn!Px)zg0*dfA)XTC|{h^-mk&)32*QH%wylz#lN85_8+Cy{vgtq|HDWb z-ZgEEzugJ($C1A0Z@+)(#QrZ0-p4D()!!j<<4q#*FMj23zS;f-{(sqDBqV=z%|Cqe zuTq%zANUP@chBgz1SY6cN&Moi_j%knQh8=dHDMux}udDB`0jS(UlB z=m;>P3kq<>QSCHLd4;jX@XQ3iGMo~fFBnN|MwhM@bOo!szqG8vw6NN$OAGMrVd1-8 z001BWNklwE~pe)TFT<34f?8YQO;KIQ^ zCj;W`vY)3-S&|tpNgHCA9Nm9q2`2t((VnEnG2{1!$_*0z3|1awk&)*cmRC z@mIS}szw_c73QvsUn_AmXwdo{9EW$ja!37Eh@}xU=O`>g1B2f(GaFnI;0b9(U%Ik* z39J$5nc8p}4Sy)f7?aYj+G|ZCJS(n%24!L~aGyZUC130UL=dT+0cz*BhzwP&7C7N# zuTluZH89d^T%PJ-S3r5SvS5;D!=<5U0vs7$9cm)_&jVv-L43^3CxS>tac+UOax|K0 zjyAcgfp_X?qZz>b3Wf26Ky5)EgoaE(Zw~u`!(?%|;eU)si{u=3DNr64;9wgU9C{h9 zKG~pgG}X9h@2ZLAg?s51Llv9uj7sfr29_j;iDWljd+;zA%YhR=0o*ebx~fiF?} z6MM$Y4}aaB(!sH@M9ZvE7R{Q}d73cQy}^a1HQ++Hr2zA*_}x2|kW8%&zBCxJotzs$ z)vkOjCE=74fMvJtA`nS8S4JY^2QF*^bV3b}POQ3f!o=f|pxGA}{w>MpYaP{<6%Z1d zcWoLsK;dx>-cXtWkIOtQ9XkQb2!@vucqmQ^1b==51G*egJLuBD^(b&UWUpH(3Rou7 z2nO8Iz>}?GldW#>%D~fOHEe>RX5)?jkx*6n`5=JZx1=<+{DhH?X;amqUNpXT1y-*$Hv~NfY0SpNuXo#pf z6KeuSo-BJw?cf@_!RHN6=<^)_d0Hl+op;oPcO1(k1I&T$7D}S51&1lDiD0t-Ol=Am zL%%d2wYSP)f2pRvA$6ZAh3#{7^mDe?KY!zCFZ9{|F422$=j&MQ@X8?euvPxKYC5y=e()E?FIcyEbvuc>ZiE$|Hc##2L3G&*=bSA z?$KoSMZ373O>fEPAF1i49bkOJbW_i1#AH(isuPhuI~ykn=N9>&zD^=E#-d{HF@JgB z;x{U${m2$Xwr>&sxk$9J7Uz?56^(H!*Ha8=2OP7z_D_B3e}C;=hj!gIkUg7N?~&-em;e9EodKVkRqU)~OW6=7RwNb> zf$pv|P1kWqc^o~7-i@Gt;jC&8y~atJK;6BOn)RTM_=3g3!J>K z;cI~rG4|$2PnC8+CW~4yPG5*pG%l8yX66{xiZk+(1lZH%br_DGP7Cui_n53YhcbLn zUGm%{oaknF{P^7HY;uL^coxvh0cJ5)032k6C$4L-eHjbzhm_q6bgXv8EAW1ozIl=1 z{~}H$l3q0#mWJYO=6@75n0F4~);ta+ov>Bt0Xxf%3!5@fqH4Z1&!B4I;R;{_f+;@u zp5u_b!F}2<0Y=|3u#B(grk6{bXE2&{43@>c?hU<4!1x3hxU=kS4<1ck*>t_aBiWos zcNneI>Nt4N(R-RMO@LX(9zU9Z?Mrc;(#)i4V>K>QGG!~92Y(tvI)(*0*bG%7*&+nQHXMC zGYwYY-0BKztFuMm>(3hCp(b$nE~3)Z%E+OQv9*E?NelKhYr+)TEYXuA9UTxRWwFy? z#HV#S!yu<%bOhKYG>&4Vsp8tZq)GIJHQf;8YuXhsNV;Pz& zGr%MT_9A6aK}#2zR})BT{{nLc1{2SFx2s@b+FrOENoWgGBSz9B zuCu1g0R_FkM(E!I-ZZ7^TD0$&1wumXvGK$FC{ti(z1Eiw$MGp(cq;6;g_7-5Y{#by@kV3b zkP&K6Lp*HCPrqKt{xX)+H96QnM#Db~Bq{9n)a2m~n=8(QK5HPVw^Sy?6r2si-FPK? z6@GuoulLFn_e=ObBxdEGgOPf|!~pAe(xzuqb6@`sNuW+g=F3yorE=9xS3;GtX;GUJ z=p(CAjih*vf8$a(_@hbD2us;38CXPLUHjXG5t*4z@%3ppy5U0n7P!EbK?ANfjFbye z9w)lsEQ={l3)d*err`249Y3Zk**yMkMQ(ri03G-J4%dfBUi`O;4wr}@eue0(DHOjh zPl_srP6y@Ir+hPY%`r0#t!crTDFoJKxa}zIa9H&7XhyvV(oI1v z3bVHj+N5kCnN6MqdhTS{w;5$O>*j=gMnHp^R{+ukCnn5_e*7QYh11caW_vHse8L75jdPt z_41Kv$5Qa{+-Su-kt7G_l9mS7i8hSoL|oUCY*q~byhjQ;~KhtDKIKN)K#vXsXq(Ga-iMj48@p* zcU7rwofjC16C--c+Eju}BXva|TZc)a9zL=LV{?Qtd^wy7Oac|&$SQwB_5&tyi@v%B zXpP7%j?XK;Bo`d3opo!CKfLGY&Wr1Otzm-j)1m`gS=gP|Chl?IUx7H1<1Dh6&qo0!MGO{Fe*gCUUWCspr6!b zr3!y|&OktZ9GKtP{KS7!wle>H<^Kl86EpiQ`}+G_fp4iget21R_d5SGU_383Ioa~o z!#P3+Fh0+$2wRJ*lpJg~Paav)C{D2gO`<*abv*Dnsy#jj`uUR6kzSzON2#xbO^ba$Z#zRfZZxQi zO^cVp?v|}RcCUW}e-M%JL0~Y()Sg1p94w<~7}dmPn9K@iOrtnQ7u1x$J<6#9Ikb}& z)G3G(raO)SW)H0_WirPx`!PnCaVsCx%Eh%yss^9l+fCadINbM`m9Q*frWLr4=|O>} z@C}F?A}<94nulrtS7~=J{`IkWHE;lX9BK%#d?+=6GL?UkXg5Y(`WqE~7?F)}oBqy5 zptg7fn-^8w^2Yg$CUa30{OJXfQUeVlD^n~A)iYAy-occxE^?M5rSLTP&k7~{nnvLj z%=9dcXDLbRc?@7&u87JFcc5$o+;HOSJ*88640x*y%nvZgFey8bfl*ssy%>zsBZn4C zYoC!~(HVbl!7@Vq2Rz8G71)yeWSYRj&(r%k~zB68%L1jb~B8@14kD`^pOH~w>CIzk5Qo-eb@Xnt# zcz+EH0_JrQ){B+}ytuf!lIGoCGIWE8AJcG+YG*ev)|}y|IOYtw=7ooEdVhO6m?b6G zgmN{zBX}U(MWl(K*pY=d5}t^c&=2>4oyLDiFDvmhP>4w7W*>42hh><>1;&H23$<8K~Pla;;#J6#UuB1ajn3Pndt! z2b+LPy$=iMW=+AE^_n%6jWKhr0=(`Y7?f;V4mY=6$Q{bzLSN1wj_NHm~+ z%38xePqgWOOK#3DW!AF6i1#9-|-CALkC`Fxj;9r7tpb~!xIiC;> zone&ujp?qDvcZv?betu1=?57*%SV9W3I!%sFOg{Uhb3gr%oE@iOq&hYf|u*^zZf5Y z`v5bfXr93I7qXJk#BHstJIhD#41w;_lJ3aD(;*tNJt*^Pfnlf)%-DHY8JmD0{={LBPo?5<$;1k0VC47iZCbVY4k zfhs4GX<{v$^Z17hQ`y7{Ep6ifU#@06;VvIA`vfVv2qGWYKW}20}NFAhXcz@ z((=5+i8@pw2Z>U(#MBAFuT9`GtYKBWZ>dX20M|LJb5Mvd zmky`Ee^5hDt)CP4NAQdm&L?-0z7veIoM4<_oaF@LEGHNz7-u=bIKeo}3C4d0jLxXJ z_w>EYs1g${Vt;>eQlyx7=1KWZ6H+qzy=u~U>FRK;z-jJP#hmK<66IW~Qm-De_8dR$ z!+NRlU0Xx;_36jUbibA-_wYRJ-3!r}M=$4h3FnIcZD0h^+wDW)q#1p74Zr=R<-kKF zwi5UfLF!|m9_dO|qSYwZj^4eFk~OWcif8m%2YLd>URr;heK`V0!~dn3x6#)P4|E*j zKR9Dw$uGwt;Cg&!EE&H|_Es#LEsoAgMOBP-!hq@uGz(>I(DjIGwi*0-7x80euds`* zubOEtmt?QX%algP6Ed!XwyGZYK!SF4H79qdr;jbK2GoN4VN=Z+Rc5iSL%!nX)*RKz z-v)->A3cA4wBXI%72}1VmA5RN^Ng}3Ov4k`d`OKs5VdG&@4}F*2-A(IOA~@LK`G-) zuOsDAiDdoCg3zi`t>Y!Kl^vEFQlvWagQ4n;OhTg^iBhPR=D7^0dYCX388@_FB&nzv zf|s=$CvqQfsp=`CokKgYad%k?Qq%=r*{j$ywBCQDt0a@lOOQ$Ci`s`28$45Ym3%Tu z%Vy!mCFP%lL&L|!_Rq*0SljYW=a7XN3(D8q_3{%i$N9Jo~1&L#@zEHI#xc8hOHX9xynQbT_& z8fQ=!D5wR1_9~$^i@bpWv~IQ6Z^|lzePT_4!DZ(g$T1`favA{^&IF2zhS|${e zRqhaK`b}V1%Jq|BYSwRKvlDx&p;TEP)-cs~dBp&PDiw;`02pHn#6c%Yo!<{rRUjD9 zGY0k!7^ZlmGc(M1X?WiqGYrPv-Cuv9*P%2O^bFJ@idgTQ1X_anE6Su@kR;1)n7w2e zZkotyB}X)Fpe&Jqkt^UZMd3uY5P)H|$a^r95)>XFt3qC3n1Txc?nV;0n7>MaH`g^L zkY942f?4YBDzlDrSDCuPFhwgHNfpYKfVyzaJNiBm)Mz>ReLZ8%Qnv}b9cq8#FoEK< zhN>>`>+MV@IC|JJ2HG$(Lp(2>93)ByFV_Vh<%k_99yvEFiw=2xs)sNN>tQ}pDtFh>uMC+s5 zfC*^VypH!UO1~v_hC3}8j;VjBSeA?<#{`b`;G=<7t?bTu)w%qh{r7<}{~Mk@FMdY7 zxk~wQuH%m)eXpdmACF3fuN^+VKmC65cunYYe0SuF-=DSPK`e26cdhYG^WWJ&-q`hC z<35#v=UCqf^}zRMEK0Zrq$e-kb0Plf29y4g$vq>G@qq`XCn^_%Py2uTDRlB~&uuE2 zAH7=o8RfjS(Y2Q(^1IvYp9e-aaaL$|4t6SqU1wAiX&0Ul=?NVIgkGftLn0B80D=fe zR0O4$00yZ6Nfg8q0ty(4VknW0RAnhj7HO-50Mc9$r0P-yMNmLMz{VGLzx@uof4=)? zX5RDMd+we0oSAu_Gw*%uNl+;pdB|st$?_aOWF+|Iz*yfLNceNAK#j4CYEPEmN~{2RbrR4dI{|FKvb^XR+Nj!tsL9{Ta9 z+wDidS}>(6sgd?mnSZ#y@%*9$(scRx!MH^<4Eo*~B&1aXQ?I`o=0yACL_r zb9T-bp@YPR6xmic^3MEN|}IM zEa(bY?%4A=bW&1Xb~;$v70jV12%KewIr3}#uWp!LXqS1arC+jgy`^mip*_q!Qcq{0 z-m~lg%VA3q)su>ok=#4)bDb{egLEJxJC1X^zZfBm1r~p>aP~S@aCqljoE)ncm&OD3ysstX6n^^vs~u?fcg3{Xi6m zDI^QV6xPO+wX>`zz#qZ_y=+db&|*G{8z?rQ58scH??VeAqZid9K>-uK{!PgjNT?pj z(tG4(K4wA;D!Xl!JFa!$vD_+88`}>b7j#hr94qA#jOz)IS^!Tcp&BS=UjaxtJe@F@ z@kISirmkc%*cl%%8}z}q)dW`pk{*%CunZgN1l9{=>j=(dw65Y5^Q@(N_Mps#lty5 zr*$h@C2VN-I~uea89o%FBG!5Q^R_G&BWU^dDT3I^GVXfEnCGc9hJLSv4aOK1<5O;z zczqOq?^6xqceZf4x)bkuAiiy^bE>{vA?_l0`Gs8u{O!Z5=_%bn1}p)dtef z3%w=oJL<|Jl&X+BL~P5Yp?sEj?V!N06P&J~!y!-3!M{ahEKwqlD=e3IbM}QBby(z{ ztdJ#L)x6x(edP}Yg;2&AlMX32y^p7V83ch8cLna=MZ(G|a)-_HJyzMk8IM>W# zbbQ;tG+V{_0696)4GZ50{nESAG5hQVbLrc5vgXs~Mb->=nOr`EhcUSibJNcYQ(=r! z+tBF&KHRz^dvKfL{u(N~2|*x*$4y4t9y=}RKA(oYs!Mc|&&vlLT}PTWS=I?0+Z!7q zQFbx{dF7m&c37pK1>*gntyvjQZ-%ezynsl_e)!y~jA};-%QYIaKFNb0yoW%K2{D6J zs?E>)sS)}4+ycvsGc#$Z<<@IchPj$QdXp*~uUT~uLP<2|y zikS6pfs_ITrr3+yZCJ0u%BqHn~co&%yqwciqz_zK=`|XU)_xt_8HU zE9~8ZHT)&GtAKdML==LY*N2U&xcTQC#Zy~&DIMLEVd@J`<1}ZZ?=~`~daiQ(J%)fe zRs@^=>xq^(Qv}C=lIJ7E5-nrtmQO!QB;-+_DH?#$>CaT0hEU1-wAW<2WZ8KlC1Tnl zhOj*8YtJz5z`=^1Lv7l9kAS4(__3673FgJwaWeu1{HBJ4TZP>pJUrd6-K4{hX;RUl zfE8+P>Ab44(3iW9mI3j2D+$RP%g9y&{fPCov{F8191CjSEaf;y=& zNz~eNt{maOFjjHyDh1TseC>gO!T2)4cywW~0=L-3pNiken4)%L)jF>}Pjin0<0RK5 z6E7Gy^+&e%$yYnKRX1361Zj}Af1)fGB0G5(PPoLnqnm)I52c9JM?` zV0bUBwOip<1}HP(U(~ZZ)D!IbPR2XItwrLS9x~aNGabCUX_8*qEz_tP8R@sZB|O7; zV_PF%o~PfT&YEII=-wy`X^h@Mtn zH_7?C+~H*&GYazF0@vL5J=GV7POruYnf6+4I)N5Mbt#rAzcg=*6w>vUynBqrc`t#bdgOZhFJNxhaLb>4Giw%Oqnm`5*Q*4NG*RD?>EH&ki+E(gL z%LOYI1n<#x7S*!yp`}{+4O)*W0N;4WVN-S82QD!NQ zYJ^NeHYp;Et5Hw|mR%8>qvd+dl-u173?pT2Sl!AUM|3sU>QP@lFRl^5dF5KZJML}g z*C6W`bLx_V`Ivg_`N*Yc#}134J)}Y9eQj%l{adQ|hi539p zpJ0_$aw5)T*+iM!U_U-hS&^TF9ay=+^1m$1Ps!tM{sjrt1YpP2np(3lx?ewkF*xP{ zH=Z=S{p+XYkss)q7NgNP2bpMPr0KmgVil8&Gu10uOUSLYAzy|QCZgc% z7m);)@k5crY-mz?g%D{J%x;=}z^-XS=rfuFUb`jrs@o&UserUKuF&SP9w<_A)mlT5 zaw-4%>lo8C7*<>6>(7#StsZ~U%XrZKKy8gf?FaH+baSSUTUa``)!aVO#EiV@9sDyz zOI|YesTBqsCqNbL>;x=%1S(EwAi zgsjuYmpQxLAdTv1f*Xs2j#QcBW9)3fdn5opK0cr-_-bv&olp>%b3*4!L;rcak^!f?q)E^# zGGM#_AFuE!gG0%P{&|hWzg#u;5xy*&=3YoGlJGt$aN8|u^8C94gbQek_6Nuy; zQA9i2ze@i*^lmLY&Yjz3rgbL~xw{=wDN02?pR8|I@=iAV1zVf4S~g z+yL(HLf3>lavkKvIwCDobL{B^n3&)XFi91jnfAPCZHpzz>as3#rVdv;cni+9fTvJq zOGh~WaBMir>F^F>XiNchd}UO28QbK!3!_&UWCv8hg#sVKN{ z1W9Vj&P&&ZAe<_e(j0ccsegTMr znptuAv3N1&1cJ3fI@liiWAV(t1}No^xMHJJt*d!P$H<1CsYI&eh?*!T$n9Q}!8k{X zQ9&#{4lgfiN>#xQkH)ts{nGnJ(G)e5z)X>nY?d!M)i`A@kw%kwZ4Ww+2o;y43X&X< z;QvOZ*-4H~$Y#eGoK!0r3SM^X)dxUCe@Sj(vJuOPLn}7nCDcp);k){sYjv|Gh@+02 zil-J`6;!Q`DbtDhD20#|Zq6U7Q_r3_ncteZv5L)BT*Eg+Ghh(ZAGFyu?TOWo`OY}F zA!o=IV00W%QVT~NuQ%$Dq9)b>sUWIYqVOiilk@U^wy7*i?MAcDNd6JVHVS;I7#&Sj z(>OXlT4~XdMx%RgL*&rW;GvUMWTV0%eUTm2stl<99$sCDW*D<`mJg?^JLcjVb^x6R2}oX$%uV{jh!Cs$Qb}_-mE85<+~TpB`hA14xmY zbv?^JNs>J;LQF>R*+%LK{oCD{f0Gf}<+V9q4s@@J$gIXw5j?Cl9O?_n*)>vd4VI_m z=m<3(V)77*hR-spqpdL_)BNO&H$jVyUUVyF>SS72!S9S;pf7*J+mHa(LI%Uyb_i*2 z)cpV%GPEz0eQE{yl>FrMBFD8BAkl8PNpdoVCC>%FA|wGtc4l&;FtwZ1l!!kes%5_U z=wKKJ;XYp?r16bgb4TQ3_%->V`620p$Bxdj)%=+(7E-MzSwXZ(RZFymfig9OYb#2$ z1|wllUHKMf;Qm{xfti4JK(Em+c+TY9ySM^Kq-{0ipc)87m~o*EY}WyZWZp~SdbJ6a zu`2i*qrq=KyjJK~i<~3z#x1N%gV9Z}YNr(?5n1uId&=G9SL$+PuD(}BEDhjDdERi= zLf=W91RzeIy3NfdB_XgCS73GJJcRH(`LTuVByP&#wppTG`CbDq9j20*WyF7Em9YFR z67$QlDfhm9g*+$TJu|1n914*mItiDBVFl|=%83vFrI~AIhmbFImm(c`h(t80^Ivmdy{vD&hj=#rnJk6yw5QoD!cO3#?d-hb1Q{1L)#DjLRS zAZ0ZumHYTOnfMJ5w8YRuZ?^3Za6#iQeT2Rjz4Xo+r0BJ^KRsU}P7D}{Ux_R6mN%+m zTk2A)89r*IB9yQSmQF$N?Af7l(<#eGf^&t&5hOah*5Wv?h~-M}k=>F^+c%r!etwTq z-c!p^aAi>E3C_Hfg>^6S{i&?5{zcDu|ihA!88Gs;CoHeP5>?f^%a?(Yy`4c zio^Qn``J=YvOUtPDPmf@Yl@Rih`<%Igv927!&D zUVT+l@vb&z3?0kU&dCcJ@1b;s%Eco82AW8(@cKg(cp;dDCnwN2IgrAx?cgtNF^J+) z-%v9>$pSYge`x2@7}v@Nmwzgs52GjaqpN&@TilH0o+Gf7&1U<|uKOjGyvd;4PVURf zwDYM7ZWkLq{T5PwWOvp&RF!RW1Z2xDY_RmpIi%FE4 z4kU-2vPf_CK;(~ng~`2_v!{OL-;ZZ!PJbVgK!MGzCgLK=4N*SN@Oi)ff{ewcw(3DPJ%7^-Kdw+YlFOQb9|+afFB1hby$ zZKMfg#D(2fhc%tJB3@wPn)XurMfL=1_z}Q%CCvA9%DX5EJ7C5OVuWFsu(A!j!FrVf zxz3$SYJqgjB2W#v&htO=^uN;MKT>lFrWAkgWrb8d@MjLPiuL%xrzB2kfF65MO~T$Z z&Tm%UJ-Kyi1q45frexML?tQn6L5O;f`DzbhrT8%dXLd{YR?Ul>`S(^pHeoe7iTZhk zJKnKtmvi99d=cpn&FQ)n99m9G%(+&>#mn6J%2n50!mg&YVSCz%xGgOZNLsu&`{!5@ z@f{m#Pz;N?t=Gh&xNv4A>CtcKj)2FIGrTG?`UV7zpk*JU>V$Lt+SV6Ux*1B@J=YFV z+;U+bXO+J@;XC-w{X0qkO)L?37Pi z)1Ylvf(HV1OxyIJNYWmkpkYKcg7?>uVhRW5AIful9u-UAZHq2dcv}m-H>E|REjPhM z-Y8%ml44U3Z3^Evx=^!yak$;>3N{)4tQuqjc-fz$t)$n33CvW0U->Io;jO@5;`Pi4 z|ZxGg+yN^k{JS({ykZg4RGbLK#!lgorD!p&P`3d075pI=0oiaY_t1w~afA^6L|cb3s_5 z;pA!JZS~XdA;cEbc=$y)r#sKaPRb9jCVdJ|B{v-}JEKv+;7NAAZxM1xd1}K%XHy=; zGI8)DEESNbDpc^5b_sjf{wK$r1d8cK3Du^nR$mZ%d;lOl;U8?nfmz}lIN1!2e6qF{p&VzOJs*S_`)CWpz(Uf`Z!+hs(8k zbk-lL-K+)&F4gjsW}+}CS`Nw{uw2t~)sKFmb8A4yS9%IuDx%IMk73ARR(dCFptsfM z5GKO+V~0zAB$0NasO9JmrJbnnE2%isPUNJpgyx3!;ov?=_883$I6(;8h$>YSu9Wc> z0MQNv6T|4Bj(@W-k>k31U-{|ELqI5l{aVod+H!#BYW=1lN>t7wr=k4VzV1)*O2#># z;mGy+y>-{sWHyQ4^YHMnOTSWz)3Cqo@bmTMT%N_4_P%90B*Kr;HF(WUec+c`se$`+1W=&MU{XK_m)H#Pif=+Kx*$|EHj#=tVn2kH*5>%wY zZcDz~oqSrJJU4}nj~zKloH4WlCyGllx#F-KCkpA&ug6)29R~P}!QeX;A8s1^=I@$k z717XvlV-e-EmZ~YClXNgez-G!9%P6ZKF@z?HP)#v@b6oWI@B`7>O)xQ;8n7LaoopK zU5CNQG_b+Ek7K;0wp}~(PX&Bw+mdPeuW#YzDxXF9_9=`Jl-$)#ve5Zd0f(zK&f%21 zRDK@`c5Pnc-0Vg`7#rsAP5NT(zWyK?ChFcRoznOtBdK} zb52#RMzN=A&d9q9n^|`5Z&d-c(Gu@zF!dU6RmU-L&gTo^ zIIDxPaEnJ!xzn=WUs;40u=7w_={6E*8S|p{pE91p^rEbup}F zbkQh(j>cmc@b_XghdmnGpS6tfeOxl&5oY@yy8#aGD8-!IsE~+LH-nf6!9y<BU-_Z zf6*S}_Ea|DYH))$LPouJ8lPQ)QM`v33#?-g&q+c%)^NuKentY`XXimCm#kz0s|0-o zM5Nx&=VC2jt&9iCltc|8A4Jz^)@uQvD5CiaCiB6^>!o-|l0cU_A@?EH5^0 zc-(P%vC1e8i~S7BKaI){h$anA%;p6*vX$>GTbTVmX&rzov-sJ>VZ?B&NhF-svG>5c z@5_bsNy!I+e?YT8^1+LV3^(9wHAEb~uPLx1EYTjhYOP-Nb0cjJ%6l z3?ZQ|^v}5)lVQEuD)kQOd0AW&_go6A?$wp%#m|vrYM3wLjRR*{^5`_S<{KEp+~jez z6n3m!yhBQ$r!4+CiF=NDx*u3RSy>9C5)TMl=5M zHXXlf0289vYLiBK1c?<7iP1;&W_asv!tvdHCbAN z%)81r*`JywZ=xG`iD-(ZXtN!XCykJA*7HM51;=q!6hn|q91)r?!*iMrNr^zi z=XL_MJx1koNGBl~ab#*zg{D^gxxZR>QfXXC90S83Bzqvz96`eHXg!^JAWq@GsA~r5 zuGNL3s_QVBJ+~JAn1~*zLruf8bEy`C48Q!DFK43tnCe`Oo|fH4$7x2{@K_5=&V; zZ?C2cbgd+Xyb$mb{f5{`;}SX>;TfRP$~11@z{R5c3)jX^s0W;>k4G$d@4Ia%!OxZl zv+#5i*DUK1_&nYyH3mvm(vTA{Y%!_bs#TSfoDn3w?ExL{+zmF6QJUWkHj5B6Gz~zw zV((q|m6nUR{12#Jo0b6_hl@0W7GA-5{3oXJeVe_MjtW67Hsw?%<=~D$tyTf9WIPm{ zAQ&9BCE&M5gj(l?Xfv?ZxcIm}oPR+cgwY>qMX*Bqj_T^3@ng{?E>IQ5 ztdr|*#T)KR5Z&M`N*-KiWFsWe3mL+;qU`tvmXLp-KfzpUUxFQfDQu zB5o(fKpK7!g`%lKRGh`a99)bhL`*5yiem89EkJG%J>%p;{IF)VE8@|%(-h2=a@U>7 zWD8v*)|AiX(_rSW!0?z|K^n=`<96uGl>3tQz7rR(OKi1 zGP{8MeTnClpinX~+?m-F1urfUepwYy6^CTc|JT<84r!Gn5=XY^tHmm%c;QrmaNdc6 zD3)Xk+G6PRA4?9RKZO74m+*1x&;mbq&j_A*lRo2otK$JPWSg{gpqBb+RR5y+UOar! zx)tAn`GGTN)^*4(U^`7hDd+1wc*Ee5|Tc?W^%q~Zok_REw zY@jZJal8UAdxteJPrNEIk~b%aUGE<;3enk4d3RLJ_zC`>96-ee5p02jf!#v>|2a@Z zP6BK?;qxN-c6aCZd&$Jl>h(3Wf@9!UQL>1{w|1rJgLk=~6Ri>S0YJRlw&R;6Ex~;@ zMza2&_%A*=d;4=F%;BDoNQ=@1!kP*jB$^xkF>(y|cTW4h^Fn;pZw}9E)a+>^a3{6l zbx;k$j$48oI~&`(s|yqb)EFcq6;%Y=g+RIWuYWt_5?ht&vEh^I%PLs2=Oo-O_j8A% zCO;EzfsPEgBQT)fXr^5BgfhW?EX; zpY%)KC3;NnH5{Kes>ZS(hfs{I*k>oAV6m3sZ+-w7#yXkHiRp=8E8o8if)>+c>YUhOAtG9DFu&MZ9H^0f`AXB={8aF@P*P?1 z3gWuBz6n;_9R_lP>A}f^+CaDL7SM>Vr_EMG-5kxTbyMLNq9=3HZ1XP3T0)76hCSZX z>Rq#tMH`FX6umKW%QwRJW%$zmql5d8#&!#Eco+)*X)ebmrhH1q&AymYCZk`=l4ggO z^u<%K9`TsktcW|>!?S*V<4#uh>&7yXbv4mZMhrnfz=-(YCU<}1V?*#+f8c7CWyJOf z?mW~Tin%M4M^G8&bX4stB8*w<7TKZ@12i0_O~L!$Woj68#sbc1+f9Cu)i0DQ$iVbT zwSvd=uu{e7a9FPlT4s3gHH>-Bl}*X*^#A?GYthXt;7o$hH za850cNJFkt%A&bXs4-eTh$PL3ENM2Rd(pwJt}T45$WW>!3Pk8>0bJCXA|*o1OE*M| z(O5b5Oiz$!`Qs2@z^?y03;_>@60fo|hQRrCU$&_|=Wi>(<3uyW!kAa!M8(C1wYfwX zd?kCpnn~cBpx=!yLQ!W*<<#O{7xtYRg2LK#W4tuWH__KM(q3M=FZX9^bmzB_6%EAZ zLiOmY@Na3zPm=q$=zx=BDqK-ZeD=dA{$Si4g{guNb&!X^q1q^P+;0F+4nLfA;mnwh zJU}1xJi(MRWEm@X62O@mx1?D^BRrm|Zc z9lzr7vN++(yaTfu77Il7t;h_NTFc99XQ=$|2tbMTOays0(S+ceFG60V$JXljK>Bi|l$na!5auHa$ z1_mQ!<$EsfQ&%DBB+C1GW-am*yJ*;PPRe)=hJwt%Lvx@yvwz<$Oz2OWK%VL#@LaRzh8mUh0tP5;Leor-X?d8?pB{6O)BryP+-5l}i&g4%s&m z?(3M!%X>t+$Sne`K!sQT?hOdz6zUk-*zDvPg`v-~;~&lxFL8lsPtdMCZU+cdAGj$9<6QH3AHCxBy;*7 zkpH29jro+0O;|9n81Dbl0N($-2cX^2>SRM__YW5TeIT#|+hqKNeYyr_*g&jil#urI zteuVa_s`G$1OYE-9*lVVok{A`YB(`jDF}u*-xN7d!m}F?(>e+)~)1t)Nr$7c}cgbui!}N zY-~ZL=l$3P`*Fyn>{+m<#fK*FV%N1(kQ~3+#cuB<73Li-tUcpEenKPMLUNrhy8(e*>GjszvPjvXNg zjlcA$0+#L0&9eP4oP+m8o+`=jIwws}p1PV`VcWgEi=^Cw12)=uKaT29n>L?(+65p$ zi3*wH<%U)SL`u#d|iJP%ha;F)IV zyQ}O+9L;uQTOlfw{!I~st)Zy~?k$Lzz28pzIM$({=ANZ_Oq@vbH}gH&hU?5cACtr8 zZGi^|u55J{oOJ&Lkk}?%l2qU69Rv`IEM-;cYMy-W(jmZ7n<_W6_Kb@4Ge?X;)mZ(YScqzA`?jJAhmKVW|~!`^m&{pt}40a(9CBNGgow*e=y`!zwyuw3}C93f=G*woa$(Oh_xwFCE)+2(m|qWM%ks zHyhk@euPP4zPMOmysYQaokpCrmyP!K1Tcdswa_vV^OwP`x~;wRvli0wP}vistIR8FN`i1c+#*UuMuQ( zmMyX&AvSYOsw+MJWX|JtufU>L=6;90ifZtVEuVf=7aeQ5IG-Z*d4HPgo_Bh+_WDn<(mwMD`FXJ@ zuU3%AN8mpipG9htPM4*2i((cVQn-2Q$!Il6mP<(J+mB#TqJe5#sug-|<8Dww?KcoFC3YnA#?L3htCG!sUZ$B@M2cdsA#`k~qTwt@ z2RGP~T!|vV7lrzU?<`-wyNgg_)RM(z!6`+6V-QZ;?wWuhHKoB->>R8P*WO}ASqSd$ z-an90Hg1&dpg#1%kzm)L%9Hp(WAOHFd2rs>l7V*mZ-AD)P#iY&cjMGpdKS2Pq+357 zy!RG?it{|ZFC30-(sO5{(w>CN2f3Vv1b68jKj{7<_lm^lDX?Tm_(_oQb99Gk);YIr zAQ!!pQ-C(1B-?<;R*Ka zC9yY{lFW+woi|eDldU!Z$?@@SDVhh+7}4++n}#M>2`Y^6K>EFIb^Lne>3!Nz3x4BY zTmpU_escC60sUhiIl6C}&;_*%T|NVmOEvZ&Ag0i(z@yP)edq^jb&{EpPhMw8e(=;Z z6Vm>|!`Ek%=Y(D@?pM}3gnq8s*1)9&D7HLL&J~gie{_<;tB6sH?)qL01p8h-4!E0u zfP#Q|&}n0o2YgF1V1H^L90D^;KMEB`u(K)~`YHQEH9heO4loS=;JI8Rxi?J%Xh3^_ zNxzY^z}`K~z)xMjCBd^46E4|V%vUGWHOVJaZt$F&E+%;<%~PR@8wW2-Iql3u?kj?U z&wft36xk$_C9WOGi;QQ|0ocCB>(sk_Wjm5S#t>bPmSvw6m~IAKsD6lV)y*!De0a8F zAH$%(6lf4eNbQ`!TGspep4H2+_g&P}jGo#I_ko|T-t++(!}O2X z4&;~NV&h13PR0WV!05cT-USSV3rIIAKw|k_gM&529>mW_Aj8D8ZL{)oS-hL&>e z(?~66lhD0H>rFqm9zZT{|U#`&No@mpGLvNamL6id* z@*rPqw}yBo4S=U5v4kQTF=Dz`Jjbg(5T6A~iD=<>xoLiT9l{UsvpfKpQT3Td|K5G5 zU8r3KY7jNZ;+d$|-7Mqu>2ou4;S+VacT>RRv#-AaFe&t2eHzky=VBS14S6u+HFw7= zCzw^x)f4}X+sK%aWJfT0_ue}%)_h#Ba>imPRMDXrcb9WKWBPEuzil8W4R^Kd{qr@U zJ85;hF^e#Kng@jb9WZ61`_hsZ`kMogWD#<-JTrE&?lnD>WVcQHE+l1&w@MECrxr#( zL~QzG1D5@0wOS^YDvHm?nBr#;4&$P!Z;%hqLLZ~v_c_w=P@BE5-Zf&NkglTrL{yEIy&Qe!wEn-!^vsY^yC;b#hdHF-c?+pFz zl@>ZZC^M$3#df?58?5;V9_w#k2HO;0;otLAYDxaRqdZxLhM}>6S;Tg#?`tncyJPL%IYNRbAI;1>K~UHf96|4P%c-dPVvxR-SV?ID1xg8W{kINGMlVo1_)48myxE0 zNa?Qz`+((>3yFgrbctYzh(HQct?T!m5&KF;tsxJVK;$feVAh)}`#dwL@P6w>ln~E2 z2sjvT%6x3>(p+T}A}l2St4tY`U-ks1#8r2$YCW(x!SMkg%x%&n-3^*^I_?=>bzybC za+@X6*S`w#1xP}4qawC}%TS{ zZBrdj?mnu|)<7QNgXXX@J=Hsb`WQ*U+5@xiN3a$DW+PCw`azRDBdm_)`Ekj3rJH)L z0OOm`6Ne30@b*4M_e>YO)bIPkv+#As^p34KcSC?Ur@1PGGA@=t#ZtmiIu_5^J(i() zuMFKVphK4XazAB7@DKXyDAmUIeQCp20`8%Ykcp@EMBe}h=8Hcj(X6D2F@}Py19J24 zHJdr>IOChV3SV7XG!}8)QcetPoY@L`!=C6knot3N7z9mG+Cih?MJ$%a7cWsARMsB` z8d(wbqE>e*=GZr`J=PHFuss@Eu@#C=FGpT)nL&o(|0X=0-1g9N!SBJUPcKQv6(v;O z{zduplHfomQs(FzZ$MS6a|w=35PPjp~ixpKG2!7OcyPRZ%~LGc*R;L-4B|s9?B|hSEmRw z3Yg*C>G=|>MCk`UuZWpzpa38jkFz9-cc--$aWPw2OuuoE$_L^bHx^&!Qd1x@{H)5G zt6Jw!^)GP^xMnt$AdD75R=s++>!(^|sOsPGLnfLHOI(r=kWJGCqac@0cn1}S!ER|m z;w+=$EH54SL$f&qTu(*HQQT02cLj3%ZuoO>ZtCANGhi-vq4p2UQ~;xHDUmUjWbee5 znna8ge`qe-3x;VW9ftj9sNKz->sG7Ried!W{w(UQ7~Ct``u6&s4=zN3-Y4q)YEv6e zR+jX*?uPQ6$hI6p78$ z&5GipYLrxM^uRh2qiL)hiWi-_aQxk%6Y@bdq=c6l|9d<}_I{}UjH+*hT4WmS>3Rw~ zfN|W|>}sVZ?B}m4@x+t3B%r39f|FJv41H6ALkpZ17qQI4Zw}jMCxK6164^hCeWrj+f5DP zSwLTv6Q6zTEwK`_3Fbr*P@<2)QwS;)1%ITGu5qe65$uJtzHauti}GoRRS9=2_cG7s z*r7!-ntws=x%wM@9|eEgwVEjTd;I&;Obb52OVHWs>UQejkN&v4ghDh&G@f$z{YxEKh%DQbc8NROdro$ zOQgtNi9Posb^H5^Gl5*qfkuCVGC8vZ&%fz}Vl+~A0sjhyB)hZ zu0`u`$@UnDXU)1zSiBK$K^hcP!R5Us%pkLMep;Ad$U-ZEj2%EweKW(zrik8zuA4fsd0 z{`ljQAcK?FB*V{wRq$O@D3zAK_vs*>iM0OGU+==GqPJ39FBC`Kqz@VDd!(*v_`*Q& z=+ZW^bt1m!P}Kg;bac>@$$sLVNdERGDNgMg9aoZPYFv z9gIOiRLFK3VX>y>%*zrKg8dPJJK#+jnw|^>&&C+Y#ER`he1w9Z%4aqtyysy@SN!{P zYYJ@FDSPP?BL%a7q`!w1-#ZPWnWpld0K~b>8*XGt&2)(v0)$aaC3!DgKn0Ewx3XtL z6hDx`O(R4-@1K%jtDI2#^&%gAJG&}ScdbEBGQ!%sxf@dsT7p*Cvi>Xb8_6UpJCbt) zHL7l@kvPF#6bEP$-CZOS_IKxIxue7NLEVEu7AD`%x*shaK%(mT^mCyAQHA$n@MBJN zQiF8y%zQ@6{Y%+3cr^x*t6ZU1I-dpq_;Jzn1Q#z%&y`-S_Z)#T`o8m|NKc5C=l?)M zT0i5I2@S~0y$+Sf^F4crGP|xSV|>Fk6mpXrx>dKB@&yp09-(&`x=}#z`?sPm5>EoJ zQi35R1!_+AT}$P!t3LDT-mJov?1=Y`r&6)hpiM2P`wU^W_LnkRVs^bitm;r5+pfIwP3(ZolsMhH4 z_!IT~K!AFJANs%vE;Vz4*&Q)ZXPp zs$^unhOeFDvv)+e^GL=sc?nLN4dp@=!5RT%e+h{!OU0D7ssAutDnMy4@CCY7dMLd9 zOV5DqX&8R#P4Ezh$)nyz!qspj2K&Z_mg35Otb3M8!a}slh4|pf@`tP>>poOG|8N@>AN9 zpdzuQ?K&Eadj5H)oGDCXCqNI%}oZJGyfz($Pa!)r~4RmH0WCmM@$L1D#TcSn|2&GI&>a+4; z(^UQ%duj!iu0|{y(UUfDYlKP@wG=KrIf@ikd0#GtB6>od1X*}4?@TOaTAqm@iNo;X zW}ddn5qOFcGi{3&bHRV*h5mDa_hBj${{5ox5?TI^alaw9`t0e%{~sZC)8H502$nWe zpLuY8dyVuX{l#+gv+i}k{n5hl=CV0TuHl}EDkM%Gv!Q)RU~iEg>4ozi;*$dly;NkZ zpi?Y7*&nIzDQ8!T{_1Sev+8y$r)BnrA4N4_1G^;cJ~h33Azo4fGf<+Nb*hMtyVm8; zLm`$cXhIatx>tNlY=8iu(OnH6L>#0G6s87!8t}NQ!1CVsZysqR;c1Gu*2gbnFB2A- zJ2~6u+6ew-0NgW}V-ByVS2X9EB`4 zZ6yCC9v1;JB{4kD2~Ns}Oxe-e`CW-Hj5|eEmtvPi0-RT~kmcJP{7^R&h-~{Jh`oPp z+mN(uo8-jk%>iqxmP5`kStoQ?uu0YL^U;xy<#V<0l0ldtYSd4N z@cYLdKgk!Lp`%p*bFjRZ`i?l$@$lB=(V)WwxR`q`x$|tI{D<$=*k0FQBX6xK+5RsM zXn3T8RQKY?=uNGViB*L^dj+Sn<;bl>(8g+?>Z(0+>lxJuDzAQ&o;y)A)P}@td-#?5 zO_!cQ?OF#L_drJRgn?7Ib$t_MQ|k8o?faFs8LG_BDwhvvS57P17f?ar!>iWpN-0fA zDql+E`^y{FF*#YtHN?N*)#_nT2Zw6|<<>2^HT8I%q0<+CF*Xtd3Z6WfV6;`~=DgrD z+u$OyC?v9!!4IZrDktqT3PCB44abH_qW^Ae&jkAr6@!@faPXGy@r@;uklQF)JOeYT zInp#H!h!`jf`WVrj{b?JFDLDa+9BD_=}avNMqd4kmdMYIy?1BTSK$f0n+mpfY&C0&OHR zRTIT8iLnhKN#iUi$+F5S2TxdR`==M%Usk1i&H4Zsy-4H_u9(U0pV#aa+14Ga6{zR~ zdhQ*&Lnktj(0r2@i@`LF8$48Cg5fAx5w2z|iA^-J@o`4aP}F7y{(PYidtUS+Zgsso z1;;Z4A{#9)2iRY@tuyW`X=%zgqPU-3<~B=Lv-dy2kt9n9uRm&6+byGgsy6AX_TSpL z_rh3egTG&i(2O5qsxY2{wZ8!n@|u?W8VU|xzGoq~xdrAK9Q2si zA#b%#&}}JOGwyv{Ij&uVD8+yP2+{CO?fn%^&h9%&B^k3(+81;eC8UQJA|Y#MPbzr6 zPz{pvTzEh;r#Aa{XoH2gyRz1fG>Efg*GZir%3B2Oi+w+7G|W2Q^LK>EwfSP+xtJyz z4}8VE>rZDEgUaKz27O3qn`Ew4aDVa+_;kEIUogxU_gM)3#sI~fyvN+)&hc#Y<+yCk z=2mhBB(LNt5lR~KmT6c}4vsWBGx z{^OZ4CS<^Jn?o)QDRc$)^KJuj0GORp(W4O(-VWB*XIy9!GhlK8mA9I~3&TO>Low+9K(%`k{^%G^i)xBx3eZ+pV8U$5@uwvfhDDRyTPEp8dSpv#gX=Fdrkxg`Zsj@nL}n{@HRinJJ+&C$n? z^w-ZcTw7wM6D@ekE5gmAnrf_ew!}(oj{RkSTJB&llINcFCHckm?2gz}bs2~2D7Cff zuwQ$v?mS_WhjkHvfcxxjV^u0-n`Ck#mX>YG>i-3kKy1HB24h#VL$k5!mB_qy#)t-V z0_GOLMKVpR-J%DmnzTh~Hh4$qj?EW5H~U3b;J< z#5KEB^bK){!(XS?Ce;k?vw7$+n#TeiZ|F)3aL3G zYPw%&xu80=`&ZdNIpb-G{@aW2pAUR~#&IWJUtRC`m#h2a`m28$R!s+$sn(g_7mP`t zzv;9P#}Pv3dy;_ig*5KAe|ec^?9;x~e_Jqmf1@!!`G8x0YpLIF9E#!xg8?dyIwmXh zLP)#QvX{0sFT)mF?I148j|Fu}LFRhcOVaijXyNLjX-!gxou!BNx37j<-H{mc9fZxS6 zD~Taq28QJnssl!8X(t%}xda0r{#}66EjLO{mgw@&fzE*pk=at((c5|OIZZ@alfdW7 zRw$!cj0&BpQLfIO@m-jnOs`ejzcX39QeWbE6xZ4|m(GUy)U?7$BY>*(#-ha1PFYf^c zCWQkoeorT=9f(^woa>?=);!K+Sr{9ElIYyv9kXV5N-}OVJT9h9Fc6w#W^xa*VbU_4 z3XnpohQNqb2@jlLd?V)&U)6WpDC`TxwZDJC2K(FU@bhI(0sf5|RsAd9m)|p+*e?l2 zi}5+Jbh)p7ea7gMNs{@Qr%!Brr9X4QH<;pK_%5GLrW`SqKqsCzYOi&y*E#3t_KH+!~v_3Q^TpdkKTIgL1sTp(Lf|9G(FG5 z@GulcTQ$s=i@`-oK62aiNFe9~cf}6TeKOOy;iwsgMnHil#Zr6>z5oRofs0rK#v*2^ za@BXj7hr{t31mB55#xFb5cg7KxLJQzOA1lK1r5{fs(iz_*N{nt*L*AIcR9uyDa`v zA6?QJ#vSY#4x`)xIV2`7ZO;r>0tQm3G8x^ZSs>YZYa*r`B@KFpo~xF&%(c>41&fIY zq5zpf?cSFN7nnUmOfYPc(4}_hb$BAK-F+9S%yRgYwhgEgP2BHQdtG3#>$Uv) zU^qg7yd5$Fh8Jgslm>sqfNePh!3#(LcL-q%!!ypmLZA0cfz$+f(&5*r5`^rKGm?&H zW{UM@M&=-ll=T@dR=wIyVdx%YYhk>{IB?#?j0hK)qX>TbKoMgXJPqzch;Sh#Wsb^% z%uvH+I6D+3aSb_Fx(Vo`AXY$b$vk(#l`zCou*1!JYCDBZfXaU|M)&K3ao0fJSu5{c zv7hSJ^W6iCz8@H$>FHlpA^!`VsXxd1)c@;~zY7@krO`{wF}JrJocos>uX*09#gv~o zD?gNZ4vb0p%s~5V&ids#!_TQ; z?f>Fy`%hp@&m4buP$|c*yA}Ux=I-uO@`byC_s^-7^tVl)C|nlv^c&X(xHo3V(wysU z+n4smVC!okV7Jf4p)QV$cK1>8_4C^LdY5QCKUMi*J!2Cf;7)T3 zT5{sNi8X~TSgC40?gBcLMKSL|kw6Za9s?D;b%m=P(qja{kI{Wh5z^McY<`RZt~uJp z0=F&rfcbwR{3tMPNn(oVV`DD^BXGtI_}l6&5IcBem8p>|uaQ8bG3h}QwZzKG4F&Ra z%iaM4gq|S-CqV+Q;!YM!fsCQjHFCS6%I>8_W=C02%z)Mmq`b&r!3zkxLs20~9UKI5{P`b5a*}&cR_M?U=iqSWvd+r$+ z`%&)(wRc4fE+R4tS|FCiVCI0rX(B>N_(FrAMtJxjF+@F|N+@S33J%mzgvKd=0VEEf zPDX$2UPFsVCIpY00&No)iov(8fTZ98KGdS?G!;69l+0ph#Yr${0BCM;R{>&o)O7}~ zMl&Y5wm>rB5_A{?w-!NT*PKC0u(piGmq{QqjCKSB2!(;!E2NRI!JsC5Td^YrW!Y2N zD10S2O+sOqs;mmN{iE!`V~SqyO< zK#L`CH25;th-Cbx^>wVtY(p$~BD{o=9^TS!eRm3njjK_&K|;U=WrY)+kVy)Mi2=Q& z0egl(N(QvjYDC|Oc(6m`p`BsWz`9l|4`A>-$s~fYcK|#q7I`>&2AeM>FmK(8)G&Vm zrUcjG76e1-f(xFu40R-2Y)1;}Rb2y#vQEeD#4?OsqCn3mKMD*SvHKJDnEWjdJuEfw zHxN6NkQPQ9pWv&;(K>U{nqX-p{J3d2Se(w-wRFk~Bn-4Ve3$USVQfj^fqzvaWXvez zRZbdu7suB#G*)0_K>l!U3S>kpD4l(~!0n<-eHUpLQrS8kY`Uz*fsF>~fee5@W|! z6mLp4ZGR-s@OFIHlGZ;kS;O}MqyLqC=HFefyc4B*FZ$Pi88E(lus%Lzb^U*tX1zM) z{^K}M+E-rc`BMFJ=6Cjte_irxDy7or2W*vptN#Tve*f~_!03wGgX=}ibB|PsfiMQ; zou+~&wm9?@%QpdJD9?;p&Ic5|K3pw|YhIH>iy%(_SqdVPg>EpKs${^&K>g;0rxui4q;Dh}bAs_LbB4fhQ0oV-R|ZaSI5E5s6^(pB0nGx{5ksrMA9h6Q zK&4gyy#p}Nbqz=rTGiNO9cW%-VStK1lovGv9|Kk23tmq!zM;TSf+>F}4R6R!w=C7P zkTt7;bxGwr^RzAi2J>R}jNu+@ls2O65BWB=kwAx74ig|PK*{SK_p*6j5)T~cTVLcz zCm7$-GbB>5p(zUG1oGlA(4{bJ_DHk3(ko_xlU>d^%_>Ls75JFL?lUL%h7|fpzl5`m zATxjgs_YsNGo)|OS(<-7!T2}UmoL~HQ~bYar<$DF)b}dozlL-w?F8dn=P}yTfNr!= z@l$))Oavul5R?_mn4ce_j2L`Gak zhz1y50wp)B=y+MKWGmba;3ykj8h2O0|!FUHS?txse4?ri;QlX=B5||i(&%GV# z9y0>|0Wj1cLx!SAI)V7kV6ga{BLRB`8=F<@kk{cDP&RrWrVO2dWhEEX%drjVcp&}+ z;(KdT^*QWf!#ID=qiP>#D!8C3E>${`>w420uJQJ{<`F>$!zJHm`TjgZ{oUYy3Wr~X z^qqkGFfcHB{F5NA`X1V&<6$uXBl|)hQn~RRpIm z+N=rpb6jVClD+o=Bj-W#^r-0r-BpybbPrzpB-oZ4=NNx&en&SwPiT{YPs`m|-brQv zskoCqpAtdj^bLE9!!x_-_y}&TgEAFK4=ouICDT zkviREJceumcM6O8|e1@ZfMA$@9nj;qu9@P%~bczw9Fd>UN1_a{@| zlL^qS?Ng`Rc7pK_OKX7~mcCb{&%uV_tZH{jo}+&U8r>=w;F&Nc_u@IlWfPRd zv|^-!y)vTP&J-n>nMrVYg7Hr!fgq#5B7MNQD`~M2Y0FhKo?N9>i}$=&}w9?rB~<=HIhM+aWa{ z2nK&H*J@5Tjn<|8aPNe!WHH7BoT7Z43E>3oCm8>zgx&35kUs1v%u~ZL&7{ZGcUI@! z?}-k#n-ycbG^>@vSt==%nAzmCNpLM(x#=qz%<=fAki+k(O_irKKZiDzfcN2V?cv{$ zI>rn_M>aeWSE9OvNmhH!#}QoJKi%ANnVNqY=49=70?y5!V4S4y{~C-pf`oh-?BiR= zU_Zh5HXT;7-0u2~`D_6BJVGikjJfA^5XhFQc?*am%v^pUe6jg|<-$|$tDEZQ+%dQ3 zN&EC~r^Qlt|CEwS`+i^uowvcuU5D+5H*-yWX2~|u4iBE>RG6wUh$G3mwZ~6VesH1G46dhmyZNuz14S=8Ep;6*N5(bv?1%3Zj|E8R(QEu0=yt|*u@ONARihR>XCsF z8Zk;_5*0I(ZJJX{Y}n zhK0ib0B<9L5jaeh)iK=Q%o`X?0u>U&h{;Gw(*=jA|H3j%+t;AT`l!C?`A;2nbJPYq~2yhUbAa3i( zaG(xcrQe|%%0&>u6@5eJ1a7Pi<6|5G{HZ!V!Xaw$A!aPSDOP)ry%W@&4k?}I1xo_K zJr@?6FlsQU1Ez|poS$|TQt!%P zukQ%PeDuGbx{Kn?kOy9zBH!yyjaJ%JRA52f*~WS zua@=>OwNCcxqOK<7l2mf;?#aN@Q(u{h7I$t0~igstDo`uF+d~Is?3cgX9NGho}o!4 zVu==pDLQ*bB7BRJRsm<@+u6WBR)BZlP$%L&E_#tZ8X zciTzf)D81`V0zhjb6Ly`tUsReNVQL39Iu~7vtKE*Opj&cW4^wvzHDjE9v?QdQfN9dV6-C5$h8NYa08B5`+OOi z(JaOf!x_dhFE5SUw&5RhVOrm9eJi%p-5lq)fwXeYOhTPr3!Ly|I2_YbSo2{)JZAgu zSFV4!2^9~!A2j%yOwxD>5cv0-vOj4YqU##Cd97apm6S>%To zGQpUY@rI_k#iBbeRlp>*yH&1OQ*0M`=dyoX;FemlgqA-v@<~xH!g8t6J25O6_E1U; zAv2^Ck`;c~9oe)yuIUCFTFyCk>*4b8D#;Lv7K|4s8420}E>{jfl7rEfJEQGmFTV~L zJ`g=HH$q2yUPq6$#Zq3KWS$RNXY@z3%s2qW`85i+I2p){`%ZHVyOj~Z+T7|y+|hsi zJh^}-f1_pLGHEmR1{E{T*+Zq8ouWy`o7*I&6o=Mln2FJ^nsGxgyChm1BN>~}3tUa= z&1z1~QV|RVHGF?!%&4pxfN0^U+~=Adw*$RPt>5E|l3EE&9 znY^mOHq7bCJjq+eShp0N4UDA;a07(M2ok`chQnC5<=}I|4A*yK-!?6XgL1QEri*Eq zS&rKhH!EJ-9mQdHOla>jMjTHr6IZC&r9CiE!4+x!<-az^n!k|8nH9e2o4I7s8{CVs~-}>ybS7hd!5<% z(1OM#-zzk)Bvp%Jm;!8Zh@wGr4uct-vO#M*Hpdah%Omv7Y1spM8Zd9eliiW9*LFut z&uAn(dALb+LNzC3=ojQg8r>41bnBy>3A;{NhI79*dY&bjw_}$od zw;;}Es`0Klb<{8FSL}{czLz$Abnpg;tqwk?GEJ4AFVtnzsh-|Yw)lIk zLBgAP{-3-_|6}!ElV^OdwjHOb@V|kfUwTHRj2_0MF4d<>#@*jCz6FBI_LG<{p})=L zKBbL5V50AAYx=96f}mACR3Cw z{!B1BNzbG&ZZ#}rq%?orEyX$Rw&R&Ih{zH~2JJE)tZcel-~gRLLTBKL?I4FBLe|Ly z+jOnGdwjN1I?~4Yl;xzOETRi=G=688)6=RKC+bZRQ`!SkgGYvW0%YiP zMBEG2wYqzJDp$}=R59O2_da-ZaMLD8(MgMZAcV_1J9Z9D9p)t@{*Rm|v_SfCw8Gsa-x3%jJg0_JX2_)I^@wWF8^9!S1HFwBfRs?nQv zG)g;A&^s7Tj%o7Ic5os6w|o4a1aS`qnl>kRu{>TKWzI zjOtwi7?qfDL)k|(E%3*{UabD)@rmx7KpSD0dXb^=(#K*CFt|duQXGvor5S8&7TBal zFu20WJ_W>0aFWq6Gf;rqdK{(*jC&NGMzT)jd;l1IcD)PyK$yf~iXR@IG)s=d6o5f0 z6?=adC?^?wP{0u}2czPf8p-}#FmUa|J(X?GQ#$8^ggrZEPTGW=3SB=@LQm>MI@$*( zH-ximN#sz2K&+QzFHW%@9-p{@wDB&$pQOe(mSsToRDc)G#SrD#fco=B#~kgQxPcU& z70Pr2&2s_CK?qYntd+CE(=*LGzVi5-o5z1!r90be?aprJ;dW1>_LE89zj%hvrxC;% z2JAb4(LdjOo#U;4@%LYFyRT%t`z-VJ>r~%wUHfl#e*J;^U%pv?AFlh|dq%%IGowx= z@dLNs=cg>;uc%d?4sFj)peZJGZzbel{!8HpyZ-K#^(#}H|E5X1_*h*J`;z{lngRnR)rT1&zb2QZD((b}B$+ zbP>ps8#sCDnN1^W-vbWi7)k*yX!EFWgKjO5#u;iSnwoT(dy9@EMsz_b3eI7U6PW-2 zAOJ~3K~%HTFy$34GsiQN#_Pc;&J}-LRIag&suc=U((Z2!?u7t&TXkt+c$*S+0Yy06 z3r@~ZA2*b+b#A~rzz5dg(X#Uip97yR0(*iQ@I1KmX*f`~w4K660l8G^M}k2NO_e>V zxlUOlrLz*+d9|2!J8X6L$iIMnVbbTVEWmXsz9dUGw^mR~Jua5e*sY`X=BVEbv7j3}P?0P{1B2f)s$d|#gx}MKzI0{vvS6HrT@hSHLp)}^ z2TGy6)--MvbZxY6F}@lSMIh#uZ+6XSEz+yq>*n@Ia6*2!q`*65G?WO#H8bWG7yk4d z4zIg92~0Ve1xK)k)RBCV2x>gW`FmaC>}7lK1CLp6CHYSTpHqP;~^ z%M16?L31h&odP>5+<`Ov<^_$w!+(xxflmS+*Q=%^$)JO4oYH^bm|L0#$X*@KUokRO$Yu zw%p%Tm_IrB^C$U{s_pNP6$TWxUm=Rp_ghBxC2xC^eSLrOcYljXwa;>j_dmu6_yc@x ztvgIie`9|;0we+NB42)_rki$x@eih`dO^FK$;k4e2d3?8JnVcH`JY}U5yDUqvG&{vy7=K%M6eLRq{K#)WwWx7SU(w3o z76)8Vcv63Oz(l*C$)q3|(-NbvHq^qX=a^Q5rmI^MaT1EVhF#KKQ>0IM%`5_i%S3Q- zg7FQrK2pxu{|>1ZZxJ&ala3Kzw5^KsB!CE_EsW_f+CfF#cA6FIrs(E69JHG=d>Kl7PGqZb`5}#{J&W2E^jn z3DDk(#%I;ga%{znPJ9?+MWm%r7}zMzbfF!6&2;iMpkWnwdpp7S+d>0yVff%D)#^z% zCe|?xeds*N+wPgfX(|h7$w7A-JDXI@P}=8|ntoZG-1>_zENZ_WpWSKE z{dl(hXmdlCA6%CIO|}cTLoXWk!M^<#o^$oTmoQq8eq5i}+P#yZB${o-!lQaG+iF=F~k4 zCp~pj3xg~_#kEXFAt+ln8Seg*+p~$nS{1C7R;Bfvzkx6aq!ARj(#V`fT#69U(K8@yJ32YjEg{qCl=PDA$G4Q`L z2&xo_jiUw%C$t4X<$J&&H9YvL=Od2l2h?q4*3`mqA5Nq<#L`HFf zwTrNf4&!db3hM)Y1Bm zs0ES-4O;?(obV%r5d;z}hq2yV?zOxEF?YUz&phb(f{al)IW0*lR(pR;^qK`2-Y8u+ zgqPC^JDGsdL9PZm&iMmyAHk5B-uy_p8;EL-81X14!L1a!1ODwKD0xl=f0^1{KZMFI2r06`0=~U@zAk54 zzQ3uMiT>ow*X2lC%R7JJM!H9+g!V7@8rFD$^}2FKofGWT#$-JSVV=|y!`L|mwHq;-c*_R%PANVWOKSjMhy>hEAp4OCvA-x!`> z8o4TdK7M)j#v6y)P=Vg`mqx3R-#42-N3wnEk$YoYr{nzM*cX3|f7d+zqSG(l#UID9 zoj=Fq{qJ!`{mbR+FX#%3{l;zY|2sOK_=ocG{V#-ZC7516<_k%WFCrx04zu=kA%?Hh z_tp>KLVDwH{#FOKu>zf6@AdZj@k0Q4elbqQ`O=N@rZ0Vd6Euq4*cIMfUT^xgU9@_U z)sAn%Pv2V@fk}Ti9$tl=$?Z~?KML3SK}KnR%U_@>xi zzP`WIaB6r8_C*JM#CcLqDfqC$kM9tfBU9tGE&UicP5%;MN?22Lw;Xdhyh z3NbmtHEG7Fv~Pa;8k<&R>9($=w~C%$(;~x5`hciNrAL2PsvkU;pjD)$gPy;C^kF1! zr`MoGaA)$v$Mi9ZRawTIns+G$!zg_BKw_DI&elq+^kxbq_< zqeS)87F~a-&-YeSH@g_{E@5<5ZQa^&+A3&t*rV;#C+$|1D}viao_ozQZ`4#}P2{5sddsM4t)pbgsKm}aT3}*ZwtBCymtvrs99W8cwK{@O9PDSi4qUDykF^iV%d6sejQhryvY~Lk`4nT1`A=Q#%Ch&7Z9ISR~t zD;;gJ!>woed8?eJ6U_{`^&s+_wI5M{gX9g49xbRv8?%!ld4sq-~6K*Iu0eB3L+zrpiy8k)CChHMnRBUpKonrbZ1s*6ERK>dGL z-Q?K1^rUNrcglwy;gsW6k=ll~@IdW;a{a!-IN{xXtQneO+~5vr4} zK4?Ih7OF>;rqaSBw04dg9n1oX)5h#kt%;{7h%lBT2kUvq>~C}ERTzFZN;j9;RGkHQBSAR zB{Y*7O^zl9&}p0*VVmgb(mMn!(?p+|)R8(WHNL)RtsCO4U)yp@$9G;cAdtU~(Kvr; zXdNQ}Id;Z`J&GQ!|LoPHmT=EAn@+lf5TIBqp zq=n*|mS zhlByb!GaN#C6egOBL1vGUf)rUQ907d5ON6rnK1$t=q9}@x7=*bqr&*mgjGnH5Xu6W zgpEl;HWnFz2nK&e_9k6>#LDsYL>2Im*nQ=Mi3hT@JK;3<@Db8v6L9L$I6+d0j;ZoHI0%qe~RziC>h1b)*$IKW9 zxN&Hh(1cVpa2qH)35MMY!vVf##$NeD7&M9xT7g+s!JB_1+R>3JdV;@jmXEoOqw;hP zuQKlk9py9+NErAOa^#~juSyrmrvo5@Cd~qqtbyZpr@gp9|M z=>!IEho@i5HUm#@zXkKN0_r)ae-c~-i7BKgI@X0GOo^npPbKT1g_3S@g4$(;oQQrm zoGg#9bz8KGI`3tBR#yC{Ok2aeu4Qwex@3Q&Yr=IPTXdFbka@g1!)%OX;U_s(!RKHI z-AR?4-<>Q^A^ao4XatHJA+h~5VEy-=2fm<`aWcTAsXU@+9GUUbHRuszsKW zz*w)(h2tNY8BXaG8hmA-Q^Y3*x1dzYL*ZM&t23;rNN}r#E`fvzB#|ETgxvz6WZQq9 zV)(y=GoHfuS$OR!jK8y$^L%)iqd}Z(M786yJJ8V1@U)KJQyBe2p5hwNyY^e^U`rMi zZo4Au?P(por!dt1O4-T!%-nuzO5D@UW_C#X=~>V99fjediK~#;1a05!tRPkoaDw$D zs(ilFcNE55-Z)%4<7H-4MHoU>Mf-oMdJ5xRh0!}cD^FoU5lV z1?wI$sh{JE`wuflOaERUex@)oOKFO$XRN$VkOwUkQh&*w?3TJt~WH2-?cxGZp#thDvE3*pI^7sO9+e3CF$KX|=Tg$EK{UK59}TuB(=u>Giq z$9TyZ9-mpT!WVg;h?*M=hX#LpbUv!<_Rc&~o5_64FAq20IGM*Psdgeo<=uo~nC}

sSxf|D7Mv{ zxt$1jQ_|NDah*N|=jMp(rV~Mfg0I|tTZZ;4&F_>_j$N?crOe3`xhiIFLn4Z5e6s3b zfm+1EDFmaoPOyJ#anD7{=H5{l(fS=@b`6q(Kc9j@r9F#KHt$3SwLnH8zTKyKOAKbP z-S-nNjk3cdWeq6yS(krV`aM;9!1@^le2sZ>O?VxFg>xGMBc=^U;&i zX)Mcp(2eW896c&Y-3wL=lrnPO>xnvpyvxvp-!s1athSIl!<>JZJmAURQy6v3<9v{4 zB1+tGCp69Fpg|MqNi2x#BvmDH(>&}6iCDfN7s%3M(}4hUn4v!eLWEPzYf<;eGy2Lw^t47?q=vEuB(>r&^DDm|2M?~ER(kM$9 zMkGsp&g*nGZR~$a%Vhc-0;z|j%jk{fai#gu-vKqJtKcU3poc?jqVuE<5F9MJDnlBM znkSF8WS&xK(ie{>dpBWdVXv6jOHIxC;k=o-hodMZ6m?mH`>Ac=mPI}ikErA4?q1lu z`+L2Gqbh5?vvYh1h(!-9@x(!Zi{c@{en-#&!prdh%Kq>Hatdc0)p~l>5@ue+LCgA~+w${Dp%m6Re3+RJ2H6n_(q3X`* zQfrN%9}a(JpGP%$@i{|tK$k~f8uNJ$?e1D_M|~iEjTEH+Rs%ohrr|@3`s}& z$ROETR#gQ_7n)1CPz&X}D(TcncUfoEPTir7#6;?}uWM+9BWo&yBrIR2XS&O{cA)@l zAuEU>8{fyW$ib;kKJ@~X7A*?GI#7=dKgx1SHk5yUeZ3r&@A6Fa5Y5Go+1=jJn)>fR zU;jNBo8@nTmwp4c>-b&T9e=rR{Pw~?dftc+#5Z2+abMQ=YjN%eVG7yo*ICyu?qy1^ z$k6_|9QdPz^w*3;ue>VprM?52oBa)j7`=2&5K!Qf# zjX;0Ul{7ur_>A^Czo6?vQ)~SP_r?ok(hnSVE?b!l{6!=-R;8)=NHQC5%e3$%NMvs< zm^mKJo$-Of=~6Hod=BKLlT>&MOve;!0FeDRt_+vQm0z(~0q&XqF0K20g%R!8NCF#I zLlYu$egk6#S)E3bohNy1jI$;Q)lL7Q8wP*ezKeAhoq>!yN%+iy2+e-%WS2$Gk3tru zUqmkuM&&F5(PhRjcxN}Sg*eGj73`%s+ij6Z_MpGBI1JLIHmzoIgvP?IT$-}(f)E)Y zN^wWkWWJlmg`@izi4l;5@LeKI)ntM*sx7!@(w`%YCez2P2%)hIqK9PE+-azbxaEH> zq#~@$jm3STFT&o_AWJ3@qF{6eK9A_s2%kkUV}w(R&AleoV%!&n5QHJp851G8$iW&j z`N_lZbti*&UqfDJYVOGD!i9tpn|DREEj3^fFN`QOo?SVt^ zNOsk-kJ5pRW#AJM={G)#PSPQt?h*#+rPCO#Rx%!hAscW&R;w1oOLO^w3(vqEohf*s zy$34iky?|NFy!2AAXEc2g}g#T_W}P3A$NR+QI1_bJ()IyW(e+iYyKcLHSK?W{0|cO z0L>0B9>U=DAiTFB6IPld$p}86y&mC6NS#A9hRQO?fk;9o+}c6757|R|;v*|bkgabI zH3f+hqT}Hz)W?EoX|J~^k;CcH9Lnk?Y81H887Cr*`Wu$7!yPsVgZh`u?j$^|gDx!G zfY~k6be~(_!&Xr{oLRSBJ)M7t%Kw^H1)Yq}x&AT2AS))qF3Irr*^}%le0WY1Xs_5* zR;izbzL5O4xCqZs8c^NR00h2VNDIpaa0Ss7y{ui}zFuZe@W74b(R7XFoRQ#RIrI8f zy_(A}z-*yIH@(KO4it&YJ#Z*K#4mj5VX+Mt+pvI!mHLUVT|kWl@nC;z)R8W@SL>PE zA0v$4b1VBFT7ux8tP=2B!ou-)&KU3VIRB(DjL2tvF{gM$KDuAD&+bH--x82k|J>e1 z7|t|3<)uoG*!Mac*(i6?u%c{^1Y`X6tW@$&!T?3~yioKMiq=yj4rTVj)IHtEK;O0A zpJ58`B#hm)9loRW!X1A<8rkeBTe2_-Y!k9W<%Q>aeJ5d%^?y8K4o)%1coz_cab)f{ zaS1~|-|IUGqcEWtlj%f2x;Ta-HI?;w=v(K5be2ianelGc6h4{D7s|24Uf0GrXRjR} zr0e?SxxF9G=<)gHo(TLYjIVG86S6&K#v&PBTOMzr>qQc>SQ&r6anC?4{ z%lJ;+Hx#5hzZZs4zNaJWe@2Qy9X94`e#r_}7jl1^)}};_o~!YZ`}zZ#KzM&UoUMJ9G6%I^y?QhXXX^=P>h)`-UlB`t z;+tgYBj;OQeS;qu6*TB>+)=0LK~C&G=^ngR&-!?{fYA^&)6PfLkAWV6L1`coxL|+z ziE3)F{sQ{wr^XsLynagBFa$_#Vpm6#o#{_?lY8ci_D_F`LVx;Q?RB?NDqW1<1rB}E zN0(LFqbe=BQ!;spNGq#E0S#VfLb>}Yks!@cj1n!-tnhawy2PzJGja$kItnDuar1$3 zrz$n3tmYwn^jhxbYP1|uwY%C*x({eGgoME^XYj)ly1enoJ_HE-)SJxsVDGo6I%Z~VR-c#+l-P8#~A`D zcIOCIc5BBzMN}5igA6f|e#H!*GEC`Ecte*SEKA11{R1a7NElN(yb-bAt%S1&(YeeI zSvndzS8;H9KZ!ZZ!_q@uPvPYVsOD}8isd=EYCC_4%4zUAYR3h4xNG^KftW(eD=@PNqe>Gbv!XqOL3a?g=c_~o$ya#o z>DIM`!?Ny6O`t605C*HeF#7~IRLJ??{oMM_!{hUTYFY_=pSO*b77 zdjb+tbSs$RNKn)fxC@VZBo$Sb1hMj^=(vAovG~dFE0P|fF^7k95U zN9nlez<4{Yls+7SpQKsr@*tkO-z;gb1T_`z)SL{=(_Jhb(_?a8Ad9F1=++YE;R*Vpj*KSv((fj41bFy1_93i z01ie;L_t(EGx}}h+cXWtmoh{lozqcNcd4n42-LFsTXO19m1+6&)D-621N61L+;8<9 zXQTD=oY%UEUrjvdcfx-l&3P=~>(GC!v z+_B>Hc6Fi^^ql@ZjhQRH^U-14uh@B!xUZLkQ(cgjei%Pb82=II8(`S}6SjZ&zq3-S z9P?`CnzqmF4?y7E*EmR@<{zQ3x3G}&0PUB9!}b=ErP zti8|P|4JXeTCL)ZBqrB4PmhA$+&X2qG=!s{Pw=_09icm2w+;(73_x1WZ&55LdI=R@#I&LjjX zvOfX}WvFJ|zgC~xwdMMPBmgM&pJ37ESo?dnnV(jnq*YBkV_CBO_4oHEhE-p!UWWYT zSauo?m+=BP>bLaEyynNU8p(c1!M^Kx&DH^6Wu$~IT9}IK^@)Z&@tT*9pRS=QOC)->Vs$`PG)La*a=-I8$^BW(;{clSdo98Rh7!{jfJI@fws0U z7qw&34tqGmhCaSGaP5R(yg|8iCg6Rgi0=UV{4N&_SIGrg&5|nr`n9i~v-ySX6QxPQ zJ~Pok`+E}=Mh9s4s1IV3-=Pgak;) zd~u$-4#5d{k?hmP`x^0@BshfE)tzy0=5fXJe&fA>tfQ z#x4|R=;uN69>;5lKm|WvbRIq)4(U*>b5bUkS&sIIKU>K2a6;`H9>Rs^+^s&kO&uUL4O~nVUhqgznbifp zUH%J0j-3l>f5I0bcSspX1};6Bzcs(8$6hVjy;I}c?bO>Ux{%fAB$-NcXHC=*dzgyof5x>Afk6|Ck`}OF^OU@Zhdn1*}=P)hjG~Otk7+hjMKgR%y~)AsrhG= z7Bjndx#)3o4?8;wyE`P3yP^(e=UrX~_AiWMIHWD6Iv0T%){)r<=|SyBvzm^i9A_g1 z!Wo>`y#*(T=CzGM4-=S9cZUyVO=Z9#-yKu&i`Xq?Lb(0D?etqnMbzP|Ny*(A6Gm`@ z=JxTI8_BGFZ@@w0O}J3N#&Ms`l{Zd6Vf*^$#%bH+&oh>IZ9D>YV+})!&T%S=;K_px z?`wq)D;2vH;AM`4Vf|JZH#~vYR6&`UcJRZTI?NLxJ-q00#oW=Gwt*+Bu7W&x=!7?qRzop-~RGIo|1Ts43 zsvY2d`vpNIg>M2gfp79mIXrv3kRVnBk8#tId%Dm!WAn4g5*sm>4JWuNDu%yn&M>^n z$>~JQuo6Fli@^XVrvo9H^^ywmb)Q<)c{$u698=jtC`OWF)UAkq#cOpi6@|+q0!=27 zb4-)Vn$db<%acZbKTnU=hU`1vv6swj9;(ep6uWkXcSWDbwkc+)ibZ@kFg`zE0E*>G zwWR+PrWVOiOx@f$t+8Hrf^MxGJ)xjDTA4(IGw%spHs`${PSTGX0q2=nI$H|*9=1XZ zECtJbIZ1UUGxVjC;?6fL>8DJXz$wWl=$%%^YG;*oeCedFU!=MkD?Gh zn2FZUplX;LHd@et`erzIk}CEL-pLejeV|?a);rO>oZX|8%)ds`pU-)2I@I~D!3O>n6^tf zMRk_5@EN5HWmu=2B{8&!?nA0^oi)N|M7#La&1%e>Is7dX#z3C;sG-iyB%`N#4S&g; z5G1PBGu?@@Y;6p%XPaJSRHYIcQea846@GY6`8dH@NrG5mqX~m9uWHtc$5N|Ah&+-u zc?dJHEXRNYb7Pcw)PbU}kpz~XqA%Q@8|k_J!N7&VjbN~4Zo2%g*R5=rWS$dZT>NM- z?KZyyfD+j5TDI(bUcD;X0unYd9eb66b^I#B{ef0~wC9+S`6*HGAPyTv6yi?R9Va{`Y<6Avv`>uIvQ$fWQmI( z?V{YaTu2)E6d_(tYMxSv;#6uazIs-*Do#`2BduPS_o-t_(2&hEW-{xI=Z06pp0t&`@z-vYLoQrYuT!gJC4Z!E9i5|324nr>3~Ar?WdLvo?-gB*x8!25)0yqURckM zN6;-B;(`$TT)Nw%HV<#acaFi;wI<=+AIl+!7}M>C7!e+kqOEyLKf@z^;V(A}5X}nR zZI`t$yUVo#yPI~$qRfEJTj=~O&aGaN#ZP?6*-VJvwuRB{tFgLPIxnHo7!h4@%X}h)3 zsc1!`+D*a69>W1~Jl+y$zPBlD+SSa_(_4baKisrJcY^(vo^ONmT4nT1-E|TOdOLM7 zTpi~LP?BSSy;eoPhXnk2R|;I5F~>{g30^*Il14ej2!)Jk|J6s0N-P}vqM@L^^`>f| z*Q2X^qk-ykU+Srna_&{C6RVIKv-gDS>@ZXJRt;^T&JS?}Q6tOqTsQpqu>ORIwBUXb@8?umi`qTEjPov`addyC-4D`VTk!lDyx%ZQF@?#Db zH3_itvJZz&qW=YF!mM}Hy)VSPvj;&j*d}lCP+KA3?)(-NSRV0dG~ow{wBgy~!Qz^^ zLwb*$A5T7G;!V^M`c7lC4>iH-rCK+Nn;o&+bY|OhQ#WW>`tX{NA)tCS$~r^r9b;$Wz;*@RTa|&8=2c{3k-BsuWaJbUW&m zppG0EGw0AVdOqQhpU6}v@a(LLncR)~-tO!>IfW?4d39O3$zoD_NNw${wed;7Iz7x| z5UjHoLta1G;5HshM0A?_CEL2$g{LbG0nV8>g8e6N&Z9mY(%4^i6V70v9 zyIUG(sN`IaX3u-l;QK+MofCfSxYM!yZgO?KyOF`9l1Th}PIsV6qjPm&DIG9Jxugxh zCs#Ii(+vC(WM)*PK`(`${(tQ^-UC*_!Ry~;!c zNhZHn%ev$#Y-;hSo-#dQ_?l-;UzSQE=(p)iJ^O<*=xP+-IcH)|rAfJl zllsBgSVck72dN|8_({vkLbBcQm+y#ex_P~3M2y*5_Jn=zwJsSXpbM_U~p_J3GGhqLH5yp=|YphL257jL{3w#bb$ zvTkk4U!nhN{Tm{Vru-iJU&;;3%q>QnD$fsr#Pgp3ba|qnCSM`@!e8Sl23o)l2L}hx z0QLHS5$gcNKpRN6IDx-wX(SD@JB|z~4Z>psg2(`5000i)m#f|{$UlYlALH*j0OmB2|F2|LQiDN6WzC>s-6qVOTZFZ@WBOfMG@0AR)h0LXv$ R0ffaNYZ6(oE|9-k{{y5gxW@nh diff --git a/fall-2024/aicore/aic-501/00010/AIC-501 - Supervised and Unsupervised Machine Learning.pdf b/fall-2024/aicore/aic-501/00010/AIC-501 - Supervised and Unsupervised Machine Learning.pdf new file mode 100644 index 0000000000000000000000000000000000000000..95bca970f94b2f68c3ee4ddab59b0d4eaa92e3ea GIT binary patch literal 87849 zcma(2b8IhM)cuRrwr$(CZQHip?%KAoYumPM@7i|z?S0<&{Bm=Xb5C-Tk*vAqOxC~S zGe@$>mBb|InHe}?$cO(9_YAiU7r?L(F%dbM*ue1dG0K@cSh`sevHsUlVU)18b2E2g zl&~{)GZ!;Abu=><5P)%Yb1^rzhw;iy)0wm(lSJx$(_Gn%(2zJ*QD0ztj<)AJFvjsi z60oA1Wg44kOJoN4jwiQTXrzxARd%c4qi_2@kZfDPuJ-424^LmUGa~l)YK$Y6&+eyH z&a4@!f(O~_imJDNew|o9O?$3Bor-wE7i`|#I{f~;xV=3MuRG2o*6#!S_ICU~&z@)v zzW^794;SXm`TwRXe(t_Cw{=Ru8tsg{pb&BFb6%)&_BhMg zA>7$1+&M9w!OWCE%Rs?t`|$xe*ZBFj&`QhbvVpdRMORjH&+&Ca-Tgm(ojV+amhnXo zy7%hv7BQ;xx0CElCiwwFe*$#5vMn5K0kVbbn$8DMlzliBMFUv@5YRN&fxSPOzC11A zODJ0n?oTbp%S^D*b$SOfZ%SJe16vv65m8p)p zLiv^6uQ8T<$aTdu~F1f}crJerufw%={}*tToAwlH(%*R3FQQ)FA>nA^cI>@&=v)h7{j z6eS6j!lwk6I~b|5biFKELDm@Mi~9RBe_*Py!}wHIcVh>$fxrvhu<_Jsy-P>_gw2qTq5OibL}-B5 z55E4ykRMpU8C2xN#sZkA!9L=`C9&QxBsT_qkx4TlTa8B8?Slu8Y^c1IWF1%_X4SU{ zvM5XCmUJESg)$>L1ZrPhBkN5;o{%zR{zBY^rBY2Q{FpIQ(!^6z$7s`lGTX>kbV|4j zksqxObubG&S~spX0Qq1N0sqkWGyr|(4rYe|iw}p2_m_YqL)9wB4L>N6PVw*h9?yH( zD9=IJlBtVMFN4Ff9qQ#RjPR7fuqEM;WkbnLi%j8FR&-IXV^bHx5z#JO9hPzv@19wE zKc-~!Vro$smSJ*5_NwQwvhpS9lG=c}+4R1R{&m6c9y1~U}S&m#B73+pa`R}MPN zs6=cE5000Hr@d5;Y3pg5apBlFeJ zGEy~4r`32A9mLne>7(k6j3hj{!= zrmnUM1OCiQ&^BON^7t0yb0k0KJF#AHPhnCctaM3asp2cBn;c2H3_DL4JHv*?C*4$; zKl@PWg?8{SQ5>SJ_`71HK`)yEiw4uRagwEg|CT6~sh)KQ6PnI!MPI5lMI7h4T1JCZ zMw_dorAz5MS#|0H-Zh0~7Ev3s`;Vt=f$gma#kU_#B7ON7EV7B2aKll`_m3*et4&w~ z&}>py#-RNVPz>;lvswuhdb0w)NJhMJn;Zd&1~2e>if}5FOQA@8Jid3mSiZSn6rOHD ztW5yT1Ow`k4uf*K@rqN(ouG~@c>DyG*jU&R9V!7ACQBVv0wlKD1SrDa3p&K2vgzlZ zDrL7Z8*BWa@!h{`ra7R{9^52N`ZFr&6>PFa(&0asOi$n{4V(rvHFAN z-q_|oKr*DXty=&Jj8%RIs;SCKpRe3q1e@i~n>2|TwHN^%@tkJlyOwVpZjIT|JJL z*=wIQlqtCUOX5)4g`cnm5pL+G&XV1?%bRivk|$YtLAI7lbNrT{DlE1v$IM1!u=JW9 z7O|kz9y@5E?T+v$Agk8(HQTv3lun0OYTI70_qKpa3t%CVF!YZ|Rx95 zK&|0*IY-4vaTj@jsaKMp8r85RxCXiL4kF($2|lXBl5=+Zefq)VeUnIpJSrm?jQpB*cEBL{w$YRJam)iigN0x zG~h{Is6gIX3?Zu?LwPmWDVTlymkAp<7L;qNY^T%i?>_3i6aBx|ON~%eC@)6!_>-~k zTu_~f2*@J9NyYJKU14|pbu#e9|#2}LeU9iD<>x< zuNT_5(&}Zr+>Lj0v05We-_Y{wtBA^YFeBPDWzt~EseB?F0r(D8S+8xhLICqj(jo3R+nVP9*W^MV@>ET|$O zS4OK`+u8$Pp=TG@z|Ze;QG;Kt@9sXDzKXab1pMf{?B{#@)~c1-gz2vWt<;58xdWa~ ztl#DttIl@AB;@a|-#p*?f1cgm-Xh)z^9cp1-o2!@TtWuZ9S7}nZYhb#Amnr~Nfr8N& zgbS#9gqAYHw>*n2JL0=N`ho`zBWYxt{t>OXPf8`zAouZAb^;C1v()r+`RGyDPG;u^5 zlK3p$(K_Rw<;O}$lzaw)AKNOek8sE_ z1)k#5Ryew)2$KRMnBps@Dy`}^0e z95(zlwAE5BvB{|MQ2+5OGE(L zp3iZ0X{zmSH(4;F9U@h2V~|!yH3Nmi#OTGIo>!V9k-S5S0k%29n8d25eal3efFYk% z@V(LyZ}%mv`y6@y{T*Fs3ese(UV4$D83)H&-N#Uk*tJ&q*+b06?1<;jl^h!893%oO zWRNaKd?>BD>Gd0%O8x+Jhxi8$_gQ7w1#!+Mzz^Vztw3^%r5tD0-o1#>K{WnX$G5JD6ukf z*l2#q#C4fJ`kgfHDDI4$xh7t|c7TKe0w1*5@T4iryf?=99$MiKL8kt{{N`B-J^4 zH4AiAWZ3V}pE89gkE1TdeHpl6M+7Zo0&!R)v#BoDm}XX<+3RXYn-hb`=7ofxgh6{Q z2%KQ22U+`$11MFS0_d1Sq2PrSWPz}N*LE0~h&K(DS$1>B4b7LcE|vWX`0tF0ae4iA z*?5gQtW;Ph_3SPb%4xG2Vls!RIV<^QGV`J!p%rIcGW!{D;SNi2sDNXxfbHo2K35Ru z6*NHSmnV!+nQe=VrfNFhwYb4#y96qiH42izfLlJl)ij`%%Nu6B26DgreMFm|Wb&`x z?MWVd6_FRxt~>qF59M2O3d}$B>5Z_OQ$Ta3w^#>|Y4Gr7Tc25Hii>3k{Z?JC^b+|% z3kY~YUuG6r{@>!-;xgiERa1>qRd5H>;P5${+5I_q=l;HoDSJs;!C=TKu${xevu@0} zr(YL$9;N-rD-bgQQTuqh{OnC^b~-`u=j`wd5tV)V3z;W3; z9bxfpz;E%!`aUauVe)AaGPbsQA)I2~mnA{kE|dm})*j*pzveE^$yHvD@ok)F zMXGo^`))`awy3B6!zQ#;qRZkNGs@|oUb2{|0CUh)vDI`?%F9{kn_pg~?z{x;4J)(x z4Je|c)489IE4dv)?dCKaDgYh#Yqa_VZQT=suLV%Z9ThD_5_Lxl@Qf4M| zp6?S+*6#1O>|DE#2@NF4K?=pEf;P5)cQ`9UKyg@qIj;PEjp=AvDV=L2p8emG3X?}= z^S@N+Oj3`z<)(3mL_rtSH!A8fDk8r~tYUgl1)f_3f_4};0gZ7aMk z7=C8y6Naq!ory;2v7&+5*z;T(3@CyA?uQA+$3pTQ{0`#v{IQooLQL6_z7#yO_ zjc9(@#ZF@*k$`oGV{+|S z*vKSUIRhD)zR+Gl6nvnZlt+vh7X`P=DHvr96i(eb*7MaB&{Gk+V4Xh56J=ewcMcvJ zgzXvoKf;o+@Pcm=zi{t=$&ihU>;FrJENoo= zH!@^l*U}2u4E@1HVEkOv zzb;S9&5e<_59>u;=WEqX)JC=fqi-&uL-`nu}= zW{CS9{lIeyG9v+jKa_YP0Zzb&%ExD>6A?-yjJizN4* z$g^RxK)=6(05wJ$@i$P0-Gq42otTBRbEHQj!%I>(^sabc{Jt)PO(lXV;bvvpF6?|go{e=|9sCK zo*DXfTL{UCG8iI1Kv&{#4{^M6b<#djWD;ZAgs{EXQ1QnlrSVi8B?yfO_r~Ny)d=L= z%j1P>kZi=N7x~YT2%^dp^^BcuEH1eog$Oc4sys{l&w=#(&&SW{?a&p<31spl0@Q-b zg#CRM86T7xHUr(8vN_mVmXOq-iEGa(&&8i{;{O#SYYft)LPH-mt>8|?Nfd%BZAl(Z zzdiI%q&ex2_6{g2$P0N`Wo%p7mJ}2T9s)6px_9Km5!W6I)ZtGi9zk_z6k=H2brZdK zI^hu#X*|-r5&en+XqhR!Nz5Y%qKfWH2n!2La97ku@!xsh<-ajmlIV!{DFaUd5rMhC ztt()yePFecoF#mpUj^piz-4D*+IDo{J#1Aw2k5t`R`{RHa#UNXP z{Xs)gJ;oiffK0tizVvVPN5jgdl@}|7gW*-B&%2_pLJP>n>hm|J-WWhExZR*fhgxn7 z=E3w~7s`Gt;XuOSxHIGNBMyKS02LVi8`Vz&#gGIh%`h24E3-9;@hEs~@JORqpVXhk z$iok92*;-9@*Px5MEUb7y;}ptE_0yF;ZXE8*VTFE-&x^_~2i0w4eY1%Mhi z-bdf(TVbrntjGBO+b>mK^0IDYle9^7NJEfvoR9_PEs*?LWX)nrP;}CCZQTiQgQY(E zInFrF2%48&fN`JzmLpF%#GOFz$T)`0h(4O&;)BgQHC7<`l_WFqWVz!cFxMNr_it|$B~b7a)N#zf zFPd*^7J}}bSP%e7L6a%QUF zRATE)>Y4CP{lUK#YH%`pj(;mn^;3N;xg!T?VZyA3faw6yPv9u4lh6$d`>ubW89DS( z8z=y}ZHuElay|4$cS;)_SVjPHCj=2t8lD9sBs7|X8;AiPAin)`#c+ViXQTwX@Gd?u z8W80(`tcXB7UdeN13~1QcCyn-`4ZX9(*}Jju?rs_JfMNU6<);;t~bI#JmK&vIirLF z4Pwe0avq5yMKf%&vd9ebgFj317Hg+}VGDdCLLmG~@}9+jE7s$_U;IhQ-Ny2gGiXMk!kESrEsfGLskd@c4|nBFpN;axiY9p0%H0OPN>p-TI5{Z$FW0j( zCxCtB&1FUIw2Y_o)C{&|xOM>s+NxH5Akg8M^Kt#&kSH~?=f3z8{K*z&^@y;9`J-_A3Ax{~Xfqk7aXnOymRJ6KuT z-tAGPmA9=WCqcYi0bgdnME+ng^{}x;7rcHlQ-*;|kOL}l;C%lM!*X!Tod6NTL-oi~}GnEy|beV4M27RO53Wg4@TS`~^ z@p*inKa5Trn}a^G{$h)lG3WY<(38^`@xJu#-n7CegaNVh`bgL|t7ynhypCavjG^cC zMxDo9Rx=YTTgDzP4iWr&I+~n8mnn-`FDj1nCm*^C={h^z_1L;_I!!HfZJI{^sTKW; zc9+Brhd8B}=ABkES{Fq_3GVD}b~huE6rNn3&>tQ5@$az3o!d*JmLh8vt9sm<%}6v(lSOJae}^t}W_o2e93rvyF1@g1x>%9Cu?5{H ztQOM`tVoDJc&xrl17QB8CHw3Sw+NQ>&*i)BFc9*p+jmM3xXAp^ZKDE;T}e76KophK z16iC6lEc96gO{f>vpBLf$uo7TGoLRZcZ-=TVU)x+8aly(pA|=oz3T9WiWOi-Z)=eA zg?xd<>*6-MS;<#(vFSh{l`4+YEv1z0xB@x3Hz?c)LgmwtTd7hyC- zz1zo*^YuIDz=GcIv*-MoI|iewl{fv;p4T5x$Vu-f$0HZf)l9)~94r~ zbTKVr%V`MoOCoxS?w<^&HR;#D)2XY?qu$M#>FWABobahqexZ5Ie4k}7bKCeZcy|QR zi%6624hab!uI&2xEzawa2^j`lWsR+{Oc?ZF1sKwEH{sOzFA4zq^{*^3t+0jipe&rE zSb_=)%+3JtP?;!2;2tEHoGm0z4xD>jXX2?--f4A}R5Gr%(pAwc;zLfl9(Ur~x5~ng zT*%^gQE%{jTY|Q%+VEjS1{Xs6mb`~^`=Y*wd&gi9s2S0?4}XV!K~bP)C|GUeAR5CW zRt@ZDF&6c$r1VuhgUgRAP5O&jJcK}^Lb*38<$E{0o%mxh3vS*ITX_>MexuQsU`UOk3nY8KN0mlJS?% zgv%F&o-zx$NwrD|J&vs2lFv&!eTippKhM|n?qfZw2M&mq4A{t58cZW#G|`$24f>V3 zmx=UHf>Uw2y3?_pLyE$!#;VZ;%=H&hi_J3TZd^#)JtpEncw?`-G7303sr)(nGWRwG zX#so6R8=R4pgHLm@uR#L;;w%jPZwfeTn4K7R|Zsql6S;qMZ}@E!kN7PNOMP!u@z+; zq!h16-YS?8{}G%dZXPKZnP7|=k{-ebE?NLn4K<#?)ST0J(VSJ8Q=7f67g+_OJv-nq z@v388*9PK*^Y>CXiO-jXI;Z{nD0y-HZ7@L#;;MiOa78?8)(H$otst0WB5Wn0Rk*J9 z)CQVGJ*~Nh*|dB~1lKdX95%q`N{QsjL&ccT@Swyimub>XHY0J)wfhInEX^{%N>y3k zvO;9e@Pa)-(!oV$>K38!E9HtUhfw ztsY7s5j>=0*+x{?q zxY5Mhrd4SXghJ*yJsCNcu^K9Yq|ls-Vu7ctPJR4N z`^)$;2P_z5jw9t?0wB6%AqK=vP6IO}%fh0(9yt;UtCl)nnLG!u|GAe2} zI-1s|yjc=r8dHwWxrGz6zM&JHfv|7f9WcS4e+Nm>ZjPzkQh1{UB{Za1B>Am~hJR1U zz;hbddcMBth&h?U$0e6ECY`f+QtUY>b4U86LW$yz7VSma=OyhdPHw2p5?7$3!pJ$I zIYs|4yLPjdQDeB#7s)HBxxrkYdaCI)?XufPE~*oeNL-}i+xnyN<={KTaNQ%aVknfht&rYGty%VvRK5HBpxfJj6=o=S8?zMZYSvUA6wzW3N~rtk_jJR&$r@J z?Pb#Ih1!e%!c9Hh!mkH;FE5r&e{TwTSecYGI__Qw7gmfp8xvQX*=EJcBd&%jR{Tk< z(ut3n@yW}`CiUjktAtr0^%`v8kp(BJTF2RGc3HB_O%A{FwN|~O=QX^#?bPjyqsQY2 zUU5c4Zm)-w_^!#cHfDOQy(WMt-E}s2Qn1HiZMAvFLzk$3pvU+e93Iyn*D*Was>^Ak zw7kFTHkkSSrZ`cBt=a8zDdvh{LxlU$BlB=P2%=;MoV~rI1}>n|Y@iNqBMbNpOA5k? z3KYR&;168p7$*{2DljDLfe?h9Jo$11J!qTdKs;P#`hHLv+(sHOFY5sv5mt$v48-+R zP#$&zd}PSKgq?EGvc8o&6ju7SXb=Ed;LT&K8VV}3&b^eckafdYPQ=a)ju9=a}^wyF6u`f>WC*5Fb|aI0R>ue zT*?w@sITNjGN6LyN3Jg?(*(t}sBud;O@aI*=^>3f+70v(;dE7|Jk`V#u)6}XT()u| z+>&66Y}9uO>T;k7nI||LKO!h?e4)R5HfAX7k(^b?jzju{^aJ(8J+L>zWWiO+_)yqv zop{;QDp;y28-){8Xx`674|guv9b5#_$dsD4w^@Und+bOO!JT+$Q-60yM z)A2_l5$rUNBqZj!0Q7-O8|Dc(;4Rms?RJ(c+Q=nnb;3YEEkA%J$u+w^R+p3MH~vLb zeZIb%Kp)JyOy?IZf!AJb*>rlo=jT5Fk;f2s*|C7TA^`7XpDbgZ|GfQAKO{E1d_)op zoLY9A%l%;}XRyd75ehp@Tp4(}g+uLvjZNFcW@?13R3cASrfg9zQZHs#0Hfc90PcZg z$JnQ2sEr;gD0>li-6){5h+_RyNcCLhVd=X0xJFT!;JU%Px0zp--=1I&)#X~{l}b$c z-DrZYNc0#w^v|-Y*=TC%wlya;*3q4Lm{$zuSn;y;(xXKKbiJ?$|I1z|JOl;>D)2ot zZG9X9oLb5c#Y1GQlZw*L- zeT*Fsv_J0QeKT&wkwTmW3+oeDR6(O4Sh=XND$o>NoH|?;;?~Y?+<*sxs62RTI&qo) z#D}VUypx#&$0-Ak=HvK4a#FGJE1`eT!|zt~sqZTN?m94LrZK*<-+B9}WADp|G2RG4 z*ID^7?-(=s^SNmC-FID4?+40gQrPHx{fU`kGC{hcCrE5kY=kDidWgi4LcLTdBvhvI zZTf8=y!aFwt5wOJT`9;wgUW7g;?WLaXYgn|!4-Zyp}_a~-TB=_*9AeFrY9cFO?XJ} zd_c-sx~cg2@R6Wpn_-ysFx6w5Q8;&~5^tRU;(JhmW`^UnfWI`Ce{@7+3x!J}7o7Nh+;lA}F$Ck;(l& zks}GA72wEEtYI4`Pl(nxgN63F%-kW&443N`6f|_O=VP$a7{Pi4#C#vcc^}RSG%>G( zx|qV7LV%4|nZSC$icPwKn;3V>h~-q=695&>9noRZC&MGNom*hAkw*+S1W+4}jJ-S`4 zv39EBv6W8Y74JM|a`tX=o1x0CccV6AFm7G5{F%yeS<8TjV2EnGh~Op?s;m~C9bmyW zAVGX;poxJC*o=6{hi~G}`9P%^80LcqP1*SL?k8x*mGNl7vViw9dcH?JpFmA#HohL} zuZoL`?gR^VoVY$@ijLhW4N(yCs{5XN182|nE)dCnUlVeCItd5Cs-4TX_)e-JFE*S( zox*4e@eW|#n+Z$+JasV;M8HZ%mYLCirV-?5AdHAXPvNnwhD?;AfFu7KB`UNCntHGR z!D2HN2)FkzC^$h7;RJyRNl3$YiDEY-0zX|;E}Z);Q%${G$#u*5%I%hwlzGaR%cHP} z%h{JPEIaI8g;JZdNXlUuM^WZVA0w2u#$ zqR|{GnZw>MsXE&cai3J(;P%TiM6m`SEZ^h$`1*eI_kCV!Zu(tUx3f(a_!64IAPS^U zpl~tA@RdDN2ObJc@XY4Tq7>nkqk0o*A!W5&tViOwk;iG%Ysn`Q(5w+>Cj1%Fqa^fu$2S@9WM#E=@7FX|2dJ zW6?BVoUjq~Bb~tjypZiL4>J)>LOBz3NK<~IF7>;rl+gnV!`S^fQJhszadv?Et|*DH z*J!#}-+vi+m2zw;jV;5CM+`u6Vu8-PLXH|Vf)h%G6MzU3I5=9t#P+*}4Ka)gR<|Sr z`dgy%QaC8(#${ZODV2E!Wm271Ca|2%F=PUC$hECKxMYff!sTTlKf8D~f zn;Vn_O0{LrtP6?U%pQ_iYi+_%(~gmewU~9UjQYwH{mOL7!QAyfD!temnHWbae2`0Z zz}C;f($A@QO<8P>T4aY86vCZgn-;B{l(pV;-4fm6^X1#kPmOp(Y8Rex2npDQ5buU% zGp~7cC;8SWPVbjk$%iYZs0pz!56pwUB9nuDm!o(Y>gGTOdeytB!7DWEw#tCHE@qFk zZyL^20+}5`tyr6^@L1q$e48rC31sW_T;AH`9G=+y-MooI+}-XE-Rb{%^lsN%49vW= z7Yhxw6k79y4&()S|IGTcAB(*l{8G zczy!RUlVSJdLh!%#{bxt%pp26(PCsflc$D&EK3|*|DQPAL&7p6pn^bEMTN~;hi zSU4*v@e3$Ing!KcslhfSeEH_JsObbT{g+$(#e8p80k0~h&kRjH3CFdZS-6AJK z2aPf`*8#9^^SOz32=VNA>uOV6Tt_2t>3EXkD)VKt7zgjnV-q!r=EUK}AB-Kb%fR21< zcCOWdML+AdPpfldR=37Dn$^HCvkKk}6AElnSm*f<`kxk=dGr*-^0~_=Qr}*?GCFAu zDr#l^PKxqrVD_Lx!GmUOkepegFAi4R`~%&b=-*~>wQ6P)+(KWVN$6_i8NP(rE?+b5?VNtee$?Ke zecu!QajX)0IX%i;W}fVXT7g`f`@duno(8S&*><>Syn-*-)EKuC271~h2s+&jW&5?$PrJBbEc6Z^&~>NT2?Q_ z40@{vqE(aiY^(HXTBY@u7@{PTX>O9bN=ue(lc|*P>Fn*J>Z}&l(koVE$jK(L^sxq7 z{$^v5s~oruiHMW)wMPE{&F@SXP~r;I#CjVud#M z=y^wZ1QWCl$YM^JkmfBWoy;vVl}GXHs!7YF4#ZZOU&++HhTo|frgK;7+>y6<|Kt6fT1f=TBsG@@y+sTVMYwI0=E#R!cOu2W6ZE)>Tt z|9v^}uJN?H7r6@?g!nMIGP(PAfa6`;Dz1H}kIPrpcN?(%=5g?HFa0)o56xccQ|zY~ zWtnh1PLuKhnRs76JyR_gt%2HAb1z`87v%T(l~MCC+fq-pm($v3G7td`c?0Z9IY&czawZJ!Pd{d; z2-#bLbvNYe#3>N>0aZ8Vj#cJS>ADpRX93HSNk3r}h5^OOGMoyqYHzNP6B)B3#_zT& zFby=DvLc*QOSZLTo-qRE=?fgtEbmjb^SLsK`OD;QFNxb6dxDC%Kr|X8LOHG>EXh*j z^(AWRXy`v|Ys=B=`%$bL!A-d7cY#QFbG?ychaAvjI+vSQ*-ao9;JzH&_+#jdh%fj$ zq?ighO<^_t$WQ^V0|92 z8W5LqKIdZvKft~WzgO~i6pHve?LVLX{Ok7nl1)yB^f@Vkmx6%xy91`SpMPnF-jU;|s~P{=2Dg@4iVyg@7V9sBmX+sA9=@|JSV>nM&zTDFNLN#`Y%zp(4L|eYtQy4O}n4znX{cY`L!MT*}7bCM4;=m{?AZy^4#z1CBtzfE)0qd_tVXgB zcvC?kpeaIgmNhWgKx;u_%0Dg+-1~#>kAA|3QgtkBNjVg=6P0mtQw4fl3ATwCXL@RG zrs@1L<7&It5}+_}L>53{5J=|#;xV-U&rL0XB}+uSO-o?%3QvJb^g%8LLb~+>&CW5R?CQn|(3b@XuG3-(wP)H4;>@lJoM~Y} z&socuG}3g#8hY(nK56Ytk*p0m8Q3^hc3e`cI<9ZppSXvV=P`;ng?bA?Fe6ZW9M;rf zuf(#*ni$FCmyIza6;08kpk28#6HX~MQ_1&btCV%B0=1M39*osoB7ZY zXed7QZ==01<}#Z3G;&WGBPXuGHqq03A*gZrv3HLrwYcxm-h0%xv5ase7?+uR^jltf ztx-7`j}-Twv;SmVVDwt=7H44Bc~Q@9P|cO~yjNiQT7pwWdsjp=JMjo@f%t;#{!t4; z)QUr1v>^&o7mXsQ`jVr?lE=zYTedAjrPwoLk}q3uV*#%ydu3xar<~1(R-h=;VPjq` zwoVU3idlJy*w@1{3VxE7F5)^Vh4316aNRhksiT5rp`__ykF;xIjjV`n?0C0H ztUJ$jCPS@+6|P|L1kv!q+5(zUcl??qM_i*$H;8c^&gE{8z3OfEy!`A+!asfmpMDr`RbgLxc1to-S9tv&S$*G>JM(_?iOmQvd4mBA;};Ks zYe{IFcp!?jPMdm$BQqxIJ<+J9Y!zy_Q0GeL7$^yiQM5v(O%*VkXH42MW_V=H(zWF% zTv>*VEmB6|jC0il2<_tBH>h_1_*k9=IXN(4>B|Tz-A!f0GRvy4fu=dX%*)iv+{sW! zaoTAOVMEXwQ=qea=$TlQssu>~{ugat!-b$nOU9l&TOOz$jnRxH39;1kR7z{AnZrLZ zmoucO3d>67B%w1{tbx4;vyRX>$UQYy2Q*vH;;z&6mb8=``nxQjMi6#?FMZYbJDzDG z-j40WbF+^CPR#y&j!p~uAJ!V;l_ak=J9TGEYpn8*EPyyc2*tkO-u`w3i2m={5a3#v zZ^I0gk}{@OI4OIAzU6xEbfe8C<}1O@T}4S*!|x9)Uq{nMjb7Ct>!owRg??P2yGXDS z_pXvE)V$bD#0$-U&gV%SFK&qk{ow|E=@<@igen^1%u%G>Qz;kk6BNigeAdAoNn|_Z3uzP7t-1p0@osM z6|;-vWiQia2xl!P6C|8rav<-pi<36R}wwGk>XVz^xdiK zRzh?4ygu%8NhUC@jR4}?5e;*Ni;(fDcpvi~dC{aT+ulN9=Cy-gn?M21Wl!(AX?T`0 z!liNidS=y*G5YY%rsl$*&maNTBF_VbexlT(-TDL(@Gl~!&hGp=(|yx^yk7QpG_9SV zuh`=>@5+Kd?K{kgiq~?i>9~5FK%Rook;d0%C2}i)!28#5)c8CBoT!s0tVHS$z)M&6 zzlZ|V*uV*N)koe9VoE1{v#xo~oy3Awp$(+CI#_EK)3NE2W!mkP;TG|jd`JIS_Fi^^7%$W%6(Uyulnq3Y`?80i zN`gsI;0B~FH=<@br!~m@=b%Tia>SnD^LI|x}a>IC>4a6EMo zv+5&<8Fef-2!Kk>RvBwrg(}94W`Km;d2nm}&2Dd<+j#cst-tZ5EhNEl`}O@u)1kW| zsVCmsZ!ksHC%LjcdGh#4arXrdApAI|sCcyMHA_jqu4?eXfb^;vBx>>8PVh7UrUN-6 zVM_$cgc}lLa3SWvpV7cgyY{G=q&vCG@=KN=FNFqWiPDgEkTF~HGSfns*yrOvl=*g1 z1&L;IZnX}LX~x~gQ)P-aTo8Q}8C#J@O!s z*F+aUXsXkPWa1jmrLQ?GT5ORsd`-T!*EH5U z)I8a?>fdW0@ilfZ%;B*G#b`W%_?8smbAH=CoJoLWJWTrM%KWKM^qBaVvRYURAp(pl zf0jMcZLZn|a>?19PFYvIm?bT3iyZz_YU=%ebQ#I)6Jy+E88ULd2m9%7x2|MJNYFh0 z%Oemvu5{HJN-i(oE%SMQERR%f1S1OUe-@%3{soq{ zjA4Ugg?SVQuU*1#4K0GhPb4Q57JjRkdXE3+KzSecV{fZEKj0wx5!)f7wB+uSot}5M zx0CSqd?{nSPVeErJs)xZ+Zx93sN2`~&9iOyt}j8)XY}z-&$qVgcU1jLgRaw4>wUZ( zPag2(FC(iC^?-69hxIFaRzy*5@?>t#9CO6lt3U}VAe~u(WeM9I#>CoHjyzqN+%+kn!%UM+z}No*6!F^D^U@xw(^Dlb~@@$k+Z&BT+u1Xs&|$?7AJ!o;0B zGI1t0^lyp;cF5sUa(NF@+IBnVnH!;`|LH{HgKIY7bc{t-4x2I-6%lqmI-(TwBtvA0 z%{Iin&%f3^?1yFDT${5izGDxz2a^xKLBQ6VBIf@CYe1C0gw2X9iZ6!(?ocQohXNcX zav;Rn!U{#&IwyAaVc&jQPDBgVgNfBV2;s~b2$vSh6SjJDhxc`8c#3rRFu5A3NWo(g zR_Fd|vV^pfs|ZgHk$e=vx9SMS(5p&0Gcd@XVi@JsP-?qbfcG>rfv z2>@m(AbFXg;{P~;tOJG)Hp6N{FnG3T0H!n-Hvqxl;$nJ#VVbWSfMnRZ%LX7Bpj-TtuI-H8Qcup|L~j(Pyty*P7=%(PJ(gA zW_y|A-5kerHbks8Ug8du!$?L1?@5>u&qEaSvYGEAE1wYrb0Q~FVKxR7vnHMB3mBTs z0Un*ONr}8@h18WhQrhJpn&|AVKtv%b;fQ98Ko$US@&NsY?6>#foeW?8Mn`cvp6DAR z-&fdhqMWHZ3v(E40ebteI1d=(a5#*WSX=6yeXdHNzc&(=@=7jmXeGzz;Dhu}W)R2%bZ=-Hi?BTa-o26bqNLRVvPj$sPUIk{^8cg%^60Bk_`l zxdZ1ed^mYOAp7_F*CJgm^iw{Bib+)CM9)|vJ`6KepC&1b3w*}TA|D-ai|A16b27f; zWaF;W=PZd^io(>!uFlTc?QS$1V>a;F6yQ{t4~J}dlw>J;J{E5*quUWqmFe~gaVq^O z$KN=vy#2E@cgiTl$4oM%0L**npz35g|8L24a9&@_sx&jB#FVjt8J2S^S*jk&APyIpXVtLH+IMhkrajN>`Uy#ZV%B+@awaw zltNbb(rhC&g&B+}lEH`~8B_iUu0)oMc$SRKl9r5k7GO_K9~&g0C47pH_;!_G7#sJa z{RIY<78s;hV2Gdv9Zo~=QJo1Vaqf!0XpERl&BshXDVW|NqVEqmm1bjyQ6X@yXzD~y zt}3bq*V+hEKz+CzPexW0QXL*V5il*6lgXMfT%oD?=rG#$lxJJhyenpp!lMqaKX499 zFWh?S^2`4Iz>{y0S03)Xbl>CKuDBo1Q!d*ufTuG7PqP6}b5LJtx&4nJea!rDMN)<{uf=vqIXBqg#Z`6sE1T=Uhn+zM%h zyvDUc?UXl#u9L41y(z!paZ1cwsnD=eiqfGoNTFO7K#MioMxbCp{Q43NQxYblkhCxN zL0=9Uz6vt1rXWLJD(FxcDkvB!z`&qxr=Ov;r|c>L&NZedY+yv#z=$wl#9@|B7*{52 z)!rrER_|3_-mB;lpfz+82QOPD^Rn$l-aeAw6HiY~G`T8M(mJIHSxmUfM4E$ixa%!c zqiU{U3e%veiBV$%me_V8Ih0h1 z+O>a5p8Ua$A3pVV|LD3~X0<=`z~z@c!Oyd=89sCP_)q@0d};Duzus}`N<1BJ!;k;; zvFFac-S|X9-+gxh;y{~Mr#|HN^5fBP?)@Hbdh?+H_yMRH&6=qwqZ={_IX0+!2H^Y* zIGO?HWx%-^u$opOZ>#6?+<9Y77n&yJ*XK3oZ8P0sx;FojtRI#<$JtEYfX_R8ddZt! zAqZm)QOdB{w^&|mT5MiyS!`WwTO+SAtue2$tg)`K^~QP&9aPtzKV($?B6EXfMQlY; zXS6fFEC0LZd#$$@-C6Rz;SZS~w?0_-P*G3pXE9Ha!OZgvAZh^l2EgJ_l*luHr~%{~ zKn~rF?+RBgk_!v0Wm-34tz5Sue*NSm5&6*}tY-mpyK$9t^qZUo6_^{FGJ@v%_ zR+ikt;)Ct8Ds&YvR^KqHt(9D!5BxPQ|5UDV&&R zQ-jDHqMW--nOQAEk1R>^T{z^C1qv{M|v`s%9( z%+lzX)V{HCu$@|ZMpqas90mgv6|ujz2n83ltYRDBtM@r>ynNfGBMZL!!rgT>V~TH^ zcg2qvIlHYLE!)<3Jf*>FpS`ob<%KI={XM=Qw6?u@(gjgpLD{scXHD5!6p2s0e3ftR z;<=-vp`0vpetFHd#fx@d^dxYd*}!#90oMtT(j&-g>_Mdxt|4(7fFr$O)Bv0S92~IU zO;p&ga$pA?6K10}#39}lvPixVZ^8C#NoICYR!#NJ)bN^F20I1d_!}=UZVjVa8FftR zFne=!WVO2bTpK2iAOL-Kq?7)TwCr==u-xq&|3|U(r7~kFJ>Z?VD>>%nN?7L zSp`iCWg9b%Y-7C4)=4V2K0E(a3Db2AqHnrod(9!4Y*iIEZZyPsV?VCG#$g~WMQN^TZ_cMb zdMo*__K$9S>W`79{Z}oz;faT?U2_Y*&il-(I0u`b#N_Iy?+>nB_x$T`KKC7H(=6bz zUBc_gi$^8GZWDI+OZ~(B34fda`__AHkK5#ct;p8xKkDcGlsQELk%}DI##tR9GtMS) zcNWiy$h_N)-Ki|CrJkwJO7Q7{)N3@TSJ$>%>b(U#;>hh-Gwc|l8+OD)k&0ai`xA@_ zCv4P)!_9PiMNF@k$E-R^biLkZx=p29x2gQt*nR&#n~_kJJrjS>gFgQed+&m8MH65>D+4H?%i2|Yc|hV92`?Nchak`a`)`qxVB>QMXn#1Cof&L z^V~`*dt3*t{{nCUC;A{Ut~3iPJdW}e{6u~pzmo6dMUzuD$tGKt(_}-Oj4jM$51CCx zyJRfqsaZISAXG7p<GVcF1n=4O*G?W$+?jnq}qH`|@A2 zV8xQKEVXo5cx`RU!d6NwY!Ij00GU)^F%07@#*&DI&J)-ML1q@fwhne;Co#HJ)>(_Q z9Jvf#I&YjEpm(6QtFJu0^_$Z*CjNS^fROXsQYMYl5e%bBYlcy!Ymiap=U+Ff^fC77 z){H8{QwASAkYQBG{7$m<+jNkjk=3>yWtvvzMzuXgFbFFsnpeodn4F#f;GvK9w(ni` z^u|Q;vmYN>ODY!Jw)x42H*J1WIMn~oTkCFpxg+^$^35OMJDy!|)A3hcd*L|6q6x`4 z+{Zv^VVEC&kXUN5fZSmzaL=&RxerG=K&mM_i!%(f4U zmK2VUjxU^1xT|DOi8LyA)R5|u$(G5vwL|9T&L7euEzey(WNArP$yB05X=)<^Q6b-e0$*O7AY5l6M74#s~2 z0Uf$+z_5A;JG{aXU;=3#6G-U^Glm$-Yylkpcu8k&#o%L7KnB%S6PXqP%p`!ZowL+9 z`=qX^IH~Q{+z5lFmkM(1RH8yn6+uT#@5pkeCfH?KT&{fDQZ}*kiW_`(yt(@ir#JlS z<|CIq()@=#Kl%9XN3PiR*i)BX`q;w2oPx3yi$-_fgsa}Z3*()4b)8%D`Ky=ykSqSx z(Pw}0{0q-hj{X>kHrLV9;?R?cJW&YC@~skcMF)DD`dnx&j=oOv?6oq%rJga#{j(%qTVJ;uF#?mg1oKU+BT zRC4T7{V-0ER6jyO1KY)FC(CPcKxX+o13d@MJ~Cza3mGs!VDXYx1&e%ICv5Dm6O6Mi zAew0G3FHU1#}TXHi3dCf&I0flOwpg64rEFFSL4oZE_^gg(KV`Kc^{6#U{CzQ)& z<#O~q367NiiY$ElhyCBb|M&RscTa{9pW2b&Bgsi*5x(Q#mYZ*)XF=WpwD*x_?*&}` zse=@C5<}RL1^nb_eRO5C!*s1lYzb@<+DsjmYlLeoVxh;x`3j4}o*Zg|`C$eofB4Pi z{e-XHWXf`di;IU0L7KHnBph}k**C~q#h1azeQ9eIbGLS}F zDa!1uH-=Oq8&Jjh1%uKZtot+4Rq6|3)(}nC%62hXnb`|X%Ni(wGJZqvmu52I|Jdy1 zn_HIR=P`R>)}or}R;JD%Z2?1fF9Ek<2hgzrA2Uq=TT7=_Edz_Gb`r(8W!lnLEDDUN zY&2CVQ}_-Nd+e2tm8-71^`fqy?o56cUvTx93#U*1&V9*0;PscpCN3H~|9d-=PYH(_ z4mMx%NO|Fru2p-Nj^O4xJu7EUYaQ~{9?3dp?c}*zM^J9PKJ|fc5N1CGcx56GbO*D^ z(n5TRoP}Lnem=@|c}W2ZGffjELlAMW=ndPs+^}fEI96DYKd685Gx{e#-9NVae3j#X z>lZF%YeXkmGc)$0FBZMUnwhZ|rk5e@U4^(X$LP5nqvvw;o-^0y#8fjjYdfUr+9lIX znf)={gx9dyovCO$$Qt#HEmc${YfLbyU3*$1W1J&4iH`kR6M}L+pkiS~|z_>$kfi932%_5IKAwyv3TuC2Ra_p#*XT}`90llJjS z=;O`M$2q8f|8lY>hjyoS5GOnQUFwC2jnBzheqh|&MB3`4r2d2*H?)Ju1nD3># zTV~WP`@_o@59)3cr5JW{G=ni_0S7yWOiUR_zPQ@U;_qhv_&%bvn`P=V5 zjVC_$M_e-Q+4ASU`}kiLuYdpg2megSh)=)zDc zc)|e(&O^09GYw*GmQbz3t#wvzwl!rX&;b*AN*&Nbq`Eh#Zd>V#LlgE>AtK;oGK5b# zbJ9<3sZIra$|(kcRB=k%drc(@nMxD_h!oUR0zpmaxmH#3vFY7*kRf~nGQ?qR2TbZi zYMRp!Hx|gtD)YN9XWha|J|Fe z-nN;n{p#mWPiUA&X@E)}#UOnM=%$1f6P^nTNM;AGkVp4RByBUy8T8Gi2V(9&9*EC= z!~Rq}pZ)3kjoP3~1$!#m-|-yzHAqbVcnWd}&=XgHR?TGQ5hM>j(W2&SCuy*)zv)vo zh$p@E3uS0OQ4%$Ep))j|j8x8u+@;Eur+*wRi-h+8edxw3ns2Y#38#$Q06yVuebgjn$kMW zI?cfi;R|df_J!QV{ASyw_U$&=LIkVhHW5P1w(%ZPn~D)-?L z`>iIkF`3tA>(CO^ zimpO?U@Y5X(NA4vryJfHz41E9alkYG#b3%D(2;u6)Y+zOz<(>*Tj$e><$x&-EttDPZqE%=B$ zFYw}M(-dAP5Qmx|+LraC5*3@^a63nbAkNg~Jd1%esK#cVdg3y?ixKLIIQ zEXd6FVFwH*JX1O4$@DE-Wvh^E)+Ysa*|5!G2o)AXIcu@%>MTnEN*`85j8Kx^`vT(# z-eoNN(}S)@eB+>NZ4Ns0YqZ5*iXX)JJO#D=O zT!E3r%Z3&{Q}mM*xk|3$*j?wgw&^AuFy}7#aBcq#*KsAiq#MIG!x$Gw-_Ic>zoqbBBs6E)5l|A-a47#J7l4j+4 zo5!--1G%}~RqO^|o!#f7AOCG{P>W7C^f&6z#x#Sak{5=tFp4GT4ZZk@kCJQfv+pGD zze+fC?g;KqZth<}B9|pErqt;GD)~FeWD2ny0oIVF0VRDhnrXn3``Y9t+kq`2PfQ{a zZ6FKilbX^vJL!o{1B1^vT-cH4XH`zj_E#=)+`-==!;IB&R5&Ugm0od}90^ZlfXgyv z+XBi+Jl1kGzQrP!x-Q}yqz21E`r?c9px5B8UARBMqD9w;A@k2|LMVDp^}20-zIOvH@*GV z*yKl~2q(XoGJHb$S4nICFY$#9$wrD(hv2pyI6j985ghUoTCVbkmJh6?7@C&G^wuEbB=z)$tj5NTSqjQ6^vf|kM2?#(<%i|pVu{kjGfH*^DREVrsIhz0Rf)-1lbOIc zS%3-5a|osjCZtJ-!#v&G1T#{$DTN(^7q^>1By{x3vLuLy32;Ba`! z$ObAI7=(j1g8umMnIH^4p5O&k9@*!uWSjNPo=O6P5(#()SO*<(Mq)8a&soLNsPf$G zBJxnj!ekw{qW`C@Ti4*f-piC(mb zF(!Ka?wL~xTYu_jg6G*Prn)|Cj3mVDQmnPbPrA6_=LW%sVTJ;&er_>rX#bk4eP z>AK{dzzzwTnrz`t@Z*t!LioFhbrupQ#lCT5I@xL!tFx>9)BU@`d%{9RRzvDDG!;KR%)Ak2&c9Ly-d zkv0l&Frxs6N4Ez}YLje-hZ+Sq4D(bLo#~exo#(MC(kT zkCUIazJBG;Ha^gw`{bn^k37A3(}T$tB9EJehhb??@|s6(`Enxn)bZobzxc+RF9H#m z5E3TSJyK+7k5FQ4bTW?8;Q`Q(=#d8IAr-pp=8U5--k z8=g4dkmU`)95A>zji#&QaK3R?LH=OfoQvwGm`y@jIaivgmDANu`K1CbMnznKxzsw` zy3~3j@bF#Mqt??_i)x*1B|NdnMBf->!d45C*>5-KB3?eoW~wZ>Wm!NNt3+@UBA6hn zk5n^~P0ccHCNkScRa7}!#$EC*8Qw8Y*hr$NatXn=lHG(5>f=;}*#a336Z&1kQQ@>8 zz@+|$9?R0lv`PI&x?`6*AKeEF@>{@v%2&-~H+|KbE?R4oc6Y{)BOnLN6#u@@rI+$UzMKp^cb>kl%8R0CIQg#DC%sk_3=d<6NM~h{1;d89a>Jrf6n5FdCaW=* zJ-~L~#~s=!YDA-2W?2IO3v~E68J1vYpKKV2t0 zMbGQkbzskgHBFXY5K$}0NoKz0Ft)wv`BOiRT8iaSPns?LGMi1^vsq0C>StsIc~R}v z@k~dtaOOx49^#qinHGEB`q6N~G#p=nuE5*)PI;rH-MYzknfE5N1MlRom#?;5YrWof zv-cOy7qVPd6!sx2sI{ zTy?|PX}jiK{n%6Ax$03aIOMK1d)|6?&&oT8lpMR^NDBDE(OZ9t=dZr@nkCD(UwbY! zb64FXUEg`)F(jZZsh7pwAZu8FPJ*Zqm18Mk-sRsFAgkp-FxW@#NjQ9dx6kMI1+yLg zz=*i(2-%HHxEWc=?u3O4`28FX`g{dN)IS3L!^rM^1(wheau14Qghr5idh(teDbn|B zcy~aOCMpMQsxYLGGnyPix5AxDPYO?I`maiT-zM;u5yO2GwJN7?w{dIeB<-~?X6DEP<@@_x(C;Z-hcS68+ z2pCH}Ya15vi+=FOpFMl%r5EteI=_E&N9R4abbQ$%n!flKzU96@(0~{5vCi-B?4$vR zq#j7l!DHF)wYYF|Pg>oS9^%r6Ql-z&O)unV zM=aHrItxcv4-%u<4}NH?2}~PiVa(GKW|q6`5J`*7Y<3x6v-q>zPksGo-q;+1{_rgO z88=itlS(jgW^|FpAsBSGE3$S-j9pe7FDLA2iy~pGd*laRl^)ED8Gh z`rhQ~yit+Sqk7A0?wrPd^s8Tearxc$X}9x>zuI$b<_bFJqq})?g-1{rKi`v;KGDel zvJAU9mjPrM;+zYBLF+SgSC);L35V?FaCUacMUNP;IC#3z6((HLppCg~&hBFj{dn2{ zrT>^h=S#svg-f#lW%ucUtvNe#?#OyH>v`*&);|PgQJj=!29Qb<>bId;b{_~wf5gB|A#h{ZY8mlrl)jGj}z;bfCJS;Bgx}`M7?llb; zhFj=S-kh;xk}bgLE83YyQ^2$*D>plr(@qqn=nz}*yk(KiL2ybE9l<8t@hNj(W02Tvq^`-vY;|f%`sCGTCu);~- za|$aI{prx35dOQKoR}64@fH0^!xPg0D6n4`x=@{GSsYp)YBybK-|D!|e1qdo+vAQt z$A|V0911WN)#-3MoernNYH|fhZop#}UGyvq!Dljgya9jM`xD>;1E>5PO=L66XfMjm zV^+F8pTl97!-I5HgT(}0SGB)B9JAjm8vFZ1W655m8-4xEs*fG&FE*$O`TYrx^I_|OaS^etzD*s8JZjq-AWXvWHW?Jx4S;|hX&Vjryta?<4~LN@t$G(gn_*2vsV1Zg3HB=^tEf$T0Nt zdc0XtZWt+yMWgHlbB4;f_mdsResS5$ug@%6Fe7#5xdj_88k#%(Px$`p?wEDwgUR8- zp}L=Mz4y(Wg8W&Vk{j`eYj=*ZNd23*^3hwTtY+sBt>Zqz7YHvwcXcLWuS1Y1xQMue+E(ipiAA@+-I)*o!u zc0&Rqr>8>$3HN6%gQ1sTGTOco{_w_)lr;kdvL&%?KaIpME*UkF<3In^!`F|SGh~Wq z39}YKsSijcNH#DNpud9s&OW#H`_-zu@=gvDZa4QdN4U)hyCF8g5YNngh{%Vy4?n&i zA*Q5J=;!I!elO`te%1Gf zr|`%4#d~R4AAqvb-vqLtpCq!G4Sm{x-fRlP43nJ~?N(eB(tPeh)vVfxIbi#LX-_|3 z>S{85i_NQb+{NE&QGe#-H|$(9t?F~LAK>%P-N(hx{f4`iTGm%TnY29xy!H~VhiqY1 zLl(4&&N4sO4@dqykrx|MVG+%efOw1qL9~2gl4a;1B*|4~hi2PBd6&&mVR{F1d=;`nf`2YXMSPJX1_ z5n>pN#NXc&XmXEQ;;8zk9F(aqdf+dG#Yq37QlPY1cmqHai?4qtjZe-(6OCBu5aVx> z2wuXA=w7}9T_`?*w!?EesYD0C(f!}sq??f+zld%C|Lydh{|g#UVfaQA>d}1=FQ2}H zn*{N$0l&onUjuG3ggp!K?gMxMxOc(TgR24;(EVoe2vvid4RNy|{p-N*dTCB-L9fEkvA&nY%FXB5==OFGPa8n@- z6FlchIcN)hG4%k=8`8TU%Dax%6W*I3&I9DP=n`m?QTPIq;(sl?CuYGlPdY81GZXUy z^Lv&**gtnXtgLdbcioURBU|-kc}IHxhjymyDP4$cwpoMBY!e#^yuMZnkvtX{rR|i ztDYY37~eGh?(v^iH&-9jdutLJ1Nce*2vSffYJl=SYxw~D2>6X9KS9*`o(2b4ERKC= zW^Ww(%1-iim_w6DnGW+1XR{6q$Va+#ScLd@>9B-WkVkY_M#DL?4x7*pZmbU5Y%%Vb zfmhh3e5}KOR?dIvFi?&2oDOp+&&BC5j|5kN4hzWYD%N2UNv=^kETIvu3v^gUKGy~v zHlbSA^*U@5zw3GhQpP+-kM;9k!eH7$ihm7*Mdp7QgC*vFJ%eQi-@#xLZA1SfIt*fL+|J?v|-L_ z2AgR)i*I4Dg_f=O9tK;P{}T+hGxz|56=s{8J^7$do$cuu$VBjKvUsu8TdA%E#OnfQr`gi8u`qC)VD&~n;;z( z(rtw_ThMZVmjm1eVeRRB)O6{Gv(m@XZ=+EOD?<~c&<1f;$hQgdp=m5fYxTGn!rN-_ zrJB)XFi)C)(X~gD)<}yF%8N@Tc?G6w}G|oIQD%ri_whML!PvySFpRPm&k~#GXD4bU1C&sW0LqWAew)=sU^UoEW8vslP#@S&~N!Ekpr%c-4(w6MC)gZlt(&=weh zDxs~)U^Jo_rLs2I$}mXl@y;|BuViKIWUWTu+gKXwA+!@N4PTbAZw-vAMGFAiYBKP{ z2x((|xdL)o&QjFsu!ZHdoYC6(^3~p37!9st)TZUy2{9<{(eO5%+EhlXEA+ft^c0rs zX*IL^Fop?VuQ`pejzLB6-H<_a@onYW@Qt+p^H$2FI-{@K8J!t@XJE_uYp>=0&2o*) zXaiaktuCD`KLZcj8KrJzt=9_ezkzY5rf;pO*3wObT2T7l?GFO*QRqlTH4KN z?A6ktF)45T_kCoeXDospvVV z)X>+`m|>)$=A`j*4fts-ZuEaM8)et&qs#!F{<{&-z^`u~1&!XDou-413{I`#mxeLT zdVZ@IW^T}_rG(YHT_2$|zDzkp6YB%5uMMo+z`k$Od7G94<&fHlv>}ZxO=v(8Fw*@0 zus_nR)WquEs&iw58?0bHo1kqpj2{>sRL1Yu>3CCQl=0j9mvQ((vHkc>8>y{wh6 zWe`pL$LTRH-NL>zVxON^m3)m?8EyaduW74k+%dD>M!5#$v;oT5l%{c`4@(&LZe_Ww zOusj0ULM!z$Ru(O0M>^(UexmhZsovuqj8fL6%V5yDzROKMT^L-`1jqERR}9Z61p` zm!&-ud}qM3R*y%&m}{Y{T2D=6wV|y_+h7vFGr>(sx7}QJ*UBvU(RLq_oi|=MRUjU_LeqU zL6*mg=FX;;bsfWM+FP2|&23(_Xgs^MKfELx3|(S9=JpPn%&1{w zMlz3?^R*A4oK0$Hd((>M^-b+-)z+2Y-p1b+koIFOJgL2DOUs5;YTe3}Pz`mcI=6LM z%La8;%ktH&>zX=B)Y(m)?Jdh&n$&qstT8&&5tU=g8d^80>zlT!o1osEw1ro;Zs=5- zI@Gr2_Vq2DozN`Hwz77sT`;4DH3xlZYj0h#X?dp#Ic!-CS!8?*&z23#*KMLL+S#hE zXz6H!UQ?SktbngtAi{Ep)x4o|n5r6?w{BRsRV`{6qIE@PS{sbm=Pi=fbF|j&%^kFM zv{^E;htJb#jbkM!YJprjo7dAeY;S>FSF~=~u&%W!GgByZlU7u~7^rV6WCiz4oo#@5 zE1Eac=7l(`o7c5{twuJp%}jf1W$U_it*ke6lqyk|HFZFNS~sLo&_K4L)t#MfV@pe$ zHw@d-vbLqIc|}Xpu-5ifrSz>7VlL5+((Oq2Ze} zQf*lWZBs;398_O*p3VebAHqtsqM6d4))VKAr*3KKTur?*u&PAIDq4CYcwGyiqn0;K zt6gJ*ki#b0iX6dEi37>nKek;Ca6%y>Jmy8ko2-mo#5F)J#{>R8kR!EJDP#7 zLJG9E^;SA>QP~GHON}=4mS%<6vbuHszo{d|_D$^@pfEa}wgR(cWm(g_ywgCj0ZaxQ zU(v$oYpj9hP0Lz0H)n8jU`LcTScxb#wGH5k9@MeA3F@`1c@T*ZeVroun4l%!BvB67`~K^QYD=n6E;N zxiz!qH>h=!)tXri>hx)|CY7kQ3un)*oi|Udo2yQnIeW&mTJW1TYvPOrlcvp@qE3MC zX4S#4F%9Su5}jYC(hT*arq#})iOsB?J8>$!)=Zc-W7_b#~3% z`O_u>51p&dUNCod-Mm`Jei9@*Yuc>Ib0L@7nYFX#4})C6Ppz$o7j@p$ni(@#Ry7Nt z^mAGHCf3bvm^*FC)cNYvx*3yd!E-__l&ogLj9M)#sMN$6HPdF6sFP}D)=a5oU)4b> zb6GUKbQevnWnPe94g61>Kdo*St;WQzp7fqX2TcXy?oi>j)$mF?o zkUVWp_@a&_0^iN5)l#8Ntq$rDh(g~N%&Q$J%cRjQgRk*i;dm7xc;CQrz z3xmG`_p88lfqNRCqf~^EK~*83T`*J6EuX&;X?b=h*DF?`Qck?+3euF=u>bh za2%A=3%Pnx9k?anZUwg+oXFx)pH^^JfqNF*X%>>;y!&o1hq8P3-NYU}Yu1&q*Cy?C zaU*-}xu`*V&YYt?Cr#6$jn$%!sL;HJP0*f&CEC+fP}W7CW?R|O8V~1zN>Y>QHn?MQ z3^_1H5wwTPM%~~DC+a>4&efA2E8G1n$0N)U4g&&2Qb#$w&*m(vF_RSe6uD4@d_qoX zA>>q#-C4G~=0fsk^fb6ws1#f^xFz6rgL@X-r{E;=Hry5RM{1ML?i8*DN5~)Hu8==Kwf+Ei2YCyix5!&i zwAc5It}HvqfOx46L<)4k8`J@pr>u|sdfyjA0Hb2i(|}QjxjZx;m2-Lf3Pu3>`Sw+{ zMEb~IdenGiPt9=h2I>Y!pd@cV&Tk+U+-z`5!L@-C0eTalH&GY3UEubB>jno{26qLV zN?r!{3vh3u;ouVBW`mQ-Yx^LZKJx0m*n~)phy0Sfh`i9^$H~vx^B3d=_I!o>j6Gk1 zXBeI@lNa`dBdEp#;RwD_;Hki~6v74a)1G`+Bvs=i&qCWp;9d%@8eAQ?CE#uaCz5AL z-o6zP7bJ2Ry(}Y$xetBBo{yjhWRzGFNyH`s0;=>D8+!pjaNDi!j*&#{j=SNN-eR}h z4iLS?uH6X`y~QrO8X$U$t=kL`y~S3n0f^pWiox(sc-T9l>35an}R5s~LA)iMy`G zT~)a265JKXT_M~R#$5^Abr_Fvf_LSj-Xb(h)=VE(L$H%1+N3gljq^egDaQhCUTUJ5?7{jw}!AI zjO)UwFd2SGS!&KE#y|py2&p6dF#F}fOX@$_QeiIYO?X2 zD9mH_3&=5C0M9X~gT0SLA(=iaP>B2xo@M(&_3)WvU#ui@2;1pb2O?jDPDVZo^$`F+ z3>}XAR_){QzQ}LD=Z6O(Z-j1)yj0pJgU^vzABM*vl|?-m8WVZyWft{n2)Jio{-(Y9+5EE9Ag>dxY(lj-v&;OX5*m!s)yy#tVCL9;G8 z-92sFwr$(CZQHhOd)l@=ZQHi(*Yn?V?z!*1yJA9crQ+h*bZd`IyrD(yz(Ej9Gcy0p#7zz@&}Pga4>GH{1B z;%T$*Md#HKo;QlNtD_*$ojZ%_d%5<0c5)(V_HnaPkLd-$6Lf%M`*j+Rt^PA2JM^Y8 zlGq`W)b-aDm-B6Z;0vQyyUQH^hwGb}np+%ZEN?}&5_{!PhiIhguWi9juQxw85=08UTL>uYsR^|# zn3@dq<3qqOMY-NRxAvKFs;TiD8jMm;u1Ew3{v^9F;XVK)19<_q-hu^KA@aq-jkFjC z!tw9{AbSA~taWh0n9JXTufyO%+fU0}_&6in`xq&-)z&dfG|@{eftqXH^GA!_SJlSl z?XK=X&~hDZD|5!{JqOnR4#`!+(raf+?E1h?$lx+w!g`3&5l)c2q_mrjCgFxfDe8cocg zp#d`r_+4&XPWZbiM-D+?cSj!ZfIG8i!O6DT$_x?j7MrE!zBqSaJ2_ZqL6)y>V{G38 zYuB!X=8Ixvf=XObr!%*-xlL#LyApnPOPVLQk6`$qNLuTj{W)TX;u=wqjgb^B@=;!x zHku>!Y4~P6m2H;piNw0<3#Yph!iLszb$jyytknA=_;bD|3<>McB^(+S1M)`?G-e-$ z5V~t+cy`xb=-jGxN}8jnMY!~9p*u*HBZ@@)dv-XYRI@UXcszqK<_mW%Kr!n70*m;+ zunzwNi^#^t$o@aLh|F~VgNvx-Zf8s@Vr%0hWbA0@U~cDR>+qkhjJ~xotswuuhmzmH zT;EDs34&I{O5fBGkLjoJ!yq7F>!wM~!oq|{&B(xn$3RC%heuDxM5j$F?xb&JZpd$A zYGsT^2SLm4XlQKXgvUbHf_;ysSIva^&WG7^5K?&ikA!xfOqJHf1ML9pK=$ zEb7AUyRTU#TzIy+YNm?5HC~n`ekU2}rf$&=xQXZbT*U0Yx#b?~ew~dlPbRj@c>2OP z^R(QjKAka6dhk5#KGpK%2#)pm#g1GkRxF25Y%aX7Z@BoFk3`C{xa*W=mXsm#K7DUe zQkG;*ZBDy@=aU2-wRzS6X&%n`1$TmSIsnil8AH+}TfJJsD)hx(MP67&Vd74$7V ze?YC0_2u`4`V_XD)1^xLDrox|5%(nrT0e=^lKfU+f3t-8q+DpM`yP9sokf)NExnz^ zwPAU)C;koZH^Tu6<|;gMUl4-C6O?N}bu>^9ufgF~xsq z`9oOu?dJRYi-q+D{w;ENzNfzd>=W`u?4suic^fyYaHeM=qwc$1<{QvEF2r-!9s85| z$>9O@VPtk2e|eS{3p|8O267nu{>xNq{;HcwU+A$guOYk)OXT~xgI<=g{^1#OKLrf; z|7Il24F7YM{cW`tPG}CwZchsfy|EtZy z3PG!CZscUn`ent_!S?_Xj3>9aF2;xYW!{J%a6J>7q3{_(J| zut5By`^WpQ{GL+<&kA-!%W98iM)9D*u)LmiOQD|K$8z>tA90?{)ss{*(1n z|I_t{=l{k3kM5t2|5@|DboxjC-#W3evH$PA{L|}4-~X-uKN?16COqx`W!wLA+u$+$ z=Q>h=pjEO}wlV)_wLe4u4E+CN^Nj!Vp8m_`8GhFLA^X4B{r?7YWn^S!V*5XDf&YNH z3OBRqC_is?dwX8Xl(rB(TsqCEbKv8fgZYcu{3XEWGeDr54JRUk4i`YE_hTa*Lwf+G`g!~5 zBc=G9RnAd*wos;6DzkVQ=il8&$B>6Vh+ph2sCjMseKR}`mhUSJw!X#+{TCC*odx&C z5G=gP(sS9`j*Za*E&(ZsDRQZ5yZ#CNIo={@LJ;hbonycnyT|sm4Lx7jRS@%@BY)@a zWRc(?mXD{(ao{H_NL%+a-T`mmN8q{V+IkZ0_q}(J1iANqNb|TSZF4v5Lvb#j&XvtN z9L=Ps1CKxiKt6l?R?e6IcK!vL04D7G+g7*T^?6QxEZ#Scz)}xCdI;<%fJbG%d;e{K z$btk%SDzV!W@Ynl&w_zd2hW5AMH6>p-Ev-P?zs5yFWpagn0%v@r+gzGzXbRQ>|CkY z>J@tpQT$i5q~wBt|%dRQiYC&X^rX7VR^4%p2QoG|X_niy`t$Cf`d=p~n^fwVCys{CjuKcA!tlFa8V2lf{_okS7T_bc#rBT+YDyS?Ld&-9HaR z?a17L%ymy{s2RZuvoHuzUD)r05P2pKiVtXikp}la5Do-W^Ur5CS0+CZYB^^E$s(YO zf+AayI(;hv8ql!uz@l!uuGR?E)l>o(t&I_GUtj*CCuF(frn;vm~ zQP>E)?&s|v5&QXqYTkKmMg0CPdPDyK9xp~wM%-n@>K^uyrP;SR#yvfKh;UlZNWS9CEx|${oCVogms7W zX8M-)#`boEPGXR!%m}~CPsdXX_vF;VfwK+B!xx%I^l!%j>;dh8ZB}ow!+mS?hHNVs z>oE52*M#QFFW$`Df#o~YTl%zgz+JC=em6BYB{zPyV)9uhGY@9m2-V1Ci*IKF&%NzJ zvNiN*A<;gUCOvUgKN6oPoL?QjfJZyad9%Ji;j#JCdMI2gp^SW223opzV;Q0doYUyXt2lB#! z%Rw9t-i9y@V#Fx8HA`T2&yZw>wcJ8w-s7s1>6G_U{IIpAl^I^eYvbC~gk!DjQ$K(= zIBwZZl#2^+HwuXd)yKimQ~qG3I4q$1iARR5Cq`h+>=TKAag6!KA>|4p%syhL#U6~n8yDA@Imwb_2k3e z4x}6MK3n)gq~ljJDC~ymk;v8x;zdmn&dujWwQJ!8;s5)D;>Y>mF18DgM&vp_wt)92 z`UAF?H#&clt}r&AcP}@ewhr$7cPA$3)*tB332D9SW&E>84ZUpZz{e91*m|9N43B^- zGJ|*%cwbr|Y7kiug0-RVv~R^qvJ^;4C>3-Mv?Xm)4qTN9P(9*lft;gm zP)cpk?xJ5R&e-i>&Uuu5=bIRjgIBTIi0cUF{5=3$wDvGx2(SYYXh1Ot4-8&5{MS3# zwJ_7)+n0c|FibH#!!%hjkb2x%NG#wTL83vVLB8-hixU9Wx{+5vkv_PU>Y#*XqCLX6 zh0}E?N5jz$a$pD9u=T9@k45R8D9MJfXTi*w;67gVUPPZWV~crR@A}-lke2&MFX7ku zzWk!}eKKhBoDVg@E*5;#75*Ny6FbaqND>^qmZpV0y{*!2Jm`L3NM`1&ZdLYir`!*w zGcHl1$v{5&fHeWlJff%tFemyr6T>GETx)Jg0j(!Q3PuhXb{q#QFC(B60mt`)PdPttgYxOMy_fdNHv(%jrnZaduXm zE$r<$pCF%5M?$--;mBUNzS!T%^=`(63hgJI3BiyN$EcIg$S4z|)0x?sh!ay|6JSN9 zuZrIFt|}4^2_u&d90-@-|4?HYFdjI>DJ_2I5TYF_y;W!&isdo)gMLV+9L#n0KtrsR zAUBE_k(FnNBgSi@r*kDL0E{*17Ah%87)Kyz9v~Ob>c_d;jO%3 z9gk0h(w(}|hGGT0x(5i@0LfV^&@%cK4d$=t$7ox!FS! z@DWLPgh$AKSeY4C!bMPTb3ns^(WuB1$Jo7JLJz4ikHO^h!nxMHjI_I!VUD|m_n--H zuVcUA%mNv`K9<=mTO+;aqSW4Ql(AW7*nx%KlV|Qx70Z*EnGd}~e5zchwn zkS1|Z0}>ea_mV+u?jV$YvNZO_tFh3VC$3MH5u{oSbV5v3h{ASLU!8B9+*e4f<>e6D zS5Ob&D=~M1$~-dFY>wJj5UJRO!Pr8MH(WHJPt1jd8NLqd2+2rm@XpcEktI6b{Yxhj z>eoW(8DER_B;+06Cl7A+PPQS022lFn8DMD(9TCd}k+=j@tC+YSBtjnb#MXo*DCs4s zx|X-Tgj~JS;K48!y2oiNdm<$lnlQZ)-ajxEkIc|t8IUv<36!pl!_J!XY=ost)4Ao5 zhVemnBsAfJ^a+D?8gygV((vdmc5@xXoQufdFWj75wWJA67kd=?nAYjuLGh1C#PGcnl8K5Z7F=P}K7 zD>E29R=3w|Vo&kjoF0^#q@+$%E@q|*MQ0@@XhNhqzlJ4d_JDl627p14yaWe?r9r9f z20QZW%!Bk4w%S`?`7jokv4h-%^^1d2<^(e0%|RCRYVY9-j32~7k%L0isHY*+y1k(Y zRZ6m{2L59dBC0ieK2QzM&?D1yA2xQSRn-3y@?tgKg| zq5)&jcr?y(G2tP6X%eo%x|LP}<0)u!BsadRKMKd=ejIK_`Bprde-{qXj|vI$7wpK} zlY-is1WH}9uLP$$l>)<6`m>u#{-6Gz%Z(0Zi}eqW@#RBlHzEx z?Xp5rhi~+Uir~Y02lC}C?Krs2q8iCPXiY?u@h5ia6H3H%z>g&b5#nLunFfJ^i6GVN z&S}kEf%!qH$4NIzHCcR?>Svkj3K+C*P36SGi;EhKUd1b_*lLUj(5O~vCSYuO?usuP zw2{J65)v+HyPWt0O^?9IiO>bfR=7xUmxUgnnd8;z_R6SdbrXVH+1{6X2FD8v`|}w&!?^6Dwj?)x$CC2h zW1X>w1+Bc8@sknxafp1LLQxdEn1X>v$dN*UkNobVY=r3QC-=uizzZP2nnSq4u1y9L zV%lH}Vi6K~Jpns#TbP_)Ej-gV)ZM_6=tH10;vW;B3(K@Cu{#;3h%2Oa5oi^11DbNR zrKGG*wQ1ZwSqZ#a`jGHQ^i=$2m61qgfKDH#@=P(5LrbbgZ8QitaUx;MRwv4oL>-jc z#o47fMZQAy$VXZZFndJt;QoDw$AM8nIhY6Y01gnm=X7|dk!VmKEX74eD)y&v!4=5s5+ zy*hbQIy7sQb2M}nERw=aBZf66mv$kfiN#%Qym2(0$D-g=_x`}I+-7!xk1e7?{V1&> zw61n8>{)WTl66Z{$(bv#(I>ACgX0Us7x^KZCJ$cWgn#>a>DHpD!B1g0G#v%$91TPOUl{Cl^Z_IqBQbm} z)`nJ$R~kD{BdD!4HDa#`NJ+jJj}w@u^?ooQPizgqY{k_#9mlIL*JU|47X98&`K}6fS3( zl9-h9-Rlq)VO1T{UyC>4E_Qg^cJ@99R=qI&0ZGn*vMCC$R{9;Hx#Ofp?G&ZgDSV$* zh7rF;tt>ptRY44g2W+eDGhRJu+lBp!kQ3}2lO$)I4-s_RksDSW)6CO^88hU08=JfK zDX+dCLiWK`lf+zIigWPFP}>gLs|S<^1YV_3H2(K_RHom*Z>Ms0aYuIKFR`p8F#us; zP)?t89;1{75+Pb1Dime^eW#`?*mYn-8OJQ~_$kg{=cFk$Y2+!y!)qmm{Z(gUfdCC0 zxBazk2mL7T)Vr(l@SILt&f4ePO73eH8cKgU zP{w#PQ2I66))QuiGo>`8V&-RdNK>K{L^0wN2~*P=J~^bKVd!ETf;l1)P4ID7mzqD?2(#j zv7x=!coM+gM8#Bq-dN!SywOBRr2!tl_^y)SF(MH8M^IZ3pLX~y8S>QJyMRs+E?u&V#A`tj5cNC8 z6r^B;WgstIchZ13xvca#73Kvxv<7JA&N&VVa@%VqOJT({G>k#k^r?A@hcsFm8iS;9 zq(CP6;nE=A1G3AkafI8DA#*OdmbksQAuws25X`&BYM3(PeZzJP?i3>fGSML#1h~PBCC|OWQ zgAyoOEexFngy*&si}Tmg#{OA6eY$N^2-G4{A{<~GTvy>puHrNzJtdzk@htvHMCQ$s|>3u zDAniZqBIb^!tejwhg_nCWCG}yd5^VNx)@0B?x*4m5_ufy%~LncBCgoquQ99YZg*dS z@Ywlki#}`@BF@gwx|XZRcnxA>c|V92zT>O_Atd)qhPL764C`gdW z)2j;}4IU%tN**AXpBUsQkL8Vm$9>4rr%5++C{~20X|c4gms! z9-&r9wE~i=6i^jR^;?*lA8eG#2OTQ_*q_{v$K)EkT-7dtw$5@(^u5rxtr~KDn=RZr z13b8+-TGD-edDmATU8;z-g~Qy*ZppZ*H08$#24B7X)Igv=8dvBIrVw|u^Zc^k)Rm{ zM}^@Uq1LD$x?e+IZs*QQxSK}aWKg#DSiOI>A4~jkuq^k-MF(}!1^$Hiwy`5?TAf79z<&BxBsBI z6JniEwJT^>#mq;?dkIe`8gT25E#G1Jh8+-MVJb|7w1L5R!i^ZT>=x^*&PccP=2^au zqRd!FW@aC&r>@1{F^$d5D znc41rl2T%~wHc+H@!Ep!yGLb@2sOUqC7ggylv64fafCyO!<%by5O`C7>y#<4kw6Rj z_nHf_B{-U3JkB|yhHC8GRKqh7)DRl{Vhk4VZiKsD8fFdLSulr!Ie`Oo3<$OXBBq+S zgq#xu2yx=%M$%*bMmj1q?ba9rl;_^t#25G9BUmezqMq{QYrnmS>Jr>V7Qt{ z5%NsVUdf@yVfq|<_Wy?5KUI=Wu`i~#>QwYi{rT&aKTz#Rb&dk?T!9mC-Fp3Uxl|{S z1R0ouS^2GaSi>>dmVS`k9NnK_Knr(s@wg-$BU>-oi^ebnpP6})wxpPX{WE0zQWJsI z7}{hz&dvI%E8NwDH~uYXn=Q!J{wIwU>AUG_JXZAlv7FaeoS^tqNGHsP=n5xfQ+NA= z=A3x@o&sX&L*?{04%jCp;;>>w>YHf@{RJb7)ifcXvh64nlTa^13MpfM6O2h*%*T>4_b^s- z9dW<|2Ev?Fjbx9O+n9w^g>9+D7X@gMoaY&PE^tp^ilUC;Ka4F%BbyZCr6r+i7ioL` zU4Rv{gxe9JH{=ueR{C{B(`1NPeBpKVSTF$C^Gf99x*nnVzLX~7AndjTwjJq z5iI?(l920Ea|ShJ30o=_Q$e67yNRVyLm(abX$6EJ81g<|e7X}Xztu7)&F-XBe`E3r zg_u*ZP*K@UfI*+0!($*G8pc+2cniw6bJuaatqf^yf9`CuG8X1)sNWGA7<12z4}>%$9q)V0F76X9-7k!F*Q^9yCc>R`*;!f>qv&s0mxwPEEp* zUMe_PPi7pIxt-YD;+#T?pJg*MMN;hugaC)*KPy!C*D}@hd&d&3s;3o|&L$YlMUtq! ziXBfdpaW5HF=WOcqlBeX@vM|*N|a2wV9KUa@v_U`nL2OgMu~c1YMOa16rX0`;Jz-< z!4(iE~4T~(&ZLRJwfBgAntHdE3%c3r3@0LPBEnY42-E|nNVxH46=B=++ z<*B{%)@yyW&h5z!n&@-r&OVwqi-w4e(LyMgn7neaB~?x8$t-K(Q%28)>M7Am!GoD8OxQIwz)~4AFGp1?Dm(*+({%fFSJHpoqg2ku@ z^!pq?u#_c8u!@eJ_1G{9vcan&`z2OJYkVTdu^n=s9tn-*9*>$S0iwKZe}OgkH)gPT zKwfZmmDP~D-cz|M`lw_dW~OX8y2Zo3tYGI#+EToTM!=-gVXw^J^xoVGm~5N?hLdiX zP^_sdySEeau;AARqTiT_95rf%`6$yVKvZB@F~GXMmp5wAsYy7WYPRrg#IVg=FBj$S zHt$3A?Kv4DUZb6{^AQ;oDat4s4+o#C&s(!z`}4DPnbn#pS_exi%F!Ekv#^#4^M?nJ z6sRJ)Ey%455-8OaU`WNm{FE&M2QyGhJA9rtzzqCha+xSb0Jj7YY_LMDExxS zSq8|`BGLRcpopYwJA4;dzcHDZ?qH|*K@cm0;0tHzoUs^o6zNzQV+9rY6FdkaY$N8U z1u@O#kPK9vGlVE3V<8|-;)S}|JqRuX_RjqAqT^h;XB}*-QYSp9xO%SE;{Tw+fXgPi z>b!enfNtS%;urOCxE5lMdC5~s6bzL)iyd1|rw&3EE2nIxbX2;MZXK_fy06`K48k&% zGJ6#E`N6}_BN7GbuyljSzo4y_6;X&gi&u$j+0Mx!#3$Y*h9nLrz7Re?%Pa3 z8x`iT2PUTCA<_w;t)HSe>yfU`s9j|K3gtXrozET;I!TA^+`eQ}%(WYbZH95TGx<^$ z#r6Hnu6jb+ok{2A<@_#yK6l}r0-hEs)a~r(XuIrA)|4f5CSkTg%k^(X>dJvM1M-MD z#$yYHlaSDXn;V5h2_b4{9?HMdyR#w-4i%X@`y%o#*moB%mBbtE6uvwAAPP+_=Gx?# z8x1X%bj}<-{0N*QY$q)iY@eS?%?iEXP(7bi@vtL<2-?ai&%1g_{l z=C8%)t|=|rxaK@_K1nz7d#D*fui*EHscR`5rd=3YdH>LBu4{@0!TdO4WU2ogI;uJImiYxR?z6M`Z%4Feg+L^@qk5Q031rKkX*0$ zP>vAF^@@XyNd1Fcgu+p0_Uz&htD89`^$o1$c3dz%E(~J2P>ooy<=4Q!%3T#PHEZ7p z{9ZTRg$2CUgYW+Y<|2MZmUT6sk6EWKR!I*&?U>g1Abmo*WO?lZ-HG!H?pMWfd43OZ zyMNyShM?gxWpu|@kF5VO4Sqb~Bb1nl>S{$pO%ND2=v;Zbez{gd01k~4$*9a$0WeI^ zYgt2JN>j-fmxIL@*4zt{~JE)8-LfHDDNIgHe1X#&7DS@PebP>EGV(gqfA`8*kr1&q1qvs zSb`Wxs*8=nXzNRqEfEV5=ezvP(SyY@N~gD_9*qRHMsCSUW;I8^3dHa_>pWV}(GC4Q zJa@eG>bVA4G`y{FbEUQg4E%86=%YNCu@h0TJ2(m@8DB&$7B zpZ*M5#JjmKP2YhH(J>k%j8og34W~@7v7g4L@?y_W$yN?O3qbBe8avQY;OsCaDQ!?7 zb`cO7sp|*|LaJShW9Ut2_HfC_^c09LAC5}Gre(x&9E%H7V1!;c6k^_s#q~>R;YFRx zrikDthSbzWye1Q9E3OquF~I@`F&d zV!SuE*~Gm(#R5e0qOyrS;mE~|_@peXzcYP(n^xc}m1Dw=npLf!F}sFE67-%4faIfc zONmjMiS`Uh-0?7&EYZ)RaARS)O5{pM{u}6g8Tm>46#hvm@MCf)S*T;mQ94b2k=PRU8U9}t|~P)KT$JVkjv z5uLLG)bdqne>gV0xLwieS&&}&b$gLO%;_o$Ue$>X}$Eqj%cba$jck&Lu z3lvUo`_aJr9xpeAbmsVikc__qPg7esn7P|p^;tfsfLJkyjI3QroTJ^i07WCGmcs&! zA9CA)h@WSNp7Dx^uoIPEZNZN7RRCswA#+dPdEOCv%?jEqvF>l zs5)}&$1)#lb*wm1TVQYW{ypW#Kx6=+Ikm?rL7zI7{O7yP{IUMpjT-}R;_5{qxS;0tWr;@dmNB7xpo7ITMcEpX<#6` zVn(k}Uelu~T+A?ic@!qD3oS^IBuDCduGZAd@Q{DJ0RDIdwd4ubDcUKqIr}x}Jwb!J zh~v#HONdyS2N3r`!)8_>1(Yfl#^u}nzO&Gr1n&;|jf*0U)mjME%$;dR_XhkVYD*2~4>Wd0gE#I0;H3bx>paw=aeHxL9MG@riYQa}RkXW()LkKC^RG0)Z75M(y4` zyD^tg2(h<5juuY8=V?*&)YU}e4}MaX$XT1$9pDx6BVY`pg4Go_#-YYMpZ7&XQ z3DU&AJqxX-ktHMV0Yc-4BTd3dEkehnJ~MGz{7{l#eDDf!m3pk|xuHiv=~C6aUWK}M z_MlfB@EWjoAJe+Cf__;uN`RJ3ruk??bu$7bvri#8KHo*fY^~u2Kh}dcP^(Aiy8A2t zT(J%(C~NtXcL}i6MwJdni-)B{RsE1u2vf-(_OeT&^~#nIrP0G)g8;&pq^OHSYT zJJ4a|ROb8J`7Gk|y?^_8jkTEPsDc;&B<>W~q_X1VlAxCx?TZCr9YnYsUixu@!9O!)gZWN1N+mxJcRJ+|7`=BD>?_U2}X_?fg?1L0eR z>^J4xUQ=DD@5jx+z%%a$9riUg82Cf=-+)fDOocRZqq8a3kk?xNzb+`8scd*$E?`4b z?&9l-SMV<9z%|U+Fmd3`P7T86Q!BIvZ^-5H;w&dR9B7AFgpprJ6MumXp*P z9UmFYuri(gjNdnb1;iDS5=*R99tvzpSZ??pd)qmkCaqm0>*GJUDXK@C&roBz?iMsM z!?ROLZF(?QTH=$aJf5i+z>UPh!1nv$cNHHg#nyxL$>6|16tH&z(WJK=2wA_QHLqT} zT=G3ivA>6Bv*E~d0=gf}QXO(sc7(0lhmVl$x@&P!O7QHxINT_+ld45EE)JIK;72g`>Ftb{LFmT1mK};E$_VjmtdDd-030)BQ z$nbz=oJ5v#zRoe?#v39ssFGp55xh+t&qn78=63Xvzyv;o{|)VytEOR5&7?)5UDUP6 z+r~tH;x*==IAzj^o+@)bIZ7{=QZ@)3$YVw7!kOT$Bq)+d z4sR~~KrcTpMOvqC zI+;GJ&aYL=?8}Bg>iO~+i`R2b0B+b40rBy-RLOLCOKx{^Kx};af+b%iZU^=DlQ#!lebPNf$x4b+% znL3HYpzi)Y+A-$QRQ;QJR_;a~?|P1MqH;nrf4QG~q&u5^L>zCU%7W@$;o`(JE51ul zJgWz-uS0qlMwcg?kg}h5R93km7p46dOK~Em5e^kEAsbG7=H&7AOi^#CaSeR&?H9s@ zo+bwWPM8R#xX162FlfRI0dT*9GQs?>uLm(`Gu$64yu5R1a);idEQT$=6 z)M1_&#vSWf&D-Em-|$qC>tR-rXKe4(7jRT>*izx*@a?^`lX)kV)3H&L^RH5g_CZLF z7_oMzt!CV$L40Uu3ZVrH{Y6L(^?QuRoQty_%N(;Ys!gy1m~5seYnC(2M(V%}orVpd}^VX?Zj(#Ui!$MKA{x;=rM%_csf z)ln|s&4v#fhb7UCaNk(zM@?LH$K?n~UH32l&&)Aebp}^8wu75b{qLtb8q2-G>lf65 zs)psHMQ04>yz`DepAV(wmu;lPLGwnNsj@?B4S`fljHXk`Q>{5kc8KJQkYPAgJd4W$ zFnDBq0@B;s54?f-ceb3Zkz3%5<(20R7YZ9;-BQ~{$F4VgZuF(t^KcGc4e~9r;E1w( zd?MtDTCPo|aYNA76!HB)taB zn(T!b9umB&oJG0gATBwkE@JDyVErBKfV28+3~-!PZ-5YT9rDr zI{Ce#%uZTjNn_jk@G?681m#6|uG-df-;^da^yEhspqgEUykHG@3?}xRg~qj#wF4&SejfJJ zd@^XIfJ6l8_9c*uumV^S#^(8S<7z{hBNu_@VS!i7D16DDgvPlDsH3L_Gy^RNZeISn z&+mlSWA4?=k6vev&C|s1LAYz-e}k_=Rh&^VTZcR(@vGr;;CJVq+2&vO=ehdr#kzor z_JP<=sWa^3i}T4!({H<1^A~Z0%Z9NfeVddB{Mqa&Oyw56ihr$Ud}ey-dm&DbYx>1= zey9X}_E!!{QmBf5 zw?(C|ARwjn4v)wKE4*1#sJy*YAVhek;nMV>25~KK8~Qn++34t8aD|qgCSvbId@Jx}kj*-q!GlJ&e2c8ru|MHZ@@k zXP}fS`lp%1ie6o4 zIQ_*CGq4h<5ptftfg%;X&y|4;MZdvk47oI7A4lp2KOns@7qIywZM3fns-@QDDtf;$ zdju_q&l&B*84DB}B$jSN<`BFacchG~6fFnr@Ci#B>o`7(F>)71BDaAo2FQDgA*2KS zbB#^rv_{VjA$vZ{bDwR(d@2x1HvjGbD`Fo{c8YDFE9&dASQHN(7s%JGf|1BCc{AaZe{6~psL;=3VleiH5j% z=1tNpz_@YlbjdBVF2-^Zd-Ejn&?Qp}uuFxonB}9I8K1O3zvWvu7LM;VO5!hr7dN`Z zeIDH%r2WBZUtwGFt>Cgur!i_oyR*y-Nol5+p1>+xlaci*VmLR3vshnsGq<5`>_T^Y zR~yBXbEcady>J~_eEkEG{>P;qO_z24QeYU@1WCUU;H@a*N>7%ZW|pXGV(dLX=&Z)o z0%STSa0#~dd((h>X7<}QKw%D^8YJRT?%TOSjV@XwryxO|M9!ry$D?F8)mdgu*(&Q( zv3?@Z=eV$K-psM|af_`mT70sZo?E`+LQf;lqch6f>+*Z-C$}`#b`huLByyAkqnu0N zrktlPWN!7##xVotrN8^RL7{G+1;?t}y50{k;<=ivcV$UrbQ3_1sdbQr9t;IY6>^@5 zi8{l4ABu_i*#xYV`n?9p`LB75$>(|&7QV}0UP>M618$_$H3(I|D=0HfNE4a6tb920 zQeBn`I6@{XYh0R-rWR{5t_>{hxiy_FYJm9ot>c!ShgGvDmaIfOYpUHKFK?UsFW58H z`sj%C^s=J$WfEOUTca*YlGW zM!xph83?c?6D=*N8*U$^w#2l&L z($}Dx+|Pp;J5`?h8PwCzZXKP~ysl7@h-2P7)o=AnWuC2&7Qg0R7~(GX&kc|-o|{kwt!s_Eay~wPHJk*Z-DPJ%KYY?8c9l7 zTUqhk+j5)3bgE6@pNY1(HFX6|e|>+n?-i&XG4=~}j#DqPou0ni~QAhH1 z`jnP>W#E;#aQvjqu6wVX*#6DIx|nf>T^j4DP~C95wwlby)-+6dOc&~Yjk7eqR_5iF z5iCbrG$qH|n8Mhk`A4Bfzy43sr(zQ0XE;Zw`z`vlDW&me5>%q4X9@M^y$1LCzyVq5 zH729=TO|n#Be%_q?$myfZRxF%s}>{U^E^(`aGL3(1G!wI>^eBem%psaryD3{-@#YY z4(3)Tw8o`=&hdtPI|jD&6{e{(QyXjc;=EH2Lt;hlE2MMx(%^{Cm3HIh52mrL1kmS% zLWlbKnS{dg+^Ofo_Yy?OwX-CiM*&jP9|#9j0VL&ViSqm?5tm1~1_%daISl|}biP@* znrS^o7yR|alwX??&D&+x3j>b82bt+L6#@+7^IFg|HGa)xw!{_&-bwn`~XH(2G4{zBTbCRontARQ}SAH|Fm?*CyTR|zy)x;Dh zi1T^oVB=Ouh(0z@=m;K%jkQ4Wn2IV7JJkk>JF55|{yOJ#So?aFTmS14p|Mk`M`*3L zRuOd`72|?Fo{gQ%p?GM;q*S2hzU#b+)RQT{8gU%@L`98*K}MP-^% zVa)E#GNxV~KZ#s589r^yjXARH*%ha5KwL;+NNAH*A4g%*RsN8;RQ4p#DUHy?%h57# zoZe{hidzZalsx*De4GANqVs2IJWb}07PKO_ujY7zFA3_wG-b(ely zXK77KX^nMWMX6`AR~rWlOE9O&xX6COO-A>PNn11P#-^BiN|W^| zI#%5BbLF{3>bj>#%Y!^lI!mrD87LXqSp50=(zDB$=NfI`Trqd{=3PQxjL({) zp{Z(5r;i7xrRUqhkhbNLYg0>A>OME1G^`WF^E1>_Qz$?s_R7W*Y6@rvXTSH|FKkig z!p_PH?u|`c9kS=p0SC8%3_DTLRzaPbl(CB=Eq3S zC0D6(0|3f+^Z2Z`&Wf&@(5F=AW+&y=n%rgv+ozAVN~Y90)^a2~%S^7Bj7=D&e-PXOhIP28J64w^k1m{;pF%yhrX)f<9Os~ryO8A=c` zPA|_-(X4Re@+YOjJ`jbCk3!a*KP*#4oHC7G6O<&(F#?NuA@Yl&)#~CHi|2paas6`3L5`J#RTC zXL9o=Qn17oLZGFrAYifA%`=bE4F={R;L$mVRsIoB+SJYadRfG10o~c@CwEt+?)HEQ zp^XarT}HDH+@DgjuxarNdb*9J%TkOe>X` zjivRDZpsZ=&(g^(&){rJ<4&AXH4*Zyy!OsU(BGx|u(l92p~?eJ9FEWm-jiy*`Z54DZLY1(H9-qY$}hGANMSJIJePVk&PpuI4SoC+ zzNUxyg)PpnuK^fKOlD^1d0GLGwo7Q1s~__+rPlVMZpWbQMQ=n<68{iNE$4C|9v3CD zxTEz(a?!D*{-SNo4!9_e?=O~MP{A5OQBf>d@NW0Y z-dQ3Y6pezti*TY50Vxq1LX0)2#GlxEZ?T{zwnSoAz+R$Bj1jv=qlq<^|C`xexSiSC zJuv@#KDpz@**Ejvyf!o6nf)xxt<0a{{cDfxq^oZn^*rXKW8~^fpZ zJEa`0I%1LW!l%uA-j|wREqV5~4i{^@oz-pmmc5O#68uMWFPLO`mX(k^v0u-D`!?=f zneBJVYk1nYpqb+$k_%>E&6>e>xiIhBp)qrZZ@QUXBR`?jv+2{__hfI_@?-W2-!0$H z+cfX8_ogjhW#6xHE4N3FZd*+Q2UHx_{PTzh>nA@eKf`$Gk)a6$0$&K^w9Is)?%{{d>s^6|N9ol++9Xjfd*&TY6eVg^ufu~3B zU#*ekdTUp6xQcR7nN^$P77zYm+ujvyaLY|wW0yN^*tm7l?G3HcSIsq)9@o6t#UAT7 z-g48GZm2(yz2fQS7B#Xgxy!%(=wzEEDaL?C5npIlUd!%$;Kb72y0nkBSNW`dz5M0o zzI*2``C{$m4UM{IOc)f@X@ADP^s#ftP8;jI)N$?Q(_Zf%bviRD?#p+N$5s31x3S9~ zUn?{IMcupmUikd}gX8N*ZO@E)oc`lj7ukRM{zu1!dz0_IzVxr_uE|H!FWiY49CoSH z=C}8D{=T{GvLkKY>ee^T-FPNA^FYNVAHANnJmz-){Jg#Gm!_`1_TZnzJC5wwwaL}E zB*?q>!GuLWd!NmFy}*#1x9Ayjdj0DI-n#XtySMA#we9a457oVvtGQA0>8&?yQa|1L z*PSPZaZi%&Ctl)~{$2NB%&?2x(N%LVoN-@TMt}YR+{~wa|7(SXk6zU}(#`zc$`|H# z4+GBMUw86d?|rYDB>&y{`xmnwPVYJ)w87l;)G4Q)bRFU|XWsL#s=koT&}}{N&Bi@^ljjE&^x#wvpk&S z-1gh_@|l-2Zk~#0w%P6C0;d)}2daH_?c*;We${e{`SmYm{Z^lq|FjOS=DzdQ@SwaN zM_;`C=1u1Gj6VI!B`=?pTjln_e%#YTb7ISxDhz7v)9T{z-OlCx*DpS~{z|wO)V%cQ zrt`|L`&iTSsJV+nj?<}$vt6%TpW6P<==g@ZeWil>o!a9%ZGmoOWgqV*GpncEiZ)GZ z`hId)`_8xaMI4^p>#r80>NIK4x=SU8tnJOOGwHLxY^x@5>1FomOho?%ow26{MC9{WbUPP<`gZIuj=ETQc&u zpxToj)!eXl*U$??o4IQKw>z*)?LT5Cf4qA^@{hyy+5@Gs%I)qr$7NdD% zIp>R<&3~pXxay$WRpzU!4wt6vuD#-R(DD-nTYP@_b;!;N=j!Hc=-p^$nx6~X(0j*q zk2|;fEqBe;E$>iq&C;+F0gV!8{9M&_!SD-%nt6?%`@pgF<0-}(v4bw$Yj$_^^%pnt<>&727CA*0+?=}C>-dA}b(@Dau6O4BPgCDG{OOR98GZa~uX?W6 z8bx+a(=TEobv z`q57Lj;2}~Tn;;CtL_0ehn-0^g9ne%CzS|NWgT$cV^ zJ9=uxjMXV4EUlha`}M1KWmZNc&GC!!bjhfGHt35P?sI=|Jkc^cbYzXD_d0CJo|oJC z^y&QHb5Gn$*wU}z z%IAjs)%b^;vlZOoBiA%0eN|2LF>mBQ+1DKFht2G9eP}uKVR8R9=d2U@IB8nHAAj9X zTjgwmkC`JcI0V;;M;`_2%gk(beSM_6Q@mHsic(V!nyO##lIHK=JZYrx`zdUAo8V*F z$eU$?KaEEp1;-s{j=O$5+MSI*o>RZflsr?^^~`ktkDM2b6n?kJiEwbP5Z}vnN;wn% zcfq!8uiU;0Fwb;2##}djDD z-sV2dWqexGiD_42Che?ru5!bZt)2H5P$Tx-!2zL@<3E}B%b6w> zV*`WT_E)Vl=r6~inu)&$_td47Yc@Du=cFzFCu2(6->1zDZ+4zJr`!d81ZYU3cZ>u9!FdjMtXU zh&yrAQq^4V@4WLT)=y2lzPmkB_LI@G{F*sMwJ3c$>F=(~Oh0(0kG{r?>s79IhsxKR zWIFp?t#I%2kibkQk6V5nrrfkxuK4`EdiBvoZ7Mb`Guvf$$9+D|j%8;VH}x=wWTZU4 ztI3%9ZpoH!GCE!#JEWm!y_}yzg1pn#1+$k@avQ#>esXzOmDH+39)+d-8@&J6ir06V zrNkWmw_@6q;QjSWd3(C;aOl@&_LGg@=S}U|K-0N*?SgF%M>|ElojR&UW`FIC{L+=( zPn7R+KjyAiozHi~S8L_0ZF?$f?em-Up0q5R+3JS(+6#T=_%^9Kyi3b!oznv9b55nl zkEzT(>2-E&=P_|FQcFLa;Be&2(fd7TJt;LHwBDgj)t9`8e>5w7cV6r8wX6Qw*3NzE zq4JYDk9o27_q#v1Ts?TN^XSJ4cPoN_DQpA z72~##n}5G%e$QXLPqyu7NOQVyEz#$|m3xsFj`sXyM#QGs-b<^FnpX4cua8VxIk01m z=xI$?_8)$}&(6l*`ffV^`L0^tTO0LRz3cpYSC5bhxmUMr@3Q=ld;g2xJ?Tu7hy!2E zD1WKy&gy|xch?F(zs>b>z|mjA@@ttB_Wsmva&pan)vLVudgS3A6F;w2Gx)aS@S}%& zjbH86t6G%@En{1yJ;~4SQma0f5pm&X{p84JY(M)t8&{Lq}iY2V-Q@yJ>K zhK*g>ZTAU{?x*Zt{sT0bH^;bry!h)MHrLk-SrYj4)a=#A+TZ@{n>@?-kuO`!=(%Ql z^k?UO)}=Ro`Tj|h{idnGcPhq?|K?q#3q2-ST*HS)-C6rt�j@TGacwmFxS0_34)k ze=e#1-6YS6@8ScaHXZQ$RD0)0Vz&b!o9?`9?!3Ha^V*A?VH=@&&~2~8W^YH-$X~Ul zQ74P;_1=*ix2~O?sPExdd-%%nS#y`H+MCg1-nk!74jpLOxix&voM+vy1pfKsmV0TR zc&~kbvChO*0b9$|j_vf+p!uTLn3`b|Kiz%i&eerUQ-fbdtadR5SA2J*if6+gz)r`>)U5RQjE7YFeY09oGfCz4OM+bouo4>x0^julUiwRW?qG;w}W-KHDy? z!SplThX?BBYenJErW>4QJI^cH;Kg3rS;A-CXk*ZSpg12{+w%Qsd0~y=%(%YTB{q zioyBiqI$mG@@xOVL-!8tITTpy^@RI>PV##^U~ksUn}6Oq-r|4P9fLpYM48UFGrpFaGp$!i@4AmW9Vm*nctg(wm%{U#-9O_DRs7#uu(R zHo5XqLC4JrnaqY6>-TIpc4b+*@73xTo21-(U#6aA_95Aeq|jwV=(aV+WYFrZE-Nz> zU0hUn!Bo-xM@6@-`B~kz=Is|36J_hlHI{=b*EqNjiobHrU@YO4YX-QGP4>z)1G;O8 zxPHl4#D#GEl3uHoxq8X^vZemBJH<}aRt|cx_+V~QmGnyU1N=gowr}{!+pzO>)2`PK zZ1#~`_Vwq_^3L?Q-{9_*rEUZAYReVM{&%8Ewe)h88i^}1bzhmF+UNrC9xL3_n1_o80erb01g+Jx!FIC!o z^_s`=RqHFideyJ&p!@?n8s3;Y{FiZ;PR;8uuvXx-7Hyi}Zkv$j?%Cw<{i%zq9&4IC zWM-yr$if{3W3K*QZJqv(&*HGhp1O;34ljH@YyZ~F&Ux_i3B%pSp4W~onEf{S%e;5B z>NNcKK{fW@b*6#Y6TW;On0;Wa`Qg@4#~&`6bNt~}UDWf-7xukAKlVyHPwx3F7brSA zaLc=Qt8PwzTkT=@P3?XR{r1JIrPJSb-S2qho!j0G7njX{TW#^ypW7Yzx7()o(@Jkk z9hOmg$g?JcSMF(jrywwWZNG?>ttuQ?P;W|=eRp3}aw#~zT2^VfqG2smPKDdg?ZS;-)hktj%SCI*ApuZ7a^o^fI*Pp@Pa@Ud}yCtqALq!nrWOSl$Ytu&a|I|LZ4pMBN(P7zJ^?+1UzVCrC zmJz^*rsLok5TFM?I+`xg9{lxjnowX|BE}-|^K3}TbWMtgjfzN!LbSwDDWv7=0lasH z8~#SeB`0aR#6(0|Mu4z1elc;8!;vr}5|Y}-Mxg=Gw$vHX;92z_WX}f&QGn8x1qK+Q z-_{&3QVtk$B&39_SzvfCZY7Um@xZZ&0gxfG4r^BI8Vg2dFmwbV`$vQMkl|ojYE1$w z=>9<~R>1J>7!_7#R15?m`$vWSkWpb;>h%IEMxqCZEXqD?D41Vd)M%vFa?HT(tzhpS z1VPf}NENMPdrS>E7UaAN%>>j1dk+r}o>7vjRT_aE2|<-NWL9v!)?_)Ndsco|hLE)# zK)OV9vKV$?C2 zOZn9)8;iBXb(F=FOyUsOCH9KxD)3S$av5%L_bDY;c0sn497`3b@tl$(SM~;ivxn@2 zP|MK15CEhME1Qc%=9HS1Q09cY$D!B`nai=G6BJX*lZvOZspdEdK{Cgj5;A91)Es#$ z+fig#Vv?pKe0-KXVz4D)SZuVWdwjel!8ay;XoTQzdB+JxCbZ6C9fRKBVI+EkTe3rF za#4~I2xE>&g~bmj5XQn|C{+N>5_|(M1ERY+WoIfXEagXmED_W7%EKU0SjtF?rLcuD z9Wo+`e!+#xb~rpej#5&G2Xd2ALUOb%Y-?upID}f0D;6__Q60ut+65I?B6>VIcJy*~ zf-BnQiT8MV%72IU#bO0@%F`%!N6v zRl-*?JqPC|?SgW0(NUDS96S7K6`_&1qHUgR%bdS@+{1(Cl%R?YLxC!aGCG@n&5kI; z+c8*~5IK2%iC*9q6nY^FODE&7v4citj7^**j2=)RY%{vx00LBb-U+G(Wj87+D&;|8 zDnX<}cyYyc|0Ie^8E3H+wJ^HiwIQo1qft4)iOf(s0L&1f(x|NR*31|we_SkP3OyZ6 z^dwe?>DrcOk=4ntgS$`pBves>AXcEl6)&qvBNi)A<2fZ12wpLwNL5({Kdhk;qBMCP2b z#YkjM=~)S7PDFI0idq)RT!tOoeNxYj_BcveJ;yl<$Q*M@=sA8sVI)y>fwgO5)+ma| zj_ATK3q$L|oCUK%@`hVb=!GaO{^c9eY>r?3hTti%DNzLcfC6Eg(FF$(=qArQAv8|e zjS3E#qdX`$WFigXl--QAqH>gRilbo1^03u)q?(u7n)fhzCm zOvsB7E1fX)moRKXT49@#waiV_^s|IACn7qgYr6}D5nYZQ+tPe=|oqtF%6q-8g<1j0Q3 zBw-aJ>iN9kcd-;7*Ce(WLB{C8kYz=VF+)wq@bA8!Vo} zm`F6itei>-u@1JuX;(#LL}ulvY0ZzB3Z2E^$2!&#;TF@iLzm>(!QF>Zmq-U!R3M0T z$V3IZ(7sr#K#k{=plVjm3Iv&(se}Ml%!uG_Mv7s(e-fEfL9AplhgrTvL}nF(5balv z9o&6V=D4D5p7>=JS(yvo0QZQZs**YIc5B8SOKP{Uej;I*fmhktEp*CmN+@(9Eifym zVuj&Gjvv1Nlzf!Ek%H8P1PFJDq>6`0VJuOcG1+u(YH@})V=yuy#PQq`#)io&bV1Zl zlZ?y8E*f~^wT&dKV#PM&3l1TODrTIZ3j32v%GD7|jC97LQqcnI7&l6~=fsCmXk0KB ziE69Zh$t#*z`)<3E^mRV+o#AERgq5j8;bauvbFRQuYs0p0I?ieV(XJ zcJWl0T)>V3(Fr@%NtPu>E2tDf(;j7Fv@+_%Xa$90w6ZFN4MV|C2;%28+*(>NnnW7H zsN}Q~@$=cHHNldJAC~o{qEf?$iPp@>vBa}Lx^up&f{+BCCntW<@i1a~P4reJjS$5z zjZDg-ir68@&+KzlK6hnW2@{l zM4w6{9zy%V1W(#ajBK#2Cz281K?(nX0TA;mMh(AFB!0>R!X~l^&X6*uhQd%X05L|& zqcE_~vMn+k_!Z)hJ)xfu9T26(FwJ1-CyLv$7!JNUg+3KZP%hB&ffXkO*dGvC0Uw+d zh+|R8c@iA_F(OvcC@+q9&5Oc`;pJPD8Qh1>uZykV^y z*43q&hY^*wyHc3)GjfbEBE*QGsgg$790C!D$;je78H^fK=&Lvclzpqk(CM(B13VJco-4b#rF(cl0^2X6AE-eG+^Sy;=ZV+bW$nZ=)u7bt@_|~ z7WhLvsKM}Y5P3&oMM!W5P{OMu`UA^{=q`gna<)4RC(U9ko~%|p*oFGf@Bq8wj4}); z_*pW?Qo%oV3*cMBEZNsu``DOau@>Rfq6gd3$mpFkA(mm$LzB>%E;ByV1wG-}CdZCZ z!8gbY!)lF6)Dm$(gVt4H+Y}OB!Sf zr~*0sFQmc1fkj!}5bTT?9_5wdZU|WbMuumd_9-iW?oiMM5wyyy0ZMd4%nZ>D<@{WJ zP^|LwVyP&ZpQ^x{#6c-W5U}51h3ULh8Y=KdS!wV<#S#n=x!$A#B>iA%C>X3P$dXaP z5z0#gCHVp>rdYZ`CaNl6*#ANrwhUGT!%1~R1#0}k1}o;lBJh=w#nUnv@mb6O%i}pq zprT{~tpZgQ1_h&Y?bHFg4OSNE%BX-+c?nRnHWh%Y{GgQ3i<0M=7z}e(un&F? z%fpuK^AC0#tSmB?QNa((N`puG+Sfg6gC&nvF)B!GQALX}ACXE!!C+-k$_&QcC=8F> z@&=EhE`c=234#im{J)TfErXTC8!=c76{PWjb664b&#M8N!^#5E85Jn5yo%yUc?kxE zoTsP&)PzCdL1XqcCsk2}MJEy8CQSlWK(F%BD24?|43?ZAs2~PESQ<(OD?6iC!4%6% zgGc|`H&_yBkP`$IboPHC4O<2)i(H0#2o;x;KQzLMkVr;ETrwh%TB@RWRZGEdATJ8y zw_e${FVoRMkkFQx+~3KY{_}(wWgMk@*50>mO3~J&b2ffFjIK-S6n3*PrLDR59G1LLleBO z#6C=R-CPBSE!h>p0CYR&*SvlbVxTW0Q^T|u?uuCBz{N3v^>10wHe(kSoZ+GSQgcHj zWfzfEjwxWAjly(6ZA*mjGL;fyXtHgEg)6J#VxwVOBX9&<50f}75h*Xj!{bT5$iuLF zH6_|bSI{XiCciZxJMKthMXWVo5XeK1tO`0;mRZ&sLR6#|uze)4e7>4(X3;H&AjZMs z)npi}{~?;L*Ky))JtFQ102buAM7TCp(JvOEb9k6MHKyVYnuJ+K4d&0I&CD{f7mlLx ztdmnDT-mn#N}&G35+lWPU$SQaSPZA^lvKY(zAJHaK5f;PcY}2Mx zt=KzFe6aDe42esyplG9~!i}}|2{T@>4W4W8F*4`5ST!7>=!jX2dnZf-sg2xb6JOc3 zEO=-DYYmStvSGeUq)X&0E09DkP{CixIN~Br6qqBFpH;=J4#nKk>>>{9b$TMTC8q&Q`L#%<}Vjn?6WC7ePu56osQA1>wIS@$! zKp+(dz-^Ia0NFrLL!Q|-1J*ei%fr2;fuUFm0h3%Z zTcy%8Rt1^yc<$|#(nAU(SZj8`H%YsjnET{YQB)B3`T zX+=OQAfy1FA{|cLjP2np4DvR_$BL*~f~rdDfP*~CU*ShejUP{Nt*nT=A!s9KuFzva zoq2RHNt`^P#9|z)ZE7}#TQ)l(Pb{$*%c?}XD2Zix0IamTB^_>I&JUn0@)Qr>jO{L2 z4Yy3>2d5?r&t+90<$|BIHQYjQ7DPbBH^hxXk3nQ`Td%_IB^^|$1B8NdBbAezhw|hV z`cM>I)o!0NW>LD#gG~v)0&Y zkz}zny6E%(8H4bJsR{xUTmXLqs??@{DbnMsz?vmqSq|G=ET&*Jg$E-65)F`WfIlJ+ zXt1~q1?~#9O`bni1P@EyCa$bNl~*!xpwK;t;@_ZT;tjQY->9@#1p`04(tuOAPaG2)zI76O)HHS?WU!;Tvis}&0>-YtP~1JUinxN1i1&vu{1O)7K#(Ma`M1EBkje;Gd<)Y6VHP8x@P$NF$Xj?T@eq_yh*m-z6s%A<#36VueBdD* z<;SRX0c$VZkSkz4G~c_`oxc@!Ty#)Y24K)Y}c0cj=RlLR1zaG9F0T`OGkC2Z9S zw`B-hmBN>>DPUUS0V6#-J?*SoB~1!)SJ!U!ue;>mYLI4&)o!!G*f zYKa)xrqdisJr(Xu{%N2fud^4))8h2o-(vqa`j+ic6qHzj;3SB|dmwShW)utHjh_ zoG|lC7f??ay`pb{jxbu{Bu@Bt;^zqPoZ!sGY)?!iZGH=uCB{(U8@aif5xMcJmCu^b>ABIXMX(V1cGP$6I23Ba?>3#rEYJ)AZ`y$0Ig5CWimeLZjdo;q_0V z69va91j3FHvC&?ZSnuv#n>uMaMI;PwA3G!t+$j3f66FC;S)ikmzM?}cf&lyzED=d@ z32lM`gMzeL1ECQ2W!+jL6?O8;B2h{Qk@|le3?Pdp~MjV=MgKE!QUvLNXu9jIR#0XNvlWEK~iQk z8IZC|%k)~LeUdVR-i$U8C1pmP8G#BVWd?&5#STfCQD;JNNLmKA4_YHBGZ?Vrk(7Z# zASWp)GZeQO`{G#fY7~w4M=koqW~^5~Rv>D0wEH1;J2dfP$dP%(VQB z9NLE>=$TQ7CdxPzc%)?}GuF8 z$cWM&>9Z#M(mrV!2XGRq9uBzDdSHZ9UrgZIsAqMw-h-{u{OZvfoTLq-)SWE`<0f#h7Bzj@Xb^`a5`iegf!||#z@J)2sgZtx?$9s zC_do5m6Sg)YRxE}Ao>grl`6xNPNE*{TvPRQluaAqowF3bkfTw&>14(O_9IAtZ`2vk zq(#~nmP5OtM429KA`oRpG&Lg13@8zmmg%%;P9iO1Iaz^B@q|EH2ELtYS5L<+qrrrdcImTvBjq=YV3w4w=?(Pw z>h-jo4Um6PZGh9J%FMJK=}l;=Chea=#)ld3@pPh|j@EGlUQQtDnP@$L#Dua11Bd40 z#Ipu88IqP6p%JP~M)pXkbUifFCFnu+NtGEXzXsU>8U&diJ5A{q@(0wG~rzWNxPh0N4IM>pd}qiJ)_A)+lPsxZNZH1QY4<0 z;mxe0@=l|fMOP3=p5-9jpmf&^f+6Y|A;l!?!Q73aXN2^RuBW5;KY(ck%`dElQ1oDo zQElMmJ)$pWN}oBsneqpm-bCfuoSviddzc!~;|nP(>7QZZPQ`f6fZhmB$kYI{U8)SG z=2V%U%2_#s4&j%i{6aECwP9rGv4rUx)dnQDr2pd#CMt&m7faig(M;up;IgT>#epeM z{2C4P7#U$e2;NL+d4?zhk3-uQr=`{aIADWnm&41wQu&$iThFCs94r@+?Q-~y>_k0- zOke06ljG=lG6(4kr9&Kt?!l3^VS=?FvJBq7PSpd3$v&GjQx*(V+!}6>lD9}HE z^Y_&U`NEp1dKEzVXhsZ`Sz-`T8=xj2{;W bffc{`JrUst@$xF9a7M5 hours,8 +28,Female,Indian,Medium,Family,4-7 days,Train,Food, Diving,Luxury,1-3 hours,15 +22,Male,Australian,High,Friends,15+ days,Car,Nature, Hiking,Luxury,1-3 hours,12 +33,Female,French,Low,Solo,1-3 days,Plane,Food, Sightseeing,Budget,<1 hour,2 +45,Male,Italian,Medium,Family,8-14 days,Bus,History, Diving,Budget,3-5 hours,25 +30,Female,British,High,Friends,4-7 days,Taxi,Nature, Sightseeing,Luxury,1-3 hours,30 +39,Male,American,Medium,Solo,1-3 days,Plane,Food, Hiking,Budget,3-5 hours,18 +27,Female,Japanese,Medium,Family,8-14 days,Car,Nature, Diving,Luxury,<1 hour,10 +55,Male,Canadian,High,Solo,15+ days,Bus,History, Sightseeing,Budget,>5 hours,40 +31,Female,French,Medium,Friends,4-7 days,Train,Nature, Hiking,Luxury,3-5 hours,22 +25,Male,American,Low,Family,8-14 days,Taxi,Food, Sightseeing,Budget,<1 hour,5 +38,Female,Italian,Medium,Solo,4-7 days,Plane,History, Hiking,Luxury,1-3 hours,13 + diff --git a/fall-2024/aicore/aic-501/00020/AIC-201:00020 - Thanawin Pattanaphol.odt b/fall-2024/aicore/aic-501/00020/AIC-201:00020 - Thanawin Pattanaphol.odt new file mode 100644 index 0000000000000000000000000000000000000000..794c1c3c424e975918a7830ca4fbe046d54c7df8 GIT binary patch literal 42449 zcmb5V1CV81lQw$FMi)=nt}ffQ*=5_dZQFKrmu+{k%eHOf?|0_TA2IiS_nVj`NB> z3Mgb6sq@S18SCrXn%tA~WA}RqB7rEDiQ9mDlY=F<8{)pQV{zuC#m{(&Wu0?Fy=91e zH-297n`01WIdf0eM~a3U=rRxl$@U&>zmMCf7W^;gk1#iuND2QIB7|G;vi`kYG$TIH z-DEqkDa>69(<8msU17EtcpO*`FL_XuWHH>F;bvz%hZ_>=La=j-53$vUEGqUnN*_ z7nUt_k7_3paU#iN!WCq-(piKK$3NygJ>di%rY~ZKmN0<7Czr=}#Hqe7OM=E2G&N+O zULE`nb@be?!&Ictmkb488FDEd(XAC112+vRFiPBX!_gFi6J~Zk*Gc5hlEM{F%vVnY z3<)xNL}VV&s!13y3^As{9Vz?mVqVgo^mfIxFL#G0gdb8pGYzKvA@H4GAVCQ>6m71V z*glmFS<>%G9;IudJm8e3wam6)Ss(JZ)x8$cfAu9;lR;0k>MQ6Zr86c~pNaq8zq21T zQ(}^FoN#CO+g>b#GWzBhfpuh`57a%la#T`e2icv=(_8q$;K%qm!ZQ~eH#F-0b<)wIEHsY_rU{C&lS#V-(?k%{p z-F!63&#FCFz+nD*a96M}h%=+~mtEpk5bIXVz-DdkIUn$iw}R8OCz3|WZ3$Rot5S4> zALm4IxOQGaElB6iO(hCVKBVzfCycl%&{h}&Uyln;w^TthgEGdVT^E(`#Z?MbR0 z>}i)Ia-W+YF=*`g6yuZcg*24R45}H_o5V*wl#beEgKQ>?yeT{2 z3G+!8$q%QcOJ^NN|a2!D|CqcO8J84ZuQI!R0nkTSv5mvtHq`ntn&ki7+SXLws0 zG6t7j95zhYU*63S1^Lyckd`dleIop>^X5VJmnd z-r+wuE+>)}vwEfU#j!3-&e@ON(2HiqxN_$D1RMxYo1zkb5AG6s2Lx;#Hf*`F@H9oZ z&=paH3yOiKm{j6x)~JNifN)a>^FZgwnx2IueSn4wrt^zCbS+a(6zKV-MlGE0kVR?wx6~G~4`EAMa`^OP zl;`YX05?F>By}RS#jY~SZKA-JyBdHw**~z_w$ns*8-l8tyV=t23T{eZ)4<5zz`)b4 z^xiqNW!V*Gc+5U{Bgj*g5uq<4xu>97_mJ&yJFk%>T-tt`d;OpimY?{=7S&BTP?_ZF z6I=1hs~bXj^=l-%;j(&7k>`|A5+sGSah~*8j@pIBvIff>?#8Kxr~1}OgmPOfywCRb z+v@R%x-&}Q;h9UKI@8e=`K)nQP=*Xf{?4Rk0=uv%1c2_A)D?-I)T@oIjJ8GoJChICk&x&v=Hsrx^#Z26{9O zAk{X^iUO7#t&r)Rl;g?|3jnLLsZb~J(VR?iPG#~E2xb> zO5-bq*#1&<(}pjS7!|?VOeJ$s4wfbhk;gVp7CJ!gi7c`CkNqdMn3vMG8G3Ylh3s)H zL1uH9HuYwhQ@NQENgI>Pv6pk{hC(y~QX;tlIuOYYe^<|n1f@VWwj6{s-@O7`Xf~Ro z=t@~$(^Mq{#@OJ11Qz|%ovQUyLAtx=9e~l{;qONL*B1i_LA|tF*iD2LMr~m=bM$KD zIE?AF&GU)9{r`oQ45d= zgxd2ke+&b{?6ntRmIT;>_e66TmaPMQODy|Ulk6|wTH~$(-+AYL4rYZ8b`^`ton`Os z_KREP9AzTv;?d?MRD{#$#f??ThI6C1W6ZcX+P|&%eHu)y?Ad%^2p>M~0){4DerCg= zDQ6FVyF6Ty_Qe|%M zE-Mqk^WArT@O(O;wf@Cph2sH_(r`Cd77qSxM>`oH{^u`G2$YRpcqON;R0{%lie#SAMSGLvK7x?9!yza|SV_ zstu%0L37$q8-$eYTrpottkJ6nMSbLDbJqUN5 zbxW@*3%?I4^N$q{>$4eO+(lZ}KoXfQAItsXLFNp)$x9FrHq}CtwTF6sMfG0ST#)2ZJHuk>Qo_s5L1cgY~BtWNBkxtW;?!IcP|-c}snXD8m|`;a&1TD4SP=>i~~ zt-msQLKCpMv--2-=NE#4G!*oX!p-{j-?G<+7XbLr#m&E}i{by)#Wn`E7N#an&UB8( zrjtpNwm}TY!B;#XCR57-^bin^l)u|7^LklBe?ZXRW}<9%$0n&M7FV9;&F|HUF>l2- zW?dNIjz-m&_o=WLQIY+YFmF1c;p(7kD_P@OU2di!$i%y`3@XW^Zg;b#=G03K`OXe+ zJ>5`9>7IGVBi~8fx4_{b0YBUr3k`!GBV_Tg?~TnlwF_gauIPN0|Mw{)rX0 zHE34q3Tq}z2oQ*Yk@+3$9E960Cq2ZRdZ)kyY#{RO`nmSt@A%?&wthxnj4O59I4$~Wdasf&81Z`@~mfcC1uV z@TPMBDX(Wp_tYNuM#AKBd0h%i(AxvKQcqeAV#Dlc@>%nEyh^4NaZD^TgQqP~ZaJ#i z@*+&zVkIeI*N8FP9p)}^T`RBqU65@<+U|eBt_J*84*w2)-|xFigsQnqgFjb4-iCMT z%Iu2$Gny40zDnwq=V>UHu})z2=e$(spI6g*p=C3>-KZek37^fpx8)bEIlq##@Z1cGITC zSiz4VoD|TA=(2{RhmvP`CLCzYKT-(BRid;lYL$%Hy79M6VuV&x5S=C6h%)c}= zL^dr-(_mokqke~cZ%_#* z_aY5}9gDSFU0BE2>qwj)_iH#?DrrCC=+LP2L`F^(z zurz&%t$Wi?E_ol4BPP`Fp&x@KT5}ZN4t00$sxbWJ_|JU5G6s7cz7~03*EU#As+Jqm z-+Do{z#Hj(Z+9OnAIhfkd@1cB=w%UG+*>Utd1*sDT%Iy*S>brpxRu3-*$J*$U}Zv8 zEDMPh7!Q5iWdp+U^f7GSB#M`_@DWvTt0KY!`2+%`X|Gx=!v^GkrT?zH1Bn_y&1kNS zPqP5`(rpSX8nAsK-tnYV=J3&%e!;SbyMnXJ1G7W`cHj&wZ=eFF7l&@nWdqJ_;EnC* z{m-jI43EAO@oWP7_dfjXAr~Vl+mGxZ_s50>a?fGn&vu_n8FFpm_fB$qTTN}wI~{Cz z)_|i8U4Z%yjL40a;A?Lq=;ffpNPM$7r$hlN^ z>4v$!2^2B=oGO>TyM%YXezbwdX5Rg#70@UvTcb1#J9Z0FV9${<0MxXx^7OG{V1tOz0N)&iS|>_n)df za^C>>v2=?n1|N3w~yM z{O>d1B>(CDpDGKc{~j$g@NdY_|J_|8flKfgr=5Qi_6~A;WdAKXEK2|UoFUpv;PV_T z9)ZH|5wzcj(C-m!bU2Cs4P*~Lp8pMCJTR8mo)Vc~HjrE|3) z#8L{pK(x^5U#TO?)?#PtTbJD*8N80K#i(Y16aco?t-|CjVF`v(dv)-#;zzvP|d~Ej_ zmYmBT9rw)Si|*hC6^`OJpluC!J5cMO{|pbYX?%apqwBtyNC=vZ+|NjAuQ|(WJ2>xA z$)?y%{80Tdj0NFN+4r_b71ehD5hd`uSGp=)0->@*l=d6*D9APlWM}e7bQw=Bw#7F6 zH)(MBzStlhQzlkNj{3v+NxDC}! zb)AQ6vF#f5g*HK$d$G+>6CD_`e5V9f&O5e3ZxasV)^D*h=1}7G(J6_zo3%%(wuy;H zfD0tghOPAvyXRa|k!SNjTZbyEMg^Q+-6S51i_3pia`<$v6 zp~B!JSZ;q2JvH!*n|JBg{lY*UR?|jdA^8GJ^6&5)o0~bL!^|JpFdXUl87f(8uzsgp#qy3y5j%3@k(w#)ZH@dYS zG?Xoz_t@< z%z{>@t^5+Xs&&GBA1@Sx^M}N=yP6NeRqXrAgA;` zU*f(@*jFEt=2na{Qe#%x)Vm<8L?S-7fzI$O39J?#J28q({7WRv|3`0~N@~P*2_* z#f~@MMua)jcU3*^xgRr)6q})an4=t^FiEGyiK0V(n%^`RQ=2H+KPre8?|yhgnheLh z(%Gb1rYl%5F8Ky9SVHW`bRk5iEjueh>M)wKw-0qdziC(^&xE!xB|I_~u0a#8ciP*7 zA5)lv33;kIEm-CUSoTBC_$*zh{4nddlxcrIo#l7o`DUm=6yO;=vp>cX{P@k#UZI%d z`kfX7X;$uwQfzIkeI)EWr-=tw@Cokam{)$}ozdRUcn>r7`|Fm+W08-~t&kb~_X`SY zxrO8l@121qug9Z2W6~xs*g63N2=q6a`x(%IvhrA4rU8ioZ0Ma&FxPO%P7ELDPl(kiT9>0W3b~UfGXZi!F`1QSUIG20c89$}B=6QVZ=TkIl4 zf+RjDnqYm!>@zi|)FhYe1JG3`2|Cy_p0Gio2kpuF*jzZ!Or>xMJUFSUyrKBHxIn~S z|6ZGTs-Q&?aqy<32^KluxaeleU@bnxWeq;F#2`A2Jn}oh1zovnqL)ll~>FbG+*>Oy9ve6)jM!oWUH39n3Kt}KAQa5wjw zDkk9CdU$||(;kH78$rOpU29OCZ?=o(%yJvh@bDZB97RBCLfFzG>!q+!%GpxsxMI#nIKypOa||&Shl8+ zxAx7@jS%G2cg?H-jj69dM*5+TV9@H%?0dT}H`KPL;fK0^2o%q=>k+V8Skji)iGoP= z*e+u@`foei{O7bPOBYk>EX2!k8YWUqG~38M|vQlHE!BK zZ*ryyFHIdI6`u}1Sz#hXw_ThGaach3P4r5p#Xf?HHNTXuf+)?H{R6Mp#S`ApB3V9$;VK-=&%0*A;i6mf*8S zZ%KedQ-QHajoz!*yqPi%{G+dd6vxErAll_NRE=`xmW1uTq|jThP%`1@*CX{;`M0|7 z11LI1k8^@DTMs)c;mTwODl~*OC92Ax8Wy2Mj;z{gc~I!}9PZf|1Gt=E;n+GMZ8Uc# zB54G(QFcVgEU3}>^|vbR)wpyQt3AXSAC6zW#qa3oEOrXsr=6dE|Fll%4Lxr_zX1T} z`~R+W@*g|g&^n)Jh*xQrfx^+E%UbeUO-e1Zo5Ul&M79wz(HgTo z^vI*8Nw}VSlUW9vJZnR9CqI5}_BO3%$|8$%{0K-;vrx7P)T7rE#^6cGgYDR|g3;Dk z!RvdzhSsfytg!GnNUmh>>w60&nSb(`r$}%?Ck9fK3rV?u>$W)NhiWiHvkRQUvK6h; zvK{=Uc}doSkUkXH zg*-wv<&g$N%Q=Jds{CZ{@9dx&eD`U(CZ$Zfh}9T3l%mCh=4a?P@KQjLF$azijp;!j zqB+SF0vobtl1m^w^C^?}-DcBKnWUIQlfaDv;TmVAYV#Wj5cyPcvOZNm-3xA7Sl&3j z)*twP@9Sv@Yt`dC!soT21A&8!Dbt=u+i%IZ->~Z_BSzEAY})4@Q%u&PYiogP!z){a zyoEBx+(b@4z{b-3@ls$+#&j>SBu(VzSd?G*DDL2|T+QCbA#6Y5^B**8$=9QF5DFS| zZnE?_%3$Wj6*mH0*{2+$*wiQX1348r|KO&IVNd65ay9v5X+7UEKo>)`G@55tALU{p zHuIY!*^umSJ4?$tb|NZh~DID;UlE9&3u;CIA8b|?$lwfwVGgbGe*Yz5C487jU+lR=!Eh>?o z_mcYIN+zAk=aZO*l$VS8a0pYKB<4q}x|y50=^raY`*3e`;ycgRM(NZ3zV~-;#u)rz zSwsVLHIL&O-_F7A+Tr3f;SXvAlCj!SjQ#9FlSJ==j|w~0@q*Dqn%h!P{rm5R#Mc`m zi$fnx`n03Fm$jFUmSMT^6wMkn#I0Ie*5PV9(v_Fr{gY;8Wmn@bM-Ll2a|Li(nphak z?_VKSn<;eazCSYjUJNXxKaWH_B}UopQqv??Mo{S5K1mI_A2ltOoVNJy(68)%Ad@7e zs%<@sMs86Sm6eQ3HN6&ee&4t6(@B5MNu0L2icNYaG~!>QdaYKf%EhO6hun8=_S#8_ z;@`@{OybMVcmWtjGn-Ea=LW9LFtCXQ%#=vmF;kWn6=f|>;H_r@A0_jk4-hf@62tFB zPJy{Zo34wOgmBaPy=y}TbXS8o(k`1)j%-7B8aFlTI6f&)3k^~ZZEv#&)vgYTDwRn_ z5V$8O;LN1%@!ZQ<6lP{eM>%zJ72)0XoY#x!O7@{l5rCIA{q?x zyYEHyB6j4DR+4tuch8m?T^DK1;hl9IOS+sN4TQvPM3mt?gEmo^z|>C&LOf`CgrM`# z*csn&@#}N1AEgw(39Ds98}$`Z;qZy?iO}>@%yBM`hWVJvEwO3>T;DeP6r!B{34rs? zrPy6dgNd)p>F&Q;GHw%L^|b<5MLvYlE?b}LSI^%(HF{mQ{DV*IBUAK7X@{~t(Q6k* z5)a=NThVlQfi75`IaSEY=8?w^ma?T!?X4UG&{DP4=};XWgDpdM8*FN{8iFqZL|}xP z2%?4Ogf9p+F-Qi#z!Kwx-wD6Oh8fL4@#)}dlji9ubvYgt<6-jA3Jwv%f!1rlU;tvg zoN|ck55^|qoDJBwWj3~NzQ%ze;3WutHG7-JKB#HZ{7Lp$j2!n<>n3ABN{I3VbDWTp z@-f9wTZ|L<#%p{2<4e~4^ul=k(TDFcy@n=Tr*3S{`8aT9h(o|qGH2(hL9x)?w@ff- zelz@mww;!?2O4zqYTAr3T)JG^-Q|ehQS1zMr_)k`;=B#Rwo+091-6OdP2vITst~O| zm156>g%hE#;@2iTnJ9v>N46A(}`EtKc2W=cE1aGQ*Snp(oK-VS91)`PDh$h=Rr%Mn+Z{gQaqYR-yx z&xo-3D;xzj_~5HJjC&UP*B2`JIY$q-sp)(s%vl9hm%Pyq7T2`y;mJf1oP7RgX%Nzg zM)eimy~;#|0hZzTF?I&Bm5ML0pA#3&!4@&~$eGmzxr;$JPi~V!yfrV<1gOZgP-#%cvpjE6*Wkn>ITc{BRhY7Y`-S4GjuiX&d>T`ru%?y6du&ArAXl$UA(81r~%{>Xhn`y-#-?hnv0*LIZ^pT)qoM`rGc}X>FaE zsbKW+>mzVoP<(pEz;Ne`E~>B4Vzz*zp1 z-8G)`LOXj+hpo1EU>yvRq1@Ao4F%uY_unM=?K7-Ei&4%UnyT{VR*Fx*nS@Q7E-OktA<12vU zr{LbuH`0pT%un#z(2^_{Qy&^uGX2ki!oxxxbKAP7gM-^e`r+SizS3?l1pib9nU^j; z+fV>N4EukTi~n^H6cdI?uFM4h_-Fic)=qLq$c!!NDORA)%q6VP-a)^5!Hn7Ae#;`;VZmu@`Y z`qXy5DE608+&uYn`+VGmsXslY*(snimwJ8wF3yv?wYl4)AlJ|X2~0zBVPc{`8fVT= z;K!fN$;rDjCfG6KPr7@2JiWOM8)4@^KR7t+{Hi55{vauh9(7Yj1uX57{_;03P z1NsVs0S+#-#zJ|{R`Nl08us}U_OFyjPB&UF@mT0td$$s+j_$45e8KkmpBEdwE9KjHJv{c6zknPrN4~RPIt;@nC+`K&kU@Sk zQhcT^xqB6gjBv5hv}P~q(+d{|9;-RFV#Ram`=EE3H1D)SD~@h|ch18+TtysWP$Oka4IL+V(n|8?e^d4gAlHY1>hfZtlYgpzr2)LeeeH8;&? z?F{PGdL!fJb>8fGyI{`AHU55LjDvvk$E^4VBYr9G!}u%j)6s>6z#ES^H65`J8UczI zd6{dduIzsH5%Yw+gR=Yqq1V0qIhc&HNL|C$d(x}I$w4t-{0N>TXu7O@4sYg`;P`S- zEShhu>|MLyY#C2%7`1mb_hsbkdKAD5yDuVDE?dAeu~^QQ#?~}nZYwZW$yVZhn?DS` z5!RCn=K^dcJArM7$6yY6U`;)_>Um<&amB$>jX>wCm0kgH9gldW4*_r@{ zKZ61!#&3rk$*f)ep>JaKtbrpYCa16)mxu4Hto`Qb8L+2%u`0NMzIHjAF*DX&6XEl8 zBjfJJl^cf&(ccue=U93J=9nrQxCmpJ!OuH_m#jlxOiD0e0SkUYEMLS6=9Z3LN7d`h zVK=R6YYB@rHOj-CG&t;JcY&4*m4L*c%a=7XQ%Iq>i+XoZ#7X0efqwsIhM(>CIH$Ms z^ru2EP#z{tbrz;^U6Cs#-^KP)Dc$jHo%Yuw7XP6cckZ6Djx?5QCdIaYKH9YKZm??x z1)To%0QojQ1qXA)^XBb#51818d$)JE##LJBP?A?Y6Dh*^z%L5@0G00yA}cmtm(Zc_ zzj*BqDn^73+%q5d5aIi6=lBZLhWTvez5FW8AY!uVxx8hP=H7WI6!>Q{r}4yOIpLE& zndqJSOFDd`qu<0qOG?2r^-7sHAlK+s&$A-UJm<}h7p{+%TLSc>@oIe@2~kn_dCBg+ znPz_q$`do&55<8V$Y(!L@wD8(zem&5m&H+RPRR>=(>I3Zd!pc4m}@&aDm&)SHhA@H zzlQ?SlYph!pV2}Fc+I^jiKan1@&^YU-(%xGXgN={P~ zci4DfF`Hbw^8X$MO4d=ZqBP>`eO^=v`D8|Sd6z!@x&k-y9^UtjnwEzsy4&!1k%_l6 z_{M-o^#w5+?GvR!ep6EqUrp~z4D0C~=6XQ+Gj^|eJNfhqe%QA)&Y@8QYPOB$rxim_ z9LBw&pF4OfXylHL{@cc~{!jE){VYgu57E9q0+tgW+DFu&zhUKlDK3o8?ePixi6ykf z@UHc0d?b@Hb9b&HR^!er_Eu<9U$O!P<>}<64wYBvDcIr=+&54;RlPVeug<6W@d(a3 zmB8!mbZpFy_|H#Y+)uT+w}UtO-H^ZJj~uh*WPR4(WC%o$AA^z!$_ei{v*sFz2zJSa zq+zJcn^9RlR%DwNY_nsU{7BvMfIT$1wk8teOqzA)cNq(ZA%*=c_Wh-wf9}%q?G(eO- zd*X{orj~-HE0osyH=eL4E9l|wUj4{?7NR-+C6gWW5%0+93Xz8CqkXyuk9G?BS!Vx$ zx#Xb~Nuc1}gl5smbGsM$j+U1z?!W$o6cBR4FFb71Hhha8t+b!xy!n5juPDRj@*(8s6Q+917l8XYiaK_hM`naV?Dtz-&r78rQgr)+ zML$7yL*dkh{6XsX+M>BAzUF}ndYq|=8beQ`k=sA#wyV=LRkm=X!tWxqw4Ay$Po?CH zLQO+F&~12g;JRy78C1e8gb{ot4UCce6Y$X~cF@D(AThi-C%mh>1Lup=o;pa0qC?#k zlG2uc<}1E6iVg2$=)Ae$jSa7)(pv`-)KP@F-7=75=svke9L>jMk!7+aO)-Pk_H#TN zoaXZ*MR^J&r8!MB9Gu`~4DDxh24M`VpFbx;#T-?a9@FR;pBlbKCY2)r?v0;#kXognD{%Q-aWheVzu0 z9D@iTVYY^>DsyFq%@(F@9Q)ICfEo(6S7sfS}gSz%fY!l@Xf^#3Z_Z>axl;s9~BVTaDyF(v*350HbIaD|c^3h>Q+p z`aA7c1`0`4QA3~Ue4&hin>2482-g;RH0K<4tDLNjS$`!4)7!VR+{fYZVjbwpIIKZ- z@F2N2B1M8_P+`v5#Jq9%ARGA|i!#j;R{MH7hFDIGaiz-oUVHIB^?AG`NrE|K;b~2K zX{+A72#x2mKvc*U=kpBsGS$oeUVo(bqnPO6J?;j<4pkq7Q(;fI6IbUuD*kl)xk&tlLTMI{h260_p?H@T(JNKH=VHNnr zfIyHOk;h8ZB-#p#!cYsS(~5;;EWe-64`ql} zzHpG0BbbI9hhvrKpmoSP7>0EScP2LwT>*dQ#Quz=$X#C;`{9ZER>6I(s^&duy$^1B zzCYdN?+^Tnh$C5d<>+%a?5g7gMQgFs-JcPb9h)wl>Nb98)4)7x*dlKqxOWuO4k$1` z|C{H(Z_xi2|Gru8BYoFPs<9HBJ{q6ElR2x<&LJQ*{o9qN?d6}*Eg<}xvyFR+=LOBM zlq55L(IlVe3CRu@0eg@q&$s<*d!I17VzTu~1k5IJBR>*`M3J+Bbj?Mkrd>|xivH$v z5kn-QJ?uJDe@V38Vmhr#NwBt$`LN&Wb@p!r_OxV`Z%nI8A7J&K9ls4|%}Nu#fYZyheL_kRTOVIHvDC5w*Ov z)~u<&sJGi~^7!s$ojN&opYJtZ*u2FVLc<`FmckO*Qql!zu(`|)rQnNZ#^+Zo5TueZ zY`Q#xQlXzN9UugjJao@%C}k`a0|*Z5D<+FKWktjl=ENKg0t3%e-42S2P8k}$4-NCx z=Jxdci4}L_#Y00+^)mlS0smfDrpL*RJc%Z7V{c1dt#o~jexPSRuy*27bF5uif`i37 ze_dK_#it5SCM#N@GvaV#A+WG5lZ_@?6rc`!4etInB@kJ9c`>RmKg(T%cYSGsG5z5N zK7b`XGx7u}R-zG_6;vv?RBMr)D#c0RwCB)Z=7x3|EV{HlDp0>91~xWtpco38wiP7j zeJg<%!Q(WZBQrne=pb$?2NCJpourzu%?>x1m-Gu1A0xekg#%XI%g8-{iYyX89jMr+ zWt%2V%M)#Gn!+NvKefk6X#&pkw7(N|uO^Py+7xCa330hy8maB_lPQrf#z7&%QACll zJ!hDNWB}bAQAa_PC(_xGY0`!vmn#Cq8PCx$4AExo2^VXjd@pwstk>Ka*r3izKq$E57F0f>Z8Yk=y6fD;R ze6t3`+Vwj)+vtP2N}Hf!Oav@@qAF)Xz~e8jfl#^(UaIKtR8mQTQ##a*HYBn71xPjl`Z>U{DKg%PK5J{4x((!mie?C|T zUt>R~Xa~gf-~b0pe8?T3ge}M4)HFh3gB8Pf3l0@&nB|7xz4s3hus;&_ywcIzPaDxg z#;Glv6=W9Y+~o<{O@S$e}?RSENXBsm}>P{b5S$;1lh zS`blAm5`qu2S^s(;9qMTC43F$Lxx{E?~)q)t(o|1dB%Doq9g46ZpA3^)cjmD_*Y z0|xcEwrfP4?Q4P)N+8nu0*cwQ2d^q*4Ul@yQ1?vqrrghZUorx@_;{b`8ol%KXnO4E z>dtHMbxNQ>UQZog)Nn5E{{C&jZsD3g(qd~%&$s5<>uI9JxBR2Vbqn)yuPOB-k8468m_(9HvTISY*S9%csuJ-{YD#ccDk zKe9g07Y&V^SbfZ(lGv^ghr^1>z;IjGAUOcK|%o9wJrm*j`TDHB2A41 z{`W^0r58|WjCVP-M`C$47%mm+3jmJnTN&Hql3={VHyS3kvQcFwe$R-DIMoUu@~2SW zz+#T6AOUNsr=!&Wku%-}N2raK)FGRZ&~O?qo< zWpka)b2(n614`uNYEWc-Sc|HW@8ycLv1@fkm$?OrdlTb>ujFl>-kYVAzFNO^Z9M() z^OpbZct7dYLSF)+2}6C2%5({LDqoRi+EQrTrx?pQVo&hE5q% zF(fR_L_S!`K(kksbXCQ1cdmx(9h{-Ogg%we9Nnr(B5UhU`GE)(=y$*Cy+G3lD|1xd z__vD`t)2Tz(e~bh`76j8KY>3~GY%tnWbwqE0#&AoFZiHhK1r*RRM&e=-_%-Nf*QmV$IQ9ng`e-EX@ybBX z80Dr&1C}~iUt}t*KoH>(_eNZsOe=KqI8eGCi01UmLV2Acxbn=^@V*?Ot<3_~%<~z6 z%o*4)B3(oZ{biz&^J8tBb)phz422SNaXf1WsiK$PGJ7>mKs^&p%cY_w{^WS`1)(#o z)SRLKq{zL~U!;)+X(@=335<8xK9KHn`w}W(BgGS%eF;<>h-SnKJ^=}GYb+gPHzPqr z>pYjK-C&kZ!RVVIUdLN<`=d?OP@1i{(hKXQR1o?zu8lxdTxdw$S{5a~)2jLFP}*MJ z>uGKMP6{#?LAXp%wv*zfoZd7rTP95oc!pG})C8w%@)--%jLil_URNRcJO!e3CH-W^ z{MiA?D8*i2embGN5qC*pA{$NwnxdN9>$qdT_~X0BNH)=}$^Ip074^tFAb609JHd zMU<3V&*ibaueMo4KHq294GjU>c}{6G@f|#RN>O121`}Pl6I>8uL}YACayb0{q8!%P zzX;c}9XnBy5}calOp(zOUYDxftT8>CQa0z0|BmCUV$A7V^^a_QLn)i(-P_q5$W{+Vy=ba^3twwhBPrXhi^whGCyVJ*#F^n*XJ^7yZvxc8pxEkB_ix=MxG!mKxgoh1){g7%r*iMb4R0&O;KGKMuKv)WqI^HBE5x>ZxU z^Ga^cB=lsd9+vnbGK7aa%fKosif?x>wfV}zioWoEKkIM%-8m`r>9$Kkp2U2awXi+D z%VbBp2|Z?>N` zFtSp9vMT@Y+i<3bmU3Zv8_hiR3({5{yJ zLW7KbUV@wJ(9#ixm(_#>&75j3lVIOmw|r&n8HQtN&NCZhiEa1L2Wd?bFbS;FLn~u*v-RQx zM2PqAtrB7${x_@y`dTa{6H|=P4&r#Ag>Xb!>2K(Ww&q4tm!OR2!++VS?rT_4^Xx6{GYF%=ywP13uLP5 z`<>{HFaE+p_i6fs=-Q`x+;u^^-`^!~?`GU8_HAwHxiZ_r-vIEHDGmO?o<7CvV0Ue5 zPCJS)vn$@BnyBMCT-D{FJ_kPov(qXhff1v&`y$+_X1LyS8;jx|NS~}8it+gN4f&#B zDS~Jp7U>}fcq{?mSZ$_ekoHZ3dJGCNJRmQ3-iy}!N-f(75EdLNp}7a0!Idc7Dpy_U zW@LKuTDV#&LlL6OJ%=HAty-)NB$A6Mc}mYEa)leFjx2Q*Vq_(PTsnpZ?c;#2QOFSs z?+*16#ru#e$1gHk&%zG@Lz<}9rq&gHzG>f%$c!?X2EG15=TA28l~f){XMqHb>7&n_ z4iQDBeNWVJ1)4CaM<)GnI8nqiXM_2`9WPq>3HK$3V{esU&{(9LGh2~TIW){|nYJBG zrjtQCU8!Zk)Cf>Cs|MI4g+h*ec--~mNIdc$29I+qa(aZbi&efE(AxF)-Yb$k!@jC2a!$P6TGB`OSh}u?zrqf1PoSTbY7=| zaf}g&IgE6?0)f*4C^xsbp~W1Pbz$^$N-h!@DQH+Si7d-zWdKc9dNVN*z;zdtXSH-P z2gmWCFnNPndoWiCeU+dFQ&L1KwU*QhAoY>qOY^F))N-#l21OpMNwarlOx!JIBcP*8 zO)c(DOF~;dGsCgw6#!>|ves1*=wY4CESuCvW7BFhH8}@;59_5J%m=Fz!doQ{P2d%? z2Hr&LBZ+}1PGD0o1;CKWKW3T|1`T!BhbdAD^onYugwEyfBLgOicB!=R1S11|Z^dnz z;*mq=JsPfK72t@IMcNLJBg5k?OhZ6gD71=4w0RqAWcWoRF;&GO!qeogn81c?G;2(c zFnK^*E>g>ao6C5{op$Zg^T%9|f%$^C_fW5{^6_S5L~#_&qljx{1TitJ8BJP9T`rBL zz2lBi2k$o5$gm(07+P##WF$6)I~vzINK3{Z_=w8rbRQW%3XHDAi_8G|z|+hyCem(s|EXH4-e%-5<{}V2yU%#jC z?KZt}v*^A4Y@gek@xS&*tqD`ri#@vBF7N&IDT{KoJ9TXR-G0HVt?_oCy}{(=ma*vO z%lGjMf$^3-EnD6@i{6_gF)xf(;ZEH@F6VZ~kmJr7(PQqub)W&|lK!3)3uCOfw;KI5 zZs_gMs}WLF|MI=6&#jKX1Q-b<;WFO=<&j%Qi=HbQ!+L-iPZ2mBok92p1StZC8UYBS zJ+;{xFx;>lpt49qg21ytli;it$3S=_q zo;k87^rCj$xCAP0 z<^@PugQry%sJHDG0R!_R`enXr@U|Mr`H@ACi-oZ64lAN`K)bRv0y&gZxpU-i<8tl+ zPk1S&P*OVWmnSFa@oZRBM+Y0i9BbQI(C8ln^bh^~78n>+1V$P9UQQiB1x9aC8F2$! z7i@Vt0Ex$EOJ5l8yeZ&0&Qz&b5fuZ9V!@yiGtqvXk)brjoS8L4yIZvAi5q)jEfXMI z!25yjY$ix#>x(}ctF95ya~P{ zH*jv10CPTu4HFf}`I1w9HWUy6DHjOvB8G;sVTJq`HvIqqAOJ~3K~%18l+b{IR$R|D zQjNs%pI)@kB7YOWo~8FoX4n}rp0wrH0OPAaQq0Ha-vUN?7zV!*jM4AbFl1o0znc1H z&#z4ClL#+8-OPS%yi&Ng(OkwWfxI56_2t-&!;SaEaJ=D>y}v2u`gPP#>+tpguP0uv z&o|l8bI+f>@%saJ+VV}K_5Kqu7E4&|CAVFD;^EBxAfaqNKS#=9y2n; zBJ`xBikS$?bEFcZkD={tMqxq5i*8*+E8jLP1Nl57P)-|$ z=2c!Wei-Nk4z3O$(F;iStLY98uBdg9>#-xP2l|*#>J+f2AmIekSR}7O7xU(j=PoQY z!%Gs%;*D^(;`xVzA#B)hdnpzeDln&LVmIU4VY4Y)*)q{iIu@yfZiDyD5K|0q2p15X23>3W!@ut23Z0`5%gE* z(PBq%>#b7}A3~>fQe@$1jA+kId-7=MOQulAjjME-?h00Uh1zezX*BDJc4Rn=_LTz) z2hwOmuq+W=TDcv95@Z&ZV_eX7+<2piT9u>!XfRlt>>j-nja~}V1Q?)h)QZAk3hU_2 z3A8LhPXZNxkt$4{k(HfBDQ^TfTA7>apA8_*62P!P9gK279V8l%ld60YOt_6n#?j*d zqjB;CnyDCcM%*W6rm?39V3c%))eSz-z;Kzd z98f>r#{fcY*AHC!(JTFweqKW}xW~s(U4vXq*enybafxwW=EkbO2o3M5B3L zZ*f1gY>DeqcyNV#adR0`&-@d#DKx$Q8`N_9J)LvC`a6gI4Ww`UE0%NK`~JN#czv_N zKR-17@L}WUfbqrJw?C>@kMm1GWAAVHa(cXSx-SgIFDvrd%@<4HmAqU%y8e?f#lF_; zI&P7D$IBod^Gy()MNnIKJ=9+KKu*+zQ(NrRqVdI_|-7lS0Uq*C-gaXgAPD% zb^+&v4~0YhcLT#R(2@iYa!!lfgPF4M1Gt#Q?a~-lUhu9CV>_d+!hvK3vH|!z0unVw zygwxyDU$+if_R9+p`y^Bgxfy`hIxUqjI~1n*K+Lu?O`duol~2i;mbu;Mk6l%7Djc9 zf|m_+JXU`zFdCUL`$8g1l?Rgr=!!?zBw@q}(pg>SBB+v}(gVd4kpL@3D`04w7ebjq zi|E3Mae>af!y#=tE23@4`x2enET>h{c>)@ecB{fUNefL6PyqqKt%8#m9tVbzV0rJ> z0_PaOcvSqozyKyNfJ~4e+u+_}-i5@c1UA}Mo|wTwMHj8gn=MYnswt|ihWW$Wh~Zl@ zfB|d@%|!$bDLll1;j^^|&@0>nh-EdY*>c6ypg}vdkz5(txMgSHMnP9VbKWpC$=nSM zzt=Q{D+5Q_0t4=mNIv{I139L+fp4~_T=oJ3pcN4?$-?fpAR;yq&_6Gn3efVj9#J|Z z*&^W~pxStdr@hU7c#=4RQJ>IWOEH+r-kzFMm~mtkic5yV0O8|x_ZN7&wc2wBRL2XG z^X~)(=DmqFHjebw^<;BTFumwCLBNCr=V~4!&1l-pHubi`YvJE+9R{gLGo(@r{6F^r zrL04~Kle4^d5=P>}%iQ#EAi4xkuLX-~zQf;CekU;QANk1J z`Y!?F^KdrfYm54u*Nq1l^G#Hpq~mM5ydhs`l`Goll4^c&v&{LE=F8fc_7@F4{^-nG zig~jjzB>@#9%%g!jXz(g!e{Qk?Nb)sX8e=8|MJYY1OvI(EwhXzo~oDhGSc6f+{9F` zntF?o&!W6>vYcPS5hHyQJYpWIH&)m?KkqM$ZyoOMsU%WN`G$5P`=kAnTrUHc`d`Wd zW*P33@-4%}ujI4mU3dMBSG(}?ySskH=Qh^qt%Sth^qc;sU#<#$e=w>L;kMgo9H8>V zA*ddV)3%EyL@bnvcCsreFS?j1wRMdqJm6!<@+RY?DYVCg*)|}6a!BB6#7<64Qd1?z zaiP}>)+A%Oa&8)BT&*o!Gwm`7QRObH7ef|+6qIROpMw$C9haW70QEUMu)u7Ef^zvK z*dkc$Q1?bSS4Yo66d;?b;Ei&r&#VIFgldQlLuxQuJf$~c+8kUXk}C?3#dL*j#k!a z;-0o}fc_+1H4_aJJnU)rq@WieFvTk2K!CEUu}m9K%qOWFbZ%rM z9(U-O&Vf9x&3(0cTokwx(`z+Tl4#WGZ0^ID0)4A+j3rx$=OJIK&3(ntmo)P61Hhm< zn7gG9$$(W?&rIWWV%odq-igx~db|#pilTKiVxl*P);9^4uY998GLD>gI3>EbQ@|`I zgXK0I34^p%Xgwg4EC8zn8pzR{h;63l1`qMjMoN=RjdzLz8)PGEx>Rbd74A7=Lks80 zdNOc&j`j?uf{g+grnS^MkLIPyW>PS#4ru^F;E{T{*$uL?3Kp@5sl;j~adlz^Fb198 zc&V?xs@yRzTYyKUwWCmAi?|;GhLK*}R|V}6h|UE19-Z15Wu;g6vW2?aG{u4fHb@f& zueEmh+R|_a8UWP>R&l8mlU84Va|Td_1|n&>TP$=htC~Px^N!gDfqgo|oF;Ya6D|Hu<^hk&Yeyl+H|Zq&2m!uw zyXH6A)RlbI+JStT-jS$b=<9<0KeY^O5Rb!Hef6QRZdrezs_g6Y<8B zdicSE<<|sbFbuT;+@W&;>?tA}Ym^_*?VnPhXlfIC+&HL}0;m7XxdqO}fMC(4L7@lb z5>A*Z_#;Q$SC5RX8v=YzG@rMMv`cas8v1fF_>1mi-V`8#aSt2=P6Q0B0!nNs+-Oib zWjuT=!XGI;p!nL6L8k=56=mj*R0dSm2DYM^3|82z6#Xq>niB2^nEAtFXc{#5X;9&H zN=yRbVo40o)dPyJ&(jwfupwz!I#&`gB&X+QLvEg!CXd-Y*dfFbLRKIeXip#7A>XY*keLQi)V{ka-#5ArcksRjj8JHFacQtqz*qKqx7D} z>;O@(4KsQ#=MW5~ldu1ey<;YdT>GQZzYdJiSE#!&rJL|gYLbZx0z-G9uPSqt1ffO0 zDAL3hxFpRn8m!{UNS>wQRpwpp&2qvXjsCSVgI`ncUBQU)2qrdf2*!RSM9yQH!*3pQ zKMTwp?*$tpZpW#e%+zBf=oU>Uj>G^i3RCrJ2J`4>!frb*O4(X)C%t|vl+Ck z7${Q$82%_Bl+093#L9#L8ec=eJU;&v4F9Zn!(_i|lZWev+q`2^sttWX=CZ$5s#&|h z{KU&-@IMRFl$I0|2i;wPHEJ!zN}=?z0WeP!g#qqHT0euoq>$T zXyh1SuH1z8O@L!4y*`|m4{P`L;u-G(Y5b+%X82cyyZ${$-=o2QAQ(6Afy&@hFbeZ) z;=Ws;{_EuSKJC4wYSE1DN@!)2`hUBG-0rx$S%v#fZ(H5{_iF{_7ucwI=_u)%+Vl_J z(0)?T+F1Rri`Cbc8#4SPFbdRaZIz!LQ@M2z5UlpL1VhWSr51BVM(9b8@N z4j8njLG7UCxaoYo9CXI5kHvZW4+g^_*K@Z%XAG)N6@$@f#j`$`&MH}qqauvoqAEnl zy2-tx0}s%XHp2xdph#M918l|aTuh?Q7(Ja4#`)x$H>NpgXQIO;U2`HUSGrJ*c{H@& z1<&Uq1kz9)IU}x6v1cVy6DAmbXzQVSa6=l#yiol#FohZG8}o4CwH#>DbA%^)XD7={ zU-xV7;t<4Tu6U77C8G&b18P?=IL0Ny%S-7B1HBOn$r9?R+L`w$NuiSVozx!;M)BrA z>bCllw(!kq@iEN{Fg(n!htU@)T%{P)R>1h>j?LRJE@BT+PHAP-&Se13LR%P(A&Dj{ z=S2izPm@Z=td%@{}0sYxp;%5e2mf!B;d|5?H!y){U6jGwgouw&Sa zE`W?`W#OR|ovmph<~qr-!QkEn#_iC+V2G6u=Z<>XXVlt3?aT@U$qViaJCr)QcSj*Q zXQ`;$J@TfN!$4X3!($Xe?<1I}ZoYz{q!4{CA*qO)_y%c{Tep%U!0R(BZeZvDbi}JE z+!YL!G3f$^U|C?)2wyB~E@v1+B^-_x3SdOVO|>=KV;~sNdgTs=_Od~vAQ)nDGK}E> z28;|EX*m+MpQ3()5eQ&#d<;yDw{XIA@V0uxaX*Cas;NkeNk1ru*D+xTeFcLR42W`s z9E`|E$({gx($%e&@WyJ~*!bhYkaD|CQv)+=QY3nvdt`W+yf7+uXwQ|z&@B?Dse++A zJ@mc2^CP5-_&lC#Zw3J}at$V6&4TBV3RWF(vhBDY*_QAgAdOLwS74Xc3j<#U z%FJ6F_J$kERu}{PHQJJ~9V-JB$nelwulKHJE*{$Rina$AqO=|;HF{l7#B1+|+Ij<2 z8Bnf6C1IMYFcY+O3I#%0G`8dRcdW*>R4nH9fS;$@{-aO+?B1dOOfwAfJMhH*w+>y8 zYZ2#<`FyKDF5}bh57zf{8F+h%{_h_>E49q zea~#_OH0`@<6YC7S^2u;PT(Jl7Jt8>Q4>I!2Hlb5MuT7VPwwh#^wbh;XVvCrJUpjAO+La}FvK zy3+~@K~vq#WuzQ0dEJkCc^?7JygP9X3YPO3V^@!!TeNi~7blijeR%tNcnDX|psW!u z;hgbgajEF?gTSDc-oxUNj;V3Alu6Pejnc}WBR9gUi2k0sh_tyQX(b3|$ygBqWvIfy zHBniicT5`>E>XrKsIq5~E`D#+?^fm}ypc*5&ZY7ex#cZl-DbG+!tzM1PNxpv9Bnj^ zO!Nv^pRqC;!=ax8w?t`)ApuxBR8%tTZ8OB7FSldmWXGo`f)QGJjB$UU5u+9vE`ipw zrwQIp`*Y%kzq}qC!o*lQaECYSm0RKT;f^4G5EyaNUf2s5v`-8KFH|5>Vu~+%WrHqK z4HTVCtNEt9Evht)XA+Db+Fa1bdW`{(0S)ktb76v!x@TT5>U!ZuJ^K&7$x@FzO@*uZ5<=k*&p> z6EO4QeOJRCuT^5&JBvxr4<#g~le@m2O;opCNqhq>n5LMpqHdaNsHJ57$ABT+JTR2% zxJ^?u_oHvdoCit8I|B!kIy%>>V#WA0hSfxIiCU@Z$fU<)04TIUssv;Qojk}G>K=JR zFfe7DvNB~BpbV*GsbU5G6lO(XoqG>bfP4X($!L78!VVkAw3!bK@j5o6&x6)VF`(*% zk^pJ6c{_0|gB^wT$C#&+dISSc?6(uv@Z2#K$6hf=Fe{N`e)CACHZLjNN zMPLS+m2Yvf4&AXZ8nS8Ve}E}Gj|>wUS7>hrVJNGUhb@GwWT7k&CQSzq+)@sqF#a#& ztX0OKU5b-qpN+xnq!`DXfGA5>WiUuERK_z3eOTZ+GARy*U1!kLC|jTeU)O9)3iSNj z30Eoh6ix@a7e~TO*tqQ&GYd*g-s2XPvR;pg3U7=_SIodYDkKUQ7_A`mIM+k|h=|WC z{Muci>Eo^OVtk_AzQ$M6R+=wm@%lvneNBNiq=yC>pKF{+IySzJ*M#^_fN+cBtN>Pu68|L*7yp~K#(xs=8CcP+0Z0RRc8zcB zQU;xU+4+FiMcvvWbh?a-S((EM!2ruWxq#7>`^D$c6KEo}o>BzP21LzY{bezn7+eK> zO<-F0+4zVz(lw(Qxph!#6z0Wcv(ZY|wPqm21AYj4CkSA;5Gh@AZv4t%AS;@;9C(KU z>QqP|WwV>))&iMxpcO?K4x}RGKq>~!rbSa66iSwX1ZJhA#ne_s6ufXR3@ z-@?s% zTlh*W-Qf^02=onHG57}(YH=f7sH4hQ3_};r1xBxQ8r!rG@YraOr=tt5qy{qs#>Mx3 zVK8FXljr+1MZDt^`4=xq0Y>{&m#$>naVI4-2lp5(UZZLYV+Na9JJzxXf|n!LvTcnv z4rOqQ+cTl9@!kbl$5^Z|4T1)LCtWMQyFZFncCBd4WnnayM#q6FZ*W5SVO7w2Sm+L+ zX!a|EQIY7}92rFeQ7{CPT})LAW`J?Plz<;8m{xG@gvp7%3D|TnzjIz-fW%B`)hZFL z(L~s}Q3Ed&(6i_L-gOmHI7JROZlo&?MlsoTU&m`_sr1kor&-MuVd7TFD+k;x9Q}@ZR6~_0%pBmdw_8?)#8fF;F@0Lc2t}}+l8_mPX!bOQ41*1Kwxs0vPuCp5$X2=L)fs- zcnu|T9BdQKsT=I-dYDGyqbG+p;} z0A1b+1KyT=AfOIy;fS`+0X(r1D3^QGax-BSh~ysWV*JgZupN1qN&L zB?1U3Gx8zz(L6OkEM$}=Ng*|+fAjR}3UJ_#RUimjqXiGhNI8_U#x5EUSJI};oQ zWNpVo5k>~)6-XjnM@EuP1UAGd&v8vm1QpwGtaC2*Ac zxZU2@sJf7K?Sxm|!2rNyLcxP3F<_`QH=C4hD3O0JFs^|7`T5MX{HkhIuKywfB>e?b z4E!@N{*u?0^abAjf1#28{Q6Pm1B`34z9oHq=7jMZUai2l&<`DB9i>=aj*Z!ReX#+y zl*(&?^R4ynzE08r)Kss;@C_NfUeG>W_!xKE_$NCGF{sA%*?(gNVU?f%pDr}|pZ)yq z(-a8s#Oqm!eX#elH5&5$MSK$4Gi3j=qD`ne%%3d|&qn%1$i3<>QO3^DbK!k+&`%iR z`&-<7r>$QXcz1*CzRhYZw~>1VDz0V3()U)aN;N;gdPcfBIBM2yscJ+dO4UU89l(Dl^X3AM##YQ$-w7;LI6G7${v+fs9(d- z8J7?pJYcIVQ12?MKp>GJ8cU$X_Iv~q1d!0cK(!X$2<0={r%2G+8OPgE@in-%pnH>S zF$f5SLXL=hpJwI*cRT3WPzW?}VfAQ2uUuYu6La{wpl_6?BH_BDm_nUFO8{?|irJSH z`;K5xq*$4)5xz!7C7tMbou-nMEJ@%Zd_}bIycYzHE+5avb&wUf;F=sr^xHJR-+)Ib z&}c=0GGL70p%*ZY3NwWQ7>2>D)?FF2AO!H?{X}vcY^F2p~sq#+xxM2t7zE9G$x0jAL*14!*T5sCBVz-GC<6NF7lJ$7rmt8BCE>_`!7`u_ies@{M~2S8{(Z8J4-A2APwhEn00UQf zti@PN6ho%Kd=S1T7(+p)y~!jZCSCvlAOJ~3K~#((nVuDA5#YZJt01(23Dov1B+Ogz zeoPlXfz9PA(8D<(JzQMSV0QZ9n1!>x0&PRahW?iJx~5^696$pxPd5e7*BamedYBzX zypSvPJ9O^3R;L{31_`8v?OLf4HB9w5Qav}oG$Tk1ln$L|bdc>Rz}={R@OG6%9z{d- zY3L@JQl=XTkHKhV9b`-gerje)6Q8J3UP;snh=wkCfol3CE2r#0NL>Z#5-U1f$^c}w zV0g5jO#1#vTikytLH^g9!~Y@a`)8KE{tb8PkH2^9?V&RM<<_Tfu-kRKFtOTSOnR?e zY>fJf-FU;=-q@+%u)6W?%k}arnOkv^e&LO@-*kheEALmZHHNeIH|qxo;5Qy+_H zLwpT9?EIHlR=L^teEnyOE58L8S%C0WB61Ik6N)cvN(Um%u!KZxToj1a7!T=C21ZJ! z0m*8C=>cOanWH3UBoJwVu%KY11SnVN4pf#twWx4a;2s?k48{R#Re*S%`X2;g{nf!3 zJ8t09b}uxNP9vZKjSQSg3*dbla2}C>SM#(tiu=hNum~Owv;m?Q6{wX;q1$2F>rwWE z8}gJ>iSekJlM)o5J+r!}wMHRh)GAUhq^K8b9$>s*o864`vJ~J;5|l?HfnuOb=j3Th zD?pP~MMvOoY63k1Fl^-9%4Tt?q=|gB7+RMwh9nR)nB8BKsnsdpRS`zBlwBJMxD zG435v{H(RdCx7#cfvBfHg{ObPZ>_ywb}3(4hq+zV{?L>6?!ewx^!q>TG56bF3%aq~ z+`cy$_DC-)Q(U=ih)w?-guqgpNV1F$E}R}xf{#8m#|8ESp|6U?!6jiD(mcXfB1ET-j1tqjd0z+xcpGq z?HPRer{WJU*C`qQKQH+I9}IF#dG7(l&(bzkC{3Ag<6VQ3g;UcBOPudbaC^Iw zaSbSE>L`WLWW&T@={RCIXZi>Oe@MZ);ztfabCNpa80B0F3;#402dqA!qK5nW>n$_OyM;d^=%iCQCN%lX6$M!?d?#s-arLK-T#l(p+QKnO@*0CecvTeWR+okWD5S1J z(|9SqfKr^2bPoS2H;$+*-01g^;(^;(VanU17I9EdCTT%9l3>DdBvy1&1f(LIK;O}j zm9#8Eb66|Xb#~1Gm?YMYPP<}mR6cg#nhdz>b>_WQK)bPzS&!+IjZRDww{$q%xfZp( zBrP!91w5x@<_XrTU_sI+%vzvu(+`}dBhl{+hP{Pw!thYstAxQ%;4qL1VQ9cWCKioe zll3UBt4hZxP*D+0;*(dP<^OB%OBCF;m277cw?ty!_vQcp@>PLS@3xb;-S#|_x$y^DNNWG$)-VGznj95ssqRymC&qB1J~Z2qvznN%9`V^6x2)%QGi8 zdJ@!#amd|=XXq{GPQjmQEp$^_@oATr%M63c5(5LQDfDa#8tPhGgWfs+MJPux&xmJ%*lQzzid;VV z4G6!}hGWZ6UKsQ+0^;Zxlu;NaJBA}{37vsPTZJ-A=~e-#jlJN-fHql)!Kj5Ms0B7J z#`6C{A7~kd0ZR$s!M#HxS`J477tPB-?=OI(&_5H5QlA9ahSvqtAi+x&m@k<22B!ew zWyeSgm!L(r5e~Zq?lkE-QLL*KTrj?5|D(p9Ji*X2()to@ta zZp+*66%cqE6j?aeCLwtjou8Q*Ucqho@zm%QdRxoYW=ar|GJ-Ter+>$t77gFix>&tq{P zY1g=7>=RC{&(If-B6r{G!S~PrrZu)F%GIvn=}VuF8c$yJaQEEacgZ=QX+ZU(KC5WB zTK_}9V4O5$eD+Jj;0qER7?wKvH36$im&nJ45I%hga{8bE3{-%mz?N>TO*5(~kSQVB z7i*fOY#4@uj{Zx*FB&mXLIP=&V3Cn5x9A;Zipgoju}fXx!Arrr5Cr%ncUkE)Q~;i5 ziWc(E0ON}3zkt7?G+-fM!In(GRkBhRXbVLawss+5=&o#umLO{gB&ndI z242%e+0}P;C#+!hw%>p?q zSpq=9?}c{^vW!w?3^8v4I-4j_Vi@QdcSyOA4FVY2B%pf2?Z>V~cpC@c#YidwtHVG` zUb+Pakc*=2j{pPSc58s~q2~_X^UcZ9|4JyG2u~gQ7NkQg0N3ku61zLOS_YlknP`Ps zTAc+Qg}{m*3UeY+PovB$l9G)bzF=fvXK9Z}{1y+SLF8; zEp=pQP)KYQC|ZLy1xKYdGu=?d8OPtO^Tc0JfqA-I7DWW|xLDXYI99;&;rC$zvN~;- zCUYJ|=Raf2c+pIxkiSpo9LS&HT>4d##uF3pf#lwq3UZy9wO{$bNLHE6_eF_-( zgEre&peKYs>?HNpJ&cMo{m4^|HljUpXF;>f3KADSj;6p#th%9gWeqF zU!FRjUwr+62IlzbVBngIdGlzarw_nT%R5KXV4PNk($lzRZ%sCX-6=S0i8Eg)1EZF2 z_Hef~R97R6R)4jT%PM=(rfR{^v6d4B&Oj*?#q}DGOp!n%17&&VSae2@-SYe;IT&>) zec!nd1Bqy+6x|4l0(AjK3A>6wD?o@EHhDqUkASLWD`<5{F*zKu*x}G{e;oKHR3PCZ zm})2=ayN`|%s$Oo_6SA{@E2BaN(QuMWK*F+Q}Dgw%}f*rl=NQ?qW?iVB-QP%G_*W@ z{LwpS?A+rPk72Rj@r0iDdUkX|T;aTSzDWC?1!Rbx|DsE0Wf)JI9U zCaO}>wGOI6g}j&~Y+f+*4J-|fpAE*7kPCYHgq2C$oMS4Y8&4hrhDQ(dw^ZpVy*yl&geY@-85Q5*fR5m>C@1(#=w@qB7iq#Vi0#krq1~z(1$R7FA$|rVn@fMj5s#ttD_^_OKN$=o&Gj*v33q#u z@Hw1gnYn9xbnXGOYq%P8Hyk~pJFfMEBXIGzP~lP@0x1NSCA-NSJdTawk~k>JN*#c% zX?W(q7vtUmfV8LGUkbO(vej!d;CAR39MDZg>d@&nkvb+^3u&d=amgPr9|~-63CLV9 zGl#M8E})ZETTFJcXQFk$YWWLRya2z93?~Vk&{8hH_U=gnW(i&Du!aQASIh9|(8JW^ zg@sGvnl7?gDSQzQSA+u9Byj1U3`VvZ`kH*VrZA(<-8t5b+Xs5({LPxmahAkvK>n2u zh6hdHaJRK&QRLa9WzyIB&;msz6KnVAhx0%UfmI@7oXgdhZ0f_tgK4fJ4$mJLPAKn; zqcT#*gg>MEZ7vyU=**8ZQibYTyjocfKL^%SF%bylOwGEz9qcfHaRxtxxy1CL)QZe= zEM{6NFweZKDRk)Nil(FmNTFJF-4m2k<`E(9TK%`le*QfeUWoJ+@$$^YJDsHX{SE!f z<$u+M=|Vm&^=Vw{AE?HEF>S|J`PdlWcgu}eHs?FZFJ9~!KS%`s*{kpaPLKZP%lJGn zp55nH{NAq4uPE9s$NjYZ?cwiGI?OEhN2Q4U!HL4&GsdCz^{F%02|aU9Z6HN0YdvJo zef6>hxhw0?K`)IIFkE_XdCXSX>du~sY0b)Y{fGMCQZ3WI0C2@vz5q87n)Vz?C1(HhA`EMdT3hlqAr$enI5t* zK+za69S$!tTqT)YUfc=Bcfep^VeeCWQ9CyV4D&34F;OiwLebD+m+2(k8rBCB0SMR? zs24I+GQHJ)rElYYvrNed)^O@<0wD|{SAmQmN#Ic^S+C6>us-0&z~Dhm3SdYC!*vQ| za4@>E^Eu5s`iOu-t&D4TFi3NmFEFgpabUVP*jarNn1OOjq7tzBWvTK8hFY>P#+)tV zyI?GlmcSSV);y)4@VwaphE1IBD`KC5Q4f8VYuHV3MGI=A2))Quxl2WO|mL=^)Z}ae0!RBbQp>IVhaM-FHLT1o{BIzh#pIF@U$6QbUJb)q%9b-M5Z~p=3Ps|MBy&e})A-ak)p>jF~87_oS4E%lvte=g40R6`e;3cAQ|m zw_$clajYJj=s}$y=a~>{5 z2vWrrhY%hozj|Rvm1&b(lX;VSbqtr^#fN+qdxf&0fu!q-2(^s)Lc|qJWnM*MT6KMb z@v32XvmZ-U=iDie;p#V^12fJ$T%tuLV|EL~=B59^Fp*na`bJ^WG=1EIjC3k56RNiG zQC7;evBMXt^oA+!CVpYFaiA{DU;S=mA|{>P)ay-v-FjbONl~Q&7+<1M9$=8dCpFd8 zWOrOVf?&vFofEVSRx8OzHUSM_;DRtVaFy^Op=oJA$-R|J&R8}&!`9>|Mue8^wsC^- z8Vsqf)7`o$ToT4KE!6HhlC;Ym-g6*%vQVTGjZH40n>xS<2*&O&m<;a@hKrmNOpD_2 zOW-JWc_j7=4!WsIp__sWRGz5e?d+!B%#FZ^d&?zqEUAa_wFBFO;k6cIc1xA6rCVy^ zdpIYm4q!Yd25%k|@J0d^igUGwVVs9W_81Y0e6jR(fwl@f2k>{c_HjYTN$QgXei-R{ zTF>`tao(c>#5W1y_}b6obzx(iV0;gXaLjzFXNa#)HMQ9x~XYnar#sF6zby9!)D>0*)VHlv;7YxUJdK($;$G z<2A?hWwW@1GGE<>QVTBHhA%k)=Z>bwF;@0fJN-k!8OJblE4n~oErKDJajo@;J)$KI zAOO4Zx~GR$HC)>STrWNa`4hkpk-8cn>dE&=15MH}0md7caqlDguN<8f^RG|!ey(-J>HSIwm zOM$DS;ma&lQ8}77U^si^R#jo7G5k*eBN&3o0ajPAdBvx*yMrbI&rbySA5KOoOSOha z?vxln(RtCBC%7oB4T9m#6ggiF(+t`bfWgDnQYY$?BAG#>$RzL?j+#MJSZa*6sOpKC zym^&iFasEv&#a&#e^Nv1y>e(vyARZ~s}{ua+F(mL4PT*yJl3_}ik4NRH8S9A=G0>%G;EU=-4GyI*{Rb2z?s#Y- zb1zdcH3VFN)3#V*(-9gduoBOx3rx~My->tECR$_^ue^xOPqVg1byPs(YJs&L~^7&BIr=x$}K$v@ADcD zF|D>JX2+|WXK|_hd&_QJzl$1o^SNLU7Y@?5rf|#Ddc9JOfL$}WjmLw`z{7=`6>6DW zO11>Nbqv88zyph}v)X_Wp=lN5^LFxv#!br(I!NCvYL z!F4Nz%EXqv!&eH;zlXM};Ud%|I(XvCu=jSfgLht>(ypx=i7mKK?4~Z3-AUgf19rFQ ztOlY7U}Ru`7B!79Ulx!N5|H<~t9!5nT9YQ$&FjiqRY|y_LIp3t_sZ4n$w;N?M0vT) z>x17{bRu^&a_WKSH7KhrE;A{RNRkxhfScZErr`7n#bgS!5ffvztI^#(00R`(N=;Cm zufP|lspge9A#JCaZMg(T9Rbi3<*%B4e3-vxpt_=#a#^Xz$**N zzH1q;9%$*@BiMSP;?0Wi;6JftEagafo5Ce^LhW1^qEHlDOaKPvxmuBiB1YtLd;p;) zONmv(OE>7$JMcX*jhD4byBiwVk{Ur7L0Onen81u@bbkQ!R%9@2liMr_2N+DN83Yg- z)akK0RyKv%EL|zh(9&yHcq6Qx7tIx~s7VPeYSSFW2~kD{SPJ~ASD#X(Xj%qM;NdHH zhfsF|a~ohNq!^gHpvrPFPz}t0K)W|#B`c?WWjsKweFs!i+qQNf(wj61O;kF9By{Or zI!NyjAQXWRdJ&};snP_bcThljlNL(oz4tCvq)Jo#GlR-pa_>GdpX3 zd#<^&=FXmLuk|r2EnCq@f71Z&PT6>9(T)p|G9dMrwEL63zf$=EU!u7Gz+$dw$d@jY z(bG*UJTgU~oNbKmX@y(@r9ZjT*^CI%SHQz<&zN|d$69*lXZ8Yy_l+S~ysw&pUj zRg`}wN<$OOr9caT?nJO)?X}f{&O*B=J#duZ0ei6|ysQ5&iy%f}gP3Z0v3UYu1 zJb4?qs>jrRM8kplOh?Uj)8)22%|&32i~TjwOol}TX~ex|6&BcKm&*l?{6J>+5Ff&W zUcxhSPv;&*6NIjqEi0~SkL~n{9$P*zj82l)eT62*4ycqKQ@IFYM2I6^$vYR5_A;zd zwbz!@xl2AINDbnh^4I%76e>csS~=!<@`Z^6@-{afbJEG=G_e7o>lr&!f-F_N)5 z`4U#)s~EZ4jd#cD4_^KH`nG=H{f`m--7~c&J8j)pf=P{jIqDOoSrXni?LVkD1hZBB z1b}`%Cuey&;o?LC$DiLGkpMfz6K$UXOyeA0^p4$6)!==cw%6EtGSPm-B%#m6HNqsi zDf4!*cPqg1T@aVjz*UU|K~xmM58N5!rZh}mF8I)pA+~O@6 z>wgivr*TN?uA}7}zTJ7t2adp|(FRp(g)3JlhW6V^vP_C@y)sr`*dte6u))S1IIWd# z8QreFbpuc5`K4t!%vM8vF+rZ5^!>x%XUMU*Ed+6%B#XsQZ3KK%7>cd`eAG*Ib+C_z z5)|+jMgGvsI7uVNKKC1U@GINJ{p$F}Np*>7nU5#^^~l;>w}S-oG6Jvr{4C59;s+gQ z17~P-A8$5f=zeHd(#vJe-rgdh`@wu;npc}94R%mRXp`saG=Kz_M0$MN4q3@d*CqGsuoPAYazplEM&HF<#e z@6k85yKFn5Wqy>YLZV9BFpU(W;}1Vp5}*Sb2~3mEPnyvL^8qKeIM^kO7xD#9IQNtL zY=~OG) zazS--bd5=3wN4kIU}|=$Z!^k-?z6ry=v^)}fB5Tt2PGW0{VD{7r1C=se*x8wUpQ-WLUA}Xn4nHpO z^>AO;gMe0{jy8%QDc(|1E|GC&x7zW`)|}Tsy*LTthkIg5-gGRPVvYSPBGN0x_Bt6Y zX5KeEh=iRL%&3}a8@jb0gg{X-!3q2;EHlq;<;%eLlnU2iUi3ryrFuj`B2Iyk=MB9( znzBOAYCB*NSRtpOiPk&(8?#tAK!g08g7;LE6LNE@uZr8n0IYN;VPDMI71k}eJ5<;{ z8SCJ~QQ<4q8qbWwF$dZ^pcf3H^|CLre}Y1FgNx;yC0e?U8p^%S&B)?xO^f3i->lm26@p29S6-#a zs7{6Em`v@9;oPe1cqS34zdOwrVyUGKVIsoAbD(?s*H1|zO@WdQnDC|@nZ1$VfZ*Wmg~f53IL$!{LK;I z31zzgY(85*k`2?p{ zSuvFFvZ4Ks5%o!MTyH?~VVt;Q&EkS#&5;{C7X>vKONlk|{7-*UrGG3u zqRWrl)r+OR6sO}pR(d1Crzr-&oH6boXx*Ihf9@#*%gm(S`2q_wdvD*PgcF??ejnxV z)b53*bDqzt=S_R&;`EcmG=CgKyGE7Ekej@c zaNBq{l-zg&IN9x&e)cnuANP78h_=E-JfxNT3F5?Pw{a?uD4);oyYQD!$`5|#gLCTq z4mM|Fxf%C=1v_1QBZRZ1@{Z>jWVKOFpXL|DkiAr=v^)Rk{-a3b*ViFG#Mu~5sOR$S z(;XxFkw?MbBx*$p?1c(mZ+HW5#kbYPK~YrACBZYF*uQtJO%oC6-oL3U3>AZ3nuD7# z-~?Ia0SYGC#qh?f!_O$7QYnnY*NH>%y%}$H{PrdDl^qm3sTo5a6+6cnExEN$d=O=2 zWfPV*GFDS&BI$<|k|W8`XY4k1V;FnkV@*c)fxa#7)4U4`V%N}wnSJ{ZE zJb!^om|Z~I^R!Py^Q3iz#{K9k#d9thOx1BtOp#N5b`mCVcH#GlC!qGo{UKxubk&TA ziS8=XL&#cIhz~^`irqXCv>QxROT)Z0S#`)C|E}mHixqso(p+pVIJfa7+xToW7 z(}$D+$#>tdph5uCL# zBY;kVIe6qr@(YuKsE;l8l(bG_pH>nw!tp-{7g=+>j;=$f`Q)nHCpLUnv=~U{fUBlN zR@!?Y^fA%jV0GHP3mo<0L!p($PO~;kgP^n0K=HbT@l)D2tHqWT>)m_)gZ61=B@2^P3SanWe z$K*gv+Sm3`w95@GvJ2GJ87}zm@XD@T+ihpsuT;x(eRI<678WDr##J+PI1HhMsgEO&J9(phJoXvZgDcuX>Zkyf_3+lc=0$zv6Mb+6V-`t zm9lSsnzvx4-_%4*^_OnZV7X{(--A)EE+&@SdFs1WjL~g%^_U3pR&-lD5A5o|@@Qvs z(D0FVY*Q+fxl)#pmewSgQunPOt$n^h1{T(@@*=W=BR1&Zq8}cujWZo2^x$guza|F3 z2oME~-|1ehf<)V!1e;ai2bh+yNM&*p3!p;7I!y@!A0t7 zK+yh{C#9|&SPB_nC+zoEqF|;zGF7t`XW<*fV9R#2NH4BiGS}2fk~K_@)zl{=679%u zQI&^2^(tF>P`(Cd!9w*dU5&%3F3tJv)Vej3 zm2cTA?s!HIZ;j59UlQ6xY$mY!Y^Y~cUV)Llem^=1K3|5FKW%mCKIYy#I)Cg-IJm)! z^!nAI9<>jVu9EURVll27a=m$KE;^nYu$u&*+`G%z`D5~jd_`vE2l*b+ynOUv^@iGe zT$`UCI0$j2n3}r=NG$mw>MrmrBpPiWL34gkvdrBwHj&ZNtHhFLsbUt&z2{!*4_xvgH zl4^-mZEfY|s)_|}y4eD%Z+>Scvvzk$O3=I!#vBy0pLv%TeHrnqUYk#Oc*rqAa`}zx z>)}$1+E>;rN@!ugS*+GTv&~_xngHUDNE>->XPc$!J&m3ME4YVCTU4P z7jw+j=Tuv>=50=Q)Gk;Wi9;1?gp4R^*i$j?R|*i7F*X%6DQnV2>RgHJw;>5;xlpUO7GfytM!@rkNGqq zl%O{pRr9sQB$^i$VMU>iVAjM|k>~lod4Nb1Q*_(BSXd<8JL6{koN2M*1S$O4TIyIb zN=FPaLu`MB|Kxj34wmP5d`!zxIkv_Y^?-=#`q5CQLTuzSJ^Rku1If>{grrGHq_KCq zcwP=PC{Xgh`M6njSX);xTLPN_-P6rl-SPmmu_N}~x1x+N9ubj05->Jcw5O+>5GrZu zlh}^2zG#4uFEm;^cm!5)B<_pDTOYJ^9 z{$$X?Wq}&U*O<<{SzP74ZZJ8c3VcZTCZX(FZazRBEc5=0NX1)~kX{69(h#@K%O{F? zFSGaJ8&Ne9niKhWS{cP*K76^Y+muI~JfRvBDkqjoG?Kl1ndEvq^*rX_PodI1hw)?S z)~}AGO*K~D-f*MXNXaQv*i)(Uyh0!MVerSl)|}LxtTEftE!&(nT8`I_(2IlA&K;1% zYpZ0z>L3#`@$aqZ0~+3O%Q;sNt}Qpjc{-hF!2kMrcmlwCH7ZZ&+!DixafjT#6HdSUJ&P}c+mY;+h5e~57NuY@qIG2by} zCcrgwJ@pvrn#`7yZ-jm==DA1yc0dEf0)LMRntKHaM3S1D%6vsnjW)#-rt{j{@i|zQ zflSPPDL5K7%E-qJqO>5ZBUHKLsmv(|TF%!33E<$2Qkt=WCGrF*4z+y7Fodu|%s6e@ z?ncRL6hT#WbIdm%WZv@u$}A%*KC`m)+JR}aLU9r|usy&Pcpo>~y;KJ`TiPXm_Arrv zucu?Pi>)~23ow+=7JD1&tx7rzYK1=6B7yC!UGCCgfXqf!CN~3u8nmEM1 zPeV4@qZrssGXO$R4Yu19tPk$uSp)S%BV+?cIuwc&1QYvxzM@Bi1gZ^DT?$t(1(^#L zC*;Ny%L=rg22q{2Ri*8f#2T?IR^B-TdyQWeB-CPWTUyYCd_@4BVKuhic4^TP?hD=7 zw(M^ixmgq;?58f8U2tWrFLJ9UqKQfG0kk>GEvx``bj!h+rSN7u5Ku zTV>ljgk^jr%Xn9iG!}zFM@ZDHxnCXS9x}O>&3`!Kt$hy%ab}5Mtk#p!Be%~@-#*j( zvkBjHZzcFqb3x&8OMCXO=FLW5L{&o;`ExIL8!2!kR!l`?gXlFDNJw6rjy1c7nb?Ln zXT~u!W90G_X{&G&4j`93bmV=mkd^{mcN56Y6J{^AC;i`-?Y$w08U-(!Nc zBljMuZGV5Py5M?~(GEJ*S-)|;*)`|%UQR1gw{V!e7}*J=@D$5WQB`%qTSE4Se2O)%7qI1 zDvx+~IVLzv!2Y8fxrHBz6ZcR2tG-Dqo&Dl}$Zg8{=sN}bvy)ydE)`8qK|I~YchR!< zMztF7;&td2%~p5Ky^6v4JZhZfOLZbt0Kp3qloBbAUbAKys$YRmAfsVCn%a;%Gq!js zNTk_gAP;A%U$3#Gj0Y8XdS3~*13me%(=fhGb>IOTwTl&AIEUm=5I;T*?&?M-wyI(aUW8seb%ph%=b-+Vj?gWF@Cdwd}+r?wM^g!umGRh|*$5S$ovy&aX zHk#*t7NCBWJ>J4iHLwK$wX(E@jYvpM!z23kbLE{LT`Q*pMwxey=m;R)j<+;N<53It zr)!3?mW(u(Xcq$VpBLYovpL_z)=ep>7Qk<|-I&pllTR4hjJtW^}UJXqiUM#r^#>$cu3}tFh6C1+X<3U~^{bsc2&) z7fY*`b)TVpY^gjhxl5Li8kJhU*8q8UzKI856$*a69~@1RB}Ph812y%V#p@baZjHQp z%{DOZX3L8FbHPva=+Pr~#j;(H4E@{Ff+mAM*8MfI}v<**BE&L^THu;rM{1P8VaMMpP+)> zF>w65ge+ui0XCY7OJp8ee9v|$dMKN`*;5z~_ej9GsEYC7JD3*P)m4MW3t0=!vSblONjphK67vvbBq?VyE@ zu{x`>7%q|pLkib=mt>Y@i21q`nB^0N;ZeZY`Dn57&TwZAg=#>66fd%DZp9K{R^+~# zBnFk<6gCuj!9ze?`V-Vno7s#X%rnhy*SMi1C1LI-;J;CD`h2a^KJ45Zzs~?Dq&e4T zA=mRLQDcpQtyaL$j{&Tk;HAUBC^7qsKbhv(=`F*tV+ZV}lIM^WC{ZLc{PoVposC5` zup0PZ#M@2};j7m)pf3V5VSU;rB(ZRTUraXXQ|YnnEBFNmiTdcj>osAWZ^qf}PS-ue zGVFNw4}&{v7wkNWu!cWO*&=A{VjI>w_J!jkfqK{3qAvBfzMB$+p;bM`mDR(8T$zgTH`1R0&5 z-Vdcf)KeGE^$)f9;#f&?hiJ_V*;erp)KW2mEXb#9R2E_b*O(h?Al6H+bG$t&*iUjL zV|1)t)C-ksaO#?008nG9)Nk047Psb=-Fic7{1WOpNJeQhu=){z2aO`F4p=t+2#wO$)1v&qGp)R*%tF`$a7; z<6HkLdxFlNkVpMD@$dHiwdU{K%U}2X9|4gp-ZE^-w%@TMIzpm(Pyvc^YO>|h=7Ac@ zz&jKGTwGiL(&d%G?{EGnlxRU!PFspgQB9uP5em1nhPk>u@p5!1OHh5$3BDV0@ib(t zPG4z3mDIV4?d;AjhW5)%!d}Llth+0%Rc|bl$-*CsL|dP=USOk_s1(*pN8;3=(><*) zEDcB6{5p%3o=+!1^xxA=ig5XZ*@|T1R-QK`Q7UKV>tF;iO-a42d^e53U#CW|k?6O* zrO>290Q`2q;mB#sVzSb&sIVX#9pQbA9~cRYl~Ja)t3}alN<*2x3U<>;-n9cx3JXJ(r3*lHwIdTKzn(vd!VOv95$&N#l*89fd`Z}{(vbJ;m0Fu*#~yx!82 z9n)p7Zk}sG=|#JiB|*W5=3$~1wx8lN4jY`#fZivQ125#&=)MEUIWx#tCk1XXEYyb+dDV zyYg^5!r<-}P#5n1ghKaE2(%RRHz)`fCmR=-tLy)SMDr)4mcK)CLbxM-8}+}i==^VR zpq7>}2N=4UPXD=WfA$bJ`b_-QL)H#XP&e3rM)`BQV1I++>IQXl{~!JHXKOP42FK0G z$>D$J<%xfTf`Gzd4*${141YRX1epKbH+GIt8<;D%w4IwH6yf?0us=e^n#S=Wn#U60 zC;M1& literal 0 HcmV?d00001 diff --git a/fall-2024/aicore/aic-501/00020/AIC-201:00020 - Thanawin Pattanaphol.pdf b/fall-2024/aicore/aic-501/00020/AIC-201:00020 - Thanawin Pattanaphol.pdf new file mode 100644 index 0000000000000000000000000000000000000000..ea3dc0d69fb7f1ef4f8627d69a647bbacff8a541 GIT binary patch literal 75944 zcma%>Q;;Z1v!&a;+qP}nwr$(CZQJhMwr$(CZDY=VH8XK<#LPoQt<0*|74hY&B9Rvs zrD33DgCrR&9_$)y8O(!Z#HYu%Gqi-{=BAT2u{Cox$7lMdqev%eVeM?6_m#0Ee-+=++b2fgPAXac4jayv|t^G zEV4nXi2VJUgOP|xlIX|^^+up1G&9Av%Z=>f|J~aewtqbN7tYS_vw^R-{px3@vYV6q z>J@fxk8911x2u=?*7x1?*Tbzu<&kIfaPZL2kB9H;?d9VFw=i?!4G;g|3*h&7?&;9q$KA2bE_hDEOP>3W|QI%tbQul+U zyqSwaQAY(9xeK5?55Bnv+fz*i6?L`4+&qd*@AKTEi!zZ<5!IetT<>j7TxXstxR42) z{wq!yFsKxw}jhQRM9LOM;`{Q_j0vzK!WajTu+X#&sR?im%E6m z!w$~W2DJ-QRdOMfTH8D(BUX-?a!|HazFY$?3dS+?n*2@&Fvrew81GGN<3$E#yWSRr zxDPMtf?M(6y^B~WKSQc^NwwIEx|B`PXHa8vPTY~cNR4yTGylO@K`|2!5I3~71^PMC zIkyGz8}uBJeNVeL+s*R1G9mq$oDGvd?^%k>J4hEC0RoRJ2;NRc?|p7=UD;fHS{5&}44&pK998&1 z-L=prw>QPrdAJ!bm*<1l6F|m1)Fehj;~6os;WYw9+4=5KxLJP!cU=!Fdj%HNArktU zuW5`(3ljJ+e|GtBcrj(pP&*`W`I0XH5Tlh~0WWJHz=~wtXhrcNZI6Vb+l;U^BBzt$ z#E|dR@UC^Qp+dkr+IevI8W80D4414HDvlW4Ye9)(yzxN_!;@<|k0lwDN#Lwo02Z zOT~42lki*AEKs}rQzoW#IV~HVnPkP3OgS`yPXiApAEMhw%zX$!*mBSe_3l{Y*GKx; zRR}({^g*t!%8J&K{a;eleO&M)aqb{S?| zAP{{>p7y!T4=B7rDUjuCrdyz$8@H{VxLYe3h-9`LY5nwBqoHk^RuS;#UWgtpjw$iv^ zCQ@(J(73dfp>`g!VQbZBCxnr{I1CE9m)r*(N8qk5;7fL$KAl!MSHIz0{4%ZKGiwk^ zyG};hwpP{2Q7G%Iu~j?5bm{j$DwIdLsER)55wldIO$M`|V2~~oL?AisQL4SL42<_g z>81g?(#|3bH3(~JFug(8n6pUY>%VC(65b~LRm4;giE0e{VMYyKsB?;=TDn0JG4Ad& zb{Nsg0&>a9n13GDzRe9(5hUqa9X=P}PnS%Ij(Ez@Aq#LI=({Upie8IMaZqnTPiP5? zw22h8(&bWNR)LJ(Ks{&!HfTAx=g3JRdn+J9K)=ZB>0%FYrxyLBZ_3oDGc0N3COiWr zCXLo&av!seDp)12ym`hcohVe$Dq4vNi`G%yvHC2TE-!ww`Wsq0p>|(f!k*h!1SeFO z9wIg)DLsOTv_iOViM`@f*P?nInCf3g8s~LfU#_UIQ~@t$-syk?=WGaz8G}x$L3)%t zh9AhcvNKDA2IxG|ay0Bq=ztsLY>`e=rX3??ufCMCKEy8ST-M%OGs~jV0R0j8DzZ_d z@~2)%57uh)$I^-5>7_ZPXMJx#F*|zywD6UZ2TO1Vf{vqCVa5rEpLB(>cgd+hn+XoG zSjjfxQq^b(--9uC2|mlVQ6)0Q(oKGDh*{*Y#R!*g=Gc2tr{y~x&iZvDBE&{c%W8o( z@SWWw&s3{lO2B z7-}4v3)x=NlhDJw{^3LJ^B3?5HMbMe#MbyfXyzaFF93r47x(;2FfuYT{pHmKSN#p+_q+)Ueb@cdE){R0yP3HhyR374KQgMaiYs09*-=0VOa&QR_3IArA z#Uc;y$7!JxfKNX+x5LTHe*u!$cHR#6KY*0g&4G^ng1ZOrx%Micr)rU<)j3yw z&i4B17We!8?EQMU8JG7D5Pd(Lo^Ef?{&smC{}&+PzW#Memj2b_y^)RMvVYlo;pqrE ze~G(&byHgdzQN<$!lE~?awuimc`~K%k3KQRom$tPLW%YOpa;fR_i%Z#tRUm$JS_N2 zmD+=)pMPmS^Au6T&(8bP)5(3~t4R@B%EjM$+mCHuzK&E5COWjJhkm|1Fb*xY`N)>L zqbCx8#C@mI%LqF2l=i#$_pml@cl8FgKVHlG4!qS>Y8!^C=xhSC#yNCL^dozk+%x7$ zcBY8nZ#Dqdh}#c;!0VtvxZCLXQwGIj+Z$2*dll+}8S(L32bo$vyHw3W^(=OM>iP^U z`0nzJw;UiVvZP!qt^_t{vNb6Qe&1MbC{s64R-;IuTnKK!TDQPU5-iP*k%R`WWCt8n%%b=e`WTcD7h*5E|10OM=v{ zmlPx5k#PguBHdZ!C@#X<_564=1t-m}p&Vaw{9M#2|JW%;17)m#3sD^zt2$@k5Lkx* z{<26Dx?n|vm*Wynxdhl8MBZ|#(vyt--F&Sy_puaNr1rp)8XcLMWB=18|uOh4`w zBGpmGA}Xx4jCx-OJrL%)M8H$w=~zc2OJDBU5UWGCAvUo#h%!|`i#48)P#@|X;S2Hc z00Gd$km7hodyR!H+JHd{=FzE)Q)g*AiowZ5L0vGP06JNH(w#*a93YOUqlnk9I7}c}9XMNYRWGX_< z22@4dOo2+rI!iZLk|BGeU@VTnYuyandfJgz zOhjw8$&x0r6IH1m{T88QRoIeDI?QARFPaPxV_AK4VJ&c4N_^_FQ{ryVT&4-v_^2ad zF+@?*r0IR|%3(qA$(KRO%e&^vG8M}r3OGXpz2!zpPsqri{8nqwgJkpsTtbnVn;r|Zl(Xd-*hqww z6ri3~ltxIEkSw%5?ib{tOKpyyjWu7AChMjTF!@@%Hl{`WdF=B*N#FTXh<5hQ3)3D*`X*c zLRSqIV0xBxP${&YN7N#S#PN+Dga>vzSs`PTlOdC3Q^Qhd*r)wF+EmJy32TuBRE~?0 zE#7Kn>q(Qv{8{azvO!o(^J59gIe(cCTL}#|rSP7F7>dpxpg<5*pANY?O=h%ae-4uO zP{Yxj8CSf=mrOTRAh}+fm9lKq$`v=1Fth0r1z6RH1qPKZ480ei@tdQpl9Wv?##fN4 zSpB836#vpc*l2rAy$EnZ&1u*^HnF93X^+XZv)VDRK@7Ew;yagK#TGRlfEENLP5Y*if$XrsHP|>K$((k8x-+W1tD?yj&2>2= zEfPjblYEkcAia|zW!Ukn$xYEGTLt^C_0RXd)5E2&A=1lw$TqLX%5>Tb{SoS(2#t!;R2jZW%@2@ihov^ zy4un;xRg=&5}seim@%2=+d%$v5+|hb%=BRbuyky=h0k9B#Aa5Jxv9+7|7Gx*w>QhLvi~#< zAye^{nq-C|kY8E5N1@M!dU{?|)xf%;(t#+dQZwxdRpEPESD22`{^sZLb1ajzK)-3G z>eGJ7(FjU&qs*wyL>8Pz~kk%Dek2CL!(X^tijC zWK)#?F2$IsJTzN|pim*gl62F}q1W0QGPt`-!d8?57Q{XqFP5jpYX~5Z4+k_;eXJTP z=$=Y6r;o?AF=3uW^@_gKpQ2vIhkltCDt47`*UjvQjvt2QWKyNvBs)dW#nR(d1P zEux%JS_Z*pXME_3RxPq#Lyv5yY4$WKC$bv^Q)wljZuSv#<(%)%UF|-(XZB~Bz1W!w z%3!yq8R`D6OzmFzX4e11rRxT*6ti!nULAs?jSwrD)7FUxpt&+AmX?`-4`}z2~o? zVts1i(kA~HkjQ7pQ_zw`01kor6see1KWEUr=Y$Op0bR^cJM}LRI4ymep<2 z=#?nLN`Unz-X21@5pY0+b{`W0ksuymKQ$f%StRB;@BqfX+fgdabu*038|025c!;D@Q_XJeeFQ2AK9LGO(YMF* zdqpLTuj}~qPx;+=3tyFmrTLe+XarJ0)-M3A(W?JwHSlf%d`F1rm{w!K;lg*n6kpgY zqc~EvoyPi|xWF0SpKZw7vke%Sw3eCH=KH%H@Y{`%P#Bp9Dzq=u9fEEIw5FCOx2=fC z#6RE6aiOg(EX^-|Ds5OhfANjK;pc@JXn2?Y7$o!{#i9vIw2-T2ZSO1V+(65fuAahy zGzzZoho>fCO;5(5Aj48cqQT)QFgh-sEi^C~jmFUB(bpezJyIc^{oeWw_#y+KA>#@G z@`ir>Apw*dk2`b9=Xghe`78GTA$-GxEf`ny*MZ3slP4^9lx)A!Y>sy+$~VH>9I^w> zMrc=PGa)?He>TRPR~zWf4-P!By9|WqPty}VCy)c3uv+2wSk(7;+`P&e=Z(wT1*frC zdl}@k2+bKPH&r_ZjmYi&YQBRx>PEPxgPEhl!^#oPxY%6W9PdrqxUaE@KoepO(YRa) zAMtN+=pfpz*lYgl9Zo6_Ibgf9;1pgVt23S2?BUVHk(zuUwlhR>fLP-^f_L~3!87R- z!ONk|ma+KpzOmW^{Sah$Fh12JU2Av5sBVw7(ToCEN;8l1ACFmP&Uf#V+w0X`wRf+F@vKUqzXEP74xKWQYp z{J6}JG=U4eV0ym(zcMw!my|amzLt)NjsUv0f7e8N`Ta%&v;(c|X)r`J$G)|(5(!2X z>{$v;`(C%>KRVfCUlFl9V!YCS8T>@2aM@Fx`J;yB;O5}wXX|k+EB0N#aK1=?s4}Ee z6Y%1D?RO9J_WY<=_^atevF2#bM$dNFVnz==-Uz$E>;^aQuitRJLGXt05-1zutBCR( ztlDI@*b5D~qrnc>~gUHG{Hz--ampYp%*+da&ZBW=+CQ4i0DB=-TyEYY z@5HAaI6c(x&oFVP*$JitmDY{A9p*DM`Gw&9qyEA313h6)Mxc6vU<{ohY`NEw&YU1) zOx7Osl*l%&mOZ4wL6$a-;;`7}Src)&*W&2rsIyhu=GNA0|F^x-p2Q<0?ylWCI_`1t z&E(7U$M;9*N64W3uHvqzEF5d-a+voXZ$bUs+oFb9t|HAg=|$3RY%+jTkKb#q@!SU& z@37{iqMheVRdE7*taiLMAUCZ*)Rq-ck|gdBYYe3=?Fb?*5@}qR8$9R8$o~>;9QcSi zV{Cea=^m&lHF`k_iRUZnu53?_pX@D2zEw|XA}x~Do8(=(slYZ`oa5*n%9a@KR9D2# z>DC~^5B@trtqv{^KhD7^0Md6NkB(ZDW6S4^Y>U(zbVH~DL2+h`4H##(Uk*r5JzVUN zu8sI$3_HKjVM}kG#T@4ym=o~(4a^zM_DHQrOMzl1lvg-Tuoj)v8aZl6`is%x#4R3r zE9%cL$WjgVse$ZWzLf)yTkRW$2b7Iy?LDMtnir(xFXlT0TNWS1)TmWHxOPB|SXQE1 zQT2e~Ppdo2fj!N{X&j*2=19zm)1C*4eM(8+;)~$z4xD#>WEKpsZ+^B0KU$Q(&=%C{ zb|0C0e!l71AsP_cC(8v2S|V?groH|i=b!sp*eNlo#JEDQ#LD@RBOG(~yP)fFoA`sn zGaqLxPi#Fldk#wxgENlX1C0UYhfI1Fj_fOZy9CgqnSyJmwV6@hCkSo6fV9UDU~}+a zuOd_2Rmf)_xM?Zg)M$OsYKa;# zmNWd11mb)!3Rs)15I?BrZfur>_i@-7i+qebdn|ndz_ktNuTxQ9BtMv662XY_D7q@0 zraDRmj~@>dB(mfqzPO~9G)0JtX0 z-%JWkG~F5%H<|4QQ?cg21x-9&4 z*pLfI(Z9-WpoL225FKq_7oj6H?T@Hxa^n-@QqGFb)3MEy1r~u^9dlpR9NYc+hI$X^kg8T(sI;*s&MKxN zmzbr&u3mGo?^<3!5H$46#_spF%Oymvt%DW-tX`aR$&g0yQL+UYk4ovoO~UgS{O~#( zk}#4D?2s;)a&|I@^RX$11ejmT25%LW2%5$1lZ+nkur5H)e|Oy=-Yu0k@9990;d$;~ z3wU8d-b8?ha^th%s$cSlj_V=Cu24 zgtmhb`Tb;JZT7N05Y0imoLy$Ls(P)=MO4`&lZP%l#vCyn$Dqfxg@rh$h!KsaB%$Yi}{QvJyE@& ze@&5_t_Hu&y+#P_gdxwi1O)*NmT@@kC*p7=6BzJYdWJGZgUfSkwy}$4ZH1r;%ua>< z_8b-5FD;w6kN}t@S%Bp8ZBM%6ATmt)U+%>zp57gl_no<3rDHCa-l+E!70|7>6IPVZ z<9v=i9=+pKFHg!0oJ-yGQdC-9OuP73vbX~|Lk5yw#~xsvT+8lZp;Bvf$$_d|goZ?Q zLXak<$yIFTfEz@;TJ-H^&=vG7CH0s;fld#}kJ}P9zG-|S{&8uL&-JK#P4Piz;9Gwh zG&jMU|5oNHLZ2iDOx&H|)rFHtulKl1a_N=jaVk~**IIlzKeFX=-b0zuw|xE zZZ!%6Q$udh)96(1UBuVM4otr2;8aU@XcTmrZ&JhZp2#dD6YkWZY@M9m+Q4UnyrOTs z)byCy%74;%BlI-;t$OPmEiB9BgSPf8O*#5zmnFh5aa6_J{f9Y0f5%6x4gT?Up6e0O>o0sN9B)-!wJ4{gnl& zR&_{_uhpnG&9Tz4wP|+M1g*4oP_Oo3pVzWdux7=Xqc0R`5lUbwD=4inMtI9MwP5lm zh3Qj+ppwD8XSQ(vb*r5o@ux$K+=i9!W~`4rV5#|C9;Ny?yoYS|U8MNXEO=Su%I|0x z(9w<6IX>QeN4URM!``7$Y}f@y;eM%_Rw1>r7rJ-X;pVk8=8iq=L-9HuT5{yyFX&d9 zJRUN~!PcQY2Ah!3d)V#<1Q5H#e~w|KH;74k`7PGc!B7ggx)?lG_KZa04)!+E(3+rIo3xP$OAB_M%{90dYE z1cc*-LfjiyJ!Hrl$@vZ>qRWAV#)gQ<4X*QJ@Lc7m02cu$A5!Waz=mBLPm)5?Ks zPmD7F9BYQ1$H6`taHPgr!lQLrH(%=ZM8bDoGPIW;a#vQ-HfB(CeFdK*+ctXTD#{Pb zS5(Z?3@aA?_?$rI^)(zlh8U~qS6?WtdGy;uhMXv0L0i_rkAZVgHHf(c26E)fDRMym zE)w~q@Ic)_#8qrmEkan-|CP-x`P3wjJQu+m_g5L>b`-DxnthlasxJ>wRr88lRo|U& zlAN_RPCMBinOI&r#-cu<-po*tBVMU?PyluKBhl`nFW`uR=QDR>t;}&nXkfk};W%t! zyv9-cCdfLsB;wOp^*gv^CGB>WCIO}@c`f=!rSP>axUz-#mgAl!L3l_qAsn{|FB10< zcwXF0xcV&r49%v=u`o|nwrM_dzOzl-d5#rcMH9(k=}p#3a`ri{;F z0=n3T0oU)>N7LgOJ|Gn6`X%(tMp>*^zYJ^?E5gtHFY*AcWX%H@i~PyB%Dp2PI4^HFjsN>!d*ag(a%==dFW7ZT6o1s=v$I;5fgAYPNb)A-{d%5tVN*zxE(e}6O|PPF~8;)Wl?;!9B` zXxpNW3TB2i0(ws#Gdl$gd{G~Bmw4_!wU#43=;orn80M99kj1-<`hVW{hc!x-`H$kC ztSA48=oQ1igzi0T$hxwdI*)G#uk~yFwTJXemc1GwuS$gGhkAOzVcuSR3L5ZULOmJ` zxWbVc?{;c8Mef0;C!fggFI1=d2APhpWE<@YlLelm2l;&mdDx=@kSl^@A1&53EA0vy z!4=gC8Q@!B%II>~rPo)(yvNsx{qd;=o5Y&c_d8dkJ?bO{Rf-boB*YG%Oq;o^hIRCW zqPgrI7e5CmKWnC0>Nt14DP4un$FB zNI*q`DmUx>6?5FL3w>YmL0&?21kUB|7AF>t8?}UVt{Xl*?K{Uis&uC?9Bvhz%7qo) zs^STAz7NC$ediSQh7$`oO&QA3_peNXUCZD`^W(~^4<+>wdFvsbmOc<%(A3hTKzmB6 zx?DJv7EqfOg{gss4YXV>;6!&TNqAI6vu5Xe2>l4RfJs?b)z7IFqy?3vFcq9Iq>Pr! z+!P6F%BTsHC72OOQ}@CR=LiSQiJ}&=hD5>0g`kPp$v?&LG?7OoBuPN~4GuqV*#eOj zahJ?szF7zNi&Udp;$_Jn z`Coh6_?EeW3Q#Jlf^hT`kRj9PN}1yUn{G#A2sJlj35{_$96);3Sm|P^P_;xTIcf5c z+34lA5~|C*+8aT*_G5R_ZN=c&XhgEd%&~{Lj^B5tlv69OdAtR=y!}I}kr3EKHH_$h zQX&vF()hWrJ-?UhQn0$+&3j$s&b0v^;P+^2_vf46X0a>RZI69&;Do?ULx91>H2EBF z<5}R~8oqWk1gu&q+vvzWl32(eN(^lT4APm-f&K$~JDR%8WnoIt{^?IcS4sSu?egm8o#c%Q=1tX;SMZ$H zX=a=u(pX`2TA~d|$oA6tG5c|mB+pd^jfe)ZXdr}=4bJ40%4y@>bZnz! zUd$k6(=3HRB8lyNm(QEjjWhT&zHD13LyqvH11wWOXN55Jt#Kzn()fXLTh$i*>p_5g z-b%OQ8fn$>pr>x&K0ZH#0(|+54*69mwLfxn<%OW1oibpZi`S*aHh2eqr@^1buVJ6> z4BAw%Sqq-9a@UWw=^H0m>>$dnbRycNP~AFF_|BXUM^^>Zd4o}4LIqxnl$gy;(@=o0 zg8+G2g5&+=F6dRp?X`F~NBI+jq?q*Y(81x@xEUoKkVhf;|B0&Lw0{=7Jo@h;Uwj@m zGtJH4!0Di^x#{mL1CAb{yQr`Dv^-W{e^W=hH}SCFKKbk}j(ve3Rllb-7n_*i7V8he z_8?K_ocyWwX1&56Tr|;S_<`~%`^Zs%({Pk2!3+psPGrzOf|svINbxiMLHH@>f0(b0 z;ZYa#d8>CHLfQK>{LO(70W3&ZK5-<2LYUL#$^{QCX^bdVYwNF?t{R**U^R9cvzx@n z5bK*XIcea~bw{Zsq7du#gGqAjQ4_f0xs8kEl_zx~637AgP)fW3@8Rw`-)Mi}{i4y} z?#Vm?-DCJ5?YQMk7&(<6lwV&J62i}tDRNt5DoJhalj+Tr+1?+ykd zpaYPY#ttp>KGbdoqm#DIp%Eq=7!#lpuT@cYt8t(49?8DDNWHLeYq^O1$uFC!T*Ian zQfS$@7QlSM#zBz^G{tiH1Qhn=<|?$HD6F65lhw=NFA9rlQwT;gCk^H2XC)DgO){Cf z{K}yUR6`(x?|eD?l|8Krovk$%BKLPWN9B&g^w-xKXn!U6ES_&4+}`2dJ@~{VnYv4z zFIYS}SB=kiyr)PlwP}3{OIOne88l()0|{0v%h$7N5ot*?5J@v0q!~-vI}6y!&WGAV zV+)PK#hkq9|CF-8DG^i2s?g&!`kHqtZ~(QT<4{w{wUJX90hOycYanYRAj>Kn(atA? z`{{4UFw@f1|1tQ79`lHEANkO7hEl zWn4Iy`Wem!<+hsnIPb=pM?UU;g?4@XfJ8s1T>3eD#w&|PrCe{a+;C4goWMv*$~Yv% z0ABx!4WRD-d0N!_UOby$DjW^M+YRf&=QjJ8VCP&PM*i#V3#~SN-TF91wTMRkI8K{2 zIS7HyQ6T136=@@G)>7hPs#U>+wzTm;Q?;mZM*#KGfO~Dyy*cpF9P(@>RiUS){#p-W z!3}lYTJ?|aZJAq_TdAd~(p$XiMixlr(A~)LZld#&^OUG`OKY9XdV0`3VBl&Pz3Rnn z6!Us`9#?<9%(>IzYW`}Ly_UIL3TBzho~mUsD1usq^``889q6q21K?HToC5cv7j_o^ zfKx~VwQ2IVTwX9QgzQNZ?Xp?uX=sNE&gOl5YG?ZLWCw`I?f2AeiO*5*m+@imWfE=6 zQ{)$r(~gLcm>a60N9*lVAb)jMX2BJJ);D#<*j31MS)nwOs4N~+sUTGpZZ8zNB$OR$ zH{28)Nhz?2L}p1gV!OL}rXT&L3H?DIT7sGE+a}0FR${Y)B0S2w0!nK^7ZYm0 zuuVoURfRH?8C^&MX~_fWrrPDWboh;2rtW=Adawk;-0@g&8e4S9ZE+|Cxhw0e@y?c0 zX0l1bXCY-frRNB%o0TgG)L%?~tYrPkU#J^aN1Q#Gyda*ce+LCEECI%un3@x%c+G~8 zL_G@%Nq1i-l7Zz3^pL71(fw--;dz?q0_&bAXyB(TLHw`u1b2gf3r|}(UTHj(Hd?!_ zi$jwmAx%Gn(jB|0EMB&>Iw6ONC3$E5l;Cb|%u&jH;dCN_sRod3fLK1GMiuOObs_W& zQOFUsRSOZ^v6P78mO|)=IMPu>EX5Wx1Hp8vnI;+6-*#Giy`$_~T{4!5%5AOT$zoWK zytdu;)o;4{=#se$O5uc}IZ8S4u>v}bybq~#m8@^z=hs}!?guR+s@tr91% zV}bclLB;{Ev+dm6uUx~RA4IhicCiMoWCM`! zA8@@n51%MY{Xk9gDr#R}SM37*T|3KL|fVTvP1vHbqIFo6nvq3`%`W@|xg`oobQmQqS(?)b1~E3pW? z4UaAh7rgY!$&y*HmBzh66H~nITy$^To9jb4x^&v}G^;ai#1lDU6&||UAI{@JA@vl~ zedDMM4eQ=_1KpvnY9{&U;L~ia#8Xo%RPJ!3b&3u{lVA~s!COk`2#TG{VXyy-l;VAk z^ofh^w6kLd<_X8maP{h4^$R|#QyU-i?bhoVT*djwy54enWu=VQg;!kW8;^K37FQzN zHr_lVWLm+*gI12_;a*82Z835Rw`c*p4g=KR7q9Wuj}owyoXbUuC!WjtL?l*SC7()M z*+ez(;iw~<7NiM3=r?D_2Fltw{&Ee8mAj|a8T#8OqMXHHn02ru;e^0K?_lvkSi!40 ztH8F*L}yeHJE45@fT+_@A@*ESlRe)?+Bf$ZV0eM1qqTD_JOfs!!2E(orZ-Poq$tA}OB8(LwJ& zop@oGEFO>qL4}fX=03B-XDAfblvf4XfZ6G#(lG{7?0eDXIRKv(n^%z^W$y2VM*m06 zqWpu=28776Cyq9Gc%-e+NK)sJ|8GPGw{v20S-%Df)e4%Pm(6T0561n#T@YN^DI1Tl z>P~dYGjQwH*6;TEut5IJHSn}Ita-C7@`xNMr}c&XGq=k>-^DF;FeA(dt>>@iGm09? zOj<3uSUdvl1Xn9^nqsc7O)bzqc!$FXunO%NMTp)S;C zwQ#@+m&QCEK1n$G(1c=8^AEnlePI6c(x_y&ZJmI;w948vS2O24_q_Ur4kcCdr1JU3^Va(p%pj;lVS8_9&*n)lkcp;Hzc*ZqoLZT- zq53p4nAD_O=03!I9Hl{%N9fN$k|=yGvOrmLZWr~+mqs*lzL<}o8TuIz=w(pFzE`3G z0I+&k5x`|QGX2LvK`;?ruXS;7Lb0IPY4MWb*N&#el9vX1)JXjT35q`s=`_2v&xAo$ zyV`P~w3(AU>Xqr&>WI5t__?%o^^kg^kyPT?q`Cu8L#dSy$a=JMLI&;ehEEf`xpF*h zB|WS{9wDYA_C+Z>{l$lXoKOj;f(KCgP^o7Vgy?dxNkCm+gP^*>{&WD75DxfK5F?MZ z4+&9>b1ApuA>B`SciQiD=_{D*)#Z+_kK3%vW~T%gZJWzvU*2cj*EJV=^mVW2vs&-_ zaAmFh^aW;HOwnUWo6DKCg=OI$wo{Q_7O;#6&uH}NswwND;`a#mNn+h9gZ(-qg z3N~+oU(C{`1^1B82xmg;;tN>}x_2dV0!nrAk1Sj5Cu+l5iRx{`lzFFNZv!F&G3PY1$eP z?LH6{+6ZcD8voZ2W_Ebefht;u@Mcg4V)L#pHG#nbVOl-EQN#5^Gzy5Ntq5cEu(dK*!-t?ep?*^gM^?rjaN>b+Bm{zd#e~3qmwRdIbp5ZucJg&{i*^Z#c2@i4s)LUOz zc=9flqdXnm-fQ9jgI#XsZo@uwm6C86w1JB988*ZEsgxy&&E~i->-KeieFQ(t;He%% zG%w3=H;vKYk>Te^sv6^MZL5%urS;4xl!|x5>?+wbiPw89%*QD(d8o@dlEIx(Tr;RM zP^aHG9&Td_VcrzcUxq9Km-96vQ@=^yc%E8}W|X>X*f`T#aB-NF|Jgz=M8VW^S=a6R)N5(z{Cp~**_=C<20dZ;%^)2%u$%AFidxhsxh>F@k^VahD0g*IN6urgNv1zKt)Jvj< zS;Q1$)VMLNDf^UlLpnip)WoS!bvJK449GlxtGE{KFL(EAZeb|RFyI$<2fBXZB~|Po#1(RefAHtXT`2^KRcrM3CgI; zd8DjH5bp`2u_L89hA~s=)bv!Qzpj0z`f!XLr}y$LYpu^==CNDq)035)&CWy7C|&PU z|K)A(`_v$uzU^oi<-waJrNi$kUc5?)HBx2Z=0{s zzwLFtjjgFOhVZ0hF?@1qX_Avqr*{b-jrQq3(HD-&a<1xrA3+`3D#mJ)%m#n&qWc^$ z#}rx%bjqOaNyr0E3SaqM5w|eiZ-lX{Oi3uO)V_DkWPpPG@6uDI1xm!Oq%{P{0zOV_N-uYSEB_wf`LoNFiA&hIf7 z;7*74Yd%aBp3jNJ!^2*bO>4l}kVrN4=1>eRPfgAD3 zPaXgOy!6uwe9P1O1QIC(DH@zatXOH1j`Y(**t%P?wskvu-s=SF#FcrXVg`1BlB z1|thoB?0dmm&GnCDHxYbtDvc7HY91`T2*Nrtx;}LZWVN&yQKdNjGDh^(4~>g!cUxk zA@m1SF0ERL9r@pjfy*ojQYlGnKu3WBTMNF_T}8D?E1fflPZ!$F<*F-lC>U79C4`*O z6eOpUW6H*mH|J*Vq}WQHWJW$@|5mS_Pndj@D%Z}Q(B7al`(px~mt>i*d4FKj&k$fmYeVZkGFz@f$6$`+?d_Nf!};w5$gu6`fhmh9H-n0jPe3A7w7lB zk_SOH0g{ul#zT;w>=`O^CMZpkT-7wVe5o9t@$4I4orf(~eaSQEXWgc!&bT>D2a zUmBI}m`U^G!xM>x%{vIB8dVm7i7;G1ZUhH!morI%%SiQQ#>0oh*ZnU5fk1x0?#C7Q zIz-2!<8%~C7jyJILzQ%`z%-9Em|ITNC5qCRv17-Tk~6(kuP?moFC`uP<>zmU{AAiI z%b=9C$q#rh;3bZ`jhM{RH9`|GZH z=AkP}XL;P#_P*=aHs9>&&H3afm%g%YRpWPd4t(_H&y)BX|2^BgzO(H?&;8`mD^`Bz z+H18vFRkuwTz21x@K0|&H1MwvXkV&8h?jt7!ua0?54E^dyFVj?Ssb70b-5VuX~IIq zID6P5gqhJjjSvpg&~V5BAz>zHh5N{XgpDXZpB7PFglG|pf;W!P`w>(^QA1U`c>FLW z7=uV@hBmjG89kp$Se!0m=5s7zb!U)8VGs4AX?H`?`t~M6$6@{NT)9y`PV=L=vCIZ!-vtkynL!YH*N0!6?e7lhk&{h`8el^{}q` z803|(WT_!FTMet?&ypvB;Ey30o)&N>haO)?=a<{+>hd#lV&lddWBVY%QQcUAe_lE} zj`;E)zW1}o@45Ut_u+jRU;O6v)6*Y&{-LGer=PB>Sb6Bm!|$(J_ucz;WW4s)Cr>Ya z^57#kG>n2y5(LUpLGn_d;{QB|Y=edlcGGG?FnP9U0+tjPHvz%q;$mulVT!MtfMnXb z%O)V1A785W=jKsKF_hQ=`+r73YY%kk{S==o9_jt|?q=0N9 zCkcv`lVIGj+h5^$56AJG9TA(Im$(Du0Fn{GyAlfGd5D5uQTRTx>RCZh64{Y5#T-x+ zT{P9w^4?beb!%_T;%EL_S~sW=xVclKXPe)!!N zU+f(igO~k?+k5tc9}PSR#Qy#Mb;ytl1C$S;A`;a((X-ZwAA_dq*Cl0fk>A`|0O&n*P<636|8L24XkK5-sw6$5#Iy;)S>8nS zBJYLKRor^-hT!VxWx*@LHwSMD-|KxMcrf^h_XF*;mT{iZo;rekrak&9LpTU z;Rw-8@auD_ltR|@(rhDD1!;^ZlE#Q4X)1pNmm_OhJZsu!No!g>E3hY*pAC|L3BT$m z{+-1b#>PEpPrlhp^Ubc9Z;GJ#?JiUB(Od}^aqW!1WR93@nva=&QZThc#MmElBE`lI zpaS4r(d4n798J_ruC)nNKx4Q(pNuIhpmTWeM8LG%E+%WnaG5^MM~BhYr@h-67F;oR zEFODc!``!4dhxasmtXdehn{+yy!xY#OS_-gcEy8ufqL1-Sy%m`)#k5Vhvh%Kht+!r z{yOmaz=s1pKY5NT`@!DB_uc%=GeD=aflf1lPP0)_O3I2jaRe{J9L_2XC+yg6hrugL zfOfGfVW1tA4r@%8QNuo!(vXkISU#r9_zcB^lEW_;u`nE{hwCY63||+(Q=~-Zl)w~i ziF={8j%$<}<+bictwY`%x=y}6^rrlV*CjD?r2^ARDN2XVEDGhY09vfMb^-;<9(_T0kC11IQZBynU8HR^7WCto_I<%(dDXiN$Z3zWHI3? zooM#a;jXtpi)uNhDNLO{O^oX6u*9|#(SePQa&BW$%*B?-yx8MSo5eZP<1e1EuC{8? z3Q~1&b#MPAN3Z?!!0{j6_|env^pC5#bxzwO4_$uQll%h5+L5zIp8x5eRxTg-_iuNc zxDwCA+wc=VfBgBg@646DP_phS0x(*osi~RY>g+5G7EXlwskE47UKbc>^ui`s+(c+RVvc;a^ zve*$PV=FTxK#HYsr;O!XEdyte+^_4t0HoC7Z?||&t>PII(#9&D$X4-&?6K61UYR8a z)gI~MoqO8ha~ZuJSL;u;Q54Yi`*L%vMe57j9akKtGly+-PDNkJ_eo6B5;I-bJ#>C^ zb{|$Q_)bKH6Fnj!SI}L#P#LMgh4hqVPFl9)fX@|@M0z& z31;6homq7RnN`P(P^L+3nI^Sm8ioNmwV8RZNtn({6JygP+bb+FQ!mL}_%}9PQlo>c zvO#*%%|OzKtIasFWgp#LI=&7<+fGsb*JchCuJRJK9%%14TNT6gn@n-c+)ruDQJX7Y zl)-ToyR$$0$=d_}Zu|Jgr~edrCUDh~8=idR+O@ah>wM3?hO@Eq6ed?c^I+Dx^)I~s z=JVeHoLUePrc!C14DS(&O_AJO^yL9C7L(;6=3HN;wZo}21$=ODkq1{LII}NPqvw=~ z^Wfe=dC>4$@!0J@Gt&LQ^u&1va)}8jLDQs~Ml-q&&NFA#^M>{hw}27b5-2N3u*d=? zLdiQIq#bdUmLg`%T22W+uSCE_sF2H7N^B!-%WXHxH(GYu4%trHteS1E4P;uYObij$ zf^AkLvt5S9?!r99V$o#5Bg+ENp+*D`A%X?6`dCwtY-y5l6Ooz3Usyg@#+~v`8Qy_l z?IclHzKr18$OD8B>f_RcxdIs}EEjePhlG=YAoP(NdaTPI_s0Wt|0O1m0Y1{aa6O@sEbX(k*K4cH58J`-aoe;YaVvn7d+R<0X zW(V2OdJY|c8D(O9>mDXm{lEMzzG6fqcR0TJ#s24o{bzpP*?Q@v{4i$Iup#-Ouupg$ z<>OU}V3sEqyR&l@t6pO;2r zd8wIvdu^V^aWGaEEN6PuaW(=HYF=O{RBy8xczTXY!a;K(ZJhNvrQ7sHU?Ft zHan&%SkZS8Q2m~%B1#};EOVRd+Ot*N%Cg=t{;Hs2i`j{(?T2m~kha%;3Lni11w(-l zC)#3aer7BZlk@plG~aK}&Ou&hMh-;wWM~q+wt<;n9&r&fN`&xOeWv#N-y4JSV-W%&Ja8i4NykTSWmMC@B##m!v zN3o)>+yKYSnpFEt}={AEX`h@O|nCo60aYN z!}e)>U~bs_Adx{OCq6X78VTZHULcX-FB?riA5FVlz^~tFuM4o1oq$Ha3~2PL0P8~m zrU%f_DvNF-N-i24I(llQydp?%PpJH85iX)x(`1Uw6(k1GWQwTfPE#s6U^aSBZBdYw zC8waMZ29OzqeN~&(cC_#(?jw)$*K7R&uh6 zI5isINrh<-Er^rx5vNVxdZ8}`x@w)d?;%W2{U9hX$~Z@%e$#AIu4Xf(Dm>ffm1lqZTvtk>VykotY#GhKHkqr#R+P-D-x)iMe(y3t0-K zEG!I%Ti64yIgV%+%8lA>@-QU}7Zz9)G0tb9h?-4zX6ZbH-59SgieG*8)q|$_RQPDy zR6o>KKQ*ge5Gxn~e1=Xle$5aEE^1xQ4gsp{cHVgTwoAw4fA__EYO2N;-M-+8pDuBA z+1i`8t@V0KvaWsZuG;1ouXyb(d|qf>Tho;DqW=8RGp?R9ZEIm9KK=65{`pJikBf$~ zGnBm2s%=Y`JaFMtz;!Z!wmV^D@!_$Fu*ZU(fs(+;KqAl@_<`*{`xACKXfL#P1r7!H z040h@FjAH++c}#vq~J^v_hj%Ks2vY@uqT<9&zLj ztQ!@MGK>o2p-9hF4IMd4Q1?eLmBfJ%Gf8SR`LOx4WsHB zQ@zo{{=h-JALXFaSV8`HJnh^jYC>9}o`N=Ga^;EmiF&G}Rj_H~a+gjU9@QmUBvBTL zs9M}v$R#?nFtw7o`f4197Hun~7UyHi#to`2nVEE6uls=qGJ@A^nYA=){OI{pUVDwZ z_vTIO%BEiE{-H8;`HGv*GA%D>U>^4=9|H~M;U1?ywLdW>Kbu>RO~A>UqMdtiJDS4` zwVQw~6+dN~YXWu?pr%P?QYk5u8ZML z>TLZnVoPd#pr;jX5 zSS#HLH(BO>&Q08Xc+y@c&PCN(3Jqd7OK2bt*VwqZwxo?f15D~E0i6xf=*`l$t@6hK zh5eg=$p!r<06gJWPaO}?_0JPQ5KtL}{M6Kjau_P4%2Y}fKuo2}8whGb&!VW156|p! zfDGy%lvoewR;$U6=yF?*B;VaTu3X6-SMGqZU{7YbD_1{{ua2&{qD}R2TwnKf zi8Z4@KVNJdJ8ic_tQDO!v8Bf^}fS^Y6rSBk{lX4y>=r8@a8vY+&^h zYGGd1I%hUt*niLFtG8_->(2c0nMrjE=giIhE?%kWKMsmgbi#L+tRCv}3>q*RJwvm3+Vds1K{Ygm1a8)5jMBha!uL z*%GslS%djf)?hwn4MykknC~Zs`Jvk|Kh&+kd~~jb&Gv!L{#BZB#8*b1wpw3@6X&Dc zh{lnyl!7*W!64cCWO(WESOYhH8*!y zO|u>=o$F?YTrksCcKk&Lb`f(DP&TGlT&2iu+Jo@s`B%ntpMEk$Y3leQ&RF#e)N=WR zoO?gefO*1~xiQF=wlT;(WMj}5U*8zyXKJfQ-xw60HuUhUw2eW`?>MtTOa+-%1^V{+ z^zA`8QGK602vI7E<`!@s-ymh-;g9vU?OyTBro_PKKRvjPlr6e_%TqtvyyYojfB(O3 ztGVr!_JPj^-uxlH^SMPg9eMTWi)^;}PK5X(pdta?l(1pKb729=>}Ut_*dB?btP)f6 zHC$?jnfs3|+)jVP!c9Dvh1&=9`kFVLOs3PxcRo*kEA0R3pHCx_>_50ws#DkuLCkJ^= z^0OI$)m;8o%!6`;)QPzcvlyn2r29NuiycnYn5r-U-Hw(`Rn#%-L)+jvt|jV7b+x?4 zvRu7^+o`@RyeJ-0PpVc~sKd2nuDZtBrT)|QPy0U|7T(6&c?V}zECSEl><(F!KyDFu zS+q$Qp_KJL(j=P)f(XY^zf9`KX}rw?Us=L}AcsXx>?5rS3zBUgCkQ5FKei%_tqHeH zLroGle=h$T{~pin)DHwNR~`XOuqaPaRx zp)#rA1jq;#!4s9oE7TM4Pvr!2HY;veL9nB()We4zhe3SMpTLv#d9Jig&Aq&nlcoL1 zlk{j3hJ_~5`4 zvIO6`?~+??qP^(`gt#w&O0DFx9@=B7GQP3*LQaGEK}l8mhIxcxFp&t=in?L5SSv2E za8CO_h0`KuvC(cP>azkw-wMeL?M;B57@c5>?IP|Hg}6m6Bd1IT-rD2V4>Rb6r(0ki zIr`}a*Mg78^8zo9vrOZKd~vw4Sh+`Et29-co6=vDfi+;$o@J zas|ItxX1FM_*?!>@woW0^l$M?In%8u0>|-06eWvAh8K%0=Sw0`mB{gYzMyynK~XI5 zLT60bk5kE3D^h@3oCzRFM&7wHeaqC?{5qQ_kb*ny*lsnMk<}CstTvYn#&~t*{Y#z(Ty#ePSXj% zQ}Gk2^8hLRE2(mYT*0xsA>G?&T5!a2Ek`VVJ3Y3#ev`3vKA~8Ov&$`V zc6J4{_PgELx^vj!*4Wj?D0Zw9!~|k!B?ld{q*C%@6OVr)2)W}2DHf(rI{r*bQv7QlIwgM4m^03u>b5q+%>SJzmY^P8@Pz}l80c-q382h(a#c@Y=twmys22iRwT2% zn;z9&CN1PH&=k#1l%W0p2`|#XE409EPUT`(H&vKl8-vK`~}{3Ci-K`=d`TYu3dV-GXn8n^ez+zUsSkL8XW*>qEE zcA()R$TvvOKmtu%A+ryrue+ozx1e(`w-9e?GbT!t<>bNjNTLp1OYsRZQe+W}sil-W zcA$JoJbgulEvP&@M!+c7RjyEF+U_d1c-^5gnciS*`=ke+*mx@RL}5!frwkRsjqUKZ zYhFDzwCuax_Mnj;1NKFznUIi!H10D$*=BTP{VH;7iC> z`BKXz%67b+T+iJo-5~F<{1Dx3xm|e*J*4~;JuB^2UPixA-bTMu{*L~toI$6QVyKSd zM_#26#guVM4T7#HB;4LI0c6lJ(}I$&Bhe#JCr|9s9rzN(QVjUm^%L zD_stFCl0s)cO-r!j!IGsPU93{g!vZ5W3hk+pE}cvQE%LO8VNPq^CSNF-}en{GZ^uiJY{f#FSXd?i)k{JQ;R(^llA35c;(U| zi#?1zoG?sOTy(k!kX29BLO>)v={9}Y#h42vnI1P4-1*+;&l`B*{SyPf|G_hO^7DVf z#S@<^eg3;o{B`Mu53YasFNBQx?99*c#^1h=7wtaw>hN86JT&mx?FR-v-f@uf(JIjS z*OCp0L&b?eD{1A(Y&;t%B#KB-Xr=ov`PN%>!*lfmR5JSnH0~x`pD`vUvx*GEeS7v$ zJ@P@2te>VQ%A#B{H<9DEIkg9AdoGZb}+96R?_qyD#~d z9(S9vja>0~ zKfIKeFq>lCq*wrvB<<*t)R@lpVI>qf;VgHm6I|{IOjg)roaggyA{Z!l#;2eoi zxti+%7Xg?0DU3S0vB3T@Me86!zEra_fC>X6NV4**vfbkGl5e@m8sSGgmrp>$Ej&he#oe zbZ@{&=fE%Z;BWqx3Lx6uM_!hR8;^GTs094$garV6ewfL_&nGSbU>GU1l&IynT$zEV zlBx0xOO3h|FC+`)C6>ABdc2aXl-F7=#~t$JmYeW(@{N`+@hOrOkYjk59JiFqKazis zC6%7gt!9>yVt2WP8rVkN<(N#cCk~?BK1qLm?pW z_JTYlhzAJBN=Tw+NzAY$*S^bvkt5+)?&x%!bO`L{H1cSWqXQ{dV*CukH6T7DfgSi6 z!33OYN6xmxy1=T7s%k$4j>p+5f!a@(lq%Hsfim7_6Ai{#pgIo6^=)>>5)ZWao?$p9 zQzousPo}tpx96XwSfr@b7oRuP;d(|NGB98#MS}78=-Dg~E4^9gQB9-USI#yFE8cPf z;wA}tO@h&XFl7uDqx5V?ER8MA$t)y~v@ag0;TrpY-m-Nq{@Wd#EZ%WR|HYSEen8v* z5#V3BRGP$LYTSG%;myb_)8d<7;%Npn>bi&f;-^LH( zh)gqJ-JJ0b5woAosP6<_gjmfkKB$%GT^y7V&Dc?-|CG;v(ADK{c6F~IoN9Kg+2`8n z0cJe?ft>nHX{JLJ>HU7lZ{(EM8^=2_5j}_g5DnZPd7gar{PX>yu)qINvgE6&q^Ey2 zJr5m5?Ob+pW+b7+oQwIz^2;*Mj-aGiE#oK3Q~3+zEzU=UkDQVX(WBB1bc+_x5afD> z9P?rzx2M(l0q#}4I7MO`fm-9dd-V9?_4jTNAGufIq$cgleM?j&df1P^eUQR zWv`=GG104}(5vvqu|Ya|l@upc>N6=y)6cgz>^SN-rJt8|LZ9*li3pdvJVYPa>27ki z^6BE2Ki@cT=8azueAW8=w5P9lb1x`AyWbf&`|z#U{xMf`w)?p~E1t(57m}%5j*0@&oqZZaMo6}`S6u-JXE##r;)K!VA27P8#Cj08OG=MYQ|F6Xh8ne{ zD@K`4Y!!K85s7FA`Q2D%EQz!85}Bx&^{ms4oiKn>^*k{*P`<=@Cx535Qmylla7a8P zz3Q|$6W;P5mto1Y2h}lng7s>At5q&>U&z-yYSu0-PUJGpY4~{R~)}m-{yX2 z`HlUL>ide@JonLRLvEMTZwJ&<=_TQykW)m&jueH6j89OM#^c5!;wn+(B-vuYqG%C# zjfU5FrLYymhvgyRh35UjANpfod?K5244jVh7nDzq7 zi~7EL>I9o29z1H14p{Yu_EK-G9F{ws+huluqJD>m#1<1Pj2V?)hd;aA%6`}@yWE!R zE9bz`_wJl>l`)gda-5q}ZULDlH7v2irQ_x*A}BwlKB@+dqf;JS0e0eR2k!av!y`h) z`8~fMxE;;}=Lw~@H7ESF7E6XZTvRk{7}9s?N5WwjlKn%*5`WrQ;!oN3 zDYgEXXwHCskjQ7lH9MP2WXHpbY#bHY^ti|tVZ?>`L((0(=fO-@t<8_wLNr|)JH64y zw)@kxY{6nE<2Uv@q=fnK|6&5_>+??Wb1a6iQ*!iSC*4ly>vK@-hqsvQhMA=T+e4ft zbi>_2qBv)?zU2?(Z3r7jx6)AfP7-_k)%I1Zue$%KX9zj*+Z!@7M<7e88BaIkar?&YJn`7ZCO*)v*(o!KSX#;=8?#k;CUGMMD8RTtilF#vBT-5gPzkgQe)9s z(>puPv6I0tHS^WF^1gBM$=58(6NR->9<$tMOWhJ%>Xy9vM7jREJ=x)}FLE1e+-VEk z=JGZ@kn-zi5~5AmW!RRFHP*C;9Dh<=bl0Mv4t&<~`jx-f^iY4!Q`c@FL zd!Fqba>fKZHTuvY_2|(<)S51Cs6og)b0Q+K<4Qz!=h&TRcR@3bdHp;QWnwI28XVh8 zLL7rDc8bk7oA3+s_tU;eMA#m50oydiUFKvrf&Old!-`}Xll0>*bxR860I5Z85J_qi zc4PaFXsQePIdquTMw1d$D6NcM-qEeyL--UA7WIF1L?$)R39n6e%Ikwoh^>cawX#JEc42$GOKO(M_BV z$4G&A1cAsvsUrm$K-o6mIiFgX5?Q9FK-ujMhf3RNxx3R%-22Jn(9cG73!2=ANA0m$ z6mv1vSTRjlY85SEyUL2K`=QznY=yX>CR@9mZ1+d{uRfmEJMgo$NOQKTSnVUV&uYSQ z{S0UFc#n$;`P5t<21-BsQBk(e2yel(*W>lbPwnQ^v@58dI5Bjl6#7SMnQ`$?ku7-! zDE3W|?B6tu=WP&Hn0_#_J^96Mhe895eYkJz%_(;j=diuFd&iYKMvr6Qp5fp-++3TX zW|r(=Wc{Z^b94*)9MIx$6ua)mdHAA{-oO~V3=0PaYM&WcEbKq?`R&u^{(w9C)l~k~ zGh_H;XEZ8x&|SAV!lNjRU+Bq5oxEfM8Rm+$+XOO9X5$86NYA8}!**s05ppQu%*>FR z9tB`^@^nM010!k323pp`{B)B(JygOlg6}`9(m95#M44N+$zk`I!L8XlvhU1zEaL^+ zo3=k@$(9ViqX=YQCDWae@ruLgab$QLPJ17DB#}Y0PB?baeX-6&CN_%ktdqyD({m>J zus`9V1#&G@Thy!6+f-itkI#u1x&_ueC&Ir|b036}&56GcF~@g1_MGdyh{(|MB8Hq8 zQD2e1`PBsuM6~1EWql3~rElx+wTu)-TIrG7oVl}+P0JfrZ0ScxfGC%dlbOTmCx24K zCbsCOnfI*!PVdtzdFl4ko&yCV}Og+gyXOsMor8UnYVCuL>qY|!Mw$0ZwINKqNs+QW5AK1 zQ*O8X4b=b@E+bqeJX-Kon8yK!fedExTrvC936N{(xhHgw3Ke7MuS2j}L*3}Sw1_xS zijH-=$2D+!ZXP%>bF6b8_nm*<$ba?p&EFqz51i@yw8cDvZ zlV`6DWratuAI-?fAd5zfaOZ?Yp)l;Whb=a9g?ukNZ7A;4PmLw|*vxFk0APVmKWF~L z3ungSQk#3ZyiBIlX0jABnO#uk;2<*e$RaxFdV>Bwkui!q8`j4HqadPQkmJnM$!Tu$ zH}a=`9JMOSrJgif`ei2TEt#yQgY`2rgS>EwQ2^7?t~Ps&7Z3B!@Xm;RVEcHaU>S+8 zKv&>xe22Wr+Gg8qzsz?N+JSH8ua~d3UTeGFev9u{t`{@hHWc{C)R4XDY@&x!XWFZQ$$ExL{kNr38;*06 z$GSsWkRFMzX(jYAT#LbD_b_enD1K@kk2clSVRjs)e!_-%q6-3_bb~-HeIqhn+q(XP z=MH_cZo~Fl22Q{A*1+l8S6sht&2=}fT7AQW89NtT{rJ=0x#}@4YuMducfI}Iu2pvp zD?WU~!6d@?&}~1*3)ftG&9ar-uRWWby|d=g&hI?=INb`1#JBE^1@~4hb5{II&XN)R zd+4tPMacN0b5Rmqs{{3&#ixJpl+GWRgC?7?QX%GFr3hZaOXxnn9bF(kiMGRYCMiez zz|s9B+oW4i0KbH80RQduo&PHuNn!X#6l&4^5HF9ugPQ{Jt^vQL0AB-cDug`;@$LtB z5xDoj)q<-47c~54L!AAP=Hrm|bv#0I;d_f%jy3>X31J!V%z=25z+DgSPN6p04}Ld5 zyoVtCNq~cp$13=~3Z4(bdm%g@p)h_a`4GH2pgCHE)J*jPK9>CjzeqFU;B$ zx<7kQ#G=KtDcUnRRk_zi_vSqw`)k2N!}5w2$1jh+HavI4o|1UU>XDC)svEU!^q)%q zRQ8=Qakdz+fc&J>fJKOZw*gD2kvwX^G8)M# z25dn)xCsVqx5v1{CjDT$`iTJp`MCaVzywLIvj)teTsLRHJQCdb1}q?(yU2h=B)P{L zu!Kgr&of{d`P~~0*n+Cv*Bh{1{I2^|NE!1SJt8e|F@q_F)WBK>i_HHr220HUdIrl3 zzLUWgio?L81`IgNI%L3r!>m^f7;u>N2LlEihC&7mI1I%M7;qRm-+(2wA~ef@0f(WV z7%<>4^sWH|4zt%VSfS-Cx|P9JTDGEl8Ej+zPcqoS;Jpl1Y1xXNXK)6R#V(=UW52utEUrJ$_ zmEV9_UU610o9^GiU{;rSCwc;DXfzs$Mxj!G7NRw%37)f23)%>-18qgE%x5yZwE;}; z4dCC*VvK;0DzqLh4b2C?)$n}>YG-dv@N9zETj1WvV!|kdro-C`@NGhufKLreeIw*+ z<}(XY-wJ7OhIBMYw*}H{Mk@hc32-ZfwWadWQl%fsN*_zTjYGw(3=NP%E5y|x-v-Es zrm+&OGvZzVZ)?DphHi#3wx{Yu@zBibvHn}jvx?zDLzCcr1%y!F28M~Db=1>oF>0!@ zTsA}KN>*R`whGd|1io!!KARy{Bg32q{$_j3fHG0+G_&tEGTcsN-#4)sO=tt;Nip5X z?wU~|Gp@$`+rfw8uQk8qu~~4dq(T%J_BKn2;7z`&wKL z6+--GmTOC@uEWy4sAV;6PnBjY zx&ZEjv_Ua23Y7z{M#E@CDN18F*vcqKZ}E;46|Z7t?O<4=@2xD24G`J^mrgG$*taId zRl^883-CTjA7)4^Ys*H+WhF~dufruQua&H?ohx7cy_xmF^{lt)xpqJdN_#ZC)#z;+ z>#L1MUd=`dD~+_8*nI?}gs<0}##qmwLildjkbd!P<=Xg-wEuG~rT03st=m{XGuzIj zmUGu$&;6U_nwW+IS`)o49V|bS4%=8y-O8}n0{Gv^xKqQo)>OxI!w{_MT&Bgi>$TEh z%I{hYu18C|B}Kh@Iy5Hbt^acy+39(8;LN_YiqZIbR$dcdL-|xO!*K(H8;utICLjDd zZ!2Wu0WI+akj_e2$Ox9lI>zmqSo<`9AFbC51Z;Ud7boxJyfF^x?`zUC(-rQ6_ zXiwwRI(_LB(`4kgno;IPqqh{Zdbb%Pl+KqahiG7JptrS2l^fajtp;z?bD$hjACWeu zsHFi7N&;q@{~xwT3QG;F?kxs4Hn~9~^Vtlz(J6j#bkG>TUvJP&p;^XnZ(qjYhsXlZ z;=|H#L|a)eVe^na@gJwhxO6l7&WwF-URC@xUS;C`>t9o>>D)2B-e$Q5<+Q<`vpLnr z%{DA%+`EP4vMTl7ltv+x3+XM?4yhHVMhm^vD_B|dnC+>UL-~o`h9yRex3iwIK2-*@ zZx5xV{~W7>IheIfA2){5^dKfKVR+o|f7y;EZ>MtPMgucL$I}+1%a((9Sqm{%ri}z0 z{{v6f`FJC%fjNFn_y#v`fK*!;=Q+1@u1iPexG{($b8H&KQ#xN6`c*sQ7kYcGFzSBp zQMBP(TD2{Ofp$iz8(HdlPtwQI^fCJXmI~6xy6GT2(HJ#oD!g3?Qq+9rGXwmnWH%o| zYT<1P_)Y$zUYD6yKws$w->kfM;O zjC%Fbo7Ac2QIl2@JwMvE>18pgTKgaRh@OfWzQ}0lZ{mewy^7(4mTN&O=Wk1S#1q=+ zk)ukrg=?C$*)1DeI<~epX_H&pT3gy0I+|NHj?k*suh-@`uU^y9uFY?1Z))4p)Hp)3 z+ow0JXluGet7&c8xR8D`t6^))<_>Lr%j)Kp+RB#Jt!?xhjV3>`REyEaxMFR7!}``W z+VqBvD_d5s1K$f;)@;ML=#ro!z4eK={M~Kq`nQHAV zo7+}4!DCg&B@Jy&+UAXoO>J5St;dXo+N|c4O&i;rCTi_XO08k;sWw5`)xR((5;zbzo;$1pslt>Kd9jjOeqRjZ&H z+Hh@t%ZlcW+MMQyWS2j0j3mOH&>Gsc)~2=%%^e+pmK9qW-l`YPs$%G%FRg7Yjhk0?XpqAtYaolXZ{gXzapn5W z6r&w2T4Qs2E3}%{u(1)oYK90aAy(7IjuDz>X5O-K{Z_58d6?c5>1k~=W1q7~ddtyT zw>7oX+EKKmWe=aH(wfLhP}mH)bTnmX(_~ z0OA|;uG+jFa8pQA98zCxfx!e`AI3`5*hKrE-V*1Gr(M$Av4(o5QB|=)RkZYG@cL#T zM?G(vR-4WSA&1Sh#c2(TwGAze&8z6Mi6NwQGgPR3O)>2jko1bp9pKqcJqIt?VH;+LSc-4+5*gym1S+y$_|sn z1}Pb6ys??}uL&lZH>_yc(v-%{fgRDl!AeAXQ|lnD7(wl88lYY)nuc`IhP0}-(E_x0 z069@63B6SB(f<<)^jW3o^Q*NP3$(fOYiegqsh*-0R4st_f@1B$84IV^ zELx~RjQLe_7S?GsQ?;r&b=u4sbEXt))r;rOuU@b~tC_FOm_2vajB4K^R#2(Qv#MsyF4m@0&90hO z&AzIEROYj2M(Hk`Ud_B9zbg2jyl_U%99oUZHFFluhu31L<@|-IPcNLYpt@MAnm=O! zMab0oHIO_-Cwx)E5`pjLRO_iwRBJ<81ftOQMGLA2%QB_9Y8IrmfPS1Fc?3u#Elk5{ zVEWYxv=!SyS6BY(0F~b%Znn@$mCK|bWx!v4Px#z&`l)3F z`I14nfsGgE3j6brcyuIBpGjeJDc_RjdM3@Jz4Kvy6hD)n#-9iG@*z2Fgmk|xl{s+V z!X$c~C$7O=_(2Xa9{ug#oEtW5$Pr2w(B0wR{HwB|g)T#n50N+x}W+&%E zpMgt))C71g?0LK_B{PLWriMYf*x&DneIJelKw0x)}QYD(Vg_E*he3#@^W6NBsH0C zg*zsPkrQJSLA$t2)CG=kqT!R^+&y`*(GNVw@d$H-!$1I$>JIUJs zy-nVRqP^Zdu6*=92E?A&~><6&XRyZuBvGK8hZaQDSW*5t|GIsL@+&!g&C}?E&q97)iwLya!(C zEq3c20MT3Q+M5BQx7cM@14M7J^;-aD-Sy58}@Gxbq?0*@Qc< z#GO~;&I;UlG471x&JgYlW4AHD$1@B(@d91jij0+7)QkjM*=fD`VO;Ff_q1nx6%NpK>>&V_>C z#_mqImw>ATw+!4>;64KiY!y2(!Cd0Y3Fz`F6>-LV6a zs!V(r3iFu#nrsZ`!*e`pXYXTBNT$y+6e2%{=jiTGEqvzejul7tV+Z|eZ{*9+@yN%a zJ_6uJp#zcMYkfTKj{FXMe!MsGM(D=K%O!m>_#BM&VR-DtHzl+pl4yrC_eLs17e^}eSYzlndm|&E z2yq=Og2E09u}q_3mf)gseRxfxSh`bMEY(P3rO{Hclp{r?Y$;3f$ZlDc9kNYUWLXwv zUM4btINj6a5movSd3xs=tP*-B`X)MpWr8k1T^Za=GIPNsJhSW2N;GqY)^&P8 zv=1xumUIcxNw~{B6U|&WscU?EW}lRt-)y}Dlw`5D@Y}X++cu_c+qP}nJ#E{z?e1yY zwl!_Mp8vb|-M8-dRpqQ?CwuRtR%Pd`s+E%;D;-~>REF2w{uaiLCU}p|VJKfT8r}7v z#JP)(YN{90Rz{4@%2t9%Zpg}(qFUI;Hf{2kT&$?)YweUtOMje@~`!71h`q;a3{m z#RtFr-G4ED>)#n;WLfYOjT`W8cYAhuzu@g3&4CX!s>}05rP|fkx$~6Vxwf9D$gO3k zj_$wwVl;AC_tEssQoARV_2r8?xDu|db)8c|Nd){w=)i$FPE}9F{N z<)?N6C9~1p5DR9mqiy{fnQV31m|tE=x6V>*W#Sy!; zVV*J1%g9*Iwa!pnW46B8;2?D0!I-SJw&_H|mP)27`jEkPjnjW%e#?@v!ttNfG{lmE zZpgytc4vzzQ<2%F?DvFF3G~>(LtSc{pk~9Hi+D4H^PQ~mE@0?^qjBJ(({frw$IXGo z(q-w63LD5L5`?pR#S-|TCObL4{)4IsRK9f;A;G`-IR1gN|JC#G&?|e`o6w8e**XiGI2k!w*gM-f{zsHGurZ+* z68QI`7I3sMu$EDVq8GI`Fmobc`6>Ju2nyP{Ytgc?u@KNQGqDgbG5qkj85vj@bm%3V z4XiDU1Z>T$O$ZpE=mngNOl+MAI2l->=>PTdPoQODWQ3v@GO!mnu`n}t{xM|cgrZk+ zHnCA9;P|om*MX>owFwgeNY%RWTY`XF_9SoaQHdx;;`R*9|UVe9~ zX{BUMZ;4?SsEAl;thbU`(sro+&@aJl%BfE!n>2)03S1zs%JlN|gw^2QlACL1tt`)) z^Yx}%AGJ<#c@rMU)+MHM@E#ROXZF+%-5hgXo@XQcpk=-$ekJbgX`sAXjT82Q#u4=< zJKbZCllS&}qrAo#C+wJ;-(#1P_WqW>&*ZX{@r~g;W%1)A?-h!b{TN$`(BnC5O^YDw zMTUR1x{Ke*ua$j3_si%#Ox!W#%lJT>DPH(spZ!ruChHB|DS9nTmH5zSI9zczgL$QX zWIA+nHQoQoi86LcY{67GDXu$8ntM_oHm; z@lBBGsF(M-sFR&u5DuTldnPw^4uhxPU*wYu(NwP=VADH*2>-XR;P}T{{om7{UdhGK z`Clw3JGz+sCny9BoJ{^r!~Zi1EF7Jjh0F~c|4nXbga0bC{e*>@g|V}_lNJL3I};ND zD=QlT2Q%}3awc|mf`1qDkIc!!Ou+PC?f+ypMuz|B{Ig+WV}tsq_s{m<^-u4o?tkQ; zw*U71-#Y&*|BwAYpZ|RSkR|_P&;HNnPx(K-fAaso&42v=m)=i1)IYs{ef+ckPhbBf z|11Az+&}XF9@l?=&L6)}|9tEGzY+XDYYGA5e-<4@D0*c(6Fje;_oIhLa-)rYF;#rn5L7cqA|`@u7%$*8@37T54@B zHXI)QY9R>r3PWgZtiVHAJ>yS+zfcHPEHC+3EwAHZvO-u02PZwOINND|mcN9_Aus{P z`01IoRUf#~@-q^$a3hbTZ9&5N)K@A4v8V_lvX|IaZBA#WF^Wx9#oUcU=ep=H2@?;BwMzb2lT z+3eL=DApXEwTQ)7Y)Zc6B(N;Nmj6veZJb~5v`}jv_`cjh<^FsAH`yc88xqG0ahw99 zCeX_tc?_Q+AODO4H)7WHNN01ric#0a(Cq;FrIYGYwnwFppqEsJN?0AxgX97PsNvkW zT+y{tFyGSs@M8&QW=}BcgR46_7U1H7D-r}h@-M#oLeod1M~YjNzJm|JLy^=1tGVpe z;cl4Ot5X4#LC^VtWa^xt^olvh#UQr4D|3ENSS^R_{qTL`kN3L+@dzY&vfITFzJbPD z!+V6g{K~n9QlQ|1QF9!y$cScZogdnmLze3CCXhaW&A@-tcnWTg$DZP=_W z3SbP5@JyZ%LFP_=;VH27pu`JM7t~HPKe6Y$!1nI-Ue50JG2=JG*hbjAfN0Pu;UmiB z$;uqII^e;{0hc%A^|0IS`>g^JVQzfygXNdym(^GF06sU?J68|M7pNlfwLle~;2a^l{?nTR{yct#_kg>T zJ=7P&G!p>3!PdRp-P}FBgE)iaa37^{9!0>$rv%^l1(icpN9@TjFmL$8=P~>-y>axc zK&c~Br;E1tb_n(f+~co-Ob>qkMEYH;S5$8t7Ns%{y}7*AQg`9I!2O~I<+c1vCEv0R zNtc+nRI`Se55`c#?0Ru)5NkEq6lYHHeX&!(x_9zl;I#q5exNw`BDq0mo2yaG{x?Y4 zAy&7B-h^Lxa0ivQs@~8&$U8y!eR2Iz`mn;FUEt#3Eb(keWGnI2hhc}1FL)%i32tME zjzAo4_Iz}GsP;>nP}f8?;L8kSHv2VzN*`>{^=j^w|r;C#XOhxDd*hHs93 zfTh*yMe5Ky;3zYcBdEQqSwC;2Vy*P5NhRHa&C-uV$?}Zq3MHLdPp!Y~F8Hz|Yklnu zOIir%m;IQ={PlO4caY}d{X9(l6To?4V5_KpLMGZUkA_8`eOg2gcaTYnl=p~v_(L;! z8ZTz%jS2R<5wC?5k$!Tq_w)%5vv&5>u6JJTc*9mhQFwrMO^G~GIsMSH$VEvs_t#dqKkajb1vxx#&b9SJwT(7&zd z!=+|#=EUmp@4&vmcXLJO=w?p~PklZZ-k_-WbN$^8`mmb=QriJ9KQ)EBb)hdCr|R%^ zb_F_;?efS^BMPWgr%&j`$mjTH#Ug|B6`=bP@#0+W`1ikY=wnX?;DU5QpZa?)gii)z zUjeEP5f&}3yy_O3ccq{V)K>CQ%YbzNb#IQ{Nqp@-&R<5{>EA$SeM6jX)!Z>$hbZKe z3UUXZ$sXyp0pD*wzPBh5E`A-H8eI;ZwIMtWLJoTl%MSYvBS+>^>8hdmH`NL}`-^-- zR%t*}n~U{|;urQBv7U~EILafuWCM4x=iAOt;tC$E#=PmzmO!u1{R&b$Kr}xCsLhV~g1TVa=QKt*Mm8wY z*=-&PDBUUS^=~?euEn{9Ms??m{_EyUcfT7~EC4(;R( z(mUSP78QJ;)ec*4`w0EWa4LMbQc3mV`=$A1<|--K%T}DvO7u%<$vG>0c49X8ER9IN<_oNZ!XPp+ZIvdeV15%Pf1X@exAqpY z(0zEG%->Ia&kBu*9HT3(pBvK}VD$nND1UxUgHYJMQXaEhbEmz#p&2NYJ8vQ7ePVEZ z6UX^iC9piW{LtP7w?FO!BXD@3<27L5BA7na{*#KbsCEz3gg~%Vt@TCtBCSnDmH549 zrjrv#%Ecmq#?;R1w?Gpl)+J%O3`J8Yq8Qw3|@&8K_!2YET>4ncmyt8VR-S)kLrUur{?j9Q#P1D~~ywS-_@IB&)!pi7=inuqC=j27W)TyozQW8s zmCzRTYLR}F{@DrFmyoO98Zs2V&i^`N+(NGGIvu0`-g^os^~nm`lTl2a5j=5K-C%8n zRk~F4#hK{Cgd#yvh?iXdcf}1c0gXFS*NJV(NOMVi& zRrj`CF{Vm+DMHMMoFbKK7HML8^dziw?M$X>?nt&TH~7cBui`?R;k)ZqQxBE>uZ>o< z*Wik)>WvN211;58kVd-)x^P(@^yuU~P;hVejd@_A z?d7@xi%A%@E}Iw`g+K|9i@;-Gi`f+xu)D}HO-P&Km?olGsEU656NLiP7YQRGK`nLq z87%c~9~9!{k{t8FGM^-I8&eA+{!H;;@kXDdRL>zuYrOSE#SJt_Zlw`bp}6!X9O2ys z#ET@pMT;bMHW^m%meC9+i!l)!X+XX3U&`kF$RMLh6$*-EWCWo22l1-IqYRGa$&na) zIm5n10eu@0S%44a^UTFklewvMd`giM0BpITRRlX$cbfBrgMAkk0oeSsRI@AMyQ2nl zuEgGO*WOe`!}*Lwk@$$L!=wTxWX2V9FKuPxS*Xg9@d8)j>L*kFd}9srY`N8Ai^pdt zd4?kCUr5f7kWQ7T+2^e5@SF>vlG2MKA%f-0k=IGD znp`2%*+`2e$gxWI844d&=E@b}fnielnm6`sa}*ZHE_jnQR9XySViFl;cjopzrct5h za0x6!z@eh@`XN$o4xP*ZOy(NiBQ6ytTPL&^S!OB9q10bMK$NVhDamwv2K6b2$vKc9 zlC4yxU@f|L^ULY7nq`y4#aeovXZ{J6$B;7eMi2$RoCNr4B2KX^iI{&W7==fT7Fg#iW_NXNb#K)(E0YfE-MbzV>9%jlU4o4{{kgXSSP|m-l&_wl#OoZ}{ z0wSUqAY|R!2GxrAB|I1-WG)1f6bC01BgX69Zz}5}^jQyba zdd|$@sOZpIYq&mhJEb0`V5A_f*=z}$^PC%(MciJHX(Pfexhx_>F zB{=w28rEM@&=cH%U8MdPvv!WV*w3~P zy_BBFZ{!rT6e2lA#3{u!avfzRrjy(h7bzFJE?b85p%^b@D3fGNd5CT$T}+yTYQ{c^ zK`sR7|A^#@<(86rBCh}SLPE(PcI6Hp#%Sj)AwGs3Vm+uvPZLD*gL~s>u4!_vPd_KF zyT)iEoE4$G_N=BD6FNF=t7=wRDOQv)q~zjrDc`Mgv%!hPfZ{!9*UdbMnti_n{Gjyq08Z=7FVg3%*|F+hRAPG zEIv%8()HsS*nAvj+Rl~! zxvJiIoqNlQ=Nw6~Agemvri^T9LQ*E#p!OL3P~}J}BNgT*VTW>Oxyz<5Ejuugqnuz~ zU|^cpGH5i(jEIcNZUL`IoKx|S(RQ{acY%`!x$qQ8H^z`RQC%z<6(Wcgz4I!qY4Ut3 z6qp{*2H>C47TK6?_m<(y=fr^>ZP$fq*j^9vC)7g`m!~9so8QV5BRAeeElkUAi*#+0 zH~svcmMdcUBh8F2JoKSho#iVYd?1#70MVQ9OtX1M1;>i_J`F+k!T7@(#MJ%ZaS2hm zs#Yi%XRN1~n;=YsMItN|2seA6d;eqg`%WvA<$nkMkwzJ_&D>HzK<4jG$Q zD4M+IHuGoFw17UuucCHD6|eYbzmcHUg!^9^_*N zYBocM2|R^mCF}xvzi}?E77(eNnQEi zc)UA?EyO-F=TskObhFD(veRXAFt6{D;Bwq`gpGgUIdZ zZ1p1|!hXmkLbQ{j2o%5dpbd9p%i3r|X(5n1dr)@%gy)PTm#bc>^1*7c=?_TTpryBB z%o3fL2Bi{SSrFcaeH)-N)cihjv1yBhI)aj`AlF7$V^ZDR=a+_k%4*uGsZzWa)3f|a z@jJRfYH5$PfghXem2S)V{%7Zy{iFvAPp#`I2Hy7@@A;JLP{%9x%j;Nl!ra#WBqt;^ zayaW)GKM5lpaiORb3Ru-(HXu(#?i#ly6J`EyQ7)YJ>?RA!XgIc7J+}6ph=-)-G#Gh z;@qA}=ey}HW(rN=+#!1=BWh?3yiLAqx*}Ra3K{LNw{?Wa7Ug-bKI<)Q@&`Jd9TIG1 za%Hp5^3v1Nbd9lz6tktoEmfOVn=8(S zop$$m#l`xH^}*-!vdhpH1~)P{s#mM!T6$bt{co{r?6vnk+g%C}u4(_~4SA-oI}E1L zUX)5_Qa6ihwo9fPrOPG0LXQ!KbJa>4cS24*jpFL;`kC9Ld&+0(_1ue{IlMW)^0&_Z zcxy>nltjhAh=MsJ7E->{7g3^A@i_T~XeL!GT=@k2NYBJMO*3m&q{0PBw|AwQA_BUG zh66T{c)_AYnsS&!$zta8i~=TdC1kvf+ZWkb}WHaIGiWX36rnWyRezi>~2X9@SH-7iW{QhFFL%I>T9fqTVn?A3{_xFGu zJFNo|s*_Lse2foppvxEzL59tS;{8V&nbFxJeAKl|X^(ik?GpGaiA+AU!9s<`L21Q` z21Q5VikT5CrZPPxa)VZznbn=u#>Fm;e;qCisO?yZ`Hxq135=mRTmyAd8W^)^aQ!dL zn~YP~-pkQe_Kn6gMxHn>KNAEkw5o(y5y3YFP5WsN{afs1nYoFJb@t@vbn=>Z4H$ex zUW-wyr_gi!w!7YVw*5wnQ5$>GFxTy!3nAORQKlbM0J zfW;B+5Ma3jYXeQKGuc$9EW{>wD~u*0;p&a7+~fGg9}?s25M?|zB4{IswBdC;(!+8C z(|Lk`Wkty~`CDsgU&4)@)66mqq6;eO2Z$zI0MRb?6k+3NZ{r|Pp_02Z`f@FYGyC$b zvRQ@Z3-nW}*vFhmLquKHjO3%W-BP0>q*_Ky#HIJKY&Q|yDEqVUq%XI*n6-_H3IK1b#oMDtEO_&LgA4c<)5F$u0#=kYDjm2nOE zarN%q-W9F9+vSYCIMI179ZA~lM1GCqSI-aciy!>tXg3RU+nbpU-GJUHjZ7xp`DC#{ zadB3vi`ssTBKg2#mX4#>h5S&7wJvtKZ#?UlqdAjQL_N|*J-%>NQCN6H<9|tI_ z`k-4|JF0PMhEs_WFH&J6mGllSc2_mhvWe-YK7Qz61>|xQ9VFNyU&e%V+{ai+6Dnwy z1@q6-aB`Unp)QFFLnMGytlP`QibZbN*5aO|H`j{!%nJ6~uFRSP2@Yy`L|#@=oOTm+ z*UGA#3_Rm{qe$#&C>oJCZ|dzpIYT%D<|tB+&~$xp>FD9%@KNg5M4o)9x+sRG?lHoF zHaJ8um+;2OAUH+_+KW@# zF1-rLf%pS{(;9PJZ_Oevea#OQg~G;^bS6SzPVf7qd||tVRC$JqQpBTCaA(rXU;f=| z(aYoYgxxCw#%UvlLT#%u(6DFJs94BHMy<`IJ~j>=wDnw1ry`l#@4MZt%tn5#Ro3TI zKhHwHydIa#@cTT&OhYfy|B;?XMzTrCc>Qy;{&g9{4RuU^yXwP?l&GdB@3cj0C#s*z zK0s#~PX!yE^z{0@MzlB8T*PWT6KF(=mO7hnV zcdE(pcw;Z>@dE$mZR=nU^{dKH#=K%26wusAg8S|SSf#Hy!KwYm5ehJ1hMyNCF85dF z7WH|6tW%Ij2BE#QHK82`ZcOcxWT6MGwc;aGDVvMqhrKg2(iFq8fMi+71|}yo1M#Ed zboPXt$UEWEcI3$1+AD4)Ks#Q@M8J_w(5+XLpv|!XUq#@+f$w@9X)I*bR`k3y%GMaB z^{zYW7y5J4eq6a{F{HO>%HapA~!Z>+y1KH&@i>5f~v!2 z7~U#jA>^<)`N7am6FM8S_#p-TEoxzaAUTuJ(HzXGu5hbBDS201J^xzyp^yizBIp>( zCFG2_QBWcz%TNImRU85qz?1kgxU4@fw+rsc6V{zlhu!L*e;!y?Pw1L-vI-R|S*RL?Y*w;r`Sc1qeh{Kvf4swvriZ*P zy{6%bjdNc{VBYYE)kT5i#m#yNowdVq>vC3?h`{3M-pF1 zq(Mm9?sX36ra{e#uLJWV!U)XtL+Vx%1F*#YU?VjEkz8-LGoi?~kOvs^NKDPPwtKDWZVOeILzcp<1n6dPYNM#SZs)+o?Hi@cv=T7EB;Zrc=+& z;SkA=eW?88iajCV2tklckM_iH<%(_hdpHa5}5M6O3VmaSIVeudfNJsowB|9lcCn!ODgu_#&TmB zmk9p~&w_6Si_Ma1QA@^tt7c_8dreY7rjw>UP&?;rxsn*uRS~#&i<*IT6><*EDx;aK zlxYT&(C#hIET?6v>>xZt&5C71JCB&zOXYR#B<3K%qj&H*hZSK{joNPXIeX^x$DgJ56MF z2}_1>bb}+7oU6Jeo)`cLBXr>*__P^ep<)rw5^j}2Q123-#A(&&D@wCy^gT9oB(Ff8 zw1RDL>U-97c7QNDZy`~ENvvtWL=Hrl1PF-=M6bAX5TmTU&lSMUi0;$QseHqPukm`a zL$P%MrUo2qa&(!HvV)cy)V8#DFMh|AgvB3QaWoEZ7VMHcVb9En+|V!llk-Wej*k3!Pfg`RMbEAP(%KR;3)N&7SNpVgs92`N)T*(2 zVbSEOL2qyKv?FLU-*4@s;i2`|EeoHLU(qk=R$)JNBA64>35mW=SHISg?V|IsqJ7!W zt3GifZ&iQ2qHWr_+bY+k)@Sl9Nyo^TkB3tH4|#PnsdxA-F9o}8IlVrFgCOCB=lM@}=)YBU_*Xw0ccoW@r0fwXndtkVY5a!1 z`>>J+YQ%|UQe>lmj1u%4)sZ={`!Cm&ph^R?&7~IC5$7#FEn%Hnuy9uNr&>9+j2||T z$-AwI_#mGy~VEM(F78?NLxx|=EM4+iERDm)_% zM^V9Nyz9ISc3Lv0H>IJTYSL63K3&ZC0z?MiZi4>u7rDbw&UzGd%8KMNJZN_Sm3xF} ziEsc)!LycEDx*bbyCh3ZGEQLrnhz=@I=;FYOg}8!udl8Ac|P7WroPylI?CYw7Rg~L zG^v_$sDk|wRoiS;u@8Dx%v+lem7RRwQE^(w*s_JSlzv7N&wRRb@v->m56A_N&~G1I zQw7VQmZPp-1Al1*lKEqXT%}(Wj4! zkZu4Zy<0{m0`i`1g%Z++`J$Gql(|){o{0R=zehJXhM1XwBfh2Ng zYzOh|g!Zmd4&MGci;rw-RfCVsnHK$}j~+AINS~+D1+~_ib_Xr9m-C8f&IsnNC!n3- zXP&o1ncjY`%dhdP(iy*}UD9GBcC7Iw_#L3VK~R!sM8j0qshmcC^8 zmO?%SixqIraH%W-JT?TE=}z93{SqFYi?qYKSH! zr>cPC&X{!P7EcyDXET-A8Dv8xr>eCpT`H4mqQZCn-mexh3$EVy=58I#@BuhPIH;@AZ}3`J&{*yp~8xIk4Sk1D0VLLMT!e zHAU-(ay)nG>yBV!-k8~!z{riHz`&V6V7_AB!SD?xzn;uT=qvj+(T$3h5**Wn80tvn zJzkEOgaKjz`Rod^!fX`t{~DCW5!VMy*y=BkY2%oS$zp8(J#&2~leWRwCZ>!x><#6;&bqddNzRDX&9`$)ksu& zp3ym-1(xlxkDri<`rOZX*O3Nlfbe9|DD4!3j*%%trAFlF_#}K-N48owC~3VqZlSE1 zye&~%MRthcDvYB|jdFkx7iY)^MVG<{CKB;zM!aiUydr?{bK+%fEeJgjhG9wK19#OQ zq(9c3HgOwmsvBq24?BfaQ`pjqi7*<_Waam9LPIC*B{;QXmLOWiJPP{`S5I>cfcLg9gK7%RcT@Wl^ z&c7vj>$VJ_DlAI#(gtB{f-$29IoKeDC$LixCw(gdc}e7FS0urtGy*yMLDQEs!1@=)5zA(opj<4fjzR1M z1JNs^aoP%DTzRk^2%bovhHL2M=zHy*w&qD|KpRzcF84ppq7NGvjH^tRJjzpcu)#9U zEbgdq#QcEH7RWuAhe>SVwCj#1sW!$^QfPar7{g`S&=p{^0rktK*`^LfmUyyP@eAzBKo^ zqTKj`kgp5dyBW~+3wM72{?6g=4)RydSg# z#!mbWrEl$P%valf+r3bbN9`N>Vd@0>68#0L(D_C3N*O2g!#Edsa#)Ponxyjea#0US zg7IU41!4AMf`q3(lS6?;$7E%7<&};s-ogP)D+x&Taj9c()o$l`|3J01dA$M!FBo0$@8<`HNda2S|_4z%ZbbT52^rf2UQI)i> z)unJz^dkNXA~Nec!~V=0Qr#%jtP;*0=}8tGBq*$s9h|iX=_eySlgrYcqSW$j!8T4! zWE(2d&o_c1aDLX@zV$x2S6gCAxmI1y^$e{p&%32cJe~)%>5oD9Nc0*S+AG_%@1lME zhVPKoJ3U^HzxG}-En$9pk2HlYuQN|KewNKk;j3|iR6E_={5OApCzs6AFVeBTkKcoT zX?s4ghss-*-^5{Tg>H-?1#%47g;s=-aj! z>J04?_ShZ@4XcL{7R}GLW!|yOjQCK?VwE73@`0^vZnypleyyzWqnAg27&I>KXk8q^(7`4c6zH&80z?KO@cv5 z|CvMsRH{1FKXq7~)v15#z*IEtej5bct6ta{7*9Geq|UiSz&wmybwu|oYih30GEEY9 zUg&~R=j)tBPB6q()hK{fmThX+jx&r+{3Q!onyqpB6bbb>boLq1hfVI)q8=ppK4ifR zbx1IqU>M`~Xn`3_8xLZFxtH4}``2WEshY1cUih!V;m?o45fCQWYiZY%KCO<|lNu9@ z)elamD#+D}Kqb_Jg&4uOF6SPtEY)C_ye_a`)Y2jV5A#^TQ6D*I$~vplBrW!VA_%z* z2Ke7_80^#f*(T(6<(Q;jImdT}&0CMmP13{!r(wW0D1E2BF~L5vL||MQKbDxJ@953! zk(Ml`x0qnKraa>NDU))ueg^q*7|pyoc)OEi5c%x|R;rMF>`gY9w~&Pq)L8EAc=a>r z@#L4uVs83Y`OsHL^{GRCNZ{{wqM)@7N3}5qo13CK-GN@oP>Xk2Fy`*V>r?|SI~3k% z5M_uvB|vvzK-L0Tlu$>;a}nNnusPAiQO$|`Wq5|EjlAwCgUR3=g!9l^|MPqs*je}j zK-C}80NCZj*Q+W}r3Y^aM zF3x_`{FUi6AWZ=0m3d(;EsPSs{SgT~x(b77dG7}X)18jpUGcQfv0)$M@>wg8iOb=a0Sm3tec7ksH} z=Jco4QPsYX7iY#7HbKn_*fmDXe;ae?T9(1aX4WB+e*sbfmZKJ!nrZ+g_KTWIBpid2 zS9`D?xWr4uEWfW}SmnDR^dxLm88#uOs70g%EQOS;jtk4-|C|{)IX^9$v|JZ3wKV;- z*?ydSu47H_+NeW5#RY+}2xj4z+jRlbV#a;g-f@VyepEj|lRHkcmq}fUu>~^$(otpc zez5U!{#si9?L#TE<%8UDZT4;>=!U%Pc)cXm_|2^MP%`FUBdqy{Ak%ID?tLwGYpiGm z`e$9!t+>)sqmt;b$xtS>TcAFfuOLZ#>*iZ~SFl}?)2wBI8!qB|(z_V*Z=#X8tX`TN z>BQ_szR$R>bxe!iz}O_Tdd&UYWB1V}<3^_#bs{X7GU8=k!%1bTMK^u32x9A4X7y*B zOC^tMzsKfdi*lF;Yx1#fVMr`#dV;k5N>sYs;b9Fvw2Q7cH-sTHnWv)udBETNs zpUHs(dU)Py*fN&AeYtuw!SmIW2EdxhAR?|Xi5RT0@Y>(Oi}N_66J-zZvDHg{fYoCq ze793nDwo)HIPV~T;li%X-r^KW^zs%AXVmuz_R);E`rRVfLp4r-8);;-<#VwgyP#EEK zP!&x!UDD{7ajsUP1k2z@cxIK{_2iUWV6#)O^d$ia!yt8KP$-BZ*llW`dQuA#Ydt5GK@(W0#>|K=Om$RVRni@W2xk*b5Ld{I*|vO! z9i+U(bFAg7cM^w9u&aS%$U=LCDYLA73x?%ihA+W(b`T@A#yg5{=PxQS`t-v_$zzrw zV_~rpqm(}m=Db!qU?#Y`taYzK)>BBWQma@Md3u^sqzC@fJW9Hi!D2^^+SmD91s}A5 zH)|>(X)tI^w$l@}I1^mES+Rb6k8BNz1!xr1tCHAhk5neVDOy1BTr!@fMfN~a9&=nQ$QVa*N# z7W8o^*zD!oWK?3nKnqp-8^#XN?6a36D%n_OV{|i{H@nqYQmJEpbG5N5X92?H?fZMT zRKy`xerI`Wg_6el!s5oJ7e$l)^y(534bBB-HXVz*6D;_;{GjUk3LVY4`uy6`?gH%) z6R;GW3>C~X>}_LEz6x)1b{QWn)RSxAbAUic%%!ldtde(=86k%pCU{WL{i?!VOsq}l zG(|Hc_V$;TpBlanL1rN_&+76LF9Y-9&eC#sUTde3Ac~Vl)UV9o$zh$V&u-_Qs>bR+ zgP*|8No&j}lZMsp(On7y0Jt}ra|QS?J$vl)g_G$}eg*E_?? zl)=41Vrv5UX0v9O7XX!Y{Ac0R_j3Bv0~r`S?Bt$B2^*=U6h{~9J;~~3#uJKoJI=pu z0d#Ot|0JCScso{kLUYQ(qE>+|Z$K*v@Ug6d zFRvi#$_+zvWba+~*j0_?v6`2+s6M;8Ju}&inI;ogSz-f(dU}yf*$?b8af5@uA0Hou zc$wOsb~IJeZ_X{THMaW6;8h<19!sw2H#!El^z>ZU+yZ20!#Q2!y4Gahl|tI!z$<#lY=k&_xF~}IPu2{d? zZ5S^imes1ACEyNhZNL!2HR$*zk;y`qTb*THmB=hrSBbS&NqUdCzNTXkv#{k-?LCAt z2qmm==or8;u(18#Z^TNw(L@8Hii;R-}O859B^+}}C?p}f(M zG(Ap5oTnt|C6vNqWGG~Iv+h?fYI!B}$=es*CFj*|z@$qD*$OY4wyGfohJABt_-=I_ zoZeb}u7jVmKi7{t*WJ%i&{=*{RXwHyoNZHAqq1kA)nqfF_)ZB79HcM1C^0~n?E2V? z6wq{mrV0hytP+DBdQKg34whfj@LBXydl!eB052ED|tni>ROjeef8w6ese zJn)FhaG7vUs`8gX>S%w0G=|wg)f|~BRY=5K9YeDzTn1GWY;%SAYr^Ux~z{yhynYI42^gDNm-P9zU~vp9TBfd?i-1h=L`YX09adyHw)~E^@XMDM*2E= zvohmbzXh)&c54jxQ1=io_-jD<=fZlg7xLp)X5KgV4v5b)-f8Faubpo2w`<;6x0`?- zFZjnTue_UW;Qwn=^-Ta-Zilna#REop*hs+QNtKzxGQs6%dE57<7hjYISc!p5lS+PE zo-ZXA=nKBU#-kbQ!aJEcSp1`Q>2nrw&Xvw|UO9*2A3;^EnH(gUo7`=s(Jl@Chv6zn`TOvO^y}?xJVLmgz1J2x_Y@6!0(!b)gtWBZN z0A`juYs*;2x$nQ`yLbB1tVhuv$)~}|=aRn0Tl`jRzhu@vHV!_iJNJur62i^$b_$%l z1w9wXcx8Ky(If@%t{Jb%%TOkAqbZblv;@Jf6&^WA0w?34<3l;$h+l}FPs1nVDPjdJ zn(LV?;Zb6TM*-8chSr_zs5kFvo*}f;e!$VcPnp&~#=_MV#wH3p6w}rECdxF=Ro9?+ z3EAV11c=5+gqq`R1Dmkto#K=FW{FRI#2v(c0HIz4nnwYMc!2@ZgxJpr1ARwAr?CH8 z?7tDJjtC#iHwS>#`0?gW&mQ?rl_fUg0wzG(G3U|5Dhhk)^7 zj^B!g$XgM1f=+|55^Wk0WZu02C~*TI=GLDu7-OuAil_LB{SCs6`*mJ6K5*KDKLsz@ z7rv&U4zAb+V?a0gmjJ)a899kL&pIrj!V`4`&;a5{35PKqy0y>S#9w!Wbiig{Foc7f zD!3ugsgNX;4TV+m0Y-$m5!zt*C@V2PjRP1;u>4qgPB88khMZ~74twsD!f&JCcxXUq zvpEZD4ZsRopOdFVC<~3H(uCRqXAT3(E%Z^Fn5GeNXde)dQM^42b`d!wKoG4aK}yv1 zv@=OcAVOZ%fmyvhwG+RkEv(aSDEAW6FSIjRVM`D^7L?9GdNG77pqp%=enUc^G zfwV4hSb6-I)*-v{)}tSW;Sv4ey-WK?vhv92xPgUIJiCPlOOiBSUhkFMm%l5p@EG%< zND@5A&2NPXP>$mStzw6cBv(l+6kd( z>C>XEK2=&um1n8<`bWK%s-?8A)U(y{|ITt}=ALus&NS-x%iNjc-0yz-_nmXT`DUFX zVSeER1XSFjSlluKOcj4;PO;=wG{^sD2F@a0hu35YC zvsrad%^0$7!2dOye)Ll8X!Ad6+<4`KO1FkLud}^T*QOg*UwRPsN@$JMMbgQFpq*82 zC0E_m`9Fuum3NQ-;BND2M-K1W9Q;g?AV;39nfbR3t%CyZ|5UO!@LIK!_g;NzTFFfF zsDPYP)#^>^bP`_Xt`7`*P>5a{#57(xsroY;GpZE#D@8A{Cr$OXbwV$5r`|e;F6(QD z{alD%8pJeAI9&m~2*qtmH&-fd6WgTXjOz88Cd{7Oxw0uJEV{H#2>sl&aoDXQ^b!)& zA>mRb^dc5dEInMUcw%gmfEfYxDkfB)+d05gA*^y~od)#t=QZo4m0BvzSl)YC5qU3~ z#BYw*Y2JNIy|DQe5B4rqj?k;AUY8K`8LnT=tn}T56UPfLSxQ2yF8X3Fy>`l7wh(>p zlsjP919RP~6?UAdoGEU2sU++d<;46-=tVp`CT&<$N!X~$VNE*)RVc1rHaj2&zfZ0g zR0{8>_pVv#pd|sllr^YYoLq`tVuhnM#{tXk9iMlrW4~IvpRsSbu=Rz(qk~)9%i;&@ zuF)|0r)RGQw4PFUXZx)`uD0qoY<}^;-4*T+tnuUfxpl^$R(=kbXWaOq;)o{Orl0;> zroH)d&D&S&cCgfL{xmSWSK6E{d%E>~_w2R_L;km_`^}Gk-dwzF@vbB1j~rTZJp9=O ztrxVKQ>S~=s+YU$-&MMDz}}Es@lEzOsW?7l+L5kxF4vm6c6F8S%{7YOs{8q-Gxz3Y zJscuWZuk86i|0i>m)qg;@=bLUgbH7dd2{pK<99=gl5QMd7P#ixmzz3_d2RjUGi%@r zAW5lnDui_`$`3fzsB8boRx^{Thu2SR(>!n_>^`>;`Zl^Xuxm)ko|4LKs(f&+$!j|Y zoxa#W_@RBXj-vU&lUJifYtgUEGh#c`D?2%NP}rLJX1J~C|3`Vev5$6+gOe$p~^-`6FxHf@-fdnVxe+s;X+cZ8mJ zE4KZ>gv#qfCKs=+Rd-`lPH=YTL!~{JZaKAK`NZDG+l3{Tt$C(+TWmi?ALtZy^ z-FYdta9#YN(RCNZtiCe+O26YRJ3a1S=f!1*{_%NO;KApw-Tv&k6BE`PdlY1z)$U}; zTNl5$Kf2S)&2~;awWH;u3CG)8f_qIllD9Pd?JHk?*ITkZsdI1dnz*3<4S8YiqAmw2 z9}kY-n{K(gEPY>I(WYa4{+rot)}75)USE?QzH)PjePNe1w@&Xb{MYv4+ncXEyxsfD z;Y-rXy4+5Et^4%!EfY_MW`1|^yYwxU6V};YuYK6wcGBXr_ddATJ1b~M-YtSIxe~N8bMMons@)2L1it@BC}T#ufeRN{Q#LzH+zviSIx7F#Ooggj=>N zAz3YKEpIH{9<+Z1^ubwJ`MsH^Z7=SV7Tz42w4?j%RU>|zH~g1V&j!uNsW5-Q$b`5b zrygF_>DcC0!y1RzJ{_G@P+w}e@7|Yb8S_d;l{Jv$c^8#YpU86_FYRB=^2wc9-BPNj ze7mb-R(5Q!KOR`qmly2axZ$0Pp#$Gt6@UNTU;nw~)$XbNQV{@UbiMHg-^yVy`^n$$0}PUV?z&OZ?}Gp~8WxcwF0 zsBpHp(&Ua`+^X^MoZ%N*tlih(>*1Bgw<}z9JvnT2#GUO$?Uuy_f7SMlMK6~fT@k(f z;N^?I4Gdi{J>~0F``&j}?DfNwA6xD*7j`ktlt1nIWWoFWUU4=^9GQCPL9g`GuUkbb z+cUd9K7Q!ows+6A%{&u4zvlhVpIsQY*L0!N{x_~%oxE^t{d=uym)39n{L0#U!e+K! zUuAgY#=mb{KYqj3o#D1o?_F6u#6!ZWwyi{4GL^c@)^?mV_C<45J+V>^{?37xkfDm`G?zG?YwOjRt8`uws!ID2R- z>(rND#e|%_Rt&{D>PHORdY~nZ99yv!h&v`59^MWOB_5SFi zlE+&X4L5Ieev(xD){ua)Z~yn``GM_Lby(GQ$kq*0rlbYhCfqquW?S*mtf*;4MKvM= zl>eK%;WKmK@8=uG^-8WA*vDKaqjt^h9dAzC8~$_Q!}RH$uD&_7VM&*UuYM8OD=d0M z;=1k#j4P@2RrJ=p*+Jc=b=~#VjT`BsXV;GTsm8DePXaFAOttH_5<#sgP%9BZ zb|_Yl1~rnqjfG){oz5N|c3$e7la=bN&5qR$ZFcO?5rnkak>ql=*^!_Lk8YbC1$EwF znsLZ(DrhqfQI>QXacJ7?EIO7w%~G@QzwKh?pIKiF51J5M)Z9MW^#D#aCFR1j!)d?d*kN$Wpvrhew@5m+ZTRt83 zYs(4O*R7s<;#>Lpo_z`DvR^DVPyBt{?-%>M?^t%TVqoOGi#0#~&#;4+%SJrhy*uuk z`ZZszA5_H|UNe91@jh+ae^hCD(ynduKKpfP!Sx=GpZU+XHKKc_f7NP&%@V(@>bGZG zSB|N-WWBQX>wvBI$1OcDB=_3w^y?GfxxJj_&EwYgye(ip11DmXMR6Cz~V9bs1Gp}qseBl4d(TTYvT+9Vab)l$V?G?vVNx-sFcnN884&dM)R|xR#s7eBNrp-U{1J zeE5v6M%vvnb7`JIa~pjH)a`I1TA2rsWWl$FywY!a|I7mku)L{lX z#Hi!wieRW6WYl}mRe^hO7aN$5uILZOO=!MehZ$saOothy!HiNXZU)5)&|L;G47$re zrzzYRh?(th%_c2vU={)Zk4ebQN$KOv9~_Yo9UGD4gx_w`^r&*(M_OzpB&Rzg5|VRK z^D6=PgPxh_%*!drO>yP{Q1qO{h&X3zW-{ulg*tS}g4JwyScgU=B@fSw=!5Jww;&~- z0LeqmhoYc85dh3HqmD+29v!kA9zoh*6AU`4@D>=nE z3V0mRIV&e+B$9AM50H*V)-1EN&+0im3q1&n-19*_1`Ap+pz+$iR9ZN0oH4gOK^fx= zdXt=+-z_^8>7M0fQKnQtizh7tZe1rjt9^dY&N->$y-|WtPc&=6v7U$l*A2lU_UXa? z9)q!Yna!9;1|k@Q5r-(J1u99mOnVHrX;Bl@xUF`;)8gi4wLqex2ZH6}wFH!EbOrk%VRozwy}b}>D@G92qXFdS3LFx+bF15^#?JODTo#wkIJG_n;p z$E}>Xl#k<}fS^kn7Gcl^I_cuM4m}uuPRV_^C~rK+Yz1J1R+i_+&VcgV%6S6dIpaXB z#^&O|bIxMQ$#a_-^i|7qA8M)cT#p`%Kg)AG(Ljh^d5%LX@Ep_1@Z6YDJyB@Dx9df@ z%)I=Fp77GEVAODDZf16RM9-XY&fLhX(HY4!v{BO{&J#?Hq9D+qLTG1Df)$p32ICbm zqm)5l{J-dzp<8tf1N??Y;G(~VF8)=9u9$(5S{x8)108WGoen)1e@^NAF?1_-%bqII zV=(3`KqJI5A{PC!bXa9TGNT0x4n#|^u>!j-UHpqI9Xyv70YA-Lj~J0gAT2;dwSfq+ znd@?#+Bu<=<+yR&r@mFh_R4Uai6u5;gYn=vr(@;wt>7fI4Dz9ps*dXsgOO)-98WA4 z$7wnuVoDi~+l<`-<+zRW1w95s6K4&T)sk}3tx+xnbmSMVN><(0>bG`tW&crUs*kIgDmpGd#AJZX3L3GlX8U}5km@ZA% zp$Fs7G2Mr=^2&6~SAa%{Wtnd55h&9o&K*ElX1qD<=ov*D52kZ!R!*kF_95fnBp-^Y zGF^`zj6chCJkdak-kDBAD8`6|ies(;R0x|-l`E4R6EY?&Hn>uABVHAJ9+m)HX|y5i zU^T#^NOVZID`M%!S)s)ZLblbc_X3A1x$*jh}2V`j5D`O*i1K76Bhh zNOoA@M;4d}3ns-lZrNWEz|K4a%vc5tDRwJeWI_6&CB@jLU6DhN7>qot`FNs%=3{%3 zb-ayCRhCf7sH*J4HByf2tSumm(-3SoUiG+@-j0HmW<^mxj)O@;CZff`M;uh0n5;t& z#-C%laSlSawe*-y{R1JEVY(gNU?57mM~^`|gA_sb!5))0)3(N8X30U^{a8_QKPJSuGY$n7qP;mtC&MLf_=skS< zv71N&mf1{vDA*geY`9`&1FW!nXR$I44z6gZm!-(`0VK9Dfbk6mYsAZu5(OS0BI0#_|P&EYsiT^LkbgX z97qn{S?wmp@pMZ=m*-+9Ih9F z#M{__)Z!P$;lq#q8M;XtJK!h&T)C$DJlKt6kvG;WH}ZnTZT>1aWAvGItSf#nPM-ia z&=uAG^$8LzdM<#>H2{j$TClj+3@T0NWS=S(C7Dre!Qvw~Cazbo;KUW{w;MLIwh{cU zK@u$P-4zvF`Pk2w#$eC}ymAXbk0e3^8}$hJ20#r3Kphn&niYV*Wl8QNLFHJF!A$HC z{I5*%C{0qql}`Yy|M0&wNsk~x0mpv7%9Fh4zpF$^zeWigje%rQAoT9){BZ8n(4mfi z*bux?D+{!q7uOkh$HeWtyrW~}>6!gD0hc9tf1K)fNud#A_-wh5;G^=$jk`dqC^YcO zr+7LQLj<@1O)lHlr%EmKVdP>QfJw?LK#7LB7or*zIA68)i;~USzK=31RR$hKRvxg~ z$O9*^{;f9zkLn#2UO8pJR}c~4{>VU|Doh3E0PtJ`pv3>`%RsFKqhzx(z&9CyetHL> z*6Im_Vio~h;^Z9xx9ybA?%CQQ!Pk)xjrh2tiEO8;N&*VaMjRiNNN(f>k7^_pUOAPH zuOK48z4Oqupb+$_QtN)ShVP@MiyA&Dd(${H;1j8J0bj2kkZD2tD7#V(-=pYCm$vI7p&{PesYP*`s7AlAf-tf zc;!=nh$j$m!IiMpAmkC=Ex?_G=+Z`L;Wf@Uw$LPmRJm!WgCs;Px}n6g8t1Fxh$e!h zM2vyWR-y<#>Y+R(@n`+0*R40j489xe1{7PXV{j5;q|u6g-Wrpw=@5Jz@p(!D?@VbVTRxirrwf4yA^NUEc-oLr9sK`~;-huz-U=tf>3wOd+vs}gcP!j)zzb38 zkv+pGzmj6lIyG{3j=uXVs6}OzZdUzp`I7<0su0}U=N>{}x8r@326+g9)N=h5Lg4q~ zebl*m2tk)9L9Lfygy18KAkNr}5Y!?wLAQoY@KvKlg+L0Zv`pi-b*Z{Vq(&q)AUV_s zg^ywpPUK(@-nhPsNOn45ME!oGKz2c3MEzb5U4_61&hQh>CV}K8FrtgZ(hB7~*(-8@@(w7QZ!%%V;H4FGEX5L_v#XQ(d z7=^PEq`*ib>V*_F(J!y77s64x$xbdNx`|JBeboy=f-*_H5JuC@Ke}N=E+)LEmWXnE zgaq9kA?rF+MT-XMmxL&HX;`Nhy4s*2UcC?`Xt-A|1PNMRMQgXHTGH4^b(1Z4u=p0pZ;s^d_T00JWA0Z1xX>To4< z)pKidoDBc3ip_PU@>3;8G})vckdOl;xQ|LtpmG!Fae(_uR7Blh6{zs&)g(|UsvC*| z6`;DmrCJBsgn{Q#A@Wz^jMZ%b)rQn1mAY8-ekI~jmlE`9Vm?FeN5roty56osO;*Hx zYPV_@A27Fs)Y98Q) zwT^5_0FuOTp~p^CP60Fx5j|mZMR8Hd`N>&1>EKe}8ESJI;+6F38FvFBW(xDKk}lmD?frOwLXZb7sHPw@6Xr?7Q;A(@b zgg!%e7ijB~T9D#Y=h>pj92w@~`7qB0_scT{$L#S<`UsW1bEgMxGMAt|BpYz z|Dicn7?BwEqI zF#2cCrepA)AG4x1PTF}O3sfA0{<-dzfFsSAj7iAbYR4oC^5@zyn}WQwc1*IM z6hk{^Q&54Lc1*IN=){cSURcbSi0bv2F)Pn2uq=)?#fC~ZwD-yuqm>E;h(H=8q z=k!#zSUK7tUZKoUb1%%}{1D9J42iP|wJ)?)c0 zTk!&lnTIn%?HEKv?isMj$H4_$%4$&CMcX;%8(XvxL9py zaj2m~5=C^Trx~+YMGl_DCUJ34wo05|1J}v(#p>W~#ww#cR`Xo&h`fBQcFy)?z?r23 z5-ha+u7xLB`R9tbSc92oM=K0w%*Oe4S(G_m$s!+rWzm7Qw6*X+HDF-7FHOW+^3wi2O}FFOx3h|4!bSW>b)5FtfpWhCmYXRLTXM1!9M%S$$fN>-7> zPXc$!(kqF0-&G4w#7$#0V|KI2zf2%l literal 0 HcmV?d00001 diff --git a/fall-2024/aicore/aic-501/00020/tweets_data.csv b/fall-2024/aicore/aic-501/00020/tweets_data.csv new file mode 100644 index 0000000..0119214 --- /dev/null +++ b/fall-2024/aicore/aic-501/00020/tweets_data.csv @@ -0,0 +1,27 @@ +Tweet_ID,Text,Sentiment,Language,Geolocation,Date,Emoji +1,"I love the beautiful beaches in Thailand!",Positive,English,Thailand,2023-11-01,😊 +2,"Not as amazing as the pictures, a bit disappointing.",Negative,English,Thailand,2023-11-02,😕 +3,"Just arrived in Bangkok, so excited to explore!",Positive,English,Thailand,2023-11-03,😃 +4,"The traffic here is terrible.",Negative,English,Thailand,2023-11-04,😤 +5,"I wish I could have stayed longer.",Neutral,English,Thailand,2023-11-05,😐 +6,"Incredible experience at Ayutthaya, the history is so rich!",Positive,English,Thailand,2023-11-06,🤩 +7,"Not much to see in Chiang Mai, disappointed.",Negative,English,Thailand,2023-11-07,😞 +8,"The street food here is amazing!",Positive,English,Thailand,2023-11-08,🍜 +9,"I’m stuck in traffic, Thailand’s roads are crazy.",Negative,English,Thailand,2023-11-09,😡 +10,"Bangkok is great, but I prefer the beaches.",Neutral,English,Thailand,2023-11-10,😐 +11,"Such a peaceful vacation, I’m so relaxed.",Positive,English,Thailand,2023-11-11,😌 +12,"Overcrowded beaches and too many tourists.",Negative,English,Thailand,2023-11-12,😒 +13,"Perfect weather for sightseeing today!",Positive,English,Thailand,2023-11-13,🌞 +14,"I’m not a fan of the nightlife scene here.",Negative,English,Thailand,2023-11-14,😩 +15,"I’ve been to Thailand before, but this trip feels different.",Neutral,English,Thailand,2023-11-15,🤔 +16,"The mountains are beautiful, and the hiking trails are perfect!",Positive,English,Thailand,2023-11-16,🏞️ +17,"I’ve seen better cities than Bangkok.",Negative,English,Thailand,2023-11-17,🙄 +18,"The food is a bit too spicy for me, but I love it!",Neutral,English,Thailand,2023-11-18,🌶️ +19,"What a beautiful sunrise at the beach.",Positive,English,Thailand,2023-11-19,🌅 +20,"I feel like I need more time to explore Thailand.",Neutral,English,Thailand,2023-11-20,🤗 +21,"The elephant sanctuary experience was unforgettable!",Positive,English,Thailand,2023-11-21,🐘 +22,"Too much noise in the city, can't enjoy myself.",Negative,English,Thailand,2023-11-22,😣 +23,"Love the local markets here, great shopping!",Positive,English,Thailand,2023-11-23,🛍️ +24,"I think I’ll skip the temples next time, I’m more into nature.",Neutral,English,Thailand,2023-11-24,🌿 +25,"Thailand has the best beaches in the world!",Positive,English,Thailand,2023-11-25,🏖️ + diff --git a/fall-2024/aicore/aic-501/00030/AIC-201-00030 - Thanawin Pattanaphol - 01324096.ipynb b/fall-2024/aicore/aic-501/00030/AIC-201-00030 - Thanawin Pattanaphol - 01324096.ipynb new file mode 100644 index 0000000..6a136c9 --- /dev/null +++ b/fall-2024/aicore/aic-501/00030/AIC-201-00030 - Thanawin Pattanaphol - 01324096.ipynb @@ -0,0 +1,201 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import tensorflow as tf\n", + "import pandas as pd\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from sklearn.model_selection import train_test_split\n", + "from sklearn.preprocessing import StandardScaler\n", + "from tensorflow.keras.utils import to_categorical\n", + "from tensorflow.keras.models import Sequential\n", + "from tensorflow.keras.layers import Dense\n", + "from tensorflow.keras.optimizers import Adam, SGD\n", + "from tensorflow.keras.callbacks import EarlyStopping" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load dataset\n", + "iris_df = pd.read_csv('iris_dataset.csv')\n", + "\n", + "# Feature set (X) and target labels (y)\n", + "X_features = iris_df.iloc[:, :-1].values\n", + "y_labels = iris_df.iloc[:, -1].values\n", + "\n", + "# Split into training and testing sets (80/20)\n", + "X_train_set, X_test_set, y_train_set, y_test_set = train_test_split(X_features, y_labels, test_size=0.2, random_state=42, stratify=y_labels)\n", + "\n", + "# Standardize the feature data\n", + "scaler_instance = StandardScaler()\n", + "X_train_set = scaler_instance.fit_transform(X_train_set)\n", + "X_test_set = scaler_instance.transform(X_test_set)\n", + "\n", + "# Convert labels to one-hot encoded format\n", + "y_train_set_onehot = to_categorical(y_train_set, num_classes=3)\n", + "y_test_set_onehot = to_categorical(y_test_set, num_classes=3)\n", + "\n", + "# Early stopping configuration\n", + "early_stop_callback = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1st Model\n", + "Using Adam optimizer and two hidden layers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model_1 = Sequential([\n", + " Dense(16, input_dim=X_train_set.shape[1], activation='relu'),\n", + " Dense(16, activation='relu'),\n", + " Dense(3, activation='softmax')\n", + "])\n", + "\n", + "model_1.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Training the first model\n", + "history_1 = model_1.fit(X_train_set, y_train_set_onehot, epochs=100, batch_size=8, validation_split=0.2, verbose=1, callbacks=[early_stop_callback])\n", + "\n", + "# Evaluate Model 1\n", + "test_loss_1, test_acc_1 = model_1.evaluate(X_test_set, y_test_set_onehot)\n", + "print(f\"Model 1 - Test Loss: {test_loss_1}, Test Accuracy: {test_acc_1}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2nd Model\n", + "Using SGD optimizer and two hidden layers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "model_2 = Sequential([\n", + " Dense(16, input_dim=X_train_set.shape[1], activation='relu'),\n", + " Dense(16, activation='relu'),\n", + " Dense(3, activation='softmax')\n", + "])\n", + "\n", + "model_2.compile(optimizer=SGD(learning_rate=0.01), loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Training the second model\n", + "history_2 = model_2.fit(X_train_set, y_train_set_onehot, epochs=100, batch_size=8, validation_split=0.2, verbose=1, callbacks=[early_stop_callback])\n", + "\n", + "# Evaluate Model 2\n", + "test_loss_2, test_acc_2 = model_2.evaluate(X_test_set, y_test_set_onehot)\n", + "print(f\"Model 2 - Test Loss: {test_loss_2}, Test Accuracy: {test_acc_2}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3rd Model\n", + "Using Adam optimizer, Tanh activation, and three hidden layers" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model_3 = Sequential([\n", + " Dense(32, input_dim=X_train_set.shape[1], activation='tanh'),\n", + " Dense(32, activation='tanh'),\n", + " Dense(32, activation='tanh'),\n", + " Dense(3, activation='softmax')\n", + "])\n", + "\n", + "model_3.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Training the third model\n", + "history_3 = model_3.fit(X_train_set, y_train_set_onehot, epochs=100, batch_size=8, validation_split=0.2, verbose=1, callbacks=[early_stop_callback])\n", + "\n", + "# Evaluate Model 3\n", + "test_loss_3, test_acc_3 = model_3.evaluate(X_test_set, y_test_set_onehot)\n", + "print(f\"Model 3 - Test Loss: {test_loss_3}, Test Accuracy: {test_acc_3}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4th Model\n", + "Using SGD optimizer, Sigmoid activation, and one hidden layer" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "model_4 = Sequential([\n", + " Dense(64, input_dim=X_train_set.shape[1], activation='sigmoid'),\n", + " Dense(3, activation='softmax')\n", + "])\n", + "\n", + "model_4.compile(optimizer=SGD(learning_rate=0.0001), loss='categorical_crossentropy', metrics=['accuracy'])\n", + "\n", + "# Training the fourth model\n", + "history_4 = model_4.fit(X_train_set, y_train_set_onehot, epochs=100, batch_size=8, validation_split=0.2, verbose=1, callbacks=[early_stop_callback])\n", + "\n", + "# Evaluate Model 4\n", + "test_loss_4, test_acc_4 = model_4.evaluate(X_test_set, y_test_set_onehot)\n", + "print(f\"Model 4 - Test Loss: {test_loss_4}, Test Accuracy: {test_acc_4}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "___________" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/fall-2024/aicore/aic-501/00030/ANN_Fashion_MNIST_Classification.ipynb b/fall-2024/aicore/aic-501/00030/ANN_Fashion_MNIST_Classification.ipynb new file mode 100644 index 0000000..bcf0470 --- /dev/null +++ b/fall-2024/aicore/aic-501/00030/ANN_Fashion_MNIST_Classification.ipynb @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"gpuType":"T4"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"},"accelerator":"GPU"},"cells":[{"cell_type":"markdown","metadata":{"id":"Lz6TJu0o7UtX"},"source":["# **Tutorial**"]},{"cell_type":"markdown","metadata":{"id":"_1qlT7qtVyex"},"source":["This tutorial demonstrates image classification on Fashion MNIST dataset. We'll train a multiclass classifier to classify clothes such as sneakers, trousers, etc."]},{"cell_type":"markdown","metadata":{"id":"NUtmaHoT6C-v"},"source":["### **Step 1: Import libraries**"]},{"cell_type":"markdown","metadata":{"id":"VPvq3M1bX_zS"},"source":["This tutorial uses tf.keras, a high-level API to build and train models in TensorFlow. NumPy is used to do mathematical operations, and lastly, Matplotlib is used to show a figure.\n","\n"]},{"cell_type":"code","metadata":{"id":"OoBXQ6S1-JMR","colab":{"base_uri":"https://localhost:8080/"},"outputId":"fe3e9206-31d7-468e-e6ca-29f06476e99a","executionInfo":{"status":"ok","timestamp":1730106961791,"user_tz":-420,"elapsed":5804,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["import tensorflow as tf\n","\n","import numpy as np\n","import matplotlib.pyplot as plt\n","\n","print(tf.__version__)"],"execution_count":1,"outputs":[{"output_type":"stream","name":"stdout","text":["2.17.0\n"]}]},{"cell_type":"markdown","metadata":{"id":"fM6fbmOM8wac"},"source":["### **Step 2: Import the Fasion MNIST dataset**"]},{"cell_type":"markdown","metadata":{"id":"N8uJNAweaSVq"},"source":["This guide uses the Fashion MNIST dataset which contains 70,000 grayscale images in 10 categories. The images show individual articles of clothes at low resolution (28 by 28 pixels), as seen here:\n","\n","\n"," \n"," \n","
\n"," \"Fashion\n","
\n"," Figure 1. Fashion-MNIST samples (by Zalando, MIT License).
 \n","
\n","\n","Here, 60,000 images are used to train the network and 10,000 images to evaluate how accurately the network learned to classify images. You can access the Fashion MNIST directly from TensorFlow. Import and load the Fashion MNIST data directly from TensorFlow.\n","\n","Note that the dataset is already splited as 60,000:10,000 (train:test) by the dataset provider.\n"]},{"cell_type":"code","metadata":{"id":"8FAH2bd6-eS5","outputId":"d0fa2716-3354-4f95-8e58-117a337c4489","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1730106971014,"user_tz":-420,"elapsed":5732,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["fashion_mnist = tf.keras.datasets.fashion_mnist\n","\n","(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()"],"execution_count":2,"outputs":[{"output_type":"stream","name":"stdout","text":["Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz\n","\u001b[1m29515/29515\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n","Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz\n","\u001b[1m26421880/26421880\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 0us/step\n","Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz\n","\u001b[1m5148/5148\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n","Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz\n","\u001b[1m4422102/4422102\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 0us/step\n"]}]},{"cell_type":"markdown","metadata":{"id":"t9FDsUlxCaWW"},"source":["Loading the dataset returns four NumPy arrays:\n","\n","* The `train_images` and `train_labels` arrays are the *training set*—the data the model uses to learn.\n","* The model is tested against the *test set*, the `test_images`, and `test_labels` arrays.\n","\n","The images are 28x28 NumPy arrays, with pixel values ranging from 0 to 255. The *labels* are an array of integers, ranging from 0 to 9. These correspond to the *class* of clothing the image represents:\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
LabelClass
0T-shirt/top
1Trouser
2Pullover
3Dress
4Coat
5Sandal
6Shirt
7Sneaker
8Bag
9Ankle boot
\n","\n","Each image is mapped to a single label. Since the *class names* are not included with the dataset, store them here to use later when plotting the images:"]},{"cell_type":"code","metadata":{"id":"y6evzC_4_GWk","executionInfo":{"status":"ok","timestamp":1730106978258,"user_tz":-420,"elapsed":568,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',\n"," 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']"],"execution_count":3,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"8NWVLtfZ82k1"},"source":["### **Step 3: Explore the data**"]},{"cell_type":"markdown","metadata":{"id":"MMAvnW-CdSo5"},"source":["Now, It is a good practice to explore the data and see what we are dealing with before starting to process it. The following shows there are 60,000 images in the training set, with each image represented as 28 x 28 pixels."]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Y8ztztA9_Kbm","outputId":"2e4c2a65-6b1d-4a89-cec4-8b993ccec495","executionInfo":{"status":"ok","timestamp":1730106980314,"user_tz":-420,"elapsed":537,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["train_images.shape"],"execution_count":4,"outputs":[{"output_type":"execute_result","data":{"text/plain":["(60000, 28, 28)"]},"metadata":{},"execution_count":4}]},{"cell_type":"markdown","metadata":{"id":"O-sr7Ca1fYED"},"source":["Likewise, since we have 60,000 training images, then there should be 60,000 labels in the training set accordingly"]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"DHO4_Xlp_PcB","outputId":"de2e4492-4bb4-4394-d46f-68d36f9a28cf","executionInfo":{"status":"ok","timestamp":1730106982295,"user_tz":-420,"elapsed":3,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["len(train_labels)"],"execution_count":5,"outputs":[{"output_type":"execute_result","data":{"text/plain":["60000"]},"metadata":{},"execution_count":5}]},{"cell_type":"markdown","metadata":{"id":"nw9HGlSkfsId"},"source":["Each label is an integer between 0-9"]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"FjcOlDC2_T-q","outputId":"fc7eb528-1536-452e-87df-b19039f67f2f","executionInfo":{"status":"ok","timestamp":1730106985443,"user_tz":-420,"elapsed":544,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["train_labels"],"execution_count":6,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([9, 0, 0, ..., 3, 0, 5], dtype=uint8)"]},"metadata":{},"execution_count":6}]},{"cell_type":"markdown","metadata":{"id":"MHTaS_iifycn"},"source":["There are 10,000 images in the test set. Again, each image is represented as 28 x 28 pixels\n","\n"]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"7Yduv-XE_dzX","outputId":"710ac1d1-73a8-42eb-b4cd-6d26116fc7fa","executionInfo":{"status":"ok","timestamp":1730106987748,"user_tz":-420,"elapsed":553,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["test_images.shape"],"execution_count":7,"outputs":[{"output_type":"execute_result","data":{"text/plain":["(10000, 28, 28)"]},"metadata":{},"execution_count":7}]},{"cell_type":"markdown","metadata":{"id":"SB0y9KAfgpem"},"source":["And the test set contains 10,000 labels"]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"aPb4jRab_iLu","outputId":"af897e2b-f0b7-4156-cbbc-afbd77021d6d","executionInfo":{"status":"ok","timestamp":1730106989471,"user_tz":-420,"elapsed":2,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["len(test_labels)"],"execution_count":8,"outputs":[{"output_type":"execute_result","data":{"text/plain":["10000"]},"metadata":{},"execution_count":8}]},{"cell_type":"markdown","metadata":{"id":"nk9pTNIch2i6"},"source":["Each label is an integer between 0-9"]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"iv5CfoNr_lPe","outputId":"81d8be0b-6adb-44d9-e7b8-7dadd0d168d7","executionInfo":{"status":"ok","timestamp":1730106991495,"user_tz":-420,"elapsed":3,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["test_labels"],"execution_count":9,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([9, 2, 1, ..., 8, 1, 5], dtype=uint8)"]},"metadata":{},"execution_count":9}]},{"cell_type":"markdown","metadata":{"id":"Ep_jl9Wl_xwt"},"source":["### **Step 4: Preprocess the data**"]},{"cell_type":"markdown","metadata":{"id":"EyAqb3K6iDrV"},"source":["The data should be preprocessed before feeding it to the network. If you inspect the first image in the training set, you will see that the pixel values fall in the range of 0 to 255"]},{"cell_type":"code","metadata":{"id":"DOPdEt7Y__42","colab":{"base_uri":"https://localhost:8080/","height":430},"outputId":"7b478f5f-e787-4bb6-b13c-758e66e96304","executionInfo":{"status":"ok","timestamp":1730106994050,"user_tz":-420,"elapsed":616,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["plt.figure()\n","plt.imshow(train_images[0])\n","plt.colorbar()\n","plt.grid(False)\n","plt.show()"],"execution_count":10,"outputs":[{"output_type":"display_data","data":{"text/plain":["

"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAfAAAAGdCAYAAADtxiFiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA06klEQVR4nO3df3RUZZ7v+0/lVyVAqmKApJI2YMAfgPzyoIa0SqPkEoLHFs3pK0r3AS8LjkzwDnD9sZiLgLbrZJru03p1UO7MsUFnjN3tnQaWHFe6ESQ0xwQ1DgdRJwOZdBMbKih0EgjkZ+37B01pSZA8VZVUHur9WutZi1Ttb+0nO5t88zzP3vvrchzHEQAAsEpCrDsAAADMkcABALAQCRwAAAuRwAEAsBAJHAAAC5HAAQCwEAkcAAALkcABALBQUqw78E2BQEDHjh1Tenq6XC5XrLsDADDkOI5Onz6t3NxcJST03zixvb1dnZ2dEX9OSkqKUlNTo9CjgTXoEvixY8eUl5cX624AACLU2Nioq6++ul8+u729Xfmjh8l/oifiz/L5fGpoaLAuiQ+6BJ6eni5Jul1zlaTkGPcGAGCqW13ap7eDv8/7Q2dnp/wnetRQO1qe9PBH+a2nA8qf9kd1dnaSwC/YuHGjfvrTn8rv92vKlCl68cUXdeutt1427sK0eZKSleQigQOAdf5SYWMglkE96QkRJXCb9ct3/atf/UqrVq3SunXr9NFHH2nKlCkqLi7WiRMn+mN3AIA41eMEIm4mysvLdcsttyg9PV1ZWVmaN2+e6urqQraZOXOmXC5XSHvkkUdCtjl69KjuvvtuDRkyRFlZWXr88cfV3d1t1Jd+SeA///nPtWTJEj388MOaMGGCNm3apCFDhugXv/hFf+wOABCnAnIibiaqqqpUVlammpoa7dy5U11dXZo9e7ba2tpCtluyZImOHz8ebBs2bAi+19PTo7vvvludnZ1677339Oqrr2rLli1au3atUV+iPoXe2dmp2tparV69OvhaQkKCioqKVF1dfdH2HR0d6ujoCH7d2toa7S4BAK5QAQVkNoa+ON5EZWVlyNdbtmxRVlaWamtrNWPGjODrQ4YMkc/n6/Uzfve73+nTTz/VO++8o+zsbE2dOlU//vGP9eSTT2r9+vVKSUnpU1+iPgL/8ssv1dPTo+zs7JDXs7Oz5ff7L9q+vLxcXq832LgCHQAw0FpbW0Pa1weW36alpUWSlJmZGfL666+/rhEjRmjixIlavXq1zp49G3yvurpakyZNCsmTxcXFam1t1SeffNLnPsd85X/16tVqaWkJtsbGxlh3CQBgiR7HibhJUl5eXshgsry8/LL7DgQCWrFihW677TZNnDgx+PpDDz2kf/qnf9K7776r1atX6x//8R/1wx/+MPi+3+/vdZB74b2+ivoU+ogRI5SYmKimpqaQ15uamnqdTnC73XK73dHuBgAgDoSzjv3NeOn8Pesejyf4el/yUllZmQ4dOqR9+/aFvL506dLgvydNmqScnBzNmjVL9fX1Gjt2bNh9/aaoj8BTUlI0bdo07dq1K/haIBDQrl27VFhYGO3dAQAQMY/HE9Iul8CXL1+uHTt26N13373sw2oKCgokSUeOHJF0/sExvQ1yL7zXV/0yhb5q1Sr9wz/8g1599VV99tlnWrZsmdra2vTwww/3x+4AAHEqIEc9ETTT0bvjOFq+fLm2bt2q3bt3Kz8//7IxBw4ckCTl5ORIkgoLC/Xxxx+H3Fq9c+dOeTweTZgwoc996ZcHuTzwwAP64osvtHbtWvn9fk2dOlWVlZUXzfkDABCJaE2h91VZWZkqKiq0fft2paenB9esvV6v0tLSVF9fr4qKCs2dO1fDhw/XwYMHtXLlSs2YMUOTJ0+WJM2ePVsTJkzQj370I23YsEF+v19r1qxRWVmZ0ZKyy3Gc8L/zftDa2iqv16uZupcnsQGAhbqdLu3RdrW0tISsK0fThVxR/68+pUfwJLbTpwMaO87f575e6ulymzdv1qJFi9TY2Kgf/vCHOnTokNra2pSXl6f77rtPa9asCfn8P/7xj1q2bJn27NmjoUOHauHChfrbv/1bJSX1fVw96J6FDgBAX339SvJw401cbsybl5enqqqqy37O6NGj9fbbbxvt+5tI4AAAawX+0iKJt1XM7wMHAADmGIEDAKx14WrySOJtRQIHAFirxznfIom3FQkcAGAt1sABAIBVGIEDAKwVkEs96v3e7L7G24oEDgCwVsA53yKJtxVT6AAAWIgROADAWj0RTqFHEhtrJHAAgLXiOYEzhQ4AgIUYgQMArBVwXAo4EVyFHkFsrJHAAQDWYgodAABYhRE4AMBaPUpQTwRj0Z4o9mWgkcABANZyIlwDd1gDBwBg4LEGDgAArMIIHABgrR4nQT1OBGvgFj8LnQQOALBWQC4FIphMDsjeDM4UOgAAFmIEDgCwVjxfxEYCBwBYK/I1cKbQAQDAAGIEDnydK4zptAH6Cz5xeKZxzJ+Lrw9rX56KmrDijIVxvF1JycYxTlenccygF865Gq5BPEo9fxFbBMVMmEIHAGDgBSJ8lCpXoQMAgAHFCBwAYK14voiNBA4AsFZACXH7IBcSOADAWj2OSz0RVBSLJDbWWAMHAMBCjMABANbqifAq9B6m0AEAGHgBJ0GBCC5iC1h8ERtT6AAAWIgROADAWkyhAwBgoYAiu5I8EL2uDDim0AEAsBAjcOBrXImJxjFOd7dxTMLUCcYxn/2XYeb7OWccIklKbrvVOCbpnPlYJvl3HxrHDGhhknCKrYRxDsllPpYayOPgSjJLFS7Hkcz/W4Ql8ge52DuOJYEDAKwV+aNU7U3g9vYcAIA4xggcAGAt6oEDAGCheJ5CJ4EDAKwV+X3g9iZwe3sOAEAcYwQOALBWwHEpEMmDXCwuJ0oCBwBYKxDhFLrN94Hb23MAAOIYI3AAgLUiLydq7ziWBA4AsFaPXOqJ4F7uSGJjzd4/PQAAiGOMwIGvMS3aIIVXzKSxOMM4ZkHh741j/ucXY4xjJOmPbp9xjJNmvp+kokLjmOtf+pNxTPcfjhrHSJIc81rR4ZwP4Ui86qrwAnt6zENaW422d5wBqmQiptABALBSjyKbBjf/c2bwsPdPDwAA4ljUE/j69evlcrlC2rhx46K9GwAAglPokTRb9csU+o033qh33nnnq52Esa4IAMDlUMwk2h+alCSfz/wiGAAATDgRlhN1uI0s1OHDh5Wbm6sxY8ZowYIFOnr00leAdnR0qLW1NaQBAIBvF/UEXlBQoC1btqiyslIvv/yyGhoadMcdd+j06dO9bl9eXi6v1xtseXl50e4SAOAKdWEKPZJmq6j3vKSkRD/4wQ80efJkFRcX6+2331Zzc7N+/etf97r96tWr1dLSEmyNjY3R7hIA4Ap1oRpZJM1W/X51WUZGhq6//nodOXKk1/fdbrfcbnd/dwMAgCtKv88dnDlzRvX19crJyenvXQEA4kzPX8qJRtJMlJeX65ZbblF6erqysrI0b9481dXVhWzT3t6usrIyDR8+XMOGDVNpaamamppCtjl69KjuvvtuDRkyRFlZWXr88cfVbfgUv6gn8Mcee0xVVVX6wx/+oPfee0/33XefEhMT9eCDD0Z7VwCAODfQU+hVVVUqKytTTU2Ndu7cqa6uLs2ePVttbW3BbVauXKm33npLb775pqqqqnTs2DHdf//9wfd7enp09913q7OzU++9955effVVbdmyRWvXrjXqS9Sn0D///HM9+OCDOnnypEaOHKnbb79dNTU1GjlyZLR3BQDAgKqsrAz5esuWLcrKylJtba1mzJihlpYWvfLKK6qoqNBdd90lSdq8ebPGjx+vmpoaTZ8+Xb/73e/06aef6p133lF2dramTp2qH//4x3ryySe1fv16paSk9KkvUU/gv/zlL6P9kcCACbS3D8h+Om86Yxzzn7wfGsekJnQZx0hSVULAOOZPu83vIOmZbH4c/vjzdOOYwL981zhGkoYfMn9StudfjhvHfDnjO8YxX0wzL7QiSdk15jFXvVNvtL0T6JS+NN9POAJKUCCCyeQLsd+8hbmv12e1tLRIkjIzMyVJtbW16urqUlFRUXCbcePGadSoUaqurtb06dNVXV2tSZMmKTs7O7hNcXGxli1bpk8++UQ33XRTn/pu7/XzAIC41+O4Im6SlJeXF3JLc3l5+WX3HQgEtGLFCt12222aOHGiJMnv9yslJUUZGRkh22ZnZ8vv9we3+XryvvD+hff6imecAgDiXmNjozweT/Drvoy+y8rKdOjQIe3bt68/u3ZJJHAAgLUivZf7QqzH4wlJ4JezfPly7dixQ3v37tXVV18dfN3n86mzs1PNzc0ho/CmpqbgI8Z9Pp/ef//9kM+7cJW6yWPImUIHAFjLibASmWP4JDbHcbR8+XJt3bpVu3fvVn5+fsj706ZNU3Jysnbt2hV8ra6uTkePHlVhYaEkqbCwUB9//LFOnDgR3Gbnzp3yeDyaMGFCn/vCCBwAYK0eudQTQUES09iysjJVVFRo+/btSk9PD65Ze71epaWlyev1avHixVq1apUyMzPl8Xj06KOPqrCwUNOnT5ckzZ49WxMmTNCPfvQjbdiwQX6/X2vWrFFZWZnRg81I4AAA9NHLL78sSZo5c2bI65s3b9aiRYskSc8995wSEhJUWlqqjo4OFRcX66WXXgpum5iYqB07dmjZsmUqLCzU0KFDtXDhQj3zzDNGfSGBAwCsFXAU4Rq42faOc/mA1NRUbdy4URs3brzkNqNHj9bbb79ttvNvIIEDAKx1YS07knhb2dtzAADiGCNwAIC1AnIpEMFFbJHExhoJHABgra8/TS3ceFsxhQ4AgIUYgePK5Arzr+o+XGH6TWf+9+nGMf95wh7jmPou84p+V6ecMo6RpB/k1poH/dA85u/qvmcc0/bvXuOYhKHhFf7wTzcf4/zpXvOfk9NlVgdakq76KLxf3wkLmy6/0Te0do4x2r67q13abrybsMTzRWwkcACAtQKK8FGqFq+B2/unBwAAcYwROADAWk6EV6E7Fo/ASeAAAGtFqxqZjUjgAABrxfNFbPb2HACAOMYIHABgLabQAQCwUDw/SpUpdAAALMQIHABgLabQAQCwUDwncKbQAQCwECNwAIC14nkETgLHwAq3StggNv3J941j7hz2aT/05GLfUXhVuNqcFOOY5p6hxjHrJvwP45gvrk83julywvtV998Pf9c45kwY1dISu83/X0z/P/7FOEaSSjM/MI7Z8M+TjLbvdrqM9xGueE7gTKEDAGAhRuAAAGs5iuxe7vDmqAYHEjgAwFrxPIVOAgcAWCueEzhr4AAAWIgROADAWvE8AieBAwCsFc8JnCl0AAAsxAgcAGAtx3HJiWAUHUlsrJHAAQDWoh44AACwCiNwAIC14vkiNhI4BpZj84MLe3f4TJZxzEnPMOMYf3eGcczwxDPGMZKUnnDOOOaa5C+NY77oMS9MkpgcMI7pdBKNYyTp6RvfMo5pH59sHJPs6jGO+W7qMeMYSfrBp//ZOGao/j2sfQ2EeF4DZwodAAALMQIHAFiLKXQAACwUz1PoJHAAgLWcCEfgNidw1sABALAQI3AAgLUcRXZzi833xZDAAQDWCsglF09iAwAAtmAEDgCwFlehAwBgoYDjkitO7wNnCh0AAAsxAgcAWMtxIrwK3eLL0EngQIRGus0LhqS6uoxjUlzdxjHHuq4yjpGkw+duMI75t1bzoi5zsj8xjukKozBJYpg3C4VTZCQ3+c/GMe2OeQEU8zPovNuyzQuTHAhzXwMhntfAmUIHAMBCjMABANZiBG5g7969uueee5SbmyuXy6Vt27aFvO84jtauXaucnBylpaWpqKhIhw8fjlZ/AQAIulCNLJJmK+ME3tbWpilTpmjjxo29vr9hwwa98MIL2rRpk/bv36+hQ4equLhY7e3tEXcWAICvu3ARWyTNVsZT6CUlJSopKen1Pcdx9Pzzz2vNmjW69957JUmvvfaasrOztW3bNs2fPz+y3gIAAElRvoitoaFBfr9fRUVFwde8Xq8KCgpUXV3da0xHR4daW1tDGgAAfXF+FO2KoMX6OwhfVBO43++XJGVnZ4e8np2dHXzvm8rLy+X1eoMtLy8vml0CAFzBIkvekV0AF2sxv41s9erVamlpCbbGxsZYdwkAgEEvqreR+Xw+SVJTU5NycnKCrzc1NWnq1Km9xrjdbrnd7mh2AwAQJxxFVtPb4hn06I7A8/Pz5fP5tGvXruBrra2t2r9/vwoLC6O5KwAA4noK3XgEfubMGR05ciT4dUNDgw4cOKDMzEyNGjVKK1as0LPPPqvrrrtO+fn5euqpp5Sbm6t58+ZFs98AAMQ14wT+4Ycf6s477wx+vWrVKknSwoULtWXLFj3xxBNqa2vT0qVL1dzcrNtvv12VlZVKTU2NXq8BAJDieg7dOIHPnDlTzrdcd+9yufTMM8/omWeeiahjuEK5zKerXInmxSucbvPCH5KUeJV58Y/vZXxsHPNFj8c4prlniHFMRuJZ4xhJOt1t/gf3qXPm/RvnPm4c89HZa4xjRqaYFxiRwjt+f+gcYRxznbv3u3S+zYamWcYxkpSXeso4pnvWDLPtu9ulPduN9xOWSKfB42kKHQCAwSKey4nG/DYyAABgjhE4AMBaVCMDAMBGjivyZuhyVTkXLVokl8sV0ubMmROyzalTp7RgwQJ5PB5lZGRo8eLFOnPmjFE/SOAAABi4XFVOSZozZ46OHz8ebG+88UbI+wsWLNAnn3yinTt3aseOHdq7d6+WLl1q1A+m0AEA1orFRWzfVpXzArfbHXw66Td99tlnqqys1AcffKCbb75ZkvTiiy9q7ty5+tnPfqbc3Nw+9YMROADAXk4UmnRRVcyOjo6IurVnzx5lZWXphhtu0LJly3Ty5Mnge9XV1crIyAgmb0kqKipSQkKC9u/f3+d9kMABAHEvLy8vpDJmeXl52J81Z84cvfbaa9q1a5d+8pOfqKqqSiUlJerp6ZF0vnJnVlZWSExSUpIyMzMvWbmzN0yhAwCsFa2r0BsbG+XxfPWApUiKbM2fPz/470mTJmny5MkaO3as9uzZo1mzwnsAT28YgQMA7Bbh9LkkeTyekBbNKpljxozRiBEjgnVEfD6fTpw4EbJNd3e3Tp06dcl1896QwAEA6Eeff/65Tp48GSyzXVhYqObmZtXW1ga32b17twKBgAoKCvr8uUyhAwCsFYsHuXxbVc7MzEw9/fTTKi0tlc/nU319vZ544glde+21Ki4uliSNHz9ec+bM0ZIlS7Rp0yZ1dXVp+fLlmj9/fp+vQJcYgQMAbBalq9BNfPjhh7rpppt00003STpflfOmm27S2rVrlZiYqIMHD+r73/++rr/+ei1evFjTpk3T73//+5Bp+ddff13jxo3TrFmzNHfuXN1+++36+7//e6N+MALHwArjpktXkvlpGm41ssbF441j7hrylnHMe+3fMY4ZmXTaOKbLMa/kJkk57hbjmPTsduOYcCqsZSaZPa1Kkk73pBnHSNKQBPNbicL5Of2HlC+NY1a+8x+MYyQpfeLJy2/0DZ5ks7FeYEDHhq6/tEjizVyuKudvf/vby35GZmamKioqjPf9dYzAAQCwECNwAIC9wpwGD4m3FAkcAGCvOE7gTKEDAGAhRuAAAHuFWRI0JN5SJHAAgLViUY1ssGAKHQAACzECBwDYK44vYiOBAwDsFcdr4EyhAwBgIUbgAABruZzzLZJ4W5HAAQD2Yg0cGBiu5BTjmEC7eZGMcI34uNM45sueZOOYjISzxjEprh7jmM4wi5l8N7PBOOaLMAqGfHQu3zgmPfGccczIBPMCI5KUl2xe+OPj9jzjmLfbrjWOWfwf3zGOkaQ3/v5/M45JqXzPaPsEp8t4H2FjDRwAANiEETgAwF5MoQMAYKE4TuBMoQMAYCFG4AAAe8XxCJwEDgCwF1ehAwAAmzACBwBYiyexAQBgozheA2cKHQAAC5HAAQCwEFPoAABruRThGnjUejLw4juBu8L70bmSzItXuBLDmOxIMI8JtHeY7ydgXiQjXE6XebGQgfT//L9/ZxzT2J1hHOPvMo/JSDQvgNIT5q+nmnNe45jUBPMCFiOTWo1jWgPmRVPCdTqQahzTFUYBmXCO3ZPDDxvHSNJvWorCihu0uI0MAADYJL5H4AAAu8XxVegkcACAveI4gTOFDgCAhRiBAwCsxZPYAACwEVPoAADAJozAAQD2iuMROAkcAGCteF4DZwodAAALMQIHANgrjh+lSgIHANiLNXD7uZLMvxWnuzusfYVTkMMxr1VwRTp3763GMY3zzIutLLjpfeMYSfJ3pxvH/MvZa4xjvInnjGOGJpgXqml3zAvvSNKxzquMY8IpyJGZdMY4JiuMAig9TnirhX/qMj8O4QinUM3n3ebHTpJOf/+0cUzGa2HtakCwBg4AAKxyxYzAAQBxKI6n0I1H4Hv37tU999yj3NxcuVwubdu2LeT9RYsWyeVyhbQ5c+ZEq78AAHzF+WoaPZwWVwm8ra1NU6ZM0caNGy+5zZw5c3T8+PFge+ONNyLqJAAACGU8hV5SUqKSkpJv3cbtdsvn84XdKQAA+oQp9Ojas2ePsrKydMMNN2jZsmU6efLkJbft6OhQa2trSAMAoE+cKDRLRT2Bz5kzR6+99pp27dqln/zkJ6qqqlJJSYl6enq/Fai8vFxerzfY8vLyot0lAACuOFG/Cn3+/PnBf0+aNEmTJ0/W2LFjtWfPHs2aNeui7VevXq1Vq1YFv25tbSWJAwD6hPvA+9GYMWM0YsQIHTlypNf33W63PB5PSAMAAN+u3xP4559/rpMnTyonJ6e/dwUAQNwwnkI/c+ZMyGi6oaFBBw4cUGZmpjIzM/X000+rtLRUPp9P9fX1euKJJ3TttdequLg4qh0HACCer0I3TuAffvih7rzzzuDXF9avFy5cqJdfflkHDx7Uq6++qubmZuXm5mr27Nn68Y9/LLfbHb1eAwCg+F4DN07gM2fOlONc+jv+7W9/G1GHwhVuYZKBkpRjfl98V362ccyp8UOMY876wiunN3XuZ8Yxi7I3G8d80WN+XUSyK7zzobFruHHMTUP+YByzu2WCccyXScOMY8IpmiJJ3x162DimOWB+7uUm/dk45skj/8k4JnuIeQEPSfrvo982julyAsYxdV3mA5yWQKJxjCT9nxPeNY7ZqpFh7WvAWJyEI0ExEwAALEQxEwCAvVgDBwDAPvG8Bs4UOgAAFmIEDgCwF1PoAADYhyl0AABgFUbgAAB7MYUOAICF4jiBM4UOAICBvXv36p577lFubq5cLpe2bdsW8r7jOFq7dq1ycnKUlpamoqIiHT4c+nTDU6dOacGCBfJ4PMrIyNDixYt15swZo36QwAEA1rpwEVskzVRbW5umTJmijRs39vr+hg0b9MILL2jTpk3av3+/hg4dquLiYrW3twe3WbBggT755BPt3LlTO3bs0N69e7V06VKjfjCFDgCwVwym0EtKSlRSUtL7xzmOnn/+ea1Zs0b33nuvJOm1115Tdna2tm3bpvnz5+uzzz5TZWWlPvjgA918882SpBdffFFz587Vz372M+Xm5vapH4zAAQD2cqLQJLW2toa0jo6OsLrT0NAgv9+voqKi4Gter1cFBQWqrq6WJFVXVysjIyOYvCWpqKhICQkJ2r9/f5/3dcWMwDtKbjGOyfq//z2sfU31fG4cMyFtn3FMeyDZOCY1ocs45tNz3zGOkaSzgRTjmMOd5lXZWrrNq1wluswrQknSic5045j/1lB0+Y2+Ydetm4xj1hybYxyTkBbe0ORkj3nls9JhrWHsyfwc/y+j9hrHjEk5YRwjSTvacoxjjnVdZRyTndxiHHNN8hfGMZJ0f/q/GccM+mpkUZCXlxfy9bp167R+/Xrjz/H7/ZKk7OzQapLZ2dnB9/x+v7KyskLeT0pKUmZmZnCbvrhiEjgAIP5E60EujY2N8ni+Kl3sdpuXeB1oTKEDAOwVpSl0j8cT0sJN4D7f+VnGpqamkNebmpqC7/l8Pp04ETor1N3drVOnTgW36QsSOAAAUZKfny+fz6ddu3YFX2ttbdX+/ftVWFgoSSosLFRzc7Nqa2uD2+zevVuBQEAFBQV93hdT6AAAa8XiWehnzpzRkSNHgl83NDTowIEDyszM1KhRo7RixQo9++yzuu6665Sfn6+nnnpKubm5mjdvniRp/PjxmjNnjpYsWaJNmzapq6tLy5cv1/z58/t8BbpEAgcA2CwGt5F9+OGHuvPOO4Nfr1q1SpK0cOFCbdmyRU888YTa2tq0dOlSNTc36/bbb1dlZaVSU1ODMa+//rqWL1+uWbNmKSEhQaWlpXrhhReM+kECBwDAwMyZM+U4l878LpdLzzzzjJ555plLbpOZmamKioqI+kECBwDYK46fhU4CBwBYy/WXFkm8rbgKHQAACzECBwDYiyl0AADsE4vbyAYLEjgAwF6MwAcfV1KSXK6+d6/gv35gvI9Z6Z8Yx0jSWcf8EXvhFCYJpyhCOLxJZ8OK6+gyP31OdHkuv1EUXO/ue0GAr7vPc8A4Zu/f9f3JSRfc3v6ocUz9XZuNY3adSzSOkaQvus1/TvMb7jKO+eho3uU3+obp1zQYx0xK/5NxjBReIZ30xPbLb/QNya5u45i2QHiP+qxpNy9Ug8Fp0CZwAAD6xOJRdCRI4AAAa8XzGji3kQEAYCFG4AAAe3ERGwAA9mEKHQAAWIUROADAXkyhAwBgH6bQAQCAVRiBAwDsxRQ6AAAWIoEDAGCfeF4DH7QJ/PiyaUp0p/Z5+/XeF433UXFqunGMJOWlnjKOGZ3ypXHMlLQ/GseEIz3BvPiCJN3gMS/AsKPtauOYPc3jjGNykpuNYyTp92fHGsf8cv1PjWMWrfy/jGMK337EOKb1mvAuc+keav5bzTPlpHHMmpv+h3FMiqvHOKa5x7woiSRlutuMYzISwysOZCqcokqSlJ5wzjgm8YZrjbZ3ejqkw8a7gaFBm8ABALgsptABALCPy3HkcsLPwpHExhq3kQEAYCFG4AAAezGFDgCAfeL5KnSm0AEAsBAjcACAvZhCBwDAPkyhAwAAqzACBwDYiyl0AADsE89T6CRwAIC9GIEPPkNOBJSYEujz9jtapxrvY0zaF8YxkvRlV7pxzG/PTDKOuTrtz8Yx3kTzQgXXuv3GMZJ0oD3DOKbyixuNY3LTWo1jmrq8xjGSdLJrqHHM2YB5UYlXnvu5ccx/ayoyjrkv8yPjGEmakmJemKQ5YH5JzaedPuOY04G+Fzm6oN1JNo6RpJYwiqCkh/F/sMsx/1Wc6PT99+PXZSSYF1tpnTTcaPvurnaKmQyAQZvAAQDoC5unwSNBAgcA2MtxzrdI4i1lNOdVXl6uW265Renp6crKytK8efNUV1cXsk17e7vKyso0fPhwDRs2TKWlpWpqaopqpwEAiHdGCbyqqkplZWWqqanRzp071dXVpdmzZ6ut7aui9ytXrtRbb72lN998U1VVVTp27Jjuv//+qHccAIALV6FH0mxlNIVeWVkZ8vWWLVuUlZWl2tpazZgxQy0tLXrllVdUUVGhu+66S5K0efNmjR8/XjU1NZo+fXr0eg4AQBxfhR7Rk9haWlokSZmZmZKk2tpadXV1qajoq6tlx40bp1GjRqm6urrXz+jo6FBra2tIAwAA3y7sBB4IBLRixQrddtttmjhxoiTJ7/crJSVFGRkZIdtmZ2fL7+/9VqXy8nJ5vd5gy8vLC7dLAIA44wpE3mwVdgIvKyvToUOH9Mtf/jKiDqxevVotLS3B1tjYGNHnAQDiiBOFZqmwbiNbvny5duzYob179+rqq68Ovu7z+dTZ2anm5uaQUXhTU5N8vt4f2OB2u+V2mz8IAwCAeGY0AnccR8uXL9fWrVu1e/du5efnh7w/bdo0JScna9euXcHX6urqdPToURUWFkanxwAA/AVXofdRWVmZKioqtH37dqWnpwfXtb1er9LS0uT1erV48WKtWrVKmZmZ8ng8evTRR1VYWMgV6ACA6IvjB7kYJfCXX35ZkjRz5syQ1zdv3qxFixZJkp577jklJCSotLRUHR0dKi4u1ksvvRSVzgIA8HVUI+sjpw9/qaSmpmrjxo3auHFj2J2SpGF/6lBSkqvP2wecvm97we4vxxnHSFJ26mnjmKnp5hfn1Z01L/Tw8blc45iPkkYZx0hSWmKXcYw3pd04ZmhSh3HMiGTzn5Ek5btPGMekuHqMYz5oNz/my0buMY452n2VcYwkvdV2vXHMp2fNz72rkswLa3zcar6fs90pxjGS1NFjfplQe7d54SKv2/z/xS2ZfzSOkaQ65RjHfDHF7HrnQHuCtM14NzDEs9ABAPaK4we5kMABANaK5yn0iJ7EBgAAYoMROADAXlyFDgCAfZhCBwAAVmEEDgCwF1ehAwBgH6bQAQCAVRiBAwDsFXDOt0jiLUUCBwDYizVwAADs41KEa+BR68nAYw0cAAALDdoReMK+g0pwJfd5+zd/d5vxPp66903jGEmqajavYrbDb16hqLXTbRwzckibcYwnzMpdmcnm+/KGUX0q1dVtHPPn7qHGMZLUkdD3c+6CnjD+hvd3eI1j/mfgOuOYrkCicYwkdYQRF051ulOdI4xjctNajGNOd6cax0jSH05nGsd82TLMOKZ9iPmv4n09Y41jJGmO7xPjmLQTZud4T8cAjmt5EhsAAPbhNjIAAGAVEjgAwF5OFJqB9evXy+VyhbRx475aVm1vb1dZWZmGDx+uYcOGqbS0VE1NTRF+k70jgQMArOVynIibqRtvvFHHjx8Ptn379gXfW7lypd566y29+eabqqqq0rFjx3T//fdH81sOYg0cAAADSUlJ8vl8F73e0tKiV155RRUVFbrrrrskSZs3b9b48eNVU1Oj6dOnR7UfjMABAPYKRKFJam1tDWkdHR2X3OXhw4eVm5urMWPGaMGCBTp69Kgkqba2Vl1dXSoqKgpuO27cOI0aNUrV1dVR/bYlEjgAwGLRmkLPy8uT1+sNtvLy8l73V1BQoC1btqiyslIvv/yyGhoadMcdd+j06dPy+/1KSUlRRkZGSEx2drb8fn/Uv3em0AEAca+xsVEejyf4tdvd+3M4SkpKgv+ePHmyCgoKNHr0aP36179WWlpav/fz6xiBAwDsFaWr0D0eT0i7VAL/poyMDF1//fU6cuSIfD6fOjs71dzcHLJNU1NTr2vmkSKBAwDsdeFJbJG0CJw5c0b19fXKycnRtGnTlJycrF27dgXfr6ur09GjR1VYWBjpd3oRptABANYa6CexPfbYY7rnnns0evRoHTt2TOvWrVNiYqIefPBBeb1eLV68WKtWrVJmZqY8Ho8effRRFRYWRv0KdIkEDgBAn33++ed68MEHdfLkSY0cOVK33367ampqNHLkSEnSc889p4SEBJWWlqqjo0PFxcV66aWX+qUvLscZXE9yb21tldfr1UzdqySDYibhaFkQ3l9EY/6qzjjm1owG45iPWkcZxxwNo/hCVyC8lZTkhIBxzJDkTuOY1DCKZKQk9hjHSFJCGMWBA2EUMxmaaH4chiZd+raWS/EktRvHSFJ6onlcgsv8fAhHYhg/o/dbrol+Ry4hPYyfU7dj/n+w0FtvHCNJv2j4rnGMd+4Ro+27nS7t0Xa1tLSEXBgWTRdyxfcK1ygpKbxiNZLU3d2uqupn+7Wv/YUROADAWq7A+RZJvK24iA0AAAsxAgcA2It64AAAWCiMimIXxVuKKXQAACzECBwAYK1wS4J+Pd5WJHAAgL3ieA2cKXQAACzECBwAYC9HwZreYcdbigQOALAWa+AAANjIUYRr4FHryYBjDRwAAAsN3hF4QqLkSuz79gHz4hXe12uMYyTp5OvmMf9fabFxTMHffGAc8x+v+V/GMeNSmoxjJCk5jIWn1DAePDw0wbxYSHuYf5GH8xftvnN5xjE9Yexp95/HG8c0d6UZx0hS01nzog7JYRaQMRVwzM+Hc93hFUZqOWdeJCMxwfzca98zwjim4dNxxjGS5H3b/PfKoBbHV6EP3gQOAMDlBKQwCgKGxluKKXQAACzECBwAYC2uQgcAwEZxvAbOFDoAABZiBA4AsFccj8BJ4AAAe8VxAmcKHQAACzECBwDYK47vAyeBAwCsxW1kAADYiDVwAABgk8E7Ag/0SK4r5++Lof+83zjm0D+b7+eQ8o1jXLd833xHks75zAtluE92GMecHm2+H099m3GMJCV0dBvHBP7XZ2Hty9yZAdqPJLUaR3T1Qy+iJSXMuJFR7cW3+bcB29MVJ+BIrghG0QF7R+CDN4EDAHA5TKEDAACbGCXw8vJy3XLLLUpPT1dWVpbmzZunurq6kG1mzpwpl8sV0h555JGodhoAgPOcr0bh4TTFyQi8qqpKZWVlqqmp0c6dO9XV1aXZs2errS10vXHJkiU6fvx4sG3YsCGqnQYAQFJkyTvS6fcYM1oDr6ysDPl6y5YtysrKUm1trWbMmBF8fciQIfL5fNHpIQAAuEhEa+AtLS2SpMzMzJDXX3/9dY0YMUITJ07U6tWrdfbs2Ut+RkdHh1pbW0MaAAB9EnAib5YK+yr0QCCgFStW6LbbbtPEiRODrz/00EMaPXq0cnNzdfDgQT355JOqq6vTb37zm14/p7y8XE8//XS43QAAxDMncL5FEm+psBN4WVmZDh06pH379oW8vnTp0uC/J02apJycHM2aNUv19fUaO3bsRZ+zevVqrVq1Kvh1a2ur8vLywu0WAABxIawEvnz5cu3YsUN79+7V1Vdf/a3bFhQUSJKOHDnSawJ3u91yu93hdAMAEO/i+D5wowTuOI4effRRbd26VXv27FF+/uWf+nXgwAFJUk5OTlgdBADgkgIR3goWL2vgZWVlqqio0Pbt25Weni6/3y9J8nq9SktLU319vSoqKjR37lwNHz5cBw8e1MqVKzVjxgxNnjy5X74BAEAcYwTeNy+//LKk8w9r+brNmzdr0aJFSklJ0TvvvKPnn39ebW1tysvLU2lpqdasWRO1DgMAgDCm0L9NXl6eqqqqIuoQAAB95ijCEXjUejLgKGYCOR98HFZcapT7cSme9wZoR5LsvaEEiFNxPIVOMRMAACzECBwAYK9AQBHNnQXsnXcjgQMA7MUUOgAAsAkjcACAveJ4BE4CBwDYK46fxMYUOgAAFmIEDgCwluME5ERQEjSS2FgjgQMA7OU4kU2DswYOAEAMOBGugVucwFkDBwDAQozAAQD2CgQkVwTr2KyBAwAQA0yhAwAAmzACBwBYywkE5EQwhc5tZAAAxAJT6AAAwCaMwAEA9go4kis+R+AkcACAvRxHUiS3kdmbwJlCBwDAQozAAQDWcgKOnAim0B1G4AAAxIATiLyFYePGjbrmmmuUmpqqgoICvf/++1H+xi6PBA4AsJYTcCJupn71q19p1apVWrdunT766CNNmTJFxcXFOnHiRD98h5dGAgcAwMDPf/5zLVmyRA8//LAmTJigTZs2aciQIfrFL34xoP0YdGvgF9YjutUV0b35AIDY6FaXpIFZX+52OiIqSHKhr62trSGvu91uud3ui7bv7OxUbW2tVq9eHXwtISFBRUVFqq6uDrsf4Rh0Cfz06dOSpH16O8Y9AQBE4vTp0/J6vf3y2SkpKfL5fNrnjzxXDBs2THl5eSGvrVu3TuvXr79o2y+//FI9PT3Kzs4OeT07O1v/+q//GnFfTAy6BJ6bm6vGxkalp6fL5XKFvNfa2qq8vDw1NjbK4/HEqIexx3E4j+NwHsfhPI7DeYPhODiOo9OnTys3N7ff9pGamqqGhgZ1dnZG/FmO41yUb3obfQ82gy6BJyQk6Oqrr/7WbTweT1z/B72A43Aex+E8jsN5HIfzYn0c+mvk/XWpqalKTU3t9/183YgRI5SYmKimpqaQ15uamuTz+Qa0L1zEBgBAH6WkpGjatGnatWtX8LVAIKBdu3apsLBwQPsy6EbgAAAMZqtWrdLChQt1880369Zbb9Xzzz+vtrY2PfzwwwPaD6sSuNvt1rp166xYm+hPHIfzOA7ncRzO4zicx3Hofw888IC++OILrV27Vn6/X1OnTlVlZeVFF7b1N5dj83PkAACIU6yBAwBgIRI4AAAWIoEDAGAhEjgAABayJoEPhtJtsbZ+/Xq5XK6QNm7cuFh3q9/t3btX99xzj3Jzc+VyubRt27aQ9x3H0dq1a5WTk6O0tDQVFRXp8OHDselsP7rccVi0aNFF58ecOXNi09l+Ul5erltuuUXp6enKysrSvHnzVFdXF7JNe3u7ysrKNHz4cA0bNkylpaUXPXTDdn05DjNnzrzofHjkkUdi1GP0BysS+GAp3TYY3HjjjTp+/Hiw7du3L9Zd6ndtbW2aMmWKNm7c2Ov7GzZs0AsvvKBNmzZp//79Gjp0qIqLi9Xe3j7APe1flzsOkjRnzpyQ8+ONN94YwB72v6qqKpWVlammpkY7d+5UV1eXZs+erba2tuA2K1eu1FtvvaU333xTVVVVOnbsmO6///4Y9jr6+nIcJGnJkiUh58OGDRti1GP0C8cCt956q1NWVhb8uqenx8nNzXXKy8tj2KuBt27dOmfKlCmx7kZMSXK2bt0a/DoQCDg+n8/56U9/GnytubnZcbvdzhtvvBGDHg6Mbx4Hx3GchQsXOvfee29M+hMrJ06ccCQ5VVVVjuOc/9knJyc7b775ZnCbzz77zJHkVFdXx6qb/e6bx8FxHOd73/ue89d//dex6xT63aAfgV8o3VZUVBR8LVal2waDw4cPKzc3V2PGjNGCBQt09OjRWHcpphoaGuT3+0POD6/Xq4KCgrg8P/bs2aOsrCzdcMMNWrZsmU6ePBnrLvWrlpYWSVJmZqYkqba2Vl1dXSHnw7hx4zRq1Kgr+nz45nG44PXXX9eIESM0ceJErV69WmfPno1F99BPBv2T2AZT6bZYKygo0JYtW3TDDTfo+PHjevrpp3XHHXfo0KFDSk9Pj3X3YsLv90tSr+fHhffixZw5c3T//fcrPz9f9fX1+pu/+RuVlJSourpaiYmJse5e1AUCAa1YsUK33XabJk6cKOn8+ZCSkqKMjIyQba/k86G34yBJDz30kEaPHq3c3FwdPHhQTz75pOrq6vSb3/wmhr1FNA36BI6vlJSUBP89efJkFRQUaPTo0fr1r3+txYsXx7BnGAzmz58f/PekSZM0efJkjR07Vnv27NGsWbNi2LP+UVZWpkOHDsXFdSDf5lLHYenSpcF/T5o0STk5OZo1a5bq6+s1duzYge4m+sGgn0IfTKXbBpuMjAxdf/31OnLkSKy7EjMXzgHOj4uNGTNGI0aMuCLPj+XLl2vHjh169913Q8oP+3w+dXZ2qrm5OWT7K/V8uNRx6E1BQYEkXZHnQ7wa9Al8MJVuG2zOnDmj+vp65eTkxLorMZOfny+fzxdyfrS2tmr//v1xf358/vnnOnny5BV1fjiOo+XLl2vr1q3avXu38vPzQ96fNm2akpOTQ86Huro6HT169Io6Hy53HHpz4MABSbqizod4Z8UU+mAp3RZrjz32mO655x6NHj1ax44d07p165SYmKgHH3ww1l3rV2fOnAkZNTQ0NOjAgQPKzMzUqFGjtGLFCj377LO67rrrlJ+fr6eeekq5ubmaN29e7DrdD77tOGRmZurpp59WaWmpfD6f6uvr9cQTT+jaa69VcXFxDHsdXWVlZaqoqND27duVnp4eXNf2er1KS0uT1+vV4sWLtWrVKmVmZsrj8ejRRx9VYWGhpk+fHuPeR8/ljkN9fb0qKio0d+5cDR8+XAcPHtTKlSs1Y8YMTZ48Oca9R9TE+jL4vnrxxRedUaNGOSkpKc6tt97q1NTUxLpLA+6BBx5wcnJynJSUFOc73/mO88ADDzhHjhyJdbf63bvvvutIuqgtXLjQcZzzt5I99dRTTnZ2tuN2u51Zs2Y5dXV1se10P/i243D27Fln9uzZzsiRI53k5GRn9OjRzpIlSxy/3x/rbkdVb9+/JGfz5s3Bbc6dO+f81V/9lXPVVVc5Q4YMce677z7n+PHjset0P7jccTh69KgzY8YMJzMz03G73c61117rPP74405LS0tsO46oopwoAAAWGvRr4AAA4GIkcAAALEQCBwDAQiRwAAAsRAIHAMBCJHAAACxEAgcAwEIkcAAALEQCBwDAQiRwAAAsRAIHAMBCJHAAACz0/wMJL+QUxyIFxwAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"markdown","metadata":{"id":"NKrPnl6QUask"},"source":["Therefore we normalize the images to 0-1 range which result in faster convergence while training the network."]},{"cell_type":"code","metadata":{"id":"87WmJUPtAYXN","executionInfo":{"status":"ok","timestamp":1730107909940,"user_tz":-420,"elapsed":632,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["train_images = train_images / 255.0\n","\n","test_images = test_images / 255.0"],"execution_count":11,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"tFeVxPUYUz4P"},"source":["Let's display some more images from the training set and display the class name below each image"]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":826},"id":"5ahwId_OAliV","outputId":"8cfbd8e0-b64f-4192-ded1-f8b7b7ef643c","executionInfo":{"status":"ok","timestamp":1730107914973,"user_tz":-420,"elapsed":2393,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["plt.figure(figsize=(10,10))\n","for i in range(25):\n"," plt.subplot(5,5,i+1)\n"," plt.xticks([])\n"," plt.yticks([])\n"," plt.grid(False)\n"," plt.imshow(train_images[i], cmap=plt.cm.binary)\n"," plt.xlabel(class_names[train_labels[i]])\n","plt.show()"],"execution_count":12,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAxoAAAMpCAYAAACDrkVRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADqh0lEQVR4nOzdd5hV1d3+/88gfRq9DL1IUUBBBCl2USwIRI0hRvHRR6NGxZhYH3tJMbEmahIb0ViIAoqooCgoAiIWOgxFhiJD773t3x/+nK97rRtmMeypvF/XlevK+rDOPvucs87aZzv73isliqLIAAAAACBB5Yp7BwAAAACUPZxoAAAAAEgcJxoAAAAAEseJBgAAAIDEcaIBAAAAIHGcaAAAAABIHCcaAAAAABJXPqTTvn37bPny5Zaenm4pKSmFvU8oBaIoss2bN1tWVpaVK1e456uMP7iKcvyZMQYRx/hDceMYjOJ0MOMv6ERj+fLl1qhRo0R2DmXL0qVLrWHDhoX6HIw/7E9RjD8zxiA0xh+KG8dgFKeQ8Rd0opGenp63wYyMjEPfM5R6mzZtskaNGuWNjcJUFOMviqJYO8n/apOdne3Vfv/733u1/v37e7UOHTrE2hUrVvT6lC/vf43nzJnj1UaOHBlrN23a1OszaNAgr1atWjWvVtyKcvyZlb45cPXq1bH2q6++6vUZMGCAV6tbt26h7ZOZ2fTp02PtefPmeX369u3r1SpUqFBo+1QQjL//Jycnx6tNmDAh1n7vvfe8PtWrV/dqv/jFL7zaMcccE2urMTNixAivNm7cOK9WtWrVWPviiy/2+vzP//yPVyuJytox+HCQm5sba9evX7+Y9uTQHcz4CzrR+PFHV0ZGBoMMMUXxZ9SiGH+FeaKRlpbm1dTJQZUqVfJ9bOiJhntANfN/rFWqVMnro97fkvydL6o/45e2OXDHjh2xduXKlb0+6gBR2K/NHc9qnKp9KGknGj9i/Olx5M5l6vNTc1lqaqpXc1+vmk/VXHbEEUd4NXeuVHNuSXt/81NWjsGHgy1btsTaZeG9DBl/hMEBAAAAJI4TDQAAAACJC7p0Ciit3EuizPSf+kL+/Pftt996tSFDhni1oUOHxtrqT/jun1DNzO68806vtm7dunz3K1SrVq1i7WnTpnl9/vjHP3q1evXqebWzzjor1v7d737n9Wnfvv3B7iIKQI0l95r1l19+2evzxhtveLXatWt7NfcSF3UZjNqHnTt3erWlS5fG2v369fP6qO/LRRdd5NVQuD744AOv9vjjj3s1dfnRrl27Ym116Z7KdqiMxsqVK2NtlS1Tl4+q698zMzNj7bfeesvr88QTT3i1M844w6s99dRTXg1F77TTTvNq69evj7Vr1arl9Xnuuee8mhpbIZYvX+7VTj31VK+2ffv2WLtx48Zen9GjR3s1dUlhacJfNAAAAAAkjhMNAAAAAInjRAMAAABA4shooEwLvfXfpk2bYu3LLrvM66MyDSoD4t5+UV3DrO4hr65N37NnT6y9ceNGr4+6RajaVsh70aVLF6/m3irVzGzixImxtrpnfc+ePb3af/7zn3z3AQdH3e7TvRb9T3/6k9fn4Ycf9mpz5871au418ip7odZaUbc9da91P+ecc7w+Ku+Bwrdw4cJY+7XXXvP6qNyVe9252Q8rSf+UWjlYLQAXcrtPNY+p+S7kNskq29GtWzevtmzZMq/m5tIeffRRf2dR6NyxZma2Zs2aWPv777/3+qixrObSCy+8MNZWx7C9e/d6NZVLcufJzZs3e31Kex5D4S8aAAAAABLHiQYAAACAxHGiAQAAACBxnGgAAAAASBxh8J8IXdzNpQI9n3/+uVc7++yzC7QPKmikQmwFpZ7TFRqqLq369+8fay9ZssTrU7duXa+m3hf381JBRUV9zu5nU7NmzaDHKSGfs6LC7G7QTb0P48eP92pz5szxam3bti3QfmH/3MC2Cmv/5je/8Wp/+9vfvFqlSpUOuO39bf+4447zav/zP/8Ta6tF29SigSh8bpg59HNQYVz3BhJqDlTHsGbNmnk198YG6uYUav5R4zRkH3bv3u3V1EJuM2fOjLVHjhzp9TnvvPPy3Qccmho1ani1RYsWxdrquKkWw12xYoVXc+dEdVOY6dOnezV1wxd3bKn9Kov4iwYAAACAxHGiAQAAACBxnGgAAAAASBwnGgAAAAASRxj8J1SozQ2xLViwwOvz/PPPezUVoHVXfFQrR6qVmUOC3yroq16P6heyfTdwHBpALom+/vprr+aGv2vVquX1cVfp3h93pVy1KmnIarpm/mej3ne16q6ya9euWNtdJddMr+bcsGHDfPdLUfulviusqJs893N0V8o1M2vSpIlXU5+FO35Xr17t9VFhWfUdcvdDfacKetMCHJrLL7881n788ce9Piogrm6S4d4gRc01SsWKFb2aGm8utQp41apVg54zZB82bNjg1dx5keB38WjRooVX++KLL2JtdTMC9yYXodRcp258kpWV5dXc4/62bdsKtA+lDX/RAAAAAJA4TjQAAAAAJI4TDQAAAACJ40QDAAAAQOIIg/+ECtq6IaJPPvnE6/PRRx95tUaNGnk1d6VSFQT68MMPvdpVV13l1dwAnloZNXRF6i1btsTaKsTrButCt10SjR071qu5n41afVa9LyrA7YbMHnnkEa9P/fr1vZoaM8uXL8/3cWofVPjSDYO7n7uZ2TfffOPVnnrqKa/mhkLVarrq/Ro6dKhXIwyevJDv59q1a4O25Ya669Wr5/VRc5m6CYK7X2reUjUUPvdGJN26dfP6vPPOO16ta9euXs0N+avxoVZ0VkFsd65RN1FR21dzkrvK+KpVq7w+irp5x5/+9Kegx6JwtW3b1qu5x0Q1p7g35zHT40+t+u1SY1Ld1MIdk+omBmURf9EAAAAAkDhONAAAAAAkjhMNAAAAAIkjo/ET6vo815QpU7xaTk6OV1PXzbu1M8880+vz7bfferVbb73Vq3Xu3DnWbt++vddHXbv45ZdfejX3NXXv3t3r416vu2nTJq9PafHWW295Nffa8ZDF88z0tcHudcAqY6OyOGohwSuuuCLW/uc//+n1Ofroo72aypi4GaQ6dep4fX772996tWeeecarudeaqudT18DOnTvXq82bNy/WbtWqldcHB8e9Pjg0w6VyamqxssLcr9CFMVG4brzxRq/2xBNPeDW18KObq1BzgVpQL+SadTU+1EKCql/INfIbN270ameffbZXO1yury/pQhaUVfOam1k00xnIjh07xtrqc1f7oH5DuNzfCmUVf9EAAAAAkDhONAAAAAAkjhMNAAAAAInjRAMAAABA4g7bMLhaTEUFE93F+L766iuvjwoHbd261au5oVe3bWZ2/PHHe7WWLVt6NXextYkTJ3p9hg0b5tVUoNldqOm5557z+rhBefX6Sotp06Z5NXexPBUecxf12x8VJnSdddZZXi0tLc2rzZkzJ9b+61//6vXp37+/V3v33Xe9mhuOdENuZnrBvpAQvFqcT9XUooSTJk2KtQmDHzp3flBjVy0ypca9+zmqPmo+VdyApApMqhsLoPC584P63k+YMMGr/d///V++21bBb7WoqFoYr0qVKrG2Gn/qce7CqWZhAV3Vp0+fPvk+DsVDBbjdsaXmJ3UzDDUm3ZutqIUg1ZhRQW93Hg4Zj2UBf9EAAAAAkDhONAAAAAAkjhMNAAAAAInjRAMAAABA4spkGDw0mBji7rvvjrVzc3ODHqdWjHbDRyqs9vnnn3s1FUB3g+udOnXy+hx55JH57oOZ2d///vdY+7vvvvP6DB06NNYuLSuDz5gxw6upVWTd90UFDkNDiDVq1Mh3v2bNmuXV1Hhwx5sKXqrxrkJtbj83hL0/Kmy3fPnyWFuNK3VzBTfYaWb22WefxdoDBw4M2i/snxvsVWNE1VQ40e1X0MeZ+QFj9Tj1PUPhU+Fvl5oLmjdv7tUWLVoUa6sbD6Snp3s1dQMJ97FqzKgbaaxevdqrhYy/xo0bezWUXOp4npOTE2u3adPG66PGpJqzVPjbFXK8NfPHt3uTnbKKv2gAAAAASBwnGgAAAAASx4kGAAAAgMRxogEAAAAgcWUyDK5CqAVVvXr1WFuFwVXAVa3E64aK3NV7zXRASQWO3deoQuRqtXAVUFq5cmWs3bt3b69PafXnP//Zq6n3MzU1NdYOWQ3bTH9ebjBMhfnXrl3r1datW+fV3DHjflbq+fa3X7t27Yq1N2zY4PUZMmSIV1u/fr1Xc8e82pb6Xqhg3ddff+3VcGjckKtamVmFrkNC3Sr4r4TMw+oGCChd1DHFPbapkLc6RqqAuDtvqbktNFQbMnbr1KkTtC2UDPXq1cu3T2jIO2SlbjWvuTff2F/NnXPd35dlFX/RAAAAAJA4TjQAAAAAJI4TDQAAAACJK5MZjSS51+WHXtesrk93ryWsWbOm18ddaMZMX9/qXnMYupic2pZ73eqyZcu8PqVV9+7dvZrKOSxYsCDW3rhxo9dHZTTUoojue9y1a1evj7pWWH02bk2NNXWtachiaWrMZGRkeLVWrVp5ta1bt+a7X2ofsrKyvFq/fv28Gg5NyLXG6vNXY9DtF7Lt/XGvW1YZDfX9RNFTn7MaHw0aNPBq06dPz3db6rNX29+xY8dB9zHTx2A337FmzRqvT8OGDb2a4o7lkAUPUTRUjqeg3EyGymio47kaD+4xUR1vyyL+ogEAAAAgcZxoAAAAAEgcJxoAAAAAEseJBgAAAIDElcn0khu4UUE0Fd5RC+gtX7481lYBNrVYkLvIkHqsu0icmQ4hq9C4G0xWz5eWlubVNm3a5NXat28fa7tBXzN/0Tn1XpVE1113XVDNXZRu/vz5Xp9nn33Wq40bN86r1ahRI9Z2318zs2rVqnk19RkeSvDWFfK9UCE6NSY7dOgQa7/22muHuHcoKLWgohvgVsF8FWpMcryp0K4boFXjTd10QYV9kwx8ouCaNm3q1dzxp+Y2NW6bNGni1dxQrVrsVC18psK47rE65KYZKH0Kumizepw7RlSf0LnU7ad+A5ZF/EUDAAAAQOI40QAAAACQOE40AAAAACSOEw0AAAAAiSuTqSc3cKNWwFVh8CFDhni13NzcWLt27dpeH7UCt9q+G7JesmSJ16dChQpebefOnV7NDayp1aHVfqmVUH/zm9/E2lOnTvX6uCFO9Z6WZm6YsEuXLl4fdSOATz75xKu54099fipw777HZjpQ61KBRlVzt6X2S40/FcRVK66jeKhx6dYKGo4MfawabwVdnTwzM9OrEfwuuapWrerV1PHPpeY2NWZCVgZXYfDVq1d7tZCbmKjgOkoXNR8V9HEhK8CreUyNU7e2atWqg93FUom/aAAAAABIHCcaAAAAABLHiQYAAACAxHGiAQAAACBxZTIM7oZ31MrdSrt27byaG6pUoevQsLkb/FEBR3dVaTMdEnb3Q4WLVUCuUaNGXs1d1fmWW27x+pxwwgmxtlphvLRQgS/3/VRjRoVi09PTvZo7HtRYCA3nhqxKmqTQlaHVyuau0IBcYb+msk69fyX1Zg0hN0pAyRByIwozHY51b5qi5lN1fFLcuUZtS934pG7dul7NDYgfLiszH26SDIO7x8SQ1cPN9O8292YrOTk5B7mHpRN/0QAAAACQOE40AAAAACSOEw0AAAAAiUs0o6GuU1PXCqvrwN3HqoXDDuWa0RBnn322V0tLS4u1q1Sp4vUJXeDHvW5VXcOnFkcLyZio16zeL/V5TJ8+PdZWC2aVJeoaSzXeXC1atPBqGRkZXq2gGaGQaz+TzDOo/QodyyFjRH3PQxbywsEJyWOELo4WIslthY4R1S/0eICCCX3PVV5v/fr1sbY6bq5duzZoP9zj5rZt27w+Gzdu9Goh8656jWohXaWgvzNQ+EIyGiG/Q0O3HZqTc+c2MhoAAAAAUECcaAAAAABIHCcaAAAAABLHiQYAAACAxB1SmilkYbLiCEx99tlnsfbQoUO9Pp9//rlXq1q1qlerWbNmrK0WmFJBIPW63e2rsJDavgqIu88ZuvCQCvu6jx02bJjXp0+fPkHbL63cYJgayyrQ6C7oaOZ/XiporhZ+DAmZqT4hiwwpasFIFbRU2yfUXXKEzA+hi0yFBLEPZTHAkJsbqJqat9T4RXJCw/ZuWNvM7Oijj461Gzdu7PVRc436TFeuXBlrq5B3kyZNgrblBtfr16/v9fn++++9GkquefPmeTV3vlBzSugNLNw5K3QxQNXP/V24Zs2aoG2VdvxFAwAAAEDiONEAAAAAkDhONAAAAAAkjhMNAAAAAIk7pKR2QQOh69at82rLly+PtVXAx+1jpoPL7mNVYFcFgVSg2l29NCsry+ujQmcq7OuG2tR+qYBc9+7dvdrmzZtj7fHjx3t9VJhPrejshpW/+OILr09ZF7Litno/Va2gQdyQ/SpogC30OUNXkw8Jiia5ijn2L+SzDl3NNnT7SQnddkFXHkfhU8eeFi1axNqhYe309HSv5h7rNmzY4PVRN3JRoXH1G8LlHqfNzFatWuXV6tSpE2uzen3xmDNnjldr2LBhrK3GgvqtpbjHv9A5Sx033d98K1as8PpMnDjRq6nfgKUJ3wIAAAAAieNEAwAAAEDiONEAAAAAkDhONAAAAAAk7pDC4JMmTYq177nnHq/P6tWrvZoKc7mhKRWsqlatmldTgXQ3UKZC1yrQo1Z+dkM4Q4YM8focf/zxXs1dgdTMD7/l5OR4fZTp06d7tS1btsTabvjJTIfbVQBq69atBdov6HChO05DV1IuaIC7oNS21Srmqt+ePXsKZZ9w8A5lpe4QIavTKyEBdDWO1OthvBU+95irgsxLly71arNnz/ZqzZs3j7XXr1/v9XFvtGJm1rJlS6/mHp++++47r0/16tW9mjoGh0hLS/Nqr732mle76aabYm2C38Xj448/9mohN1EJDe+781joTTTU9t3HqvH+7LPPejXC4AAAAADg4EQDAAAAQOI40QAAAACQuIPKaOzduzd2/eygQYNi/66uVy9f3n8KdR2cyhO4du7c6dVUrkLVXBs3bvRqixcv9mq33357vttW19TVr1/fq7kZjdNOO83r4y50ZGY2f/58r+Ze36qurVfXNavrBt3PyF2I6HBQ0MXlQhat3LVrl1cLuRZU1UIXXgvpp/ZL5ZnU9kOumWfBvqKhPmt3XIaOkZCF8UI/V9UvZPtqv9R8nZGREbQfCBOSMRg9erRXO+qoo7zajh07Ym31WanjbYMGDbza3LlzY20156qMoso21q1bN9ZWORGV9/j++++9mntcPvLII70+KHxqgWH3N406Xh3Kwnsh1Fznfi/U8VYt2Ffa8RcNAAAAAInjRAMAAABA4jjRAAAAAJA4TjQAAAAAJO6gwuCvvfZaLAzthrncRXrM/MV2zMw2b97s1VQoy6UCPSok6AbDVMBs+/btXs0NipmZDRw4MNZ+++23vT59+vTxaosWLfJq7nvx9ddfe33Gjh3r1VQYyQ0RqaC8CvsqbnBKPc5dqEl9hocjFeZyQ2AqvBi6WFDIAmfqRgAqiOuOI9VH3bxBUYtuonjs3r3bq7njK8lF9pKkxpt6PjdEieKhAtYdOnTwau74U8cUdcxSQm48ETJ3mvk3ZFELEKrgekiYnTB48VALDLuB/kOZ10KOm6Hc74X6HbpixQqvpr4r6rdHScVfNAAAAAAkjhMNAAAAAInjRAMAAABA4jjRAAAAAJC4gwqD165d26pWrZrXdkPXKiCsAiuNGzf2au5jVcBx06ZNXq1GjRperUmTJvnulxsK21/NDfL279/f69O+fXuvpgJKbuBdvTfVqlXzairs6+5XxYoVvT4FXZFaBafmzZsXa6uQ/+EoZGVwpaDhNHVjgNAAt7v90H1Q40+F2EK2heSFrHqrxk1xfD4hY1WNt9AwO5KjbmhSv359r6aC+mlpabG2GqNq7gyZV9QYUse1kLD5T3/P/EiFcdUNZVavXp3v9pGs9evXezX1OdSpUyfWVmNBjRl1kxZ3ngz5DbW/mrsfZ555ptfnv//9r1dTNw7q3r27Vyup+IsGAAAAgMRxogEAAAAgcZxoAAAAAEgcJxoAAAAAEndQYfCsrKxYyMsNxTRq1Mh7jAoNq/COG4KuXbu210fVVMjMDdyoPirAtmXLFq/mhihr1qzp9Zk9e7ZXc8NwZn4I3l29cn/7pV63G4hTAUoVmgtZiTIzM9PrM3Xq1Hz383CkQrYhChrEPZRQrPucIcE3Mx3a3LZtW4H3A8lSN31wqc81NAxZmEJvPsDNJ4qeWjVbjRl1fHXHpDpeqOOTugmMSwWC1bbU3Ozua7Nmzbw+8+fPD9rWxo0bY+1169Z5fdTNalBw3377bVA/dzyo3z2h8587dtV8q46RIXNbdna210eNtTlz5ng1wuAAAAAADmucaAAAAABIHCcaAAAAABJ3UBmNDh06WEZGRl7bXbzupZde8h6TlZXl1Vq0aOHV3MXyVF5CXRunrr1zr/NU15CqxflUP/c6O7XAj1rESF3/517Hp55PLdgXshCiepyqqYX93OsG1UJNdevWjbVDFlYqTZJcvCzJ69xDMhmhOZGQBfvUvode/4zioeZF97NWn2FxLILnji91bbPKaCxcuNCrdezYMbkdg0cdn9T8oI6JboZLZS/UsUiNB/dYqo6HanyrBXG///77WLtz585en88++8yrqWO8+/6o7AgZjWSNHDnSq9WqVcuruXNIyLgy07873XlSfS/U4376W/lH7jhVi0OqfZ0xY4ZXK034iwYAAACAxHGiAQAAACBxnGgAAAAASBwnGgAAAAASd1BhcNedd94Zax977LFen7/+9a9eTYWN3UXpVJBZhc5UOM1dsC9k4R4zHY50Q5UhixOZ6bC0+9jQMKbq574XKiCnFhBSASg3kNShQwevz69+9atYe9OmTXb11VfrHS6F3Pc4NByuAo0FDcqHLCCkgmLqO6C25VKvUY019ZwhYfAkA/bYv+XLl+fbJ3RxRjVu3M869HMNGZdqvKlgrwp8onCtXbvWq6ljnVpQdubMmbG2mhPVwrBq++54CL1RjLrhy/Tp02Ptc8891+ujfnuo7bvhb/XbAMlSN4VQv33c3zTqeKUWX1bh7HfffTfWPu+887w+VapU8WpqUVu1kHPI42bNmpXv40oy/qIBAAAAIHGcaAAAAABIHCcaAAAAABLHiQYAAACAxB1UGHzfvn2xgJ8b7DvnnHO8x6jaJ5984tXcYHlOTo7XZ+PGjV5NhQnd4I9alTR0pdw6derE2ioI2bBhQ6+mgmhuEOhQVld2Q8ihQflevXp5tbZt28ba3bt3L/B+ISzAHboqt1sLDX6H3GhAjeXQVc1ZGbzkUHONO+epz1p9hiE3Awj97NUK3+5jQ1fnbdy4cdBzIjmrV6/2amp+UKHaDRs2xNpqzGRlZXk1FbquXr16rJ2amhq0XyFUONd9PjP9/XH3Izc31+vTunXrAu0XNBXEHjdunFdz5zE1z6jQtRIS4Fa/J9X8F/I4NZ+3b98+322VZPxFAwAAAEDiONEAAAAAkDhONAAAAAAkjhMNAAAAAIk7qDB4uXLlglYczs9pp53m1b744ot8Hzd37lyvpgJrbphr2bJlXp8mTZp4NbXKc4sWLfLdL5R+BV3FWgUa58+fH2urwJf6HqmaG45UfdS+q5q7H+omCaFYGbzk6NKli1ebN29erO2Gc8106FBxg5VqPBf0s1YBWjXGCdUWva1bt3o1ddMRd4VsZceOHV5NHW/V6truMV6tRK72Vf02cGtqpenQm2u4Y16tUI1kXXXVVV7t6quv9mru56VuWKBu0qKE/OatVauWV1NzrjvmN23a5PVRtUGDBuW7DyUZf9EAAAAAkDhONAAAAAAkjhMNAAAAAIk7qIxGcWvTpk1QzdWuXbvC2B1AXofpLjimshBr1671air34C5EdSi5CvfaevV8avHJ7du3ezV1bbMrdHFBHBp13fxll10Wa48dO9brs2bNGq+mrnV3r5sPWYjKTI8vdww2bdrU66MyfOo1onC5WTMzs2bNmnk1lb9wqblALZimckPuArKvvfaa10dlO04//fR890Ptl5rT1fhr3rx5rH3qqad6fVD4pk+f7tU6dOiQ7+MqVaoUtP1Vq1bl22fFihVeTX0v3DlR5XpGjx7t1VSmuDThqA8AAAAgcZxoAAAAAEgcJxoAAAAAEseJBgAAAIDElaowOFBY3AV+Qhcg69Spk1c7+uijY+1q1ap5fUJD3W5YMS0tzeuj9lUtMOUGcVUwWwV9VThSLRLnIvhdNNRn7YZqzz777KBtrVu3zqu5QceNGzd6fdQYrFevXr61gi4auL/nRHKeeeYZr6YWa1SB6osvvjjWVjePUAHXpUuXejU3gN65c2d/ZwNdcMEF+fa56KKLCrx9FL327dt7NXe+GD9+vNdnzpw5Xu2TTz7xaj169Mh3H66//nqvpkLk7vfinHPOyXfbZQG/BAAAAAAkjhMNAAAAAInjRAMAAABA4oIyGj9e77Zp06ZC3RmUHj+OBXXtdNKKYvwVNKOxc+dOr7Zr1658+xQ0o6GukU4yo6EWWVP77y62VdRzQ1GOv58+T0mcA5PML6jX5y5AqRb1U8+nFqNyFz5zvyv7U9IyGofD+FOL4IVmNNy5RY0F9VpC+6HsHYMLk5qz1EK06rjsjsnU1FSvT8jvALPiP24m6WDGX9CJxo9vdKNGjQ5ht1AWbd682TIzMwv9OcwYf/AVxfj78XnMGIOIY/yhuHEMLlzDhg1LbFtvvPFGYtsqKULGX0oUcDqyb98+W758uaWnp3OnD5jZD2exmzdvtqysrEK/uxDjD66iHH9mjEHEMf5Q3DgGozgdzPgLOtEAAAAAgINBGBwAAABA4jjRAAAAAJA4TjQAAAAAJO6wOdG477777Nhjj93vvw8ePNiqVat2SM9x+eWXW79+/Q5pGyj78huLZmannHKK3XTTTUWyPzj8MAYBHK6Y/4pWqTnRmDRpkh1xxBF27rnnFveuFDu+AEUrJSXlgP+77777En/OYcOG2YMPPnjAPjk5OZaSkmJTp06V/37//ffbr371KzP74TW8/fbbCe8ligpjEKXd5ZdfnjdeK1SoYHXr1rVevXrZiy++KNfiAH7E/Fe6Ba2jURK88MILdsMNN9gLL7xgy5cvt6ysrOLeJRwmcnNz8/7/kCFD7J577rHs7Oy8WlpaWuLPWaNGjQP+e8hCZ++8847dfvvtSe0SihFjEGVB79697aWXXrK9e/faypUrbdSoUTZo0CB76623bMSIEXJBwN27d1uFChWKYW9RUjD/lW6l4i8aW7ZssSFDhti1115r5557rg0ePDj27+PGjbOUlBT7+OOPrXPnzla1alXr3r17bCC6Fi5caM2bN7frr79+vysbvvPOO9apUyerXLmyNW/e3O6//365Wqrr/vvvt9q1a1tGRoZdc801sQG5c+dOu/HGG61OnTpWuXJl69mzp02ZMiX2+E8//dS6dOlilSpVsvr169vtt9+e97yXX365ffrpp/bkk0/mnc3n5OTku08ouHr16uX9LzMz01JSUmI1NcmNGzfOunTpYqmpqVatWjXr0aOHLV68ONbnlVdesaZNm1pmZqb94he/iK1A6v7VqmnTpvbggw/aZZddZhkZGXb11Vdbs2bNzMysY8eOlpKSYqecckpe/6VLl9qsWbOsd+/e1rRpUzMz69+/v6WkpOS1zcyeffZZa9GihVWsWNFat25tr7zySmwfU1JS7Nlnn7Wzzz7bqlSpYs2bN7e33nqrgO8kCooxyBgsCypVqmT16tWzBg0aWKdOnezOO++0d955xz744IO84/qPn/f5559vqamp9vDDD5vZgY/HURTZfffdZ40bN7ZKlSpZVlaW3XjjjXnP+8wzz9iRRx5plStXtrp169qFF15Y5K8dBcf8V8rnv6gUeOGFF6LOnTtHURRF7777btSiRYto3759ef8+duzYyMyirl27RuPGjYtmzZoVnXjiiVH37t3z+tx7773RMcccE0VRFE2bNi2qV69e9H//9395//7SSy9FmZmZee3PPvssysjIiAYPHhwtXLgw+vDDD6OmTZtG99133373c+DAgVFaWlp08cUXRzNnzoxGjhwZ1a5dO7rzzjvz+tx4441RVlZW9P7770ezZs2KBg4cGFWvXj1au3ZtFEVRtGzZsqhq1arRddddF82ZMycaPnx4VKtWrejee++NoiiKNmzYEHXr1i266qqrotzc3Cg3Nzfas2dPgd9bHBx3nCi7d++OMjMzo9///vfRggULotmzZ0eDBw+OFi9eHEXRD2MxLS0t+tnPfhbNmDEj+uyzz6J69erFxsnJJ58cDRo0KK/dpEmTKCMjI/rrX/8aLViwIFqwYEH05ZdfRmYWjRkzJsrNzc0bQ1EURX//+9+jM888M4qiKFq1alVkZtFLL70U5ebmRqtWrYqiKIqGDRsWVahQIXr66aej7Ozs6NFHH42OOOKI6JNPPsnbjplFNWvWjJ577rkoOzs7uuuuu6Ijjjgimj179qG+lSggxiBjsDQaOHBg1LdvX/lvxxxzTHT22WdHUfTD512nTp3oxRdfjBYuXBgtXrw43+Pxm2++GWVkZETvv/9+tHjx4mjy5MnRv/71ryiKomjKlCnREUccEb322mtRTk5O9M0330RPPvlkkbxmJI/5r/TNf6XiRKN79+7RE088EUXRDwOoVq1a0dixY/P+/ccTjTFjxuTV3nvvvcjMou3bt0dR9P9ONCZMmBBVr149+utf/xp7Dnfwnn766dEf/vCHWJ9XXnklql+//n73c+DAgVGNGjWirVu35tWeffbZKC0tLdq7d2+0ZcuWqEKFCtGrr76a9++7du2KsrKyokceeSSKoii68847o9atW8dOpJ5++um8bUSR/wVA0QmZ5NauXRuZWTRu3Dj57/fee29UtWrVaNOmTXm1W265JeratWteW01y/fr1i21n0aJFkZlF3377rfccvXr1iv7+97/ntc0sGj58eKxP9+7do6uuuipWu+iii6Jzzjkn9rhrrrkm1qdr167RtddeK18bCh9jkDFYGh3oROPiiy+O2rZtG0XRD5/3TTfdFPv3/I7Hjz76aNSqVato165d3raHDh0aZWRkxMY6Si/mv9I3/5X4S6eys7Ptyy+/tAEDBpiZWfny5e3iiy+2F154wevboUOHvP9fv359MzNbtWpVXm3JkiXWq1cvu+eee+x3v/vdAZ932rRp9sADD1haWlre/6666irLzc21bdu27fdxxxxzjFWtWjWv3a1bN9uyZYstXbrUFi5caLt377YePXrk/XuFChWsS5cuNmfOHDMzmzNnjnXr1s1SUlLy+vTo0cO2bNliy5YtO+A+o+gtWbIkNkb+8Ic/WI0aNezyyy+3s846y/r06WNPPvlk7BpTsx/+DJuenp7Xrl+/fmysKp07dw7ap02bNtmnn35q559//gH7zZkzJzYWzX4Yaz+OxR9169bNa7t9UHwYgyjtoiiKHfPccZbf8fiiiy6y7du3W/Pmze2qq66y4cOH511W1atXL2vSpIk1b97cLr30Unv11VcPeAxH6cL8V/KV+BONF154wfbs2WNZWVlWvnx5K1++vD377LM2dOhQ27hxY6zvTwNjP05aP72bRe3ata1Lly72+uuv26ZNmw74vFu2bLH777/fpk6dmve/GTNm2Pz5861y5coJvkKUZllZWbExcs0115iZ2UsvvWSTJk2y7t2725AhQ6xVq1b2xRdf5D3ODTempKTke+eV1NTUoH364IMP7KijjrJGjRod5KtBacQYRGk3Z86cvOvdzfxxlt/xuFGjRpadnW3PPPOMValSxa677jo76aSTbPfu3Zaenm7ffPONvf7661a/fn2755577JhjjrENGzYU8atEYWD+K/lK9InGnj177OWXX7ZHH300NpCmTZtmWVlZ9vrrrx/U9qpUqWIjR460ypUr21lnnRUL/rg6depk2dnZ1rJlS+9/5crt/22bNm2abd++Pa/9xRdfWFpamjVq1Cgv8DNhwoS8f9+9e7dNmTLFjjrqKDMza9u2rU2aNCkWUJ8wYYKlp6dbw4YNzcysYsWKtnfv3oN67Sgc5cuXj42Nn96pomPHjnbHHXfYxIkTrV27dvbaa68l+twVK1Y0M/PGwjvvvGN9+/aN1SpUqOD1a9u2bWwsmv0w1n4ciz/66eT8Y7tt27aHtO9IDmMQpdknn3xiM2bMsAsuuGC/fUKOx1WqVLE+ffrYU089ZePGjbNJkybZjBkzzOyH78gZZ5xhjzzyiE2fPt1ycnLsk08+KZLXh8LF/Ffylejb244cOdLWr19vV155pWVmZsb+7YILLrAXXngh7+w1VGpqqr333nt29tln29lnn22jRo2Sdyy455577LzzzrPGjRvbhRdeaOXKlbNp06bZzJkz7aGHHtrv9nft2mVXXnml3XXXXZaTk2P33nuvXX/99VauXDlLTU21a6+91m655RarUaOGNW7c2B555BHbtm2bXXnllWZmdt1119kTTzxhN9xwg11//fWWnZ1t9957r9188815E2rTpk1t8uTJlpOTY2lpaVajRo0DnvygaC1atMj+9a9/2fnnn29ZWVmWnZ1t8+fPt8suuyzR56lTp45VqVLFRo0aZQ0bNrTKlStbamqqffDBB/b73/8+1rdp06b28ccfW48ePaxSpUpWvXp1u+WWW+znP/+5dezY0c444wx79913bdiwYTZmzJjYY998803r3Lmz9ezZ01599VX78ssv5aWLKDkYgyiJdu7caStWrIjd3vaPf/yjnXfeeQccm/kdjwcPHmx79+61rl27WtWqVe0///mPValSxZo0aWIjR4607777zk466SSrXr26vf/++7Zv3z5r3bp1Eb5yFCXmvxKmuEMiB3LeeefFQjE/NXny5MjMomnTpuWFwdevX5/3799++21kZtGiRYuiKIrfdSqKomjz5s1R9+7do5NOOinasmWLDBiNGjUq6t69e1SlSpUoIyMj6tKlS96dLJQfw2733HNPVLNmzSgtLS266qqroh07duT12b59e3TDDTdEtWrViipVqhT16NEj+vLLL2PbGTduXHT88cdHFStWjOrVqxfddttt0e7du/P+PTs7OzrhhBOiKlWqxF4jCl9IEG3FihVRv379ovr160cVK1aMmjRpEt1zzz15YX53LEZRFD3++ONRkyZN8toqiPb44497z/Xcc89FjRo1isqVKxedfPLJ0ZgxY6KGDRt6/UaMGBG1bNkyKl++fOx5nnnmmah58+ZRhQoVolatWkUvv/xy7HFmFj399NNRr169okqVKkVNmzaNhgwZcsDXj8LFGGQMlkYDBw6MzCwys6h8+fJR7dq1ozPOOCN68cUX88ZlFOnQbBQd+Hg8fPjwqGvXrlFGRkaUmpoanXDCCXk3hxk/fnx08sknR9WrV4+qVKkSdejQgfFTijH/lb75LyWK9rOIBIBS58Ybb7Q9e/bYM888k8j2UlJSbPjw4davX79EtoeyjzEI4HDF/Ocr0ZdOATg47dq18+5QARQlxiCAwxXzn48TDaAMufrqq4t7F3CYYwwCOFwx//m4dAoAAABA4rhVEQAAAIDEcaIBAAAAIHGcaAAAAABIHCcaAAAAABLHiQYAAACAxAXd3nbfvn22fPlyS09Pt5SUlMLeJ5QCURTZ5s2bLSsry8qVK9zzVcYfXEU5/swYg4hj/KG4cQxGcTqY8Rd0orF8+XJr1KhRIjuHsmXp0qXWsGHDQn0Oxh/2pyjGnxljEBrjD8WNYzCKU8j4CzrRSE9Pz9tgRkbGIe+YWrojybPk1atXx9qffvqp1+ff//63V8vMzPRqrVu3jrUrVqzo9dmwYYNX+/LLL73a8ccfH2vfe++9Xp8qVap4tRCF/Z66Nm3aZI0aNcobG4Up6fGH0q8ox59Z0YzBkCWNkvxOf/75516tWbNmXq1BgwYF2n5OTo5X+/bbb2Pt/v37F2jbxa0sjj+ULhyDUZwOZvwFnWj8eHDLyMgoFScaO3bsiLWrVq3q9Slf3n/pFSpU8GqVKlU6YHt/NbV9t596L0vLiUZxPEdS4w9lR1H9Gb8oxmBRn2ikpqZ6NXXQKOjrVdty5+LS/n0uS+MPpRPHYBSnkPFHGBwAAABA4jjRAAAAAJC4oEunDkVBL+lZs2aNV3vyySe92pgxY7yae+mUukRg165dXm3KlClebdiwYQfcTzN9yZW6rnny5Mmxdvfu3b0+NWrU8Gonn3yyV7vhhhti7erVq+e7nwBKLneuDL2TzLJly7zaiy++GGs/+uijXp9NmzYdxN4lw31Nl156qdfnz3/+s1cbNGhQgZ5v3759+e4DAKDwMOMCAAAASBwnGgAAAAASx4kGAAAAgMQVekYj1MKFC2Pt8847z+tTr149r1atWjWv5mYmjjjiCK+PuiVt586dvdqWLVsKtC2VAXHX99izZ4/XZ+fOnV7to48+8moTJkyItX/96197fX72s595NQDFr6DZgY4dO3q1+fPnezV3HlG3+FbzqZtvM/PzX2rOzc3N9Wrbt2/3au7tu9Xz/f73v/dqf/jDH7za6aefHmu/9tprXh/1npLbKLlUptP9vNRnFXqL16K+hfTEiRO9mspmZmdnx9qtWrUq1P1CuKIeMwX1q1/9yqvdfPPNXq1Tp05ezT1eqN+0h4LZFQAAAEDiONEAAAAAkDhONAAAAAAkjhMNAAAAAIkr9DB4aEjmjjvuiLXr16/v9VGL0qlAtfuc5cv7L1MFfNzgt5kfigkNfm/dutWruSF1tV+VK1f2aiq86D7n008/7fU588wzvVpaWppXA1B41FwTEj7u1q2bV5s5c6ZXq1u3rldz5wc1D6t5S81JK1asiLVV8NsNeZuZVaxY0au54W8136mamudff/31WHvbtm1en7fffturqffe/YxKQrgT2qF8Nkl+ruPGjYu1Z8yY4fVRN2q48847vZo7/j788EOvT9IB3bKioItChz7OranHFXQfdu/e7dXUAtBqbF144YWx9rx587w+6jetmhMLe77jLxoAAAAAEseJBgAAAIDEcaIBAAAAIHGcaAAAAABIXLGsDK7ChG7gMCMjw+ujgjMqvOiGAlUwe+/evV5Nrfrt1lSQUK1uq4KJ7mNV6Eftgwpwu4FJ9RpHjBjh1X75y196NQCFJzRoN3z48Fj7iy++8Po0atTIq6mbRbhzZUjIcX81dy4OWb15f/3cOVDNnWof1FzZuHHjWHv06NFenw8++MCrnX322UHPiYIraLhe9VPHxBAvv/yyVzvhhBNi7fHjx3t9nnrqKa+WlZXl1aZNmxZrq9W81SrMTzzxhFc79thjvRrCqDFT0NW81e9Cl5rr1M0q1A0y3Meqee2zzz7zav379/dq7s022rRp4/VRNwlS1H4kib9oAAAAAEgcJxoAAAAAEseJBgAAAIDEcaIBAAAAIHHFEgZfv369V3PD4CoAtnPnTq+mQtfuY9UKuCGrw5r54R0VIFJBICVkhUkVbl+9erVXq1WrVqytXuOYMWO8GmFwoPCE3mRC+dnPfhZru99xM7PNmzd7tWrVqnk1N9ynbqQROpe5/UJWNd+fkMeGzs3unKfeh3POOcerqZuR1KtXL9ZW74Oam1H05syZ49XU5+Wu3G1m9tVXX8Xa69at8/oMHDjQq5188slezQ16u9veX80N8ZqZLViwINZu2bKl1wfhCnpzh5C5WvUJDVO7c9vSpUu9PmrOSk9P92rusebRRx/1+jRo0MCrFXQV80PBXzQAAAAAJI4TDQAAAACJ40QDAAAAQOKK5aLT6dOnezX3Gks3s2GmF0pRNXcxO7XYTosWLbxa06ZNvVrVqlVjbbUIS2pqqldT1+y5GZMZM2Z4fd59912vpp5zw4YNsfaWLVu8PmoRPwCFJzSP0bdvX6/mZgzUQp05OTn5Ps4sbHFQJWTBqiSpPEboom3u3O/O1Wb+scBMX7v/i1/8It/nQ7iCXvOtMpcTJ06Mtd08jZlZZmamV7viiiu82uOPPx5rq2vYb775Zq+2atUqr+a+RrVg2jfffOPVPvroI6/mjlMyGofGnRsOJVe2cuXKWFvletauXevVvv7663y3pbJFNWrU8GpqzG/cuDHW7ty5s9enpOAvGgAAAAASx4kGAAAAgMRxogEAAAAgcZxoAAAAAEhcsYTB3eCdmdmJJ54Ya7/66qten5kzZ3q1O++806upUFYIFUTbvn37AdtmOnS9Y8cOr+aGxtXieX/84x+92vHHH+/V3LC8CkJ+9913Xg1A8Zs0aVK+fdQCpUpI0FGFc0MDu2qBp6SE7pfaB/d1q0UJ1Tw8ZcoUr+Yekwp7Aauyzr2pQGjoX93UpFKlSrG2+h2gAv7//Oc/vdqoUaNi7bPOOsvro9SpUyffPiowroK933//vVd78cUXY+0ePXp4fdq1a5fvPuAHIeNv4cKFXu2mm27yau6Nd9TiebNmzfJq6iZEs2fPjrVPOeUUr4+6QYE6Frjfi9CFowvKfU8P5sYh/EUDAAAAQOI40QAAAACQOE40AAAAACSOEw0AAAAAiSuWMPitt97q1dywzqmnnur16dixo1fbtGmTV3PD4CpImJGR4dVq1qzp1dxVd9UKu6HhRXclRxVqUyuCqmC8u2qw2nc3LISiERKeVWNGhavc74V6nAqBlS9fsK+2u6Kq2odDoQK77r4eDkHcKlWqeLVdu3bF2qGfoRpv7jwV8r6bhQX8Qlbp3t9+hWxLUWPcXU1ZBSbdG3CYmb322mte7dFHHw3aD4QJmbcU9b1wx9Enn3zi9fnVr37l1f7xj38EPWdS1OrQ6vfJcccd59UqVqwYa6ux7G5/8+bNB7uLhw31O83VokULrzZ48GCvpn5bJaV27dpeTd3AQt0I4OKLL461Vfg85DeF6qfmbvd4ETp3m/EXDQAAAACFgBMNAAAAAInjRAMAAABA4jjRAAAAAJC4YgmDq9U4P/7441h76NChXp8PP/zQqw0cONCrPfPMM7G2G8I2M1uwYIFXU6uSuiE2FUpUQUs33GXmh3BUgE2tOvmnP/3Jq7lB7+rVq3t9hg0b5tUmTpzo1dTqpSi4goaZVQArZFsFDX673xMzs4ceesirLV++vEDbV0JCemXNtGnTvNrq1au9WmZmZqytQoFqXlH93KC0CgWGhrrdfoeymrfbT/VR+6DGuPvY9evXe33UDTEK+n1BuILOger4d9JJJx2wvT/bt2/3au73InQ/Q8Zybm6u10cdl9WNaM4+++x8t7V48eJYW/1ewaFRwW93PlJzaUGPa+qmR+q3rxpHn376aax92223eX1CA9sh/Q7lZgT8RQMAAABA4jjRAAAAAJA4TjQAAAAAJK5YLla9/fbbvZp73axafKRt27ZebcSIEV7tgQceyHcf1DV16nrekOuT1TW/IVmOrVu3en3cBQLNzLp27erV6tWrF2ura/3U4n/kMYpeaPaioNeOqwXIpk6d6tXefPPNWNu9XtlMLyA0YMAAr/b6668fxB7+P+6idGZmjzzySKx91113FWjbJZWaC1QOwaWuwVaLLanx5T5naBZC9XOvSVb7ELqtkGuBQx/n7pea09W+Llu2LN99QMlR0PGnuP0OZtGx/KjclbuwrlnYd1F9993jg5pXcGhCjtWheYyQhXQvu+wyr497nN7ffrk5Y5VJUgtgKrNnz461f/Ob33h9GjRoEGurbPL+8BcNAAAAAInjRAMAAABA4jjRAAAAAJA4TjQAAAAAJK5YwuD9+/f3au6CfV9//bXXx13Uxszs/PPP92qrVq2KtRs3buz1UYuuqHCLG7BRj1NUsLdq1aqxtgoVqUVQ3IV6zMwef/zxfPuMGzfOq3Xs2DGohjAh4bHQRaHmz5/v1dxg2KRJk7w+aiHL5s2be7WGDRvG2mpxrJycHK/2/vvve7WCeuONN7za5MmTE9t+SfTNN994NRWKD1nMTi3YpwJ/7o0mQgOMaqy64duQPmZ6rgxZADV0jnX7qTCkurmBCui6Y1DdgAPFIySwrfqo70XI2Crowqnq5i7//ve/vdp5553n1X75y1/G2mqMuq8n9HuCcAVdaFJRc6JLjQW1ON+GDRu8mrvwo/sb2sysUaNGXk39/napxU/dm85s3rzZ/vvf/+a7LTP+ogEAAACgEHCiAQAAACBxnGgAAAAASBwnGgAAAAASVyxh8Dlz5ng1NyjtrnxtZnbCCSd4tQkTJni1GTNmxNoq4BO6kmhIsFeFx5SQFU7V63aDYmZmxx57bKzdrFkzr48KArVu3Tq/3SxT1Oes3nc3nKtCt0pIeEwFue68806vNmTIEK+Wmpoaa9evX9/r06VLF6+mbmywbdu2WLtNmzZen++//96r3X333V7N5d6AwUy/nptvvtmrzZ07N9ZWN4I47rjj8t2HkkrNDyGrX4cGuEOeU21rx44d+e6DmT9vHcoc6FLb2rlzp1fLzMz0au7qySpYrl632v4TTzwRaxd05fuyrqBB6ZLCHd+hgeqQQHrNmjW9mrrRyldffeXVfv3rX8faCxcu9Pp079491iYMfmgKOpZD5/OCfi/U7zZ1k6B169bF2n369Anaft26db2aO0+eeuqpXh/3t4f72+RA+IsGAAAAgMRxogEAAAAgcZxoAAAAAEgcJxoAAAAAElcsYXAVdHKDTUuXLvX6qKC0GyI384MtapVNFd5Rq3mHBLhDw5FuGFcFFVWoVr1GNwipQrwqhLxixQqvplaRLo1CQ1pKaPjbpVbjHDp0aKztrqhpZlajRg2vdvTRR3s1d0xu3LjR67Np0yavplbFdcNbKpSovmOvvvqqV/vLX/6S7/O1b9/eq6kgrhtKViuWl2Zq/lHcuUbND2qcqjFe0KBo6E0yCsrdV/V61Lyl5lj3Bg7VqlXz+qjXo55TBePhK03B7xAhIe/9mTp1aqx9zDHHeH0GDBjg1UaOHOnVRo8eHWu7Y9vMDwmreR/hinoV8FDTpk3zah06dPBqubm5sfYbb7zh9VFj5J577vFq7u/JXr165bufB4O/aAAAAABIHCcaAAAAABLHiQYAAACAxBVLRkNdU1y5cuVYW+Ul1LXbbu7BzL9eTl2nq65hVvvlPlZdi6cep/q521LXYap9rVWrlldzuYu3mOkFrJYvX+7VykpGQ11zWdBrcJ966imv9uyzz3q1lStXejX3Wtp27dp5fdT4VttyqdcYmhFyx2Tt2rW9PqHX/bqLRw0fPjzocQ899JBXe/rpp2PtJk2aeH3+85//xNpqAaOS6g9/+INXU/kLt6byLOp7rhYKK+gCeoXNnXdVXkJ9Z9V74S5KqbIw6vigMm9vv/12rF3aF6aD5o6/0OPDn//8Z6/mfhevueYar88rr7zi1dT39Zxzzom1c3JyvD7ud6WguUIcHHcuUPOA+q2lxpb7WDXPVKpUyaup374FneMffvhhr+b+7rzooosKtO394S8aAAAAABLHiQYAAACAxHGiAQAAACBxnGgAAAAASFyxhMFV4NkNtqgwdfXq1b3a9u3bvVpIGDw02Of2Cw3eqrCnG2hUASK1r3Xr1vVqbnheBY/U9ktTiDY/33zzTaz90UcfeX2ys7O9mlqcyw3Jq/dJLQjWsGFDr+YuqqeCrGrhPcUNrqrPNPRmBG54VvVRC++5Y83MbPLkybF2/fr1vT5bt271ag0aNPBqrVq1irVVgPe5556LtdV7WlJ99913Xk0F/tzXpG4WoYLy6v0qqWFwV+jcqb6P7nhWc3PojUCaNm2a77ZQ+rnHSRW6vu+++7yamnfr1KkTa7sLtZqZHXnkkV7NHbdm/vHncAx6u3NByO/E/XGPbUkuqBfyfGZhc0jnzp292qmnnurV3AUdQ6ljiJr/3ONKyA2IDgZ/0QAAAACQOE40AAAAACSOEw0AAAAAieNEAwAAAEDiiiUMrrhhKxWkqVevnldTQcgQoQFad79UQCm05gbRVChHUcHRkOCUWn069DlLon/+85+xsPKwYcNi/65uDKA+ZxW0cwN6qampQdvasmWLV3PHkVqJWAXLVeDQ/R6oILvaLxWWdseIer/U9lWgLDMzM9ZWNyNQN29QQV93P0rzDQu+//57r6beZxW2c+cy9V6pOUp9p91+oStdq89Rff4h1L662w9dGVfdPMH9HqubFqixpObFJUuWeLWyTI2Z0FWyi5q7r2rMqDGq5t05c+bE2rfccovXx705hZnZ0qVLvdqjjz4aa4feQGDq1Klezb1hRLdu3YK2VdxCVs0OnXvcWkkdj0po2PxnP/tZrN2hQwevz0svvRS0Lfd4HvL71UzfpKVjx45Bz1lQ/EUDAAAAQOI40QAAAACQOE40AAAAACSOEw0AAAAAiSuWMHhBV11V4VIVdnGpkIwKKKmQoBu4CQkx7Y+7fRXIU/ulwqRumDh0pWQV9i0tfvGLX1hGRkZe+/jjj4/9+4QJE7zHzJw506stXrzYq7mh0fXr13t91IquIWNm1apVXp81a9Z4tZCgrwo9qv0KWUE1LS3Nq6kQvArPu0E99R1Q4dyQ0KYKA5977rmx9tatW+3JJ5/0+hW38ePHB/ULCV2rMLh6T9etW+fV3M8sNPgdMpcV9qrZ6vNX49L9vqgbM6jjg3oP1c00yrKQoG3oKsyFPR5CbqKigt/qxgyPPfZYrH3aaad5fSZPnuzV3nzzzXz3M5R6v9zXpF5PSeS+ltDgd0HNnTvXq7344otezQ35165dO2j7ah5w5xn1G0rNKXfddZdXW716dazt3tDmYIQE0FUf9RpbtGiR77bczzZ0fjDjLxoAAAAACgEnGgAAAAASx4kGAAAAgMSVmAX7CkpdLxeyKFToInuu0OsNQ66NU9cib9iwwaupjMaRRx4Za6tFgNS19QdzXV1JE0VRbP/btWsX+/euXbsGbUflWRYtWhRrL1iwwOuTk5Pj1ZYvX+7V3DEZOv7UmKlZs2asnZ6enm8fM70goLvInuqjrg0OuV5YZS9Cx5q7eJ26Ht/93m3atClo20VN5SoU9d13x4R6/9T8oK5Zd7NDoeMtZF5UrzH0s3b3Vc2nodkUt5/KVYW8N9AKO3uhhFzjH7qQ23333efVsrKyYu3p06d7fYYMGRK0/YJS3zs3s6eO3SXB7t27Y5lA9/NSr01931R+4fnnn4+11QLNinvsNjN75513Yu3s7OygbYXkedVcpBZ0VLme999/P999UL/3frpQ8Y9CFuxTc6L6Xvfs2TPf/SKjAQAAAKBE4UQDAAAAQOI40QAAAACQOE40AAAAACSuWFJxKtDqLrYUuoCSCs64IUEVHgtZ7MQsbEEaVQtZSDA0rK3ei8aNG8faX331lddHBU5VOLK0qFatWmzBvq1bt8b+PTc313tMaGCpRo0asfYpp5zi9VE3HggJ/6r3XAWy1OfsPqfaVugifu621AJn7oJCZv5ihmr76n1Q34Ft27Z5NXc+UOHBJk2axNpq30uCk08+Oaif+vzdOSlkMUgz/d673331OLUP6jNzayqYqMabmnfd8aueT70eNe7d9yt0HxAWulY3Hli5cqVXU/Oumj9DFDSAfu+993o19f1xw9/Dhw8v0POZhR3j1T6osawWcC2JKlSoEHzDiwP55ptvvJo7tkKPkXXq1PFq7iK57777rtenT58++e7n/vbDNWDAAK/Wu3dvrxayMJ6aXwtqxYoVXk3dbKV79+6JPafCXzQAAAAAJI4TDQAAAACJ40QDAAAAQOI40QAAAACQuEIPg6ugqgrXuOG0n4Z+D0QFAENWflX7EBImLOgKuGpbKpAeGtBs2rRprK32XW1f9Sut3FCTCjmFcm8qEBosVaFkd+Xx0PdcjRk3/BYabg0JoKubMjRo0MCrhdzsoKBhYNVPfY7uir4ldWXw9957L6ifuhGEW1PB/Lp16wZty/3MQucH9ZkVNFgeMp5D5zu1Gq+7rZCxtb/a4SYk4Dp79myvplZAVsdq96YPVatWPYi9O7Dvv//eq02cONGrqZt3jB8/PrH9cN/Dgt5gxsxsyZIliexTYZswYUJsfnb3+8ILL/Qeo7676gYCrszMTK9WvXp1r6bC0+4xZNCgQV6f0DC4q2/fvl5t1qxZXs1dnbw4bNy40asV9LvIyuAAAAAAShRONAAAAAAkjhMNAAAAAInjRAMAAABA4go9DK6CTyFBbBVKVUJCr6EhrZBVv1UftX1VCwlCqiC7Wpn5yCOPjLVDw54HE+A5nLiBstDVOVU4DYevUaNGBfVT33M3dK2+988++6xXu+SSS7yaOx+kpaV5fdT8oILlbr/Qle4Vd1sqsKtqKtTorsK+ePFir0+1atWC9sulVsBWQfyiFkVRbA4v6EraISuDF/ZqwQV11VVXebV58+Z5tZEjRxbqfhT0RjHqezd37txE9qmw5eTkxI6Nv/71r2P/fvfdd3uPUXOPCvS7/dQK5OpmBGpb7nusbmBx6623erX//d//9Wq33XZbrD127FivzxlnnOHVatas6dWKmgrdq5vAhHDnh4OZe/iLBgAAAIDEcaIBAAAAIHGcaAAAAABIXKFnNBR1bZd7DZ27QNf+qOuF3evzVH4hZDEptS0l5HpXs4Jf06muTz766KNjbbXvqkZGAyg87mKNZvqaWHdBM7OwuaZ///5e7cYbb/Rqr732Wqyt8h7r1q3zavXr1/dq6jW51CJ4ag50r7tWC16qbXXt2tWruYtwffrpp0H7ELJg34gRI7yaygYUtZSUlALnMtzt5EcdK8455xyvpq6Rv/3222PtX/7ylwexd3EPPPBArK1yUDfddJNXa9++fYGfszCp3x7r168vhj05eJdccklsgcZ//etfsX9Xizyq16bmunr16sXaam7YsGGDV6tVq5ZXc3Neaiz/5S9/CarVrl071lb5zfvvv9+rKe5vstD8cEGp96uguTV3Xw9m3/mLBgAAAIDEcaIBAAAAIHGcaAAAAABIHCcaAAAAABJXYsLgblinSZMmQdtyF7ky88M7KowZEgg08xfWCg1dK+5rVCFLtViVCkWFLGioXuOePXvyfRyAglFzmwpiFzSQp/zpT38KqoVQ84+7/6E3v1A1d0HAnwZLC4PaV3VzkMqVK8fa7777rtenJITBx48fb6mpqXlt9/1Ux7oaNWp4tZ9u40fusdR9T/ZXW7BggVd79NFHY221oFmdOnW82ocffujVnnzyyVj7lFNO8foUdLwnKTSkr34vqN8xpUHTpk1j7S+++MLr07hxY6+2a9cur+YukqneJ7X4n/odFfJZqMV2Qz4HN7RuFn7jgSRu5PAj93WrkLq6kVDIwqPqOKC++6H4iwYAAACAxHGiAQAAACBxnGgAAAAASBwnGgAAAAASV+hhcBXGC1mdWoXalJBAtbsarZnZ2rVrvZob/DYr+GreihtuUkHIrVu3erXc3Fyv5gZz1Puggt8qhAUgGS+88IJXGzZsmFdT3/OiXjVWCQ0Al0RuMNXMbPXq1V5NBfHdY0aPHj2S2q1ELVmyJBb6zMnJif37qlWrvMeomxGoY6IbjlU3E2nUqJFX+9WvfuXVOnToEGuPGTPG6zNx4kSvNmPGDK/Ws2fPWNsNmpv5oXgzfUwsCaFrFdo966yzimFPDt0dd9wRa7/++uten6VLl3o19TvK/c2nfh+pz08FrN3fPuoGEGofVADd/f689tprXh9FbSvJOT3kt6gKdYeEwUNvcBSKv2gAAAAASBwnGgAAAAASx4kGAAAAgMRxogEAAAAgcYUeBt+7d69XU8GtgoauL7zwQq+2adOmWNtdKXx/+xWyWrh6XGjg3Q0CqfB5ZmamV+vcuXO++6XCfer1qP0HkAwVNF68eLFX6969u1dz561f/vKXie2XogJ/IbXQ1W1D+qlwpKqFrEbeu3dvr8/zzz/v1bZs2eLVzj333Fj7tttu83e2BLjkkksSWU1d3Qxl2bJlsfa6devy7WOmPxt3zKvgtzvezczOOeccr+Z+D1QgXSkJwW9FhcEfe+yxWPvuu+8uqt05JO6K2GosjBo1yqvdc889Xm3KlCmxthofxeHEE0+MtU899dRi2pO4kGC5+t5lZWXl+7gkVzA34y8aAAAAAAoBJxoAAAAAEseJBgAAAIDEFXpGY/v27V4t5DrgDRs2BG3fXTDmcKWuqVPvc+j7CiAZjRs39mpq4Ux3YSh1PbyiFv9LTU3N93Gh+YiSQGXL3Izbsccem28fM53RuP766wu+c6VQzZo1g2pInlpYsiyPP5WdUjXXvHnzvNrXX3/t1aZPn+7Vvv/++1hb5Y3Ub6YGDRp4tX/84x8H3E+zsExu0kIySLfeeqtXa926db6PUznqQ1EyjyoAAAAASjVONAAAAAAkjhMNAAAAAInjRAMAAABA4go9DF6jRg2v1qpVK6/mLsLTtWvXoO2HLOyX9OIjJZFa3GvRokVe7bjjjiuK3QHw/1Nz1F/+8hev5s6V9evXD9p+SV2YLEkhc7hamFUtjqber5Iagsfh4cEHHyzuXShx1O9EVRswYEBR7M4BFcdvzJDnPOOMMwq07ZDFqw8GsysAAACAxHGiAQAAACBxnGgAAAAASFxQRuPHa4w3bdqUyJPu3LnTq7kLWG3bts3ro56fjMYP1Hu6e/durxb6vubnx8eEvP+HKunxh9KvKMffT5+nIGNQ7aNayNT9bqqF5dTz79mzx6uphepKM7Vgn3sdsZrb1HuvFjJ1Fz3M73MuTeMPZRPHYBSngxl/KVFAr2XLlnlhbcDMbOnSpdawYcNCfQ7GH/anKMafGWMQGuMPxY1jMIpTyPgLOtHYt2+fLV++3NLT0w+Lvw4gf1EU2ebNmy0rK6vQ79jC+IOrKMefGWMQcYw/FDeOwShOBzP+gk40AAAAAOBgEAYHAAAAkDhONAAAAAAkjhMNAAAAAInjROP/17RpU3viiSfy2ikpKfb2228X2/4ABysnJ8dSUlJs6tSpxb0rKIWYA1FWXH755davX7/g/sydSBLjL67MnGhcfvnllpKSYikpKVaxYkVr2bKlPfDAA/Ie80DSVq9ebddee601btzYKlWqZPXq1bOzzjrLJkyYUNy7hsMEcyBKGuZFFCfGX8lQplZ16t27t7300ku2c+dOe//99+03v/mNVahQwe64447i3rUC2bVrl1WsWLG4dwMBLrjgAtu1a5f9+9//tubNm9vKlSvt448/trVr1xb3rh2S3bt3W4UKFYp7NxCIORAlSVmdF1E6MP5KhjLzFw0zyztjbdKkiV177bV2xhln2IgRI+yUU06xm266Kda3X79+dvnllwdve8aMGXbaaadZlSpVrGbNmnb11Vfnrdz74YcfWuXKlW3Dhg2xxwwaNMhOO+20vPbnn39uJ554olWpUsUaNWpkN954Y2xF2qZNm9qDDz5ol112mWVkZNjVV1990O8Bit6GDRts/Pjx9uc//9lOPfVUa9KkiXXp0sXuuOMOO//8883sh8tQnn/+eevfv79VrVrVjjzySBsxYkRsOzNnzrSzzz7b0tLSrG7dunbppZfamjVr8v591KhR1rNnT6tWrZrVrFnTzjvvPFu4cOF+92vv3r12xRVXWJs2bWzJkiVmZvbOO+9Yp06drHLlyta8eXO7//77Y//FOyUlxZ599lk7//zzLTU11R5++OEk3yoUMuZAlBQh8+Jjjz1m7du3t9TUVGvUqJFdd911eWPKzGzw4MFWrVo1Gz16tLVt29bS0tKsd+/elpubm9dn7969dvPNN+fNi7feequ3WvHBzp0o/Rh/JUeZOtFwValSxXbt2nXI29m6daudddZZVr16dZsyZYq9+eabNmbMGLv++uvNzOz000+3atWq2dChQ/Mes3fvXhsyZIhdcsklZma2cOFC6927t11wwQU2ffp0GzJkiH3++ed52/jRX//6VzvmmGPs22+/tbvvvvuQ9x2FLy0tzdLS0uztt9+2nTt37rff/fffbz//+c9t+vTpds4559gll1xi69atM7MfJsXTTjvNOnbsaF999ZWNGjXKVq5caT//+c/zHr9161a7+eab7auvvrKPP/7YypUrZ/3797d9+/Z5z7Vz50676KKLbOrUqTZ+/Hhr3LixjR8/3i677DIbNGiQzZ492/75z3/a4MGDvZOJ++67z/r3728zZsywK664IqF3CcWBORDFJWReLFeunD311FM2a9Ys+/e//22ffPKJ3XrrrbE+27Zts7/+9a/2yiuv2GeffWZLliyx3//+93n//uijj9rgwYPtxRdftM8//9zWrVtnw4cPj23jYOZOlA2MvxIkKiMGDhwY9e3bN4qiKNq3b1/00UcfRZUqVYp+//vfRyeffHI0aNCgWP++fftGAwcOzGs3adIkevzxx/PaZhYNHz48iqIo+te//hVVr1492rJlS96/v/fee1G5cuWiFStWRFEURYMGDYpOO+20vH8fPXp0VKlSpWj9+vVRFEXRlVdeGV199dWxfRg/fnxUrly5aPv27Xn70K9fv0N4F1Bc3nrrrah69epR5cqVo+7du0d33HFHNG3atLx/N7Porrvuymtv2bIlMrPogw8+iKIoih588MHozDPPjG1z6dKlkZlF2dnZ8jlXr14dmVk0Y8aMKIqiaNGiRZGZRePHj49OP/30qGfPntGGDRvy+p9++unRH/7wh9g2Xnnllah+/fqx/bzpppsK+C6gODEHoqTJb150vfnmm1HNmjXz2i+99FJkZtGCBQvyak8//XRUt27dvHb9+vWjRx55JK+9e/fuqGHDhnnfBWV/c+e3335bgFeJkorxVzKUqb9ojBw50tLS0qxy5cp29tln28UXX2z33XffIW93zpw5dswxx1hqamperUePHrZv3z7Lzs42M7NLLrnExo0bZ8uXLzczs1dffdXOPfdcq1atmpmZTZs2zQYPHpx3lp2WlmZnnXWW7du3zxYtWpS33c6dOx/y/qLoXXDBBbZ8+XIbMWKE9e7d28aNG2edOnWywYMH5/Xp0KFD3v9PTU21jIwMW7VqlZn9MD7Gjh0bGx9t2rQxM8v7E+v8+fNtwIAB1rx5c8vIyLCmTZuameVdFvWjAQMG2NatW+3DDz+0zMzMvPq0adPsgQceiD3HVVddZbm5ubZt27a8fozB0os5ECVJfvPimDFj7PTTT7cGDRpYenq6XXrppbZ27drYfFS1alVr0aJFXrt+/fp58+bGjRstNzfXunbtmvfv5cuX98ZQ6NyJsoXxVzKUqRONU0891aZOnWrz58+37du327///W9LTU21cuXKedfM7d69O9HnPv74461Fixb2xhtv2Pbt22348OF5lwyYmW3ZssV+/etf29SpU/P+N23aNJs/f35sEP/0QI7SpXLlytarVy+7++67beLEiXb55Zfbvffem/fvbqg6JSUl70+nW7ZssT59+sTGx49j+aSTTjIzsz59+ti6devsueees8mTJ9vkyZPNzLxLY8455xybPn26TZo0KVbfsmWL3X///bHtz5gxw+bPn2+VK1fO68cYLL2YA1HS7G9ezMnJsfPOO886dOhgQ4cOta+//tqefvppM4vPaWredMdyfkLnTpQ9jL/iV6buOpWammotW7b06rVr1/bCOzNnzrRTTz01aLtt27a1wYMH29atW/MOghMmTLBy5cpZ69at8/pdcskl9uqrr1rDhg2tXLlydu655+b9W6dOnWz27Nly/1A2HXXUUcHrEHTq1MmGDh1qTZs2tfLl/a/l2rVrLTs725577jk78cQTzeyHYK1y7bXXWrt27ez888+39957z04++eS858jOzmYMlmHMgSjpfpwXv/76a9u3b589+uijVq7cD//N87///e9BbSszM9Pq169vkydPzvsPMnv27LGvv/7aOnXqZGYHN3ei7GP8Fb0y9ReN/TnttNPsvffes/fee8/mzp1r1157rXd3lAO55JJLrHLlyjZw4ECbOXOmjR071m644Qa79NJLrW7durF+33zzjT388MN24YUXWqVKlfL+7bbbbrOJEyfa9ddfn/dfHN955x0vCInSZ+3atXbaaafZf/7zH5s+fbotWrTI3nzzTXvkkUesb9++Qdv4zW9+Y+vWrbMBAwbYlClTbOHChTZ69Gj7n//5H9u7d69Vr17datasaf/6179swYIF9sknn9jNN9+83+3dcMMN9tBDD9l5552XN6ndc8899vLLL9v9999vs2bNsjlz5tgbb7xhd911VyLvA0ou5kAUtfzmxZYtW9ru3bvtb3/7m3333Xf2yiuv2D/+8Y+Dfp5BgwbZn/70J3v77bdt7ty5dt1118XG9sHOnSgbGH8lR5n6i8b+XHHFFTZt2jS77LLLrHz58vbb3/42+L/kmf1wjd7o0aNt0KBBdvzxx1vVqlXtggsusMceeyzWr2XLltalSxf78ssvYyvsmv1wff6nn35q//d//2cnnniiRVFkLVq0sIsvvjiJl4hilJaWZl27drXHH3/cFi5caLt377ZGjRrZVVddZXfeeWfQNrKysmzChAl222232Zlnnmk7d+60Jk2aWO/eva1cuXKWkpJib7zxht14443Wrl07a926tT311FN2yimn7HebN910k+3bt8/OOeccGzVqlJ111lk2cuRIe+CBB+zPf/6zVahQwdq0aWP/+7//m9A7gZKKORBFLb95sUqVKvbYY4/Zn//8Z7vjjjvspJNOsj/+8Y922WWXHdTz/O53v7Pc3FwbOHCglStXzq644grr37+/bdy40cx+uLPQwc6dKP0YfyVHSnSwF5sBAAAAQD4Oi0unAAAAABQtTjQAAAAAJI4TDQAAAACJ40QDAAAAQOI40QAAAACQOE40AAAAACSOEw0AAAAAiQtasG/fvn22fPlyS09Pt5SUlMLeJ5QCURTZ5s2bLSsry8qVK9zzVcYfXEU5/swYg4hj/KG4cQxGcTqY8Rd0orF8+XJr1KhRIjuHsmXp0qXWsGHDQn0Oxh/2pyjGnxljEBrjD8WNYzCKU8j4CzrRSE9Pz9tgRkbGoe9ZAW3dutWrPfTQQ15t8uTJsfaAAQO8PldddVVyO1ZAw4cP92ovv/yyV+vVq5dXu+666wpln0Jt2rTJGjVqlDc2ClNJGX8lwfz5873amDFjvFr16tW9WqVKlWLtrl27en2ysrIOYe/yF0WRVyvIfyEryvFnxhhEHOMPxY1jMIrTwYy/oBONH38IZGRkFOsgO+KII7ya++PJzKx8+fjLqlKlitenJHxZqlat6tXcfTczq1y5slcrCftvVrAfiQV9juIefyVBWlqaV1PjQ415t5+aIAr7/U3qRCOJxxbkeRiD+CnGH4obx2AUp5DxRxgcAAAAQOI40QAAAACQuKBLp4rDNddc49U+/fRTr7Zv3z6vVrdu3Vj77rvv9vo89dRTXk2FnY488shYOzMz0+uzbt06rzZx4kSvtmvXrlh706ZNXp/69et7tWeffdarvfvuu7H2c8895/Vp3ry5V0PJUNBLiK699lqv9uWXX3q1PXv2eLWdO3fmu/3//d//9WrTpk3zatu2bYu1TzrpJK/Po48+6tXUJV179+6NtdUlkgAAoPThLxoAAAAAEseJBgAAAIDEcaIBAAAAIHElJqPxySefxNqLFi3y+nTs2NGrqZyDm9s45phjvD6rV6/2agsXLvRq7todnTt39vpMnz7dq6nb1NaqVSvWVq9n1apVXq1Zs2ZebcOGDbH27373O6+PWqcDJUNBMxorVqzwamrNDDcPZGZWsWLFWNsdQ2Zm//nPf7zajh07vFqFChVi7VmzZnl91HdAZaPcfVU5DgAAUPrwFw0AAAAAieNEAwAAAEDiONEAAAAAkDhONAAAAAAkrsSEwT/66KNYu2nTpl4fteCYG0o1M9u9e3es7YawzXRQVQV03cXEVOhVhVfT0tK8Wnp6eqz9/fffe32qVq0atF8NGzaMtVUo/vPPP/dqPXv29GooemqhyXLl/PN+Nyi9ZMkSr09qaqpXUwv2uTc2UGNUBcvVjRncYLkao7/97W+9mqJeNwAAKP04wgMAAABIHCcaAAAAABLHiQYAAACAxHGiAQAAACBxJSYMvnz58lg7IyPD6xMaBncD3OpxbpjVTIdj1QrLriOOOMKrqXD2tm3bYm0V/Fb7oMKy7mtUq0oTBi8ZVFBahcGVTz75JNZ2A91m/k0GQrevxrbavvr+uDdc6NChQ9C21Mrm9erVi7VDg/IAAKBk4+gNAAAAIHGcaAAAAABIHCcaAAAAABLHiQYAAACAxBVLGFyFPd3wdGZmptdH1Xbs2JHv87nBVTM/TG1mtmXLFq/mrrCsQuRq++o1uttSfdS2Kleu7NVcKgw+b968fB+Hwqc+GzWOlClTpsTabnDazKxatWpeLTs7O9/9UDcjWL16ddB+uTdr6Nu3r9fnww8/9GrHHXecV3NfkwrPAwCA0oe/aAAAAABIHCcaAAAAABLHiQYAAACAxBVLRmPRokVezc0rbN++3eujFvGrXr26V3NzDps3b/b6lC/vv3S1gJl7vbjKhKhrytVCgm5GQz1OXc+vFitT19e7vv/++3z7oPCFfs7K2LFj8+2jMhq9evXyat99912++6AyGscee6xXmzp1aqytvjsXXHCBV2vSpIlXc6kFMFGy5eTkeLVly5Z5NRYMBYDDC3/RAAAAAJA4TjQAAAAAJI4TDQAAAACJ40QDAAAAQOKKJQyem5vr1SpVqhRrqwC0CtWqcKm7GF96enrQttSCfW6oW+2XCn6rhfeqVKkSa6vQq1rIrX79+l5t69atsbba95o1a3o1FfatXbu2V0Ny1OKQ6mYEihvg3rZtm9fniy++8Go1atTwau6YVwtgnnLKKV5NhXoHDBgQa//hD3/w+iiHEoxHyfDmm296tbvvvtur9e7d26u5Ny5o165dYvt1KP7zn//E2q1atfL6dOnSpah2BwDKDP6iAQAAACBxnGgAAAAASBwnGgAAAAASx4kGAAAAgMQVSxh87dq1Xs0NPG/cuNHr89lnn3m1Sy65xKtlZWXF2ip8vnPnTq/mhrXNdDjbpYK96nHuyuDqcXXq1PFqKuzrhtLbtm3r9dm0aZNXmzt3rlcjDF64Qle6Hj9+vFdbtWpVrK3Cs+r7tH79eq9WvXr1WFvdGKBevXpebcGCBV5NjTeUXPv27fNq6sYW33//vVe78cYb8+3TvHlzrzZ9+nSvdvXVV8faEydO9Hc2kHsDjBdffNHrs2bNGq+2fft2r5aWlhZru8cQHBz3pg+HcsOHp556Ktbu1KmT1yf0uOke6zp06OD1adCgwcHu4iH74x//GGsfffTRXp/zzz+/qHYHSBR/0QAAAACQOE40AAAAACSOEw0AAAAAieNEAwAAAEDiiiUMrkKomzdvjrXHjh0b9Livv/7aq5100kmxtgoluivUmukAtxuiVKuA79q1y6u5wW8zsx07dsTa7ureZnql86pVq3q1yZMnH3DbZmYNGzb0atOmTfNqJ554oldDckKDkO7qxGZ+qFKNK7UCvLqxgTt21bbU45SLLroo1r755pu9Po899phXU+9FksFRaGpFdmXdunVeLTs7O9Zu2rSp1yc0jOvO4WrMn3rqqV5t5MiRXm348OGxtgp5q7lt4MCBXq2krFBeVuzduzfWVjc+UcaMGePVfvGLX8Ta6uYl7lgwM5s6dapXc4+lzzzzjNdH3djg+OOP92rHHXdcrK1ukJGTk+PVPv74Y6+2ePHiWFuNZcLgJZeaX9VYdsdWixYtgrZV2o+J/EUDAAAAQOI40QAAAACQOE40AAAAACSuWDIa//u//+vVevXqFWtv2LDB6+Mu3GOmF2lyF6WrXLmy10flMVTWwl3Uavfu3V4fdU2d2r57faibSzEz+/LLL73am2++6dXc69/VIlr/+Mc/vFqlSpW8GpLlXp8cumDfhx9+6NXc/IX6nLdt2+bV1DgNWXxSLf6nXHrppbG2eo19+/b1au+8845XK+3XnxYWtcieeq9C3r/QMdi+fXuvVqNGjVh71qxZXh93MUgz/xp2M3983XDDDV4flS075phjvNrvfve7WFvlLNyFYPcnJAul8nmHm9CFH91Mxpw5c7w+6ri2bNkyr/b+++/H2mqsqc+mcePG+e5XZmam10fVli5d6tWmTJkSa6vsiMqm/PznP/dq7qLC8+bN8/pAK+xMw3fffRdrP/DAA14flVv79NNPvVqfPn1ibZVtLI7j4d///vdY+9hjj/X69OzZs8Db5y8aAAAAABLHiQYAAACAxHGiAQAAACBxnGgAAAAASFyxhMEVd6G6YcOGBT1OBQDHjx8fa6twYegCVi4VhlM1NxBsZpaRkRFrq+CtepwbxjQze+ihhw64nyg+IWEutYikWtypWbNmsfbOnTu9PupmB40aNfJqbqitQYMGXh8V7FTc7+uECRO8PpdccknQtg5HIaHa0M+isP3lL3+JtU8//XSvjwr5p6WleTU3oFu3bl2vjxtMNDM7+eST893PQ+F+Z8t68Fsd/9ya6hN6U4FRo0bF2o8//rjX5/rrr/dqarG8kGD0ypUrvZqah90bZ6Smpnp91HdTLWTq9lPj3V3Y1Ex/r92w+fr1670+blBe3UymNAv5TVbQm2Gom6Oom1qMGDHCq7lBfWXGjBleTS2w6H6u7m9Vs2QXUFYLWl933XVezd3/fv36eX0IgwMAAAAoUTjRAAAAAJA4TjQAAAAAJI4TDQAAAACJK5YwuAr9uMEqFchSAT21kq0bylJhIbV9tRqsu7JnaEBTbcvdD3elcDO9AmkIFSJXQsN8KLiQMaJWAVfj213JXYXa1FjbsmWLV3OD5FlZWV6f1atXB+3XkiVLYu27777b66NcfvnlXm3w4MFBjy0JoiiKzV8hQUQ134WMkRUrVni1V155xat98MEHXu2TTz7Jd/uhunbtGmurlY3VPqhVkd15V4Vs1YrRIWFwNQdu3LjRq6nvxvbt22Pt5cuXe31+uiK12kZpEjIm1TEyOzvbq7Vu3dqr3X///bH2iy++6PXZunWrV3NvfmFm9qtf/cqrFdSGDRti7dGjR3t9pk6d6tXcG2mY+UHyFi1aeH3UfKqC625IXc25bhhcvX+FzZ3/3HFU0LD2wfQL4R6f7rzzTq+PGt9qNXl31W91c5709HSvpoLl1apVi7WHDx/u9Zk8ebJXq1mzpldzx8jcuXO9Pu77YGbWo0cPr+beiGbmzJlen0PBXzQAAAAAJI4TDQAAAACJ40QDAAAAQOI40QAAAACQuGIJg6vQjxtSDg1dq9U4XRUrVvRqO3bs8GoqvOgGDEOD5Wr/3edUq5KqfQ2hni/JcBU0FUB1x7Jazfupp57yascee6xXc8OXu3bt8vqoMaPCaa5atWp5tYULF3q1kFXuVaDbXT3czGzcuHFebeTIkbH2eeed5/Upqdzv/qF852666aZY+8svv/T6uO+7mV5F2F399Zlnninwfrn++c9/erXXX3/dq6nP2g0dqtWN//3vf3s1dZOMXr16xdpuWNbMbNOmTV4t5KYfKox75JFH5v1/NzxeUqiQtxqT6njhjjc1rtSq7aeddppXe++992Jt93M30yFvdSMAV8jntz9uGPfiiy/2+qiaCsc+/fTTsfZHH33k9VE371A3GnDn9Z/eeKAkSUlJiY2ngs536jeTe4OFNWvWeH1UuHndunVebf78+bF2o0aNvD7HHHOMV1M3AnCPf2ouVZ/XGWec4dVc6tit5jE1/7ljxr1xjJlZ7dq1vZp74wEzs3POOSfWVjcscG8+cDA3I+AvGgAAAAASx4kGAAAAgMRxogEAAAAgccWS0QihrgtX12GqayBDrrdVCy6pxaPcXIXalrreUO2re12vuj6vVatWXi1E6LW5SFbIAogPPfSQV1PXXLrXD5v515aqBbNUbkPlf0Ko1xOSQVLfHZVNqVy5sld7//33Y211Xf0vf/lLf2eLQVLXKCtHH310rP3qq696fX6aE/hRy5YtvZq7ENTtt9/u9VGLU4VQc6C63lldy+yOCbV4VMeOHb2aWpjVXUirS5cu+T7f/rjz9dq1a70+derUyfv/xbVg3759+2LfR3f8hY7HZ5991qu5OQp3PJqZnXLKKV5NZRPcfp9//rnXx70u3Czs+KdeY+jxL2SBOUVl6tyshfrNojJIan5z536VPXUXWFXbLmrusSF00TiVq3AX11RZApU9VJkd93M+6qijvD6fffaZV1ML49WtWzfW/uk88CP1mTZs2NCruVTOQc2l7kKTZv4xXs1J6j1Ui2JmZmbG2iof6GZmDmb88RcNAAAAAInjRAMAAABA4jjRAAAAAJA4TjQAAAAAJK7EhsFDff/9917NDSuqxfkUFcxRwUeXWvwoJKQeutCfWsDFDRqpMBySFfp5udRidir4rQLi7gJtKhS7YMECr6YW23LDsyo8FjLeFbWAmQruqcW9klxMrrDt2rUrFr53w3ZuqM4sPHB61VVXxdpqETwVxr3nnnu82gknnBBrjx49Ot/nM9Nj8Isvvoi1v/vuO6+PmmM7dOjg1Y4//vhYW920QAW41eKPX331Vayt9l2FKNXiXe53W825Pw0vF3Rh1UNVrly54MVsD0QFVd0QvgrZqpsRtGvXzqu571+nTp3y7WOmFx1zhdyAY39Cvovqu/Lcc895td69e8fa8+bN8/qoRVGrVq3q1dx5Q71GNwyuAsiFbciQIbEbf7g3mbjiiiu8x6hF49TCo24QW713KiS/evXqfJ9Thc/VArlqfLvHtuuvv97ro35/qeOrO7epGwioY7eyatWqWFstcBh6I6Rvvvkm1lYLbB4K/qIBAAAAIHGcaAAAAABIHCcaAAAAABLHiQYAAACAxJXYMHhogHLSpElezQ3AqJWTVbBXBdHcIJDqo4JbKhzrBh9V2E49zg39mPlhPvV6DiU0d7gJWTE2NIT57rvvxtoq9KjC4OqzdwN/ajVOtZKoGvOLFy+OtVUQTe2Xet3ujQ2U5s2be7UXXngh38eVZIsWLYoFEt3gqAoFqu+mWkndDTqqgLW74rd6nJkfVr766qu9PiogqW5i4W6rTZs2Xh8V4HbDsmZmU6ZMibUbNGjg9VHcVYPNzE488cRYe/r06V6f008/3aup76M7F7du3drr89PvQRKB7OKkVv4NCaGuXLnSq1WuXNmrueF9dxVtM7OFCxfm+3yKOm7m5uZ6NTVm3JvHqBvAqH0dOnSoV2vcuHGsXb16da+PutmBCui63zG1orM754bMwUnr1atX7CYf7j6ocTVz5swCPZe6mYg6Ri5atMiruful5ie1LVVzj5Nq/KmxprblzhtqLKg5WIXn3bGljgOhv6Pd37Xqe/7111/H2mqM7k/pni0BAAAAlEicaAAAAABIHCcaAAAAABLHiQYAAACAxJXYMHho2E6tiuyGoFUoR4VlVdDbDeaoAFZo6NoNd6oVQlUQKDs726u5K62Ghn6gJfn+uSs1uytym+kVSNXKxu6YUSt2fv75516tVatWXs39To0dO9bro8a3Ci6rcepSYeYQKlBdUsZ3ampqLHTnBqPV+z537lyvpsJ9bgBPrbKrxo0KQw4aNCjW7tevn9dHrdYcMi/Onz/f66NW7p4xY4ZXc282oEKaah/UeHP3Q93IYPz48V5N3TzBDeyrQHCdOnXy/r/6ThSFSZMmxUKgw4YNi/17/fr1vceo90Ude9xgtPr+qtetVhqeM2dOrK2+02qF9lGjRnk1N3yr5igV6g65iYUKa6ubHahtufP17NmzvT5q3KqaGwpWN4C58sorY211Y5DCVr58+di+/uIXv4j9u9suCur9dD8vNc+oILYapyHHMfUbUG3frZWU41oId7wdzMr0/EUDAAAAQOI40QAAAACQOE40AAAAACSuxGQ03Gtk1TWRaqGU1atXezX3mmJ1HZy6Fk9xrxdWOQ51zajavnsdn1rIS13XpzIartK+gFRJoz4b9R67C5CZmU2dOjXWrl27dtDj1LXUzZo1i7Vbtmzp9VHX6n7zzTdezV3Qp2fPnl6fL774wqupa+bdBabUdywzM9OrhSjJ161WqVIldp26uwCYWgRPXctao0YNr+YumKbGjcrxHHvssV5tyZIlsbbKY6gMhVp0zF04Kysry+ujMg3q2mZ3cTd17bSqqe+j+/6oBSjVGFyxYoVXc48tav7+aa5BHYuKQtu2bWP5Hnf8uW0zs7Vr13q1unXrejU336E+PzWW16xZ49Xcz1DlONR7/NBDD3k1N+OmFgoL/Tzc51T7oL4Xahy5NTVvhWTZzMyOOuqoWFt9jpdddlmBtp2kjIyM2Phzx4MaH+p7qTIN7u+o0Mcp7meh5hS10KTavpp7XGochfzGDF3gVdXc16S+A6Hvl7t9dcz/aUbN7OAymPw6BQAAAJA4TjQAAAAAJI4TDQAAAACJ40QDAAAAQOJKTBg8JDijgkY1a9b0au5iN2pxLBWgVUFsFUhyqRCOej3utlR4TG1LLUroUkHlkrzwWVEJDVa5719ouP62227zam7ITL3nKoimAoDuAn3qca1bt/ZqbrjQzF8QbvHixV6fdu3aeTW14JwbMnPD4WY6WFzapaenx+YTd5youUaNN3VTCTd0reY2FapVC4W5z6kWAFOL/6n5xw0dqtejbmSgFj5zw/JqgTk13tT75e6XCuyq0L0KMTZu3DjfffjpzRRCAqKFoVq1arExdvHFFxdoO+q45r4vahE8Nf7Ue+Eeq9X8oMLMaq7csGFDvs+nblCg5kp3fKtguft86nFm/u8F9d6oMK6aI9wFFBs2bOj1ccfywSyYVljc16JeG8om9f3aH/6iAQAAACBxnGgAAAAASBwnGgAAAAASx4kGAAAAgMSVqjC4WhVXBaJCVoVUKx+GrOwZstrt/ra1ffv2WNsNf5rpVcZDgnQqyK5Cc6ErRZYG7phR4UL13hV0FfW//OUvXk2tpH3yySfH2hMnTvT6qM9BhVndEKJ6jbm5uV5NhX9dzz//vFdTr8dd6dzMD/2p/VIrW5d2FStWjI0p9zPLzs6Wj3G5q4CbmW3cuDHWdldyNwtfSdalPh+1innIKs/qRhpqH9RzhqxmrAKl6jvrjnt1fHBDtmY6WO7O12q19Z/uQ0HnkJJCzT+pqakHbJv5qwMDQH5K92wJAAAAoETiRAMAAABA4jjRAAAAAJA4TjQAAAAAJK7EhMFDqNVaVRjcXUFTBS9DVyp1w7ihYXC1fXfFURXgVttSz+kGR2vVquX1CQnYl2ZugFO954paFXfJkiWx9t/+9jevz+OPP+7VunXr5tVWrFgRa3fv3t3r880333g1FbJ1g6vqJgOhwdQRI0bE2n369PH6vP/++0Hbcp9TjTUVblfcx5am1et/9rOfxdoqFD1//nyv5o4RMz/A/91333l9VEBXzQ/uTSVCbjRgZtasWTOv5q7wrm5iocLFatVvd1uHEqp2v8fqBghqjlU3B3H3P3TsAgAOjL9oAAAAAEgcJxoAAAAAEseJBgAAAIDElaqMhlpgSl1v616f7OYZzMxq1qzp1dS1++714uoabHWts1psy81oqGud1fbVfrnXeKuMxuHmrbfe8mr/8z//49XU56Wuc3ep67ZnzZrl1Y477rhYe/r06V6fFi1aeLWZM2d6NXdf1TXn6nr/4cOHezWVyXCpsRZC5SqysrKCHuuO+dK8qKTKHLRu3TqohoPjjhOVCQEAFC/+ogEAAAAgcZxoAAAAAEgcJxoAAAAAEseJBgAAAIDElZgweMjicosWLfJqKhzr2rJli1dr3ry5V1PBcpcKlruLUJnpxePc/di+fbvXx12gzUwHxNXibq6yvmBfbm5urH3LLbd4fdwbA5jpoH4IFZRWY2bSpEmx9gknnOD1UYuxqf1yFyHbunWr16d///5erV+/fl4tROiih24QV4Wgq1WrFrStsj5OAQA4XPEXDQAAAACJ40QDAAAAQOI40QAAAACQOE40AAAAACSuxITBQ6gVgytXruzV3JC1ClirEPmuXbu8mhu+VauTN2vWLGhbLhUuVq9x9+7dXk2txOxSIfKyZMSIEbG2+mzq1avn1VSg2v0s1Erh6v1UIWg33DxlyhSvT8OGDb1a586dvdo333wTa+fk5Hh9hg0b5tUUN7iuvhepqalB2woZ33Xr1g3aFgAAKJv4iwYAAACAxHGiAQAAACBxnGgAAAAASBwnGgAAAAASV6rC4GrVYhWedoOqderU8fqoEK8Kx7rbUs9Xo0YNr7Zt2zav5gZt1YrIISFvMx2Cd6nXWJZcdtllsfZ///tfr8+cOXO8mlop3n3fVfBbffbqPa5SpUq+21q4cKFXc1cBNzPbsGFDrD127FivTyi1SrpL3SQhZFt79uzx+oSuwO4G8UP2EwAAlHxl+5coAAAAgGLBiQYAAACAxHGiAQAAACBxpepi6Hnz5nk19xp2M/868/Xr13t9VE0tQrZ27dpYe9OmTV6fBQsWeLWVK1d6talTp8ba3bp18/qo/IDKcqi8yuHGzUJ8/PHHXp9ly5Z5tcGDB3u19957L9Z2F8ozC1uk7lCoRQLff//9WPuUU04p1H048sgjg/q537vmzZt7fY4++uigbansCwAAKP34iwYAAACAxHGiAQAAACBxnGgAAAAASBwnGgAAAAASV2LC4CGLy3Xu3NmrrVmzxqu5C/Sphfhq167t1VQodfny5Qdsm5kdd9xxXm3nzp1ebfHixbG2WpyvatWqXs0NkZuZ1atXz6u5yvqCfSEaNmzo1e66666gmkvdjOC7777zau6NBtSCjio8HRrELky33HKLVzv++OO9mvsdU6+xZs2aQc/JAn0AAJRN/BIFAAAAkDhONAAAAAAkjhMNAAAAAIkLujj6xwXj1GJ1Sdm7d2+srfISakEzlYVw++3bt8/rs23bNq+mnnP79u35Pp/aVsh+qYyGylWoheLcz0Jd5+6+p2bJLY724/OrxQSTVhTjL4RaTHHr1q1ezR0PKiOktlXYry/kO6ao1+juv7tIppnOGyWlKMffT5+nuMcgSgbGH4rb4XgMRslxMOMv6ERj8+bNZmbWqFGjQ9gtJOnVV18t7l0wsx/GRmZmZqE/hxnjD76iGH8/Po8ZYxBxjD8UN47BKE4h4y8lCjgd2bdvny1fvtzS09Plf4XH4SeKItu8ebNlZWUV+t2tGH9wFeX4M2MMIo7xh+LGMRjF6WDGX9CJBgAAAAAcDMLgAAAAABLHiQYAAACAxHGiAQAAACBxh+WJxn333WfHHnvsAfuccsopdtNNNxXJ/qDsy2/MDR482KpVq3ZIz3H55Zdbv379DmkbwKE62HGYk5NjKSkpNnXq1ELbJxxeGIMoDowjrVScaKSkpBzwf/fdd1/izzls2DB78MEHD9gnv0F1//33269+9Ssz++E1vP322wnvJYrKpEmT7IgjjrBzzz23uHel2HESXjqsXr3arr32WmvcuLFVqlTJ6tWrZ2eddZZNmDChuHcNhwnGIIoKY63kClpHo7jl5ubm/f8hQ4bYPffcY9nZ2Xm1tLS0xJ+zRo0aB/x3tYie65133rHbb789qV1CMXrhhRfshhtusBdeeMGWL19uWVlZxb1LwAFdcMEFtmvXLvv3v/9tzZs3t5UrV9rHH39sa9euLe5dw2GCMYiiUlbH2u7du+WCuKVJqfiLRr169fL+l5mZaSkpKbGaOtEYN26cdenSxVJTU61atWrWo0cPW7x4cazPK6+8Yk2bNrXMzEz7xS9+kbcojZn/X22bNm1qDz74oF122WWWkZFhV199tTVr1szMzDp27GgpKSl2yimn5PVfunSpzZo1y3r37m1NmzY1M7P+/ftbSkpKXtvM7Nlnn7UWLVpYxYoVrXXr1vbKK6/E9jElJcWeffZZO/vss61KlSrWvHlze+uttwr4TqIgtmzZYkOGDLFrr73Wzj33XBs8eHDs38eNG2cpKSn28ccfW+fOna1q1arWvXv32Mmwa+HChda8eXO7/vrr97uy5jvvvGOdOnWyypUrW/Pmze3++++3PXv25Lu/999/v9WuXdsyMjLsmmuuiZ0U79y502688UarU6eOVa5c2Xr27GlTpkyJPf7TTz+1Ll26WKVKlax+/fp2++235z3v5Zdfbp9++qk9+eSTeX9RzMnJyXefULQ2bNhg48ePtz//+c926qmnWpMmTaxLly52xx132Pnnn29mZo899pi1b9/eUlNTrVGjRnbdddfFVnz/8XK+0aNHW9u2bS0tLc169+4d+w8/e/futZtvvtmqVatmNWvWtFtvvdUbz6NGjbKePXvm9TnvvPNs4cKFRfNGoNgwBlFUQsZaSkqKPf/889a/f3+rWrWqHXnkkTZixIjYdmbOnGlnn322paWlWd26de3SSy+1NWvW5P37wY6jvXv32hVXXGFt2rSxJUuWmFn+x/Uff/Odf/75lpqaag8//HCSb1XxiEqZl156KcrMzDxgn927d0eZmZnR73//+2jBggXR7Nmzo8GDB0eLFy+OoiiK7r333igtLS362c9+Fs2YMSP67LPPonr16kV33nln3jZOPvnkaNCgQXntJk2aRBkZGdFf//rXaMGCBdGCBQuiL7/8MjKzaMyYMVFubm60du3avP5///vfozPPPDOKoihatWpVZGbRSy+9FOXm5karVq2KoiiKhg0bFlWoUCF6+umno+zs7OjRRx+NjjjiiOiTTz7J246ZRTVr1oyee+65KDs7O7rrrruiI444Ipo9e/ahvpUI9MILL0SdO3eOoiiK3n333ahFixbRvn378v597NixkZlFXbt2jcaNGxfNmjUrOvHEE6Pu3bvn9bn33nujY445JoqiKJo2bVpUr1696P/+7//y/t0d15999lmUkZERDR48OFq4cGH04YcfRk2bNo3uu+++/e7nwIEDo7S0tOjiiy+OZs6cGY0cOTKqXbt2bFzfeOONUVZWVvT+++9Hs2bNigYOHBhVr149b+wuW7Ysqlq1anTddddFc+bMiYYPHx7VqlUruvfee6MoiqINGzZE3bp1i6666qooNzc3ys3Njfbs2VPg9xaFY/fu3VFaWlp00003RTt27JB9Hn/88eiTTz6JFi1aFH388cdR69ato2uvvTbv31966aWoQoUK0RlnnBFNmTIl+vrrr6O2bdtGv/zlL/P6/PnPf46qV68eDR06NJo9e3Z05ZVXRunp6VHfvn3z+rz11lvR0KFDo/nz50fffvtt1KdPn6h9+/bR3r17oyiKokWLFkVmFn377beF8l6geDAGUVRCxpqZRQ0bNoxee+21aP78+dGNN94YpaWl5R371q9fH9WuXTu64447ojlz5kTffPNN1KtXr+jUU0/N28bBjKMdO3ZE/fv3jzp27Jj3my/kuG5mUZ06daIXX3wxWrhwYd7v1tKsTJ5orF27NjKzaNy4cfLf77333qhq1arRpk2b8mq33HJL1LVr17y2OtHo169fbDsHmpx69eoV/f3vf89rm1k0fPjwWJ/u3btHV111Vax20UUXReecc07scddcc02sT9euXWOTMQpX9+7doyeeeCKKoh8mtFq1akVjx47N+/cfTzTGjBmTV3vvvfciM4u2b98eRdH/O9GYMGFCVL169eivf/1r7DnccX366adHf/jDH2J9Xnnllah+/fr73c+BAwdGNWrUiLZu3ZpXe/bZZ6O0tLRo79690ZYtW6IKFSpEr776at6/79q1K8rKyooeeeSRKIqi6M4774xat24dO5F6+umn87YRRf53AyXTW2+9FVWvXj2qXLly1L179+iOO+6Ipk2btt/+b775ZlSzZs289ksvvRSZWbRgwYK82tNPPx3VrVs3r12/fv28sRNFP3w/GjZsGPuR51q9enVkZtGMGTOiKOJHXlnGGERRyW+smVl011135bW3bNkSmVn0wQcfRFEURQ8++GDefxz+0dKlSyMzi7Kzs+Vz7m8cjR8/Pjr99NOjnj17Rhs2bMjrH3JcN7PopptuKuC7UDKVikunDmTJkiWWlpaW978//OEPVqNGDbv88svtrLPOsj59+tiTTz4Z+1Or2Q+XQqWnp+e169evb6tWrTrgc3Xu3DlonzZt2mSffvpp3p/s9mfOnDnWo0ePWK1Hjx42Z86cWK1bt25e2+2DwpGdnW1ffvmlDRgwwMzMypcvbxdffLG98MILXt8OHTrk/f/69eubmcXG1JIlS6xXr152zz332O9+97sDPu+0adPsgQceiI3tq666ynJzc23btm37fdwxxxxjVatWzWt369bNtmzZYkuXLrWFCxfa7t27Y2OuQoUK1qVLl7zxNGfOHOvWrZulpKTk9enRo4dt2bLFli1bdsB9RslywQUX2PLly23EiBHWu3dvGzdunHXq1Cnv0r8xY8bY6aefbg0aNLD09HS79NJLbe3atbHxVbVqVWvRokVe+6fz5MaNGy03N9e6du2a9+/ly5f35sn58+fbgAEDrHnz5paRkZF36eiPlxKg7GIMoqjkN9bM4sfo1NRUy8jIyBtL06ZNs7Fjx8aOuW3atDEzy7s8KnQcDRgwwLZu3WoffvihZWZm5tVDj+uhvzVLi1J/opGVlWVTp07N+98111xjZmYvvfSSTZo0ybp3725DhgyxVq1a2RdffJH3ODdck5KSYvv27Tvgc6Wmpgbt0wcffGBHHXWUNWrU6CBfDUqaF154wfbs2WNZWVlWvnx5K1++vD377LM2dOhQ27hxY6zvT8fUjz/UfzqmateubV26dLHXX3/dNm3adMDn3bJli91///2xsT1jxgybP3++Va5cOcFXiLKscuXK1qtXL7v77rtt4sSJdvnll9u9995rOTk5dt5551mHDh1s6NCh9vXXX9vTTz9tZvEbXah5MtpPpmh/+vTpY+vWrbPnnnvOJk+ebJMnT/aeB2UXYxBFZX9j7UcH+t23ZcsW69OnT+yYO3XqVJs/f76ddNJJZhY+js455xybPn26TZo0KVYPPa6H/tYsLUr9iUb58uWtZcuWef/76d2iOnbsaHfccYdNnDjR2rVrZ6+99lqiz12xYkUz+yHw81PvvPOO9e3bN1arUKGC169t27berdcmTJhgRx11VKz20xOkH9tt27Y9pH1H/vbs2WMvv/yyPfroo7GJYdq0aZaVlWWvv/76QW2vSpUqNnLkSKtcubKdddZZsZsPuDp16mTZ2dmxsf3j/8qV2//Xdtq0abZ9+/a89hdffGFpaWnWqFGjvJsO/HTM7d6926ZMmZI35tq2bWuTJk2KHcgnTJhg6enp1rBhQzP7Ydy7Yxmlw1FHHWVbt261r7/+2vbt22ePPvqonXDCCdaqVStbvnz5QW0rMzPT6tevn3ewNfvhO/P111/ntdeuXWvZ2dl211132emnn25t27a19evXJ/Z6UPowBlFUfhxrITp16mSzZs2ypk2besfc1NTUgxpH1157rf3pT3+y888/3z799NPYcxTkuF7alYrb2x6sRYsW2b/+9S87//zzLSsry7Kzs23+/Pl22WWXJfo8derUsSpVqtioUaOsYcOGVrlyZUtNTbUPPvjAfv/738f6Nm3a1D7++GPr0aOHVapUyapXr2633HKL/fznP7eOHTvaGWecYe+++64NGzbMxowZE3vsm2++aZ07d7aePXvaq6++al9++aW8dAfJGjlypK1fv96uvPLK2J8/zX74M+0LL7yQ9xe0UKmpqfbee+/Z2WefbWeffbaNGjVK3jXtnnvusfPOO88aN25sF154oZUrV86mTZtmM2fOtIceemi/29+1a5ddeeWVdtddd1lOTo7de++9dv3111u5cuUsNTXVrr32WrvlllusRo0a1rhxY3vkkUds27ZtduWVV5qZ2XXXXWdPPPGE3XDDDXb99ddbdna23XvvvXbzzTfnTYRNmza1yZMnW05OjqWlpVmNGjXK9CRZGq1du9Yuuugiu+KKK6xDhw6Wnp5uX331lT3yyCPWt29fa9mype3evdv+9re/WZ8+fWzChAn2j3/846CfZ9CgQfanP/3JjjzySGvTpo099thjtmHDhrx/r169utWsWdP+9a9/Wf369W3JkiXc8vswwRhEUclvrIX4zW9+Y88995wNGDDAbr31VqtRo4YtWLDA3njjDXv++ecPehzdcMMNtnfvXjvvvPPsgw8+sJ49exb4uF7qFXNG5KCFhMFXrFgR9evXL6pfv35UsWLFqEmTJtE999yTF2b96R2AfvT4449HTZo0yWurMPjjjz/uPddzzz0XNWrUKCpXrlx08sknR2PGjIkaNmzo9RsxYkTUsmXLqHz58rHneeaZZ6LmzZtHFSpUiFq1ahW9/PLLsceZWfT0009HvXr1iipVqhQ1bdo0GjJkyAFfP5Jx3nnnxYL5PzV58uTIzKJp06blhcHXr1+f9+/ffvttZGbRokWLoijyx9zmzZuj7t27RyeddFK0ZcsWOa5HjRoVde/ePapSpUqUkZERdenSJfrXv/613/0dOHBg1Ldv3+iee+6JatasGaWlpUVXXXVV7C4c27dvj2644YaoVq1aUaVKlaIePXpEX375ZWw748aNi44//vioYsWKUb169aLbbrst2r17d96/Z2dnRyeccEJUpUqV2GtEybFjx47o9ttvjzp16hRlZmZGVatWjVq3bh3ddddd0bZt26IoiqLHHnssql+/flSlSpXorLPOil5++eXYOFZjcvjw4dFPDxu7d++OBg0aFGVkZETVqlWLbr755uiyyy6LBXE/+uijqG3btlGlSpWiDh06ROPGjYvdHIMgbtnEGERRCRlrJm7Ik5mZGb300kt57Xnz5kX9+/ePqlWrFlWpUiVq06ZNdNNNN+XdHKUg4+jRRx+N0tPTowkTJkRRlP9xXe1naZcSRQd5sSMO6MYbb7Q9e/bYM888k8j2UlJSbPjw4davX79EtgcAAAAUhTJ56VRxateunXeXKAAAAOBww4lGwq6++uri3gUAAACg2HGiUcJxZRsAAABKI24VAwAAACBxnGgAAAAASBwnGgAAAAASx4kGAAAAgMQFhcH37dtny5cvt/T0dEtJSSnsfUIpEEWRbd682bKysgp9VWjGH1xFOf7MGIOIY/yhuHEMRnE6mPEXdKKxfPlya9SoUSI7h7Jl6dKl1rBhw0J9DsYf9qcoxp8ZYxAa4w/FjWMwilPI+As60UhPT8/bYEZGxqHvGUq9TZs2WaNGjfLGRmEqbePv66+/jrXfeOMNr0+NGjW8WlpamlcrXz7+FV27dq3XR/0XJvXFnzFjRqy9evVqr8+aNWu82nvvvefViltRjj+z0jcGQ6xbt86rqdfmjsGSwr31t7oVeGH9l97SNP727dvn1dT74vYLfe927drl1ZYuXRprz5071+vTuXNnr1a3bt2g5yyoJUuWxNrZ2dlenzPOOMOrFfS/4oe+9wVxOB6DC/p+btmyxaupMTlnzhyvdvTRR8falSpV8vqsWLHCq9WpU8ertW/f/oD7aabnsZL4V6SDGX9BR5AfX2RGRkaZOcgiGUXxBSht4889YahYsaLXR01WlStX9mrujzz1OPUZVKlSxau5+1GhQoV8n89M//gsKYpqAi5tYzDE7t27vRonGgenNIy/4jjRcH98VK1aNd8+ZoU/14Tsl9qHknii8aPD6Rhc0PdT9UlNTfVq6rjpHs/VMVhtS/2Hw5D3rrScaPwoZN8IgwMAAABIHCcaAAAAABJXMv8mDpRi48aNi7Vnzpzp9VF/bly0aJFXc68tVRmK6tWre7XMzEyvVq1atVi7Vq1aXp+cnByvhpJN/al99OjRsfZ///tfr8/YsWO92sqVK73ajh07Yu1rrrnG6/Ptt996NXWZg3sNdJs2bbw+zz//vFfr0KGDV3O/Q+o7VdouQygM6vUW9BKUX//6115t586dXs29vESNqyeffNKrqX11L/Hr2LGj12f79u1eTV3yN3v27FhbXb41atQor7Zhwwavdv7558faF1xwgdcn5BK1/fWDL/R9crM3mzdv9vrMmzfPq02fPt2rucdSdbxV48OdN838+ejYY4/1+pTF+YnRDQAAACBxnGgAAAAASBwnGgAAAAASR0YDSNjWrVtj7WbNmnl91BoGakEk93re1q1be33UNdLqOmA3o6HW8lDbUrmNpk2bejUka/HixV7t5z//uVdzx5uZ2caNG2NtdW2z+vzVbRrd/XAzSGY6X6S4ayeoa6d/8YtfeDV1vfPVV18da99+++1eH3IbBb/t7x133OHV1q9f79WysrK8mnvLWzW3uWPUzCw3N9eruePh2muv9fp069bNq6k1Odx9VTk1ddtndRtcN/fkrtFhZvbb3/7Wq6nPAwW3cOFCr7Zs2bJYu0mTJl4fNdbU8c8dR+rYd8QRR3i1mjVrejU3y/HVV195fdT6MqUdf9EAAAAAkDhONAAAAAAkjhMNAAAAAInjRAMAAABA4giDAwlzFwJavXq118ddiM9Mh3rdWp06dbw+e/bs8Woq0OgGb1UoUW3rs88+82qEwQvf5Zdf7tVUGFctIOWGulX4VwWg1bbcmxmoRSNPP/10r5aRkeHVNm3aFGunpaV5fULD2u+//36sPWLECK/PxIkTg7ZVloUuEPfdd9/F2mqhURXqVgFa9z1Wz9egQYOgbbkh6zfffNPro8LaKujtjsm9e/d6fdS+qpobLJ8xY4bXR21fBYfdfqoPNLVYnhvgdheQNDNr2LChV3vllVe82vDhw2Ptc845x+tzxhlneLW2bdvmu1/qRitq8ckqVap4tdKEv2gAAAAASBwnGgAAAAASx4kGAAAAgMRxogEAAAAgcYTBgYS5YVm1+nHIas5m/urNKlyowrNq+25AUwUvVRhcBZCRvOeeey7WXrlypddHBVxDA60uNW7UTQS2bdsWa6tgohpvanyFhF5VrXLlyl6tdu3asbYbNDczGzp0qFe74IILvFpZVr582GH+448/jrXVGHLHgpn+bNQ84lLzYv369b2aezONd9991+tz7LHHejV1ww03aKteY4UKFbyaCtS73x/13Rk/frxXO+WUU/LdFvR77t6wwEx/zlOnTo211U0M1M0IFixY4NUqVqwYa7ur3puZLV++3KupG1G4NzZQq5qrkPqAAQOC+pVU/EUDAAAAQOI40QAAAACQOE40AAAAACSOEw0AAAAAiSMMfpDUqqT/+Mc/vNrRRx/t1dzVc/v27ZvcjqHEcEPdKuCoQoizZ8/2am4QWwUvlZBwoVpNVz1O7ReS98wzz8Ta6rNQwW/FDbSGhk3Vqtkhj1WBY7WvbrBSPU6t4qvCxW5YVIXI1Uq/h1sYPJT7PQ+9yYT7mZrpIK9LfV4qaOuOB7WafMjjzPzAtpqH1RyrbtSxY8eOWFt9d9Tq6ioMHhrYP5yo4LcbpjbTx7GWLVvG2tOnT/f6dOnSxavVq1fPq7mrd6uAv9rWl19+6dXcUPppp53m9VHfiwkTJni1Vq1axdodO3b0+pQU/EUDAAAAQOI40QAAAACQOE40AAAAACSOCwMP0hdffOHV1MJDU6ZM8Wp/+9vfYu1BgwZ5fZ544omC75xDXU/70EMPeTV3YbB//vOfXh+1iBH0omTuwmEqr6Oua1bX+G7YsCHW/v77770+asGijIwMr+Zey6oWf6tbt65Xy83N9WoofOo6d3UtuhqD7metrrcPWdTPzB+X6nFq7Krrzt1+IdkLM33dvLtwoHqce321mV5cKysry6sdbtzFw9TnpxalcxfBM/M/LzXfqXGkxqk7RtR+qcepa93dx6ptqe+T2lf3dat9cBcbRDj32GdmVqdOnaB+7jxz5plnen3UMVItBuk+VmXPVNZCjS13LK9bt87rk5qa6tXU9849Lh955JFeH5VnKg78RQMAAABA4jjRAAAAAJA4TjQAAAAAJI4TDQAAAACJO2zD4CrQo8JjLrVwSmZmpldTAXF3oZ4nn3zS63PppZd6teOOOy7f/VKBKLUw0Nq1a73atm3bYu2BAwd6fU4++eR89+FwpMJc6enpsXbt2rW9PiokqIK+7mejQrcqjNmjRw+v5gYa1XhXodvQxd4Q7oorrvBq7ufofvZmZkuXLvVqKtToLjylFi9T402Nr5BxE8p9bOgChCpMvGLFilh7zZo1Xh/3u2hm9umnn3q1AQMGBO1HWaHCpW5w1L2phZn+HNQNKtyFydS8osL76uYALjVuFRXqLujYdRfnM/Pnfvc1m+lF56C585/6nFXAWoWn3W2p4636TJs0aeLV3DGpFudr0KCBV5s1a5ZXc2+qo74Dod8Lt9+yZcu8Pm3atPFqxYG/aAAAAABIHCcaAAAAABLHiQYAAACAxHGiAQAAACBxh20YXIUeFTfwtWjRIq+PCtyoIJob2mzZsqXXp3Pnzl7twgsv9GqNGzeOtR977DGvT7NmzbyaGxI180N/NWvW9PpAW79+vVdzA5NqVVkVxlRBSzcsO3v2bK+PWtV4yZIlXq1p06axtruyspkOFrMqfPJuuOEGr/bhhx/G2mo8qOC/Gktbt26NtVWIUgVjQ+ZF1UfV1E0E3LGkgpwqOOyudG5mNnPmzFhbvTdqvz777DOvdriFwd1Vhc38mw+oeWvLli1eTd0Qo3Xr1rG2Cv2r8aH6ufuhwrKh48+l5jY1L37zzTdezR276nuobtICzb2Zg/qc1dygQt01atSItdXvMTVfqM/r+eefP+C2zfwbU+yPO6erMaPmavV9dbe1cuVKrw9hcAAAAABlFicaAAAAABLHiQYAAACAxHGiAQAAACBxh20YXAXdlNdeey3WrlatmtdHhZZUoMddlVsFHN0QnZnZBx984NXcsGfbtm29Pmo14I0bN3o1NwSoVphs166dV4MOoqmAq0uFwFTQslatWrG2Cj2qMalCczk5ObG2Cv2rcRu6Ei/CdezY0au537sLLrjA66OCt82bN/dq7s0A1Lyi5kA1bkJWa1ZhSzW/udtS3xW1IrUKYDZs2DDfPr/97W+92vHHH+/VDjcq3BzyPVer1avx4c4jar5T40/VQm/cEvK4kJXBVR81L7rBYXWjFTXHuvOwmX+jjsOReyxVx9bNmzd7NXX8C7mxgfp9pOasd955J9Y+5ZRTvD7q81O/tdzvivrtqELqKgx+7LHHxtqhgfTiwF80AAAAACSOEw0AAAAAieNEAwAAAEDiDtuMRqiHH3441s7MzPT6qGuK1TWd7gJC6hpEtchQo0aNvJp7/Wl6errXR13rp64/da+f/eKLL7w+vXv39mrQ1wGrBZ9c6tpMNbbUAn2u6tWre7W0tDSvduSRR8baalE/NSbV2ELhGzp0aFC/X/7yl15t9erVsbbKUKg8hrqW2V1ETc0h6nFqLnOvUVbzpPr+qNzYqFGjvBrCqMW9XOoadjcbaKYX+XSPKepzVnOgGjNuv4JmL8z8BfrU86k8iXovvvvuu1hb5aDU9qdOnerVyGj4mQZ1DFMZDdXPXcxOzX+K+s10xhlnxNrq95h6XMjigmpR1tC8m/vY0N+TBc08HQr+ogEAAAAgcZxoAAAAAEgcJxoAAAAAEseJBgAAAIDEHRZh8NBAzKJFi7yauwiKWpRHhXBU+M3tp/ZLPc4NY5r5iyupxaoUtX03yDlp0qSgbUF/hiGLQao+KgSmFvFztWzZ0qtNmzbNq7lhcBUwU4sMhQYtUTxC5gwVsA5dbFKNcZcaIyrs69bUttV8F7JooKL2Qc39xRGQLE4LFy70am4IWoVZ1YKRrVq18mru/Bb6+YV8XmpbIWPUzH+NaqypcLHq59bUGFKvJzs7O9/9LOvUwo/uTXVUUFr9RlNzlruIX+h3Xi1a6d4MJWReMwubx9TvABUsX7NmjVdzH6tu1OAuEm3mLwJcFPiLBgAAAIDEcaIBAAAAIHGcaAAAAABIHCcaAAAAABJXJsPgbphGreqpgkAPPPCAV6tdu3asrVZBDQ0HhQTWVIBIrVTqBpRUH1VTQSM3/DZu3Lj8dhP/PzWO3HCuCl2rcK67mvP++rlUGHPChAlezQ13qhsb5ObmejU1JlFyuCHKUOpzVaFudx5RIU0117irMJsVPFiuAp8hQm7McDhavny5V3NvDuAGas10iFcdX93Qa2jYvqBzTUE/Z7XvKhBcvXp1r+aOeXXMVzfzUHPs4SZkdXcVblZznfoMQ6ibCoSEs0OOyWb6s3fnP3Ujj3nz5nm1ZcuWeTV3/Kk50r2ZkRlhcAAAAABlBCcaAAAAABLHiQYAAACAxHGiAQAAACBxpT4MrsKFIWGdd99916sNHjzYq7mrLqswkgr0hKxGHvo4tUKrG4BSIT0ValPcoNuCBQu8PqNHj461VVALPwhZyVZ9pqqfCmS6jjrqqKD9clcJVWPNvfmB2eG3anJpo1ZrdufA0OCjCrSGrOocekMMN/Cpwr8qRF7QwCc0NWZUoN+ljlnqZheu0JWTQ24WoPqoY526qYA77+7cudPro+a7kJsRqPdv8+bNXk0F8Q836r1yx5Hqo+aBmjVrejX3WKc+UzWvqXHqfvbq96Uaf2oeC5lL1W8rdVzOzMyMtd2bOeyvVhz4iwYAAACAxHGiAQAAACBxnGgAAAAASFyiGQ117WRozaWuH1bX2YVcP/7HP/7Rqz344INerU2bNl7NvaZOXVcauuhPyOtW1/Cp62LdawnV9aiqFpIdUfmBadOmxdol5dq/4hZyvbB6r9SiZ2rMuwszKscff7xXC7nWXo0Pdc1yyDXYKD5r1qzxau7ComqhTnXduZrf3LEUmtkJySapbJlaFNVdVBSHRo0Hdy5TfdRYU+Mo5Fp0RY0td7/UGFXHLMV9rJpz1bFbzYHuHK7mebUtFkDV33v3fVFjQWWLQnI26jgd8rtK1dQ+qO+A+l3ovm41FtR+qYX3Vq5cGWurrEpJ+Z3GXzQAAAAAJI4TDQAAAACJ40QDAAAAQOI40QAAAACQuETD4AUNax+KESNGeLVbb7011s7Ozvb6HHPMMV5NBcPcQJwKJargmwrSuSGf0PdLhXbdEFFoiFeFj9zAmlqQxg1Aqec7HIUsOqUWHlq/fn2+jzMLW4wvZFE/M398hwY2WbCvaLiff+j7rgKMbjh248aNXh81btS2Qm5iERpqdLelwrKqFhL2DbnRxeEodK52g6Mq+H3sscd6NTWO3KCqCsaqzyYkjKsWQgtZbNAsbCFL9X7VrVvXq7kBYPV+hYaQ3f1Xr7EsUe+V+71Xc0rojUnc30xqfKjfe+omLa6Q+dZML+7sPqea61SoW/2edPdD7cPSpUu9WnHgLxoAAAAAEseJBgAAAIDEcaIBAAAAIHGcaAAAAABIXKJh8FBr1671amPGjIm1p06d6vUZOXKkV5s5c6ZXa9WqVaytVk5W4SAVuHHDQSHByP1xg2cqFKaoVSfdwJoKjKvtq7CTu1/qvUnyfShLQsZRrVq1vD65ubleTYUQGzVqlO8+qNXDVZjQ/ZxVqE2No5CAHIpPyOrDaoVYNUZCVoxWIU31PVDzjzu+1BhU3wMV3EQYdeMJxf1cQ8KsZmFBbPW40M+0oMeakJWf1XdHzXdbt271am4wed68eV4fFZ5Xz7lq1apYu0GDBl6fskSNGfd9Ue+nmi/q1avn1dzfheomPqGrZoeMUzVmNm/e7NWqV68ea3/11Vden8zMTK+mbkbg3nBBfU9U6L44MHsDAAAASBwnGgAAAAASx4kGAAAAgMRxogEAAAAgcYcUBh83blys/cADD3h91MqEbvDJzCwrKyvW3rJli9dHhaJPPPFEr+auOKrCV2pV0pBAT2h4LCMjw6u5ASgVbFKrcqt+7v6r1VlVaFPV3LCTeu+7desWa2/bts3rgx+sXr061g4J85vpsdWyZcsC7YMKv7nPqcaaCsipbSF5BV0ZXH1mbk3NUSoMrr777n6oOURRqy67AV217yrEu27dunyfj1XAtQ0bNng19b67xxk1xzdp0sSrqbnM/QwLuuK8mT/eQj9ndWMLl9qWmofVyubt2rWLtdVvHfW9U98fFTYvy9Tc474voatmq37u2A09hqnPwf3s1RypbpygPnv3d9qiRYu8PkcddZRX69Kli1cbNWpUrN2+fXuvj/qOzZ0716u1adPGqyWJv2gAAAAASBwnGgAAAAASx4kGAAAAgMQdVEZj1apVsQWdrr322ti/q2vS1GJlquZe06kWLVHbV9fuqmviXeqa0dAFzEKoRV7c/VLXh6prCdXiNu6Cb2rf1XWl6rrbkGv3TzrppFhbXZN4OFLjw130bNmyZV4fdf26+pzdxSdDqWtZ3Wu11UJ/akxy7XvJpq6bd7NllStX9vqoz1WNQbefuu5XXXeushbqen6X+m6oGsKE5grdY4P6rM466yyvNn36dK/mXoOvjk/qGKk+Z3c/1LbU+FPbcp8zdCFL9R4eeeSRsfZ///tfr4+6nj90QcCyTC0M6h5L1fjr2bOnVwv5rRWaK1Nzljv/hc5F6neoewx2x9D+qN/M7jFejSs1xxfHIn78RQMAAABA4jjRAAAAAJA4TjQAAAAAJI4TDQAAAACJO6gw+PPPPx8LGLsBKRXgVmErxQ30qAXvVGBKhXHdfioQo0I/KlTkBqPV84UsfmRmVrVq1VhbBczUoj8rVqzwavXq1Yu169ev7/VRgWAVAHZfk1rgqaDhKoQH/VTItkaNGgV6zoYNG3q1OXPmxNoqIKyCbiocieS5c4aaj9QYUTd4cOe3kAWy9idkYTU1l6m50h1fqk9oSDiE2vfD7eYG6linuO+Vepy6wYi6gYA7bx1KGNw99qjHhS6A6lLHSLV9dVx2g8lq0Vz13qgbvhxuN1dRwWX3fVHHJzWPqbEVQv1uC7kJkQqyq9+r33//vVdz97V58+ZBj6tdu7ZXc280oMZ7o0aNvFrIzZKSxl80AAAAACSOEw0AAAAAieNEAwAAAEDiONEAAAAAkLiDCoMfccQRsYCYG3J1w85mOryjQjhuAEsFoEODfW6ISAXYVOArJLAWsu9mOpzmhnxUAOyUU07xag8++KBXGz16dKyt3pvQAKgbKiqOlSPLEnccqbCuCoirz6t69eoF2oc6dep4tblz58baKvSvag0aNCjQPiB56vurvvvunHQoAWu3X2j4MqSfChyr74a6iQXChNwswMw/bqpjWGgY3D1+q3lMhWrXrVvn1dy5TPVR4WI1ZtauXRtrL1myxOujQt1qhW/3t4f6zdK+fXuvpkLO6r0oy9Sc5c4zKmCtgvQhNwlSc5E63qo5MeQGFmr7alvu2FLfsdWrV3s1FfTu0qVLrK2+5+7NjMyKZy7lLxoAAAAAEseJBgAAAIDEcaIBAAAAIHGcaAAAAABI3EGFwW+77bZYQMcNrXzyySfeY1RASq2+6IZpVOhHBdhUONvtp4I6qhayWrh6nBswU48zM7v55ptj7ZtuusnrE+qVV16JtdXK4GpfQ8J8ISuqYv9CgmgquKXCbyrkGEKteOtuS4139dmHriyMwqfmu5Dvecgq3fvjbl8F0tVNOUICkmo+UmNeBT5DsDK4/k6rQPXGjRtjbXUMCwlFm/njNPTGJGpf3d8Z7k0tzMxOOOEEr6ZuiOG+brUPmzdv9mrqvahXr94B22Zmbdq08Wrz58/3aofbMVfNR+5noYLStWrV8mpfffVVgfZBzT1qPLjzkZpT1I19VOhffX9c6revumlB69atY+3PPvvM66Neo7rhS2HjLxoAAAAAEseJBgAAAIDEcaIBAAAAIHGHdPH1U089FWurhXueeOIJr/byyy97NXcxu/Xr13t9UlNTvZpafMS9pk4tWqL2NWSRPbWtu+66y6vdeeedXi1J06dPj7XVNXzqOkiVDahdu3asvXLlSq+Pew3p4XZN6f6oa+bdayzVNZ1qgaasrKzE9qtp06Zezf3M1DWkChmNoqHGiSvJrEJo1sK9Pl1lO9S2QsZNyDXRZnreQhh1XXjIteLqc548ebJXU9fNL1u2LNZWn6naBzVm3DGink9d1662725LZdlmzpzp1dSCgx999FGsrX4/qCyMum5eHXMPd+q3lqKOY+7YVWNZjTX1m8mtqW2pDJI6xrvzmMorq6ym+r3qLv6n5lJFjb/Cxl80AAAAACSOEw0AAAAAieNEAwAAAEDiONEAAAAAkLhDSnm6CzKpQMwtt9wSVHOpxf+++eYbr6aCW4sXL4611QIlKmikQjLXX399rH377bd7fQpKLWilFgZS/vSnP8XaVatW9fqoAJ4KzbmhouOOOy7f5y/oQnJljQppueExFZxXwUH3czgUarEqN+irgr9qX1VADsXDXVTNLCzUHbpoqQqNq3ndFRq2dPc1NMCovmcIs2rVKq/WsmVLr+YeJ9XCdWpROnVDDPdYqoKxalyp8eduXx3D1BwVMpep4K264YIKHLvbV/uVnZ3t1dT34nBbRFJxj4mNGzf2+qiF8WbPnu3V2rdvH2uH3gwj5EYXatyq8aEC/u73Qv3eU9tXvxdCbrYRulBmYeMvGgAAAAASx4kGAAAAgMRxogEAAAAgcZxoAAAAAEjcIYXBQ4PLBXHaaacF1UqzQ3n/Bg4cmOCeoKBUSDUkPKvCaSrQH/I4FSRU4bSQIJoKR4auII5DU9CVwUPGROhcowLirtAwoQrjut8X9V0JDa4jTOjNKNz5Yc2aNV4fNdeoG6u4wWg1h4SMdzM/pN6sWbOgx4XMsWpc1a5d26up74/7GkND6uqmMyHB3rJE3Whg6dKlsfaxxx7r9XFv9GNmlpOT49WOOeaYWFvNWeo9V+PB/QyzsrK8PmvXrs33cWb++FPhdvU7QN3Qwf0uqtezevXqoP0qbPxFAwAAAEDiONEAAAAAkDhONAAAAAAkjhMNAAAAAIk7vBJIQBGoXr16vn1U4EuFKl0hYTUzs5o1a3o1NyymAo6hwXIUDxUGL+iq2RUrVvRqIUFvtXquGiNqrIaMJTUuVQDTDfuyurKWmprq1VQYt2nTprG2WoVehUu3bNni1dz5TT1Ofc5qX92QtQqyq5XHFfd1q8eFzotLliyJtdWNDVRNHR9CA+5lRbt27bya+x5kZmZ6fVToum/fvl5t27Ztsba6MYAKT6t+bnhfzZvqu5Kenu7V3PlbHbvV7wB1Ywb3Jg8/+9nPvD7qex5ys5qk8RcNAAAAAInjRAMAAABA4jjRAAAAAJA4MhrAIVDXHruL69SqVcvrs2PHDq8Wcv16aEZDXYfpXtusrjtW1/ura7CRvJCMgfos1HXF7jW9y5cv9/qoa6DV+HK3rzIa6rp2lfdwvxvq+dT16jNnzvRq7kJuIdmow9HRRx/t1VRGbPr06bH2ww8/7PVR17Wr6+bdOU9lIebPn+/VRowY4dXc7Igaa/PmzfNqajy4Y/fMM8/0+qgx6Y41M/81quv0v/rqK69WrVo1r9ajRw+vVpaphWFVzfXNN98EbV8tiuhSeTfFHW8q96COwWr76rjvUnO8mkvdjFDLli29PionUhz4iwYAAACAxHGiAQAAACBxnGgAAAAASBwnGgAAAAASRxgcOATt27f3an369Im1VXi2Ro0aXu3UU0/N9/lUEFKpV6+eV3PDYirgWLt2ba+mwqRIngraunr37u3VRo8e7dVycnJibbXgkwomqiCiG350F4oy0+NS3VjADaCrceou0GZm1rx5c68WEv5mET+9ONptt93m1T7//PNY+/zzz/f6qMXKknT33XcX6vYLkwqDDxo0yKv17NnTq4V89w836ripQt7qJiru3BayGK6ZvomKO4+p51Ofn7pRjHt8VYFxFYpX+x8Snlc3Ngj9DZEk/qIBAAAAIHGcaAAAAABIHCcaAAAAABIXdGHgjws2bdq0qVB3BqXHj2NBLRaWtJI8/tQ17e71oepaU3Wdu7pe033NauEetViQuv7efU51Db3aV7XYVnF/FkU5/n76PIX5ut3XEpovUGPQHUvbtm3z+rgLOJrpz9odS2rcqH1VY8ndlno+dQ2xeo0hn4UaH0nkNkr7+AsZD+q5CjujUZqp90vN80nNp2X9GKzmDzUPhMwz6riphGQ01PutMhrqeO7OPep7GLotNzunsiOFmdE4mPGXEgX0WrZsmTVq1OjQ9wxlztKlS61hw4aF+hyMP+xPUYw/M8YgNMYfihvHYBSnkPEXdKKxb98+W758uaWnp3MXD5jZD2exmzdvtqysrEK/iwHjD66iHH9mjEHEMf5Q3DgGozgdzPgLOtEAAAAAgINBGBwAAABA4jjRAAAAAJA4TjQAAAAAJO6wOdG477777Nhjj93vvw8ePNiqVat2SM9x+eWXW79+/Q5pGwBQ2PKbD83MTjnlFLvpppuKZH8AV0pKir399tv7/fdx48ZZSkqKbdiwocj2CcDBKzUnGpMmTbIjjjjCzj333OLelWLHD4CSKSUl5YD/u++++4p7F1FKFcfYGjZsmD344IMH7JOTk2MpKSk2depU+e/333+//epXvzKz/H844vCyevVqu/baa61x48ZWqVIlq1evnp111lk2YcKEoMd3797dcnNzLTMz84D9+A+A2J8VK1bYDTfcYM2bN7dKlSpZo0aNrE+fPvbxxx8n9hxNmza1J554IrHtlUZBC/aVBC+88ILdcMMN9sILL9jy5cstKyuruHcJiMnNzc37/0OGDLF77rnHsrOz82ppaWl5/z+KItu7d69cnKe47dq1i4W5SpiDGVtJqVGjxgH/XS1G5nrnnXfs9ttvT2qXUIZccMEFtmvXLvv3v/9tzZs3t5UrV9rHH39sa9euDXp8xYoVrV69evv9971793IrVuxXTk6O9ejRw6pVq2Z/+ctfrH379rZ7924bPXq0/eY3v7G5c+cW9y6WHVEpsHnz5igtLS2aO3dudPHFF0cPP/xw7N/Hjh0bmVk0ZsyY6LjjjouqVKkSdevWLZo7d25en3vvvTc65phj8toLFiyImjVrFv3mN7+J9u3bF7300ktRZmZmbLtvv/121LFjx6hSpUpRs2bNovvuuy/avXv3fvdz4MCBUd++faP77rsvqlWrVpSenh79+te/jnbu3JnXZ8eOHdENN9wQ1a5dO6pUqVLUo0eP6Msvv4xtZ9y4cdHxxx8f/X/t3XtclNW6B/AHFOQyg1cUEEQFNFAxL3nBiixJLbHM3bFOJ3Vn1q68VFt3Wabm7n45VttLW0/J0bKsFCtTPpqXJMQgE0RBBAPBgMy7CCXqc/7wwxzftR7iFV9hBn/fz8fPx/WwZnhnZs16ZzHvsx5PT08OCAjgZ555xvF7x40bx0Rk+FdQUHCZzyhcbep4qh6j69at4969e7OHhwdv2bKl1vEgjcvExES+9K2bkZHBt9xyC9tsNrbb7dy7d29OT093/Dw5OZlvvPFG9vLy4uDgYJ48eTKXl5c7fh4aGspz587lBx98kO12O48bN87y5wOsI40JyZYtW/iGG25gHx8fbt68OcfExHBhYSEz//98uGzZMg4NDWU/Pz8eM2YMnzp1ynH72NhYnjp1qqMtjRN1LoqNjXX0LyoqYk9PTz558iSHhoYa+oWGhjr6LVy4kDt37sweHh7cpUsXXrZsmeFxEBEvXLiQhw0bxl5eXtypUyf+/PPP6/TcgXM4fvw4ExFv3bq1xj5ExEuWLOG7776bvb29OTw8nL/88kvHz6vn1OPHjzPz/78vvvzyS46MjOQmTZqIY3TLli1X+dGBKxg+fDi3b9/ecC6sVj2mDh48yCNHjmRfX1+22+187733cllZmaNffn4+jxw5ktu2bcu+vr7ct29f3rhxo+PnsbGx2vi7FrnEo/7ggw+4b9++zMz89ddfc1hYGF+4cMHx8+oJp3///rx161beu3cv33TTTRwTE+Poc+lCIzMzkwMCAvj55593/Fw9eW/bto39/Pw4ISGBDxw4wBs2bOCOHTvynDlzajzOcePGsc1m4zFjxvCePXt47dq17O/vz88995yjz5QpUzgoKIjXrVvHe/fu5XHjxnHLli356NGjzMx86NAh9vHx4ccff5xzcnI4MTGR27Rpw7Nnz2Zm5hMnTvDAgQN54sSJXFpayqWlpXzu3Lk6P7dwddS00IiOjuYNGzZwfn4+Hz16tNbxYGah0a1bN/6v//ovzsnJ4f379/Nnn33GGRkZzHxxIvT19eV58+bx/v37OSUlhXv16sXjx4933L76g+Zbb73F+fn5nJ+ff/WeGLhiZhYaVVVV3Lx5c542bRrn5+dzdnY2JyQk8MGDB5n54nxos9n4nnvu4aysLN62bRsHBAQY5ippoaGOk7S0NMcfeUpLSx3jlpl5/vz5fPvttzMz8+HDh5mIeOnSpVxaWsqHDx9mZubVq1ezh4cHL1iwgHNzc/ntt9/mJk2a8ObNmx33Q0TcunVrXrJkCefm5vLMmTO5SZMmnJ2dfaVPJTSQqqoqttls/OSTT/Lvv/8u9iEiDg4O5hUrVnBeXh5PmTKFbTabY4xJCw0PDw+OiYnhlJQU3rdvH588eZL/4z/+g4cNG+Y4X176hz+4Nh09epTd3Nz4lVdeqbHP+fPn+frrr+cbb7yRf/zxR96xYwf36dPH8MeUjIwMfv/99zkrK4v379/PM2fOZC8vL8c8e/ToUQ4ODua5c+c6xt+1yCUWGjExMfzOO+8w88UJqk2bNoa/Slz6jUa1b775homIKysrmfn/FxopKSncsmVLfuuttwy/Qz1533bbbdogXL58OQcGBtZ4nOPGjeNWrVrxmTNnHLFFixaxzWbj8+fPc3l5OXt4ePDHH3/s+PnZs2c5KCiI33jjDWZmfu6557hr166GhdSCBQsc98GsfwAA51PTQmPNmjWOmJnxYGahYbfbOSEhQTyOCRMm8COPPGKIJScns7u7u+O9ERoaynfffXedHifUPzMLjaNHj/7pX4xnz57NPj4+hm8wpk+fzv3793e0pYWGOk4KCgqYiHjXrl3a74iLi+P58+c72kTEiYmJhj4xMTE8ceJEQ+zee+/lO+64w3C7v/3tb4Y+/fv358cee0x8bOAavvjiC27ZsiV7eXlxTEwMz5gxgzMzMx0/JyKeOXOmo11eXs5ExOvXr2dmeaFBRI4/slSrvtIAoNoPP/zARMSrV6+usc+GDRu4SZMmXFRU5Ijt3buXiUi7CuVS3bp143/961+OdmhoKM+bN8+S43ZVTp8MnpubS2lpaXT//fcTEVHTpk1pzJgx9MEHH2h9o6OjHf8PDAwkIqLDhw87YkVFRRQXF0ezZs2iv//973/6ezMzM2nu3Llks9kc/yZOnEilpaVUUVFR4+169uxJPj4+jvbAgQOpvLyciouL6cCBA1RVVUWDBg1y/NzDw4P69etHOTk5RESUk5NDAwcONFxbOmjQICovL6dDhw796TGD8+vbt6/j/2bGgxlPP/00PfzwwzRkyBB67bXX6MCBA46fZWZmUkJCgmEcDx06lC5cuEAFBQXicYFrKSoqMry+r7zyCrVq1YrGjx9PQ4cOpfj4eHr33XcNeR5EF5MU7Xa7ox0YGGiYLyVmx8mpU6fou+++o5EjR/5pv5ycHMP4J7o436njf+DAgVr7ct4j4HxGjx5NJSUl9NVXX9GwYcNo69at1Lt3b0pISHD0ufSc7uvrS35+fn86Rj09PQ23AZAwc619cnJyKCQkhEJCQhyxqKgoatGihWPuKS8vp2nTplFkZCS1aNGCbDYb5eTkUFFR0VU7dlfk9AuNDz74gM6dO0dBQUHUtGlTatq0KS1atIhWrVpFJ0+eNPT18PBw/L/6g/qFCxccMX9/f+rXrx998skndOrUqT/9veXl5fTiiy9SRkaG419WVhbl5eWRl5eXhY8QriW+vr6X1d/d3V2bFKuqqgztOXPm0N69e+nOO++kzZs3U1RUFCUmJhLRxXH86KOPGsZxZmYm5eXlUVhYWJ2PC5xHUFCQ4fX929/+RkRES5cupdTUVIqJiaGVK1dSly5daMeOHY7bXTpfEl2cMy+dLyVmx8n69espKirKcJIGUHl5eVFcXBy98MILtH37dho/fjzNnj3b8fPLHaPe3t5IAIdaRUREkJub2xUnfE+bNo0SExPplVdeoeTkZMrIyKAePXqY2ijjWuLUC41z587RsmXL6O2339Y+KAUFBdEnn3xyWffn7e1Na9euJS8vLxo6dCidPn26xr69e/em3NxcCg8P1/65u9f8tGVmZlJlZaWjvWPHDrLZbBQSEkJhYWHk6elp2L6vqqqK0tPTKSoqioiIIiMjKTU11fDhMiUlhex2OwUHBxPRxb/anD9//rIeOzgfM+PB39+fTp8+TWfOnHH0kbYS7dKlCz311FO0YcMGuueee2jp0qVEdHEcZ2dni+MYO0s1Dk2bNjW8rpfuFtWrVy+aMWMGbd++nbp3704rVqyw9HdXjyF1Pvryyy/prrvuMsQ8PDy0fpGRkdp2pikpKY7xX+3SBVJ1OzIy8oqOHZxPVFSUYa6zAs6XoGrVqhUNHTqUFixYII63EydOUGRkJBUXF1NxcbEjnp2dTSdOnHDMTykpKTR+/HgaNWoU9ejRgwICAqiwsNBwXxh/Tr7QWLt2LR0/fpwmTJhA3bt3N/wbPXq0ePlUbXx9fembb76hpk2b0vDhw6m8vFzsN2vWLFq2bBm9+OKLtHfvXsrJyaFPP/2UZs6c+af3f/bsWZowYQJlZ2fTunXraPbs2TRp0iRyd3cnX19feuyxx2j69OmUlJRE2dnZNHHiRKqoqKAJEyYQEdHjjz9OxcXFNHnyZNq3bx99+eWXNHv2bHr66acdC5yOHTvSDz/8QIWFhXTkyJFa/woJzsnMeOjfvz/5+PjQc889RwcOHKAVK1YYLi2orKykSZMm0datW+ngwYOUkpJC6enpjg9hzzzzDG3fvp0mTZpEGRkZlJeXR19++SVNmjSpIR4y1JOCggKaMWMGpaam0sGDB2nDhg2Ul5dn+Yfztm3bkre3NyUlJdGvv/5KJ0+epHPnztH69eu1y6Y6duxImzZtorKyMjp+/DgREU2fPp0SEhJo0aJFlJeXR//93/9Nq1evpmnTphlu+/nnn9OHH35I+/fvp9mzZ1NaWhrGsAs7evQo3XrrrfTRRx/R7t27qaCggD7//HN64403tAXqlerYsSPt3r2bcnNz6ciRI9o3wnBtWrBgAZ0/f5769etHq1atory8PMrJyaH33nuPBg4cSEOGDKEePXrQAw88QD/99BOlpaXR2LFjKTY21nEJaUREBK1evdrxB/D//M//1D6PdezYkbZt20a//PILHTlypCEeasNr4ByRPzVixAhDUuClqpN5MjMztaQwZuZdu3YZtn5Vt7c9ffo0x8TE8M0338zl5eVigmVSUhLHxMSwt7c3+/n5cb9+/Xjx4sU1Hm910tmsWbO4devWbLPZeOLEiYZdNSorK3ny5Mncpk2bOm1vy8ycm5vLAwYMYG9vb2xv66RqSga/dIwymxsPiYmJHB4ezt7e3jxixAhevHixIxn8jz/+4Pvuu49DQkLY09OTg4KCeNKkSY5Eb2bmtLQ0jouLY5vNxr6+vhwdHW3YIhrJaq7FTDJ4WVkZ33333RwYGMienp4cGhrKs2bNcmwooc6HzMzz5s0zbDsrJYNL42TJkiUcEhLC7u7uHBsby99++y0HBwdr/b766isODw/npk2bXvb2tgsWLOC4uDhu1qwZd+zYkVeuXPmnjx+c2++//87PPvss9+7dm5s3b84+Pj7ctWtXnjlzJldUVDCzvHlA8+bNeenSpcxc8/a2qsOHDzvmP8L2tnCJkpISfuKJJzg0NJQ9PT25ffv2PHLkSMcYqW1724KCAh48eDB7e3tzSEgIz58/X5s3U1NTOTo6mps1a3bNbm/rxmwiKwYAAMCEKVOm0Llz52jhwoWW3J+bmxslJiaiujMAgAtyvrLEAADgsrp3767tEgUAANcmLDQAAMAyjzzySEMfAgAAOAksNAAAwGnh6l4AANfl1LtOAQAAAACAa8JCAwAAAAAALIeFBgAAAAAAWA4LDQAAAAAAsBwWGgAAAAAAYDlTu05duHCBSkpKyG63k5ub29U+JnABzEynT5+moKAgcne/uutVjD9Q1ef4I8IYBCOMP2hoOAdDQ7qc8WdqoVFSUkIhISGWHBw0LsXFxRQcHHxVfwfGH9SkPsYfEcYgyDD+oKHhHAwNycz4M7XQsNvtjjv08/O78iMTqHulX8mqedu2bYZ2YWGh1mfs2LF1vn+rLFmyRIt1795dizljld1Tp05RSEiIY2xcTfUx/uqqsrJSi3l7ezfAkVjj3LlzWqxpU+crt1Of44/IecZgXWtKmJ1PS0pKtFhSUpKhfeLECa1PVVWVFrv55pu1mJm5THqM0vFbec64XNfq+APngXOweZ999pkW++6777TY0aNHtZg6t50+fVrr07p1ay02YMAALTZ16tQ/PU5Xcjnjz9QniOoJ3M/PzyUWGr6+voa29MHPGd4s0nGpx07kHMdak/o4udfH+KsrDw8PLYaFRv2prw+XzjIGr/ZCQzqJquP5999/1/o0adJEi9V1LnOFhUZ9/05nGX/gfK71c7AZPj4+WszT01OLSedzlXQ+lG7n5eWlxVzxuauNmfGHZHAAAAAAALCc8/6pUnD8+HEtNnr06Fr7SavN3bt3a7Hz589rMTXJ5cKFC1qfY8eO6QcrKCsrM7QPHz5c6+8jklfGaWlppn4nXF3Stxdnz541tNXXnYioffv2WszMX6ulS7WkvzBL/dSvhVu1aqX1CQ0NrfUYwPmZ+SvT2rVrtdjixYu1mDpO/P39tT7SvLhw4UIttn//fkP7oYce0vrU9S+0Zr8JAQDnJ80pZpPeW7ZsaWifPHlS69O8eXMtFhAQoMXOnDljaEvf1B44cECLbdiwQYu98MILhrZ07pa4+tyGbzQAAAAAAMByWGgAAAAAAIDlsNAAAAAAAADLOU2OhpnrzZ566ikttm/fPi0WERFhaEs7oqSnp2sxaZ9odReW4cOHa31SU1O1mHTtfnl5uaEtbQsmHWteXp4WS0hIMLTHjx+v9YGG8eijjxra6vagREQtWrTQYtJ1mM2aNTO0pW1EpWtZpfeTOpal20nbm4LzkF5XM69/YmKi1mfZsmVaTBpf6nXR6jXLRPL2jmFhYVps8+bNhnafPn20Pj179tRiV3K9NgC4HrPv7/z8fC2mzhfSPCNt092uXbtaj0PK5ZXyaKV8R7XUwowZM7Q+r776qhYzM+8783zovEcGAAAAAAAuCwsNAAAAAACwHBYaAAAAAABgOSw0AAAAAADAck6TDK6Skv9yc3O1mJRw89tvvxnaUoEpKaFHLSZFpBdn2bp1q6nbSWXqVVLyjlrsjYgoMDBQi6kJQ0gGdx579uwxtKUiQJI//vhDi5WWlhra6oYCRPJ7wM/PT4upCWvShgXg3KQNA8wkAUrF+dQCjkT6eCMi6tSpk6EtFZn67rvvtJhUlFLdbOC9997T+ixatEiLeXp6ajFXSoa0CjMbxoCzFu1Sx6l0nGaLkKnnaul1ruv9mz0GVy+Y5mzq+nwWFBRoMbUIHpF+/vvll1+0PufOndNiUqFb9TNZRUWF1kfaSEi6f7WQ4Pr167U+UiHBZ599VouZKSbtLHOicxwFAAAAAAA0KlhoAAAAAACA5bDQAAAAAAAAy2GhAQAAAAAAlnPaZPBnnnlGi0nJslKSoFpNWaq2LSXCSolAp06dMrSlZFwpsUmK+fj4GNpSQrqUaCkdv5qkvmrVKq3P6NGjtRhcfWVlZYZ2q1attD7q60ckJ42rSWydO3fW+khjWXpfqLGUlBStDzi3uiagXnfddVrMw8NDi0lzhppQKFXBHTx4sBaTNrY4fvy4oa1unEBEdPLkSS0mbehxLSaDu7m5/ekYyMrK0mLS6yydx/r27XtlB3cJM+PU7FiWzn/1fQxI/LaWmefzoYce0mIbN27UYm3atKk19uuvv2p9pA17pARudVOLn3/+WesjvZ+kz3Lqed9ms2l9Fi9erMV27NihxdasWWNoS/OfsySIN/6ZGQAAAAAA6h0WGgAAAAAAYDksNAAAAAAAwHJYaAAAAAAAgOWcJhlcTVpJTU3V+phNElSTwSVSsraUoKsm9kqkhJugoKBaf6eUfC7dl5RUpN52wYIFWh8kgzcMNQlWSmY0u7FBu3btar0vKYFNSvhSk3ilhLyDBw9qManyOLiWnJwcLXbs2DEtFh4ersX27t1raEuJ5dJ4liroqnOZ3W7X+qgbcBCZSwa/Fqo3V1RUGJJYP/vsM8PPv/rqK+020dHRWkyaH7Zt22Zod+jQQetz4sQJLSa9XhEREYb2b7/9pvWRXlOJ+jul87v0eKTNVtTjaNGihdZHOgeb+UwhjTVpQwRpvlbfP9LzpSZHnz59utZjciVbtmwxtL///nutjzquiOTXS90AQfpsJ51vpddQfZ4HDRpUax8iokOHDmkxNQFdmv/Ucz6RPH//85//NLSlCunOskGGcxwFAAAAAAA0KlhoAAAAAACA5bDQAAAAAAAAyzlNjoZ6LZl0fd7YsWO1WHp6uhZTr7uUruGTrt+UCrioxdbUglNERIGBgabu68yZM4a2dP2clI8h/U61QJZ6rS7UD+n1Onz4sKEtXess5VpUVVVpMfXaUqk4n3T9sFRASNW6dWstVlJSosWQo1E/1BwDKefA7DW3H3zwgaEdHBys9enWrZsWk+ZKdX6TrkeWrjtXr7kmIoqKijK0pcejFqIiIvr73/+uxdRrrKVjb2w5GuvXrzcUfs3IyDD8/KWXXtJuk5ycrMWSkpK0mJrDdf3112t9CgoKtJhUEFDNsZSKqklF1I4cOaLF1EK3Um7Hvn37tJg0v6m3lQocSnOslMuhzrtqjgsR0dGjR7WY9LyqeU/qZwUiory8vFr7uLLly5cb2tJnKCnnRaK+76VzpHQOlvqpnxWl8S7d11//+lctVlxcbGjv379f6yPltrVs2VKLSXkbzgrfaAAAAAAAgOWw0AAAAAAAAMthoQEAAAAAAJbDQgMAAAAAACznNMngZixbtkyLSUXpNm3aZGhLyVdSsTwpMVFNMJQSzKSEQykZV00clpKdpOJHM2bM0GJPP/20FoP6JxU9U19XKZHLbLElM4Wi1CROInkcqccVEBCg9ZGKYkL9UOcRacMKaY7avHmzFtu5c6ehLSW4SvOPdP9+fn6GtjRG1E0ziIji4+Nr7ScVtZJiU6dO1WLvvvuuoS0de2Mr4hcYGGjYIEJNQv3xxx+126SlpWmx5s2b1xqTkptjY2O12C+//KLF1HP1sGHDtD6FhYVaTEqqHTNmjKGtbrZBJCfQSnOz2k9KqI2JidFi0nlfTeSVNm2R3mPq+4lIL9AnJfCrycVmNvxwJepmKNL8J809YWFhWqyuxQylTS3UmHRc0pwibVCg3pe0IYJUXFBKQFcTy50ZvtEAAAAAAADLYaEBAAAAAACWw0IDAAAAAAAsh4UGAAAAAABYzmmTwaUqr1Ky36pVq7SYmmR2ww03aH2kBKI//vhDi6nJhFIikHSsUhKiKjs7W4tJSUxqZVRwHlLCoZp4K1X8lkhjS2U2uVXqpx6XlHQmVeaFhiElxkq2b9+uxdRKxtKmAlISb/fu3bVYbm5urX2kxFQpgVGtEC1VmlYrkRPJmxuo7z0pIV2am80+r84oLy/P8D5WX0MpQVR6vQ4cOKDF1PPm7t27tT6DBw/WYmVlZVosPDzc0JYqZNtsNi3WoUMHLaZSK8ITEYWEhGgx6fyqPl/SpjCSdu3aabGvv/661j7Sc5+fn6/F0tPTDW3pc4B6rGaP3VWo5x7p856UPB0UFKTF1PlOSvKW5gHpvKmel6U5RRqT0ntR7We327U+e/fu1WJdu3bVYurrr1aOJyKKiIjQYg0B32gAAAAAAIDlsNAAAAAAAADLYaEBAAAAAACWw0IDAAAAAAAs5zTJ4GoSjpQIJCXLSgk9asKhlKgoJf1IMTXxR0q8lZKDpGNV71+6HRK/Gx+1IjyRnCgrUTcokJLapDEjjWX1vSLd19mzZ00dF1hPfc3MVrCWEqWlmEpKxpUSWouKigxtqQqzdKzSxgJq9WRpnpeOXRqXGRkZhvatt96q9WlsyeAtW7Y0vN/VKtkBAQHabaTEb+l5qet9rVmzRov17dvX0JYSY3v27KnFpCr36oYBPXr00PqoydREcoXvrVu3GtrqpglERD/99JMWk8aMeo6XKp2rFb+J5CRu9Tik+VvdVMTsJiOuwkw1b2kekDYjUD8DSsnaZjZfIdI3UZHOm9J9Sb9TjUljQfq8IM2vaj9pcw8kgwMAAAAAQKOFhQYAAAAAAFgOCw0AAAAAALCc0+RomLke2ew1y1JxKpV0faNUsM/Ly8vQNlPQxezvbNq07k9/Xa/nBmtJ14yq151Lr7N0fbx0baZ67a5UuCctLU2L+fn5aTF1jEjXx7vy9euuTr1uXnotpGu+pZyJjh07GtrS9budOnXSYtK17uq4KS0t1fpI181L1+W3bt3a0Jaud5YKVkn5AllZWYa2lKPR2ObFiooKw9yvvoY33XSTdpukpCQtJl0bHhkZaWhLc4hUMO3JJ5/UYmquhZSvs2nTJi02aNAgLaY+Jmks33HHHVosMzNTi+Xk5Bja999/v9Zn2LBhWkzKv1BzTHbs2KH1kQq6SqKiogzt6667Tuuj5k81tnxOtTCov7+/1kf6jCZRPx9Jt5M+A0rzhXqeNJvHKM1t6nFJc7zZArwqdT4kIrrllltqvV19wDcaAAAAAABgOSw0AAAAAADAclhoAAAAAACA5bDQAAAAAAAAyzlNMrgZZhP71GJoUuEUKVHHTBE1KRFIStSREoDVZM/Glsx1LZKKQUrjTSUlgUljUt3YQCq0JSUDS4Wo1PFttigm1A8zCX9fffWVFpOSJtVNA6T5SEqQVJNSifRCbtKYl5JepflN3VxDKtJ15swZLSYlJkuFulRXsuGGMzp8+LDhOVST69UihkRyAUTpXHfy5ElDW3p+pQTr2267rdb7VxN9iYjeeustLSaNmeXLlxvaUjL4X//6Vy0mJcJu2bLF0JY215AS5b/44gstduLECUM7PDxc6yNt8FFSUlLr75Teh+p7RXofugppvlAfT1BQkNZHmrOkc5Y6h0ivgzSnSP3U+5fOm9K5W6ImoJvZTIZI/uyrxnbu3GnqGBoCvtEAAAAAAADLYaEBAAAAAACWw0IDAAAAAAAsh4UGAAAAAABYzmkz5aTEyLpWeZUSvtTENyI5EU1N8pGScaVkJCnZV+3XvHlz/WDBpUjJY2oCqtkK3FJCWZs2bQxtKUFOIlU9VUmJslJiOdQPM/ObVBlcmiu3bt1qaEtjMDQ0VIupCa5EelKw3W7X+khVaaUNCdTHKCWFSvOir6+vFlOTR6VEUXUzBVd3/fXXG56LNWvWGH4uJSQHBgZqse+++06LqUn/UsVvqTL466+/rsXU5/3NN9/U+kjV3t99910tplYVlzbbSE1N1WLx8fFabMqUKYa2+j4hkpPg1SrgRPrniq+//lrrU1xcrMW6d++uxdSkYCnpfsCAAYa2tGmCqygqKtJi6mcrs5/3pHOduhmBdL41u1GEOndK8630udDMfUmk4zKzUYj0nDoLfKMBAAAAAACWw0IDAAAAAAAsh4UGAAAAAABYDgsNAAAAAACwnNMkg6vJLnVN/JZI1Wel5CAp4UZNPJOqcUrJkVJir5psLiUGHT9+XIu1bNmy1mO18vkC86TKnmZIlXnNjD9pLHh7e9fpGCR1fTxw5aQ5SbVnzx4t1rt3by2mJuPu379f6yMl1QYHB2sxdW6REmNtNpt+sIKQkBBD+9ChQ1ofaYMF6blR58+8vDytj5R468p8fHwMyeDr1683/Lxbt27abe6//34tdvTo0Vpj6mtFRLRixQotJlUeP3jwoKGtJjITEYWFhWmxBx98UIutXr3a0JYSb6X3QEFBgRZTNwyQzrfSuVR6vnr16lVrH+n+hw8frsWWLl1qaEvvAfX8YCZB2FlJmwqo50TpdTC7SZAakz5rSZv4SDEzz7N0DNJrqD5G6XwubUYgVatXf6c0nzsLfKMBAAAAAACWw0IDAAAAAAAsh4UGAAAAAABYzmlyNMzkGEjXZkrX3n3wwQeGtnTdnVRMSroOTr1/6fdJBVakIjJqjoZ0Ld6MGTO02Pvvv1/rcUHDkMaWVDhMJY13KT9CvaZTKkAm5QOZKSIpjVEzxw71Q7q+W8qFkK53VgvoSXkVUsG0n3/+WYup1yhLRR3btWunxaTigup181LOmzR29+3bp8XUOTA9PV3r09hyNPLz8w05WWpugnReyM7O1mI33XSTFlPng5SUFK1PdHS0FvPz89NiOTk5hnaHDh20Ph999JEWy83N1WJq4T1pzHz//fdaTMqDu/766w1tKb/N399fi0nFfL/55htDu0uXLlqfp556SotJ+VLqmJfOD2o+kysXV5XmBuk8Zob0OqvPn9miytL7p675r9LnQvU4pHFlJj9HOi6pCLWzwKdVAAAAAACwHBYaAAAAAABgOSw0AAAAAADAclhoAAAAAACA5ZwmGdwMs0k5mzZtMrSlpB8pOUiiJuZIRVGkpFopcV2NXVp4qdrOnTtNHRc4B2kcqa+zlMglJZ1JidhqQR8pgddMEnlNx6GSxjI0DOl1lYqj3X777Vrs8OHDhrY0tqTifNImGWqyeX5+vtZHSmA8cuSIFgsNDTW0zRSiIiKKiorSYmqBNGlzjcYmLCzMcN5Qnz9pfujatasWW758uRZTn+PIyEitz0svvaTFBg4cqMXU12LdunVaHykhuLi4WIupyd9eXl5an48//liL3XXXXbUeV1FRkdZHSm4vLS3VYiNHjjS0pfdYYmKiFuvfv78W69Onj6G9Zs0arY+abC4lxbsKaaMLaeyqpAJ30u3U+chscUPpc5v6+dHs51Cpn3r/0pjp16+fFjt27JgWU88PJ06cMHVcDQHfaAAAAAAAgOWw0AAAAAAAAMthoQEAAAAAAJbDQgMAAAAAACzXKJPB1eRF6XZSEq9UyVFNIpISNKVqzdLvNJNUJCXxmmG2ajpcfeprKL3O0msjJfe1b9/e0A4PD9f6SGNSuv8zZ87oB6uoa3VWsN6qVau0mFQZXHr91df6hx9+0PqsX7++1tsR6Qm6M2bM0PqsXLlSi0lVl9XNLqRqtkOGDNFip0+f1mK//PKLoa0mmjdGVVVVhg0b1ArfUlL+li1btNiPP/6oxYKCggxtKem6c+fOWkyq5q2S5sBbb71Vi0mbHahJ49L5tkePHlpMSqpVk+elZFxpEwPp80JISIihnZeXp/WRksGlJPhRo0YZ2mqiuXQ7M/O5s5I2gVBfC2nMNG/eXItJldzVMSlV4JY+M0lJ42rMbPVwqZ/6GVB6HiIiIrSY9L5Q3+vOfO7GJ1EAAAAAALAcFhoAAAAAAGA5LDQAAAAAAMByWGgAAAAAAIDlnDYZXErKMZsMrlbxlJK8paQ5qVK3mgRmNulHOn71vqSK5VLSDxK9nZeUTKiOEWn8SRXmpWQuNUGzbdu2Wh8pKVDaVEAdb1IfVAZ3HhUVFVpMSgbfs2ePFgsMDDS0d+3apfWR5jIpaVJNCpaq80pjSUp0VOdAaZ6UKo+3a9dOi6kJwFIybmNTVlZmeI3UKtbSeUGq9i4lT6v3tWzZMq2PutEKEVGrVq20mLoRQEpKitZHOv9JVbPVitjSuJo8ebIWUzceINKryffq1UvrIyVrFxYWarHNmzcb2sOHD9f69O7dW4tJFZzVc7yaaE5kvrq1K5A2GlDnBul8eN1112mx1q1bazF1YxUpiVxK8DdTzVt6j5mNqfcvnW/VuZuIKD09XYuZ+Wwq3X9dNxy6Evi0CgAAAAAAlsNCAwAAAAAALIeFBgAAAAAAWK5R5mio16ybvT5PupbezHFJpGM1c/zSddlSUSvpOmmof1KOhjpGzOTrEMmvs91uN7SlHA3pOkwz7x/pGlhp/EHDkF4LqTiflG+2b98+Q1u6Ht7sXKbOi9LtzBa/MjMHSgXTpGvW1Xw2qeBlY2O32w25hIcOHTL8vKysTLtN3759tZia+0VEdODAgVr7dOzYUYtJ+QtqUb3BgwdrfaSxLF2Df+zYMUNbygmRckek+1ev5z948KDWR7p/KUdIzbWQ8lC6du2qxe644w4ttn//fkNbeg/ceeedhrYrj3cz+QRSHynfyExehfTZzmzuq3SuNkO6L/U4pPxKKedEKlKpFjGV8l5KSkq0WEMUNsU3GgAAAAAAYDksNAAAAAAAwHJYaAAAAAAAgOWw0AAAAAAAAMs5bTL4lWjfvr2hrSbNEMnJQVJSkZnEXimp1sx9mS2woibDESEZ3FlI40F9DaXxIZGS+6TkS5VaaItIThBWi7FJyXB1TXwD60mJfDExMVpMKsCUlZVlaEvzitk5UCWNebMJ4mpMSlKXjlUttEakF2STEiulmFSY1VW4u7sbkkzVzShSU1O120iFDKXXRk1uHjVqlNZHmo+2b9+uxdSCgFKBQGkjjSVLlmgxdXy3adNG6yPNncOGDdNiamL866+/rvXZu3evFps4caIW69mzp6H96quvan3U4sFE8ucRNak/IiJC66NufiCNbVdhJjlbOhdJxezMfP6Sfp80z0jzUW3HSVT3In5S8Unps11kZKQWW79+vaGtFskkIjp+/LgWQzI4AAAAAAA0ClhoAAAAAACA5bDQAAAAAAAAy2GhAQAAAAAAlnPaZHCzVWulhCE1wUZKcDSbwG2mmrJZ6rGardYrJZSFhYXV+Tjg6lJfZ2nMSImQUsJa586da/19UiVbKTlSqqoKzkOtDC+9htL8oFZ0JpIrC1vFbDK4RE2klBLZ1aRXIjlpcsiQIYb2hg0btD7Sc+jKyeBt27Ylm83maKsJoFLSqDTXqInfRHrF6tjYWK3Prl27tNjAgQO1mDpvSVXupeOSks3Vqt/Sayrd12+//abF9uzZY2h369ZN6yNVZpYqjxcUFBja0jlZShyWxrf6OePS17im45KqRbsKT09PLaY+B9Jrqm70QyRvdqDev5SYLX3eM9NPOi7pvqS5Tb1/6fOrdF/S+0JNZpeOXT2nNBR8owEAAAAAAJbDQgMAAAAAACyHhQYAAAAAAFgOCw0AAAAAALCc0yaDm6lQSyRXQDZTzVtK0jKb0FjX26n9pOQd6bikREhwDlLCl5r8LSXtma1WbyZxVUrylhIm1cQzqTKqNCahfqjJq1LiY25urhaTNhtQK+ju27dP69O8eXNTx6XOxWaTKM3EpOrGZWVlWkw6fn9/f0NbStLMzs7WYu3atdNiriIvL498fHwc7U8//dTw86CgIO02drtdi0nVtVesWGFoS5sMSBW+1aRoIr3S9e233671kRLLpQrwUmK0SqqAnJ+fr8XUhGqpCrg050oJ4hkZGYb27t27tT5+fn5aTBrz6twvJTjv2LHD0HblzwXSuU6dV86ePav1CQkJ0WLq60Ckb5Igfa4y+xlTJR27REr0Vj8vSNW8pc8GEukxqa7mpiCXA58qAAAAAADAclhoAAAAAACA5bDQAAAAAAAAyzltjoZZZq71k66VM1ssz0z+hdnif+o1dWavdfby8qr1GKBhXHq9dDV1zEjFqqTXXrqWWhqnKvV6fCL5mnb12mBpbJu9/hSsp16fXlxcrPWRCjhGRERoscTERENbyhMyWyzKzO3MXgOtFoqTipxJj0d6b6jXN0v5UnXNu3NWdrvdMOeouQ9SzqJapI5IHg/9+/evtY80l0kF6NTXYufOnVofs7llKmksSIX3pPOyVPxWJRXnKyws1GLq+6BDhw5aHynnRCpWpxZkkwq0de3a1dCWcj1chZRPpZLmGbPzmJnzmHRulcaMOodIt5PmOjNzj5SjId3OzLFKz42Z91N9wDcaAAAAAABgOSw0AAAAAADAclhoAAAAAACA5bDQAAAAAAAAy7l85qeUAKMmAkkJcnUt1iKp632ZTVSUiv7U9b7g6uvUqZOhLRXGk4otSYm+ZkiF3aRCVOo4lRLmsPFAw1EL9knJslKiqjSW1CRDKSnQ7JxhpjCUREpgVO9r/PjxWp8RI0Zosbi4OC0mJd+qpOROV3bq1CnDY1KLFkpzzbfffqvFevXqpcX69etnaEtF/ZKTk7WYVPhRTRqXCuqNGjVKi0lJ40VFRYa2tGGK2UKF6gYL0ucH6TmU3otqYTU1WZtIfm7Wr1+vxW677TZDWypWpyaku3LBPimRXd1AwGwxTzNFbSV13fxH+rxnNhlcjUkbWEjvFWkuVceutMmA9Nm3IeAbDQAAAAAAsBwWGgAAAAAAYDksNAAAAAAAwHJYaAAAAAAAgOVcPhlcoibJnDx5UusjJZTVldlKjmoFS6mipXRcUlKeysrkdjCvoKBAi6nVYFu1aqX1USskExHFxMTU6RikpFhpbKmJYWoyI5FcARfqh5o4Kr2uUnKfNJbU19ZsAqM0/7Rt29bQLikp0fqYrfKszmXz5s3T+jz//PNarGfPnlosPDzc0JaSnqW535Vdd911ZLPZHG01YVba4OHee+/VYtL8kJ2dbWgHBgZqfaSY9NqsXbvW0FaT1onkjQ2kjU+6d+9uaLdu3VrrIyVwS+8VdeMM6fFIxyWdz9UxryaaE+nvHSKiyMhILXbo0CFDWzqvjBkzxtB25crg0mcmNXlf3QSASB63UjL4pe8RInlek15TibqBhXRfZudXlTQ+Tp06pcWkMaMmf0u/z0wF9vqAbzQAAAAAAMByWGgAAAAAAIDlsNAAAAAAAADLYaEBAAAAAACWa5TJ4FKyosrHx0eL1bW6ttnbqck6UlKRlMwnHWtdjwGsJVWDVSuDBwQEaH1+/vlnLXb99dfX6Riio6O1WMuWLbWYmmwsJdYNHTq0TscAV06t9CslBUpVY6WEZzWRXEqslJLIpTGhVik+duyY1kfdAKGmY1XnN6mardkKy7m5uYa2VFG8rlWDnVW3bt0MCdM9evRowKOp2dixYxv6EBo9aX5wZWoyuJqETUQUFhamxTZs2KDF1DlRqgB/7tw5LSbNf6or2XhHTUCXjkH6bBAbG6vF1LlUui+pwnxDwDcaAAAAAABgOSw0AAAAAADAclhoAAAAAACA5Zw2R+NKroNTC/qUlZWZup1UYEqNSQVQpJiUa6Hy9vbWYmauEZSgYF/DkK4Ll2JXk3T95tatW7WY2QJF0DDU64h37typ9ZGKPwYHB2uxFStW1Pr7MjMztZiU36bmX3Tr1k3rEx8fr8WkuUy9Dlu6L7UQX033dc899xja0rH36dNHiwFAw/Lw8NBiBw8eNLSlHA01/5FIzitMTk42tKXPWtL9SzE1/1U6j5otAK32k/LrpMK9ERERWkwtSCnlzh05csTUcV1t+EYDAAAAAAAsh4UGAAAAAABYDgsNAAAAAACwHBYaAAAAAABguUaZDN6+fXtD+/Tp01ofqQielGipFpQ6c+aM1kdKbJIK6KmJQFLBLDXBh4gMBZrAuUgFcaQiZHWljgdpkwEpZibxW0qwlYr+SMWOwHpqUv8777yj9ZHmmjfffLNOv69nz56mYmb06tWrTrczSxrP6jwvzd9xcXFX7ZgAoG6kDVO+/fZbQ1tKzG7btq0We+yxx0zFGpuRI0ca2tL5fPTo0fV1OH8K32gAAAAAAIDlsNAAAAAAAADLYaEBAAAAAACWM5WjUZ1vcOrUqat6MFapqqoytKVr18xen67mipjpQ2QuR0O6L+m4pOddvWZZup7RbBGZuqg+JulxWs2Zx5+z5miY4co5GvU5/i79PfU5BtV5jEgeb874vqgP6nNRn8/NtTD+wLm58jlYyptV5zvpM430+6/m5xxnps530vMlFaG26jW8nPHnxiZ6HTp0iEJCQq78yKDRKS4uFisTWwnjD2pSH+OPCGMQZBh/0NBwDoaGZGb8mVpoXLhwgUpKSshut1/RblDQeDAznT59moKCgq76XxQw/kBVn+OPCGMQjDD+oKHhHAwN6XLGn6mFBgAAAAAAwOW4Ni9uAwAAAACAqwoLDQAAAAAAsBwWGgAAAAAAYDksNAAAAAAAwHJYaAAAAAAAgOWumYXG+PHjyc3Njdzc3MjDw4PatWtHcXFx9OGHH4qFTgAuV/X4qunfnDlzGvoQAQzKyspo8uTJ1LlzZ2rWrBmFhIRQfHw8bdq0ybLf0bFjR3rnnXcsuz9oXC49N7u5uVHr1q1p2LBhtHv37oY+NGjkMP/Vj2tmoUFENGzYMCotLaXCwkJav349DR48mKZOnUojRowQKyITydV5ASSlpaWOf++88w75+fkZYtOmTXP0ZeYax1xDkyosQ+NTWFhIffr0oc2bN9Obb75JWVlZlJSURIMHD6YnnniioQ8PriHV5+bS0lLatGkTNW3alEaMGNHQhwWNGOa/esTXiHHjxvFdd92lxTdt2sRExEuWLGFmZiLihQsXcnx8PPv4+PDs2bOZmXnNmjXcq1cvbtasGXfq1InnzJnDVVVVzMx84cIFnj17NoeEhLCnpycHBgby5MmTHb9jwYIFHB4ezs2aNeO2bdvy6NGjr/rjhYa1dOlSbt68uaO9ZcsWJiJet24d9+7dmz08PHjLli38+++/8+TJk9nf35+bNWvGgwYN4rS0tBrvh5k5MTGRL33rZmRk8C233MI2m43tdjv37t2b09PTHT9PTk7mG2+8kb28vDg4OJgnT57M5eXljp+Hhoby3Llz+cEHH2S73c7jxo2z/PkA5zN8+HBu3769YSxUO378ODMzHzx4kEeOHMm+vr5st9v53nvv5bKyMke//Px8HjlyJLdt25Z9fX25b9++vHHjRsfPY2NjmYgM/wAuJZ2bk5OTmYj48OHDzMz8j3/8gyMiItjb25s7derEM2fO5LNnzxpu889//pP9/f3ZZrPxhAkT+JlnnuGePXvW06MAV4P5r/5cU99oSG699Vbq2bMnrV692hGbM2cOjRo1irKysuihhx6i5ORkGjt2LE2dOpWys7Pp3//+NyUkJNDLL79MRESrVq2iefPm0b///W/Ky8ujNWvWUI8ePYiI6Mcff6QpU6bQ3LlzKTc3l5KSkujmm29ukMcKDe/ZZ5+l1157jXJycig6Opr+8Y9/0KpVq+h///d/6aeffqLw8HAaOnQoHTt2zPR9PvDAAxQcHEzp6em0c+dOevbZZ8nDw4OIiA4cOEDDhg2j0aNH0+7du2nlypX0/fff06RJkwz38dZbb1HPnj1p165d9MILL1j6mMH5HDt2jJKSkuiJJ54gX19f7ectWrSgCxcu0F133UXHjh2j7777jjZu3Eg///wzjRkzxtGvvLyc7rjjDtq0aRPt2rWLhg0bRvHx8VRUVERERKtXr6bg4GCaO3eu4y/WAH+mvLycPvroIwoPD6fWrVsTEZHdbqeEhATKzs6md999l5YsWULz5s1z3Objjz+ml19+mV5//XXauXMndejQgRYtWtRQDwGcHOa/etbQK536UtM3GszMY8aM4cjISGa++I3Gk08+afj5bbfdxq+88oohtnz5cg4MDGRm5rfffpu7dOmi/YWFmXnVqlXs5+fHp06dsuBRgKuo6RuNNWvWOGLl5eXs4eHBH3/8sSN29uxZDgoK4jfeeEO8H2b9Gw273c4JCQnicUyYMIEfeeQRQyw5OZnd3d25srKSmS9+o3H33XfX6XGCa/rhhx+YiHj16tU19tmwYQM3adKEi4qKHLG9e/cyERm+dVN169aN//WvfznaoaGhPG/ePEuOGxqfcePGcZMmTdjX15d9fX2ZiDgwMJB37txZ423efPNN7tOnj6Pdv39/fuKJJwx9Bg0ahG80QIT5r35d899oEF28Xt7Nzc3R7tu3r+HnmZmZNHfuXLLZbI5/EydOpNLSUqqoqKB7772XKisrqXPnzjRx4kRKTEx0XH8fFxdHoaGh1LlzZ3rwwQfp448/poqKinp9fOA8Lh1bBw4coKqqKho0aJAj5uHhQf369aOcnBzT9/n000/Tww8/TEOGDKHXXnuNDhw44PhZZmYmJSQkGMbu0KFD6cKFC1RQUCAeFzR+zFxrn5ycHAoJCaGQkBBHLCoqilq0aOEYn+Xl5TRt2jSKjIykFi1akM1mo5ycHMdf9ADMGDx4MGVkZFBGRgalpaXR0KFDafjw4XTw4EEiIlq5ciUNGjSIAgICyGaz0cyZMw1jLDc3l/r162e4T7UNUA3zX/3CQoMuDqhOnTo52upXaeXl5fTiiy86JsKMjAzKysqivLw88vLyopCQEMrNzaWFCxeSt7c3Pf7443TzzTdTVVUV2e12+umnn+iTTz6hwMBAmjVrFvXs2ZNOnDhRz48SnIH0Ne2fcXd31yZFdYOCOXPm0N69e+nOO++kzZs3U1RUFCUmJhLRxbH76KOPGsZuZmYm5eXlUVhYWJ2PC1xbREQEubm50b59+67ofqZNm0aJiYn0yiuvUHJyMmVkZFCPHj2woQBcFl9fXwoPD6fw8HC64YYb6H/+53/ozJkztGTJEkpNTaUHHniA7rjjDlq7di3t2rWLnn/+eYwxqDPMf/Xrml9obN68mbKysmj06NE19unduzfl5uY6JsJL/7m7X3wKvb29KT4+nt577z3aunUrpaamUlZWFhERNW3alIYMGUJvvPEG7d69mwoLC2nz5s318vjAeYWFhZGnpyelpKQ4YlVVVZSenk5RUVFEROTv70+nT5+mM2fOOPpkZGRo99WlSxd66qmnaMOGDXTPPffQ0qVLieji2M3OzhbHrqen59V9gOC0WrVqRUOHDqUFCxYYxla1EydOUGRkJBUXF1NxcbEjnp2dTSdOnHCMz5SUFBo/fjyNGjWKevToQQEBAVRYWGi4L09PTzp//vxVfTzQuLi5uZG7uztVVlbS9u3bKTQ0lJ5//nnq27cvRUREOL7pqNa1a1dKT083xNQ2QDXMf/WraUMfQH36448/qKysjM6fP0+//vorJSUl0auvvkojRoygsWPH1ni7WbNm0YgRI6hDhw70l7/8hdzd3SkzM5P27NlDL730EiUkJND58+epf//+5OPjQx999BF5e3tTaGgorV27ln7++We6+eabqWXLlrRu3Tq6cOECde3atR4fOTgjX19feuyxx2j69OnUqlUr6tChA73xxhtUUVFBEyZMICJyjKnnnnuOpkyZQj/88AMlJCQ47qOyspKmT59Of/nLX6hTp0506NAhSk9Pdyycn3nmGRowYABNmjSJHn74YfL19aXs7GzauHEjzZ8/vyEeNjiJBQsW0KBBg6hfv340d+5cio6OpnPnztHGjRtp0aJFlJ2dTT169KAHHniA3nnnHTp37hw9/vjjFBsb67jULiIiglavXk3x8fHk5uZGL7zwglaXqGPHjrRt2za67777qFmzZtSmTZuGeLjgxKrPzUREx48fp/nz51N5eTnFx8fTqVOnqKioiD799FO64YYb6JtvvnF8Y1tt8uTJNHHiROrbty/FxMTQypUraffu3dS5c+eGeDjgAjD/1aOGTRGpP+PGjXNsL9a0aVP29/fnIUOG8Icffsjnz5939CMiTkxM1G6flJTEMTEx7O3tzX5+ftyvXz9evHgxM19Mzu3fvz/7+fmxr68vDxgwgL/99ltmvph4Gxsbyy1btmRvb2+Ojo7mlStX1stjhoZTUzJ49bZ51SorK3ny5Mncpk0bcXtb5ovjKzw8nL29vXnEiBG8ePFiRzL4H3/8wffdd59ja+WgoCCeNGmSI9GbmTktLY3j4uLYZrOxr68vR0dH88svv+z4OZLVrl0lJSX8xBNPcGhoKHt6enL79u155MiRvGXLFmaufXvHgoICHjx4MHt7e3NISAjPnz+fY2NjeerUqY4+qampHB0dzc2aNbtmt3eEml16biYittvtfMMNN/AXX3zh6DN9+nRu3bo122w2HjNmDM+bN0/bJGPu3Lncpk0bttls/NBDD/GUKVN4wIAB9fxowJVg/qsfbswmsmIAAAAAXERcXBwFBATQ8uXLG/pQAK5p19SlUwAAANC4VFRU0Pvvv09Dhw6lJk2a0CeffELffvstbdy4saEPDeCah280AAAAwGVVVlZSfHw87dq1i37//Xfq2rUrzZw5k+65556GPjSAax4WGgAAAAAAYLlrfntbAAAAAACwHhYaAAAAAABgOSw0AAAAAADAclhoAAAAAACA5bDQAAAAAAAAy2GhAQAAAAAAlsNCAwAAAAAALIeFBgAAAAAAWO7/APuGlHx1tnh4AAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"markdown","metadata":{"id":"hpXWPitg9BHj"},"source":["### **Step 5: Build the model** "]},{"cell_type":"markdown","metadata":{"id":"xF5Qz-Veea2L"},"source":["> Building the neural network requires configuring the layers of the model, then compiling the model.\n","\n"]},{"cell_type":"markdown","metadata":{"id":"a_6XeK58fHKL"},"source":["**Set up the layers**\n","\n"]},{"cell_type":"code","metadata":{"id":"13r1s4MlA2Zx","executionInfo":{"status":"ok","timestamp":1730107921008,"user_tz":-420,"elapsed":1232,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"colab":{"base_uri":"https://localhost:8080/"},"outputId":"e7d32cac-1069-464a-c5a3-52f4e6e57b6e"},"source":["model = tf.keras.Sequential([\n"," tf.keras.layers.Flatten(input_shape=(28, 28)),\n"," tf.keras.layers.Dense(128, activation='relu'),\n"," tf.keras.layers.Dense(10, activation='softmax')\n","])"],"execution_count":13,"outputs":[{"output_type":"stream","name":"stderr","text":["/usr/local/lib/python3.10/dist-packages/keras/src/layers/reshaping/flatten.py:37: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n"," super().__init__(**kwargs)\n"]}]},{"cell_type":"markdown","metadata":{"id":"uE5eidOxVq64"},"source":["🤔 **TIPS:** Do you know that there are two ways to define a model?\n","\n","* **`Sequential Class`**: The simplest type of model, **a linear stack of layers**. However, we can't build complex networks such as multi-input or multi-output networks.\n","* **`Model Class`**: A model with the **Functional API** that allow us to create arbitrary graphs of layers, and as a result we can connect not only with the previous and next layers but also share feature information with other layers in the model, for instance, `ResNet`, `EfficientNet`.\n","\n"]},{"cell_type":"markdown","metadata":{"id":"OGyj2rGTg0xj"},"source":["👀 **Layers Explanation:** What are those Flatten, Dense layers for?\n","\n","* **`Flatten`**: This layer is used to **reformats the data**. Note that it has no parameters to learn. In our case, it transforms the format of the images from a 2D array (of 28 * 28 pixels) to a 1D array (of 28 * 28 = 784 pixels). The reason behind using Flatten is that **the dense layer requires input in single-dimensional shape** i.e. 1D array.\n","* **`Dense`**: This layer is also known as fully connected layers. Each neuron receives input from all the neurons in the previous layer. **Dense layer is used to classify image based on output from previous layers**.\n","\n"]},{"cell_type":"markdown","metadata":{"id":"FVTOhqSpj41J"},"source":["**Compile the model**"]},{"cell_type":"code","metadata":{"id":"AUYMjU9IA7lo","executionInfo":{"status":"ok","timestamp":1730107924622,"user_tz":-420,"elapsed":656,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["model.compile(optimizer='Adam',\n"," loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),\n"," metrics=['accuracy'])"],"execution_count":14,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"VVYEsY34aXCE"},"source":["👀 **Compile Explanation:** What are those optimizer, loss, and metrics for?\n","\n","* **`Optimizer:`** Defines **how the model is updated** based on the past data and its loss function\n","* **`Loss:`** Defines **how inaccurate the model is** during training. We want to minimize this function. In addition, `from_logits=True` is used when the softmax function has not been applied in the final layer to produce a probability distribution but in our case we already specified activation function as softmax thus we set `from_logits=False`\n","* **`Metrics:`** **Monitors** the training and testing steps.\n","\n","\n"]},{"cell_type":"markdown","metadata":{"id":"RkHP5lwN9HsW"},"source":["### **Step 6: Train the model** "]},{"cell_type":"markdown","metadata":{"id":"TYQNJIUQczWu"},"source":["**Feed the model**"]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"GB09FPjUBbrI","outputId":"4ce86103-75d1-48eb-9dad-686122d4210c","executionInfo":{"status":"ok","timestamp":1730107968759,"user_tz":-420,"elapsed":40023,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["model.fit(train_images, train_labels, epochs=10)"],"execution_count":15,"outputs":[{"output_type":"stream","name":"stdout","text":["Epoch 1/10\n","\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 1ms/step - accuracy: 0.7821 - loss: 0.6348\n","Epoch 2/10\n","\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8614 - loss: 0.3859\n","Epoch 3/10\n","\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8750 - loss: 0.3459\n","Epoch 4/10\n","\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 1ms/step - accuracy: 0.8848 - loss: 0.3168\n","Epoch 5/10\n","\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 1ms/step - accuracy: 0.8916 - loss: 0.2941\n","Epoch 6/10\n","\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 1ms/step - accuracy: 0.8957 - loss: 0.2815\n","Epoch 7/10\n","\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 1ms/step - accuracy: 0.8988 - loss: 0.2690\n","Epoch 8/10\n","\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 1ms/step - accuracy: 0.9062 - loss: 0.2538\n","Epoch 9/10\n","\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 2ms/step - accuracy: 0.9074 - loss: 0.2457\n","Epoch 10/10\n","\u001b[1m1875/1875\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 1ms/step - accuracy: 0.9131 - loss: 0.2337\n"]},{"output_type":"execute_result","data":{"text/plain":[""]},"metadata":{},"execution_count":15}]},{"cell_type":"markdown","metadata":{"id":"HZPVX0VEc5hf"},"source":["**Evaluate the model**"]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"jVKTj049Bznr","outputId":"4cce5304-dd1b-42e3-fc07-2992e7c370e2","executionInfo":{"status":"ok","timestamp":1730107973424,"user_tz":-420,"elapsed":1947,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)\n","\n","print('Test accuracy:', test_acc)"],"execution_count":16,"outputs":[{"output_type":"stream","name":"stdout","text":["313/313 - 1s - 4ms/step - accuracy: 0.8813 - loss: 0.3433\n","Test accuracy: 0.8812999725341797\n"]}]},{"cell_type":"markdown","metadata":{"id":"PxDI5dv9dubf"},"source":["🤔 **TIPS:** Do you know that you can configure how you want to see the training and testing progress for each epoch?\n","\n","* **`verbose=0`**: show you nothing (slient mode)\n","* **`verbose=1`**: show an animated progress bar (default)\n","* **`verbose=2`**: show the number of epoch\n","\n","\n","\n","\n"]},{"cell_type":"markdown","metadata":{"id":"RMeDbZRc9S_C"},"source":["### **Step 7: Use the trained model**"]},{"cell_type":"markdown","metadata":{"id":"bNxr6E1EjTdW"},"source":["Let's try to predict all images in the testing set by calling `model.predict` method."]},{"cell_type":"code","metadata":{"id":"MubeesSRCjv5","executionInfo":{"status":"ok","timestamp":1730107977721,"user_tz":-420,"elapsed":1639,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"colab":{"base_uri":"https://localhost:8080/"},"outputId":"488489d3-e27d-49ce-edee-a6a4ed14d8b9"},"source":["predictions = model.predict(test_images)"],"execution_count":17,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step\n"]}]},{"cell_type":"markdown","metadata":{"id":"P5lPg-iQjvOx"},"source":["Here, the model has predicted all images and kept its answeres in *predictions* variable. Let's take a look at the first prediction."]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"8M2kqui0CoOn","outputId":"fdc87be6-d8bc-4e80-8ec5-ebf7b707773e","executionInfo":{"status":"ok","timestamp":1730107979873,"user_tz":-420,"elapsed":2,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["predictions[0]"],"execution_count":18,"outputs":[{"output_type":"execute_result","data":{"text/plain":["array([8.2384111e-10, 1.4830619e-10, 8.0443918e-10, 4.0465756e-12,\n"," 3.4603778e-10, 4.0334820e-05, 5.2069327e-10, 1.9924245e-03,\n"," 6.7655037e-08, 9.9796718e-01], dtype=float32)"]},"metadata":{},"execution_count":18}]},{"cell_type":"markdown","metadata":{"id":"JKRQtK-gkaUH"},"source":["A prediction is an array of 10 numbers. They represent the model's \"confidence\" that the image corresponds to each of the 10 different clothing. You can see which label has the highest confidence value."]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"OZ1fvAwvCv6l","outputId":"7fdf7357-11b4-434e-c842-2a5cdf12ad5e","executionInfo":{"status":"ok","timestamp":1730107981857,"user_tz":-420,"elapsed":2,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["np.argmax(predictions[0])"],"execution_count":19,"outputs":[{"output_type":"execute_result","data":{"text/plain":["9"]},"metadata":{},"execution_count":19}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":35},"id":"xWz3j-VglPxY","outputId":"29bc175b-3295-4435-b69e-b3e979c310d3","executionInfo":{"status":"ok","timestamp":1730107983919,"user_tz":-420,"elapsed":5,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["class_names[np.argmax(predictions[0])]"],"execution_count":20,"outputs":[{"output_type":"execute_result","data":{"text/plain":["'Ankle boot'"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"string"}},"metadata":{},"execution_count":20}]},{"cell_type":"markdown","metadata":{"id":"BdM0K8zQkzSr"},"source":["So, the model is most confident that this image is `class_names[9]`, or (ankle boot). Let's lookup the actual answer in the *test_labels* variable."]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"olK4RuYRC1yX","outputId":"bebf7f04-473f-4f39-bd36-83e34aac2590","executionInfo":{"status":"ok","timestamp":1730107985765,"user_tz":-420,"elapsed":2,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["test_labels[0]"],"execution_count":21,"outputs":[{"output_type":"execute_result","data":{"text/plain":["9"]},"metadata":{},"execution_count":21}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":35},"id":"NtEDupeKl2OX","outputId":"26548d7a-e60d-41cd-ce44-f9fb9883ee67","executionInfo":{"status":"ok","timestamp":1730107987868,"user_tz":-420,"elapsed":6,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["class_names[test_labels[0]]"],"execution_count":22,"outputs":[{"output_type":"execute_result","data":{"text/plain":["'Ankle boot'"],"application/vnd.google.colaboratory.intrinsic+json":{"type":"string"}},"metadata":{},"execution_count":22}]},{"cell_type":"markdown","metadata":{"id":"Gc5hBbMVmgGz"},"source":["Let's do something more fancy (optional)."]},{"cell_type":"code","metadata":{"id":"i6_eKfZOC-BY","executionInfo":{"status":"ok","timestamp":1730107989915,"user_tz":-420,"elapsed":2,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["def plot_image(i, predictions_array, true_label, img):\n"," true_label, img = true_label[i], img[i]\n"," plt.grid(False)\n"," plt.xticks([])\n"," plt.yticks([])\n","\n"," plt.imshow(img, cmap=plt.cm.binary)\n","\n"," predicted_label = np.argmax(predictions_array)\n"," if predicted_label == true_label:\n"," color = 'blue'\n"," else:\n"," color = 'red'\n","\n"," plt.xlabel(\"{} {:2.0f}% ({})\".format(class_names[predicted_label],\n"," 100*np.max(predictions_array),\n"," class_names[true_label]),\n"," color=color)\n","\n","def plot_value_array(i, predictions_array, true_label):\n"," true_label = true_label[i]\n"," plt.grid(False)\n"," plt.xticks(range(10))\n"," plt.yticks([])\n"," thisplot = plt.bar(range(10), predictions_array, color=\"#777777\")\n"," plt.ylim([0, 1])\n"," predicted_label = np.argmax(predictions_array)\n","\n"," thisplot[predicted_label].set_color('red')\n"," thisplot[true_label].set_color('blue')"],"execution_count":23,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"fdXDK5LRnYfK"},"source":["Correct prediction labels are blue and incorrect predictions labels are red."]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":291},"id":"7RTJgALcDCkH","outputId":"f9d07d00-5e62-46be-b6d3-dcfc94aa1734","executionInfo":{"status":"ok","timestamp":1730107994421,"user_tz":-420,"elapsed":637,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["i = 0\n","plt.figure(figsize=(6,3))\n","plt.subplot(1,2,1)\n","plot_image(i, predictions[i], test_labels, test_images)\n","plt.subplot(1,2,2)\n","plot_value_array(i, predictions[i], test_labels)\n","plt.show()"],"execution_count":24,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeQAAAESCAYAAAAsZab9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfXElEQVR4nO3deXhUVZ7G8TcEshASdjBhCbJIaARkEQV07BbUQQZxaUUGnomiztjGFqRVXLpFxxaX0R5tF1yaxtEWl1ZwV4yoKAiKaBAE2ZolsrZoyAIEqJz543SZynJPJZXQOcj38zz1QNWv7smpWwVvzr331IkzxhgBAIAG1aihOwAAAAhkAAC8QCADAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeaNzQHQDgp7KyMm3btk2pqamKi4tr6O4ARyxjjIqKipSRkaFGjYLHwQQygGpt27ZNnTp1auhuAD8Z+fn56tixY2CdQAZQrdTUVEn2P5G0tLQG7g1weOTnSwMHSqWlsW2fmCgtWya5fnctLCxUp06dfvw3FYRABlCt8GHqtLQ0Ahk/WaWlsYdx5PY1+ScS7dQPF3UBAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPBAjaY98Y09QP2o6Tf2ADj61CiQ+cYeoH5F+8YeAEefGgUy39gD1I+afmMPgKNPjQKZb+wB6henfgBUxkksAAA8QCADAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACABwhkAAA8QCADAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACABwhkAAA80LihO4CjQygUCqw1auT+vTAuLi7mn1taWuqsJyYmBtbWrVvn3LZHjx4x9QkAqsMIGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACABwhkAAA8wDzkI4wxpk5115zfrVu3OrddvHhxYG3kyJHObVNSUpz1w8U1zziaOXPmOOtTp06NuW0AqIwRMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADzDt6Scm2lKGLh9//LGz/umnnwbWtm3b5tz2mmuuialPdbVr1y5nfd68eYG11NTU+u4OAARihAwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHmAe8hEmFAo5640bu9/SpUuXBtZWr17t3LZ9+/aBtXXr1jm3Pe+88wJrLVu2dG67f/9+Zz0zMzOwtnv3bue2hYWFgbUOHTo4twWA+sQIGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACAB5j25KGysrLAWrRpTSUlJc76Sy+9FFhLTEx0buuaflRUVOTc1hgTU60m9a+//jqw1rFjR+e2rilX0aaYAUB9YoQMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB74Sc9DjjZ/NS4uzll3zQeOtq2rHm1+a3x8vLPu8thjjznrriUUk5KSnNtu3rw5sBZtiUTXzz106JBz22j7OiUlJbAWbW71nj17AmulpaXObV1zvl19AoDqMEIGAMADBDIAAB4gkAEA8ACBDACABwhkAAA8QCADAOAB76c91WXqUrTpMtE0ahT77yuuqU11mdb03HPPOes7duxw1vv37x9Yizb9qKCgILDWqlUr57atW7cOrH333XfObYuLi531aP12cX2+9u7d69x23bp1gbUTTjgh1i4BOEoxQgYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAAD3g/D7kuc4ldyyfWpO6aLxytX3WZa/znP/85sLZ27Vrntp06dXLWd+/eHViLNud73759gbUOHTo4ty0qKgqsRduXTZs2ddZdSz/WdQlOl3nz5gXWmIcMoLYYIQMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACAB/4p85Cjzfd1iTZP1DXPNNp6xnVZ7ziabdu2BdbmzJnj3NY137dHjx7ObaOtHVxaWhpYc81RlqQmTZoE1qK9T9HWFnaJ9j4lJibGvG1KSkpgLdprWrRokbMOALXBCBkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAdqNe0pFAopFApVW3MtN3g4pxfVZfm8v//97876pk2bAmtr1qxxbrt9+/bAWkJCgnPbtLS0wFpBQYFz28LCQmf94MGDgTXXlCjJ/R679pUkHTp0KLDWokUL57bR9lfQZ1KKvvxicnJyTO1KUrNmzQJrK1eurPbxaNPSABy9GCEDAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAdqNQ85Pj7eORc1yM6dO531zZs3B9ZKSkqc27rqrmUMJWnjxo3OumvJwMaN3bsuNTU1sBZtOco9e/YE1qK9pmj9cr0m15xcyb3M4YEDB5zbpqenB9aizZ2OtnRjy5YtA2vR5v1+//33gTXXPGNJ2rFjR63bjfZ5BnD0YoQMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADtZr25PLee+8F1rZt2+buhGOqTrQlEl1L5EWbolWXqUvRptO4psREWxLQtQyia4qPFH1Klavf0ZYbTElJCaxFmyLkWmIx2ntcF9H2l2tp0GhTzFxTvYI+W9E+cwCOXoyQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADtZoUOX/+/MC5qDNnzgzcLisry9mua2k+11xgyT3vNiEhwblttHm3rvnC0frlmqPqmvsqSUVFRTH1SYo+dzYuLi6wFm1/uOZWR1tic9WqVYG1aEs3RuuXS7T50a7lEJOSkmJuu127dtU+7npvARzdGCEDAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPBAraY9DRw4UGlpadXWlixZErjdihUrnO0uXLiwNt2ooEmTJoG1aFOTWrVqFXO9efPmzm1dU3miTV3avXt3YG3NmjXObffu3eusFxYWBtZcU6Ikafny5YG1vn37Orft0qVLYC03N9e5rWs5Sin6NDIX13KIGRkZzm2D/i1IwdOboi3bCeDoxQgZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxQq3nILVq0CJx7eeutt8bcCdfczE8//dS5rWte7ieffOLcdtOmTc76V199FVhzLdsnuecaR5vv65pXG23udJ8+fZz1ESNGBNbOPvts57bRliOM1TnnnOOsb9myxVlv3bp1YM01V1hyz1V3zVGWpMTExMDacccdV+3jrnngAI5ujJABAPAAgQwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAO1mod8uDRr1iywNnz4cOe2rvpVV10Vc5/wz/Paa681dBf+aUKhUEN3AYCnGCEDAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACABwhkAAA8QCADAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4oHFNnmSMkSQVFhYe1s4AP3Xhf0Phf1MAEFajQC4qKpIkderU6bB2BjhaFBUVqXnz5g3dDQAeqVEgZ2RkKD8/X6mpqYqLizvcfQJ+sowxKioqUkZGRkN3BYBnahTIjRo1UseOHQ93X4CjAiNjANXhoi4AADxAIAMA4AECGQAADxDIAAB4oEED+bbbpBNOCK4/9ZTUokXdfsYll0jnnlu3No528+dLvXpJoVD9tvvhh1JcnFRQUH190yZbz8uL/WfUx2coVgcOSF26SJ9/3jA/H8CRpU6BvHixFB8vjRpVX905cv3859LkydGfN2eOdOaZUuvWwWGzf7+Uk2Of06yZdMEF0s6dFZ+zZYvd702bSu3aSddfLx06VF7/8kupf3+7/ejR0vffl9cOHZIGDpQ++6xmr+2GG6Tf/ta+15H27ZNatZLatJFKS2vW1k9Vdb9cJiRI110nTZ3aED0CcKSp0bSnIDNnSr/+tf1z2zaJqZXRlZRIp5wiXXSRdMUV1T/n2mulN9+U/vpXqXlz6eqrpfPPlxYtsvVQyIbxMcdIn3wibd8u/cd/SE2aSNOn2+dcfrl0+unSCy/Yv0+fLt13n63df780bJg0eHD0/i5cKG3YYH8pqOzll6XevSVjpFdekcaOrfXu+MkbP176zW+kr7+2++pIwjf04WhQXFw/bbj+mdT4G/pMjIqKjGnWzJhvvjFm7Fhj7ryzYv2DD4yRjHnvPWMGDjQmOdmYIUPs88OmTTOmX7/y++vXG3Psscbk5BhTVmbMrFnGNG9esd1XXjGmf39jEhPtc2+7zZiDB4P7mZ1tzJgx9nlt2hiTmmrMf/2XMaWl5c/Zv9+YX//amLZtbbvDhhnz2WcV2/nwQ2NOPNGYhARjjjnGmKlTy39udrZ9rZG3jRvd+2/jRvu8L7+s+HhBgTFNmhjz17+WP7Z6tX3u4sX2/ltvGdOokTE7dpQ/Z8YMY9LSyl9XcrLdzhhjHn3UmLPPtn/fsMGYHj2MKSx09y8sJ8eYX/6y+trPf27MY4/Zn33GGVXrkjFPPmnMuefa/nTvbsyrr5bXw5+RH36w90tKjPnXfzVm6FD7WHX7aMUK+5yUFGPatTNmwgRj/v734P6HP0Nz59qfn5hozJlnGrNlS8XnPfqoMV272n1/3HHGPP10xfrmzcacc479uampxlx4Yfn+nzWr6vs/a1b5tr/4hTG//W1wH32Vn59vJHHjxq2ebvn5+c5/czGPkF98UcrKknr2lCZMsIdrb7rJHoaNdMstdkTWtq105ZXSxInlI71IX30lnXWWdNll0u9/X/3P/PhjOxL84x+lU0+1I7f//E9bmzYtuK/z50tJSfac5aZN0qWX2sPBd95p6zfcYEd7//d/UmamdO+9ti/r19tDslu3Smefbc9HP/209M03dnSblGQPVT74oLR2rXT88dJ//7dts23bGu/KCpYtkw4elEaMKH8sK0vq3NmeIjj5ZPtnnz5S+/blzznrLOlXv7Ijsf79pX79pNxcqXt3+/r79rXPu/JK+/pSU2vWn48/lv7936s+vmGD7cecOZIxdlS/ebPdf5Fuv93+vP/5H+mhh+yIcfNmu18jFRTYUX+zZrbfTZtWPbdcUGBH/ZdfLv3v/9pD5lOn2qMN778f/Br27rXv9dNP28PIV10lXXxx+edw7lxp0iTpgQfsfn/jDfsZ6dhR+sUvpLIyacwY27cFC+wh/5wce0Tgww/tnytXSu+8I733nm0z8rs/Bg+2+/FIUx/f0FdYWKhOnTopPz9faWlpde5Tfbbnc9/quz361rDtmZp+Q1+svz0PHWrMAw/Yvx88aEefH3xQXo8cIYe9+aZ9bN8+ez88Ql60yJiWLY25776KP6PyCHn4cGOmT6/4nGeeMSY9Pbif2dnGtGplR19hM2bY0X0oZExxsR0VPftsef3AAWMyMoy59157/+abjenZ047awx55pLwNY4w57TRjJk0K7kdlQSPkZ5+1o/DKTjzRmBtusH+/4go7yotUUmLbe+ste3/lSmP+5V+M6dzZmHHjjNmzx476xowx5ttv7fbduhlzyy3ufjZvXnW0aIzdJ+eeW35/zBj7fkaSKo4Mi4vtY2+/be+HPyOrVxvTt68xF1xQ8chF5X10xx1VX3d+vn3OmjXV9z88el2ypPyx8BGHTz+194cOtfs00oUXlh9VePddY+LjK46qv/7athE+klL5aE+kBx80pkuX6ms/dXv27DGSzJ49e7xrz+e+1Xd79M2f9lxiuqhrzRp7QdC4cfZ+48Z2lDBzZtXnhkdmkpSebv/ctav8sS1bpDPOkG691Z5rc1m+3I5AmzUrv11xhT2Hundv8Hb9+tkRV9iQIfaYf36+HekdPGjPqYY1aWJHNatX2/urV9ttIgcJw4bZNr791t3nhtK7tx3Nbd4szZ5tX+O0adLDD9vz/kOH2v05Z470+uvB7ezbZ48ERAqF7NGECRPKH5swwV7RXFZW8bmR739KipSWVvH9l+z73727Pd+dkBDcl+XLpQ8+qPj+Z2XZ2oYNwds1biydeGL5/awse+V15Psb+f5L9n5kvVMnewv72c8qtuGSnOz+fAKAFONFXTNn2sN2kaNvY6TERPsffuThuiZNyv8eDrTI/7TbtrXtPPecPZztOiJQXGwPgZ5/ftVa5dA4Uh1zjJ0uU1BQcbrOzp22Fn5O5Sukw1dhh59T2ZQp9rRCx472MOvvf28DctQoe3/06Oq3a9NG+uGHio/Nm2cP41e+iCsUsofHzzij/LHI91+yn4HKoT1qlD1lsGqVPRQfpLjY9vOee6rWwr/s+ej772M/hQHg6FHrEfKhQ/Zc3P332yk74dvy5eXBWhvJyfacXVKSPQ/6j5UeqzVggB2dd+9e9dbI8UqWL7cjvbAlS+zoqlMnqVs3OyqLPK998KC0dKkdBUl2Du7ixfaXjrBFi+x52PCaGwkJ9TNPd+BAG2Lz55c/tmaNPZIwZIi9P2SItGJFxZFmbq79ZSbc50jz59uR3NVX2/uhkH2N4dfq6nf//jYoI82cac/BRr7/eXn2seqOkkRz991SdrY0fHjVnxVpwAB7jrxLl6rvf0pK8HaHDlWcC7xmjf2Fp1cve79Xr6rXNSxaVPH9z8+3t7BVq2wb4ee43v+VK+1+PBolJiZq2rRpSkxM9K49n/tW3+3RN3/ac6rtMe65c+05zoKCqrUbbjBm0CD798pX0BpjzwUq4grkyPNuRUXGnHKKvcK5qMg+Vvkc8jvvGNO4sb1ieuVKY1atMua559znQbOz7bnecePseb833zSmfXtjbryx/DmTJtlzxm+/bZ+TnW3PaX//va1/+60xTZvaK45Xr7ZXerdpU/Gc6RVX2PO8Gzfaq37D55Yr273b7ofw+fTnn7f3t28vf86VV9pzv++/b8znn9ur04cMKa8fOmTM8cfb86l5eXa/tG1rzE03Vf15+/YZk5VV8Vz1yJG2v3l5xnTsaMyLLwbvvz/+0V4lH7Zrlz3nHj4PHOmtt+xVzLt32/uS/bxEat68/Arkyp+RyZPtexO+OrzyOeStW+3r/OUv7bnb9evta7/kErtPqjNrlu3v4MH2PPLnnxtz8sn2FjZ3rn3Oo48as3atMfffb88Zh6+JKCsz5oQTjDn1VGOWLbPnngcOtNcNhD37rL0C+8sv7fu/f395LTOz+vPwABCp1oH8b/9WfrFLZZ9+av8DXb689oFsjA3ioUPtxUjFxdVPe3rnHfuc5GQ7zWfwYGOeeCK4v+FpT7feakzr1jacr7ii4n+Y+/bZaU9t2sQ27ckYe1HRySfbfkW+xsqqmyIjVQz3ffuMueoq+0tB06bGnHdexcA2xphNm2ywJifbfv/mN9VP/7rxRluLtG6dfS1pacb86lfBvzwYY8M1Kal8utp99xnTooW98K2y0lJbe/BBe7+2gWyMfR/S0+3+rO7Ct7Vr7f5o0cK+9qwsG+SRF9xFCn+GXn7ZTmtKTDRmxAg7jSlSXaY9GWM/TxdcYPuliGlPn3xiH9u7t/r+AUBYnDHRZirjaHf99XbS++OPN3RPjjxjx9qLCm++uaF7AsB3LC6BqG65xc4vrnwxFtwOHLAXqV17bUP3BMCRgBEyAAAeYIQMAIAHCGQAh80jjzyiLl26KCkpSSeddJI+q+kSY5V89NFHGj16tDIyMhQXF6dXXnkl5j7dddddOvHEE5Wamqp27drp3HPP1Zo1a2Jub8aMGerbt6/S0tKUlpamIUOG6O233465vUh333234uLiNLkmS8lV47bbblNcXFyFW1b423RisHXrVk2YMEGtW7dWcnKy+vTpo89jXF+0S5cuVfoWFxennJycmNoLhUL63e9+p2OPPVbJycnq1q2b7rjjjugLOgQoKirS5MmTlZmZqeTkZA0dOlRLly6Nqa2aIpABHBYvvPCCpkyZomnTpumLL75Qv379dNZZZ2lX5a9qq4GSkhL169dPjzzySJ37tWDBAuXk5GjJkiXKzc3VwYMHdeaZZ6qkpCSm9jp27Ki7775by5Yt0+eff67TTz9dY8aM0ddff12nfi5dulSPP/64+kZ+3V0Mevfure3bt/94W7hwYUzt/PDDDxo2bJiaNGmit99+W6tWrdL999+vli1bxtTe0qVLK/QrNzdXknThhRfG1N4999yjGTNm6OGHH9bq1at1zz336N5779VDDz0UU3uXX365cnNz9cwzz2jFihU688wzNWLECG3dujWm9mqkQa/xBvCTNXjwYJOTk/Pj/VAoZDIyMsxdd91Vp3YlmbmV59PVwa5du4wks2DBgnprs2XLluZPf/pTzNsXFRWZHj16mNzcXHPaaaeZSbX5ovwI06ZNM/2CvmS9lqZOnWpOOeWUemmrOpMmTTLdunUzZUFzGKMYNWqUmThxYoXHzj//fDN+/Phat7V3714THx9v3njjjQqPDxgwwNwSbQGAOmCEDKDeHThwQMuWLdOIiGXLGjVqpBEjRmjx4sUN2LOq9uzZI0lqVXkJshiEQiE9//zzKikp0ZDwV+vFICcnR6NGjaqw/2K1bt06ZWRkqGvXrho/fry2bNkSUzuvvfaaBg0apAsvvFDt2rVT//799eSTT9a5f5L9vPzlL3/RxIkTY15ZbOjQoZo/f77Wrl0rSVq+fLkWLlyokSNH1rqtQ4cOKRQKKanSdzInJyfHfIShJmJefhEAgnz33XcKhUJqH7lGqKT27dvrm2++aaBeVVVWVqbJkydr2LBhOv7442NuZ8WKFRoyZIj279+vZs2aae7cufpZdd9jWwPPP/+8vvjii3o5X3nSSSfpqaeeUs+ePbV9+3bdfvvtOvXUU7Vy5Uql1nQN1n/429/+phkzZmjKlCm6+eabtXTpUl1zzTVKSEhQdnZ2nfr5yiuvqKCgQJdccknMbdx4440qLCxUVlaW4uPjFQqFdOedd2r8+PG1bis1NVVDhgzRHXfcoV69eql9+/Z67rnntHjxYnXv3j3mPkZDIAM4auXk5GjlypV1HvX07NlTeXl52rNnj1566SVlZ2drwYIFtQ7l/Px8TZo0Sbm5uVVGZ7GIHB327dtXJ510kjIzM/Xiiy/qsssuq1VbZWVlGjRokKZPny5J6t+/v1auXKnHHnuszoE8c+ZMjRw5Mvp6wQ4vvviinn32Wc2ePVu9e/dWXl6eJk+erIyMjJj698wzz2jixInq0KGD4uPjNWDAAI0bN07Lli2LuY/REMgA6l2bNm0UHx+vneFlyP5h586dOiZoSbJ/squvvlpvvPGGPvroI3UMrxITo4SEhB9HTgMHDtTSpUv14IMP6vFafr3dsmXLtGvXLg0YMODHx0KhkD766CM9/PDDKi0tVXx8fMz9bNGihY477jitX7++1tump6dX+QWjV69eevnll2PujyRt3rxZ7733nubMmVOndq6//nrdeOONuvjiiyVJffr00ebNm3XXXXfFFMjdunXTggULVFJSosLCQqWnp2vs2LHq2rVrnfrpwjlkAPUuISFBAwcO1PyIZcvKyso0f/78Op1brQ/GGF199dWaO3eu3n//fR177LH1/jPKyspUWlpa6+2GDx+uFStWKC8v78fboEGDNH78eOXl5dUpjCWpuLhYGzZsUHoM65UOGzasyvSwtWvXKjMzs059mjVrltq1a6dRo0bVqZ29e/eqUaVl/+Lj41VWx68YTElJUXp6un744QfNmzdPY8aMqVN7LoyQARwWU6ZMUXZ2tgYNGqTBgwfrgQceUElJiS699NJat1VcXFxhVLdx40bl5eWpVatW6ty5c63aysnJ0ezZs/Xqq68qNTVVO3bskCQ1b95cycnJte7bTTfdpJEjR6pz584qKirS7Nmz9eGHH2revHm1bis1NbXKueyUlBS1bt06pnPc1113nUaPHq3MzExt27ZN06ZNU3x8vMaNG1frtq699loNHTpU06dP10UXXaTPPvtMTzzxhJ544olatxVWVlamWbNmKTs7W40b1y2ORo8erTvvvFOdO3dW79699eWXX+oPf/iDJk6cGFN78+bNkzFGPXv21Pr163X99dcrKysrps9vjR2267cBHPUeeugh07lzZ5OQkGAGDx5slixZElM7H3zwgZFU5ZadnV3rtqprR5KZFV6iq5YmTpxoMjMzTUJCgmnbtq0ZPny4effdd2Nqqzp1mfY0duxYk56ebhISEkyHDh3M2LFjzfr162Puy+uvv26OP/54k5iYaLKysswTrqX2amDevHlGklmzZk2d2jHGmMLCQjNp0iTTuXNnk5SUZLp27WpuueUWU1paGlN7L7zwgunatatJSEgwxxxzjMnJyTEF1a07XI/4LmsAADzAOWQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACABwhkAAA8QCADAOABAhkAAA/8P0x7uX/qLJorAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":291},"id":"k4g45_1ADZHp","outputId":"21cb8835-9ce7-471a-c3b4-813ad9e98f7d","executionInfo":{"status":"ok","timestamp":1730107998586,"user_tz":-420,"elapsed":557,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["i = 12\n","plt.figure(figsize=(6,3))\n","plt.subplot(1,2,1)\n","plot_image(i, predictions[i], test_labels, test_images)\n","plt.subplot(1,2,2)\n","plot_value_array(i, predictions[i], test_labels)\n","plt.show()"],"execution_count":25,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAeQAAAESCAYAAAAsZab9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdPUlEQVR4nO3deXhV1b3G8TcJBAIkzIEESDCoBJnKIBTQcqsCUi4XhyLlwhVEfa42WJCKY73oY0HkuVAHlAJ6sVKo4IBVC2JERbSgiIYSRQZxiAIiQkgIc/K7f6zGJJCzT3ISzKp8P89zHnPO2mudlX0i71l777VXlJmZAABAjYqu6Q4AAAACGQAALxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACAB2rVdAcA+KmoqEg7d+5UfHy8oqKiaro7wL8sM1N+fr6Sk5MVHR16HEwgAyjXzp071aZNm5ruBvCjkZOTo9atW4csJ5ABlCs+Pl6S+0ckISGhhnuDQFlZUv/+VW9n9WrpJz+pejsoIy8vT23atPn+/6lQCGQA5So+TJ2QkEAg+65Bg+prh8/6tAl36oeLugAA8ACBDACABwhkAAA8QCADAOABAhkAAA8QyAAAeKBC0564Yw9QPSp6xx4AZ54KBTJ37AGqV7g79gA481QokLljD1A9KnrHHgBnngoFMnfsAaoXp34AnIyTWAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACABwhkAAA8QCADAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACABwhkAAA8QCADAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAAD9Sq6Q6ciR577LHA8uzs7IjrVoWZBZZHRUWdtvcGgDMdI2QAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8EC1zUM+fPhwyLK4uLjT0q4kxcbGRtx2ODExMRHXffnll0OW7dy5M7BuYmJiyLKrr746sO7UqVMDy9u0aROyrCrzjAsLCyOuW5X9DAA/FoyQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4oNqmPQVNxxk/fnxg3f79+4csq8qUqZoUtExir169AusGTeVq3bp1YN0lS5YElgdNqbr88ssD68bHx4csCzd1KWhaVLhlH08nlpQE4AtGyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPEAgAwDggUrNQy4oKAg53/Srr74KWe/FF18MbPfQoUMhyzp16hRYt0mTJiHL6tWrF1i3qKgosPzLL78MWbZgwYLAui1btgxZ1qxZs8C6L730UsiyYcOGBdbNzc0NLF++fHnIsk8++SSwblpaWsiyAQMGBNZNTU0NLD9dwi0LGfQ3EB0d/H2VZSMBVCdGyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPFCpaU+bN29W/fr1K/0mBQUFgeWLFi0KWdalS5fAukFLFQaVSdL27dsDyzdt2hSy7NixY4F1L7zwwpBlH3zwQWDdQYMGhSwLN5Ur3O986aWXhizbs2dPYN2tW7eGLFu7dm1g3Q4dOoQs69ixY2Ddnj17BpY3b948ZFm4qUlMXQLgC0bIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACABwhkAAA8QCADAOCBSs1Dzs3N1fHjx8st27dvX+g3qRX8NgcOHAhZtmzZssC6jRs3DlkWqq/F4uPjA8v79OkTsuzcc88NrBu0dF+4JSX37t0bsixoqUopeDlKKfhzCjfHOSUlJaIyScrLywtZtmbNmsC669evDywP6nejRo0C6wYtC5mYmBhYNz09PWRZnTp1AusCwMkYIQMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACAByo1D7l+/foh10MOWiv3mmuuCWy3bdu2IcuC5s1K0pEjR0KWhZuDWrdu3Yjb/sc//hFYN0iDBg0Cy4Pm1YZbh3n37t2B5UHrJSckJATWDXrvoHnGktSsWbOQZeHmTocT9DmFW+N5586dIcvCzcv+/e9/H7Js9OjR5b4ebh45gDMXI2QAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB6o1LSn5cuXh1xWLikpKWS9oKklUvCUmbS0tMC6Qcv+nThxIrBuuH4dPXo0ZFlhYWFg3SC5ubmB5UHLUdauXTuwbrglA6sy7SlIuClCLVq0CFkWbl+Gm+oVNH0t3NS2oL+9cH8fUVFRIctmzZpV7uvh/iYBnLkYIQMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACAByo1D3nHjh0h58G2a9cuZL1OnToFtpudnR2y7KuvvgqsW5Xl84qKigLLq1I3aO5suHm1QfNbQ80DL/btt98GlgfVj4uLC6wbbg50kL1794YsC7cv8/PzA8uD5nWHqxu0FGbQso6StG3btkr3qSp/cwB+3BghAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwQKWmPdWrVy/k1Jd169aFrFeV5fPC1T106FDIsnDLCTZr1iyw/ODBgyHLqrL8YkxMTGB5rVqhP5agMkmKjg7+jhW0/GI4QdOegqYPSdKePXtClgV9hlLwEolS8PSk48ePB9YN2p/hlkoMet9777233NcPHz6sG264IbBdAGcmRsgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4IFKzUOeMWNGyLm9KSkpIes1adIksN2gpfnCzUMOmlcbbn7rvn37Asvj4+NDloWboxo0HzjcXOKgJfoOHz4cWDdo6UYpeH+F29dV+Z2qUjfc30+jRo1ClgXNcQ/Xdvv27QPrDhgwILC8PHl5ecxDBlAuRsgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxQqWlPjRs3Djntadq0adXSIQAAzkSMkAEA8ACBDACABwhkAAA8QCADAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACABwhkAAA8QCADAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPEAgAwDgAQIZAAAPEMgAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB4gkAEA8ACBDACABwhkAAA8QCADAOABAhkAAA8QyAAAeIBABgDAAwQyAAAeIJABAPAAgQwAgAcIZAAAPFCrIhuZmSQpLy/vtHYG+LEr/n+o+P8pAChWoUDOz8+XJLVp0+a0dgY4U+Tn56thw4Y13Q0AHqlQICcnJysnJ0fx8fGKioo63X0CfrTMTPn5+UpOTq7prgDwTIUCOTo6Wq1btz7dfQHOCIyMAZSHi7oAAPAAgQwAgAcIZAAAPEAgAwDgAQK52Nix0mWXVXz7zz+XoqKkrKzT05+asmqV1KGDVFhY0z05Vdu20oMPVm+bx465dt9/v3rbBYBK8iuQv/1WuvFGKSVFqlNHatlSGjRIeuedmu5ZZJ5/Xho4UGraNHR4HzkiZWS4bRo0kK68Uvrmm7LbfPmlNGSIVK+elJgoTZ4snThRUv7hh1K3bq7+0KHSvn0lZSdOSD16SO+9V7E+33qr9LvfSTEx7nlhoTR9upSeLsXFSU2aSL17S48/Xqld4a3YWOmWW6TbbqvpngA4w1Vo2tMP5sor3YjlT3+S0tJcMK1aJX33XU33LDIFBdIFF0hXXSVdf33529x8s/S3v0nPPCM1bCiNHy9dcUXJl5DCQhfGLVtKf/+7tGuXdPXVUu3a0rRpbpvrrpMuukhassT9PG2a9L//68pmzpT69ZN69Qrf37fflj791H0Oxe69V5o7V5o9W+rZU8rLc6PJ/fsj3y++OHbMBfKoUdJvfyt99JHUsWNN98ob3KHvX8jBg9XXzmn4vHfvdo9ItWzpHv+qKnyHPvPF/v1mktmbbwZvN3OmWadOZvXqmbVubXbjjWb5+SXlCxaYNWxo9sorZunpZvXrmw0aZLZzZ8k2J06Y3Xyz265JE7PJk82uvtps2LCSbVasMOvXr2SbIUPMtm8vKf/sM9ffDz8M/7uF2jY316x2bbNnnil5bfNmt+3ate758uVm0dFmu3eXbDNnjllCgtnRo+55XJyrZ2b22GNmv/iF+/nTT83OOccsLy98H83MMjLMfvnLsq917Wp2zz3B9fr3N7vpJrcfGzc2a9HCbMqUstvs32927bVmzZqZxceb/fznZllZJeXbt5v9x3+YJSa6z6xnT7PMzLJtpKaa/eEPJc/nz3efz2uvueebNpldeqmrn5hoNnq02bfflu1nRobZhAlmTZua/du/lZT9/Odmv/td8O95hsnJyTFJPHjwqKZHTk5O4P9z/oyQGzRwjxdekH76U3fIujzR0dLDD0tnnSXt2CH9+tfuMOtjj5Vsc+iQGyEuXOi2Hz3aHZZctMiVz5wpPfmk9H//586XzpwpLVvmRpnFCgqkSZOkLl3ct8b/+R/p8svdYefoajrSv2GDdPy4dMklJa+lp7tD9mvXuv2wdq3UubPUokXJNoMGuUP7H33kDlV37SplZkpnn+2OKHTp4ra74QZpxgwpPr5i/VmzRvrP/yz7WsuW0uuvu/3cvHnoun/6k9tf777r+jx2rBuZDxjgyocPd4e8V6xwRwLmzpUuvljautUdBj94UPrFL6SpU91n/9RT7vD7li1uf5xsxgz3ePVVN/rPzXWf33XXSX/4g3T4sDsMfdVVrv+l+3njjaeeBunVy/3++F513KEvLy9Pbdq0UU5OjhISEqrcp+psz+e+VXd79K1m27OK3qHvh/muXUHPPutGWHXrmvXta3bHHWYbNwbXeeYZN9optmCBG2GWHs0++qgbtRVLSjKbMaPk+fHjbrRdeoR8sm+/de1u2uSeV8cIedEis9jYU7c//3yzW291P19/vdnAgWXLCwpce8uXu+fZ2WY/+5lZSorZyJFmBw6YPfWU+32++srVb9fO7K67gvvZsKGrV9pHH5l16OBG6Z07m/33f5e8b7H+/c0uuODU3+G229zPa9a4Ef2RI2W3adfObO7c0P3p2NHskUdKnhePkG+91X2G2dklZffdd+p+yslx+2nLlpJ+dutW/ns99JBZ27ah+4KIHDhwwCTZgQMHvGvP575Vd3v0zZ/2gvh1UdeVV0o7d0ovvihdeqn05ptS9+5uNFvstdfcyKpVKzfy+6//cueYDx0q2aZePaldu5LnSUnSnj3u5wMH3HnY3r1LymvVcudHS9u2TRo50p3LTkhwV+JK7gIr33TsKK1eLX3xhbR4sRt1T5nizvvedJPUt6+0caO7yOyll0K3c/iwVLdu2dfOO0/KzpbWrZPGjXP7cehQNxItrXhUXqz0Pt+40Y2Aiy9cK3589pk7Zy258ltucUcsGjVy5Zs3n7q/Z86U5s9357tLn+/duFF6442y7aenu7Li95DcBW7liYsr+zcEAD8wvwJZcoEwYIB0993uIqaxY124SG6q0b//u/vH/7nn3CHfRx91ZceOlbRRu3bZNqOipMoud1d8tfL8+e4w7Lvvnvo+VdWypWsvN7fs6998U3IFQ8uWp151Xfw81FUOkyZJEydKrVu7LzXDh0v167uLw958M3R/mjUr/2Kt6Gjp/PNdm88/774gPfGEC9Ri5e3zoiL388GDLqCzsso+tmxxV4xLLoyXLXMXpK1Z48o7dz51f194obvQbenSsq8fPOg+s5PfY9s26Wc/K9mufv3yf/d9+4IPyQPAaebPOeRQzjvPnVeWXAAXFblRUvF53JP/YQ6nYUMXDu++W/IP9YkTru3u3d3z775zYTF/vgsAyY3IqluPHi7IVq0qubJ5yxY3KuzTxz3v08edV92zx015ktz54oQEt29OtmqVG1kuWOCeFxa6EbNU8t9QunWTPv44fL+L37egIPy2ktuvu3e7IxHFRxpO9s477svX5Ze75wcPui9gJ+vVy12Jfumlrr1bbil5j+eec+3XiuDPOjvb/f6oVnXq1NGUKVNUJ9Q1ITXYns99q+726Js/7QU67QfFK2rvXnel68KF7rzxjh1mS5e6c7/jxrltsrLcOcEHH3RXED/1lFmrVu61/fvdNsVXWZe2bJnbptj06e7K6WXL3NXJ11/vrvwtPodcWOjOS48ebbZtm9mqVe6cqOTqmFXsHPJ337nyv/3Nbfv00+75rl0l29xwgzv3+/rrZu+/b9anj3sUO3HCXVU+cKD7/V95xax5c3d+/WSHD7sry0v3afBg9/tlZbnz5EuXhu7vww+b9ehR9rUrrzSbNcts3Tqzzz83e+MNs5/+1Ozcc925dzN3bnbChLL1hg0zGzPG/VxU5M4xd+1qtnKl23fvvGN2551m69e7bS6/3OwnP3F9z8oyGzrUfSal2y19lfWaNWYNGpQ8//prt19++Uuz995z1xC88orZ2LFuH4bqZ+m2Tz5/DgA/IH8C+cgRs9tvN+ve3QVqvXpm7du7qSiHDpVsN2uWu6AnLs5NZ3rqqcoH8vHj7h/mhASzRo3MJk06ddpTZqa7mKlOHbMuXdx0rMoGcvEFZic/Sk8JOnzY7Ne/dhez1avngql0YJu5IBw82P3OzZqZ/fa3JWFY2u23u7LStm1zXyYSEtwUscLC0P397jt3Qd0nn5S8Nm+e+6LUvLm7AC0lxYXc55+XbBMukM3c1KubbjJLTnZTvdq0MRs1yuzLL135Z5+594mLc2WzZ5/a7snTnlavdlOcHn7YPd+61e2/Ro1cO+npZhMnui8EofppZvb3v7s6pf/OAOAHFmVW2ZOr+FGbPNndGGDu3JruyQ9nxAg3dezOO2u6JwDOYP5d1IWaddddUmpqyQVZP3bHjrmLx26+uaZ7AuAMxwgZAAAPMEIGAMADBDKA0+bRRx9V27ZtVbduXfXu3VvvVXTVsZO89dZbGjp0qJKTkxUVFaUXiqdCRuD+++/X+eefr/j4eCUmJuqyyy7Tli1bIm5vzpw56tKlixISEpSQkKA+ffpoxYoVEbdX2vTp0xUVFaWJEydGVP+ee+5RVFRUmUd68Q1zIvD1119r9OjRatq0qeLi4tS5c2e9H+HSpW3btj2lb1FRUcrIyIiovcLCQt19990666yzFBcXp3bt2um+++4Lv6BDCPn5+Zo4caJSU1MVFxenvn37av369RG1VVEEMoDTYsmSJZo0aZKmTJmiDz74QF27dtWgQYO0p/gObpVQUFCgrl276tHiGwFVwerVq5WRkaF169YpMzNTx48f18CBA1VQ0Xn1J2ndurWmT5+uDRs26P3339dFF12kYcOG6aOPPqpSP9evX6+5c+eqy8l3waukjh07ateuXd8/3o7wngr79+9Xv379VLt2ba1YsUIff/yxZs6cqcaNG0fU3vr168v0KzMzU5I0fPjwiNp74IEHNGfOHM2ePVubN2/WAw88oBkzZuiRRx6JqL3rrrtOmZmZWrhwoTZt2qSBAwfqkksu0ddffx1RexVSo9d4A/jR6tWrl2VkZHz/vLCw0JKTk+3++++vUruSbFnx9MNqsGfPHpNkq1evrrY2GzdubI8//njE9fPz8+2cc86xzMxM69+/v00INX8+jClTpljXrl0j7kdpt912m11w8j3rq9GECROsXbt2VlQ8TbGShgwZYuOK71nxT1dccYWNGjWq0m0dOnTIYmJi7OWXXy7zevfu3e2ucGsCVAEjZADV7tixY9qwYYMuKbWSWXR0tC655BKtXbu2Bnt2qgMHDkiSmjRpUuW2CgsL9fTTT6ugoEB9iu+2F4GMjAwNGTKkzP6L1LZt25ScnKy0tDSNGjVKX0Z4P/4XX3xRPXv21PDhw5WYmKhu3bpp/vz5Ve6f5P5e/vznP2vcuHERryzWt29frVq1Slu3bpUkbdy4UW+//bYGDx5c6bZOnDihwsJC1T3p3v5xcXERH2GoCP9vnQngX87evXtVWFioFqWXDZXUokULffLJJzXUq1MVFRVp4sSJ6tevnzp16hRxO5s2bVKfPn105MgRNWjQQMuWLdN55d3atgKefvppffDBB9VyvrJ379568skn1b59e+3atUv33nuvLrzwQmVnZyu+osuy/tOOHTs0Z84cTZo0SXfeeafWr1+v3/zmN4qNjdWYMWOq1M8XXnhBubm5Gjt2bMRt3H777crLy1N6erpiYmJUWFioqVOnatSoUZVuKz4+Xn369NF9992nDh06qEWLFvrLX/6itWvX6uyzz464j+EQyADOWBkZGcrOzq7yqKd9+/bKysrSgQMH9Oyzz2rMmDFavXp1pUM5JydHEyZMUGZm5imjs0iUHh126dJFvXv3VmpqqpYuXaprr722Um0VFRWpZ8+emjZtmiSpW7duys7O1h//+McqB/ITTzyhwYMHh18vOMDSpUu1aNEiLV68WB07dlRWVpYmTpyo5OTkiPq3cOFCjRs3Tq1atVJMTIy6d++ukSNHasOGDRH3MRwCGUC1a9asmWJiYvTNSSuVffPNN2oZapWyH9j48eP18ssv66233lLr1q2r1FZsbOz3I6cePXpo/fr1euihhzS3kne827Bhg/bs2aPuxQvdyB0Gf+uttzR79mwdPXpUMTExEfezUaNGOvfcc7V9+/ZK101KSjrlC0aHDh303HPPRdwfSfriiy/02muv6fnnn69SO5MnT9btt9+uX/3qV5Kkzp0764svvtD9998fUSC3a9dOq1evVkFBgfLy8pSUlKQRI0YoLS2tSv0MwjlkANUuNjZWPXr00KpVq75/raioSKtWrarSudXqYGYaP368li1bptdff11nnXVWtb9HUVGRjh49Wul6F198sTZt2qSsrKzvHz179tSoUaOUlZVVpTCWpIMHD+rTTz9VUlJSpev269fvlOlhW7duVWpqapX6tGDBAiUmJmrIkCFVaufQoUOKji4baTExMSqq4l0H69evr6SkJO3fv18rV67UsGHDqtReEEbIAE6LSZMmacyYMerZs6d69eqlBx98UAUFBbrmmmsq3dbBgwfLjOo+++wzZWVlqUmTJkpJSalUWxkZGVq8eLH++te/Kj4+Xrt375YkNWzYUHFxcZXu2x133KHBgwcrJSVF+fn5Wrx4sd58802tXLmy0m3Fx8efci67fv36atq0aUTnuG+55RYNHTpUqamp2rlzp6ZMmaKYmBiNHDmy0m3dfPPN6tu3r6ZNm6arrrpK7733nubNm6d58+ZVuq1iRUVFWrBggcaMGaNakSybWsrQoUM1depUpaSkqGPHjvrwww81a9YsjRs3LqL2Vq5cKTNT+/bttX37dk2ePFnp6ekR/f1W2Gm7fhvAGe+RRx6xlJQUi42NtV69etm6desiaueNN94wSac8xpReUayCymtHki1YsCCivo0bN85SU1MtNjbWmjdvbhdffLG9+uqrEbVVnqpMexoxYoQlJSVZbGystWrVykaMGGHbt2+PuC8vvfSSderUyerUqWPp6ek2b968iNsyM1u5cqVJsi1btlSpHTOzvLw8mzBhgqWkpFjdunUtLS3N7rrrLjt69GhE7S1ZssTS0tIsNjbWWrZsaRkZGZabm1vlfgbhXtYAAHiAc8gAAHiAQAYAwAMEMgAAHiCQAQDwAIEMAIAHCGQAADxAIAMA4AECGQAADxDIAAB4gEAGAMADBDIAAB74f19HcofiwAYsAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":859},"id":"LfsAkTd3DjyJ","outputId":"8629755d-172d-4cf4-889b-bda31d119342","executionInfo":{"status":"ok","timestamp":1730108005871,"user_tz":-420,"elapsed":3639,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["num_rows = 5\n","num_cols = 3\n","num_images = num_rows*num_cols\n","plt.figure(figsize=(2*2*num_cols, 2*num_rows))\n","for i in range(num_images):\n"," plt.subplot(num_rows, 2*num_cols, 2*i+1)\n"," plot_image(i, predictions[i], test_labels, test_images)\n"," plt.subplot(num_rows, 2*num_cols, 2*i+2)\n"," plot_value_array(i, predictions[i], test_labels)\n","plt.tight_layout()\n","plt.show()"],"execution_count":26,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABJkAAAPdCAYAAAAppLnfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5xU1f3/8c+ybGML7FJ3WVg6qBQpoohfsRCskUSjaPhZYo2iMdEYiA01FjTRxBJrEjXGFntFRVEEBUG69N47C9v7+f1xMs7u3s/ZvcNdYMvr+Xjw0HnPmTtnZmfumTn3zvlEGWOMAAAAAAAAAAE0O9wdAAAAAAAAQMPHJBMAAAAAAAACY5IJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEFhzP40qKipk69atkpycLFFRUQe7T4CIiBhjJDc3VzIyMqRZs4M7H8prHI0V7yM0drzGgeB4H6Gx4zUOBOf3feRrkmnr1q3SqVOnOuscEIlNmzZJZmbmQb0PXuNo7HgfobHjNQ4Ex/sIjR2vcSC42t5HviaZkpOTf9xYSkpK3fQMqEVOTo506tTpx9ffwcRrHIfbggUiI0Yc+O2nTRM5+mhvzvuo7uXm5nqyuXPnqm1POumkg9aPBQsWqHlSUpIn69Gjx0Hrx+HGaxwIjvdR7Ywxau46U+Wrr77yZE8//bTatn///mq+Y8cOT9atWze1bX5+vprv27dPzaOjoz3Zhg0b1LavvPKKmjckjfE1HuSzo+tzI1ATv+8jX5NMoZ1nSkpKgxoM0DgcitNMeY3jcFPmBSK+fU0vXd5HdUd7LhMTE9W2B/N50CaTXHlj/nuE8BoHguN95BbpJJM2LsTExKht4+Li1Dw2NtaTxcfHq23Lysp8b0NEpHlz79dAV/8a0t+pNo3pNR7ks2NtnxuBmtT2PvI1yQQAAICGZeNGkd27I7tNmzYinTsfnP4AAIDGj0kmAACARmbjRpHevUWKiiK7XXy8yIoVTDQBAIADwyQTAKDJKFK+cf/tb39T27766qtqnp2d7cl27dqltk1ISPC9jUi5fjKh5drPIkRETjzxRDW/6qqrPNnpp58eQe9wuO3eHfkEk4i9ze7dTDIB1UX6c7mJEyd6sm+++UZt+/777/vuh+vnVwUFBWru+hmdNj4VFhaqbT/88EM1P/vss9UcQNN2cOs3AgAAAAAAoElgkgkAAAAAAACBMckEAAAAAACAwJhkAgAAAAAAQGAs/A0AaHTGjx+v5s8++6wny8nJUdu2aNFCzbXFUlNTU9W2rkVUExMTPVl5ebnaNi4uznc/RPTFaYuLi9W2H330kZpri9AOGzZMbfv111+rOQA0Js2aRXZsfuHChZ7MNVa0bdtWzfPz8z2Za6xIS0tT85iYGDXXxorVq1erbZcvX67mLPwNQMOZTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDAqC4HAGiwtGpxIiIPPfSQmnfo0MGTaZXeRESioqLUXKvIU1paqraNj4/3nbvuz1XRqKysTM0j6UdSUpKaR0dHe7JvvvlGbfvTn/5UzT/44AOfvQOAxicvL8+TtWnTRm3rqnJaUVHhyVwVR7W2rn7UtB3Npk2bfLcFAM5kAgAAAAAAQGBMMgEAAAAAACAwJpkAAAAAAAAQGJNMAAAAAAAACIxJJgAAAAAAAARGdTkAQIN1xx13qHlKSoqaaxXcysvL1bbbt2/33Y9WrVqpuauqW/Pm3uHXVQGoqKhIzVu3bq3m2uPR7k9EpLi4WM21Cnrt27dX23799ddqvnv3bk/mqqwEAA3Vjh07fLd17Ytd1UU1rsqiMTExaq5VC3Xdp2vs3Llzp8/eAQBnMgEAAAAAAKAOMMkEAAAAAACAwJhkAgAAAAAAQGBMMgEAAAAAACAwFv4GADRY+/fvV/O4uDg11xa0di3wfe2116r5Nddc48kGDRqktk1MTFTzzZs3e7Lk5GS1bVZWlpq7FpvVHrt2fyIiHTt29L2N3NxctW1hYaGar1271pOx8DeAxuaHH37w3TY2NlbNXftRbdFu1+LhFRUVaq6Ne672rrFTK+QAAC6cyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIjOpyAIAGq7i4WM3j4+PV3FVlR/PAAw+oecuWLT2Zq6pPQUGBmp900kme7Msvv/TdNxGRI444Qs2XL1/uyXJyctS2jz76qJrfcccdnqxt27Zq2/LycjWfMWOGJxs6dKjaFgAaqoULF6q5VknONTa5xoqioiJP5qqq2rp1azWPiopSc208dI2prkqpAKDhTCYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDAmGQCAAAAAABAYFSXa6Rc1X6aNfPOK7qqTrholSfi4uLUtqtWrVLznj17RnSfAFBSUuK7rWu/5qqco7nkkkvU/L333vO9jezsbDXXKsndeeedatuUlBQ1f+2119R87969nmzDhg1q2zFjxqi5Vl3ONa40b65/lFiwYIGaA0BjMmfOHDXXPnO7qsi59qNaJblBgwapbV373NTUVDXXPru7+tepUyc1BwANZzIBAAAAAAAgMCaZAAAAAAAAEBiTTAAAAAAAAAiMSSYAAAAAAAAExsLfdcwY4ysT0RcEFBHZsmWLms+cOdOTnXHGGWrbxMREVxcDcy3yrXn77bfVfPz48XXVHQBNxNatW323de1fCwsLfW9j8+bNvtu6vPHGG77bXnzxxWqekJCg5q6FuAcMGODJtm3bprZNSkry2bvIuQo/AEBjsmzZMjWPiYnxZK6xKS8vT83T09M92axZs9S2roIXFRUVvvOysjK1bVpampoDgIYzmQAAAAAAABAYk0wAAAAAAAAIjEkmAAAAAAAABMYkEwAAAAAAAAJjkgkAAAAAAACBUV3uEHBVknCZPn26mn/33XeezFVt6Te/+U1E9xmJnTt3erJPP/1UbZucnHzQ+gGgadm1a1fgbWiVc7QKQCLu/aurUo9mxIgRvtuedtppar5u3To1d1X7mTx5sic76aST1LZaJToRveqc63FHR0er+fbt29UcABqT/fv3q7m2b4y0uty555574B37H1fFuBYtWvjeRklJSeB+AGg6OJMJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEBjV5epYeXm5J2veXH+a58yZo+bLli1T8/bt23uyVatWqW1//vOfq3lqaqonKyoqUttmZWWp+Z49ezxZTk6O2rZjx45qDgCR2rJli++2xhjfbV0VdlzV0bTqQK77W7FihZqPHz/ek61du9bVRdURRxyh5suXL/dkGzduVNs++eSTaj5r1ixPpo0fIiJxcXFqHsnfCwAaqh07dqh5YmJi4G1fdNFFvtu69sV79+5V8zZt2vjedkFBge+2AMCZTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIGx8PcBqqioUHNtke/8/Hy17ZtvvqnmroX7tAW6c3Nz1bauRWi13NV2yZIlap6ZmenJXAvCaguhA8CB2LVrl++20dHRal5WVuYrExFJSkpS81tvvdX3Nj777DM1X7hwoSdz7XNdhRW0Bb5F9EXFx4wZo7ZdsGCBmmtc415UVJSal5aW+t42ADRUhYWFap6cnOzJIv1cfPLJJ/tuO2zYMDWfOXOmmrvGLU3r1q19twUAzmQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIjEkmAAAAAAAABNbgqsu5KqFp1W0irYSj5a4qEK7KRZqnn35azdu3b6/m8fHxar5hwwZPplWcq2nbWiUJ1/ORmJio5lr1u/3796tti4uL1VyruOe6PwAQEdm2bZvvts2a6cdQtDHEVWGnZcuWav7AAw/47odrG9o+eunSpb63KyLSoUMHNd+9e7cnc40rkXCNh1pV1Ui3EcmYCgANlavqpms/6qo4renSpYuaz5gxQ81d36k0rrEMADScyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIrF5Ul9OqG0RSAc7FVV3IRat6E2nFm1dffdWTbd++XW07cOBANXdVOtq3b58nS0tLU9u2bt1azbWqQ3l5eRH1Q+OqUFFQUKDmq1at8mRHH3207/sD0PTs2rUr8DZiY2M92SmnnKK2nT59uppnZmZ6MtdY4aqwqY03SUlJalsX1z5aq1zn6ofrPlu1auXJFixYoLZ1jUOa9evXq3n37t19bwMAGgLtO0tJSYnati72gdrYJOKu6hnJdyoAiARnMgEAAAAAACAwJpkAAAAAAAAQGJNMAAAAAAAACIxJJgAAAAAAAARWLxb+jmThuYqKCt+5ayFW1/1Fssj3v/71LzVfuXKlJ+vUqZPads+ePWruWkS7sLDQk3Xs2FFtm5ubq+baY2/RooXatqioyHf/Il088NNPP/VkLPwNoCZa8QMX1z5Q22dedtllatvJkyeruWufqYlkzIqUa7+rLQjuWvi7eXP9Y8C5557ryVwLf0dCKz4hwsLfABofbf+an5+vtj3qqKMC39+ZZ56p5g899JCa18U4BAAazmQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIjEkmAAAAAAAABHZQqstFWq1Aq5DjqrDWrJk+L+bKI7F161ZP9vbbb6tttUpvIiI9e/b0ZHl5eWpbV7UfV9W5mJgYT+aqLlRQUKDmGtdzFxcX57t9YmKi2tbVv2+++cZn7wDAcu0bNa59dLt27TxZampqRP3Q9sVaRTcR9z6wLsYs17bLy8t9t3WNQ8cee6zvfrgeS3x8vCejmhGApkLbF7u+33Tr1i3w/Q0YMEDNS0pK1Nw1bmlcn/MBQMOZTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDAIqouV15e7qmUEB0d7Wl3MKvmuOzatcuTrV+/Xm27YsUKNd+2bZsni42NVdumpKSo+b59+zxZTk6O2ra0tFTNXdV+tOfa9RhdFSNatWrlyVyPUauKIaJXxkhISIhoG0lJSZ7shx9+qHLZVZUPQNOk7V+1CmYiIkVFRWquVchZtmxZRP1o3tw7dLr25y6RjnEaV5Uibduu+9Oe05raa1wV47T+7d692/d2AaAhyMzMVPP8/HxP5vqOlJGREbgf2thUE6rLAThYOJMJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEFhEZQiio6PVCmfV7dixQ803bNig5lr1BS0TESksLFTzdevWebKCggK1rav6QnJysidzVc3Zv3+/7/657s/VP1eltri4OE9WUlKitk1PT1dzrdKdqx+pqalqrlV927t3r9pWqyInIrJ9+/Zat+F6DQBomlz740j07t3bk61ZsyaibWiV11x9c1Vpc1WGC9oPEb1ikDZ+1NSPdu3a+e5HJNXltEqwANCQufaXa9eu9WSuim4rV64M3A9XtWiXSKrRub4rAICGM5kAAAAAAAAQGJNMAAAAAAAACIxJJgAAAAAAAATGJBMAAAAAAAACi2jhb83nn3/uybZu3arfmWOBOW0h0PLycrWta+FxbdvaQt4i+sLVIvpi1K5FUYuLi9VcWyzbtSiqqx+ux56YmOjJXAtrt2rVSs3rYtFV7TE2a6bPV7oWatcWLK/+N4xkQUIAjV9paakni3Q/oS38PW3atIi24Vq4VeMaQ7RxwbUfjXTbWu6naEdlmZmZvjIRkd27d/vermvcA4CGaujQoWq+bNkyT+YqwrBgwYK67JIvru8yGle/AUDDmUwAAAAAAAAIjEkmAAAAAAAABMYkEwAAAAAAAAJjkgkAAAAAAACBMckEAAAAAACAwCIqy/PFF194Kpz985//9LTr06ePevv09HQ116rAuSqyxcbGqrlWkc1VecdVdU6reOaq9pObm6vm2n26KqxFRUWpuau6nFb9bseOHWrbpUuXqrn2GF3356JVtMvPz1fbxsfH+95Gu3btqlx2PccAmqaEhARPFmnVNG2fvnz5crVtTEyMmke6zwzKdX+uMUTLI63Ct3r1ak/WoUMHta02Nonoz19BQUFE/QCA+u7EE09U8+eff96Tub7HzJ8/v077VJnru0wklVIjrX4KoGljjwEAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAILKJyM4MHD5aUlJQq2axZszztFi9erN5+xowZvu/LVdXHVRkuLS3NVyYi0rJlSzXXKq+5KtTt2bNHzVesWOHJXNV0cnJy1NxVMWjhwoWerH///mrbLl26qPmUKVM8WXFxsdo2kkoSrspFGRkZal79dSTirSaXl5fn+/4BNH7afibSSm+lpaWebO/evWrbFi1aqLmr+mlQrn1/pLSKe5FUERIRee+99zyZa1yZN2+emmtjSHZ2dkT9AID67vjjj1dzrcKyqyJq9QrLdUn7zC3i/o6jOVjjHoDGiTOZAAAAAAAAEBiTTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAoto4e9WrVp5Fo+78847fd/etZDzd99958m0BbRFRL799ls1X79+vSdbtGiR2jY/P1/NtQXwXAuxuhbF1hYb79evn9p25MiRan7mmWequbaAYKTOOeccT7Zx40a1bevWrdVcW0DQtSC7a0HwuLg4T9arV68ql10LowNomrT9blFRUUTbWL58uSdzFT/Q9lMi+uLhrsVcI1lY1dXWlUeyUHiki7ZqY6qr0MSbb76p5lr/tOcOABqyrKwsNdc+L7vGG9dYtnbtWk/WrVu3CHrnLqYUyf440iIbAJo2zmQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIjEkmAAAAAAAABBZRdbmgkpKS1PzUU0/1lYmIXHfddXXap6bm/fffP9xd8I1KFgAq06q9RVo1LTs725O5qvq4qsu5KslpXJVItdxVLS7SXKtG56pQ17JlSzWfOXOmJ6teAbQ2Wv8KCwsj2gYANFRaJbmysjK1bUlJiZrXRXW59PR0NdeqiKampqpt+UwOIBKcyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAI7JBWlwMA4EDFxMR4shYtWqht8/Ly1Pymm27yZJ9//rna1lUJzVUxLhJa5bVIqsXVRKu45+rz/v371fykk07yZGeffbba9u6771ZzrQqfVm0JABoC177Yte/++c9/7sleeeUVta2rUuqMGTM82ciRI11dVLnGSY3rMbqqzgGAhjOZAAAAAAAAEBiTTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAmPhbwBAg5Cfn+/JtMWlRfRFwkVESktLPVnbtm3VtqtWrVLzbt26eTLXoq0HUySL0Lqej+zsbDVv166dJ2vTpk0EvdMXG9+wYUNE2wCA+iLShb9Hjx7tyV588UW1bWxsrJq/9dZbnuyuu+5y9FBXXl6u5pEUoIiLi4voPgE0bZzJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEBiTTAAAAAAAAAiM6nIAgAZh+PDhnmzmzJlq2/j4eDXv1auXJ1u5cmWwjjURa9euVfPk5GQ1Ly4u9mRDhw6t0z4BwKHiqiKqVdIUETnjjDM8WWpqqtpW21/WtO1I9O3bV80XL17syVxj57Zt2wL3A0DTwZlMAAAAAAAACIxJJgAAAAAAAATGJBMAAAAAAAACY5IJAAAAAAAAgTHJBAAAAAAAgMCoLgcAaBC0ymSFhYVq29jYWDWvi0o9TVVpaamau6oilZSUeLLExMQ67RMAHCrR0dGBt5GVlaXms2bNUvOCggJP9u2336ptjz/+eDUvLy9X86KiIk+m7bdFRHbv3q3mAKDh0zYAAAAAAAACY5IJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgLPwNAGgQOnbs6MkGDhyoto2Pj1fzSBaeLisrU3Nt8VdjjO/t1ieufmuPsUePHmrbs846S8337dvnyYYNG+a/cwBQj0RFRQXexlVXXaXmffr0UfMLL7zQk7kW+Ha5+OKL1Xz//v2eLCkpSW37f//3fxHdJ4CmjTOZAAAAAAAAEBiTTAAAAAAAAAiMn8sBAADgoJgwYcIB3W7SpEl13BMAAHAocCYTAAAAAAAAAvN1JlNoYdCcnJyD2hmgstDr7VAsqMtrHIdbXl7w22sv38b0PspTnqTy8nK1rWvRbq1vkW6jqS787XqeSktL1Vx7/vLz89W2QV4zjek1XpeC7FNc+5MDUVxcfEC3awjPcWPC++jQKCwsVPOSkhI11/aZkT5vrv2utu927c8Pxr77UGuMr/H6sp9H0+H3fRRlfLzTNm/eLJ06daqbngER2rRpk2RmZh7U++A1jsaO9xEaO17jQHC8j9DY8RoHgqvtfeRrkqmiokK2bt0qycnJdVK+E/DDGCO5ubmSkZEhzZod3F92BnmN5+TkSKdOnWTTpk2SkpJyQPfPNtjGwdpGQ3kfAQeqobzGD/e+gG2wjZo0lPcRcKAaymv8cO8L2AbbqInf95Gvn8s1a9bsoM/4ApqWLVsekvupi9d4SkrKAb/Z2QbbOJjbaEjvI+BANKTXeEPfn7CNxruNhvQ+Ag5EQ3qNN/T9CdtovNvw8z5i4W8AAAAAAAAExiQTAAAAAAAAAmOSCQgoLi5OJk6cKHFxcWyDbdTbbQA4vOrLvoBtsA0A9Vd92RewDbYRhK+FvwEAAAAAAICaeM5kuusukaOPdt/ghRdEWrUKdqeXXSbys58F20ZT98UXIkccIVJeXrfb/eorkagokX379OvXr7fXL1hw4PdRF6+hA1VSItKli8j33x+e+wdQsy5dRP72t/DlqCiRd989TJ1pgE48UeSVV+pue9X3+bWNEYfSJ5/YzysVFYe7JwDQsK1YIdKhg0hu7uHuSd278EKRhx8+3L0AmpZG/XO5k04S+e1va2/39tsio0aJtG7tnkApKhIZN862SUoSOe88kR07qrbZuFHkrLNEWrQQaddO5JZbRMrKwtfPny8ycKC9/U9/KrJ3b/i6sjKRwYNFZs/299j+8AeR228XiY6umhcWiqSlibRpI1Jc7G9bjZU2YRobK/L734uMH384egQ0bpddZvehUVH2vdajh8g991TdDzYmubl2jMnKEklIEDn+eJE5c6q2ycsTuf56kcxM2+bII0Wefrpqm5tusvvtTp1EXn656nVvvGHHCz/ef9+OSxdeGM66dAn/TRITRQYNsttsDE4/XSQmxvucAajfQvsk17+77jrcPQzm66/tfjsjw32gxBiRO+8USU+3Y8PIkSKrVlVts3evyNixIikp9uDsFVfYMSVk/Xp7YCEx0f53/fqqtz/7bJG33vLX5z/+UeSGG0SSk6uO5dq/Ll38PhP1w+23i9x3n8j+/Ye7J0DT0agnmfzKzxc54QSRBx90t/nd70Q++MB+OJ82TWTrVpFzzw1fX15uJ5hKSkS+/VbkxRftGTt33hluc+WVIqecIjJvnt3R3X9/+LqHHxYZPlxk6NDa+ztjhsiaNXaiq7q33hI56iiRPn04+u8ydqx9DpcsOdw9ARqf008X2bbNfli++Wb7ZeHPfz7cvQqmpETPr7xSZMoUkZdeElm82B6sGDlSZMuWcJubbrJn3PznPyLLltlJqeuvtxNCInZceeUVkc8+E3noIbvN3bvtdfv3i9x2m8jf/+6vn489JvKrX4k0qzay33OP/ZvMny9yzDEiY8bYcaohKy21/73sMvu4ATQc27aF//3tb3YSpXL2+9+H2xpTfw9UuMaG/HyRAQNq3nc/9JDddz39tMh339mJotNOswe1Q8aOtZ9Vp0wR+fBDO3l19dXh62++WaRjR3twPD296vP2+ut2LNC+K1S3caPd/mWX2cuPPlr17yEi8vzz4cvVD6a4nofDLdSvvn1Fune34zCAQ2TYMGOWLzc/mjjRmAEDwpdXrzama1djxo0zpqLCmOefN6ZlS1PFu+8aM3CgMXFxtu1ddxlTWmqcLr3UmNGjbbs2bYxJTjbmmmuMKS4OtykqMuaGG4xp29Zud/hwY2bPrrqdr74y5phjjImNNaZDB2PGjw/f76WXGmOHpvC/devcfTLGXi9izPz5VfN9+4yJiTHmjTfC2bJltu3Mmfbyxx8b06yZMdu3h9s89ZQxKSnhx5WQYG9njDFPPmnMmWfa/1+zxpiePY3Jyam5fyHjxhnzi1/o1510kjFPP23v+yc/8V4vYsxzzxnzs5/Z/vToYcx774Wv//JL2yY7217Ozzfm9NONOf54m2nP0eLFtk1iojHt2hnz//6fMbt2ufsfeg298469/7g4Y0aNMmbjxqrtnnzSmG7d7HPfq5cx//531es3bDDmnHPs/SYnG3P++eHn//nnvX//558P3/bkk425/XZ3HwFELrRvr+wnPzHmuOPs/48YYcyNN1a9fvRoe7uQrCxj/vrX8GURu68IWbTIvn/j441JSzPmqquMyc211336qd2fhPZfIb/5jb1NyPTpxpxwgt1GZqYda/LyqvbhnnuMufhiu2+p3L+QggJjoqON+fDDqvmgQcbcdlv48lFH2W252jz4oDFjxoSva9cuPNZdfbUxjzzivW/Nzp3GREUZ88MPVfPqz2dpqTEtWhgzYYK9XP35Ncbun0P7y+r7/OpjhDHGvPmmMUceacfirCxj/vKX8HV//KMxQ4d6+9u/vzF33x2+/NxzxvTpY/9+vXsb8/e/h68L9eG114w58UTbJtS/DRvsdatX688LgPqt+veK0D7m44/tvjImxma1fS/Qvp+8847dVsiCBfZzclKS3bcPGmTMnDnh6+tibKhO28dWVNjvLX/+czjbt88+rldftZeXLrW3rdy/yZPtfn7LFnv5iCNsZox9vo480v5/drb9fF39c7XLn/9szJAh/h+D63moaSzQtmNM1fGmuNh+x+nQwT4XnTsbc//94bbZ2cZccUX4u+PJJ9u/aUjoO+xzzxnTpYt9rkLuvtv+bQEcGs2aNxe5/HJ9AmrRInuGzy9/KfLEE/YUyeqmTxe55BKRG28UWbpU5Jln7Bk8991X8+TWF1/Yo7pffSXy6qv2J2t33x2+/g9/sGflvPiiPfOnRw87wx/6idmWLSJnnmmPyi5cKPLUUyL//KfIvffa6x99VGTYMJGrrgrPvHfqFOkUnDV3rj1qOnJkOOvTR6RzZ5GZM+3lmTNF+vUTad8+3Oa000RycsJnzAwYYI9GlJXZx9+/v81//Wt7RCM52V9/pk8XGTLEm69ZY/txwQX23/TpIhs2eNvdfbe9ftEi+xyOHVv1p3sh+/aJ/OQndr2LKVP0dZT27bNnZw0caNc5+uQT+3ONCy6o+TEUFNjXyL//LfLNN3Y7lX/i8c479jV1880iP/wgcs019gj9l1/a6ysqREaPtv2eNs32b+1ae4RexP735pvtWV2hv3/oOhF7xtj06TX3EUBwCQl1d5QzP9/uV1NT7ZHUN94Q+fxze2aQiMipp9r9VOWfB5SX2yO6Y8fay2vW2LOtzjvP7gNff92e2RjaRshf/mL32fPni9xxh7cvZWV22/Hx3sc7Y0b48vHH27OWtmyx091ffimycqU960nE3sf334tkZ9uxprDQjnczZtix7ze/8ffczJhhf6p9xBE1t2ve3P7ErK7+JnPn2v39hRfas7nuuss+Xy+8YK8fO9b+DHzNmvBtliyxz/0vf2kvv/yyPev3vvvs54L777fbePHFqvc1YYIdF5Yts68DETsOt2/P/hxobCZMEJk0yb7f+/ev/XuBH2PH2p8uz5lj910TJtj9oUjdjQ1+rFsnsn171e8VLVuKHHts1e8VrVpV/bw/cqQ9O+m77+zlAQPsGFhRYc+GDX2vuOUWu8SH3+89ru8VNan+PNQ2Fvjx2GN2vPzvf+0aUS+/XPWneeefL7Jzp8jkyfb+Bg2y437l18Dq1fZ18vbbVZc/GTrUjkVNfSkR4JD56CM7s1xYaGedQrPA33xjTGqqdxa6+pGCU0+tOstsjDEvvWRMerp7ZuvSS+0R6Pz8cPbUU/bIQnm5PWoQE2PMyy+Hry8pMSYjw5iHHrKXb73VHu2sqAi3+fvfw9swRj9qXhPXmUwvv2xn5as75hhj/vAH+/9XXWXPxqksPz98NMYYe4T5xBPtzPxFFxmzf789O2f0aGM2b7a379696lFwTcuW3rN6jLHPyc9+Fr48erT9e1YmUvUMnrw8m4WOhISOIC1bZo80n3de1TPMqj9Hf/qT93Fv2mTbrFih9z90ltGsWeEsdGbYd9/Zy8cfb5/Tys4/P3z212ef2bMIKh+lWbLEbiN0ZKv6WXmVPfqoPcpRF5544gmTlZVl4uLizNChQ813oQfhw7Rp08zZZ59t0tPTjYiYd6of4vHh/vvvN0OGDDFJSUmmbdu2ZvTo0WZ55dMTfXjyySdNv379THJysklOTjbHHXec+Tj0wj0ADzzwgBERc2Mkb0BjzMSJE42IVPnXu3fviO9/8+bNZuzYsSYtLc3Ex8ebvn37mjmVDwfWIisry9MPETHXXXedr9uXlZWZ22+/3XTp0sXEx8ebbt26mXvuucdUVN5h+ZCTk2NuvPFG07lzZxMfH2+GDRtmZlc/pbMeqXwmU0WFMVOm2KORv/+9zYKeyfTss3Zcqnxk+aOPqp5FeuONxpxySvj66mc3XXGFPUOosunT7TZC42BWVtV9qcuwYfYxbdliTFmZHfuaNbNnXoYUFRlzySX2cTRvbseSF1+sup2JE+2+v29fY95+2+5z+/Y15vvvjXn8cbu944/3nqVU2V//as/8rK7y81lcbMdrkfAZWEHPZPrlL71nzd5yS/iIujF2P1z5bK4//tGYY48NX+7e3ZhXXqm6jT/9yT6/lfvwt795H58x9kzqu+7Sr6tPGCu8GCua5lhRmetMpnffDWd+vhf4OZMpOdmYF17Q+1GXY0Nl2j72m29svnVr1fz884254AL7//fdV3UsCWnb1p7pb4z97nDWWcZ06mT/u3mzMdOm2bOS9uyx2+va1ftrkeqq76Nrewza8+BnLKhtvLnhBjt+ay//6dPtr0OKiqrm3bsb88wz9v8nTrSvk507vbdfuNDe//r12iOsXxgrvBgrGt5Y0Sw93U427dwZnnjauNGewXLnnfZskJosXGjXe0hKCv8LnT1UUOC+3YAB9qhryLBhdjG7TZvs0YTSUrtGUUhMjJ2FXrbMXl62zN6m8tlVw4fbbWzeXHOfD5ejjrJn3WzYYNfgKC0VmTjRniV2ww32iPfChXb2/YMP3NspLPQePS8vt0d3/t//C2f/7//ZIwjVK++EjnSI2N+Ap6RU/fuL2L9/jx72SE5srLsvCxfaI/OV//59+tjrKh+5rq55c3sWWkifPvaITeW/b+W/v4i9XPn6Tp2qHqU58siq26hJQkLNr0+/Xn/9dbnppptk4sSJMm/ePBkwYICcdtppsrP6E+qQn58vAwYMkL/7XXRFMW3aNBk3bpzMmjVLpkyZIqWlpTJq1CjJz8/3vY3MzEyZNGmSzJ07V77//ns55ZRTZPTo0bLkABaumjNnjjzzzDPSv/ILLQJHHXWUbNu27cd/MyqfFuJDdna2DB8+XGJiYmTy5MmydOlSefjhhyU1NdX3NubMmVOlD1OmTBERkfPPP9/X7R988EF56qmn5IknnpBly5bJgw8+KA899JA8/vjjET2WK6+8UqZMmSIvvfSSLF68WEaNGiUjR46ULZUX/alnPvzQ7gfi40XOOMOeQVhXi7guW2bHjsTEcDZ8uN3HrVhhL48da8+Q3brVXn75ZbteXuhMzIUL7X6x8j7rtNPsNtatC2/Xz1Hdl16yZyd17CgSF2ePwl50UdU1kR5/XGTWLHt0du5cu/7euHH26HPIXXfZo6+LF4v8/OciDzxgj1jHxNizc2fMsGs1XXKJuy/auBAyfrx9nC1a2LUHJ02yz0ldcO2rV60KVz8dOzZc8c4Ye/Zy6Myy/Hw7VlxxRdW/yb33escQ19+krvbnBxNjhRdjRdMeK2pT+f3u53uBHzfdZPelI0fa/WDlfUxdjg2HSseOdswNranUpo3IddfZdZ7uvdf+QmLFCrs/fuYZ93ZqGj9cqj8PfsaC2lx2mT37qHdvexbvZ5+Fr1u40H7HCxVgCv1bt67q3zErS6RtW++2ExLsfxkrasdYURVjxYFpHpqkqTwR0batrYjw6qv2p3QpKe4N5OXZn19VXgQ7JNIdVn3VoYP9acG+fVV/MrZjh70u1KZ6ZbhQ9blQm+puuskuApuZab8U3Xuv/fJ01ln2squiUJs29qcVlX36qf05RuWfhInYHfsXX9hJo5DQqcEhUVHeiaizzrKnmy5dan8G6JKXZ/upLZoemsCsj/bu1QehSD3yyCNy1VVXya9+9SsREXn66aflo48+kn/9618yYcKEWm9/xhlnyBlnnBGoD5988kmVyy+88IK0a9dO5s6dKyeeeKKvbfy02ovtvvvuk6eeekpmzZolRx11lO++5OXlydixY+W5556Te0O/XY1Q8+bNpYPrTePDgw8+KJ06dZLnn3/+x6xr164RbaNttRfHpEmTpHv37jJixAhft//2229l9OjRctb/vsl36dJFXn31VZntt3ykiBQWFspbb70l77333o9/x7vuuks++OADeeqppw74+T3YTj7Z/nw5NtaOI82bh69r1sxOMlQWWsC5rhxzjF3g87XXRK691v70tvLp+nl59ue32s/QOncO/3/liSyX7t3tgYP8fPvT6PR0uw/u1s1eX1gocuuttg+hSZ3+/e2H6L/8pepPJUKWL7eLk86fL/Kvf9mKQW3b2p8hXH65rWin/bRaGxdCbrnFfnhPSrI/Lat8cCYq6uD/TS66yE50zZtnn5NNm8JjVahS0nPP2Z+KVFa9eqrrb1JX+/ODibGiKsYKqymPFbXxsw+uzM/4ctdd9me6H31kf3I1caIdK37+87odG2oTetnu2FH1s/KOHeGqyB06eA8Al5XZ/Z3rZX///fan2IMH2wP+995rP/Ofe67I1Kn2gLampvHD5UCeh9rGm0GD7KTR5Mn2QMwFF9hx8s037d8nPd1+P6qu8nezmsYJEcYKPxgrqmKsODBqdbmEBDsjHh9vZ/Fzc90bGDTIzpL36OH9V73CTWULF9oPmyGzZtkPwJ062Q/usbF2rZ6Q0lL7G+ojj7SXjzjC/l658s7qm2/sh+/MTHs5Ntb/7HlNBg+2O+kvvghnK1bYIwfDhtnLw4bZo9CVB4QpU+wEXajPlYXWpAr91ru8PLyjLS2tud8DB9rJn8r++U/7O+gFC6r+u/BCe12kJk0SufRS+1vn6vdV2aBBdn2NLl28f/+aBqCyMrsOSciKFXYSL7SeyBFHVP37i9jLlf/+mzbZfyFLl9pthNrU9Pf/4Qf7PAZRUlIic+fOlZGVvik2a9ZMRo4cKTNDP6o/DPb/r0ZrWlraAd2+vLxcXnvtNcnPz5dhoRe4T+PGjZOzzjqrynMSqVWrVklGRoZ069ZNxo4dKxs3bozo9u+//74MGTJEzj//fGnXrp0MHDhQnnvuuQPuT0lJifznP/+Ryy+/XKK0hekUxx9/vHzxxReycuVKERFZuHChzJgxI6KBv6ysTMrLyyW+2mx9QkJCxEdhDqXERPv+79y56gSTiP1wF6pUI2Lfnz/84H/bRxxhx47KB9O++caONb17h7OxY+0ZTB98YK+rfNbOoEF2X6GNWTWdtVmTxET74Tc72074jx5t89JS+6/6WBgd7Z3YF7Hj2TXXiDzyiB0Pq48LIu592sCBdo0P7YtCmzb28XXo4F1bsfrfZNWqyI70uvbVvXqFJ4kyM0VGjLB/k5dftgc92rWz17Vvbycj1671/j38fIYrKrJHsYPuzw8mxgovxgqrKY8VkfDzvaBtW/t9pfL4UHlNnpBevWzF6M8+s5Mvoe+NB2NscOna1e6PK3+vyMmxay1V/l6xb589AzZk6lQ7dlSfkBex3yleeUXkT3+yl4N+r4iUn7HAz3iTkmIPQjz3nP01xVtv2QmiQYPsGNe8uffv06ZN7f374Qc7Fvlpe7gwVngxVlgNcqyYP79q5bXK69jk5tqV+IcPD1fvqf6b508+setM3HWXXS9i6VJbGaGmdYUuvdSunXTRRXYdnY8+MqZ9+3C1G2PsuhoZGXatoCVL7G1SU43Zu9dev3mzrZAzbpxdz+fdd221gcprEF11lV03ad06W+0stFZTdXv22PUmQutTvfaavbxtW7jNr39t11KaOtWukzFsWHi9CGPsehx9+9r1iRYssM9L27Z27YnqCgttFZ3Kaz+dcYbt74IFtqLFf//rfv4ee8yYwYPDl3futL9BDq2rVNnHH9v1SPbssZdr+z109fU2fvtb+7cJVcWrvj7Hli32cf7iF3YtpNWr7WO/7DL7nGief972d+hQuy7T99/b6lOhClTG2D7GxNjfna9caczDD9s1mL780l5fUWHM0Ucb83//Z8zcuXYtp8GD7fooIS+/bCvPzZ9v//6Vf8edlaWvaxWJLVu2GBEx3377bZX8lltuMUO1ckq1kAP87XRl5eXl5qyzzjLDhw+P+LaLFi0yiYmJJjo62rRs2dJ89NFHEd3+1VdfNX379jWF/1u8YMSIERH/dvrjjz82//3vf83ChQvNJ598YoYNG2Y6d+5scvyWXjTGxMXFmbi4OPPHP/7RzJs3zzzzzDMmPj7evOBaiKEWr7/+uomOjjZbQuVcfCgvLzfjx483UVFRpnnz5iYqKsrcX33xOh+GDRtmRowYYbZs2WLKysrMSy+9ZJo1a2Z6aQs11ANadbnKnn7a7rc//NDuU666yq6x4HdNpvx8u97feefZqpZTp9p1iKpX+Fm1yt6uf3+7zkZlCxfayprjxtl9w8qVdvwYN87dB5dPPrH73bVr7TpxAwbYtYZKSsJtRoywFea+/NK2e/55W7kotKZGZc8+ax9byHff2edn5kxj7ryz6toW1ZWV2X3xBx9UzWt7LBdeaCsUzZtnqxidcord9/pdk2nuXLtmyT332HX4XnjBPr+Vq3kaY6v9ZGTYcfqll7zXJSTYtfJWrLAVBP/1L7vf1/pQ2Zdf2s8Tldd4rG8YK6pirAhrqmNFZa41mapXCa3te8GePfYz329+Yz+LvvyybR9ak6mgwO7nv/zSrsszY4Zdzye0tmpdjg25uXYboe9Yjzxi/3/DhnCbSZOMadXKVnhetMiOnV27htd/MsZWbh440I4FM2bYStQXXeS9v4oK+32t8v7/2mvtOk1Ll9pthNau0rz/vq1s6vrcrq3JVP158DMW1DbePPywXZ9v2TK7jSuusJXmysvDj3HAALvW4rp1dm2rW28NV+CraS3WSy815vLL3c9BfcBYURVjRVhDHCtqnGQyxu4ojz/eLlidl6cvrPfJJ7ZNQoL9QDx0qP2w7BL6InLnnca0bm0/IF51VdVJgMJCuwBcmzZ6qVJjjPnqKzuJFBtrd0Ljx9vyzCErVtiJi4SEqo+xOq3cvUjVCavCQmOuu84OaC1aGPPzn1edhDLGDlpnnGHvr00bY26+uWp/QiZMsNdVtmqVfSwpKXZgcE2IGWMH0vh4Y0JrsP3lL3agqvzFJqS42F736KP2cqSTTMbYv0N6un0+tQ/7K1fa56NVK/vY+/Sxk1OutchCr6G33rJfEOPijBk5surga4z9Etatmx2AevXyTgpt2GDMOefYDxXJyXaBw9Div8bY19N559l+iYQf47ff2qygQO+fX/VxMPj1r39tsrKyzKZNmyK+bXFxsVm1apX5/vvvzYQJE0ybNm3MkiVLfN1248aNpl27dmbhwoU/ZgcyGFSXnZ1tUlJSzD/+8Q/ft4mJiTHDKs8AG2NuuOEGc1zlWcwIjBo1ypx99tkR3ebVV181mZmZ5tVXXzWLFi0y//73v01aWlrEA9Lq1avNiSeeaETEREdHm2OOOcaMHTvW9OnTJ6LtHCq1TTKVlNj9W1qa/UD7wAORLfxtjP0wfvLJdh+YlmbHjtBBkMqGDrW3nTrVe93s2XaB0qQku//o398usurqg8vrr9t9VGgMGjfOlqGubNs2O+mekWH73Lu3/SBdff+4fbu93+qfOe6+2z7OPn3ChRFc/vAH+yG+stoey5Yt9uBIYqL9AvPxx5Et/G1MuGx1TIw9GFO5LHdIdrbd17doof+9Xn7ZHjiIjbXj7Ikn2kXQtT5UdvXVdlHb+oyxIoyxoqqmOlZU5neSyc/3gnfeMaZHD/tZ9Oyz7XeR0CRTcbHdP3bqZPczGRnGXH991UmduhobQo+h+r/KY11FhTF33GEP5MbF2UJK1Qvm7NljJ5WSkuz3g1/9St9/Pv101QMUxhizY4fdZujzcU0T8aWl9vn45BP9ej+TTMbUPhbUNt48+6wdBxIT7eM99VQ7IRWSk2NfAxkZ9j46dTJm7NhwESDXJFNhob2fmTPdz0F9wFgRxlhRVUMcK6T2JqiPfv97bxUM+HPBBVU/NByo4uJiEx0d7dmBX3LJJeacc86JeHtBB4Nx48aZzMxMs3bt2gPeRmWnnnqqudrni+ydd975cYcV+iciJioqykRHR5sy1+ExH4YMGWImVD7NsRadO3c2V1Q7feXJJ580GRkZEd/3+vXrTbNmzcy7lcvc+JCZmWmeeOKJKtmf/vSnA6poYYwxeXl5Zuv/ytBccMEF5sxQmUWgkm3b7IRUQ6ieUxd27bKPt452eQcNY0UYY0VVjBWoL554wlsturF48klv5bv6iLEijLGiqoY4VtSwahLqs9tusxUUtHU94FZSYhcy/93vgm8rNjZWBg8eLF9U+lF9RUWFfPHFFxH/5jgIY4xcf/318s4778jUqVMjXozOpaKiQoqLi321PfXUU2Xx4sWyYMGCH/8NGTJExo4dKwsWLJDo6iv4+pSXlydr1qyR9AhWkR8+fLisCJUa+5+VK1dKVlZWxPf//PPPS7t27X5caM+vgoICaVZtIZ7o6GipOMA3bGJioqSnp0t2drZ8+umnMjq06A9QSYcOdg2+CJcbaLDWrxd58kl/azcdTowVYYwVVTFWoL645hpbaKKmdXgbqpgYW+m1vmOsCGOsqKpBjhV1Pm0FNCGvvfaaiYuLMy+88IJZunSpufrqq02rVq3M9sq/26tBbm6umT9/vpk/f74REfPII4+Y+fPnmw3VfztYg2uvvda0bNnSfPXVV2bbtm0//iuI4PeAEyZMMNOmTTPr1q0zixYtMhMmTDBRUVHms88+872N6g7ktNabb77ZfPXVV2bdunXmm2++MSNHjjRt2rQxO3fu9L2N2bNnm+bNm5v77rvPrFq1yrz88sumRYsW5j//+U9EfSkvLzedO3c248ePj+h2xhhz6aWXmo4dO5oPP/zQrFu3zrz99tumTZs25g+hxR98+uSTT8zkyZPN2rVrzWeffWYGDBhgjj32WFOi/TYWQL3FWOHGWMFYAcBirHBjrGhYYwWTTEBAjz/+uOncubOJjY01Q4cONbNmzfJ92y+//NKIiOffpdVXMq6BdnsRMc9XX3m3BpdffrnJysoysbGxpm3btubUU08NNBAYc2CDwZgxY0x6erqJjY01HTt2NGPGjDGrV6+O+L4/+OAD07dvXxMXF2f69Oljnq1pkTiHTz/91IiIWVF9kQQfcnJyzI033mg6d+5s4uPjTbdu3cxtt91miouLI9rO66+/brp162ZiY2NNhw4dzLhx48y+6ov+AGgQGCt0jBWMFQDCGCt0jBUNa6yIMsaYuj8/CgAAAAAAAE0JazIBAAAAAAAgMCaZAAAAAAAAEBiTTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIjEkmAAAAAAAABMYkEwAAAAAAAAJjkgkAAAAAAACBMckEAAAAAACAwJr7aVRRUSFbt26V5ORkiYqKOth9AkRExBgjubm5kpGRIc2aHdz5UF7jaKx4H6Gx4zUOBMf7CI0dr3EgOL/vI1+TTFu3bpVOnTrVWeeASGzatEkyMzMP6n3wGkdjx/sIjR2vcSA43kdo7HiNA8HV9j7yNcmUnJz848ZSUlLqpmeH0e7du9X8X//6lydr2bKl2jYhIcH3/bmeM9fMdnl5uZqXlpZ6sjZt2qht/+///k/NY2Nj1bw+ysnJkU6dOv34+juYDtVrfMECkREjDuy206aJHH10XfYGTUFDfB9VVFSouXbExBgT0bYP1hHF2bNnq3lBQYGaa/tz177fpbi4WM21cWH48OERbbshaYivcaC+4X1U984880xPFh0drbZ1fT7X9vOdO3f23VZEZOfOnWqelJTkyVzjkCt/66231Lw+aoyvcb5X4FDz+z7yNckU+lCekpLSKAYD1044Pj7ek7kmkyKZZGrRooWaRzrJVFJS4skSExPVtq6/U0OaZAo5FKeZHqrXuDKeR3TbRvD2w2HSkN5HDXGSybUvdt2ftj+PdJLJ9WVF60tjGLtr05Be40B9xfuo7jRv7v2a5dpvx8TEqLk2Lrg+y7vGTq0frvt0/fzFlTfEv19jeo3zvQKHS23vIxb+BgAAAAAAQGBMMgEAAAAAACAwXz+Xa2zeeOMNNb/33ns9WWpqqto2PT1dzdetW+fJOnbsqLbt1auXmi9btkzNtZ/zjRw5Um27Y8cONb/44ovVHADqC9cpuJH8NC6S0+Fzc3PVfOrUqWo+b948TzZ58mS1be/evdVc619eXp7ads+ePWreunVrNS8qKvJk9913n9r2pz/9qZqfc845nsy1DggANGU5OTlqvmTJEk/Wtm3biLZdWFjoydasWaO21b4niLh/6qYt56H9lFsk8n4DaNo4kwkAAAAAAACBMckEAAAAAACAwJhkAgAAAAAAQGBMMgEAAAAAACCwJrnw965du9S8S5cunsy1WJ5Lhw4dPFl5ebna1rWY6/79+9U8JSXFk23ZskVt26dPH1cXAaBei2Th70gW+BYRefbZZz3ZihUr1LYVFRVqru1fx4wZo7ZdsGCBmsfFxXmysrIyta1r8fDk5GQ1T0xM9GSucW/Dhg1q/rvf/c7XdkVEJk2apOYZGRlqDgCNiVZsQUQfn1zfCWJjY33nrqJErm27FibXvuNo34VERBISEtQcADScyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIrElWl3NVdWvbtq0nW7Nmjdo2LS1NzXNzcz2ZqwLQvn371FyroCSiV4dwVb/r16+fmgNAfefaB0ZSSe7JJ59U871793qyrl27qm1jYmLUXKvg065dO7XtiBEj1Pztt9/2ZFp1UhF31aFI9v+TJ09W2/bs2VPNW7Zs6clclehuv/12Nf/Xv/6l5gDQmLz11ltqrn3fyMzMVNu6KsNpVU616qSutiIihYWFaq5VNHVVuN66dauaz50715MNHjxYbQug6eBMJgAAAAAAAATGJBMAAAAAAAACY5IJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTbK6XFZWlpovXLjQk0VHR6ttXXliYqInc1UGclWScFUYys7O9mSuShJ9+vRRcwCo7yKpLrdp0ya1rSvv1q2bJ8vLy4ugd/p+fseOHWrb7t27+85XrVqltnVVMz322GPV/Ouvv/ZkGRkZatuioiI1Lygo8GQJCQlq2+3bt6v5Sy+95MkuvvhitW1dVBQEgMPhH//4h5qnp6d7MlclUtcY0ry596uaa3xr0aKFmru+s8THx/u6PxGRnTt3qvns2bM9GdXlAHAmEwAAAAAAAAJjkgkAAAAAAACBMckEAAAAAACAwJhkAgAAAAAAQGBNcuFv10Ki/fr182TaAq8i7kVK16xZ48m0BbtF3It29+rVS801rkVlXQv3AUB916yZ/+Mfq1evVnPXQqdlZWWeLCkpSW1bXFys5lrRBtc29u3bp+ZnnHGGJ5sxY4ba1rXgtvZYXLmroER+fr6a5+bmerKSkhK1bVxcnJrPnz/fk7kW/maBbwAN1YoVK9R8yJAhnqywsFBtW1paqubadwXXeOPaR7vGipYtW/rKRNzj8tatW9UcQNPGTAQAAAAatY0bRXbvjvx2bdqIdO5c9/0BAKCxYpIJAAAAjdbGjSK9e4sUFUV+2/h4kRUrmGgCAMAv1mQCAABAo7V794FNMInY2x3IGVAAADRVTDIBAAAAAAAgMCaZAAAAAAAAEFiTXJPJVSGhU6dOnuzII49U27oq4bzxxhuebO/evWrbJUuWqPmJJ56o5oMHD/ZkHTt2VNu6Kky0aNFCzQGgIXLtR+Pj49Vcqxjnqhbq2l9q1X5c1exycnLUPD093ZONGjVKbevativv0aOHJ3M9xu3bt6u5Vo2oKMLfG82ePTui9gBQn23btk3NtYqjIiLt2rXzZDt37lTbur6bxMbGerJNmzapbV3jnqsanVbRzlWJzrVtV3VRAE0bZzIBAAAAAAAgMCaZAAAAAAAAEBiTTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAmuS1eWOOOIINf/iiy98t3VVUzjqqKM82dChQ9W2V199tZp37txZzTMzMz1Zamqq2jYhIUHNAaAx2bx5s5qnpKSouVZdzqV9+/ZqXlBQ4MlcFXliYmLUXKuK169fP7Vtdna2mmdkZKj51q1bPdm+ffvUtjt27FDzDh06eDJXJb+uXbuqeevWrT2Zq/KpVkEJAOoTVzXOSCo3uyp9uj63796925MNGTJEbfvDDz+oeV5enpprVedclfJc1UxdVecANG2cyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABBYk1z4W1u0VUQkMTHRk7kW+XMtuK1xLQjrWoC2oqJCzbXF9Zo31/+ERUVFau5asBwA6jvXItUa10Kn2gLY/fv3V9u6Fu12LYyqcS2Wqu2LXYtzuxbLdi0gW1pa6sm2bdvmux+u+3T1z0UbyxYtWqS2dS1kCwD1xcqVK9XcNVZo3ytcoqKi1Fzbd69Zs0ZtO3DgQDVfsWKFmmdlZXkyVxEG1/cNvlcA0HAmEwAAAAAAAAJjkgkAAAAAAACBMckEAAAAAACAwJhkAgAAAAAAQGBMMgEAAAAAACCwJlldzlXtQas616yZPg+3detWNdcqyR199NFqW1clicLCQjXXqv24qhy5Kl0AQEO1du1aT5aUlKS2dVXYzM/P92SuffHevXvVXKve5ro/F63ymqsSnat/O3fu9N3e1T/tsYjo46HruXZVStWqEa1bt05tS3U5APXd8uXL1bxFixZqro03rv28q3pn27Zt/XVORI477jg1X7BggZprY4Vrf+4ah1zV6AA0bZzJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEBiTTAAAAAAAAAisSVaXS0hIUHOtkpyrmo6L1n7gwIERbUOr6iOi9zsuLk5tS3U5AI3Npk2bPFl8fLzaVqve5rJhwwY179Kli5pr1XRclT61iqMiIsnJyZ7Mtd929c/1GLWqbq7nydXv7du3ezJXZVZXv7V8xYoValsAqO9Wr16t5i1btlRzrSq0a3/pqlp92WWX+euciFx++eVq/vTTT6t5JOOkqyqeKwfQtHEmEwAAAAAAAAJjkgkAAAAAAACBMckEAAAAAACAwJhkAgAAAAAAQGBNcuFv1yJ12mJ8UVFRaltXHslC4a4FyEtLS9VcW3SVhfgANBXawqhawQYRkZSUFDUvLi72ZLm5uWpb17a1xbxd+1zXwt/atrW+ibgXZ9UWDxcRyc7O9mSuhb8LCwvVXHv+du3apbZ1LXqr9XvhwoVqWwCo73JyctTc9Xle+67g+ozvyn/729/665yIHHPMMb77IaLvo11jmavQEN83AGg4kwkAAAAAAACBMckEAAAAAACAwJhkAgAAAAAAQGBMMgEAAAAAACAwJpkAAAAAAAAQWJOsLtemTRs116ovuKr6lJSUqLmrgo/GVRnIGON72x07dlTbuqoiAUBDlZeX58liY2PVtqmpqWq+YcMGTzZ69Gjf9yeijxVadVIRd8U4LXdVF2reXB+qXe2Lioo8mau6kGvM6tOnjyd777331Lau8UZ7TlzV7ACgvnPti12VpbX9rmsf2KFDBzXv1q2bz965ub73aN9x0tLS1LZ79uxRc/bpADTMRAAAAAAAACAwJpkAAAAAAAAQGJNMAAAAAAAACIxJJgAAAAAAAATGJBMAAAAAAAACa5LV5dLT09VcqxjnqvRWUFCg5q5qP5qysjI1T0xMVPOUlBRP5qp+BwCNjVY1LSEhQW3rqgKkOfLII9V8+vTpau6qJKRxVV7bt2+fJ3NVxIukepuI/thdY5lLr169PJmripBr23FxcZ5s//79EfUDAOqL1q1bq7nr87zGVbX09NNPP6A++eGqXBcdHe3JXJXo9u7dq+Z8DwGg4UwmAAAAAAAABMYkEwAAAAAAAAJjkgkAAAAAAACBMckEAAAAAACAwJrkwt8tWrTwnbsWeHUtdOdaGE/jWuC7uLhYzbVFVF2LEAJAQ+VaRFUrrFBeXq62dS1GrS2WnZGREdE2NK5iEK4FyPPz8z2Za38eFRUVUR4bG6vmGtfz16NHD0/meoyubWh/L9eit648kkXWAeBgcu2PsrOz1Vwby1avXq22ffjhh333w/UdxFUkomvXrmq+efNmT9a2bVu1rWs/r20DADiTCQAAAAAAAIExyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABBYk6wuFx0dreZatTdXBQdX9SNXVQZNz5491bywsFDNtUo9RUVFvu8PABqC3bt3q7lW7c1VYc1VCUerLufan7tyrWJcSUmJ2tZVjUirZqrt40XcY0K7du3UXBvjXJXyXOOhVnHPVbnIJSEhwZO5/l7bt29Xc63KHQAcDlqVZxH3Z3GtaqZrX3zkkUf67odrfHPto4866ig1X7dunSdLTk5W2+7atUvNU1NT1RxA08aZTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDAmmR1ORetktDevXt9txWJrMqCq5LEpk2b1DwnJ8eTadV7AKAh27dvn5pr+934+PiIttG5c2dP5qqmk5+fr+bt27f31TcRd4VSraqbq0KRq7qcqzKcVv3OVbkuNzdXzbWqSNrjrqkfWgUkV2WlnTt3qjnV5QDUF/369VPz7777Ts21fbqrsnSHDh189yPSSp9nnnmmmj/22GOerKCgQG3rqgCalpYWUV8ANA2cyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIjOpylezZs8eTuapATJ48Wc2vueYa3/c3aNAgNZ89e7aad+zY0ZO5KhcBQEMVFRWl5klJSZ4sLi5ObbtixQo179Onj6/tiuhV2ly0Smoi7qpu2mN0PRZXFVFXNTqtL67n1FVBNTEx0ZO5Kiu5KtRp1VZd/dCq2QFAfTJmzBg1f/7559VcG0O0StEiIlOnTlXzUaNGeTJXlU4XbdwTEenUqZMnc1Wuc92na/8PoGnjTCYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDAWPi7kmnTpnmy1atXq21dC3+/9NJLvu+vb9++au5aiPWJJ57wZAMGDFDbDh482Hc/AKA+0YowiOiLqBYWFqpt9+/fr+baPnPXrl1qW9cCrdri1a4FvouLi9W8RYsWnsy10LhrIVbXY9cKQsTExKhto6Oj1Xzjxo2erHv37mrbb7/91nf/XAvQup5rAKgvXPtL1/5VK2jg2obr+4O28HckRSlERNq0aaPm27dv92QbNmxQ27qKM8THx0fUFwBNA2cyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIjEkmAAAAAAAABMYkEwAAAAAAAAJrktXljDFqXl5e7slc1eV69uyp5pFUWXBVh3BVRZo9e7YnKysr831/ANAQzJs3T821amWuCms7duxQ89TUVE/2/fffq221CnAierU3VwU4bVwREYmNjfVkrv25axuuPC4uzlcm4h6HFi5c6MlSUlLUtgkJCWqu/W0KCgrUtq6/wS9+8Qs1B4D6wlV5TdsHur4naJ/xD7aioiJPNnfuXLWtq4KqawwG0LRxJhMAAAAAAAACY5IJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgsCZZXS4qKkrNS0pKPJmraoKrUk8ktPsTcVdw0KrOudoCQEOVmJio5lolnC1btqhtc3Nz1XzAgAGeTKukJiLSqlUrNXdVSNO4qpkWFxd7Mle1uOjoaDVPSkpSc61ynWsbrvFw/fr1nuycc85R215xxRVqfsEFF3gyV8W+9PR0NQeA+m748OFq/sorr3iytLQ0ta223z7YunTp4smys7PVttqYJeIetwA0bZzJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEFiTXPjbRVt0LycnR23rWpg2EjExMWrevLn+Z9EW+e7QoUPgfgBAffKrX/3Kd9u8vDw1X7t2rZp3797dk7399ttq29TUVN/3WVFRobZ1LR6+e/duT+YqBqEteC4iUlZW5jtv1kw/ptSuXTs1nzVrlie75ppr1La7du1Sc21h8vj4eLUtADRU119/vZq/+eabnsy1L963b5+aa2NZt27d/HeuBsnJyZ7MVTTDNca5xkkATRtnMgEAAAAAACAwJpkAAAAAAAAQGJNMAAAAAAAACIxJJgAAAAAAAATGJBMAAAAAAAACo7pcJQkJCZ7MVdWnLirkaNXsRESMMWquVXZwbQMAmgKtgpmISP/+/dVcq5yzZ88etW1aWpqaR1Lps6CgQM21+3Tt+137eVeVouLiYt/bcNH6vWDBArXtmWeeGdG2AaAx6dixo5pr1UVdFVFd1UVnz57tyeqqupw2Lriqlmrjioi73wCaNs5kAgAAAAAAQGBMMgEAAAAAACAwJpkAAAAAAAAQGJNMAAAAAAAACIxJJgAAAAAAAARGdblKtm/f7snKy8vVtlqlt0i5qiK5KgZpfdEq4gFAY6RVX3Pti6Ojo9V8xowZnqx588iGwhYtWvjux+rVq9U8kupA2thU031qVVETExPVtq4xRKuW9PXXX6ttXdXltL9XVFSU2hYA6jtXBVDXfu0nP/mJJ3vrrbfUtq4KoO+9954nu/DCC11djIj2PWTr1q1q20gqXwMAk0wAAAB1aMKECRHfZtKkSQehJwAAAIcWP5cDAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABAYazJV0r59e0+2c+dOta1rUdlIpKamqrlr4e/i4mJP1q5du8D9AICGQFtcNdJ98YoVKzxZq1at1LbaPldEXyhc266ISNeuXdVcW4h7y5YtEfXDteBqYWGhJ3Mt2upabFbLXQuQu2h/r0gXzgWA+iLSQhNaUYQ333xTbesqwrB582afvYtcy5YtPVlJSYna1vWdZe/evXXaJwCNA2cyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIjEkmAAAAAAAABMYkEwAAAAAAAAKjulwlZ5xxhif7/vvv1bZ1UV0uOTlZzbVqDyIiRUVFniwrKytwPwCgoSovL1dz1z56w4YNnsxVva1Xr16+t92nTx+1bVpampovXbrUk7kqrJWWlqq5VuVORB9bXOOKq5KQ9pwUFBT4bisiEhcX58moLgegoXJVf3Y54YQTPFnHjh3Vtvv27VNzrarnwoUL1bYDBgzw3zkRSUlJ8WSu/XxMTIyau6qzAmjaOJMJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEBjV5SqJj4/3ZFpFN5G6qS7nUlhYqOZaxYfMzMyD1g8AqO8irUp2//33e7I///nPatvJkyeruVYFqGvXrmpbVwU4bT/frl07tW12draa5+Tk+G6vVSgScVcGatOmjSe7/vrr1bZaFTmXSKszAUB9URdVMDt37qzmCxYsUHOtqtuUKVPUtpFWl8vNzfVkru8gLjt27IioPYCmgU97AAAAAAAACIxJJgAAAAAAAATGJBMAAAAAAAACY5IJAAAAAAAAgbHwdyWXXHKJJ5sxY4ba9owzzjho/TjnnHN8t+3Xr99B6wcA1HeRLiSdkJDgye68886ItrFx40ZPtnTpUrWta1FUbdHuioqKiPqhLQjryl2LzQ4fPlzNk5KSIuoLAKB2t912m5p36NBBzbX9+YgRI+qkL2PGjPFk7du3V9u6ikSceuqpddIXAI0LZzIBAAAAAAAgMCaZAAAAAAAAEBiTTAAAAAAAAAiMSSYAAAAAAAAE5mvhb2OMiOgLlTYmubm5nqy0tFRtW1hYqOZ18RyVlJT4buu6v6ioqMD9ONxCjy30+juYDtVrPC8v2G0b+VsQB0FjfB8dbtpYkZ+fr7Z1jRVaHunfqKyszHfu6p/rbxXpIuSHU318jRcXF0e87cb6vpk4ceIB3e7uu++usz4EGXtDt2+kf54f1cf3UWOU53gxuvYZ2r7YtY1In8+CggLf/XDl2thSX/+ujfE1zvcKHGp+30dRxsc7bfPmzdKpU6e66RkQoU2bNklmZuZBvQ9e42jseB+hseM1DgTH+wiNHa9xILja3ke+JpkqKipk69atkpyc3CjOkEHDYIyR3NxcycjIiLhMeaSCvMZzcnKkU6dOsmnTJklJSTmg+2cbbONgbaOhvI+AA9VQXuOHe1/ANthGTRrK+wg4UA3lNX649wVsg23UxO/7yNfP5Zo1a3bQZ3wBTcuWLQ/J/dTFazwlJeWA3+xsg20czG00pPcRcCAa0mu8oe9P2Ebj3UZDeh8BB6IhvcYb+v6EbTTebfh5H7HwNwAAAAAAAAJjkgkAAAAAAACBMckEBBQXFycTJ06UuLg4tsE26u02ABxe9WVfwDbYBoD6q77sC9gG2wjC18LfAAAAAAAAQE04k6mBWrFCpEMHkdzcw92TunfhhSIPP3y4ewGgoYmKEnn3Xff1X31l2+zbd4g6dIiVlIj06CHy7bf+b/PCCyKtWtXc5rLLRH72swPr09NPi/z0pwd2WwDAocH3CgB1ydckU1RUzf/uuusg9/Ig+/pr+yE4I8P9JcUYkTvvFElPF0lIEBk5UmTVqqpt9u4VGTtWJCXFfmi/4gqRvLzw9evXi5x4okhiov3v+vVVb3/22SJvveWvz3/8o8gNN4gkJ9svADX9fbp08ftM1A+33y5y330i+/cf7p4AqC927RK59lqRzp1F4uLsh+HTThP55hv/2zj+eJFt20RqK4rhd1KlvFzkjjtEuna140L37iJ/+pMdL0RESktFxo8X6dfP7vczMkQuuURk69bwNoqLRS6+2I4bvXqJfP551fv485/tvt6Pp5+2fTn++HA2bZrIKaeIpKWJtGgh0rOnyKWX2gkpvx591E5G1UYbPy+/XGTePJHp0/3fH4DGje8VfK84lPheARx6viaZtm0L//vb3+zOrnL2+9+H2xojUlZ2kHobkOtDdX6+yIABIn//u/u2Dz0k8thj9kP8d9/ZHfppp4kUFYXbjB0rsmSJyJQpIh9+aAeZq68OX3/zzSIdO4osWGAHlcrP2+uvizRrJnLeebU/jo0b7fYvu8xefvTRqn8PEZHnnw9fnjPH3/NwuIX61bev/bL2n/8c3v4AqD/OO09k/nyRF18UWblS5P33RU46SWTPHv/biI21k1NRUfr15eUiFRX+t/fggyJPPSXyxBMiy5bZyw89JPL44/b6ggI7wXLHHfa/b79tjxafc054G88+KzJ3rsjMmXa8+OUvw5NU69aJPPec/XBcG2NsP664IpwtXSpy+ukiQ4bY8WjxYtu32Fj7WP1q2bLms51qGlNiY+1jeuwx//cHoHHjewXfKw4FvlcAh5GJ0PPPG9OyZfjyl18aI2LMxx8bM2iQMTExNisqMuaGG4xp29aYuDhjhg83ZvZs93aMMeadd+y2QhYsMOakk4xJSjImOdluf86c8PXTpxtzwgnGxMcbk5lp7y8vL3x9VpYx99xjzMUX29tfemntj0/E9qOyigpjOnQw5s9/Dmf79tnH9eqr9vLSpfa2lfs3ebIxUVHGbNliLx9xhM2Msc/XkUfa/8/ONqZHD2M2bqy9f8bYfgwZ4v8xuJ6HN9+0fYiNtW3+8peat2OM/Zs9/7z9/+JiY8aNs89NXJwxnTsbc//94bbZ2cZccYUxbdrY+z35ZPs3DZk40ZgBA4x57jljunSxz1XI3Xfbvy0AZGfb/dFXX9XcTsTuT372M2MSEux+9b33wteHxqvsbHs5NA69957dP0dH2/2j/VoT/vfll/r9nXWWMZdfXjU791xjxo5193H2bLvNDRvs5WuvNWb8ePv/BQX2up077eXTTjPm7bdrfswhc+YY06yZMTk54eyvf7X71pqEnoNPPjGmTx9jEhPt/W7dGm5z6aXGjB4dvjxihN3333ijMa1b23E6K6vqc5aVFW4/bZodZwoK/D0WAE0H3yssvlfwvQJoTOpsTaYJE0QmTbJHc/v3F/nDH+wpmi++aI/g9uhhZ+j37vW/zbFjRTIz7Yz53Ln2PmJi7HVr1tgjtOedJ7JokZ2xnzFD5Prrq27jL3+xRxPmz7dHkw/EunUi27fbU1lDWrYUOfZYe/RZxP63VSt7xDhk5Eh7FOG77+zlAQPsTyEqKkQ++8w+TyIit9wiMm6cSKdO/vozfXrV+/Gj+vMwd67IBRfY3ykvXmxPTb7jDn8/iQh57DF7NsF//2uPzr/8ctVTaM8/X2TnTpHJk+39DRokcuqpVV8Dq1fb18nbb9sjMSFDh4rMnm1/SgKgaUtKsv/efbf2fcLdd9t926JFImeeaceRmsadggJ7BtI//mGPGD/2mL396aeHj9pW/vlZZccfL/LFF/bMKhGRhQvtOHTGGe7727/fnkkVOjNowAB7m8JCkU8/tUej27Sx+9P4eJGf/7zmxxsyfbr9uV1ycjjr0MH2/+uva75tQYEdI156ybbduLHqEXHNiy/as5S++cYeiQ8d2Q4d7a58pHvIEHsmQmgsBIDa8L2C7xV8rwAasEhnpVxHHN59N5zl5dkjDy+/HM5KSozJyDDmoYf07RjjPeKQnGzMCy/o/bjiCmOuvrpqNn26PZJbWGgvZ2XZI9qR0GbZv/nG5pWP7BpjzPnnG3PBBfb/77vPmF69vNtr29aYJ5+0/795sz3y3amT/e/mzfYI75AhxuzZY7fXtasx11xjZ/NdBgywRxD8PgbtefjlL435yU+qZrfcEj4Kom3HmKpHHG64wZhTTrFHZKqbPt2YlBR75Kmy7t2NeeYZ+/8TJ9rXSeiofWULF9r7X79ee4T1yxNPPGGysrJMXFycGTp0qPnuu+9833batGnm7LPPNunp6UZEzDvVn3Af7r//fjNkyBCTlJRk2rZta0aPHm2WL18e0TaefPJJ069fP5OcnGySk5PNcccdZz7++OOI+xLywAMPGBExN954Y0S3mzhxohGRKv969+4d8f1v3rzZjB071qSlpZn4+HjTt29fM6fy4cBaZGVlefohIua6667zdfuysjJz++23my5dupj4+HjTrVs3c88995gK7c1Sg5ycHHPjjTeazp07m/j4eDNs2DAzu/Kh2ybkzTeNSU21R5iPP96YP/7R7icqEzHm9tvDl/PybBY60qudySRS9UioMd4zd1zKy+1ZSFFRxjRvbv9b+ahrdYWF9sj5L38ZzkpKjLnuOnvUdcgQu+/cs8eYbt3sUejbbrP7zVGj7JjhcuONdn9cWVmZMZddZh9jhw52HHj8cWP27w+3CT0Hq1eHs7//3Zj27d3Px4gRxgwc6O2DNmaEpKa6x/OmgrHCi7GCsYLvFWF8r+B7hTGMFRrGioY3VtTZmUyVZ8DXrLELng4fHs5iYuws8rJl/rd5000iV15pZ+4nTbLbDVm40M6Oh45wJyXZIxoVFfYIgdavw61jR/ub59Bvn9u0EbnuOnsU+N577RHoFSvswn/PPOPeTmGhPcIdierPw7JlVf8+IvbyqlX+1+q47DJ7lKB3b5Hf/MYeRQlZuNAuTti6ddW/0bp1Vf+OWVkibdt6t52QYP9bUOCvL4fL66+/LjfddJNMnDhR5s2bJwMGDJDTTjtNdu7c6ev2+fn5MmDAAPl7TT/cr8W0adNk3LhxMmvWLJkyZYqUlpbKqFGjJD8/3/c2MjMzZdKkSTJ37lz5/vvv5ZRTTpHRo0fLkiVLIu7PnDlz5JlnnpH+oUNqETrqqKNk27ZtP/6bMWNGRLfPzs6W4cOHS0xMjEyePFmWLl0qDz/8sKSmpvrexpw5c6r0YcqUKSIicv755/u6/YMPPihPPfWUPPHEE7Js2TJ58MEH5aGHHpLHQ4v1+HTllVfKlClT5KWXXpLFixfLqFGjZOTIkbJly5aIttMYnHeeXTD7/fft0eavvrJHMasfJa38sktMtGt91PR2jI2teptI/Pe/9kjrK6/YI+svvmiP7r74ordtaak9ymuMXccpJCbGrtuxbp09un7CCXadjd/8xh4hfvdduz897jibuWjjQnS0PbNo82a7/kfHjiL33y9y1FHhdTZE7ILg3buHL6en1/yciYgMHlzz9dUlJNT//fnBxFjhxVjBWFETvlfUju8VfK+ojrHCi7Ei7JCOFZHOSrmOOISODBvjni3+2c+M+dWv7P+/+KKdka7sv/+tesTBGGNWrDDmkUfs7HhsbHh9ij597Iz3qlXef6HZ+qwsuyZFJLRZ9jVrbD5/ftX8xBON+c1v7P//85/GtGpV9frSUrvGh2tNjTvvNOZ3v7P/P3CgMR99ZP//iSfsuh4uoaP4fh+D9jwMHGjMXXdVzd591x4BKCuzl6OivH1v0SJ8xMEYe0T8tdeMufJK+7o47zybT5pkTMeO+t9n1y7bJvTbac2sWfZxhNrWV0OHDjXjxo378XJ5ebnJyMgwDzzwQMTbkgM84lDdzp07jYiYadOmBdpOamqq+cc//hHRbXJzc03Pnj3NlClTzIgRIw7oiMMA14vCp/Hjx5sT6viH9zfeeKPp3r277yMGZ511lrm82mI95557rhlb02I91RQUFJjo6Gjz4YcfVskHDRpkbrvtNt/bacyuuMKu2RBS21FS15pM1fk9kykz0+6vK/vTn4ypfpCspMSOf/37G7N7d83bnDrVmGOOsfvh3/3OHgk2xpgffjAmLc19u1tvNWbYsNr7vHevXc/izjvtZT9H/7UzmbS3dk1nMsXHG/PGG7X3r7FirKiKscJirOB7RWV8r+B7BWNFVYwVVkMcK+rsTKbKuncPr9UQUlpqj9IeeaS93LatSG6urcAQUvm3syG9eon87nd2Nvvcc+1RWRF7BHvpUvub7Or/YmPr9vF07WrXtvjii3CWk2N/Ez1smL08bJjIvn32N8IhU6faIyDHHuvd5rJl9uj3n/5kL5eX2+dIxP63pln/gQPtYw/iiCO8pb+/+cY+39HR9nLbtlWPdq9a5T0CkJIiMmaMrYD0+uv2d9B799q/z/btIs2be/8+bdrU3r8ffrC/m/fT9nApKSmRuXPnyshKP6pv1qyZjBw5UmaGflR/GOz/X43WtLS0A7p9eXm5vPbaa5Kfny/DQi9wn8aNGydnnXVWleckUqtWrZKMjAzp1q2bjB07VjZu3BjR7d9//30ZMmSInH/++dKuXTsZOHCgPPfccwfcn5KSEvnPf/4jl19+uUS5ypJVc/zxx8sXX3whK/+3WM/ChQtlxowZckZNi/VUU1ZWJuXl5RJf7fBiQkJCxEdhGqsjj6w6htQVv9XXCgrs+hiVRUdXrVAXOoNp1Sq7dkbr1u7tFRXZdTSeecZuJ9JxYfnycGU6l9RUe6bSwXjeYmL0Pq5ZYx/bwIF1f58NAWOFF2OFxVjhD98rLL5X8L3icGCsYKw4IJHOSvk54mCMPcqZkWHXwliyxB4JTU21R1GNsb8VTky0M/arV9vfWWdkhI84FBTYCgNffmmPXMyYYX93+4c/2OsXLrTVg8aNs0cCVq60M+aVJn99H3HIzbXbmD/f3v8jj9j/D1X/McbOoLdqZasQLVpkj+p27Rr+nbYxxpx+up3J/+4729+ePY256CLv/VVU2AoHH3wQzq691v6eeulSu43Qb8w1779vTLt24SMD1fk54jB3rv2d+T332KM6L7xgn8/KRxMuvNBWrpg3z1a3OOUUe0Qi1Obhh4155RVjli2z27jiCrvuR3l5+DEOGGDMp58as26d/Q36rbeGK2XUdMTh0ku9VZvqmy1bthgRMd9++22V/JZbbjFDhw6NeHtSB0ccysvLzVlnnWWGDx8e8W0XLVpkEhMTTXR0tGnZsqX5KHQIzKdXX33V9O3b1xT+701xIEccPv74Y/Pf//7XLFy40HzyySdm2LBhpnPnziancsmsWsTFxZm4uDjzxz/+0cybN88888wzJj4+3rxwgAvCvP766yY6OtpsCZVz8aG8vNyMHz/eREVFmebNm5uoqChzf02L9TgMGzbMjBgxwmzZssWUlZWZl156yTRr1sz00hZqaMR277ZVZF56ye771661R6jbt6+6n6irM5nuu8+eIbV8uT3qWVKi9+vSS+2R1Q8/tPu4t9+2ZwmFxqmSEmPOOcee8bRggTHbtoX/aetj3HqrMTffHL78+uu2HwsX2v3rmWfW/BzFxBizeHE4e/ppY379a7sPXr3ang31hz/YfX+oUl9dnsnUs6cdy7ZtC4/1ofvo1s3d98aOsaIqxoowxgq+V/C9gu8VIYwVVTFWhDXEseKgTTIVFtrTTtu00UuNGmN3WD162J3Q2Wcb8+yz4cGguNjujDp1sqezZmQYc/31VXe+s2fb012TkuzA0r+//XIQ4ncwCD2G6v8qlyatqDDmjjvsl5q4OGNOPdXuACvbs8fu/JOS7Cm7v/qVHWiqe/rp8OmfITt22G0mJ9uF+vLz3f0tLbXPxyef6Nf7GQyMCZcajYmxX2Qql1I1xpZIHTXKPrc9e9ryqJW/sD37rDFHH22vT0mx/Z83L3z7nBz7GsjIsPfRqZMt7R0qqeoaDAoL7f3MnOl+DuqD+jgY/PrXvzZZWVlm06ZNEd+2uLjYrFq1ynz//fdmwoQJpk2bNmbJkiW+brtx40bTrl07s7DSSswHMhhUl52dbVJSUiI6vTYmJsYMq/a7oRtuuMEcd9xxB9SHUaNGmbPPPjui27z66qsmMzPTvPrqq2bRokXm3//+t0lLS4t4QFq9erU58cQTjYiY6Ohoc8wxx5ixY8eaPn36RLSdhq6oyJgJE+yi2S1b2tPre/e2i3wXFITb1dUk086d4bFFxN5Ok5Njv/h07mx/Dtatm12oOzSBtG6dPrZo21y82I6Hlctll5fbLwopKfYndKtW1fw8XXCBfZ5C5s0z5v/9P/vFJS7OmNat7c8x3n8/3KYuJ5nef98+hubN7bgTMmqUMQdwpn+jwVgRxlhRFWMF3yv4XsH3ihDGijDGiqoa4lgR8SQT6ocnnrA76sboySe9FSrqo+LiYhMdHe3ZgV9yySXmnHPOiXh7QQeDcePGmczMTLN27doD3kZlp556qrm6eqkVh3feeefHHVbon4iYqKgoEx0dbcpch8d8GDJkiJlQ+ZtzLTp37myuuOKKKtmTTz5pMjIyIr7v9evXm2bNmpl3K5e58SEzM9M8UW2xnj/96U8HVNHCGGPy8vLM1v+VobngggvMmTWd0oIma+FCezRa+xJyuPzwg+3Tvn2HuyeHD2NFGGNFVYwVqC/4XnH4MVaEMVZU1RDHioOyJhMOvmuuETnxRPv788YmJkYkwsXyD4vY2FgZPHiwfFHpR/UVFRXyxRdfRPyb4yCMMXL99dfLO++8I1OnTpWuXbvWyXYrKiqkuLjYV9tTTz1VFi9eLAsWLPjx35AhQ2Ts2LGyYMECiQ79ID9CeXl5smbNGklPT/d9m+HDh8uKFSuqZCtXrpSsrKyI7//555+Xdu3ayVlnnRXR7QoKCqRZtcV6oqOjpaLyYj0RSExMlPT0dMnOzpZPP/1URo8efUDbQePWv7/Igw9WrYR0uG3bJvLvf4u0bHm4e3L4MFaEMVZUxViB+oLvFYcfY0UYY0VVDXKsqPNpK6AJee2110xcXJx54YUXzNKlS83VV19tWrVqZbZv3+7r9rm5uWb+/Plm/vz5RkTMI488YubPn282VP7hfi2uvfZa07JlS/PVV1+Zbdu2/fivoPLviGoxYcIEM23aNLNu3TqzaNEiM2HCBBMVFWU+++wz39uo7kBOa7355pvNV199ZdatW2e++eYbM3LkSNOmTRuzc+dO39uYPXu2ad68ubnvvvvMqlWrzMsvv2xatGhh/vOf/0TUl/LyctO5c2czfvz4iG5njDGXXnqp6dixo/nwww/NunXrzNtvv23atGlj/hBa/MGnTz75xEyePNmsXbvWfPbZZ2bAgAHm2GOPNSWuRYIA1EuMFW6MFYwVACzGCjfGioY1VjDJBAT0+OOPm86dO5vY2FgzdOhQM2vWLN+3/fLLL42IeP5dWvmH+7XQbi8i5vnKqy3W4vLLLzdZWVkmNjbWtG3b1px66qmBBgJjDmwwGDNmjElPTzexsbGmY8eOZsyYMWb16tUR3/cHH3xg+vbta+Li4kyfPn3Ms88+G/E2Pv30UyMiZkX1RRJ8yMnJMTfeeKPp3LmziY+PN926dTO33XabKdZWe67B66+/brp162ZiY2NNhw4dzLhx48y+pvy7I6ABY6zQMVYwVgAIY6zQMVY0rLEiypjaCh4DAAAAAAAANWNNJgAAAAAAAATGJBMAAAAAAAACY5IJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEBiTTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABBYcz+NKioqZOvWrZKcnCxRUVEHu0+AiIgYYyQ3N1cyMjKkWbODOx/KaxyNFe8jNHa8xoHgeB+hseM1DgTn933ka5Jp69at0qlTpzrrHBCJTZs2SWZm5kG9D17jaOx4H6Gx4zUOBMf7CI0dr3EguNreR74mmZKTk3/cWEpKSt307BAwxqh5JDPK2dnZap6amqrma9eu9WR79+5V27pm/+Li4tT8qKOOUvPGKicnRzp16vTj6+9gaqiv8cNlwQKRESMO/PbTpokcfXRd9QY14X1Uu4qKCjV3jSHR0dG+t/3qq6+q+ezZsz1ZWVmZ2rZVq1Zq3qtXLzW/+OKL/XVO6macjGTbB+OILq9x+LFpk8iePZHfrnVrkabwXZH3ERo7XuONG99NDg2/7yNfk0yhD4UpKSkN6o1SFx+ey8vL1dz1PGhPeHFxsdrW9UXFNcnUkJ77unQoTjNtqK/xwyUpKfjteZoPLd5HbgdzkikhIUHNY2NjPVmkBx5c247kuW8Mk0yHYtvV76Ohvcabuo0bRYYMESkqivy28fEiK1aIdO5c9/2qj3gfobHjNd448d3k0KrtfcTC3wAAAGi0du8+sAkmEXu73bvrtj8AADRmTDIBAAAAAAAgMF8/l2sItJ+1uX7S4Pp5gPaThNLSUrWt62cKhYWFnsy1noZr2zExMWp+1VVXebKHHnpIbQsA8KcuqswsWrRIzS+99FI1HzZsmO9+uMaEv/71r77v0zUeuk53roufulFRBwAAoOnhTCYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDAGs3C365FTTWvv/66mt95552ezLWY6xtvvKHmt9xyiyebP3++2vbzzz9X85EjR6r5dddd58nKysrUts2b63/auljMFQCaguXLl6v5jh07PFm7du3Utt99952aT5w40ZPt379fbesqNPGPf/xDzb/++mtPNmPGDLXt+PHj1Tw2NlbNAQAAgJpwJhMAAAAAAAACY5IJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgsEZTXS4SrsprGRkZnuz2229X25555plq/sknn3iydevWRdA7kSeffFLNu3TpEtF2NFSSA9CUzZ0715O9++67atutW7eq+fDhwz3Zvn371LZpaWlq3rt3b0+2c+dOta2rutyAAQPUvKSkxJOlpKSobR966CE1HzFihCc74ogj1LZt2rRRcwAAADQ9nMkEAAAAAACAwJhkAgAAAAAAQGBMMgEAAAAAACAwJpkAAAAAAAAQGJNMAAAAAAAACKxeVJczxngyVxU0rWqOiMi8efM8mavaT1FRkZqvXr3ak/3www9q248//ljNW7Vq5cnS09PVtitXrlRzlxUrVniy4uJita1WKU9EpLS01JO1b99ebdusGXOQABqm8ePHq/mpp57qyVzV0bQKcCIiffv29WTr169X27700ktqPnjwYE/Wq1cvta1rP//++++r+WmnnebJXJXhZs2apeaff/6577Y/+9nP1Lxnz55qDgAAgMaLWQQAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDA6sXC365FvjVLly5V8zlz5ngy16KtrsVVjz76aE+2ZcsWtW1eXp6av/vuu55s4MCBatvdu3ereWFhoZonJiZ6sj179qhtV61apeaxsbGeLCYmRm3rWgwXAOqLxYsXq7lrUewHH3zQk3Xp0kVt27y5PkR269bN9zays7PV/Fe/+pUnW7t2rdq2oKBAzRcsWKDmxx57rO9tuIpEdOzY0ff9PfLII2r+1FNPqTkAAAAaL85kAgAAAAAAQGBMMgEAAAAAACAwJpkAAAAAAAAQGJNMAAAAAAAACIxJJgAAAAAAAARWL6rLRcJVqadHjx6ezFUBrm3btmqek5PjyVq3bq22dVVe+/777z3Z7Nmz1bZ9+/ZV8127dql5bm6uJ0tNTVXbuvrdrJl3XtFVzQ4A6ru5c+eq+SeffKLm//rXvzzZe++9p7Z17UePOOIIT7Z8+XK17QcffKDm2nizfv16te2OHTvU3FVFtH379p5sxYoValtXRbu0tDRPduSRR6ptzzrrLDUHAABA08OZTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDA6m11OVdlOK3CmohIenq6J3v//ffVtv369VPzoqIin70TSUpKUvOSkhJP5qreFhMTo+bl5eVqHhUV5clatGihtnXlBQUFvjIAaAimTp2q5l27dlXzo48+2pO1bNlSbevaz2uVQTds2KC21cYmEZFTTjnFk61Zs0ZtW1paquaLFy9Wc636qatCnVaJrqb71GzevFnNd+/e7atvAAAAaDw4kwkAAAAAAACBMckEAAAAAACAwJhkAgAAAAAAQGBMMgEAAAAAACCwervw9759+9S8uLhYzTt06ODJXAud7tq1S80TExM9WXR0tNo2Pj5ezVNSUjyZa4FvY4yat27dWs21xWkrKirUtq5cW5jctcCr67mOi4tTcwA41HJyctR806ZNaj5kyBBP5lqc21UMolWrVp4sOztbbeva//fs2dOT7d+/X23rKuSwYsUKNdcKZGh9FnGPZSNGjPBkb731ltp21apVar5nzx5PxsLfAAAAjRtnMgEAAAAAACAwJpkAAAAAAAAQGJNMAAAAAAAACIxJJgAAAAAAAATGJBMAAAAAAAACa3DV5WJjY9Vcq5yTmpqqtnVVTdPauyrANWumz89p1YgSEhLUtq6qPq6KRoWFhZ7MVXXIVVmvrKzMk7mqDrmqNrVt21bNAeBQc+2/XNXePv74Y0/m2qdp+1wRvZrp+vXr1baR5MuXL1fbpqWlqfnatWvV/Morr/RkW7duVdsuWLBAzadNm+bJvv32W7WtaxxyjbUAAABovDiTCQAAAAAAAIExyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABBYva0u56rq46ouFx0d7Xsbu3fvVnOtwpCrilxUVJSaa5o315/m8vJyNa+oqFDzuLg439t2Va5ztY9kGwBQXwwePFjNL730UjXXKqS5qrTt3btXzbdt2+bJXNXs8vLy1FyroJqbm6u2dY0Ve/bsUfPNmzd7slWrVqltCwoK1FwbJ4cMGaK2dVX4c1XFAwAAQOPFmUwAAAAAAAAIjEkmAAAAAAAABMYkEwAAAAAAAAJjkgkAAAAAAACB1duFv4uKitRcW+BbRF+keseOHWpb1wKt2uKlroVVS0pK1FxbWNvVZ9ci5q7FxrUFwVNSUtS206ZNU/OBAwd6Mtci5sYYNQeAw2Hx4sWe7NVXX1XbXnTRRWqu7UfLysrUti1btlTzpKQk321dY4WWl5aWqm1dWrdureZaX1xFH1zjjTY+nX766Wrb7du3q/mXX37pyS6++GK1LQDUJ9rnf1eRCFcBhY0bN3qyvn37qm2fffZZNdf2mRkZGWpb1ziUmpqq5hpX8SHXWBEJ1/eKSIopAWgYOJMJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEFi9rS7nqsjTokULNdcqFuTk5KhtO3TooOb79u3zZK6KB64qC1oFH1elBte2Y2Ji1NxVAUnz5ptvqnmvXr08matKhavCHwAcDvn5+Z7MVdnshRdeUPOPP/7Yk02cOFFtq+0vRUTat2/vyVyV4bZs2aLmw4YN82SucaVdu3ZqnpaWpuY9e/b0vQ1XtdWf//znnmzZsmVq24ULF6r5oEGDPBnV5QCEGGN8VTKOtPpYeXm5J3NVep46daqaP/74455szZo1alttbBLRq3R2795dbeuqiD1ixAhP9sQTT6htP//8czV///331fy4447zZJFWkdO+r7mqZ1NFDmg6OJMJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEFi9rS5XXFys5qmpqWquVadYvny52jY+Pl7N4+LiPFlhYaHaVqtc4eJq66rg4KpGl5SU5Ps+33nnHTW/+eabPZmrCkReXp7v+wOAg+3II4/0ZA888IDadtSoUWretm1bT/bWW2+pbVu2bKnmmZmZnsy1P3/llVfUvFu3bp7MVblo27Ztaj59+nQ118bJTZs2qW1zc3PVXHPmmWeq+cknn6zm2t8LAGqifQaOtOKZVklu3rx5atu//e1vat67d29PNmbMGLXt4MGD1bxVq1aeTKtwKiIyc+ZMNX/uuec8WXJystpWq3wqolcLFRHp2rWrJ5swYYLa9pxzzlFz13cIAE0bZzIBAAAAAAAgMCaZAAAAAAAAEBiTTAAAAAAAAAiMSSYAAAAAAAAEVm8X/o6KilLzlJQUNdcWCl+/fr3a1rVgnraNoqIitW1MTIyaa4sTuhYs1BYmrEmLFi08mbbguYhIhw4d1HzLli2erH///mpb1wLkAHA4rFq1ypOtXLlSbevav+7cudOTlZWVqW1dRRu0ghCu+3MtuL1kyRJP5ipW4SqE4dr/l5aWerKNGzeqbffu3avmRx11lCdzLSqr/V1ERBYtWuTJXOMNgKYnKirK83k/0s/GfrkW596zZ4+ap6WlHZR+XHrppRHlmnXr1qn5vffeq+YLFixQc63Aj6uYhus+09PTPZlrXHGNWdpY6/oOEsm4d8opp1S5TEEj4NDhTCYAAAAAAAAExiQTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDAmGQCAAAAAABAYPWiupxWwc1V1ScuLk7Nc3JyfN9fQUGBmicmJnqy5s31p8hVXU6rbuDiqmjkqqwXGxvrybRqcSIiW7duVfPNmzf77B3V5QDUL1oVs/j4eLWta1/83//+15NNmjRJbatVWBMRadWqlSdz7S+1qqAiIr/85S892fz589W2rsfoqvZzxhlneLJhw4apbV1VgH73u9/57p9rTNXGyX379qlttecUQOO2ZcsWz+d3rWKoaz+akJCg5lpV59/+9rdqW1f1zm+//daTufZfrkrU2jjk+n4ze/ZsNd++fbsnc1Xa7tOnj5r/5Cc/UfOePXt6sszMTLXtu+++q+bTp0/3ZK4q3q7vTtr46fqO5Bprtb/NMcccU+Vyfn6+elsAdY8zmQAAAAAAABAYk0wAAAAAAAAIjEkmAAAAAAAABMYkEwAAAAAAAAJjkgkAAAAAAACB1Yvqcq5KCxpXRQWtGoWLqxqFVrnO1be8vDw1j46O9mSuSgha9Yua2muVFjp27Ki2bd++vZpr1ZlcXFXutOdEe9wAUJfmzp3rydLS0tS2e/bsUfMVK1Z4MlcV0alTp6p57969PZlrTJg2bZqaDxw40JO5xjFXRSPXYzzxxBM92cyZM9W2WtVSEZHOnTt7Mld1Odc4tHv3bk+2a9cutS3V5YCmJzExUZKSkqpkWqW2jRs3qrd3VUzWPl/369dPbfvPf/6ztm7+yFWJzrUf1apWt2vXTm17wQUXqHnXrl09WXp6uquLB80111yj5lp1b9eY6qoYpzHGRJRrqo8rkVQiBxAMZzIBAAAAAAAgMCaZAAAAAAAAEBiTTAAAAAAAAAiMSSYAAAAAAAAExiQTAAAAAAAAAqsX1eU0rsprLVq0UPN58+b53rarulxhYaEnc1VNi4mJUfNIqqy5qi+4HnskFRWqV+sI0SoruURS5Y7qcgAOtmHDhnmy4447Tm37ww8/qPkJJ5zgyVJTU9W2ixcvVvOSkhJP5tpfuvbbWpVO1/jmqsjmqn6q7aNLS0vVtq6qSNoY4qrM46ralJub68lclZUAND2tWrXyVI0+88wzD1NvcCBcVb8BNG2cyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABBYvVj4W1uQ1LWIalRUlJrv3bvX9/0lJyereX5+vifTFngVcS+4qi2iqi3CWhPXItrawuSuBchbt26t5q7FXzV1sQA5ANSVBQsWeLIePXr4bisi0rFjR0+2bds2te2WLVvUPD093ZNpi1yLiGzcuFHNN2/e7MnWrVvnu62ISEFBgZrv2LHDdz9cY0WvXr08mWs8zMzMVPMNGzZ4suzsbLVty5Yt1RwAAAANC2cyAQAAAAAAIDAmmQAAAAAAABAYk0wAAAAAAAAIjEkmAAAAAAAABMYkEwAAAAAAAAKrF9XltIo1rupyzZvrXdYqr7m4qths377dk7kqrOXl5al5cXGx7224KuW5KsBpz0lKSora1vUYXRWGNK7n2vW3AYCD6cMPP/RkrmqXjz76qJqfdtppnmzw4MFqW9e+e9CgQZ5s06ZNatuhQ4eq+VFHHeXJXPtW1/7cVbl0wIABnsxVgTU1NVXNd+3a5cluuukmte2KFSvUXKvOd+utt6ptu3TpouYAAABoWDiTCQAAAAAAAIExyQQAAAAAAIDAmGQCAAAAAABAYEwyAQAAAAAAIDAmmQAAAAAAABBYvagup1UHclVec9m2bZsn69mzp9rWte3o6GhP5qqwFkleXl6utnVVRXJxVTrSHHHEEWq+fPly39uguhyA+uQvf/mLJxs2bJja1lUBtHv37p5s3759altXpc/4+HhP1qpVK7Vthw4d1Lxjx46ezLVv3bp1q5rn5OSouTbGderUSW1bVFSk5lrV1yuvvFJte8IJJ6i59nhcbQEAANA4cCYTAAAAAAAAAmOSCQAAAAAAAIExyQQAAAAAAIDAmGQCAAAAAABAYI1m4e+NGzd6sszMTN/3JyJSXFzsyVyLdhcWFqq5ttCp67G4Fnl1tXfdpyYpKUnNtcfjeozaQugiImVlZb77AQB1Ze3atZ5MW4RbxL1f6927tyf74osv1LZvv/22ms+bN8+TuRbnfuGFF9Q8Ozvbk23atEltu2zZMjV3Ldqt9WXBggVq2z179qj5qFGjPNmuXbvUtjt27FBzbfFw1yLrbdu2VXMAAAA0LJzJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEBiTTAAAAAAAAAisXlSX05SWlkbUXqu81qNHD7Wtq2paXFycJ3NVenNtQ2uvVdipiWvbkUhMTFRz7XkqKChQ2zZvrr88In08AFAX8vPzPZmr4pkrHzJkiCcbNGiQ2rZnz55qfsIJJ3iyhQsXqm1d1e8uvPBCT7ZkyRK1rat/rgp6v/zlLz2Z9rhFRPbu3avmp59+uu/+5eXlqbn294qkSioAAAAaHs5kAgAAAAAAQGBMMgEAAAAAACAwJpkAAAAAAAAQGJNMAAAAAAAACIxJJgAAAAAAAARWL6rLFRUVebJIK6ytX7/ekx1//PFq23Xr1qn5tm3bPFlCQoLaNjU1Vc21qniuCkBlZWW+t1FTrnH1e//+/Z7M1T9XdTkAOBxyc3M92aZNm9S2q1evVvMWLVp4sk8//VRtG8m+e/v27WrbI488Us399k1EpF+/fmq+du1aNW/VqpUna9eundp2x44daq6Nh0lJSWrbjRs3qrn299LGewAAADQenMkEAAAAAACAwJhkAgAAAAAAQGBMMgEAAAAAACAwJpkAAAAAAAAQWL1Y2VlbRDU+Pl5t61qIVVtMdMiQIWpbY4yax8bG+r6/vXv3qrm2MGpFRYXaNj8/X821xVJFRJo1884JuhZRHTRokJp36NDBk7kWzu3du7eaR7IAOQDUFW0B7OOOO05tu3LlSjWPiYnxZDk5OWpbbUwQ0QsozJw5U23bpk0bNf/88889WV5entq2W7duav7dd9+p+U9+8hNP5trPa0UzRER69erlyUaMGKG2Xbp0qZqnpKR4su7du6ttAQAA0DhwJhMAAAAAAAACY5IJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgsHpRXS4qKspXJiKydetWNS8pKfFkv/jFL4J17DBp3bp14G24Kutp1YumTp2qttUqOYm4q+IBwMHUuXNnT/bFF1+obTdu3KjmWpXORYsWqW0zMjLUvKCgwJO5qrSlpaWpuUartCoiUlhYGFGuVSjV+izirjqnVWGNi4tT2+7YsUPNO3bs6MlSU1PVtgAAAGgcOJMJAAAAAAAAgTHJBAAAAAAAgMCYZAIAAAAAAEBgTDIBAAAAAAAgMCaZAAAAAAAAEFi9qC63YcMGT7Z//3617b59+9T8jjvuqMsuNVo33nijJ+vatavadvv27WpeUVHhyagYBOBg0ypePv7442rb2bNn+97uJZdcouazZs1S8+joaE+mVe4UcVcLXbNmjSeLiYlR27oqw7lyrYKeVoFVxL3v7tOnjydzVeFz5V26dPFkrsqxAAAAaBw4kwkAAAAAAACBMckEAAAAAACAwJhkAgAAAAAAQGBMMgEAAAAAACCwerHwd1JSkicrLS1V26akpKj5SSedFLgfxhhP1tgWKT3vvPM8WWxsrNq2vLz8YHcHAHxr3tw7ZJ177rlq2w4dOvjebt++fSPKNZdffrmaDx48WM21MS4jI0Ntqy2gLSKSnp6u5kceeaTvbfz0pz9Vc43rsWgLjYuIdOrUyZM1tjEVAAAAVXEmEwAAAAAAAAJjkgkAAAAAAACBMckEAAAAAACAwOrFmkwAAABofCZMmHBAt5s0aVId9wQAABwKviaZQgti5+TkHJRO5OXlebL8/Hy1bW5uru9tRNrfprDwt/b8uRb+jo6O9r3dg/HaCG1T+7vUtYP9Gm9slLdbxLfnqT40Gvv7qKCgQM2Li4vV/GD1zdUP15hVWFjoexva+FZTe+0xutqWlZWpucb1WFzb1sZxxoqmx/VerE1dPseMWbXjfYTGjtd448Z+/tDw+z6KMj7eaZs3b1arxACHwqZNmyQzM/Og3gevcTR2vI/Q2PEaB4LjfYTGjtc4EFxt7yNfk0wVFRWydetWSU5ObnRn9qD+MsZIbm6uZGRkOEtk15Ugr/GcnBzp1KmTbNq0SVJSUg7o/tkG2zhY22go7yPgQDWU1/jh3hewDbZRk4byPgIOVEN5jR/ufQHbYBs18fs+8vVzuWbNmh30GV9A07Jly0NyP3XxGk9JSTngNzvbYBsHcxsN6X0EHIiG9Bpv6PsTttF4t9GQ3kfAgWhIr/GGvj9hG413G37eR1SXAwAAAAAAQGBMMgEAAAAAACAwJpmAgOLi4mTixIkSFxfHNthGvd0GgMOrvuwL2AbbAFB/1Zd9AdtgG0H4WvgbAAAAAAAAqAlnMjVQ//ynyKhRh7sXYUuXimRmiuTnH+6eAGiqoqJE3n3Xff1XX9k2+/Ydog4dBieeKPLKK/7b+3lO7rpL5OijD6w/n3xib1tRcWC3B4CD6bLLRH72M//t16+3+8wFCw5Ofw6XL74QOeIIkfLyw90TkRdeEGnVKrLbdOki8re/2f8vKbGXv/++TrsFIAKHZZJp+3aRG24Q6dZNJC5OpFMnkZ/+1O7g6lLlHU5Nnn1W5KSTRFJS3B+29+4VGTvWtmnVSuSKK0Ty8qq2WbRI5P/+TyQ+3j6mhx6qev2UKSK9etltXHyx3QmG7N9vr9uwofb+FhWJ3HGHyMSJVfOcHJHbbhPp08f2oUMHkZEjRd5+W6Quz1c76SSR3/62anbkkSLHHSfyyCN1dz8AELJrl8i114p07mzHjQ4dRE47TeSbb/xv4/jjRbZtE6mtKIbfLx25uXZfmJUlkpBgtz9nTtU2O3bY7WVkiLRoIXL66SKrVlVtc9NNImlpdtx4+eWq173xhh0f/Xj/fXt/F14YzhYuFDnnHJF27ey40KWLyJgxIjt3+tumiMjvf+9vfNbG3NNPF4mJ8T4uAAipi/17ffL22/ZAcOvW7gmpoiKRceNsm6QkkfPOs/vvyjZuFDnrLDt2tGsncsstImVl4evnzxcZONDe/qc/td9VQsrKRAYPFpk921+f//AHkdtvF4mOtpfLy0UmTbLfKRIS7Bh17LEi//hHRE/FYREba8et8eMPd0+ApuuQTzKtX293elOnivz5zyKLF9sjnSefbHe2h0NBgf0gfOut7jZjx4osWWInij78UOTrr0Wuvjp8fU6OHVCyskTmzrWP7a677ASWiD2K+8tfivz61yIzZ9rZ9dB1IiITJtjrsrJq7++bb9qJquHDw9m+ffYLzr//LfLHP4rMm2f7OGaMHTj274/kGTkwv/qVyFNPVR0AAaAunHee/UD94osiK1faCZWTThLZs8f/NmJj7ZeXqCj9+vLyyM64ufJKOya89JIdy0aNshP7W7bY642xk1Vr14q8957tf1aWbRM66/ODD+yZR599Zg9MXHmlyO7d9rr9++2Bg7//3V9/HnvM7oeb/W9k37VL5NRT7ZeDTz8VWbZM5Pnn7YRXJGedJiXZL0IulQ+YaC67zPYNADR1sX+vT/LzRU44QeTBB91tfvc7u/9/4w2RadNEtm4VOffc8PXl5XaCqaRE5Ntv7XPzwgsid94ZbnPllSKnnGI/8+/fL3L//eHrHn7Yfk8YOrT2/s6YIbJmjf07hNx9t8hf/yrypz/ZXyt8+aX93tNQzgQeO9Y+riVLDndPgCbKHGJnnGFMx47G5OV5r8vODv//hg3GnHOOMYmJxiQnG3P++cZs3x6+fvVqe327drbNkCHGTJkSvn7ECGPsR/zwv9p8+aVtV7kfxhizdKnN58wJZ5MnGxMVZcyWLfbyk08ak5pqTHFxuM348cb07m3/f8cOu43CQnv5D38w5rrr7P9/840xgwcbU1ZWex+NMeass4z5/e+rZtdea5+HUH8qy801prTU/v/evcZcfLExrVoZk5BgzOmnG7NyZbjt7t3GXHihMRkZ9vq+fY155ZXw9Zde6n1e162z1xUXGxMXZ8znn/t7HADgR3a23dd89VXN7USMee45Y372M7v/6tHDmPfeC19ffR///PPGtGxp2xxxhDHR0fo+7ssvvfdVUGDbf/hh1XzQIGNuu83+/4oV9vY//BC+vrzcmLZtbT+NMebBB40ZMyZ8fbt2xsyebf//6quNeeSRmh9zyM6ddkyqfF/vvGNM8+bh/b8m9Jx8/rkdhxISjBk2zJjly8NtJk40ZsCA8OVLLzVm9Ghj7r3XmPR0Y7p0qXnM3bDBXl692t9jAdB0+N2/P/yw/UzaooUxmZn2c29ubvj60P78k0+M6dPHfiY+7TRjtm4NtykrM+Z3v7Pt0tKMueUWYy65xO7PQiZPNmb48HCbs86quu9at872d/782h+bq+2+fcbExBjzxhvhbNky23bmTHv544+Nadas6nefp54yJiUl/F0jIcHezhj7PeTMM+3/r1ljTM+exuTk1N5HY4wZN86YX/yiajZggDF33VXz7fw+V2+9ZcxJJ9n+9u9vzLffVt3O888b06mTvf5nPzPmL3+x2wyp7TufMcZkZRnz179WzU4+2Zjbb6/lwQM4KA7pmUx799qzlsaNE0lM9F4f+v1tRYXI6NG2/bRp9kjx2rX2rJyQvDyRM8+0p/DPn2/PRPrpT+2ppSL2VNXMTJF77rE/j9i27cD7PXOm7duQIeFs5Eh7tPi778JtTjzRHikPOe00kRUrRLKzRdq2FUlPt0erCwpEpk8X6d9fpLTUniL8zDPhU1RrM2NG1b5UVIi89pqdtc/I8LZPShJp3tz+/2WX2bOo3n/f9tkY+zyWltrri4rsmWYffSTyww/2qMXFF4dPt330UZFhw0Suuir8vHbqZK+LjbVrb0yf7u9xAIAfSUn237vvihQX19z27rtFLrjA/nz5zDPtfrHyTwiqKyiwR5v/8Q97xPOxx+ztTz89vI87/njv7crK7JHm+PiqeUKC3UeLhPtauU2zZvbnIKE2AwbYfXJ2tj0LtrBQpEcPe/28eSK/+U3Njzdkxgz7k4ojjghnHTrYfr7zTu0/mb7tNnvk+/vv7Xhx+eU1t//iCzu+hc7urWnM7dxZpH17xgYAXn73782a2f3zkiX2rJ6pU+2Z+pUVFIj85S/27NKvv7bfCX7/+/D1Dz9szwb617/sPnPvXrt/rCw/3/6E+fvv7X6uWTORn/+8bteVmzvXfu4eOTKc9elj95UzZ9rLM2eK9Otn950hp51mfzkROjtnwAC7Dy4rs33t39/mv/61PTM2Odlff6ZPr/q9QsSOH1On2jNiXfw+V7fdZv8OCxbYpUEuuij8q4fvvrNLkFx/vb3+5JNF7r236u1r+87nMnQo4w5w2BzKGa3vvrMz2m+/XXO7zz6zR4g3bgxnS5bY24aO8GqOOsqYxx8PX9ZmtWviOpPpvvuM6dXL275tW3vkwBhjfvITe9S5slCfly61l6dPt7PvXbrYs5hKSoy55x5jbrzRHn0+/nh7P5UfQ3WhIz5ffx3OQmdJ1XbEe+VK2+6bb8LZ7t32yMF//+u+3VlnGXPzzeHLI0bYPmt+/nNjLrus5n40Nk888YTJysoycXFxZujQoea7777zfdtp06aZs88+26SnpxsRMe+8807E93///febIUOGmKSkJNO2bVszevRos7zyaQg+PPnkk6Zfv34mOTnZJCcnm+OOO858/PHHEfcl5IEHHjAiYm50vVAcJk6caESkyr/eodMBI7B582YzduxYk5aWZuLj403fvn3NnMqnItYiKyvL0w8RMdeFTj+sRVlZmbn99ttNly5dTHx8vOnWrZu55557TEVFRUSPIycnx9x4442mc+fOJj4+3gwbNszMrmkn2Ii9+aY9WzQ+3u4r//hHYxYurNpGpOpRy7w8m02ebC9rZzKJGLNgQdXthM7Uqc2wYXZ/uGWLPUL+0kv2yHNovCgpMaZzZ3sm7t699ujzpEn2PkeNCm9n4kRjune3R+nfftu269vXmO+/t+NBr172MVc+S6m6v/7VmG7dvPmtt9qzmdLS7JmrDz1U9ch45TOZQj76qOqZt9qZTO3bVz1z15iax9yBA2s/Kt7YMVZ4MVYwVhjjb/9e3RtvGNO6dfhyaH9e+Uyav//d7qtC0tPtPjCktNSeFVXT/n7XLrvdxYvt5bo4k+nll42JjfW2P+YY+0sHY4y56qqq44QxxuTn2+2F3nI//GDMiSfaceaii4zZv9+Yf//bPp7Nm+3tu3cPn13r0rKlvV1lS5bYM3ybNTOmXz9jrrkmfL8urufqH/+oul2R8BlYF10UPgMrZMyYqmcyafx853v0Ufudq6FhrPBirGh4Y8UhPZPJ7+LTy5bZs2NCZ8iI2IWlW7Wy14nYWe3f/94etW3Vyh4FWbas9lntw+mEE+yisOvW2TU21q2zayjde689W+jqq+2M+z332KPwmsJC+9/KR8YjeV6bN7cL94W0bi3Su3f4eS0vt7+/7tfPruORlGTX8vD7vCYk2CNJTcXrr78uN910k0ycOFHmzZsnAwYMkNNOO012+lxVNz8/XwYMGCB/97voimLatGkybtw4mTVrlkyZMkVKS0tl1KhRkh/BoiuZmZkyadIkmTt3rnz//fdyyimnyOjRo2XJAfyYfc6cOfLMM89I/9AhtQgdddRRsm3bth//zQid8uFTdna2DB8+XGJiYmTy5MmydOlSefjhhyU1NdX3NubMmVOlD1OmTBERkfPPP9/X7R988EF56qmn5IknnpBly5bJgw8+KA899JA8/vjjET2WK6+8UqZMmSIvvfSSLF68WEaNGiX/v707j4+qOh8//iQhGyEBYkDWRHFhEUQQUcRKFUQtKi5FvxbrXpeixR361ZaqdRdbFXGrlYpWsL+CFSsoglBUcEE2Adl3UHZCAmR9fn883+nM5J6bzOQGScLn/XrlBfPk3Dt3bmbOmXvOuefp16+fbAot+nMYuewyW7PivfdsFHPGDJHu3W1UOlLk2y4jw9avq+zjmJISvU08xo61+rd1a5ud9NxzNkIbWhMpOdlm+CxfbvVpw4a2rsX554fLiNj6fStX2rpOl1wi8thjNsKdnGztw6ef2tobV1/tfyz793tnVYmIPPKIJdt46SWRE06wfzt0sOeKFHkOWra0fys7b126RM/crcrh1jZURFvhRVtBWxESS/3+8ce2xlzr1jZD55e/tDWbIuuVhg1Fjjkm/Lhly3A9tmePzbCM/A7coIF3Bs+KFVaPt2tn7cdRR1m8Nl5fnHCC3fGxbp2t7VdSYkmBRo2yBEunn27JHyZMsPWf/Ljaj06d7I6GOXNsZuvWrTZ76MYbw2ViPVeVtS9Ll0b/TUTsjolI1b3mq4vtDm2FF21FHW0rDkrXlY8dO2zNiEcfrbycX89zkyaqf/ub/f/mm23UdsIE1YULVVessJHWyA7OmprJ9Npr9tyRSkpstlVoVtYvf+kdCZk+3fa3c6f7+X76U1sLZM8eK1dYaPGf/1z1uefc2xQV2Tn88MNwrKzMjq/iTKqK/vUvG9GuuPbTSSepPvig/f+xx2xkaOxYG91fscJmMkW+tspmMp13nt3bfbjo2bOnDol4wWVlZdqqVSt97LHH4t6XVHPEoaKtW7eqiOjMmTMD7adp06b6l8jhpxjs3btXjzvuOJ06dar26dOnWiMOXSOnTFTDsGHD9Iwzzgi0j4qGDh2qxxxzTMwjBgMGDNDrr78+KnbppZfq4MGDY37Offv2aVJSkr5fYdGf7t276/1VDUseJm64wUZwQ0RsHaJIjRvbCLeq/5pMFcU6kymkoCC87sfll3tHZVVtDY6tW+3/PXuG1+SraOlSW0tq715rCwcNCj+HiP8aG6+8YqP0VSkqUu3UydYhUXW3e/PmRa+357cmU0WVtbkdOqg+9VTVx1df0VZEo60wtBX+Iuv3NWtszc877rA1i5Yts+/mVdXnEyeG14fbvdv+X/HtfvHF0fVZ+/Y2A+jjj+1OhG+/jW5bamIm07Rp7uuN3NzwXQm/+110vauqunq1bffNN+7nu/pqazdUbWbY4sX2/3vuUb3rLv/jbNVK9eWXq349Y8fa869ebY+rc65Cd2SE1jqMvAYJ+fOfo/+W1b3me/xxm/FUl9BWRKOtMHWxrfhRZzJlZ9v9xC+84M5sE8pY0LGjyIYN9hOyZIn9vlMne/zZZ7a+0CWX2IhqixaWuS5SSorNzAmqVy977rlzw7Hp0+2e41Dve69edv93aG0jEbtPun17EVdH52uv2fm46KLwMYa2LSnxP+6UFDsHS5aEY4mJlrL6rbdsJKiiggK797ljR/s3tI6UiI0CLVsWfV4HDhS56iq717tdOxuFr3gMfsf37beWTvVwUFxcLHPnzpV+ETfVJyYmSr9+/WR26Kb6Q2DP/6USzM7Ortb2ZWVlMm7cOCksLJReFYeTqjBkyBAZMGBA1DmJ14oVK6RVq1bSrl07GTx4sKyPc/jwvffekx49esigQYOkefPm0q1bN3n11VerfTzFxcXy5ptvyvXXXy8JfmnJKjj99NNl2rRpsvz/PjwLFiyQTz/9VM4///yYn7e0tFTKysokrcLwYnp6etyjMPVVp07xZUmLVbxtR0aGjc7u2mUzPwcO9JZp3NjW5luxwtavcJVRFbn5ZpFnnrGR2rKy6HZBxP+4unWzGUu7dlX92o455sc9bwcOWOaiw6VtqIi2wou2wtBW+Ius3+fOte/cI0eKnHaarevj+r5bmcaNrZ6O/A5cWhr93T70nfiBB2zWVMeOVdep1XHyyTZTddq0cGzZMpuZE/oo9eplM04jJ7BMnWozhkLf2SNNm2aze267zR5XbD8qa9O6dYu+rvATet7Cwpo7Vx07Rv9NRGz2VKRYrvlc6to1CW2FF22FqZNtRY13W1Vh1SrVFi1sJPX//T9bJ2jJEut579DBypSXW8/2T36iOneureV08sk2gybkkkuszLx5NuPmwgstC11kB+c551g2go0b7T5hP1u22H5efTW83tG8eTbzKuS882xNiS++UP30U8vacOWV4d/v3m33ff/yl9aTP26cZcBwjQz88IPN1IrMBNexo61X8fnnqo0aVb721F13qV52WXRsxw47f23a2GyvxYvt3L72mo2Kh0ZLBg60cz9rlp23886z3xcX2+/vvNMyPHz2mf1dbrzRMllEjvL86ld23/iaNXZey8osvmaNzbJau9b/2OuTTZs2qYjo5xXSZNx7773as2fPuPcnNTDiUFZWpgMGDNDevXvHve3ChQs1IyNDk5KStHHjxvrvf/87ru3ffvtt7dy5s+7/v4VcqjPi8MEHH+g777yjCxYs0ClTpmivXr00NzdX82NNkaKqqampmpqaqr/97W/1m2++0ZdfflnT0tJ0zJgxcR1LyPjx4zUpKUk3uVI3+igrK9Nhw4ZpQkKCNmjQQBMSEvTRqqZwOvTq1Uv79OmjmzZt0tLSUh07dqwmJibq8a5F4uqx7dstS8zYsbZOx+rVto7ckUeqRg7s1NRMpkcesRHl776zOi5UP1Y0ZYqt97R6ta0l2LWr6qmnRpd/5x173lWrVN9910ZbL73Uvb9XXomu27/4wurf2bNVf/97q7v9lJbaOoGTJoVjkyapDh5s/y5bZq/nqadsFm5o/Y2anMnk1+Z+8om1a6HZuocb2opotBVhtBWx1e/z51ud9Oc/W136xhuWqTqemUyqNrMlO9viS5fa99nMzHB9VlZms/mvuspmy0ybZt93453JtGOH/T60vt24cfZ4y5ZwmVtusXZm+nRbf69XL/sJKS21tfn697fXP2WK1fG//a33+fbvt2uAyGM6/3x7ffPn27VBZWuvPvecXWdFuuwym1U1Z459r//kE9XTTrM1AktKqn+uKs5kmj3b1n166im7bnn+ebs7I/JvGcs1n2smU16ed62p2oy2IhptRVhdbCt+9E4mVbutYMgQ+/CnpFhDcdFF0Wmi162zWEaGVSSDBkUvVrpmjTVK6enWKTJqlPc2rtmzLVVmamp0I1PRiBHe1Msi4QsTVWswrrzSvihnZaled1106lRVaxzPOMOer3Vra8xc/ud/vIt7f/GFNRDZ2d5poxUtXmyve/fu6Pju3arDh1sHWEqKNdD9+lllH5qNt3OndYQ1bmz7OPdcq9QjX+fAgfY6mze3RXQrpnddtswamvT06AuRRx+1/R0uamNjcMstt2heXp5u2LAh7m2Liop0xYoV+vXXX+vw4cM1JydHF4fmWldh/fr12rx5c10QsVJndRqDinbt2qVZWVlxTa9NTk7WXpHf1FT19ttv19NOO61ax9C/f3+94IIL4trm7bff1jZt2ujbb7+tCxcu1DfeeEOzs7PjbpBWrlypZ555poqIJiUl6SmnnKKDBw/WDqEe+cPEgQNWt3XvbnVXw4Y2Tf+BB1T37QuXq6lOpq1brcOkUaPoL8MVjR9vU/hTUmzwZMgQb7387LP2BT852S4oHnjAu2C2qrVveXnRgw+q1h5kZ1v7UNXan/fdZ+1LyKpVdpFx/PFWXzdpYhcBkW1bTXYy+bW5N91ktzscrmgrwmgrotFWxF6/P/OM3RIc+u76xhvxdzKVlNh1QlaW1Yd33eX9jjt1qg38pqZafTZjRvydTKFFyCv+jBgRLrN/v9023bSpveZLLonuhFK1zp3zz7fXnJNjSXhKSrzPN3x4dIIeVev4OeUUe6233hoeEHbZscMWXY9c2/mVV+w6q1kza+Nycy2xT+RAcnXOVcVOJlUbEG/Txl7nhReqPv109N8ylmu+ip1Mn39uf+PI91BtR1sRRlsRrS62FYekkwnB/fznVa9t9WMqKrIG6NNPD/WR/HiKioo0KSnJU4FfffXVetFFF8W9v6CNwZAhQ7RNmza6OnSzfEB9+/bVm6pa6Ov/TJw48b8VVuhHRDQhIUGTkpK0tOJCYHHo0aOHDh8+PObyubm5esMNN0TFRo8era1atYr7udeuXauJiYn67rvvxrVdmzZtdNSoUVGxhx9+uFoZLVRVCwoKdPP/Lfpz+eWX689ci/7gsLdli3VI1abZpNu22THVULVUJ9FWhNFWRKOtQG1xzz1Vr+1al1x+uc1KrktoK8JoK6LVxbbiR12TCTXnqadszY7aYv16kf/9X5HevQ/1kfx4UlJS5OSTT5ZpETfVl5eXy7Rp0+K+5zgIVZXbbrtNJk6cKNOnT5ejjz66RvZbXl4uRUVFMZXt27evLFq0SObPn//fnx49esjgwYNl/vz5kpSUVK1jKCgokFWrVknLUDqSGPTu3VuWLVsWFVu+fLnk5eXF/fyvv/66NG/eXAYMGBDXdvv27ZPExOjqNSkpScrLy+M+BhGRjIwMadmypezatUs+/PBDGeha0AeHvRYtbL2/2pQFae1akdGjRWqoWqqTaCvCaCui0Vagtrj/fpG8PFv7qq4rLra1m+6881AfSXxoK8JoK6LVybaixrutgMPIuHHjNDU1VceMGaNLlizRm266SZs0aaLfR97bWYm9e/fqvHnzdN68eSoi+swzz+i8efN03bp1MR/Drbfeqo0bN9YZM2boli1b/vuzL445wsOHD9eZM2fqmjVrdOHChTp8+HBNSEjQjz76KOZ9VFSdaa133323zpgxQ9esWaOfffaZ9uvXT3NycnRrKC1XDL788ktt0KCBPvLII7pixQp96623tGHDhvrmm2/GdSxlZWWam5urw4YNi2s7VdVrrrlGW7dure+//76uWbNGJ0yYoDk5OXrffffFtZ8pU6bo5MmTdfXq1frRRx9p165d9dRTT9Viv0WCANRKtBX+aCtoKwAY2gp/tBV1q62gkwkI6Pnnn9fc3FxNSUnRnj176pw5c2Le9pNPPlER8fxcc801Me/Dtb2I6OuRC69U4frrr9e8vDxNSUnRZs2aad++fQM1BKrVawyuuOIKbdmypaakpGjr1q31iiuu0JUrV8b93JMmTdLOnTtramqqdujQQV955ZW49/Hhhx+qiOiyZcvi3jY/P1+HDh2qubm5mpaWpu3atdP7779fi1yL8VRi/Pjx2q5dO01JSdEWLVrokCFDdHfFRX8A1Am0FW60FbQVAMJoK9xoK+pWW5Ggqlrz86MAAAAAAABwOGFNJgAAAAAAAARGJxMAAAAAAAACo5MJAAAAAAAAgdHJBAAAAAAAgMDoZAIAAAAAAEBgdDIBAAAAAAAgMDqZAAAAAAAAEBidTAAAAAAAAAiMTiYAAAAAAAAERicTAAAAAAAAAqOTCQAAAAAAAIHRyQQAAAAAAIDA6GQCAAAAAABAYHQyAQAAAAAAIDA6mQAAAAAAABBYg1gKlZeXy+bNmyUzM1MSEhIO9jEBIiKiqrJ3715p1aqVJCYe3P5Q3uOor/gcob7jPQ4Ex+cI9R3vcSC4WD9HMXUybd68Wdq2bVtjBwfEY8OGDdKmTZuD+hy8x1Hf8TlCfcd7HAiOzxHqO97jQHBVfY5i6mTKzMz8786ysrJq5siAKuTn50vbtm3/+/47mHiPH77mzxfp06f628+cKXLSSTV1NDWPz9GP47777nPGlyxZ4oz/z//8jydWUFDgLNuggbupnjRpkjN+6623emLnnXees2w8ysvLnfGDPSJcFd7jQHB8jlDf8R6v3+r79/naItbPUUydTKFpfllZWXxQ8KP7MaaZ8h4/fDVqFHz7uvCW4XN0cKWmpjrjfh1E6enpnlhZWVlc+/CLN2zY0BOrib9Hbe1kCuE9XjutXy+yfXv82+XkiOTm1vzxoHJ8jlDf8R6vnw6X7/O1RVWfo5g6mQAAAIB4rF8v0r69yIED8W+bliaybBkdTQAA1DW1Y/gRAAAA9cr27dXrYBKx7aozAwoAABxazGQCAMBhxowZzvjo0aM9Mb/b5Xbu3OmM/+Y3v/HEkpKSnGVdt7+JiJx22mnO+DvvvOOJvffee86yjz/+uDOenZ3tidWW2+IAAABQe/GNEQAAAAAAAIHRyQQAAAAAAIDA6GQCAAAAAABAYHQyAQAAAAAAIDAW/gYAHDaWLVvmiT3xxBPOssuXL3fGTzzxRE9s6dKlzrLp6enOeE5Ojie23SeVVufOnZ3xXbt2OeMNGnibdr+Fye+44w5n/Nhjj/XEbrnlFmfZ5s2bO+MAAAA4/DCTCQAAAAAAAIHRyQQAAAAAAIDA6GQCAAAAAABAYHQyAQAAAAAAIDA6mQAAAAAAABAY2eUAAHVCWVmZJ5aUlOQs++KLLzrjc+bM8cQyMjKcZXv27OmMN2rUyBM7cOCAs+x3333njLuyzvllaXO9bhGRr776yhm/4YYbPLGmTZs6y+bn5zvjW7Zs8cRuvvlmZ9mXXnrJGT/yyCM9sfLycmfZxETGvAAAAOoDvtUBAAAAAAAgMDqZAAAAAAAAEBidTAAAAAAAAAiMTiYAAAAAAAAERicTAAAAAAAAAiO7HACgTvDLJOeyaNEiZ7xFixYx77dBA3cTuWvXLk/soosucpZdsmSJM+7K3jZy5Ehn2YceesgZ79+/vzPuej1+2e8aNmzojGdlZXlifpnh/v73vzvjd955pydGFjkAAID6jW97AAAAAAAACIxOJgAAAAAAAARGJxMAAAAAAAACo5MJAAAAAAAAgbHwNwCgznItwi3iv9B1s2bNYt5HaWmpM56ZmemJbdu2zVn2pz/9qTP+ww8/eGLvvPOOs+zRRx/tjHfo0MEZLyws9MSKi4udZUtKSpzx9PR0T8y1aLqIyMaNG53xsrIyTyyexdsBAABQ9zCTCQAAAAAAAIHRyQQAAAAAAIDA6GQCAAAAAABAYHQyAQAAAAAAIDA6mQAAAAAAABAY2eUAAHXWmjVr4irvyjpXVFTkLOuXCa1Ro0ae2Pr1651l8/PznfGWLVt6Yn5Z5L7//ntnfO3atc64K/vdkUce6SybkJDgjLsyw+3du9dZ1i+T3549ezyx7OxsZ1kAAADUD8xkAgAAAAAAQGB0MgEAAAAAACAwOpkAAAAAAAAQGJ1MAAAAAAAACIxOJgAAAAAAAARGdjkAQJ21adMmZ9wv45krU1uLFi2cZf0ywy1dutQT2717t7Psli1bnPH09PSY9zFv3jxnPCcnxxnv0KGDJ7ZhwwZnWVcWORGRgoICT8zvPPn57rvvPLHTTz89rn0AAACgbmEmEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwOhkAgAAAAAAQGAs/B1BVWOKiYgkJv74/XP/+c9/PLEzzzzzRz+OmlBYWOiJZWRkHIIjAVCX+S38nZqa6oy76p7S0lJn2SOOOMIZX7dunSe2a9cuZ9m0tLSYj6958+bOsh07dnTGk5OTY35Ov4XQjz/+eGf8448/9sQaNWrkLOu3APnixYs9MRb+BoCDw++axS8BRatWrTwxVxspIvLMM88447fddpsn5vd9PiUlxRl38UtKkZSUFPM+ABw6zGQCAAAAAABAYHQyAQAAAAAAIDA6mQAAAAAAABAYnUwAAAAAAAAIjE4mAAAAAAAABEZ2uQgJCQkxxeL1m9/8xhlfv369M/6Tn/zEGZ82bZondvTRRzvLtm3bNsaj8+eXcalBg9jfNk899ZQz/o9//MMTmz59etTjgoKCmJ8HwOHJL2uaX/2xcuVKT2z//v3OskcddZQz7so655fpbceOHc64Kxvdvn37nGX37t3rjLdr184Zdx2LX0aePXv2OOOzZ8/2xDp37uws279/f2fcda4BAF5+meFc1yGrV692lr3jjjuc8VtuucUZ/+abbzyxoUOHOsuOHz/eGf/3v//tif397393lr3ggguccVf2u4YNGzrL3nTTTc64q12ueE79zjGAmsdMJgAAAAAAAARGJxMAAAAAAAACo5MJAAAAAAAAgdHJBAAAAAAAgMDoZAIAAAAAAEBg9Sa7XHl5uSfmlxmuJjLG+WV2OOWUUzyxX/ziF86y3bt3d8b9sgC5MifcfvvtzrLvvvuuMx6PeLLIjR071hkfN26cM+7K/PTdd99VWQYAIuXn5zvjhYWFzrirXvHL0ulXBx1zzDGeWGpqqrPsl19+6Yxv27bNE+vUqVNcx1FSUuKMu7Ll+WXq8Xvtr732mid2//33O8v6ZcXz+xsAAKLFc23il1n0vffei+s5J0yY4Imdc845zrKLFy92xouKijwxvwzXM2fOdMbT0tL8DtEjnmsTAIcOM5kAAAAAAAAQGJ1MAAAAAAAACIxOJgAAAAAAAARGJxMAAAAAAAAC+1FXT1NVZ9y12F08ZUVEEhNj7y8rLi52xr///ntPrFu3bs6yd9xxhzM+bNgwT+zEE090ll27dq0z7rdYaseOHT2xjz/+2Fm2adOmzvj//u//emIXX3yxs2xycrIz/umnn3pio0ePjmsfXbt29cRat24d9Xjv3r3ObQEgxK8e9VuI25VYYfDgwc6yjz/+uDPuqtf82iC/hcl37NjhiW3dutVZdsGCBc64X9uSkpLiiZWWljrL+tWzRx11lCfmt3i438Lkfu04AKD6pk+f7oyvWrXKGc/NzXXGx4wZ44m5rjVE/BMKZWRkeGJ+12pbtmxxxs844wxPzO+1TJo0yRm/6qqrPLGysrJKHwM4eJjJBAAAAAAAgMDoZAIAAAAAAEBgdDIBAAAAAAAgMDqZAAAAAAAAEBidTAAAAAAAAAjsR80u55dtIGhZEZFZs2bFXHbEiBHOeMXsZiIir732mrNseXm5M75x40ZP7Msvv4z52ERE9u/f74y7MvUMGDDAWbZx48bO+IsvvuiJ/fWvf3WWzczMdMa3b9/uifllrujVq5cz/sUXX3hiFbMw+WUsAoAQv2w1OTk5zvju3bs9Mb8697jjjnPGXZnavvvuO2dZv2ymrjraL1Pe5s2bnfHevXvHvO9169Y5y/rV86tXr/bE/DLRpaWlOeOuOnzfvn3Osn6Z6wDUX6oaUxZKv2sCv21d39FdmUXj5Zels6SkxBmP5zldWUFFRB577DFPzFU/i/jXxS1atHDGX375ZU/slFNOcZb1q6PPPvtsTyw7O9tZ1pWdWkRk27Ztnphflrt//vOfzrgru1yDBg0qfQzg4GEmEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwOhkAgAAAAAAQGB0MgEAAAAAACCwWrvM/sqVK51xV2YgEZG3337bE/PL9vO73/3OGS8sLPTEvv/++5jLirgzT/hleygrK3PG/TLXHThwwBMrKipylh00aJAzftFFF3liy5Ytc5ZdtWqVM962bVtPrF+/fs6yflnuxo8f74lVzKyRnJzs3BbA4cmVqc0ve1tionsMxZUhxy9rjl+GS1c7lJeXF3NZEZGtW7fG/HzdunVzxl1tgt9+/I6vYlbPkEaNGnlifhmDXBlHRdwZjfza1Hbt2jnjAOqvhISEuLNJV9w+VrFksatq337ZyWoia9mYMWOccVfW0S5dujjL+l2bHHHEEc54y5YtPTFXlmwRkV//+tfO+A8//OCJdejQwVnW71ohKyvLE7v++uudZV1tp4jIm2++6Ym5Ms4B+HEwkwkAAAAAAACB0ckEAAAAAACAwOhkAgAAAAAAQGB0MgEAAAAAACCwuFaqW7VqlWcx0HHjxnnKNW/e3Lm93yKle/fu9cRKSkqcZf0WHj3rrLM8sVNOOcVZ9ssvv3TGXQvFuhajExFJSkpyxl2Lee/cudNZ1m8BVNf5EBHZv3+/J+a38LerrIh7Mdf27ds7y55xxhnOeNOmTT0xv9f47rvvOuOuRQgXL14c9Xjfvn3ObQEcnlwJIVJTU51l/dqQPXv2eGKuxU9F/BdzdSV4SE9Pj/n5RER27NjhibnaMRGR5cuXO+N+C267+C1u7teWuV5jZmams6xf3PUa/do3AIcfVY17Qe5Y+NVrQbnqRRGRl156yRmfN2+eJ5aTk+Mse+211zrjZ599tif297//3Vl2yZIlzrhfe3j66ac74y4vvPCCM37nnXd6Yq7XLeJ/TdW7d29PLDc311nWL/7111874wAODWYyAQAAAAAAIDA6mQAAAAAAABAYnUwAAAAAAAAIjE4mAAAAAAAABEYnEwAAAAAAAAKLK7vcX/7yF08mnwULFnjK+WX78T0IRwafxo0bO8tu27bNGXdl8PHLcpeRkeGMr1mzxhP79ttvnWU3btzojO/evdsT88v05pdtz5Whzo/fufbLdNSjRw9P7KuvvnKWHTVqlDPuysJ3wgknOMsmJCTEvI9jjz026nFBQYFzWwCHJ1f9Gm92uRNPPNETa9GihbOsXz3vytLpV1+5jlnEXTf6HceKFSuccb/X6MrWlJ+f7yzrly2pWbNmnpir3haJL5upX7Y9AIefhIQE3++JQbi+R/tlnPPLguyq//2ypvnV/9dcc40nNnPmTGfZjh07OuOrV6/2xPyuhfyuK/yuh+Lh93faunWrJ+Z3HeOXNXrMmDGeWP/+/Z1lXe2KiDvr3Pr166Mek90U+PEwkwkAAAAAAACB0ckEAAAAAACAwOhkAgAAAAAAQGB0MgEAAAAAACAwOpkAAAAAAAAQWFzZ5S6++GJPZrbs7GxPuQ0bNji337VrlzPuWu1/8+bNzrJ+WefWrl0bc1lXFjkRkcLCQk/MlflOxD/Ljus5GzZs6CzbpUsXZ/yss85yxnfs2OGJTZgwwVn2o48+csbj4ZeFwS87hItfJr+UlBRPrGJ2jrS0tJifB0D958pi45cdzS/DpiuDm1+WNr9MPUceeaQnVlRU5Czr14a49jF9+nRn2SVLljjj7dq1c8abNm3qifm9Fr/z5MrE5Kq3RfyzDrnOq18mOgAQcWfH9FNeXu6M+2WSc5k/f74z7qozk5OTnWXvvfdeZ7xbt26emN/34qVLlzrjrkyfflnu/M7dm2++6Yzfcsstzng8XPX8unXrnGWPP/54Z9yV9XXixInOsr/85S+d8ZNOOskTW7RoUdRj13UegIODmUwAAAAAAAAIjE4mAAAAAAAABEYnEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwOLKLtehQwfJysqKiuXl5XnKtWzZMq6DKCsr88T8MuGsXr3aGXdlHZo8ebKz7LXXXuuMu7IbHHHEEc6yfll2fmwXXnihMz5lyhRnvGvXrp6YX6Y8v+wcjRo18sT8Mlr4ZXLYsmWLJ1Yxa13FbHMADm/bt2/3xDIzM51l/TLGHX300Z6YX1YfvzrIlUnOlbVOxD/bqivLmitbq4h/Bji/LEWu8n5Z+FJTU51xF79z6rcPV7vg17YDOPyoqqeecF0T+PHL3pmfn++JrVq1ylnWLxOaKwO0X6bPYcOGOePvvPNOTMcmItK2bVtn3HUd8sknnzjLnnLKKc646xpJxJ3R9Oyzz3aW9eO6rvjhhx+cZa+44gpn3HUtc/755zvL/uIXv3DGXRmxK7Y3fllgAdQ8ZjIBAAAAAAAgMDqZAAAAAAAAEBidTAAAAAAAAAiMTiYAAAAAAAAEFtfC340bN/Ys/O1awG7atGnO7f0WHk1OTvbEmjRp4izbuXNnZ7ziotEiIrfddpuzbLt27Zzx4uJiT8y10KyIe4E5P64FXiuL+y2i7VrgsHXr1s6yfguxzpo1yxNzLdon4r/Iq2tBcL+FGl1/FxH3grp+i6wDgIi7zkxLS4u5rIhITk6OJ+a3KGrjxo2dcVfyg927dzvL+i1M60qK4Ld4+M6dO51xv0W0v//+e0/Mr02Npy3za8P94q7X7mpnARyeEhISJCEhISrmV2fGw/U9+l//+pez7LJly5xxV/06f/58Z9lvv/3WGd+xY4cntm3bNmfZ9957zxm/4447PLEZM2Y4yz744IPOuKtNEBF5+OGHPTG/hb/37NnjjDdv3twZj+c4XFyvuzLz5s3zxComdCKhEPDjYSYTAAAAAAAAAqOTCQAAAAAAAIHRyQQAAAAAAIDA6GQCAAAAAABAYHQyAQAAAAAAILDAKRzatm0bU6wyK1eu9MT8MgOtWLHCGXdl9klMdPeh+WWSKCoq8sQqZtMLcWXEExFPlgwRdyYiEZHs7Gxn3C+rmytbhl+mhmbNmjnjruMuLy+P+flERHbt2uWMu2RmZjrjrtd+zDHHRD12ZS4EgEh+9WU8mdAWL17sLOvXhrjiftnlXG2CiEjTpk09Mb/X4tfepKenO+Ou7KKurKAi/tneXG2LX2ZWP64sUX4ZRwEcfr788kvJyMiIir300kuecn5Zwfwy0bnqaL+yft9TXVlH/bJ0btmyxRmfM2eOJzZ58mRnWdc1iB+/TKR+GeD8uLLfnXrqqc6yftdl55xzjifmat9ERMaNG+eMDx061BM77rjjnGW7d+/ujK9bt84Te/bZZ6Me+2XCBlDzmMkEAAAAAACAwOhkAgAAAAAAQGB0MgEAAAAAACAwOpkAAAAAAAAQGJ1MAAAAAAAACCxwdrmacOyxxwbeR5cuXWrgSFCb+GVlAnB4ctUJfpnX/LJ6Ll261BM7/fTTnWU7dOjgjLsyr/llb9u2bZsz7sp05Jf5xi/ul43OlWHIL1toSkqKM+7KOur3fH6vPS0tzRPzy/oH4PBzwgkneLI433jjjZ5yfvWoX7ZjVyY0v+xoBw4ciHkffnXdAw884Iy76lG/rNVHHHGEMz5v3jxPzC/L3d133+2M+2WcdmWp88tQ98gjjzjjGzdu9MRatmzpLOvXDrnK+2VPrZiNMMTVXldsb2h/gB8PM5kAAAAAAAAQGJ1MAAAAAAAACIxOJgAAAAAAAARGJxMAAAAAAAACqxULfwMAUBXXoqGuBbRF/BMHZGdne2K33nqrs+zq1aud8W+++cYT81tYddGiRc74kiVLYjo2Ef+Fv12Ltoq4F0PfvHmzs+zVV1/tjJ922mmemN+CsH6v0SUxkbEtACYjI8OzkPNPfvKTQ3Q0qMzkyZMP9SEElp+ff6gPAThs8G0PAAAAAAAAgdHJBAAAAAAAgMDoZAIAAAAAAEBgdDIBAAAAAAAgMDqZAAAAAAAAEBjZ5QAAdYJfxjgXv4xsZ5xxRsz7aNeuXVxxlz59+sRctry83BkvKipyxtPT02Ped03wy6AXz9/F7zUCAACgfmAmEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwOhkAgAAAAAAQGB0MgEAAAAAACAwsssBAOqE1NRUTyyezGYiIsnJyTGX9ctQl5SU5ImpqrNsPMeXmOge9zmYWeTiOe7MzExnWdf5EHFnkisuLo7j6AAAAFDXMJMJAAAAAAAAgdHJBAAAAAAAgMDoZAIAAAAAAEBgdDIBAAAAAAAgMBb+BgDUCdu3b/fESkpKnGX9FqNu0ODgNHt+C3zXxILgB5NrcW4R9/nzW/i7qKjIGXeVj2fhdQAAANQ9zGQCAAAAAABAYHQyAQAAAAAAIDA6mQAAAAAAABAYnUwAAAAAAAAIjE4mAAAAAAAABEZ2OQBAnVBWVuaJ+WUrKy0tdcZbtmxZo8dUlZrIIhdvhjpXeb+y8WSXS09Pd5b1y/Dn+hv4ZagDAABA/cBMJgAAAAAAAARGJxMAAAAAAAACo5MJAAAAAAAAgdHJBAAAAAAAgMDoZAIAAAAAAEBgZJcDANQJiYnecZG9e/c6y+7evdsZd2Wo8xNP5rWDKd4MdTWR0c6lQQP3Vwa/c+rK/JeRkVGjxwQAAIDahZlMAAAAAAAACIxOJgAAAAAAAARGJxMAAAAAAAACo5MJAAAAAAAAgbHwNwCgTrjuuus8sblz5zrL+i38ffLJJ8f8fH4LXdcnrsXU/bRs2TKuuOv8NWnSJObnAwAAQN3DTCYAAAAAAAAERicTAAAAAAAAAqOTCQAAAAAAAIHV/wUnAAAADkPDhw+Pe5vHH3/8IBwJAAA4XMTUyaSqIiKSn59/UA8GiBR6v4XefwcT7/HDV0FB8O1r89umPn2O9u7d64nt27fPWXb//v3OuOvYkpKSnGX9zllCQoLfIdY5ZWVlzrjrnLjOv4hIUVGRM+46T4WFhc6yQd4z9ek9XtP8/jaVqcnXVt/r1/qEzxHqO97j9RvtzY8j1s9RgsbwSdu4caO0bdu2Zo4MiNOGDRukTZs2B/U5eI+jvuNzhPqO9zgQHJ8j1He8x4HgqvocxdTJVF5eLps3b5bMzMx6NYKL2k1VZe/evdKqVau40mxXR5D3eH5+vrRt21Y2bNggWVlZ1Xp+9sE+DtY+6srnCKiuuvIeP9R1AftgH5WpK58joLrqynv8UNcF7IN9VCbWz1FMt8slJiYe9B5fwKVx48Y/yvPUxHs8Kyur2h929sE+DuY+6tLnCKiOuvQer+v1Cfuov/uoS58joDrq0nu8rtcn7KP+7iOWzxHZ5QAAAAAAABAYnUwAAAAAAAAIjE4mIKDU1FQZMWKEpKamsg/2UWv3AeDQqi11AftgHwBqr9pSF7AP9hFETAt/AwAAAAAAAJWptTOZ1q4VSUgQmT//UB9J7TRtmkjHjiJlZYf6SLyOOkrkz3+u2X0WF9t+v/66ZvcLAPXFjh0izZtb+1lbnHaayD//eaiPAgDcrr1W5OKLYy9fX69PatN1xZgxIk2axLdN5LUH1wzAoefpZNq2TeTWW0Vyc0VSU0VatBA591yRzz47FIf345gwQaR/f5EjjvBvOA4cEBkyxMo0aiRy2WUiP/wQXWb9epEBA0QaNrQv+vfeK1JaGv79vHki3brZ9hdeKLJzZ/h3paUiJ58s8uWXsR3zffeJPPCASFKSPS4rE3n8cZEOHUTS00Wys0VOPVXkL3+J61TUWikpIvfcIzJs2KE+EgCHyvffi9x+u0i7dtY+tW1rdem0aTX7PLF2lK9aJXLJJSLNmolkZYlcfrm3XVi+XGTgQJGcHCtzxhkin3wS/v3OnfYaGjWy9mHevOjthwwRGTkytuN+5BF7rqOOio7/858iP/2pSOPG9jwnnijy0EPRbVBQfhcFDzwgMny4SHl5zT0XgPqlvl17cF1xaHHNABx6nk6myy6zSutvf7Mvx++9Z19Od+w4BEdXw0pK3PHCQvvi/8QT/tveeafIpEki//iHyMyZIps3i1x6afj3ZWXWEBQXi3z+uZ2/MWNEfv/7cJkbbxQ5+2yRb74R2bNH5NFHw78bOVKkd2+Rnj2rfh2ffmoXN5ddFo49+KDIn/4k8vDDIkuW2EXMTTeJ7N5d9f5qu+Ji+3fwYHvtixcf2uMB8ONbu9a+ME+fLvLUUyKLFolMmSJy1ln2Rf3HVlhoFxEJCXZMn31mddWFF0Z3qFxwgX3Znz5dZO5cka5dLfb99/b7Rx4R2bvX2oWf/lTkV78KbztnjsgXX4jccUfVx7Nvn8hrr4nccEN0/P77Ra64QuSUU0QmTxb59ltrbxYsEBk7NuhZqNr559vrmzz54D8XgLqpvl17cF1x6HHNABxiGmHXLlUR1RkztFIiqq++qnrxxarp6arHHqv6r39Fl1m0SPW881QzMlSbN1e96irVbdvCv588WbV3b9XGjVWzs1UHDFBduTL8+zVr7HnmzbPHpaWq112n2r696rp1Fnv3XdVu3VRTU1WPPlr1D39QLSmJPs7Ro1UvvFC1YUPVESMqf10VnzNk927V5GTVf/wjHFu61MrOnm2PP/hANTFR9fvvw2VefFE1K0u1qMgep6fbdqp2XD/7mf1/1SrV445Tzc+v/PhChgxR/fnPo2Ndu9rrr0yfPqq33656772qTZuqHnmk95zs2qV6ww2qOTmqmZmqZ52lOn9++PcrV6pedJH9TTMyVHv0UJ06NXofeXmqf/pT+PGrr9rf+eOP7XFV740+few1Dh2qesQRqj/9afh3Z52l+sADlb9OAPXP+eertm6tWlDg/d2uXeH/r1tndVRGhtVhgwZF18tV1WF9+ljdHvnj8uGHVufv2ROO7d6tmpAQ3t+2bbb9f/4TLpOfb7FQmfPPt7ZCVXXJEmurVFWLi61e/+qrGE6OWvvUrFl07Isv7Ln+/Gf3NpHnbfRo1XbtrK07/njVN96ILjtypGrnznZ8bdqo3nqr6t699rtPPvGes8i25brrrJ4HgIpivfaorA5SVX39dfuuOWWKaocOVr+fe67q5s3hMqWlqnfeGb72uPde1auvVh04MFwm3uuTytT364pYz9U//2nf5dPTVU88UfXzz6P38/rrqm3b2u8vvlj16adtnyHVufZQ5ZoBOJSiZjI1amQ/774rUlRUeefUgw/arQELF4r87GfWYxyaprl7t/Wsd+tm98NOmWJTQC+/PLx9YaHIXXfZ76dNE0lMtNsOXFPqi4pEBg2y6aazZtl02lmzRK6+WmToUOthf/ll6+F/5JHobf/wB9vvokUi118fZw/c/5k712ZB9esXjnXoYMcxe7Y9nj1bpEsXkSOPDJc591yR/PxwL3rXriJTp9qo9rRpdsuCiMgtt4g8+aRIZmZsxzNrlkiPHtGxFi1spHzbtsq3/dvfRDIybHT8ySftlompU8O/HzRIZOtWG3WeO1eke3eRvn3Df9uCAvt7T5tmo07nnWcj9+vXu5/vySftVomPPrL9xPLeCB1nSorNDnjppXC8Z097/QAOHzt3Wl0xZIjVXxWFbtMqL7fbxXbutJHhqVNFVq+2mTwhVdVhEyaItGljdeOWLfbjUlRks5giE3OkpVlb9umn9viII0Tatxd54w1r80pLra1q3txmZYlYuzB9uv3uww/D7cKTT9pIfsW63s+sWeF9hrz1lrXpv/61e5vQeZs40drSu++2mU433yxy3XXRt/UlJoo895y1Z3/7mx3zfffZ704/3W4vzMoKn7N77glvS70NwE+s1x6V1UEh+/aJPP20zdL8z3+sXo+si0aOtGuFv/7V6umdO63+ixTP9Ul11ZfriljP1f33299h/nyR448XufLK8G1/X3xhM3Bvu81+f9ZZIn/8Y/T28V57hND2AIdQxV6n//f/bJZLWprq6aer/va3qgsWRJcRie4ZLiiw2OTJ9vjhh1X794/eZsMGK7Nsmbu3KzTiu2iRPQ71fs+apdq3r+oZZ1jPf0jfvqqPPhq9j7FjVVu2jD7OO+6opIutAr8Rh7feUk1J8ZY/5RTV++6z///qV97XXFho+/vgA3v87beqZ56pmpureuWVNgL+xhs2grJxo21/zDGq999f+XE2buwdZV68WLVjRxv16NJF9eabw88b0qePnceKr2HYMPv/rFk2QnLgQHSZY45Rffll/+M54QTV558PPw6NJtx3n/09vv02/LtY3ht9+tgMNZdnn1U96ij/YzkURo0apXl5eZqamqo9e/bUL774IuZtZ86cqRdccIG2bNlSRUQnTpwY9/M/+uij2qNHD23UqJE2a9ZMBw4cqN99911c+xg9erR26dJFMzMzNTMzU0877TT9oOIbKA6PPfaYiogOHTo0ru1GjBihIhL10759+7iff+PGjTp48GDNzs7WtLQ07dy5s34V65QQVc3Ly/Mch4jor3/965i2Ly0t1QceeECPOuooTUtL03bt2ulDDz2k5eXlcb2O/Px8HTp0qObm5mpaWpr26tVLv/zyy7j2UR+EZuRMmFB5uY8+Uk1KUl2/PhxbvNi2rey0+dVhldm61erLoUOtri8oUL3tNnuum24Kl9uwQfXkk22GU1KS1YnffBP+/e7d1h7k5lr7sHix6vLlNgq9fbvV5UcfbTOyItvAigYOVL3++ujY+efbqHFVTj/d2rBIgwaFR8Vd/vEPm2kaEppF4PKvf1nbVFZW9bHUZ7QVXrQVtBWqsV17VOSqg0SiZ9K88ILN2g9p2VL1ySfDj0tKbFZU5EymivyuT4LMZKov1xUV+Z2rv/wler8i4RlYV17pbWuuuMK/PQmJpd2ujdcMsaCt8KKtqHtthXNNps2b7X7o884TmTHDZrOMGRNdLtRbLmIjy1lZNgNGxNZ6+OST8OhEo0bWQy9i9/yKiKxYYT3Z7drZtqGFSiv2Sl95pfWUf/SRLVoasmCBjTRHPsevfmUjqPv2hcvFOgr8YzjhBBtdX7dO5O9/t1GMESNERo2yxWxPP91e14QJdp+2n/37bcQ8UqdONgI9Z47N2Nq61Xr5b7wxulzk301EpGXL6L9bQUF4EcLQz5o14b9bQYGNRnTsaKPgjRqJLF3q/buNHCny6qs2UnTCCeF4LO8NEe+IfEh6evTf91AbP3683HXXXTJixAj55ptvpGvXrnLuuefK1tBJrUJhYaF07dpVXnjhhWofw8yZM2XIkCEyZ84cmTp1qpSUlEj//v2lsLAw5n20adNGHn/8cZk7d658/fXXcvbZZ8vAgQNlcTVuZv/qq6/k5ZdflhMrvtlidMIJJ8iWLVv++/NpaFpIjHbt2iW9e/eW5ORkmTx5sixZskRGjhwpTZs2jXkfX331VdQxTP2/6X6DBg2KafsnnnhCXnzxRRk1apQsXbpUnnjiCXnyySfl+eefj+u13HjjjTJ16lQZO3asLFq0SPr37y/9+vWTTZs2xbWfuk41tnJLl9pi4G3bhmOdOlldtXSpPY61DqtKs2a2lsakSbaPxo1tpmb37jaaGzruIUNs5tKsWbYA68UXW90cmiHVuLG1B+vWWfvQqZPNJHrqKZuJtHq1yLJltvDrQw/5H4+rXYjnvPXuHR3r3Tt8zkREPv7YZqO2bm2j47/8pa2XEkt9nJ5uI9tVzZCuz2grvGgraCtCYrn2iKUOathQ5Jhjwo8jv+Pu2WP17qmnhn/foIH3OiHW65Pa4FBfV8R6riI/4i1b2r+hv8vSpdF/ExGRXr2iH1e33a5t1wyxoK3woq2oo21FLD1RN9xgveQhIqoVO0YbN7ZRBFVbb+fSS1VXrPD+hNbTaN/eetg//tjWofj22+j9hnq/b7rJ7r+eNi36+dLSVJ94wv0codFS13FWxm/EYdo0i0euX6Fq5+SZZ+z/v/ud3b8cafVq2y5y1DrS1VdbL7uqjeAsXmz/v+ce1bvu8j/OVq0qn1kUMnasPf/q1fa4Tx8bdY80cKDqNdfY/x9/3NY8cZ3T0JpJN99s63ZMmKC6cKH9rmvX6P3m5dnIRFaW6mOPRT9fLO8N13GGPP64jV7UFj179tQhQ4b893FZWZm2atVKH6v4wmMg1RxxqGjr1q0qIjpz5sxA+2natKn+JXL4KQZ79+7V4447TqdOnap9+vSp1ohD14ofpDgNGzZMz6g4ZS+goUOH6jHHHBPziMGAAQP0+grTSi699FIdPHhwzM+5b98+TUpK0vfffz8q3r17d72/qmHJembHDpsJVHH2akV+o5ZNmqj+7W/2/1jrsKpmMkXati3cPhx5ZHik/OOPves2qdo6hn5VxF//qnrJJfb/Sy6xkXhV1fffV+3e3f8YfvELq3cj/eY3qo0a2fpOlWnaVHXMmOjYn/9sM6hUrW1MTbWZwbNn26zT116Lbhcrm8k0bpyto3E4o62IRlthaCv8RV57VLcOmjgxvK7e7t32/4pv94svjp7JFOv1SZCZTPXluqI65yq0Btcnn9jjk05SffDB6Of585+j/5bVbbdr2zVDLGgrotFWmLrYVnhmMrl06mSziWLVvbvdL3zUUSLHHhv9k5FhIw/LllmqzL59rWd61y73vm691VJoXnSR9dZHPseyZd79H3tseBS5ppx8skhycnSa7GXLrAc91Nveq5et+xTZ0Tx1qvXsd+rk3ee0adYLf9tt9risLJz9rqTEHvvp1s3WoapK6Hlj/dt1724Zjxo08J7TnBwr89lnItdea/dcd+li92yvXevdV8+etq7To4/a/fGRz1HZe6Mq335rr782KC4ulrlz50q/iJvqExMTpV+/fjI7dFP9IbBnzx4REcnOzq7W9mVlZTJu3DgpLCyUXhWHk6owZMgQGTBgQNQ5ideKFSukVatW0q5dOxk8eLCsj3P48L333pMePXrIoEGDpHnz5tKtWzd59dVXq308xcXF8uabb8r1118vCQkJMW1z+umny7Rp02T58uUiIrJgwQL59NNP5fzzz4/5eUtLS6WsrEzSKgwvpqenxz0KU9dlZ9taFC+84K7PQtluOnYU2bDBfkKWLLHfh+rDWOqwlJTK6+CKcnJsdHX6dGsDLrrI4qER1IptUmKie32PbdtstlJoYCpou/CLX9gI8OjR7m0iz1vFVOGffRY+Z3Pn2vGOHCly2mm2psbmzdHlKztntanePhRoK7xoKwxthb/Ia49Y6qCqNG5ss2i++CIcKy21fYfEc30SRH24rqipc9WxY/TfRMRmT0WK9dqjorrW9tBWeNFWmDrZVkT2OG3fbivxjx1r90KvXq36zjs2MhvZeVbVTKZNmyzLzc9/butgrFxp2R6uvdYyO5SV2X3UV11lvdHTptl9yJX1fv/pTzYiO2uWPZ4yRbVBA8t88O231oP+9tvR9x3HOpNpxw57nn//27YZN84eb9kSLnPLLTbCMH266tdfq/bqZT8hpaWW9aJ/f8vGNmWKnYPf/tb7fPv3W+aLyJ7988+3+6/nz7f7w995x/94n3vO1viIdNllNvoxZ47q2rU2QnDaaZYlKJRxr6qZTOXltmZT166WOWnNGtXPPlP93/8NZzi65BIbdZg3z471wgstg5PfaMKsWfZ3Cz2u6r3hd5yR+6543/ihsmnTJhUR/bxCmox7771Xe/bsGff+pAZGHMrKynTAgAHau3fvuLdduHChZmRkaFJSkjZu3Fj//e9/x7X922+/rZ07d9b9+/erqlZrxOGDDz7Qd955RxcsWKBTpkzRXr16aW5urubHmiJFVVNTUzU1NVV/+9vf6jfffKMvv/yypqWl6ZiKUzViNH78eE1KStJNmzbFvE1ZWZkOGzZMExIStEGDBpqQkKCPVjUNx6FXr17ap08f3bRpk5aWlurYsWM1MTFRjz/++Lj3VdetWqXaooVqp062fsfy5VbvP/us1aeqVoeddJLqT36iOneureV08slWp4TEUoedc45lstm4MTrzZUV//auNqq9cae1mdnb0aPG2bdbWXXqpPdeyZTainJwcnbUz5Be/iF5j4okn7PiXLLE2orJb9xcutDZx587o+H332VpQ995rGX3WrrVR55//PJx1buJEO6bRo+28jhxp24RGmufPD2epW7XK6uDWraNH4j/7zB5//LG97sLC8DH06aP60EP+x17f0VZEo60Io62I7dojljqoqplMqjazJTvb4kuX2vfuzMzwTKbqXJ+4HA7XFdU9VxVnMs2ebTN+n3rK2p/nn7fZx5F/y3ivPSJjteWaIRa0FdFoK8LqYlsR1cl04IDq8OE2Jb9xY7tNrX17W+R7376IjaroZFK1iuKSS6yiSE+3yu+OO+wiQNVST3bsaNNfTzzRUpdWVTGNHGmVymef2eMpU2yBwPR0uzWrZ0/VV16p/DhdQosFVpaCef9++4LftKmdl0suiW4sVK0SPv98O56cHNW77w538EQaPtx+F2nFCqucs7IsLWtlC6Tu2GG3C0auwfbKK9ZIN2tmiwnm5lrHzdq14TJVdTKpWrrT22+3qbPJyZZSdPDg8EK6a9bY86Sn2+9GjfLut2JFP3Om3Srx3HP2uKr3hl8n0+ef2zaR78VDqTY2Brfccovm5eXphg0b4t62qKhIV6xYoV9//bUOHz5cc3JydHFornUV1q9fr82bN9cFESt1VqcxqGjXrl2alZUV1/Ta5ORk7RX5TU1Vb7/9dj3ttNOqdQz9+/fXCy64IK5t3n77bW3Tpo2+/fbbunDhQn3jjTc0Ozs77gZp5cqVeuaZZ6qIaFJSkp5yyik6ePBg7RDqVTnMbN5sqZbz8qyea93aOoNCX1ZVVdets1hGhrUXgwZFp4COpQ6bPdvapdTU6AuUioYNswuh5GRbqHvkyHA9FvLVV3aRkJ1tx3Paae7FU6dMsTYssu4vLLTjz8y0ZBc//FD5+enZU/Wll7zx8eNtcdjMTDsvJ55onT6Rt2qMHm23IyQn20VExS/mzzxji+amp1ta8Dfe8N7uccstdtER2X5u3Gj7rEaVVG/QVoTRVkSjrYj92qOqOiiWTqaSEqvrs7Ls++Rdd9ktZpG3y1Xn+qSiw+W6ojrnqmInk6rd+timjb3OCy9Uffrp6L9lda49ats1QyxoK8JoK6LVxbYipjWZUPvcc090BqPDweWXqz7yyKE+irCioiJNSkryVOBXX321XnTRRXHvL2hjMGTIEG3Tpo2uDt0sH1Dfvn31phjfZBMnTvxvhRX6ERFNSEjQpKQkLQ1NU6uGHj166PDhw2Mun5ubqzfccENUbPTo0dqqVau4n3vt2rWamJio7777blzbtWnTRkeNGhUVe/jhh6uV0UJVtaCgQDdv3qyqqpdffrn+rLK0Xzhsvf++feGvTVnc7rvPm7nucENbEUZbEY22ArVFfbuuqG3XDLGgrQijrYhWF9uKGl69CD+W++8Xyctzr+tRHxUX233Yd955qI8kLCUlRU4++WSZFnFTfXl5uUybNi3ue46DUFW57bbbZOLEiTJ9+nQ5+uija2S/5eXlUhRjOqi+ffvKokWLZP78+f/96dGjhwwePFjmz58vSUlJ1TqGgoICWbVqlbQMpSOJQe/evWXZsmVRseXLl0teXl7cz//6669L8+bNZcCAAXFtt2/fPkmssBBPUlKSlFfzA5uRkSEtW7aUXbt2yYcffigDBw6s1n5Qvw0YIHLTTSK1KaFU8+YiDz98qI/i0KKtCKOtiEZbgdqiPl1X1MZrhljQVoTRVkSrk21FjXdbAYeRcePGaWpqqo4ZM0aXLFmiN910kzZp0kS/j7w/pxJ79+7VefPm6bx581RE9JlnntF58+bpunXrYj6GW2+9VRs3bqwzZszQLVu2/PdnXxxzhIcPH64zZ87UNWvW6MKFC3X48OGakJCgH330Ucz7qKg601rvvvtunTFjhq5Zs0Y/++wz7devn+bk5OjWrVtj3seXX36pDRo00EceeURXrFihb731ljZs2FDffPPNuI6lrKxMc3NzddiwYXFtp6p6zTXXaOvWrfX999/XNWvW6IQJEzQnJ0fvu+++uPYzZcoUnTx5sq5evVo/+ugj7dq1q5566qlaXFW6MAC1Cm2FP9oK2goAhrbCH21F3Wor6GQCAnr++ec1NzdXU1JStGfPnjpnzpyYt/3kk09URDw/10QulFUF1/Yioq9HLpJWheuvv17z8vI0JSVFmzVrpn379g3UEKhWrzG44oortGXLlpqSkqKtW7fWK664QleuXBn3c0+aNEk7d+6sqamp2qFDB30lcrG2GH344YcqIrps2bK4t83Pz9ehQ4dqbm6upqWlabt27fT+++/XoqKiuPYzfvx4bdeunaakpGiLFi10yJAhunv37riPB8ChR1vhRltBWwEgjLbCjbaibrUVCaqqNT8/CgAAAAAAAIcT1mQCAAAAAABAYHQyAQAAAAAAIDA6mQAAAAAAABAYnUwAAAAAAAAIjE4mAAAAAAAABEYnEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwOhkAgAAAAAAQGB0MgEAAAAAACAwOpkAAAAAAAAQGJ1MAAAAAAAACIxOJgAAAAAAAARGJxMAAAAAAAACo5MJAAAAAAAAgTWIpVB5ebls3rxZMjMzJSEh4WAfEyAiIqoqe/fulVatWkli4sHtD+U9jvqKzxHqO97jQHB8jlDf8R4Hgov1cxRTJ9PmzZulbdu2NXZwQDw2bNggbdq0OajPwXsc9R2fI9R3vMeB4Pgcob7jPQ4EV9XnKKZOpszMzP/uLCsrq2aODKhCfn6+tG3b9r/vv4OJ9/ghMH++SJ8+1d9+5kyRk06qqaOpt/gc1byysjJPbN26dc6y7dq1OyjPJyKSlJTkjC9evNgT69Spk7NsfRhh5T1+cFBFH174HB1aY8aMccb37NnjiZWWljrLZmRkOOOtW7d2xi+88MLYDq6e4D0OBBfr5yimTqbQl9CsrCw+KPjR/RgXQbzHD4FGjYJvz98qZnyOao6r08evsa2J8xBvJ1Mjx2fL7zjqQydTCO/xmkUVfXjic3RopKenO+NFRUWemF8nk98+GjZs6Iwfruee9zgQXFWfIxb+BgAAAAAAQGB0MgEAAAAAACCwmG6XAwAApqSkxBPbsGGDs+wxxxwT835V1Rn3uy3Oz+bNmz2xLl26xLUPAKirXHVpvLdIufbhd5tacnKyM+661blBA/elV2pqqjMez3H7ld2/f78zft5553likydPjvn5RNznxO81Ajh8MJMJAAAAAAAAgdHJBAAAAAAAgMDoZAIAAAAAAEBgdDIBAAAAAAAgMFZmAwAgDmlpaZ7YX/7yF2fZJk2aOOMnnXSSJxbvwrT/+te/nPFnn33WEzv33HPj2jcA1FXxLPxdXl7ujCcmesfh/Rb49nPbbbd5Yn4LfLds2dIZT0lJ8cQOHDjgLFtcXOyMZ2ZmOuPz5893xuPhWuTbteC5SPxJLADUXcxkAgAAAAAAQGB0MgEAAAAAACAwOpkAAAAAAAAQGJ1MAAAAAAAACIxOJgAAAAAAAARGdjkAAOJQUlLiic2aNctZ9quvvnLGTzzxRE/suuuuc5Z96KGHnHG/DEOdO3d2xgHgcODKDOeqt0Xiyxj3wQcfOONPP/20M75q1SpPLDs721nWL/td69atPbHNmzc7y/pldfPbtysLn1+Wu3vvvdcZv+OOOzwxssgBYCYTAAAAAAAAAqOTCQAAAAAAAIHRyQQAAAAAAIDAWJMJAAAAAAAcEuvXi2zfHv92OTkiubk1fzwIhk4mAAAAAADwo1u/XqR9exGffCaVSksTWbaMjqbahk4mAADi4MpG1KJFC2fZ0tJSZ/y7777zxIYMGeIsm5aW5ow3bdrUGW/WrJkzDgCHg/Lyck8snixyIiJXXnmlJ/bOO+84yzZq1MgZb9iwoSfml+mtoKDAGd+yZYvfIXrs37/fGU9PT3fGXdnoioqKnGXvv/9+Z/ypp57yxJ5//nln2Z///OfOuKudbNCAS9TDyfbt1etgErHttm+nk6m2YU0mAAAAAAAABEYnEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwFhVDQCAgPwWVt20aZMznpmZ6Yk1adLEWTY1NdUZP+CzSmZGRoYzDgCI9sknnzjj7777rieWl5fnLFtSUuKM+yV+cCkuLnbG165d64l16tTJWdZv0e7du3c7466kEn6JJvzaFddrv/76651lTzrpJGf82GOP9cRU1VnWb+F0ALULM5kAAAAAAAAQGJ1MAAAAAAAACIxOJgAAAAAAAARGJxMAAAAAAAACo5MJAAAAAAAAgZFdDgCAgPyy/axatcoZT05OjnnffmX9ssu1bt065n2TwQdAfZOYGPsY+ssvv+yMJyUleWJ+2eLKysqccVf9Wl5e7izrV8+74ps3b3aW9ctEGk8971fW77W7js/v/N95553O+KRJk2I6NgB1BzOZAAAAAAAAEBidTAAAAAAAAAiMTiYAAAAAAAAERicTAAAAAAAAAqOTCQAAAAAAAIGRXQ4AAId4MvJkZGQ4yzZo4G5mXfv2y6Zz5JFHOuM7duyIed8AcDjzqxc//fRTZ7xhw4aeWElJibOsX93tek6/ffhlhnNlufPLUFdYWOiMp6enx3x88bYfrqxzWVlZzrL/+c9/nPFFixZ5Yl26dInrOADULsxkAgAAAAAAQGB0MgEAAAAAACAwOpkAAAAAAAAQGJ1MAAAAAAAACIyFvwEAcPBbzNVl5cqVznhiYuxjOUVFRc743r17nfEjjjjCGV+3bl3MzxnPawSAumr8+PHO+M6dO51x1+LVfgtu+9WjjRs39sT27dvnLOu3IHhZWZkn5pdowu/4/NqWtLQ0TyyeRcz9+JX1i48cOdITGzNmTMzPB6D2YSYTAAAAAAAAAqOTCQAAAAAAAIHRyQQAAAAAAIDA6GQCAAAAAABAYHQyAQAAAAAAIDCyy1Vh9OjRzvi3334bV/l4+GVfIAsQANROn3zyiTOem5vrjCcnJ3tifpmB/Pi1Cd99911c+wGA+u7zzz93xpOSkpxxv2xvLikpKc74/v37Y96vq00QESktLfXEmjRpEvOxifhfV7gy1/llRI3n2sR1zCL+53rWrFnOOIC6i5lMAAAAAAAACIxOJgAAAAAAAARGJxMAAAAAAAACo5MJAAAAAAAAgdHJBAAAAAAAgMACZ5dzZU5IT08PvA+/TA3x8Mti4Of999/3xDZv3uws27x5c2f86quv9sQeeeQRZ9m2bds64/FkkXNlhqhMvOcEABBtxYoVnlizZs2cZVNTU2Peb+PGjZ1xvzbBL75ly5aYnxMADgfffPONMx5PNjW/axO/uvjAgQOeWFpamrOsX0Y217796ni/44jnmqq4uDiufbiO2y8TnV972LBhwxiPDkBdwUwmAAAAAAAABEYnEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwAIv/O1a6Pq2225zlu3Tp48zHu9C4QfL6NGjPbGePXs6y/otgNemTRtPbPz48c6yfouHX3LJJc54ZmamJ+a3kLffguB+i/EFFc9i5QBQl7kWkPVbLNWvbiwpKfHEkpOTnWVdi8eK+C9Yu3HjRmccAA5Xq1atcsb9vke7vi+Xl5c7y/rVxQ0aeC+z/Bb49vt+7tqH3/O52pXKntPFb9/x7MPvGsT1WkRECgoKYt43gLqBmUwAAAAAAAAIjE4mAAAAAAAABEYnEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwOLKLldYWOjJwuDKYvPee+85t9+3b58z3rlzZ08sOzvbWbZhw4bOuCvjw/r1651lX3/9dWe8RYsWnlhOTo6z7KRJk5zxgQMHemK7d+92lv3ggw+c8e+++84Zb9eunSd2zjnnOMvm5eU54zXBlTUi3owbftk8AKC2++KLLzwxv7ounkyffvvwyzrkl7muZcuWntjKlSudZY899lhnHADqkx9++MEZ9/ue78rUFk+GNRF3ne5Xb/vFXc/p953bbx9+bYtrP35ZTv0y19VEdum1a9d6Yvn5+c6yWVlZgZ8PwMHHTCYAAAAAAAAERicTAAAAAAAAAqOTCQAAAAAAAIHRyQQAAAAAAIDA6GQCAAAAAABAYHFll1u6dKlkZGRUWa6wsNAZf+utt5zxE0880RNLSUlxlvWLuzLnLFq0yFm2uLjYGf/JT37iiX3zzTfOsueee64z7sp+53fM5513njO+detWZ3z58uWe2OzZs51lO3bs6IyfcMIJnliPHj2cZZs1a+aMuzLDkS0OwOFi8eLFnphf9h6/+r+goMATiye7UGXlXVmAduzY4SxLdjkAhwO/LJ1+319d1wp+da5fFlFX+XizsbkywPllxPPL4u0Xd712v8x1fuLJOB2PZcuWOeOnnHJK4H0DOPiYyQQAAAAAAIDA6GQCAAAAAABAYHQyAQAAAAAAIDA6mQAAAAAAABBYXAt/796927Og6M6dO707beDe7Z49e5zxiRMnemJNmzZ1lnUtaCoikpmZ6Yn16tXLWfb44493xl0Lt3bu3NlZdvv27c64a3G97OxsZ1nXuRNxLx4uIpKbmxtTTEQkPz/fGZ81a5Yn9tVXX8V1HE2aNPHE8vLynGWbN2/ujHfo0METS01NdZYFgNpk7dq1npjfAt9+i3a74n5tp1+yCj+ufa9YscJZ9tRTT41r3wBQ223atCnmsn4LcfstFP5jcx2H38Lafu2N37WTX8KKeLj27dcexnNO16xZ44yz8DdQNzCTCQAAAAAAAIHRyQQAAAAAAIDA6GQCAAAAAABAYHQyAQAAAAAAIDA6mQAAAAAAABBYXNnlMjIyJCMjIyq2fPlyT7nrrrvOuf1RRx3ljLuyrB04cMBZ1pXZTEQkLS0t5n0sXLjQGXdp1KiRM+6Xec2VBej77793lvXLvpCVlRXzvv2yyOXk5DjjfpnuXPzO39atWz2xzZs3O8v6nac//vGPnthVV10V9diVqQ8ADrX169d7Yu3bt3eW9cvq4+KX5cgv65xfhiFXxqBFixbFfBwAUJctW7Ys8D5c9WtNZGOLV1JSkie2Y8eOmMuKuK+RRNyvMZ52RcSd0c7v+sZv3y5btmyJuSyA2oeZTAAAAAAAAAiMTiYAAAAAAAAERicTAAAAAAAAAqOTCQAAAAAAAIHRyQQAAAAAAIDA4sou98EHH0hqampUrGXLlp5yfpnG/DKhtWvXzhPLzc11lnVlMfB7zqKiImfZsrIyZ9xl9+7dzviePXuc8eTkZE+sefPmzrLxZpdz8cveduSRRzrjrtfuylon4p+NwhX3+9v6vRdcWZSeeeaZqMd+f2sA+DH4tRWuzJt+mXf86lcXv8w7flnn/No4V4YhvyynAFDfrF69OvA+XFk9VdVZ1q+OdrUL8e7DpeK1WIhfm+XXtriOJZ7X4hf320c82eW2bdsWc1kAtQ8zmQAAAAAAABAYnUwAAAAAAAAIjE4mAAAAAAAABEYnEwAAAAAAAAKjkwkAAAAAAACBxZVdbvXq1Z7sacccc4ynXOfOnZ3bf/vtt874xo0bPTG/rGR+2dTiyVjgV9aVBcgvM5Bf5gRXxge/DAl+2SHS09OdcVfmOj/bt293xl2vfe/evc6yfpn1XOUbNWrkLOvKwiQismLFiiqfL56/KQDUtHXr1sVc1q9tKiwsdMZd9Xk8GYAqi7sygK5fv95ZFgDqm61btwbeh+t7vl/2NldGz5riqufjbSv8rlnieY1+1yyu7HIlJSXOsvFcx+zcuTPmsgBqH2YyAQAAAAAAIDA6mQAAAAAAABAYnUwAAAAAAAAIjE4mAAAAAAAABBbXwt8NGzb0LNo2Z84cTzm/xbJdi5H6ld+3b5+zbFZWljOek5PjiRUUFDjL+i1q5+K3mF+DBu5T54q7FsUTEUlJSYn5OETcC+b5Lbjtt+ih67zm5+c7y/ot2u1a0M/vfJSWlsa87wcffDDq8f79++WWW25xbg8AB9t3330Xc1m/et5vAVRX/e+3D782y2+RV1d9vGnTJmdZAKhvVq1aFXNZv3rX9f1///79zrLxLGgdL9ci361atXKW3bFjhzPu933etfC33/d5v2u7pk2bxnwcfufJ9Zx+SZMA1A3MZAIAAAAAAEBgdDIBAAAAAAAgMDqZAAAAAAAAEBidTAAAAAAAAAiMTiYAAAAAAAAEFld2uSeffNKT3S03N9dTLjs727n99u3bnXFXxgK/zGt+Wed27tzpiWVmZjrL+mU8c2WY8Muy4Mr2IOLOPOHK3iDi/xr9MjjEc3x+2TJc5f3+Xk2aNHHGXVkC/fbRvn17Z/ycc85xxiPl5+eTXQ7AIVMTGdn82hsXv3bFL4ucX+Y6V5uzd+/emI8DAOoy1/WG3/dlv3rUVR/77cOvjo6nrF/c9X1+y5YtzrJ+bYifeK4r9uzZ44yfddZZnti///1vZ1m/9tCVdc4vQx2AuoGZTAAAAAAAAAiMTiYAAAAAAAAERicTAAAAAAAAAqOTCQAAAAAAAIHRyQQAAAAAAIDA4sou17RpU092uUcffbRGDwgAgNrALyObK/tOPBmKRNxZdvzK+mUo9ePKGBRPljsAqMtcdbcrg5mIf9bqvLw8T8wva/UXX3zhjLdu3doTKyoqcpaNp56Pt03w42pz/LJTFxQUxLzfpk2bOuN+GeNcbWpZWVnMzweg9mEmEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwOhkAgAAAAAAQGBxLfwNAMDhYtOmTc64awFZv0W7/RYvjWfhVr+FWP3irmPxW2zWb8Fyv0VyAaC2cy38nZ6e7iy7c+dOZ/ykk07yxFwLVIuIzJkzxxlXVU8s3kW7XfuIN5GD33O64n5lXcch4l7k+/jjj3eW/fjjj53xnJwcT8yvTQVQNzCTCQAAAAAAAIHRyQQAAAAAAIDA6GQCAAAAAABAYHQyAQAAAAAAIDA6mQAAAAAAABAY2eUAAHDIz893xlNTUz0xv8w7fpKSkmLeh1+2n3izzrn4ZVY68sgjY94HANQmrqye8WbMPOusszyxxYsXx7WPeOpiP676PzMz01l23759zni82ejiccQRR3hirmxxIv7Z5VznKd42FUDtwkwmAAAAAAAABEYnEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwOhkAgAAAAAAQGBklwMAwKGgoMAZjzdLkYsrc45fNh1XJrp4j6OkpMQZ3717tzNOdjkAdZUrA6gr41xlBg4c6InNnz8/rn246t3y8nJnWb9MdK7yfm1FcXFxXPt27aeoqMhZ1k9KSoonduaZZzrLPvbYY864K4NeVlZWXMcBoHZhJhMAAAAAAAACo5MJAAAAAAAAgdHJBAAAAAAAgMDoZAIAAAAAAEBgLPwNAIDDgQMHnPGMjAxPzG9RWb+4azHX0tJSZ1nXIrYi/guCuxZ/Pfroo51l/V4jANRVrsWo/TRq1MgZz8nJ8cQKCwudZV0LV4u463m/hb/jsXfvXmfcb4Fvv3bIddx+r8WPa4FuvzbLr41znZN4F2oHULswkwkAAAAAAACB0ckEAAAAAACAwLhdDgAAAACAw8zw4cOrtd3jjz9ew0eC+oSZTAAAAAAAAAiMTiYAAAAAAAAExu1yAAA4fPbZZ854ZmZmzPtIT0+POe6XESk5OdkZ98sCpKqemF8WuWXLljnjXbt2dcYBoLZzZQAtKChwlo0nw6ZfXeyXTc2V7c0vA5xftlBXPe+Xoc6vTfCLu46lQQP3pWFaWpoznp+fH1OsMq7zd8QRR8S1DwC1CzOZAAAAAAAAEBidTAAAAAAAAAiMTiYAAAAAAAAERicTAAAAAAAAAqOTCQAAAAAAAIGRXQ4AAIdbbrnFGX/sscc8seLiYmfZvXv3OuNbtmzxxLKzs51lS0pKnHG/bHSu7Hf79u1zlm3atKkzDgB11QcffOCJbd++3Vl2//79Me935cqV1T6mkLKysrjirmyhfhng/LLI+WWuKy0tjen5KrNw4UJP7He/+52zbLz7BlB3MZMJAAAAAAAAgdHJBAAAAAAAgMDoZAIAAAAAAEBgdDIBAAAAAAAgMBb+BgDA4aGHHnLGu3Tp4oktWbLEWdZvUdnjjz/eEzvppJOcZf0W7W7YsKEzvmzZMk/syiuvdJYFgMNBTk5O4H34JVtIS0tzxpOTk2OKifgneHAtlu33fPEsHu7Hbx+uhBIiIh06dIh53wAOH8xkAgAAAAAAQGB0MgEAAAAAACAwOpkAAAAAAAAQGJ1MAAAAAAAACCymhb9DC8bl5+cf1IMBIoXeb/EsWFhdvMcPgYKC4NvX0N/r++/tJ14tWthPbcbnqOa5FuI+cOCAs2xRUZEz7loQvMDnM+G3eHh5eXnMx1ef/ya8xw+OWlRF40fA56hqpaWlzrjfOfOro+Mp69q3X9l49uFXPiEhIa59u9q42vp35T3u5vc9pSo1+dpqU3szYsSIam334IMP1swB1HKxfo4SNIZP2saNG6Vt27Y1c2RAnDZs2CBt2rQ5qM/Bexz1HZ8j1He8x4Hg+ByhvuM9DgRX1ecopk6m8vJy2bx5s2RmZvr2cAM1TVVl79690qpVK0lMPLh3dgZ5j+fn50vbtm1lw4YNkpWVVa3nZx/s42Dto658joDqqivv8UNdF7AP9lGZuvI5AqqrrrzHD3VdwD7YR2Vi/RzFdLtcYmLiQe/xBVwaN278ozxPTbzHs7Kyqv1hZx/s42Duoy59joDqqEvv8bpen7CP+ruPuvQ5AqqjLr3H63p9wj7q7z5i+Ryx8DcAAAAAAAACo5MJAAAAAAAAgdHJBASUmpoqI0aMkNTUVPbBPmrtPgAcWrWlLmAf7ANA7VVb6gL2wT6CiGnhbwAAAAAAAKAytX8m07XXilx8cezl164VSUgQmT//4BzPoTJtmkjHjiJlZYf6SLyOOkrkz3+u2X0WF9t+v/66ZvcLAIeZM88U+fvfD/VRVI1qHwB+HMuWibRoIbJ376E+EkP9D9QvsXUybdsmcuutIrm5IqmpViude67IZ58d5MM7SCZMEOnfX+SII/w7pA4cEBkyxMo0aiRy2WUiP/wQXWb9epEBA0QaNhRp3lzk3ntFSkvDv583T6RbN9v+wgtFdu4M/660VOTkk0W+/DK2Y77vPpEHHhBJSrLHZWUijz8u0qGDSHq6SHa2yKmnivzlL3GdilorJUXknntEhg071EcC4CC69lqrhhMSRJKTRY48UuScc0T++leR8vJDfXTRDhyw4+3SRaRBA//xjxkzRLp3t+by2GNFxozxlnnhBftCnZZmVXfFpuCuu6xab9tW5K23on/3j39YkxKL996zput//iccO+qo8DlPT7fHl18uMn16bPs8WKj2AdSU778Xuf12kXbtrC5u29bqzWnTavZ5Yh1n/f57kV/+0i6hMjKsjfjnP8O/nzEjXC9X/PnqKyuzdq0NGmRk2L9r10Y/xwUXRO+zMr/9rZ2fzMxwTFXklVesTWrUSKRJE5EePez17dsX235j8Yc/iJx0UnSM+h+oX2LrZLrsMusw+dvfRJYvt2+tP/2pyI4dB/foDpbCQpEzzhB54gn/MnfeKTJpkn2bnzlTZPNmkUsvDf++rMw6mIqLRT7/3M7NmDEiv/99uMyNN4qcfbbIN9+I7Nkj8uij4d+NHCnSu7dIz55VH++nn4qsWmV/h5AHHxT5059EHn5YZMkSkU8+EbnpJpHdu2M9C7VXcbH9O3iwvfbFiw/t8QA4qM47T2TLFvvCPHmyyFlniQwdal+YI/vtKyop+dEOUUSs2k9PF/nNb0T69XOXWbPGmoazzrLxizvusKbgww/DZcaPt06kESOseeja1cZttm6130+aZDOPPvpI5Mknbfvt2+13e/aI3H+/dVLF4rnnRK67TiSxQmv/0EN2zpctE3njDbuY6NdP5JFH/PelWvnfoyZQ7QMIau1aG8edPl3kqadEFi0SmTLF6uUhQw7NMV19tdW3771nx3Pppda5P2+e/f70061Ojvy58UaRo4+2jh4RkbvvFmnd2tqWli2tUyZk/Hir5yMvFfysXy/y/vs2aBLpl7+0NmvgQLusmD9f5He/E/nXv6w9Otio/4F6RKuya5eqiOqMGZWXGzlStXNn1YYNVdu0Ub31VtW9e8O/f/111caNVadMUe3QQTUjQ/Xcc1U3bw6XKS1VvfNOK5edrXrvvapXX606cGC4zOTJqr17h8sMGKC6cmX492vW2PHOm1flS/Mtu3u3anKy6j/+EY4tXWplZ8+2xx98oJqYqPr99+EyL76ompWlWlRkj9PTbTtV1dGjVX/2M/v/qlWqxx2nmp9f9TGqqg4Zovrzn0fHunZV/cMfKt+uTx/V22+389i0qeqRR6qOGBFdZtcu1RtuUM3JUc3MVD3rLNX588O/X7lS9aKLVJs3t79Zjx6qU6dG7yMvT/VPfwo/fvVV+/t8/LE9XrRI9bzzbPvmzVWvukp127bo4xwyRHXoUNUjjlD96U/DvzvrLNUHHqj8dQKos665JrqKD5k2zarcV18Nx0SsKr3wQmtqQtXZu++qduummpqqevTRVjWWlNjvysutXNu2qikpqi1bWrUY8sILqscea9s2b6562WXBjvu++1RPOCE6dsUV1tyF9OxpVV5IWZlqq1aqjz1mj594wrYJad5c9csv7f833aT6zDOxHePWraoJCarffhsdr1hlh/z+99asffedPf7kEzvnH3yg2r27NYuffGLH++ijqkcdpZqWpnriidHN5c6dqr/4hTUraWl2fv/6V/tdUZG99hYt7Jzn5tq+IlHtAwji/PNVW7dWLSjw/m7XrvD/162zr7gZGfYVeNCg6K/1VX0F7tPH6sjIHz8ZGapvvBEdy86ObuMiFRerNmum+tBD4VjHjnYZpGr1cqdO4dd07LGq69f7P3+kp56y1xJp/Hg7/nff9ZYvL7dLI1Wr/x980M5vSopdjoSOKeS+++wyJz3d2uQHHrDXo2qXgxXP2euvh7el/gfqh6pnMjVqZD/vvitSVORfLjHRhkwXL7ZZPdOn2y1ekfbtE3n6aZGxY0X+8x/rSo/shh850mYD/fWv1pW9c6fIxInR+ygstCHgr7+2Oa+JiSKXXFKz91XMnWtD5JFD1R062O2Cs2fb49mz7Z6JI48Mlzn3XJH8/HAXfNeuIlOn2tDvtGkiJ55o8VtuseHpyDmqlZk1KzyMEdKihZ3jbdsq3/Zvf7N5tV98Yc/50EN2TCGDBtnw+eTJ9rq7dxfp2zd8a19BgcjPfmbHP2+eTTm48EL727k8+aTI8OE25NG3r82sOvtsu23w669tKOmHH2z4puJxpqTYLZgvvRSO9+xprx/AYeXss60KnTAhOv6HP1iVv2iRyPXXW/Vw9dU282nJEpGXX7ZmJDQj55//tEmfL78ssmKFNWVdutjvvv7aZiU99JCNME+ZYrcgBDF7tneW07nnhpuO4mKraiPLJCba41CZrl3t2HbtsrL799ttd59+ajOffvOb2I7l00/tbu6OHWMrP3SofeX/17+i48OH293ZS5daM/bYYzb76aWXrLm7806Rq66ySb8iNvK9ZIk1K0uXirz4okhOjv3uuedsJP+dd+ycv/WW3W4SiWofQHXt3Gl1+ZAh9vW3oiZN7N/ycpuxs3On1V1Tp4qsXi1yxRXhslV9BZ4wQaRNm/DM0C1b/I/r9NNtttHOnfbc48bZLdg//am7/Hvv2Q0j110XjnXtKvLxx7b9Rx+FLyvuvddeb9u2sZ0j12XFW2+JtG9v56SihASRxo3t/88+a5drTz8tsnChtW8XXWTta0hmprXDS5ZY+VdftXZYxM7v3XeLnHBC+JxFnnPqf6CeiKkr6v/9P5sJk5amevrpqr/9reqCBZVv849/2KyUkFDXdeSsoxdesNk1IS1bqj75ZPhxSYnNinINF4ds22b7XbTIHtfETKa33rLu+YpOOcW651VVf/Ur1f79o39fWBge9lW14eMzz7Sh2iuvVN2zx4YxBg5U3bjRtj/mGNX776/8OBs39g5/LF5sQxqJiapduqjefHP4eUP69FE94wzvaxg2zP4/a5bNvDpwILrMMceovvyy//GccILq88+HH4eGxe+7z/6GkcPmDz/sPU8bNth5WrYsfJzdurmf69lnbbi8Fhs1apTm5eVpamqq9uzZU7/44ouYt505c6ZecMEF2rJlSxURnThxYtzP/+ijj2qPHj20UaNG2qxZMx04cKB+F5qKEKPRo0drly5dNDMzUzMzM/W0007TDyq+n+Lw2GOPqYjo0KFD49puxIgRKiJRP+3bt4/7+Tdu3KiDBw/W7OxsTUtL086dO+tXX30V8/Z5eXme4xAR/fWvfx3T9qWlpfrAAw/oUUcdpWlpadquXTt96KGHtLy8PK7XkZ+fr0OHDtXc3FxNS0vTXr166ZehKS31hN+MIFWbzdOxY/ixiOodd0SX6dvXOxNm7FirilRtku3xx4dHUSP9859WBcY6qTSW4z7uOO/x/Pvfduz79qlu2mT///zz6DL33msznEJGjLCquHNn1QkTbAZQ586qX39t1e/xx1tzXHGWUqQ//Um1XTtv3G8mk6o1ybfeav8PzWSKHNk+cMBmkVU8/htusGZO1WaaXXede/+336569tk2Mu6nDlT71UJb4UVbQVtR0774wuqtCRMqL/fRR6pJSdGzfxYvtm0rO3V+X4GrsmuXfR0WUW3QwNqeDz/0L3/++fYTaeNGu4GjbVv7d+NG1ZkzbVbSjh02E+voo+2SIHRThUvXrtEzpFStrb3ooqpfR6tWqo88Eh075RTVyt7yTz2levLJ4ccjRtgxuNTX+j8etBVetBV1r62IfU2mzZutW/2888KrmkauZvrxxzZzpXVr68L+5S+tCz5ypbiGDUWOOSb8uGXL8CIUe/ZYd/app4Z/36CBt6t9xQqRK6+0lfyyssJDoH4zaw6lE06w4ZF162yBjZISW4Rj1Chbbe/000UWLLChkEmT/Pezf7+tDhupUyeRb78VmTPHhvO3brXhlRtvjC4XGuYIiTznCxbYME1ocfPQz5o1tgaUiP3+nntsKLxJE/v90qXe8z1ypA1VfPqpve6QBQvsxu7I/XfoYL8LPYeI3Tzvkp5es6sN1rDx48fLXXfdJSNGjJBvvvlGunbtKueee65sDZ3jKhQWFkrXrl3lhVgXWHGYOXOmDBkyRObMmSNTp06VkpIS6d+/vxQWFsa8jzZt2sjjjz8uc+fOla+//lrOPvtsGThwoCyuxo3xX331lbz88styYsX3XoxOOOEE2bJly39/Pv3007i237Vrl/Tu3VuSk5Nl8uTJsmTJEhk5cqQ0bdo05n189dVXML5GsgAAEUJJREFUUccw9f9m/w0aNCim7Z944gl58cUXZdSoUbJ06VJ54okn5Mknn5Tnn38+rtdy4403ytSpU2Xs2LGyaNEi6d+/v/Tr1082bdoU137qKlUbQY1UsUlYsMBGkSOrmF/9ypqTfftssub+/dZk/OpXNjk2tK7QOeeI5OXZ7375SxvJrS3VzR/+ILJypc3YuuQSmz3Ur58tjv7HP1pVe+ONNovLj6vpqEpV53zlSjtH55wTfc7feCNcpd96q43Sn3SSTWj+/PPw9tdea+t8tG9vM7Jc63zU8mq/WmgrvGgraCsOBtXYyi1dajN/Imf/dOpkX3WXLrXHsX4FjsXvfmeT+z/+2Gaq3nWXTepftMhbduNGW8fvhhui461b21pKoTWVcnJEfv1rm1X6xz/a5deyZXap9PLL/sfiahtiOW/5+XY52Lt3dLx37/A5E7EZW717200XjRpZ3qJYz1l9rP/jQVvhRVtRR9uKandP3XCDzdBRtRlBqak2xDx7ts1Qee01664P3fwcWpMp0sSJ4RuYd++2/8+cGV3m4oujh4vbt7ehgI8/Vl2yxIZxRWxfoWMJOpMptBhI5I3bqvZ6Q4th/O533m741attu2++cT/f1VdbF72qzQxbvNj+f889qnfd5X+crVpVPrMoZOxYe/7Vq+1xnz62zlGkgQNtCF5V9fHH7abqFSu8P6E1k26+2YbCJ0xQXbjQfte1a/R+8/JsCDsrK7yoSMh556leeqn7OUI3y7uOM+Txx70LnNQiPXv21CERi6uUlZVpq1at9LGK5yEGUs0Rh4q2bt2qIqIzK36W4tS0aVP9y1/+Etc2e/fu1eOOO06nTp2qffr0qdaIQ1e/4a0YDRs2TM+oOIMvoKFDh+oxxxwT84jBgAED9Prrr4+KXXrppTp48OCYn3Pfvn2alJSk77//flS8e/fuen9Vsx/rkMpmMnXpYqO1IZFVfUhamq1h5KpiysqszL59qu+9Z7NoWrRQ7dUrPLOppMTW2Lj3Xqvqjj3WW/XHc9w/+Ym3OvvrX616VLXR5aQk7+u4+mr/UeSlS+249u61JmTQIIsXFNg58ZuJ9cor4RldkfxG3rdvtzWcnnrKHodmMkWejzlzwss0VjzfkTMCtm5VHTNGdfBg+xvdfXf4d3v2qI4bp3rjjfa1oOI6WLW82q8W2opotBWGtqLm7dhh9VjFGaUV+c2YadJE9W9/s//H+hW4qplMK1davVlx5mnfvvYcFT30kK3H5JqBG+n3v7elbFXthoB//9v+P2qUffX2E7opJdJFF9kM2crs2eNepveOO2wtJVWb5ZqUpPrHP6p+9ZXq8uX2eiIvASubyVQf6/940FZEo60wdbGtiG0mk0unTrY+kogtGlFebrNZTjtN5Pjjras7Ho0b2yybL74Ix0pLbd8hO3ZYF/0DD9isqY4dbdGKmnbyyTZcHJnndNky64bv1cse9+plww+RPctTp9rsqk6dvPucNs26+W+7zR6XlYVTI5WU2GM/3brZjc1VCT1vrD3N3btbTtUGDWzBj8if0AIan31mQ8+XXGILmbRo4c2ZKmI3UU+ebBn0nn46+jkWL7YZZxWfw3WzfEXffmuvvxYqLi6WuXPnSr+IxVUSExOlX79+Mju0uMohsGfPHhERyc7Ortb2ZWVlMm7cOCksLJReofd7jIYMGSIDBgyIOifxWrFihbRq1UratWsngwcPlvVxDhm+99570qNHDxk0aJA0b95cunXrJq+++mq1j6e4uFjefPNNuf766yWh4hQPH6effrpMmzZNli9fLiIiCxYskE8//VTOP//8mJ+3tLRUysrKJK3CcGN6enrcozB10fTpVsVWlSmne3ernitWL8ceG86olp5uEz2fe84m4s6eHR49btDAZgg9+aStL7F2rT13dfXq5U2RPXVquOlISbEmJrJMebk9dn3cVEVuvlnkmWdsRLhi0yHi33x062ZVfKzN5LPP2jm7+GL/Mp06WTrw9eu95ztyRkCzZiLXXCPy5puW/vqVV8K/y8qyNThefdVGvP/5z/AygCK1utqvFtoKL9oKQ1tR87KzbZ2gF15wfx0OJWHu2FFkwwb7CVmyxH4f+jody1fglJTKv8KLhGfmVMzymZTkXVJWVeT1122WanKy/z6XLrWbJB5+2B4Hvaz4xS8sgXjFNflCx7Rnj9XdrVrZeYn02Wfhc/b55zZD+P77bRbsccfZDR2RKjtn9a3+jwdthRdthamTbUWV3VDbt1v39Nixtg7T6tWq77xjCzeEetTmz7eu7T//2TKnvfGGzZCJZyaTqnVfZ2dbfOlSW/coMzM8XFxWZus8XXWVDSdMm2Y3Asc7k2nHDvt9aKGMcePs8ZYt4TK33GIzl6ZPt0UwevWyn5DSUlsgo39/e/1TptiwQ8WhAVXV/fsto17kMZ1/vr2++fNt3al33vE/3ueei76ZWdWGfp95xoaV1661IefTTrNhiFBapapmMpWX25pNXbvajeFr1qh+9pnq//6vDT+oql5yiepJJ9mxz59vi21kZvoP48yapdqoUfjxpk12Xn7+c7vJfeVKO1fXXmvn0O84I/ddcT2qWmLTpk0qIvp5hcVJ7r33Xu0ZubhKjKQGRhzKysp0wIAB2rt377i3XbhwoWZkZGhSUpI2btxY/x0aEovR22+/rZ07d9b9+/erqlZrxOGDDz7Qd955RxcsWKBTpkzRXr16aW5urubHsWhOamqqpqam6m9/+1v95ptv9OWXX9a0tDQdM2ZMXMcSMn78eE1KStJNmzbFvE1ZWZkOGzZMExIStEGDBpqQkKCPVjWs6tCrVy/t06ePbtq0SUtLS3Xs2LGamJiox1c13FiHXHONTXjcssXWl5g719Z7aNRI9YILwtWEqnsm05Qptr7FH/5go8RLlqi+/XZ4qbvXX1f9y19s2b5VqyxrTXq6NW2TJtlo9rx5Vo2OHm3L3FW2ztHixVb+wgstEea8edFV++rVtmbRvfdaM/bCCzaqO2VKuMy4cTb5d8wYO96bbrLR88isRiGvvBI90+eLL2xW1OzZNoodyi7kUlpq1e+kSdHxvDwbWd6yxWYfzZxpzVFCgjXDIa6ZTKp2bo84wo5/5Ur7mz33nD1WtYm+775rzfS339rfMVQljhyp+ve/27lZtswmRbdoEZ51Fjq+WlrtVwttRTTaijDaioNj1SqrVzp1smVlly+3uvbZZ+3ruKp9BT7pJJt9Oneu1a0nn2xfSUNi+Qp8zjk2C2jjxujEyZGKi2026k9+Ys+zcqXq009bnVvx4/Pxx1bvhpJTu4S+vkfW7bfeajN/lyyxWU2RS9xW9N57ljEvsn0tL7d1ENPTrQ3+6itrFydNsnX0QlXOn/5kbdC4cZaJdNgwyzy6fLn9/l//sjb57bftdT77rF3aRV4CvvWWZdubN8/OWeTSsPWt/o8HbUU02oqwuthWVN3JdOCA6vDhlr+4cWP79ty+vX1T37cvXO6ZZ2xefnq65Wp+4434O5lKSqzmzsqyb9x33WX3EETekzB1qq1Ol5pqeZNnzIi/k8mVP1MknA9b1TqGfv1ru62tYUNraSI7oVSt9j3/fHvNOTl2P0CogyfS8OHR9wqo2rfvU06x13rrrdHfsCvascPuN4hcdO2VV6zzr1kzW6Q8N9c6btauDZepqpNJ1e6zuP12uyUvOdlWExw8OHzfw5o19jzp6fa7UaO8+604V3jmTGs9nnvOHi9fbuevSRPbT4cONrc2NEXQr5Pp889tm8j3WS1SGxuDW265RfPy8nTDhg1xb1tUVKQrVqzQr7/+WocPH645OTm6OHRLZxXWr1+vzZs31wURCQGq0xhUtGvXLs3Kyoprem1ycrL2iuwQVtXbb79dTzvttGodQ//+/fWCCy6Ia5u3335b27Rpo2+//bYuXLhQ33jjDc3Ozo67QVq5cqWeeeaZKiKalJSkp5xyig4ePFg7hL4l1wPXXBOughs0sCqtXz+7xaxitejqZFK1DpzTT7fqJSvLOjReecV+N3Gi6qmnWjwjw/riP/7YfjdrllU/TZvatieeaGmcK5OX524+In3yiV2YpKTYrRaR6ZlDnn/equ2UFDveOXO8Zb7/3p6v4veQBx+0L+0dOtgFS2Xuu0/1f/7H/zWEmo/LL7cxlYqvw9XJVF5uY0rt21uz0ayZNfuhmfQPP2zNdHq6HefAgeG7uF95xc5NRob9Tfr2jb7DvJZX+9VCWxFGWxGNtuLg2bxZdcgQq+9SUmzs+6KLrF4LWbfOYhkZ1nk0aFB0Z38sX4Fnz7a2IzXV2xZEWr7cbmFr3twuK0480d2ZcuWV1p5V5qWXvLcZ//CD1aeh11FY6L99SYl97Y8c/FC1NvfFF+3ypGFDq6NPPtk6ikJ1clmZDeq0bm31f9euqpMnR+/n3nttIKJRI+u4+tOfoi8BDxyw42/SxM5ZqI2sj/V/PGgrwmgrotXFtqL6azLhx3XPPTbcfTi5/HJvCotapKioSJOSkjwV+NVXX60XxZKio4KgjcGQIUO0TZs2ujp0NRdQ37599aYY33MTJ078b4UV+hERTUhI0KSkJC2NHC6LU48ePXT48OExl8/NzdUbbrghKjZ69Ght1apV3M+9du1aTUxM1Hcj02vFoE2bNjpq1Kio2MMPP1ytjBaqqgUFBbp582ZVVb388sv1Zz/7WbX2g8PPli3W0RM5/lCb1fJqv1poK8JoK6LRVuBQGTXKm/z5UKuP9X88aCvCaCui1cW2ovprMuHHdf/9dpNzxZu366viYrsB/s47D/WR+EpJSZGTTz5ZpkUsrlJeXi7Tpk2L+57jIFRVbrvtNpk4caJMnz5djj766BrZb3l5uRQVFcVUtm/fvrJo0SKZP3/+f3969OghgwcPlvnz50tSUlK1jqGgoEBWrVolLVu2jHmb3r17y7Jly6Jiy5cvl7y8vLif//XXX5fmzZvLgAED4tpu3759klhh8YWkpCQpr+bnNyMjQ1q2bCm7du2SDz/8UAYOHFit/eDw06KFyGuv1c4ErBXVgWq/WmgrwmgrotFW4FC5+WaRM88U2bv3UB+Jqa/1fzxoK8JoK6LVybaixrutgMPIuHHjNDU1VceMGaNLlizRm266SZs0aaLfuxZXcdi7d6/OmzdP582bpyKizzzzjM6bN0/XrVsX8zHceuut2rhxY50xY4Zu2bLlvz/74phvPHz4cJ05c6auWbNGFy5cqMOHD9eEhAT96KOPYt5HRdWZ1nr33XfrjBkzdM2aNfrZZ59pv379NCcnR7du3RrzPr788ktt0KCBPvLII7pixQp96623tGHDhvrmm2/GdSxlZWWam5urw4YNi2s7VdVrrrlGW7dure+//76uWbNGJ0yYoDk5OXrffffFtZ8pU6bo5MmTdfXq1frRRx9p165d9dRTT9XiqlLOAKhVaCv80VbQVgAwtBX+aCvqVltBJxMQ0PPPP6+5ubmakpKiPXv21DmuxVV8fPLJJyoinp9rItfNqoJrexHR110Lwfi4/vrrNS8vT1NSUrRZs2bat2/fQA2BavUagyuuuEJbtmypKSkp2rp1a73iiit05cqVcT/3pEmTtHPnzpqamqodOnTQV0IL9MThww8/VBHRZcuWxb1tfn6+Dh06VHNzczUtLU3btWun999/vxYVFcW1n/Hjx2u7du00JSVFW7RooUOGDNHdu3fHfTwADj3aCjfaCtoKAGG0FW60FXWrrUhQVa35+VEAAAAAAAA4nLAmEwAAAAAAAAKjkwkAAAAAAACB0ckEAAAAAACAwOhkAgAAAAAAQGB0MgEAAAAAACAwOpkAAAAAAAAQGJ1MAAAAAAAACIxOJgAAAAAAAARGJxMAAAAAAAACo5MJAAAAAAAAgdHJBAAAAAAAgMD+PwJHpRZMSfSpAAAAAElFTkSuQmCC\n"},"metadata":{}}]},{"cell_type":"markdown","metadata":{"id":"E8ijJreT7fe6"},"source":["# **Your Turn!**"]},{"cell_type":"markdown","metadata":{"id":"Cqd6EXwFFd99"},"source":["Let's try to change the model architecture and the optimizer to see the effects.\n","\n","🤯 Some of them will show an error, try to find the reason with your classmates.\n","\n","* Change the input shape (in this [section](#step_5))\n"," * e.g. (30, 30)\n","* Remove the first dense layer (in this [section](#step_5))\n","* Add more dense layers (in this [section](#step_5))\n","* Change the optimizers (in this [section](#step_5))\n"," * e.g., SGD, RMSprop, Adam, Adadelta, Adagrad, Adamax, Nadam, Ftrl\n","* Change the number of epochs (in this [section](#step_6))\n"," * e.g. 1, 10, 20\n","\n"]}]} \ No newline at end of file diff --git a/fall-2024/aicore/aic-501/00030/MNIST Handwriting Classification using ANN - Keras.ipynb b/fall-2024/aicore/aic-501/00030/MNIST Handwriting Classification using ANN - Keras.ipynb new file mode 100644 index 0000000..efd876c --- /dev/null +++ b/fall-2024/aicore/aic-501/00030/MNIST Handwriting Classification using ANN - Keras.ipynb @@ -0,0 +1 @@ +{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"provenance":[],"toc_visible":true,"gpuType":"T4"},"kernelspec":{"name":"python3","display_name":"Python 3"},"accelerator":"GPU"},"cells":[{"cell_type":"markdown","metadata":{"id":"HPR_nNQ94KJ-"},"source":["# Prepare Environment"]},{"cell_type":"code","metadata":{"id":"m15_JQeGuaTX","executionInfo":{"status":"ok","timestamp":1730172105657,"user_tz":-420,"elapsed":1108,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["from __future__ import absolute_import\n","from __future__ import division\n","from __future__ import print_function\n","\n","from IPython.display import display\n","\n","import matplotlib\n","import matplotlib.pyplot as plt\n","plt.rcParams[\"axes.grid\"] = False\n","%matplotlib inline"],"execution_count":1,"outputs":[]},{"cell_type":"code","metadata":{"id":"z--Q9_0x_0GP","executionInfo":{"status":"ok","timestamp":1730172143413,"user_tz":-420,"elapsed":4989,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["import numpy as np\n","import keras\n","import tensorflow as tf"],"execution_count":2,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"lXmN9g0ayjnx"},"source":["# Load MNIST dataset\n","\n","The MNIST database (Modified National Institute of Standards and Technology database) is a large database of handwritten digits.\n","\n","Ref: http://yann.lecun.com/exdb/mnist/"]},{"cell_type":"code","metadata":{"id":"LLM9sJikvkFn","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1730172147636,"user_tz":-420,"elapsed":1468,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"outputId":"28b65b4d-c8f3-4e65-c916-191b0b454316"},"source":["from keras.datasets import mnist\n","\n","# Download MNIST dataset using `datasets` module in Keras\n","# Note: the data have already been split into training and test sets\n","(x_train, y_train), (x_test, y_test) = mnist.load_data()\n","\n","print(f'Training set: {x_train.shape}, {y_train.shape}')\n","print(f'Test set: {x_test.shape}, {y_test.shape}')"],"execution_count":3,"outputs":[{"output_type":"stream","name":"stdout","text":["Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz\n","\u001b[1m11490434/11490434\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 0us/step\n","Training set: (60000, 28, 28), (60000,)\n","Test set: (10000, 28, 28), (10000,)\n"]}]},{"cell_type":"markdown","metadata":{"id":"dsyiuNmM2PwN"},"source":["Let's look at some examples of the training and test sets."]},{"cell_type":"code","metadata":{"id":"xgrAQgknzX79","colab":{"base_uri":"https://localhost:8080/","height":352},"executionInfo":{"status":"ok","timestamp":1730172173520,"user_tz":-420,"elapsed":4126,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"outputId":"f8501c04-56b4-4625-a770-5bee584fa274"},"source":["def plot_mnist_data(data, label, n_images):\n"," img_w = 28\n"," img_h = 28\n"," image = np.reshape(data, (-1, img_h, img_w))\n","\n"," f, axs = plt.subplots(1, n_images)\n"," f.set_figheight(15)\n"," f.set_figwidth(15)\n"," for i in range(len(axs)):\n"," axs[i].imshow(image[i], cmap=\"gray\")\n"," axs[i].set_title(f\"Label: {label[i]}\", fontsize=20)\n"," axs[i].tick_params(\n"," axis='both',\n"," which='both',\n"," bottom=False, top=False,left=False, right=False,\n"," labelbottom=False, labeltop=False, labelleft=False, labelright=False)\n"," plt.show()\n"," plt.close(\"all\")\n","\n","print(\"Training set\")\n","plot_mnist_data(x_train, y_train, n_images=8)\n","\n","print(\"Test set\")\n","plot_mnist_data(x_test, y_test, n_images=8)"],"execution_count":4,"outputs":[{"output_type":"stream","name":"stdout","text":["Training set\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABJ4AAACuCAYAAAB3JsdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwNUlEQVR4nO3deXhMZ/vA8TuIJYid8FpCq3aittK8oqrUviu1d6FVqn1fqoufxk+pqvrVTqko1aJqr7W1r6+1l73qLRUJUksSscv8/nCZes5zkplMzpnJ8v1cl+vK/cxzznNncps5eTJzj5/D4XAIAAAAAAAAYLEsvk4AAAAAAAAAGRMbTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwRYbaePLz8xM/Pz8JDw/3aR5btmxx5rJlyxaf5oLUoaZgJeoJVqOmYCXqCVainmA1agpWop68y7KNp8fvMF//8DKT4OBg5/2e3L/g4GBfp5pi1JRv/fXXXzJixAipXr26BAYGSmBgoFSvXl1GjBghV65c8XV6KUY9pS3Tp09XHqPmzp3r65RSjJryjevXr8vGjRtl9OjR0rZtWylRooTz59CoUSNfp+cx6sl3Hjx4IAsWLJCWLVtKUFCQZM+eXYoVKyaNGjWSmTNnyv37932dYopRT75x/Phx+fzzz6VVq1YSHBwsOXPmlICAAClbtqx07dpV1qxZ4+sUPUZN+QbPebDKnTt3ZNmyZfLBBx9IkyZN5KmnnpKCBQuKv7+/FCpUSBo0aCAjRoyQyMhIW9bPZstZAaRre/fulXbt2snFixeV8SNHjsiRI0dk9uzZsnz5cqlbt66PMkR6FhUVJe+//76v00A6VbNmTTl79qyv00AGER0dLR06dJA9e/Yo45cvX5bLly/L1q1bZdasWbJq1SopXry4j7JEetC7d2+ZN2+e6W1nz56Vs2fPyqJFi6RZs2aycOFCyZ8/v3cTRLrEcx6scv78eenQoYPpbVevXpXdu3fL7t27ZcKECTJ16lTp3bu3peuz8ZRBtG3bVj755JMkb8+ePbsXs0F6dv78eWndurXExMRItmzZ5F//+pe0atVKRERWr14tEyZMkOjoaGndurUcOHBASpYs6eOMkd4MHDhQ4uLipGjRonL58mVfp4N0xuFwOL8uVqyY1KlTR1avXu3DjJBe3bp1S1q0aCGHDx8WEZEmTZrIG2+8IWXLlpUrV67IkiVLZPbs2XLgwAFp1aqV7Ny5U3LmzOnbpJFmXbhwQUREChYsKJ06dZJGjRpJcHCwZMuWTQ4dOiQTJkyQU6dOyfr166V169aydetWyZIlQ3U9gQ14zoOVihYtKs8995zUqVNHypQpI8WLFxd/f3+5cOGC/PTTT7JgwQJJSEiQvn37SpEiRaRFixaWrc3GUwaRP39+qVq1qq/TQAbw0UcfSUxMjIiIfPfdd9K5c2fnbf/85z+lVq1a8tJLL8nly5dl+PDh6fItUvCdFStWyLJly6RIkSIybNgw+fe//+3rlJDODBw4UMqWLSt169aVUqVKicjDPg1ASk2dOtW56dS3b1/5+uuvlVp64YUX5JlnnpFXXnlFDh48KFOmTJEhQ4b4KFukdaVKlZKZM2dK7969JUeOHMptderUkR49ekizZs1kx44dsmPHDvn222+lV69ePsoW6QXPebBKuXLl5OLFi0nWT/v27aVfv34SGhoq9+7dk+HDh1u68cQ2OwCnixcvyoIFC0REpFmzZsqm0yNdunSRZs2aiYjI/PnztbfjAUmJj4+XgQMHiojI+PHjpWDBgj7OCOnRkCFDpGPHjs4LcMBTj/5wkjt3bvm///s/04vxvn37yrPPPisiIp9//rk8ePDAmykiHYmIiJB+/fppm06PBAQEyPTp053xkiVLvJUa0jGe82CVLFmyuNy0rFu3rjRu3FhERA4dOiQ3btywbn3LzpRKCQkJsmjRInnttdckJCRE8uXLJ/7+/lKkSBEJCwuT8ePHp/gb//nnn6VNmzZSvHhxyZkzp5QrV04GDhzofCmsKwcPHpQ33nhDKlSoIHny5JHcuXNLhQoV5M0335TffvvNk28TXkRNpdzKlSslMTFRRB5ebCelT58+IiKSmJgoK1eu9EZqPkc9pd4HH3wgkZGR0qhRI/7KK9QUrEU9pcytW7fk2LFjIiJSv359yZcvX5JzX3zxRRF52Pdp+/btXsnP16gne1StWlUKFy4sIiJnzpzxcTbeRU3BStSTffLmzev8+s6dO9ad2GGRzZs3O0TEISKOjz/+OMXHh4WFOY9P6l/ZsmUdJ06cSPIcj68fHh6e5Hny5cvn2LZtW5LnefDggePdd991+Pn5JXmObNmyOWbOnOnyvti8ebPpnDJlyjjnpMaj8/Tu3TtV50mLqCnz+8LOmurZs6fzHNHR0UnOi4qKcs7r1auXx+t5E/Vkfl/Y/Rj1yO7dux1ZsmRxZM+e3XkfRUREONeIiIiwZB1voqbM7wtv1dTjHp03LCzM8nN7C/Vkfl/YVU+RkZHO47t3757s3K+++so5d+TIkR6t523Uk/l94YvHJ6PAwECHiDiqVatm+1pWoqbM7wue8zxDPZnfF75+jLp8+bKjQIECDhFxFC5c2NJzp5keT/fv35dq1apJmzZtpHbt2lKiRAlxOBxy7tw5WbZsmSxevFj++OMPadeunRw+fDjZ5o4//fST7N+/XypUqCDvvfeeVK9eXWJjY+WHH36QWbNmSWxsrLRq1UqOHj1q+rLFQYMGybRp00REpGHDhtKnTx8pV66cBAQEyK+//ipffvmlHDt2TPr37y9BQUHSpk0b2+4Xd23btk1CQkLkzJkz8uDBAylWrJjUrVtXunXrJm3bts2U7wWmplLu+PHjIiKSL18+CQoKSnJe8eLFJTAwUOLi4uTEiRPeSs+nqCfP3bt3T/r16yeJiYkydOhQqVixok/zSSuoKViJekqZPHnyOL+OjY1Ndu7jtz96nszoqCd7HDp0SOLi4kREpFKlSj7OxruoKViJerLOnTt3JCoqSn7++Wf57LPP5Nq1ayIi8s4771i7kFU7WKndtfztt9+SvX3jxo2OLFmyOETEMXv2bNM58tiu4tNPP+2Ij4/X5sybN885p3PnztrtGzZscN6e1Dq3bt1yNG7c2CEijjJlyjju3bun3O6LVzwl9+/ZZ591REZGpmodX6Cm/uatmipWrJhDRBxVqlRxObdKlSoOEXEEBQV5vJ43UU9/8/ZfVkaPHu0QEUe5cuUct27dco5n9lc8UVPWeXTezPzXX+op5YoXL+78q+6dO3eSnNe6dWvnWvXr1/d4PW+inv7m68enx3Xq1Mm5zpIlS2xdy2rU1N98XVM851FPqfX4mmb/evXqlezzoifSzMaTO9q1a+cQEUerVq1Mb3/8ztq/f3+S52nevLlD5OFL3oxvJ3pUFB07dkw2l+PHjzvX2rBhg3KbN4unfPnyjjZt2jimTJni2LJli+PQoUOOzZs3O8aMGeMoVaqUc41KlSo5rl+/nqq1vI2a+pu3aiogIMAhIo569eq5nFu3bl2HiDjy5Mnj8XreRD39zZuPUadPn3bkzJnTISKOtWvXKrdl9o0nd1BT7uEi3D3Uk6p///7Oc4wZM8Z0zvbt252/vIiIo2rVqh6v503U0998/fj0yJIlS5xr1KpVy5GYmGjbWnagpv7m65riOc891FPSktp4Cg4O1vKzSpppLm4UExMjp0+flqNHjzr/FSlSREREfv3112SPrVatmtSqVSvJ21955RURefgSvS1btjjH4+LinHGnTp2SXaNSpUrO5oC7d+929e1ozp49K46HG38pPvZx//nPf2TFihXy1ltvSVhYmISEhEijRo3kgw8+kGPHjknTpk1FROTEiRMycuTIVK2V3lFTrt2+fVtERLJnz+5y7qNPbbl165bH66Vn1JN7+vfvL7dv35bOnTs7G/TCHDUFK1FPrg0bNszZRPWjjz6Sd999V06fPi337t2TixcvytSpU6VFixaSLdvfnSl4zqOePHHixAnnh7bkypVL5s+fnynbYDyOmoKVqKeUqVOnjhw5ckSOHDki+/fvl6VLl0qfPn3k/Pnz0rt3b/n6668tWedxaabHk4jIzp07ZdKkSfLzzz/L1atXk5z3119/JXueOnXqJHt73bp1nV8fOXJEunbtKiIP33f96BO9unXrJt26dXMrb19+nHz+/PmTvC1v3ryyePFiKVeunFy9elW++uorGTt2rFubChkFNZUyOXPmlJs3b8rdu3ddzn30KQe5cuWyO600g3pKmblz58qmTZskMDBQvvzyS5/kkNZRU7AS9ZQyZcuWlUWLFkmXLl3kxo0b8uWXX2qPVVmzZpXp06dLv379RET9tJ+MjnqyRlRUlLRo0ULi4+PFz89P5syZk+n6Oz1CTcFK1JPncufOLVWrVnXGtWrVkvbt20uPHj2kZcuW8tprr8mFCxdkxIgRlq2ZZl7xFB4eLqGhobJ48eJkC0fE9V+bihYtmuztxYoVc379+FqXL192I1PdzZs3PTrOG/Lly+f8z5GQkCD79+/3cUbeQ02l3KMLanc+fjQhIUFE1AatGRn1lDIxMTEyZMgQEREZNWqUlChRwus5pHXUFKxEPXmmefPmcvDgQenVq5fyxzw/Pz957rnnZPv27Uoj2AIFCvggS++jnqxx9epVadq0qZw9e1ZERCZPnuy8Ls9sqClYiXqyx/PPPy+DBw8WEZGRI0fKyZMnLTt3mnjF0y+//OJ8G1i5cuVkyJAhEhoaKqVLl5bcuXM7X+I8YsQIGTVqlMvzefrS1QcPHji/njlzpjRo0MCt49L6RUjlypWdX1+4cMGHmXgPNeWZkiVLyqVLlyQyMtLl3PPnz4uImH66Q0ZDPaXc7Nmz5cqVK5I/f34pVKiQLFy4UJuzd+9e5etHnzjSuHFjlxcB6R01BStRT6lTvnx5+eabbyQxMVGio6Pl5s2bUqJECcmdO7eIiOzYscM5t0qVKr5K02uoJ2vEx8fLiy++KMeOHRORh3+Eeeutt3yclW9QU7AS9WSvtm3byrhx4yQxMVGWLl0qH374oSXnTRMbT7NmzRKRhz+EPXv2ON+PaeRqN/ORS5cuuX17wYIFnV8XKlTI+XVAQIDy8rP0LDO+h5ya8kzlypXlwIEDEhsbKxcvXpSgoCDTedHR0Znq44Cpp5R79FbM69evS48ePVzOnzFjhsyYMUNERDZv3pzhN56oKViJerJGlixZ5B//+Ic2fuDAAefXj7/lIqOinlLv1q1b0rp1a9m3b5+IiAwdOlSGDx/u46x8h5qClagnez1+f547d86y86aJt9o9+kvAc889l2ThiIjbbxN79CDvzu2PF0hISIhzk2bnzp1urZUeHD9+3Pl1Znm7CzXlmdDQUOfXW7duTXLe47c9++yztuaUFlBPsBo1BStRT/b64YcfRORhT8PWrVv7OBv7UU+pc+/ePenYsaPzWumNN96QcePG+Tgr36KmYCXqyV6Pv0PKypYqaWLj6f79+yLyd88YM4cOHVLelpGcI0eOyKFDh5K8fc6cOSLysGFko0aNnONFihSRZ555RkREvvvuO4mJiXFrvbQsNjbW+RaXgIAAqV27to8z8g5qyjNt2rSRLFkePixEREQkOW/u3Lki8vCvw4/3vsioqKeUCw8Pd376RlL/Hq+xiIgI5/jj33NGRU3BStSTfTZs2OD8haJ79+7JfqhLRkE9ee7Bgwfy8ssvy9q1a0VEpGfPnjJt2jQfZ+V71BSsRD3Z69EfW0QefuKfVdLExlP58uVF5OF76H///Xft9piYGOnZs2eKztmvXz/TYvzuu+9kzZo1IiLSrl07KV68uHL7o5fBxsXFSadOneT69etJrnHnzh2ZOnWq8yPoUyI4OFj8/PxS9Ta4devWJdss7caNG9KlSxe5cuWKiIi8+uqrkiNHDo/XS0+oKc8EBQVJ9+7dRURk/fr1smTJEm3ODz/8IOvXrxeRhxdUSb0dLyOhnmA1agpWop48l1zvyyNHjjjfKlyoUCEZM2ZMqtZKL6gnzzgcDnn99ded104dO3aUiIgIHvOEmoK1qCfPfP/99xIbG5vsnMWLF8vMmTNF5OGHlFn5AgNbejwdPnzY+YqI5DRu3FhKly4tvXr1klWrVklCQoKEhYXJ+++/L7Vq1RIRkV27dsmECRPk4sWLUr9+fdm9e7fL89auXVv2798vtWvXlmHDhkm1atUkNjZWlixZ4rwj8+bNK+PHj9eObdGihQwePFgmTpwo27Ztk0qVKskbb7whoaGhUqhQIUlISJDff/9dtm/fLkuXLpVr165J7969U3YHWWTs2LHSvXt36dChg4SGhsoTTzwhefLkkdjYWNm1a5fMmDFD/vzzTxERqVChgoSHh/skTytQU94zevRoWbduncTExEi3bt1k//790qpVKxERWb16tXzxxRci8nCX/5NPPvFZnqlBPcFq1JT3HD58WA4fPmx628WLF7WfQ6dOndLdp29ST97TvHlzKVq0qLRt21ZCQkIkT548EhUVJWvWrJGvv/5a7ty5Izlz5pTvv/8+2bd0pGXUk3cMGTLE+UreqlWryocffignTpxI9pj02hOGmvIenvP+Rj2lzsyZM6Vfv37Srl07adiwoVSoUEHy5csnCQkJcurUKVmyZIlzk83Pz08mTpyo9LRKNYdFNm/e7BCRFP1btmyZ8/i+ffsmOS9r1qyOL7/80vHxxx87x8w8uu3jjz9W5hr/BQYGOrZs2ZLk95KYmOgYOXKkI1u2bC6/h9y5cztu3ryZ5H2xefNm0zXKlCmT7PfijrCwMLfu57CwMEdkZKTH6/gKNWV+X9hZU4/s2bPHERQUlGSOQUFBjj179qR6HW+inszvC2/UU1IiIiKca0RERNi2jl2oKfP7wu6aSu77NPv3xx9/pGo9b6GezO8Lu+upSpUqyeZXqlQpxy+//JKqNXyBejK/L+ysp8fP4e6/9ISaMr8veM7zDPVkfl+khb2DAgUKOBYsWODxOklJE2+1E3n43sn58+fLP//5T8mbN6/kyJFDypQpIz179pRdu3bJ4MGDU3S+8PBwWbdunbRs2VKKFSsm2bNnl+DgYBkwYIAcO3ZMwsLCkjzWz89PRowYIb/99pu89957Urt2bSlYsKBkzZpV8ubNK5UrV5bu3bvLN998I9HR0ZIrV67UfvseGT9+vIwdO1batm0rFStWlMKFC0u2bNkkMDBQKlasKL1795Z169bJ5s2bTT+lJaOjpjxXr149OXLkiAwfPlyqVq0qefLkkTx58ki1atVk+PDhcvToUalXr55Pc/Q26glWo6ZgJerJM+PHj5cBAwZIjRo1pEiRIuLv7y9BQUHSqFEjmTRpkpw4cUIaN27ss/x8hXqC1agpWIl6Srl58+bJ1KlTpVu3blKzZk0pUaKE+Pv7S+7cuaVMmTLSqlUrmTJlipw5c0Zefvlly9f3czgcDsvPCgAAAAAAgEwvzbziCQAAAAAAABkLG08AAAAAAACwBRtPAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsEU2dyYlJiZKVFSU5M2bV/z8/OzOCT7mcDgkPj5eSpQoIVmyWL83ST1lLnbXkwg1lZlQT7AaNQUrUU+wGtflsBKPUbCauzXl1sZTVFSUlCpVyrLkkD6cP39eSpYsafl5qafMya56EqGmMiPqCVajpmAl6glW47ocVuIxClZzVVNubXPmzZvXsoSQftj1c6eeMic7f+7UVOZDPcFq1BSsRD3BalyXw0o8RsFqrn7ubm088RK5zMmunzv1lDnZ+XOnpjIf6glWo6ZgJeoJVuO6HFbiMQpWc/Vzp7k4AAAAAAAAbMHGEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbMHGEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbMHGEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbMHGEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbMHGEwAAAAAAAGzBxhMAAAAAAABskc3XCQCZWa1atbSxgQMHKnGvXr20OfPmzVPiyZMna3MOHjyYyuwAAACA9GfixIna2Ntvv63ER48eVeJWrVppx5w7d87axIBMilc8AQAAAAAAwBZsPAEAAAAAAMAWbDwBAAAAAADAFpm6x1PWrFm1sXz58qX4PMaePAEBAdqcChUqKPFbb72lzRk/frwSd+vWTYlv376tHTN27FglHjlyZPLJwqdCQkKUeOPGjdqcwMBAJXY4HNqcnj17KnGbNm20OYUKFfIgQyBpzz//vBIvWLBAicPCwrRjTp06ZWtOSJuGDx+uxGbPTVmyqH/7atSokRJv3brV8rwAZCx58+bVxvLkyaPELVu21OYUKVJEiSdMmKDNuXPnTiqzgzcFBwcrcY8ePbQ5iYmJSlypUiUlrlixonYMPZ4yr6eeekqJ/f39tTkNGzZU4mnTpimxseastGLFCiXu2rWrEt+9e9e2tT3BK54AAAAAAABgCzaeAAAAAAAAYAs2ngAAAAAAAGALNp4AAAAAAABgi3TZXLx06dLaWPbs2ZW4QYMG2pzQ0FAlzp8/vzanY8eOqUsuCZGRkUo8adIkbU779u2VOD4+Xol//fVX7Riar6ZtdevWVeIff/xRic2a2RubiRvrQERvFmfWSPyZZ55R4oMHDyZ7DjxkbBJodt8uW7bMW+mkKXXq1FHiffv2+SgTpCV9+vTRxoYNG6bE7jTXNPsgBQCZm7FhtPGxpX79+toxVatWTfE6xYsX18befvvtFJ8HvhMTE6PE27Zt0+aYfRgPMqcqVaoosdm1TOfOnZXY+KEoIiIlSpRQYuP1jp3XNsZ6njFjhhK/88472jFxcXG25eMKr3gCAAAAAACALdh4AgAAAAAAgC3YeAIAAAAAAIAt0kWPp5CQECXetGmTNsesV46vmPWyGD58uBLfuHFDm7NgwQIljo6OVuJr165px5w6dcqTFGGBgIAAJX766ae1Od9++60Sm/UQcOX06dPa2Lhx45R44cKF2pydO3cqsbEGP/300xTnkhk0atRIicuXL6/NyQw9nszex162bFklLlOmjBL7+fnZmhPSJmMdiIjkzJnTB5nA2+rVq6eN9ejRQ4nDwsKU2NhXw8yQIUO0saioKCU29u0U0Z9z9+7d63It+E7FihWV2KwfSffu3ZU4V65cSmz2vHP+/HklNuuVWalSJSXu0qWLNmfatGlKfPLkSW0O0o6EhAQlPnfunI8yQXpg/D2oRYsWPsrEOr169VLir7/+Wptj/P3Qm3jFEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbJEuejz9+eefSnzlyhVtjl09noz9Aa5fv67Nee6555T47t272pz58+dbmhd8b+bMmUrcrVs3W9Yx6x2VJ08eJd66das2x9irqHr16pbmlVEZ3x+9e/duH2XiW2b9yF5//XUlNvZTof9F5tCkSRMlHjRokMtjzGqjVatWSnzp0qXUJQbbvfTSS0o8ceJEbU7hwoWV2NiDZ8uWLdoxRYoUUeLPP//cZS5mvX2M5+natavL88Aexuvyzz77TJtjrKe8efOmeB2zPpjNmjVTYn9/f22O8THJWLdJjSHtyp8/vxLXqFHDN4kgXdi4caMSu9Pj6fLly9qYsY+SsUeqWe9nowYNGmhjxv6IGQGveAIAAAAAAIAt2HgCAAAAAACALdh4AgAAAAAAgC3YeAIAAAAAAIAt0kVz8atXryrx0KFDtTnGJqWHDh3S5kyaNMnlWocPH1biF154QYkTEhK0Y6pUqaLEgwcPdrkO0pdatWppYy1btlRis0anRsYm4KtWrdLmjB8/XomjoqK0Ocb6vnbtmjancePGKc4PelPAzGr27Nku55g1dUXGEhoaqo1FREQosTsf7mHWLPrcuXOeJwbLZcumXhLWrl1bmzNr1iwlDggI0OZs27ZNiUeNGqXEO3bs0I7JkSOHEi9evFib07RpU23MaP/+/S7nwDvat2+vxK+99pol5z1z5owSG6/TRUTOnz+vxE8++aQlayNtMz4elS5dOsXnqFOnjjZmbETPc1fGMH36dCVevny5y2Pu3bunjV28eDHVuQQGBmpjR48eVeISJUq4PI/xe0hrz4n8hgUAAAAAAABbsPEEAAAAAAAAW7DxBAAAAAAAAFukix5PRmbvwdy0aZMSx8fHa3Nq1KihxK+++qo2x9hfx6ynk9GxY8eUuF+/fi6PQdoWEhKixBs3btTmGN+P63A4tDlr165V4m7duilxWFiYdszw4cOV2KzXTkxMjBL/+uuv2pzExEQlNvakevrpp7VjDh48qI1lZNWrV9fGihUr5oNM0h53+vaY/b9AxtK7d29tzJ0+A1u2bFHiefPmWZUSbNKjRw8ldqfPm9ljwEsvvaTEcXFxLs9jPMadfk6RkZHa2DfffOPyOHhH586dU3zM2bNntbF9+/Yp8bBhw5TY2M/JTKVKlVKcC9IfY0/UuXPnanPCw8OTPYfZ7devX1fiKVOmpDAzpEX3799XYnceS+zSrFkzbaxAgQIpPo/xefHOnTse52QHXvEEAAAAAAAAW7DxBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW6TL5uJm3GleGRsb63LO66+/rsSLFi1SYmPDZqR/Tz31lDY2dOhQJTZrtPzXX38pcXR0tDbH2Oj0xo0bSvzTTz9px5iNWSFXrlxK/O9//1ub0717d1vWTqtatGihjRnvp8zC2FS9bNmyLo+5cOGCXenARwoXLqzEr7zyijbH+DxobLwqIvLJJ59YmhesNWrUKG3sww8/VGKzD8yYNm2aEhs/DEPEvesxo48++ijFx7z99tvamPGDN+A7xutpsw/e2bBhgxL//vvv2pzLly+nOhc+NCRzMnucc9VcHPCGrl27KrHx8VLEs99HRowY4XFO3sArngAAAAAAAGALNp4AAAAAAABgCzaeAAAAAAAAYIsM0+PJHcb39daqVUubExYWpsRNmjRRYuP70ZH+5MiRQ4nHjx+vzTH2/omPj9fm9OrVS4n379+vzUnL/YJKly7t6xR8rkKFCi7nHDt2zAuZ+J7x/4FZT4zffvtNic3+XyB9CQ4OVuIff/wxxeeYPHmyNrZ582ZPU4INjH0fjP2cRETu3r2rxOvXr9fmDBs2TIlv3brlcu2cOXMqcdOmTbU5xucjPz8/bY6xb9iKFStcrg3fiYqKUmJf9tapX7++z9ZG2pIli/qaC3r3wmrGfrnvv/++NufJJ59UYn9/f4/WOnz4sBLfu3fPo/N4C694AgAAAAAAgC3YeAIAAAAAAIAt2HgCAAAAAACALdh4AgAAAAAAgC0yVXPxhIQEJX799de1OQcPHlTiWbNmKbFZw1RjU+mpU6dqcxwOh9t5wl41a9ZUYmMjcTNt27bVxrZu3WpZTki79u3b5+sUUiQwMFAbe/HFF5W4R48e2hyzhr9Go0aNUuLr16+nLDmkOcbaqF69ustjfvnlFyWeOHGipTkh9fLnz6/EAwYMUGKzaxJjM/F27dp5tLaxaeqCBQuU2OyDXYyWLFmijY0bN86jfJC+vf3220qcO3fuFJ+jWrVqLufs2rVLG9u9e3eK10LaZmwmzu9nmZfxw1V69uypzTF+yJg7QkNDldjTGouLi1Nisybla9asUWJ3PvDDl3jFEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbJGpejwZnTlzRhvr06ePEkdERCix2fs/jWNm7z+fN2+eEkdHR7ubJiw2YcIEJfbz89PmGPs3pcd+TlmyqPvKxve1wz0FCxa05Dw1atRQYrO6M76XvGTJktqc7NmzK3H37t2V2PhzF9Hf8713715tzp07d5Q4Wzb96eHAgQPaGNIPs549Y8eOTfaYHTt2aGO9e/dW4tjY2FTlBesZHycKFy7s8hhjL52iRYtqc/r27avEbdq00eZUrVpVifPkyaPEZv0ujGPffvutNsfYpxPpS0BAgDZWuXJlJf7444+1Oa76cJo957lzvRMVFaXExtoWEXnw4IHL8wBI+4zPSyIiK1euVOLSpUt7Kx23bN++XYm/+uorH2ViHV7xBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW2TqHk9mli1bpsSnT59WYmN/IBGR559/XonHjBmjzSlTpowSjx49Wptz4cIFt/OE+1q1aqXEISEhSmzWb8L4vt/0yNjjwPh9Hj582IvZpE3G3kci+v00Y8YMbc6HH36Y4rWqV6+uxGY9nu7fv6/EN2/e1OYcP35ciefMmaPE+/fv144x9ii7dOmSNicyMlKJc+XKpc05efKkNoa0Kzg4WIl//PHHFJ/jv//9rzZmVj9IW+7evavEMTExSlykSBHtmD/++EOJzZ4b3WHsnRMXF6fExYsX147566+/lHjVqlUerQ3f8Pf318Zq1qypxGaPP8ZaMHtONtbT7t27lfjFF1/UjjHrJ2Vk7GPYoUMHbc7EiROV2Pj/CkD6ZbwON7su94RVPXaNv782b95cm7N27VqPzu0rvOIJAAAAAAAAtmDjCQAAAAAAALZg4wkAAAAAAAC2YOMJAAAAAAAAtqC5uAtHjx5V4i5dumhzWrdurcQRERHanP79+ytx+fLltTkvvPCCJynCBWOT5OzZsyvx5cuXtWMWLVpka06plSNHDiUODw93ecymTZuU+IMPPrAypXRpwIAB2ti5c+eUuEGDBpas9eeffyrx8uXLtTknTpxQ4j179liytlG/fv20MWOzYbOm0khfhg0bpsSeNLgcO3asVenAi65fv67E7dq1U+LVq1drxxQsWFCJz5w5o81ZsWKFEs+dO1ebc/XqVSVeuHChEps1FzfOQdpmvI4ya/C9dOlSl+cZOXKkEhuvU0REdu7cqcTGOjU7pmrVqi7XNj7nffrpp9ocV8/bd+7ccbkO0hZPGj83bNhQiadMmWJpTrCf8fd5EZFGjRopcY8ePbQ569evV+Lbt29bks+rr76qxIMGDbLkvGkdr3gCAAAAAACALdh4AgAAAAAAgC3YeAIAAAAAAIAt6PGUQsa+CSIi8+fPV+LZs2drc7JlU+9q4/uFRfT3mm7ZsiXF+SHlzN6jHx0d7YNMzBn7OYmIDB8+XImHDh2qzYmMjFTiL774Qolv3LhhQXYZz2effebrFGz3/PPPu5zz448/eiETWCUkJEQba9q0aYrPY+zhc+rUKU9TQhqyd+9eJTb2t7GS8fomLCxMic16qtBTLm3z9/dXYmNvJrNrEKO1a9dqY5MnT1Zis2tsY62uWbNGiatVq6Ydc/fuXSUeN26cNsfYB6pt27banAULFijxzz//rMRm1wvXrl3TxowOHz7scg7sYXz8cTgcLo/p0KGDEleuXFmbc/z48dQlBq8z9nQdPXq019Y29ualxxMAAAAAAACQCmw8AQAAAAAAwBZsPAEAAAAAAMAWbDwBAAAAAADAFjQXd6F69epK3KlTJ21OnTp1lNjYSNyMWRO6bdu2pTA7WGHlypW+TkFhbBJs1rTzpZdeUmJjQ2ARkY4dO1qaFzKXZcuW+ToFpMCGDRu0sQIFCrg8bs+ePUrcp08fq1JCJpUrVy4ldqeZ78KFC23NCe7LmjWrNjZq1CglHjJkiBInJCRox7z//vtKbPYzNjYTr127tjZnypQpSlyzZk0lPn36tHbMm2++qcSbN2/W5gQGBipxgwYNtDndu3dX4jZt2ijxxo0btWOMzp8/r42VLVvW5XGwx4wZM5S4f//+KT5Hv379tLF33nnH05SQCTVr1szXKfgEr3gCAAAAAACALdh4AgAAAAAAgC3YeAIAAAAAAIAtMnWPpwoVKmhjAwcOVOIOHToocVBQkEdrPXjwQImjo6O1OcY+CLCGn59fsnG7du20YwYPHmxnSk7vvvuuNvY///M/SpwvXz5tzoIFC5S4V69e1iYGIF0pVKiQNubOc8q0adOU+MaNG5blhMxp/fr1vk4BqWDWv8bY0+nmzZtKbNYnx9h37plnntHm9O3bV4mbN2+uzTH2DPvf//1fJY6IiNCOMeurZBQXF6fE69at0+YYx7p166bEL7/8sst1zK7z4DsnT570dQqwgb+/vxI3bdpUiTdt2qQdc+vWLVtzesT4OCciMnHiRK+sndbwiicAAAAAAADYgo0nAAAAAAAA2IKNJwAAAAAAANiCjScAAAAAAADYIsM2FzdrAm5sCmhsJC4iEhwcnOq19+/fr42NHj1aiVeuXJnqdeAeh8ORbGxWK5MmTVLiOXPmaHOuXLmixGaNM3v27KnENWrUUOKSJUtqx/z5559KbNao1dgQGEgtY9P9p556SpuzZ88eb6UDF4wNdbNk8ezvSLt27bIiHcCpWbNmvk4BqTBixAiXc7JmzarEQ4cO1eaEh4cr8ZNPPulRPsbzfPrpp0ps/PAeO33//ffJxkj7Jk+erMSDBg1S4ieeeMLlOcw+gMh43jNnzniQHdwRGhqqjX300UdK/MILLyhx2bJltWPc+RACdxQsWFCJW7RoocQTJkzQjgkICHB5XmPz89u3b3uQXdrCK54AAAAAAABgCzaeAAAAAAAAYAs2ngAAAAAAAGCLdNnjqVixYtpY5cqVlXjKlCnanIoVK6Z67b1792pjn3/+uRKvWLFCm5OYmJjqtWEPY68CEZEBAwYocceOHbU5cXFxSly+fPkUr23WX2Xz5s1K7E6/BSC1jL3PPO0ZBOuFhIRoY02aNFFis+eYu3fvKvHUqVO1OZcuXUpdcoBBuXLlfJ0CUuHixYvaWJEiRZQ4R44cSmzsX2lmzZo12ti2bduUePny5dqcs2fPKrE3ezoh4zt27JgSu/P4xe90vmX2O37VqlWTPea9997TxuLj4y3Jx9hP6umnn1Zi4/W1mS1btmhj06dPV2Lj74fpEb9ZAAAAAAAAwBZsPAEAAAAAAMAWbDwBAAAAAADAFmmyx1PBggWVeObMmUps1u/Cqp4Cxp47X3zxhRKvX79eO+bWrVuWrA177N69W4n37dunxHXq1HF5jqCgIG3MrNeY0ZUrV5R44cKFSjx48GCX5wB8oX79+trY3LlzvZ8IJH/+/NqY2WOS0YULF5R4yJAhVqUEJGn79u1KbOwXR3+UtK1hw4baWLt27ZTY2MPk8uXL2jFz5sxR4mvXrmlzjH3oAG/76quvlLh169Y+ygR2evPNN322ttnj46pVq5TY7PfB27dv25aTr/CKJwAAAAAAANiCjScAAAAAAADYgo0nAAAAAAAA2IKNJwAAAAAAANjC683F69Wrp8RDhw7V5tStW1eJ//GPf1iy9s2bN5V40qRJ2pwxY8YocUJCgiVrw3ciIyOVuEOHDkrcv39/7Zjhw4eneJ2JEydqY9OnT1fi33//PcXnBbzBz8/P1ykAyACOHj2qxKdPn1Zisw+DeeKJJ5Q4JibG+sTglvj4eG1s/vz5ycZAenX8+HElPnHihDanUqVK3koHbujTp482NmjQICXu3bu3LWufOXNGGzPuLxg/YMPYwF5Ef57MLHjFEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbOH1Hk/t27dPNnaH8f24IiKrV69W4vv372tzvvjiCyW+fv16itdG+hcdHa3E4eHh2hyzMSCjWLt2rTbWuXNnH2QCd5w8eVIb27VrlxKHhoZ6Kx0gRYy9M2fPnq3NGT16tBIb+3WImF/7AUBqnDt3TomrVavmo0zgrsOHD2tjAwYMUOL//Oc/SvzJJ59oxxQoUECJly9frs3ZuHGjEq9YsUKbc/HixaRShQGveAIAAAAAAIAt2HgCAAAAAACALdh4AgAAAAAAgC3YeAIAAAAAAIAt/BwOh8PVpLi4OMmXL5838kEaEhsbK4GBgZafl3rKnOyqJxFqKjOinmA1asoexvt08eLF2pwmTZoo8dKlS7U5ffv2VeKEhAQLsrMP9QSrcV0OK/EYBau5qile8QQAAAAAAABbsPEEAAAAAAAAW7DxBAAAAAAAAFtk83UCAAAAyJji4uKUuEuXLtqc0aNHK/Gbb76pzQkPD1fi48ePpz45AADgFbziCQAAAAAAALZg4wkAAAAAAAC2YOMJAAAAAAAAtmDjCQAAAAAAALaguTgAAAC8wthsXERk0KBBycYAACB94xVPAAAAAAAAsAUbTwAAAAAAALCFWxtPDofD7jyQBtn1c6eeMic7f+7UVOZDPcFq1BSsRD3BalyXw0o8RsFqrn7ubm08xcfHW5IM0he7fu7UU+Zk58+dmsp8qCdYjZqClagnWI3rcliJxyhYzdXP3c/hxpZkYmKiREVFSd68ecXPz8+y5JA2ORwOiY+PlxIlSkiWLNa/G5N6ylzsricRaiozoZ5gNWoKVqKeYDWuy2ElHqNgNXdryq2NJwAAAAAAACClaC4OAAAAAAAAW7DxBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW7DxBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW/w/kICM55e0/SEAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Test set\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABJ4AAACuCAYAAAB3JsdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr8UlEQVR4nO3deXQUZfbw8ZuwLyFCCCQgsqkIBERZFGWT4ScQk4gSFIyIMENgFMejsjjCAKLRc3DDBQMuhEVAJAqDCIj4hm0AZxIIssRBmGGbEAhbCJBISOr9g0PLU1VJL6nq7qS/n3M4J/fpp6puOpfqzpOq20GapmkCAAAAAAAAWCzY1wkAAAAAAACgcmLhCQAAAAAAALZg4QkAAAAAAAC2YOEJAAAAAAAAtmDhCQAAAAAAALZg4QkAAAAAAAC2YOEJAAAAAAAAtmDhCQAAAAAAALZg4QkAAAAAAAC2qFQLT0FBQRIUFCTTp0/3aR4bN2505LJx40af5oLyoaZgJeoJVqOmYCXqCVainmA1agpWop68y7KFpxufMF//8ALF008/7XjOXf03f/58X6ftMmrKN/bv3y9vvfWWxMTESIsWLaRmzZpSu3ZtadmypQwdOlTWrFnj6xQ9Qj35xvnz5+WHH36QpKQkefjhh6VJkyaOn0OfPn18nV65UFO+dfr0aZk6dap07NhR6tWrJ/Xq1ZOOHTvK1KlT5cyZM75Oz23Uk39JTk6usO+fRKgnX+E1D97COQqeKi4ulsWLF8tDDz0kERERUr16dWncuLH06dNH5s6dK1evXrXluFVt2Sv8Vps2bXydAvzYiBEjZOHChaaPHT58WA4fPizLli2T/v37y5dffik33XSTdxNEhXPXXXfJ4cOHfZ0GKpmffvpJBg0aJDk5Ocr4nj17ZM+ePfLZZ5/JypUrpVu3bj7KEBVZdna2vPzyy75OAxUQr3nwBs5R8NSJEyfk0UcflR07dijjp06dklOnTsmmTZvk008/lW+//VYiIyMtPXalutUu0CQlJTneZJf2b/PmzRIcfO3HfPvtt0v37t19nDX82f/+9z8REWnQoIEkJibKkiVLZNu2bfLPf/5T5s6d61i4/P777yU2NlZKSkp8mS4qAE3THF83btxYYmJifJgNKoNjx45JbGys5OTkSNWqVWXixImyefNm2bx5s0ycOFGqVq0qJ06ckNjYWDl+/Liv00UFNG7cOLlw4YI0atTI16mgguE1D97AOQqeKCgokOjoaMeiU79+/SQ1NVUyMjJk/fr1kpiYKMHBwZKRkSExMTFSWFho6fG54qkCa9q0qTRt2rTMOcnJyY7FgeHDh3sjLVRgzZo1k7lz58qIESOkRo0aymNdu3aVJ598Uvr37y9bt26VrVu3yhdffCFPPfWUj7JFRTBu3Dhp2bKldOvWTZo1ayYi1+6pBzw1efJkyc3NFRGRJUuWyJAhQxyP9ezZUzp37iyPP/64nDp1SqZMmVLhbj+Ab/3973+XFStWSHh4uEyaNEleeuklX6eECoTXPNiNcxQ8NXv2bMnMzBQRkZEjR8rnn3+unJ/+7//+T+69914ZNWqU7Ny5Uz766CMZP368ZcfniqdK7vptU0FBQSw8wamUlBRJTEw0LDpdV7t2bUlOTnbEqamp3koNFdT48eNl8ODBjjfgQHnk5OTI4sWLRUSkf//+yqLTdY899pj0799fREQWLVpkuB0PKE1+fr6MGzdORETefvttadCggY8zQkXDax7sxDkK5XH9D3F16tSR9957z3RRfOTIkXL//feLiMhbb70lxcXFlh3fbxaeLl26JMuWLZM//elP0qlTJwkNDZVq1apJeHi49O7dW95++225ePGiW/vcsGGDxMXFSWRkpNSsWVNatWol48aNc9xO5MzOnTtl7Nix0qZNG6lbt67UqVNH2rRpI3/+85/lwIEDnnybXvXrr786LqXr3bu3NG/e3McZeRc1ZY+oqChp2LChiIgcOnTIx9l4D/UEq1FT7lu1apXjKt6RI0eWOu/pp58WEZGSkhJZtWqVN1LzOeqp/P7617/K8ePHpU+fPgF/NS/1BKtRU+XHOep31JN7CgoKZN++fSIi0r17dwkNDS117oABA0TkWt+nLVu2WJeEZpG0tDRNRDQR0aZNm+b29r1793ZsX9q/li1ballZWaXu48bjT58+vdT9hIaGaps3by51P8XFxdoLL7ygBQUFlbqPqlWranPnznX6XKSlpZnOad68uWOOXaZMmeI4xrx582w7jl2oKfPnwpc1dV29evU0EdE6dOhg+7GsQj2ZPxe+qKfr++3du7fl+/Ymasr8ubCzpoYPH+7Yx4kTJ0qdl52d7Zj31FNPeXw8b6KezJ8Lb52jtm/frgUHB2vVq1d3PEcpKSmOY6SkpFhyHG+hnsyfC17zPEdNmT8XnKM8Qz2ZPxd21dPx48cd2yckJJQ595NPPnHMffXVVz06nhm/6fF09epV6dChg8TFxUmXLl2kSZMmommaHDlyRFasWCFfffWV/Pe//5VBgwZJZmam1KxZs9R9fffdd5Keni5t2rSRiRMnSseOHSUvL0+WL18un376qeTl5UlMTIzs3bvX9FLY5557Tj7++GMREenVq5c8/fTT0qpVK6ldu7bs3r1bZs2aJfv27ZMxY8ZIRESExMXF2fa8eErTNPniiy9E5NrtUfHx8T7OyPuoKXvs2rVLLly4ICIibdu29XE23kM9wWrUlPv2798vIiKhoaESERFR6rzIyEipV6+eXLhwQbKysryVnk9RT54rKiqSxMREKSkpkQkTJsgdd9zh03z8AfUEq1FTnuMcZUQ9uadu3bqOr/Py8sqce+Pj1993WcKqFazyrloeOHCgzMd/+OEHLTg4WBMR7bPPPjOdIzesKt59991afn6+Yc7ChQsdc4YMGWJ4fP369Y7HSztOQUGB1rdvX01EtObNm2tFRUXK477+y4qmadrGjRtdXtX0V9TU7/yhpq6Lj493HCc1NdXWY1mJevqdr+vp+n4D/a+/1JT7GjdurImI1r59e6dz27dvr4mIFhER4fHxvIl6+p23z1FJSUmaiGitWrXSCgoKHOOBfDUB9WQdXvOuoaY8xznKiHpyX2RkpCYiWsOGDbXffvut1HmxsbGOY3Xv3t3j4+n5zcKTKwYNGqSJiBYTE2P6+I3Fk56eXup+Bg4cqIlcu+RNf6n+9aIYPHhwmbns37/fcaz169crj/n6BU7TNG3UqFGl5ldRUFO/84ea0jRNS01NdRyjc+fOWklJiW3Hshr19Dtf1xNvwl1HTalq166tiYh2zz33OJ3brVs3TUS0unXrenw8b6KefufNc9Svv/6q1axZUxMRbe3atcpjgfxLnSuoJ9fwmuc6asqIc5TnqCfVmDFjHPt44403TOds2bLFsWAnIlpUVJTHx9Pzm+bierm5ufLrr7/K3r17Hf/Cw8NFRGT37t1lbtuhQwfp3LlzqY+PGjVKRK5dordx40bH+IULFxyxs1vT2rZt62iwvH37dmffjsHhw4dFu7bw5/a2zhQWFjo+baxp06byhz/8wfJjVETUVPlkZWU5mvnWqlVLFi1aFNAfEUw9wWrUlHOFhYUiIlK9enWnc69/OmdBQYHHx6vIqCfXjBkzRgoLC2XIkCGOhqowop5gNWrKNZyjXEM9OTdp0iQJCQkREZHJkyfLCy+8IL/++qsUFRVJTk6OzJ49W6Kjo6Vq1d+7MVn5HspvejyJiPzjH/+QDz74QDZs2CBnz54tdd7p06fL3E/Xrl3LfLxbt26Or/fs2SNDhw4VkWu9a65/Ws6wYcNk2LBhLuXtbx/VvHLlSkcPnieffFKCg/12fdF21JQ1srOzJTo6WvLz8yUoKEjmzZsXUP2drqOeYDVqyj01a9aUy5cvy5UrV5zO/e2330Tk2kJ5oKCe3DN//nz5f//v/0m9evVk1qxZPsnBn1FPsBo15R7OUWWjntzTsmVLWbZsmTz22GNy8eJFmTVrlqGuqlSpIsnJyZKYmCgi4liosoLfLDxNnz5dXn31VZfmOlt5a9SoUZmPN27c2PH1jUV66tQpl46vd/nyZY+2s8vChQsdXwfyR21SU9Y4e/asPPjgg3L48GEREfnwww8dJ9xAQj3BatSU+0JCQuTy5csufUTypUuXRERtqFmZUU/uyc3NlfHjx4uIyGuvvSZNmjTxeg7+jHqC1agp93COKhv15JmBAwfKzp075fXXX5dVq1bJ+fPnRUQkKChI+vTpI0lJSdKqVSvHwlP9+vUtO7ZfLDz9+OOPjsJp1aqVjB8/Xnr06CG33HKL1KlTx3G519SpU+W1115zuj9Pb/8pLi52fD137ly57777XNrOyh9IeZ08eVLWr18vIiKdO3eWdu3a+Tgj36CmrJGfny8DBgyQffv2ici1F75nn33Wx1l5H/UEq1FTnrn55pvl5MmTcvz4cadzjx07JiJi+gk0lQ315L7PPvtMzpw5IzfddJOEhYXJl19+aZjz008/KV9f/1Skvn37Ov1FpSKjnmA1asp9nKNKRz2Vz2233SYLFiyQkpISOXHihFy+fFmaNGkiderUERGRrVu3Oua2b9/esuP6xcLTp59+KiLXfgg7duxw3I+pV9YldDc6efKky483aNDA8XVYWJjj69q1a0tUVJRLx/MnixcvdvwnGDFihI+z8R1qqvwKCgokNjZW/vWvf4mIyIQJE2TKlCk+zso3qCdYjZryTLt27SQjI0Py8vIkJydHIiIiTOedOHHCcct5INwWTD257/qtmOfPn5cnn3zS6fw5c+bInDlzREQkLS2tUv9SRz3BatSU+zhHlY56skZwcLA0bdrUMJ6RkeH4+sbbDMt9PMv2VA7Xr6Z44IEHSi0cEZH09HSX9nf9F2VXHr+xQDp16uRY8fzHP/7h0rH8zfXb7KpVq+byfaaVETVVPkVFRTJ48GDZtGmTiIiMHTtWZs6c6eOsfId6gtWoKc/06NHD8fX185OZGx+7//77bc3JH1BPsBL1BKtRU7AS9WSv5cuXi8i1HpmxsbGW7dcvFp6uXr0qIr/3YzCza9cu5XLCsuzZs0d27dpV6uPz5s0TkWvNs/r06eMYDw8Pl3vvvVdERJYsWSK5ubkuHc9f7Nmzx9G1Pzo62tE5PxBRU54rLi6WJ554QtauXSsiIsOHD5ePP/7Yx1n5FvUEq1FTnomLi3N8YEZKSkqp8+bPny8i1/6aFxcX543UfIp6ct/06dMdnxBU2r8baywlJcUxfuP3XBlRT7AaNeU+zlGlo57ss379esciWkJCgtx0002W7dsvFp5uu+02Ebl2P+HBgwcNj+fm5srw4cPd2mdiYqJpMS5ZskTWrFkjIiKDBg2SyMhI5fHrtxJduHBB4uPjHQ23zPz2228ye/Zsx8c7u6NFixYSFBRk6cfRL1iwwPF1IDcVF6GmPKVpmowePVpSU1NFRGTw4MGSkpJiaZ1WRNQTrEZNeSYiIkISEhJEROT77793nKtutHz5cvn+++9F5NrCeWm341Um1BOsRD3BatQUrEQ9ee5///tfqY/t2bPHcVtnWFiYvPHGG+U6lp4tPZ4yMzMdf20sS9++feWWW26Rp556Sr799lu5dOmS9O7dW15++WXp3LmziIhs27ZN3n33XcnJyZHu3bvL9u3bne63S5cukp6eLl26dJFJkyZJhw4dJC8vT1JTU2Xu3Lkicu2Tcd5++23DttHR0fL888/L+++/L5s3b5a2bdvK2LFjpUePHhIWFiaXLl2SgwcPypYtW+Sbb76Rc+fO+UUvpeLiYlmyZImIXLv3NCYmxscZWYua8o7x48c7/noSFRUlr7zyimRlZZW5TUW7n1mEevKmzMxMyczMNH0sJyfH8HOIj4+vkJ9CRk15T1JSkqxbt05yc3Nl2LBhkp6e7njNW716tbzzzjsicu0vka+//rrP8iwP6glWop68h9c8FTUFV1BP3jNw4EBp1KiRPPzww9KpUyepW7euZGdny5o1a+Tzzz+X3377TWrWrClLly4t8zZGj2gWSUtL00TErX8rVqxwbD9y5MhS51WpUkWbNWuWNm3aNMeYmeuPTZs2TZmr/1evXj1t48aNpX4vJSUl2quvvqpVrVrV6fdQp04d7fLly6U+F2lpaabHaN68eZnfi7vWrl3r2N8zzzxjyT59jZoyfy7srKkb9+Hqv4qCejJ/Luw+R5X1fZr9++9//1uu43kTNWX+XHjjdW/Hjh1aREREqTlGRERoO3bsKPdxvIl6Mn8uvPU+ykxKSorjGCkpKbYdxw7Uk/lzwWue56gp8+eCc5RnqCfz58Luemrfvn2Z+TVr1kz78ccfy3WM0vjFrXYi1+6dXLRokfTs2VNCQkKkRo0a0rx5cxk+fLhs27ZNnn/+ebf2N336dFm3bp089NBD0rhxY6levbq0aNFCnnnmGdm3b5/07t271G2DgoJk6tSpcuDAAZk4caJ06dJFGjRoIFWqVJGQkBBp166dJCQkyIIFC+TEiRNSq1at8n775bZo0SLH14F+m9111BSsRD3BatSU5+655x7Zs2ePTJkyRaKioqRu3bpSt25d6dChg0yZMkX27t0r99xzj09z9DbqCVainmA1agpWop488/bbb8szzzwjd955p4SHh0u1atUkIiJC+vTpIx988IFkZWVJ3759bTl2kKZpmi17BgAAAAAAQEDzmyueAAAAAAAAULmw8AQAAAAAAABbsPAEAAAAAAAAW7DwBAAAAAAAAFuw8AQAAAAAAABbsPAEAAAAAAAAW1R1ZVJJSYlkZ2dLSEiIBAUF2Z0TfEzTNMnPz5cmTZpIcLD1a5PUU2Cxu55EqKlAQj3BatQUrEQ9wWq8L4eVOEfBaq7WlEsLT9nZ2dKsWTPLkkPFcOzYMbn55pst3y/1FJjsqicRaioQUU+wGjUFK1FPsBrvy2ElzlGwmrOacmmZMyQkxLKEUHHY9XOnngKTnT93airwUE+wGjUFK1FPsBrvy2ElzlGwmrOfu0sLT1wiF5js+rlTT4HJzp87NRV4qCdYjZqClagnWI335bAS5yhYzdnPnebiAAAAAAAAsAULTwAAAAAAALAFC08AAAAAAACwBQtPAAAAAAAAsAULTwAAAAAAALAFC08AAAAAAACwBQtPAAAAAAAAsAULTwAAAAAAALAFC08AAAAAAACwBQtPAAAAAAAAsEVVXycAVATjx483jNWqVUuJO3bsaJgTHx9f5n6Tk5MNY9u3b1fiRYsWuZIiAAAAAAB+hyueAAAAAAAAYAsWngAAAAAAAGALFp4AAAAAAABgCxaeAAAAAAAAYAuaiwMmli1bpsTOmoSXpqSkpMzHx4wZYxjr16+fEm/atMkw5+jRox7lg8B0++23K/Evv/ximPP8888r8YcffmhrTvC+OnXqGMbeeustJdafkzIyMgzbDBkyRImPHDliQXYAAACorLjiCQAAAAAAALZg4QkAAAAAAAC2YOEJAAAAAAAAtqDHEwKevp+TiGc9ncz65nz//fdK3KpVKyWOjY01bNO6dWslTkhIMMx588033c4Pgeuuu+5SYrPeY8ePH/dWOvCRyMhIw9jo0aOVWF8bnTt3NmwTExOjxLNnz7YgO/ibu+++2zD2zTffKHGLFi28lI3Rgw8+aBjLyspS4mPHjnkrHfgR/XurVatWGeaMGzdOiefMmWOYU1xcbG1i8FijRo2U+KuvvjLM2bZtmxJ/8sknhjmHDx+2NK/yCA0NVeJevXoZ5qxbt06Ji4qKbM0JsBNXPAEAAAAAAMAWLDwBAAAAAADAFiw8AQAAAAAAwBYsPAEAAAAAAMAWNBdHwOnSpYsSP/LII0632bdvn2EsLi5OiU+fPm2Yc/HiRSWuXr26Eu/YscOwzZ133qnEYWFhTvMDytKpUyclvnTpkmHOihUrvJQNvCU8PFyJFyxY4KNMUBH179/fMFajRg0fZGLO7MM5Ro0apcRDhw71VjrwEbP3SB9//LHT7T766CMlnjdvnmFOQUGB54nBY/Xr1zeM6d+H6xtzi4icPHlSif2pkbiIMeeMjAwl1r9mixg/4OPgwYPWJ4ZS1atXT4nNPtwpKipKifv166fENIT/HVc8AQAAAAAAwBYsPAEAAAAAAMAWLDwBAAAAAADAFn7Z4yk+Pl6JR48ercTZ2dmGbQoLC5V48eLFhjk5OTlKzH2ygSkyMlKJg4KCDHP095Kb9bo4ceKE28d+6aWXlLhdu3ZOt/nuu+/cPg4Cl/5ecxGRcePGKfGiRYu8lQ685C9/+YthbNCgQUrcrVs3S47Vq1cvJQ4ONv4Na/fu3Uq8efNmS44N+1Stqr4ljI6O9lEmrtH3RxERefHFF5W4Tp06SmzW3w4Vm/58JCJy8803O91u6dKlSqz/PQLe07BhQyVetmyZYU6DBg2U2KyP13PPPWdtYhabMmWKErds2VKJx4wZY9iG31W9JyEhwTCWlJSkxM2aNXO6H31fqDNnzpQvsUqEK54AAAAAAABgCxaeAAAAAAAAYAsWngAAAAAAAGALv+zxNHPmTCVu0aKF2/swu082Pz9fifV9fHzt+PHjSqx/HtLT072ZTqX17bffKvGtt95qmKOvlbNnz1py7KFDhypxtWrVLNkvcN0dd9xhGNP3OTHrn4CK7b333jOMlZSU2HKsRx99tMxYROTIkSNK/PjjjxvmmPXoge888MADSty9e3fDHP37El+qX7++YUzfN7F27dpKTI+niq9GjRpKPHnyZI/2o+91qGmaxzmhfO6++24l7tOnj9NtZsyYYVM21mjfvr1hTN/ndcWKFUrMezPv0veCmzVrlmFOWFiYErtynvjwww+VWN9nVcS63ysrGq54AgAAAAAAgC1YeAIAAAAAAIAtWHgCAAAAAACALVh4AgAAAAAAgC38srn46NGjlbhjx45KnJWVZdimbdu2SqxvVCdibFZ37733GuYcO3ZMiZs1a1ZmrmauXr1qGMvNzVXiyMhIp/s5evSoEtNc3B76JrhWmjBhghLffvvtTrf56aefyoyBskycONEwpq9xziUV35o1a5Q4ONievyOdOXPGMHbx4kUlbt68uWFOy5Ytlfif//ynYU6VKlXKmR08FRUVZRhbunSpEh86dMgw54033rAtJ3c9/PDDvk4BPtChQwcl7ty5s9NtzN6Xr1271rKc4J5GjRop8eDBg51u88c//lGJ9b9X+Zq+mfiGDRucbqNvLq7/YCPYa/z48UrcoEEDS/ar/zCVAQMGGOYkJSUpsb4huYjIlStXLMnHn3DFEwAAAAAAAGzBwhMAAAAAAABswcITAAAAAAAAbOGXPZ5+/PHHMmMz69atczqnfv36StypUyfDnIyMDCXu2rWr0/3qFRYWGsYOHDigxGZ9qvT3lpr1V4D/iomJMYzNmDFDiatXr67Ep06dMmzz17/+VYkvX75sQXaorFq0aKHEXbp0MczRn38uXbpkZ0qwWO/evQ1jbdq0UeKSkhLDHLMxZ+bMmaPE69evN8zJy8tT4r59+xrmTJ482emx/vznPytxcnKyKynCAlOmTDGM1alTR4nN+lLo+3t5k/49ktn/C09qHhWLK/2A9MzOY/Cdd955R4mffPJJJdb/LiYisnz5cltzKq+ePXsqcePGjQ1z5s+fr8RffPGFnSnhBma9KEeOHOl0u59//lmJT548aZjTr1+/MvcRGhpqGNP3l1q8eLFhTk5OjtP8KhqueAIAAAAAAIAtWHgCAAAAAACALVh4AgAAAAAAgC1YeAIAAAAAAIAt/LK5uF3OnTunxGlpaU63caWxuSv0zRD1jc5FRPbs2aPEy5Yts+TY8A6zps76ZuJ6Zj/jTZs2WZYTKj+zBrt6ubm5XsgEVtE3jP/yyy8Ncxo2bOj2fo8cOWIY+/rrr5X41VdfVWJXPtzAbL+JiYlKHB4ebpgzc+ZMJa5Zs6YSf/TRR4ZtioqKnOYDo/j4eCWOjo42zDl48KASp6en25qTu/QN680aiW/cuFGJz58/b2NG8IVevXo5nXPlyhUlduXDDuA9mqYpsf7/cnZ2tmEb/c/Um2rVqqXEr7zyimHOM888o8T671FEZNSoUdYmBpeZfaBYSEiIEm/ZssUwR/8eW/8+RURk2LBhSqyvj9atWxu2iYiIUOK///3vhjkDBw5U4rNnzxrmVDRc8QQAAAAAAABbsPAEAAAAAAAAW7DwBAAAAAAAAFsEVI8nb2nUqJFh7OOPP1bi4GDjmt+MGTOUuDLcy1mZrVy5UokffPBBp9ssXLhQiadMmWJlSghAHTp0cDpH30sH/q1qVfWl2ZN+TiLGfnFDhw41zDl9+rRH+76RWY+nN998U4nfffddw5zatWsrsb5OV61aZdjm0KFDnqQY8IYMGaLE+udexPg+xZf0fc5ERBISEpS4uLjYMOf1119XYnqCVXz33XdfmbGZS5cuKXFmZqaVKcFmDz30kGFs/fr1SmzWvy05Obncxzbrm9mnTx8lvvfee53uJzU1tdy5wDo1atQwjOn7cL333ntO91NYWGgYS0lJUWL9622rVq2c7tesn6Yv+5rZhSueAAAAAAAAYAsWngAAAAAAAGALFp4AAAAAAABgCxaeAAAAAAAAYAuai9vg2WefNYyFh4cr8blz5wxz/v3vf9uWE8onMjLSMKZvcGnWuE7fuFff+PTixYsWZIdAom9qOXLkSCXetWuXYZsffvjB1pzge+np6YaxUaNGKbEVjcRdpW8Mrm8MLSLStWtXb6UTcEJDQ5XYlWa4VjTmtUpiYqJhTN9kPysryzAnLS3NtpzgG56cJ/yplmH0/vvvK/EDDzygxE2aNDFs06tXLyUOCgoyzImLiyt3bmb71TehNvOf//xHiV955ZVy5wLrDBs2zOkcs6b2+g+SckWXLl3c3mbHjh2Gscr4OyJXPAEAAAAAAMAWLDwBAAAAAADAFiw8AQAAAAAAwBb0eLLA/fffr8Qvv/yy020GDRpkGNu7d69VKcFiX3/9tWEsLCzM6XZffPGFEh86dMiynBCY+vXrp8QNGjRQ4nXr1hm2KSwstDUn2Cs42PnfiO655x4vZOI6fZ8Ms+/B2fc1ffp0w9jw4cPLlVeg0PccbNq0qRIvXbrUm+m4rXXr1k7n8J4pMDjrl3L+/HnDGD2e/FtGRoYSd+zYUYk7depk2GbAgAFKPGHCBMOc3NxcJV6wYIHbuS1atMgwtnv3bqfbbdu2TYl5v+9fzF7z9D3BzPrJ3XHHHUrcoUMHw5xHHnlEievXr6/EZuco/ZzRo0cb5uhrcf/+/YY5FQ1XPAEAAAAAAMAWLDwBAAAAAADAFiw8AQAAAAAAwBb0eLJAdHS0ElerVs0w58cff1Ti7du325oTykd/3+/dd9/tdJuNGzcaxqZNm2ZVSoCIiNx5551KrGmaEqempnozHdhg7NixSlxSUuKjTDwXGxurxHfddZdhjv770sdmPZ7gmvz8fCXOzMxUYn1PFRFjv7izZ89anldpGjVqpMTx8fFOt9m6datd6cBHevToYRh74oknytwmLy/PMHb8+HHLcoL9zp07p8RpaWmGOfqxSZMm2ZJLq1atDGP6noX686mIyPjx423JB9bYsGGDYUx/7jDr36Tvq6R/z+3KsZ599lnDnNWrVyvxbbfdZpjzl7/8RYn17w0rIq54AgAAAAAAgC1YeAIAAAAAAIAtWHgCAAAAAACALVh4AgAAAAAAgC1oLu6mWrVqGcYGDBigxFeuXDHM0TeZLioqsjYxeCwsLMww9sorryixWcN4PbNmgxcvXvQ4LyAiIsIw1rNnTyX+97//rcQrVqywNSfYT9+Y29+Eh4crcbt27Qxz9OdQV+Tm5ioxr5OeKygoUOJDhw4p8eDBgw3bfPfdd0r87rvvWpJLVFSUEps1723RooUSu9LAtSI23UfZzN6PBQeX/TfyH374wa50EICmTp1qGNOfj8wam+tfv+BfzD4s47HHHlNisw/nCQ0NdbrvDz/8UIn19VFYWGjY5ptvvlHil19+2TCnf//+Sty6dWvDHP1ru7/jiicAAAAAAADYgoUnAAAAAAAA2IKFJwAAAAAAANiCHk9umjBhgmHsrrvuUuJ169YZ5mzbts22nFA+L730kmGsa9euTrdbuXKlEuv7eAHl9fTTTxvGGjVqpMRr1671UjbANZMnT1biZ5991qP9HD58WIlHjBihxEePHvVovzDSvz4FBQUZ5jz00ENKvHTpUkuOffr0aSU269/UsGFDt/c7f/58T1OCn4qPj3c65/z580o8d+5cm7JBIBgyZIgSP/XUU4Y5+fn5SnzmzBlbc4J3bNiwQYnNzj9PPPGEEuvPPyLGvmBmPZ30XnvtNSVu27atYU5cXFyZxxExvm/yd1zxBAAAAAAAAFuw8AQAAAAAAABbsPAEAAAAAAAAW7DwBAAAAAAAAFvQXNwJfbPNv/3tb4Y5Fy5cUOIZM2bYmhOs9eKLL3q03bhx45T44sWLVqQDODRv3tzpnHPnznkhEwSqNWvWGMbatGljyb7379+vxFu3brVkvzD65ZdflPixxx4zzOnUqZMS33rrrZYcOzU11emcBQsWKHFCQoLTbQoKCjzOCf7h5ptvVmJ9I18zx48fV+L09HRLc0JgGThwoNM5q1evVuKdO3falQ58SN9svLQxK+hfv5YtW2aYo28u/sADDxjmNGjQQInPnj1rQXb24YonAAAAAAAA2IKFJwAAAAAAANiChScAAAAAAADYgh5POmFhYUr8wQcfKHGVKlUM2+h7YOzYscP6xOB39PfVFhUVWbLfvLw8p/utVq2aEoeGhjrd70033aTEnva2Ki4uVuJJkyYZ5ly+fNmjfUMVExPjdM63337rhUzgTUFBQUocHOz8b0Su9Kn45JNPDGNNmjQpcxuzY5eUlDg9litiY2Mt2Q+skZmZWWZsp//85z9ubxMVFWUY27t3rxXpwEvuu+8+JXblXLdy5UqbskEg0r92Xrp0yTDnnXfe8VY6CFBfffWVYUzf4+nxxx83zNH3G/b3PtNc8QQAAAAAAABbsPAEAAAAAAAAW7DwBAAAAAAAAFuw8AQAAAAAAABbBHRzcbNG4evWrVPili1bKvGhQ4cM2/ztb3+zNjFUCD///LMt+12+fLkSnzhxwjCncePGSmzWcM5bcnJyDGNJSUk+yKTi69GjhxJHRET4KBP4UnJyshLPnDnT6TarV682jLnSBNyTRuGebDNnzhy3t0Hg0DfU18dmaCRe8ek/0MfM6dOnlfj999+3Kx0EgLFjxyqx/v30qVOnDNvs3LnT1pwAs/dV+vd+Dz/8sGHOtGnTlPjLL79U4gMHDliQnXW44gkAAAAAAAC2YOEJAAAAAAAAtmDhCQAAAAAAALYI6B5PrVu3Nox17ty5zG1efPFFw5hZ3ydUHGvWrDGMmd1H6y1DhgyxZD9Xr15VYlf6sqxatUqJ09PTnW6zZcsW9xJDqR555BElNutDt2vXLiXevHmzrTnB+7755hslnjBhgmFOeHi4t9IxyM3NVeKsrCzDnMTERCU261UHXKdpWpkxKqf+/fs7nXP06FElzsvLsysdBAB9jyf9uea7775zuo+QkBDDWP369ZVYX7eAuzIzM5V46tSphjlvvfWWEr/xxhtKPHz4cMM2BQUF5U/OQ1zxBAAAAAAAAFuw8AQAAAAAAABbsPAEAAAAAAAAWwRUj6fmzZsr8fr1651uo++tsXr1aktzgu89+uijhrGJEycqcbVq1Tzad/v27ZX48ccfd3sf8+bNM4wdPnzY6XZff/21Ev/yyy9uHxv2qV27tmEsOjra6XapqalKXFxcbFlO8A9HjhxR4qFDhxrmDBo0SImff/55O1NSJCUlKfHs2bO9dmxUTjVr1nQ6x5d9KVB+Zu+jzHqt6hUWFipxUVGRZTkBembvqRISEpT4hRdeMMzZt2+fEo8YMcLaxBDwFi5caBgbM2aMEut/p50xY4Zhm59//tnaxNzAFU8AAAAAAACwBQtPAAAAAAAAsAULTwAAAAAAALAFC08AAAAAAACwRUA1F09MTFTiW265xek2mzZtUmJN0yzNCf5p5syZtuz3iSeesGW/qHjMGqSeO3dOiVetWmWY8/7779uWE/zT5s2bnY6ZfViG/jUvNjbWMEdfY5988okSBwUFGbbZv39/6ckCHhg5cqQSnz9/3jDntdde81I2sENJSYlhLD09XYmjoqIMcw4ePGhbToDen/70J8PYH//4RyX+/PPPDXM4P8Fuubm5hrF+/fopsf7DpyZNmmTYRt8s35u44gkAAAAAAAC2YOEJAAAAAAAAtmDhCQAAAAAAALaotD2eevToYRh77rnnfJAJABiZ9Xi67777fJAJKoN169a5NAb4o3/9619K/O677xrmpKWleSsd2KC4uNgwNnnyZCU266OakZFhW04IPOPGjVPiGTNmKLFZT8Xk5GQl1vfjFBG5cuWKBdkB7jl69KgSb9iwQYnj4uIM27Rr106Jvdm3kyueAAAAAAAAYAsWngAAAAAAAGALFp4AAAAAAABgCxaeAAAAAAAAYItK21y8Z8+ehrG6des63e7QoUNKfPHiRctyAgAAgCo2NtbXKcAHsrOzlXjUqFE+ygSBYuvWrUrct29fH2UCWC8+Pl6Jd+/ebZhz6623KjHNxQEAAAAAAFDhsfAEAAAAAAAAW7DwBAAAAAAAAFtU2h5PrjC77/EPf/iDEp89e9Zb6QAAAAAAALjlwoULStyyZUsfZWKOK54AAAAAAABgCxaeAAAAAAAAYAsWngAAAAAAAGALFp4AAAAAAABgi0rbXPzNN990aQwAAAAAAAD24IonAAAAAAAA2IKFJwAAAAAAANjCpYUnTdPszgN+yK6fO/UUmOz8uVNTgYd6gtWoKViJeoLVeF8OK3GOgtWc/dxdWnjKz8+3JBlULHb93KmnwGTnz52aCjzUE6xGTcFK1BOsxvtyWIlzFKzm7OcepLmwJFlSUiLZ2dkSEhIiQUFBliUH/6RpmuTn50uTJk0kONj6uzGpp8Bidz2JUFOBhHqC1agpWIl6gtV4Xw4rcY6C1VytKZcWngAAAAAAAAB30VwcAAAAAAAAtmDhCQAAAAAAALZg4QkAAAAAAAC2YOEJAAAAAAAAtmDhCQAAAAAAALZg4QkAAAAAAAC2YOEJAAAAAAAAtvj/5HrXtJNrg08AAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"markdown","metadata":{"id":"3jK3oZke4oOp"},"source":["# Data Preprocessing\n","As our model is going to take a single vector for each training example, we need to reshape the inputs (i.e., `x`) so that each 28x28 image becomes a single 784-dimensional vector."]},{"cell_type":"code","metadata":{"id":"-F9YbswP1YLF","executionInfo":{"status":"ok","timestamp":1730172189346,"user_tz":-420,"elapsed":415,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["# MNIST parameters\n","num_classes = 10\n","img_h, img_w = 28, 28\n","\n","# Reshape the input so that each 28x28 image becomes a single 784-dimensional vector\n","x_train = x_train.reshape(x_train.shape[0], img_h * img_w)\n","x_test = x_test.reshape(x_test.shape[0], img_h * img_w)\n","\n","# Convert from int to float format\n","x_train = x_train.astype('float32')\n","x_test = x_test.astype('float32')"],"execution_count":5,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"qetkkccz5ISk"},"source":["## Feature Scaling\n","\n","It is a common pratice to **normalize the range of independent variables or features of data**. This is mainly because many classifiers calculate the distance between two points by the Euclidean distance. If one of the features has a broad range of values, the distance will be governed by this particular feature. Therefore, the range of all features should be normalized **so that each feature contributes approximately proportionately to the final distance**.\n","\n","There are many other feature scaling techniques, which can be found in [here](https://en.wikipedia.org/wiki/Feature_scaling).\n","\n","In this MNIST example, we'll only scale the inputs to be in the range [0-1] rather than [0-255]."]},{"cell_type":"code","metadata":{"id":"1pnHXIU35HMU","executionInfo":{"status":"ok","timestamp":1730172229761,"user_tz":-420,"elapsed":430,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["# Scale the MNIST data to be in the range [0-1]\n","# Note: The maximum value of color value is 255\n","x_train /= 255\n","x_test /= 255"],"execution_count":6,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"AGJsAf6x7aRg"},"source":["## Convert from class data into one-hot format\n","\n","We also have to modify the labels to be in the one-hot format, i.e.\n","```\n","0 -> [1, 0, 0, 0, 0, 0, 0, 0, 0]\n","1 -> [0, 1, 0, 0, 0, 0, 0, 0, 0]\n","2 -> [0, 0, 1, 0, 0, 0, 0, 0, 0]\n","etc.\n","```"]},{"cell_type":"code","metadata":{"id":"ZO3bA6ao7a3r","executionInfo":{"status":"ok","timestamp":1730172237256,"user_tz":-420,"elapsed":446,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["# Convert class data to one-hot format\n","y_train = tf.keras.utils.to_categorical(y_train, num_classes)\n","y_test = tf.keras.utils.to_categorical(y_test, num_classes)"],"execution_count":7,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"f_PXJOEX7mnf"},"source":["Here are the shapes of the training and test sets after preprocessing."]},{"cell_type":"code","metadata":{"id":"PgwTaQm27f45","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1730172246888,"user_tz":-420,"elapsed":433,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"outputId":"ea81b1cd-d691-4a30-94f7-f4b286b08137"},"source":["print(f\"Training set: {x_train.shape} {y_train.shape}\")\n","print(f\"Test set: {x_test.shape} {y_test.shape}\")"],"execution_count":8,"outputs":[{"output_type":"stream","name":"stdout","text":["Training set: (60000, 784) (60000, 10)\n","Test set: (10000, 784) (10000, 10)\n"]}]},{"cell_type":"markdown","metadata":{"id":"PjZ-uOK07wPM"},"source":["# Define a Model\n","\n","We are going to define a neural network, or what is typically referred to as a deep learning model. Here, we will do a simple 3-layer fully-connected network."]},{"cell_type":"markdown","metadata":{"id":"QPlQ3OIv707z"},"source":["\n","\"Fully-connected"]},{"cell_type":"code","metadata":{"id":"UEzRx5l576Bd","executionInfo":{"status":"ok","timestamp":1730172314204,"user_tz":-420,"elapsed":599,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["from keras.models import Sequential\n","from keras.layers import *\n","\n","# Feed-forward neural network\n","model = Sequential()\n","\n","# Layer 1 - Hidden\n","# Number of neurons (or units) is 128.\n","# Activation function is rectified linear unit (ReLU).\n","model.add(Dense(128, activation='relu'))\n","\n","# Layer 2 - Hidden\n","# Number of neurons (or units) is 128.\n","# Activation function is rectified linear unit (ReLU).\n","model.add(Dense(128, activation='relu'))\n","\n","# Layer 3 - Output\n","# Number of neurons is 10 (i.e., number of output classes).\n","# Activation function is softmax.\n","# Note: the softmax function is commonly used in\n","# the classification problem to normalize a\n","# K-dimensional output vector into a probability\n","# distribution of classes.\n","num_classes = 10\n","model.add(Dense(num_classes, activation='softmax'))"],"execution_count":9,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"zQCt2mvz8ROs"},"source":["# Train a Model\n","\n","In this section, we will first define several parameters that will be used during the training.\n","\n","* `epochs`: the number of training epochs (one epoch means the model has seen the entire training samples one times).\n","* `batch_size`: the number of examples per one training step.\n","* `learning_rate`: a hyperparameter that defines the adjustment in the weights of our network with respect to the loss gradient.\n"]},{"cell_type":"code","metadata":{"id":"YjNa-rS28XqD","executionInfo":{"status":"ok","timestamp":1730172352486,"user_tz":-420,"elapsed":421,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["epochs = 20\n","batch_size = 256\n","learning_rate = 0.01"],"execution_count":10,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"UHeeybzy-taV"},"source":["## Loss Function\n","\n","Before we train a model, we need to specify the **loss function**, `loss`, that will be used to quantify the error between the predicted and the target classes. As we would like to train our model to differentiate among 10 handwritten digits in MNIST dataset, a loss function that we can use is *cross-entropy*. Cross-entropy is a measure of how different your predicted distribution is from the target distribution (see [Wikipedia](https://en.wikipedia.org/wiki/Cross_entropy) for more details).\n","\n","In this exercise, we will use the cross-entropy.\n","\n","Keras also provides many other loss functions for other problems as well. You can read more [here](https://keras.io/losses/)."]},{"cell_type":"code","metadata":{"id":"P8OGmVLq-RNm","executionInfo":{"status":"ok","timestamp":1730172357003,"user_tz":-420,"elapsed":438,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["# Cross-entropy loss\n","loss = keras.losses.categorical_crossentropy"],"execution_count":11,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"LvObkjaY-32N"},"source":["## Optimizer\n","\n","Another component that we need to specify before the training is the **optimizer**, `optimizer`. The optimizers that are commonly used to train deep learning models are Stochastic Gradient Descent (SGD), Adam, RMSProp, Adadelta, etc. The list of optimizers provided by Keras can be found [here](https://keras.io/optimizers/).\n","\n","Here we will use SGD."]},{"cell_type":"code","metadata":{"id":"VTq6EcE1-4fo","executionInfo":{"status":"ok","timestamp":1730172363034,"user_tz":-420,"elapsed":1476,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["# Stochastic gradient descent (SGD)\n","optimizer = tf.keras.optimizers.SGD(learning_rate)"],"execution_count":12,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"VzG3YUL8_UdH"},"source":["## Compile Keras Model\n","\n","Next, we configures the model for training by calling."]},{"cell_type":"code","metadata":{"id":"CmCb0PgA_TJQ","executionInfo":{"status":"ok","timestamp":1730172367293,"user_tz":-420,"elapsed":411,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["model.compile(\n"," loss=loss,\n"," optimizer=optimizer,\n"," metrics=['accuracy'])"],"execution_count":13,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"rkB6NPNuW0nE"},"source":["## Train a model"]},{"cell_type":"markdown","metadata":{"id":"QP4czTe_W7HC"},"source":["We are now ready to train our model. Let's start feeding the data to train the model and it will learn to classify digits."]},{"cell_type":"code","metadata":{"id":"LJP7WcsO_bZA","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1730172388242,"user_tz":-420,"elapsed":14444,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"outputId":"2d467ca4-03d1-4326-c6ff-102ab997ed32"},"source":["hist = model.fit(\n"," x_train, y_train,\n"," batch_size=batch_size,\n"," epochs=epochs,\n"," verbose=1)"],"execution_count":14,"outputs":[{"output_type":"stream","name":"stdout","text":["Epoch 1/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 4ms/step - accuracy: 0.2782 - loss: 2.1393\n","Epoch 2/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.7634 - loss: 1.1343\n","Epoch 3/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.8473 - loss: 0.6442\n","Epoch 4/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.8695 - loss: 0.4980\n","Epoch 5/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.8819 - loss: 0.4334\n","Epoch 6/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.8929 - loss: 0.3934\n","Epoch 7/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.8980 - loss: 0.3677\n","Epoch 8/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.9025 - loss: 0.3499\n","Epoch 9/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9084 - loss: 0.3294\n","Epoch 10/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9112 - loss: 0.3138\n","Epoch 11/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.9118 - loss: 0.3105\n","Epoch 12/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9147 - loss: 0.3025\n","Epoch 13/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9195 - loss: 0.2881\n","Epoch 14/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9206 - loss: 0.2809\n","Epoch 15/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 2ms/step - accuracy: 0.9195 - loss: 0.2836\n","Epoch 16/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9237 - loss: 0.2674\n","Epoch 17/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9241 - loss: 0.2656\n","Epoch 18/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 3ms/step - accuracy: 0.9264 - loss: 0.2599\n","Epoch 19/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9300 - loss: 0.2476\n","Epoch 20/20\n","\u001b[1m235/235\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step - accuracy: 0.9326 - loss: 0.2402\n"]}]},{"cell_type":"markdown","metadata":{"id":"__m07PF3Xh5A"},"source":["# Apply the Trained Model on MNIST images\n","\n","Once we have finished the model training, we can now apply it to MNIST images."]},{"cell_type":"code","metadata":{"id":"I3ap6GsLXv41","colab":{"base_uri":"https://localhost:8080/","height":827},"executionInfo":{"status":"ok","timestamp":1730172433759,"user_tz":-420,"elapsed":1402,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"outputId":"020227a2-6819-456d-8b17-44d61e3da060"},"source":["# Sample two MNIST images from the training set\n","test_imgs = x_test[0:2]\n","\n","# Plot images\n","for idx in range(len(test_imgs)):\n"," f, ax = plt.subplots(1)\n"," f.set_figheight(5)\n"," f.set_figwidth(5)\n"," ax.imshow(test_imgs[idx].reshape((img_h, img_w)), cmap=\"gray\")\n"," ax.tick_params(\n"," axis='both',\n"," which='both',\n"," bottom=False, top=False,left=False, right=False,\n"," labelbottom=False, labeltop=False, labelleft=False, labelright=False)"],"execution_count":15,"outputs":[{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZQAAAGVCAYAAADZmQcFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAJiklEQVR4nO3cP2ueZQOH4SexDoJJUKlgsf7ByUW0RRC0oLiILkL7FeoiLkLBpQgdHR38Bi6dSwmFDi7q0A5CiyjGwUoQhEoSh6LS+91fzJs813s2SdPjWJMf97WdvVK4FqZpmmYA8H9a3O8DAHA4CAoACUEBICEoACQEBYCEoACQEBQAEoICQOLIbn7p7t27s/X19dnS0tJsYWHhXp8JgANkmqbZ1tbW7NixY7PFxe3vIbsKyvr6+uz48ePZ4QC4/9y6dWv29NNPb/vzXf3Ja2lpKTsQAPennVqwq6D4MxcAO7XAf8oDkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAIkj+32AB82ZM2eGdmfPnh3ara+vD+3u3Lkz9+bLL78c+tZvv/02tPvpp5+GdsC94YYCQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkFqZpmnb6pc3NzdnKyspenOfQ+/nnn4d2zz33XHuQA2Rra2tod/Pmzfgk7IVff/11aPfZZ5/Nvbl27drQt/h3Gxsbs+Xl5W1/7oYCQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkjuz3AR40Z8+eHdq99NJLQ7vvv/9+aPfiiy/OvTlx4sTQt958882h3WuvvTa0u3Xr1tyb48ePD31rr/3zzz9zb37//fehbz311FNDu1G//PLL3BuvDe8tNxQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAmPQ+6xq1ev7ulu1Orq6p5967HHHhvavfzyy0O769evz7159dVXh7611+7cuTP35scffxz61ujDo48//vjQbm1tbWjH3nFDASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEgvTNE07/dLm5uZsZWVlL84D7LHTp08P7S5evDi0u3HjxtDurbfemntz+/btoW/x7zY2NmbLy8vb/twNBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASBzZ7wMAnSeffHLuzRdffDH0rcXFsX+PXrhwYWjn5eCDzw0FgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABIeG0YDpEPP/xw7s3Ro0eHvvXHH38M7X744YehHQefGwoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgITHIeEAev3114d2n3zySXyS7b3//vtDuxs3brQH4cBwQwEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABJeG4YD6N133x3aPfzww3Nvrl69OvStb775ZmjH4eWGAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJLw2DPfQI488MrR75513hnZ//fXX3JtPP/106Ft///330I7Dyw0FgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABIeG0Y7qFz584N7V555ZWh3erq6tybr7/+euhb8N/cUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJDwOCbvw3nvvDe3Onz8/tNvc3BzaXbhwYWgHBTcUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEg4bVhHjhPPPHE3JvPP/986FsPPfTQ0O7y5ctDu2+//XZoBwU3FAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBIOG1Ye5boy/5rq6uzr15/vnnh761trY2tDt//vzQDvaTGwoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJDw2jD3rRdeeGFod/Lkyfgk2/v444+HdqOvFMN+ckMBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJDwOCT77tlnnx3aXblyJT7J9s6dOze0u3TpUnwSOLjcUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgITXhtl3H3zwwdDumWeeiU+yva+++mpoN01TfBI4uNxQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhNeGybzxxhtDu48++ig+CbAf3FAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCE14bJnDp1amj36KOPxif539bW1ube/Pnnn/fgJHC4uKEAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEh4HJL71nfffTe0e/vtt+fe3L59e+hb8CBxQwEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABIL0zRNO/3S5ubmbGVlZS/OA8ABtbGxMVteXt72524oACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASuwrKLt6PBOCQ26kFuwrK1tZWchgA7l87tWBXz9ffvXt3tr6+PltaWpotLCxkhwPg4Jumaba1tTU7duzYbHFx+3vIroICADvxn/IAJAQFgISgAJAQFAASggJAQlAASAgKAIn/ACKgAvUsPmfRAAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZQAAAGVCAYAAADZmQcFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAKEElEQVR4nO3cvWve5QLH4SelqTgkETNIS11UHBQUpC7OootWBKWC/4X1BUUoiOKf4OagLkUKRVFwUxxUcBBB6FLwBRKRIuSFIqh5zngOh5Mmz+0nbz3XtSZffjddPtwp3HPT6XQ6AYB/6NhBHwCAm4OgAJAQFAASggJAQlAASAgKAAlBASAhKAAkju/ml7a2tiYrKyuThYWFydzc3F6fCYBDZDqdTjY2NianTp2aHDu2/T1kV0FZWVmZ3HnnndnhADh6fvnll8np06e3/fmu/uS1sLCQHQiAo2mnFuwqKP7MBcBOLfCf8gAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgcP+gDcPN48cUXh3a33nrr0O6BBx4Y2j3zzDNDuxHvvPPO0O6rr74a2r3//vtDOyi4oQCQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAIm56XQ63emX1tfXJ0tLS/txHg6JixcvzrzZz1d8b3ZXr14d2j366KMzb37++eehb/H/Z21tbbK4uLjtz91QAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAxPGDPgB7a+TV4MnkaLwcfOXKlaHdZ599NvPmrrvuGvrWk08+ObS7++67h3bPP//8zJu333576Fvw39xQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkPA55RJw5c2Zo9/TTT8cn2d4PP/wwtDt79uzQ7tq1a0O7zc3NmTcnTpwY+tbXX389tHvwwQeHdsvLy0M7KLihAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACa8NHxEnT54c2s3NzQ3tRl4Ofvzxx4e+tbq6OrTbT+fPnx/a3XffffFJbuyTTz7Z1+/Bf3JDASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEl4bPiI+/vjjod0999wztNvY2Jh58/vvvw996yh47rnnhnbz8/PxSeDwckMBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASXhu+yf30008HfYRD56WXXpp5c++99+7BSbb3zTff7OsOCm4oACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASHofkyHriiSeGdm+88cbMmxMnTgx967fffhvavfrqq0O769evD+2g4IYCQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkvDbMkXXmzJmh3ejLwSMuXrw4tPviiy/ik8Dec0MBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASXhvmwF2+fHlo99hjj7UHuYH33ntvaPf666/HJ4HDyw0FgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABIeG2YzMmTJ4d2jzzyyNDulltuGdpdu3Zt5s2bb7459K3Nzc2hHRxFbigAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABIehyRz6dKlod3y8nJ8khv74IMPZt5cvXp1D04CNxc3FAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBIOG1Yf6ns2fPzrx56KGH9uAk2/v888+HdhcuXGgPAkwmEzcUACKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEg4bXhm9zy8vLQ7rXXXpt5Mz8/P/StUd99993QbnNzsz0IMJlM3FAAiAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCE14ZvcufPnx/aPfzww/FJtnf58uWh3YULF9qDAP+IGwoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgMTcdDqd7vRL6+vrk6Wlpf04D7E//vhjaDc/Px+fZHunT58e2q2ursYnAW5kbW1tsri4uO3P3VAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYDE8YM+ANx+++1Duz///DM+yeGxtrY2tBv5Nxl9WXq/XyC/7bbbZt688MIL/UH2wN9//z3z5pVXXhn61vXr14d2u+GGAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJLw2zIH7/vvvD/oIh86HH344tFtdXZ15c8cddwx969y5c0M7Gr/++uvQ7q233opP8m9uKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQMJrwze5Tz/9dGj31FNPxSdhFs8+++xBH2HP/PXXX0O7ra2t+CTb++ijj4Z23377bXyS7X355Zf79q3dckMBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJCYm06n051+aX19fbK0tLQf5+GQePnll2fezM/P78FJevfff//Mm3Pnzu3BSXrvvvvuzJsff/yxP8gNXLp0aWh35cqV+CTMam1tbbK4uLjtz91QAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhNeGAdgVrw0DsC8EBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkBAUABKCAkBCUABICAoACUEBICEoACQEBYCEoACQEBQAEoICQEJQAEgICgAJQQEgISgAJAQFgISgAJAQFAASggJAQlAASAgKAAlBASAhKAAkBAWAhKAAkNhVUKbT6V6fA4BDbqcW7CooGxsbyWEAOLp2asHcdBfXj62trcnKyspkYWFhMjc3lx0OgMNvOp1ONjY2JqdOnZocO7b9PWRXQQGAnfhPeQASggJAQlAASAgKAAlBASAhKAAkBAWAxL8AQQkgnsDSUxUAAAAASUVORK5CYII=\n"},"metadata":{}}]},{"cell_type":"code","metadata":{"id":"TIlI5WiVjd4h","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1730172446216,"user_tz":-420,"elapsed":857,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"outputId":"a52c4acf-0daa-4696-a3fb-318c6b8a8dd2"},"source":["# Predict the labels of these images\n","probs = model.predict(test_imgs)\n","\n","# Convert the label back to the original format\n","prob_classes = np.argmax(probs, axis=-1)\n","\n","# Print the probability distribution\n","for idx in range(len(probs)):\n"," for i in range(num_classes):\n"," print(f'{i}: {probs[idx][i]:.4f}')\n"," print(f'Predicted class: {prob_classes[idx]}')\n"," print('')"],"execution_count":16,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 406ms/step\n","0: 0.0002\n","1: 0.0000\n","2: 0.0005\n","3: 0.0042\n","4: 0.0000\n","5: 0.0001\n","6: 0.0000\n","7: 0.9944\n","8: 0.0001\n","9: 0.0006\n","Predicted class: 7\n","\n","0: 0.0063\n","1: 0.0006\n","2: 0.9476\n","3: 0.0125\n","4: 0.0000\n","5: 0.0043\n","6: 0.0246\n","7: 0.0000\n","8: 0.0041\n","9: 0.0000\n","Predicted class: 2\n","\n"]}]},{"cell_type":"markdown","metadata":{"id":"uukGYk3JXIgP"},"source":["# Evaluate Performance on Test Set\n","\n","Once you have finished the model training, you then evaluate the classification performance on the test set (i.e., the unseen dataset)."]},{"cell_type":"code","metadata":{"id":"wXZLfaurAblZ","colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"status":"ok","timestamp":1730172510751,"user_tz":-420,"elapsed":1934,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"outputId":"ec56a97c-baa5-49e4-d75f-c0e631afe911"},"source":["score = model.evaluate(x_test, y_test, verbose=0)\n","print('Test loss:', score[0])\n","print('Test accuracy:', score[1])"],"execution_count":17,"outputs":[{"output_type":"stream","name":"stdout","text":["Test loss: 0.23876428604125977\n","Test accuracy: 0.9326000213623047\n"]}]},{"cell_type":"markdown","metadata":{"id":"_KRSdi9DkfOk"},"source":["# Analyze the Predictions\n","\n","It's always a good idea to inspect the output and make sure everything looks fine. Here we'll look at some examples our model gets right, and some examples it gets wrong on the test sets.\n","\n","First, we use the trained model to predict the labels of the test sets."]},{"cell_type":"code","metadata":{"id":"wsyT8_egkhm_","executionInfo":{"status":"ok","timestamp":1730172530576,"user_tz":-420,"elapsed":1773,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"colab":{"base_uri":"https://localhost:8080/"},"outputId":"93b24947-0c61-4224-fef4-f2afc189c833"},"source":["# We use the trained model to predict the labels of the test set\n","prob_classes = model.predict(x_test)\n","\n","# The output class is the one with the highest probability\n","pred_classes = np.argmax(prob_classes, axis=-1)\n","\n","# Convert the label back to the original format\n","y_test_classes = np.argmax(y_test, axis=-1)"],"execution_count":18,"outputs":[{"output_type":"stream","name":"stdout","text":["\u001b[1m313/313\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step\n"]}]},{"cell_type":"markdown","metadata":{"id":"m2OeoOjukqYJ"},"source":["Next we determine which samples are correct or incorrect."]},{"cell_type":"code","metadata":{"id":"rtlKYzaVkq__","executionInfo":{"status":"ok","timestamp":1730172533745,"user_tz":-420,"elapsed":429,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}}},"source":["correct_indices = np.where(pred_classes == y_test_classes)[0]\n","incorrect_indices = np.where(pred_classes != y_test_classes)[0]"],"execution_count":19,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"bKLdFq6YkrgF"},"source":["Then we plot the images with their corresponding classes. In the incorrect case, we also plot the ground truth classes for comparison."]},{"cell_type":"code","metadata":{"id":"UXjTXE4EksJ_","colab":{"base_uri":"https://localhost:8080/","height":501},"executionInfo":{"status":"ok","timestamp":1730172540087,"user_tz":-420,"elapsed":4737,"user":{"displayName":"Akadej Udomchaiporn","userId":"12826764406638924459"}},"outputId":"70f8de86-5797-4e5c-9b73-5fcd5745c1af"},"source":["print(\"Correct cases\")\n","correct_x_test = x_test[correct_indices]\n","correct_preds = pred_classes[correct_indices]\n","idx = np.random.choice(np.arange(len(correct_x_test)), 8)\n","plot_mnist_data(correct_x_test[idx], correct_preds[idx], 8)\n","\n","print(\"Incorrect cases\")\n","incorrect_x_test = x_test[incorrect_indices]\n","incorrect_preds = pred_classes[incorrect_indices]\n","correct_labels = y_test_classes[incorrect_indices]\n","idx = np.random.choice(np.arange(len(incorrect_x_test)), 8)\n","plot_mnist_data(incorrect_x_test[idx], incorrect_preds[idx], 8)\n","plot_mnist_data(incorrect_x_test[idx], correct_labels[idx], 8)"],"execution_count":20,"outputs":[{"output_type":"stream","name":"stdout","text":["Correct cases\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABJ4AAACuCAYAAAB3JsdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApx0lEQVR4nO3dfZyNZf7A8e/BYGeMkccQY0Y19EuNyFamHaQn2cGiXxJ6WvRg/exK/FbMpEjJYrOxWlsslUpKNj+xQw9YKSNPG0LJQyQG4yFm7t8fXg7Xfd0z58yZ+zr3OXM+79drXq/5Xue67/s7Z77Ofc/lPt/jsyzLEgAAAAAAAMBlFbxOAAAAAAAAAOUTC08AAAAAAAAwgoUnAAAAAAAAGMHCEwAAAAAAAIxg4QkAAAAAAABGsPAEAAAAAAAAI1h4AgAAAAAAgBEsPAEAAAAAAMAIFp4AAAAAAABgRLlaePL5fOLz+SQ7O9vTPJYvX+7PZfny5Z7mgrKhpuAm6gluo6bgJuoJbqKe4DZqCm6insLLtYWni58wr395saRJkyb+572kryZNmnidaqlRU+F3+vRpeffdd2XEiBHSsWNHufLKK6VmzZoSFxcntWrVkptuuklGjRol33//vdeplhr15J2ioiJ58803pWvXrtKoUSOpWrWqxMfHS0pKivz3f/+3fPjhh16nGBJqKvzuv//+oM55F3+9+uqrXqcdFOrJG0eOHJGPPvpInn32WenSpYs0aNDA/3to166d1+mFjHryRnmtJxFqygtcl8NNXtdTJSN7BRCVdu/eLb/5zW8cH/vpp59k1apVsmrVKpk4caJMnTpV+vXrF+YMEW0OHz4sXbp0kU8++UR7bNeuXbJr1y6ZN2+edO/eXebMmSNVqlTxIEuUZ2lpaV6ngAjWsmVL2bVrl9dpoJygnuAmrsvhJq/riYWncqJLly7yzDPPFPt45cqVw5gNolndunWlffv2cv3110tycrLUr19f4uLiZM+ePbJo0SKZM2eOFBQUyAMPPCB16tSRTp06eZ0yItg999zjX3RKSUmRJ554Qlq0aCFnzpyRL774QsaPHy8//vijvPPOO1K7dm2ZNm2axxkjkj377LMydOjQEuccPnxY2rVrJ0VFRXLllVfKjTfeGKbsEI0sy/J/X69ePbn++uvlgw8+8DAjRDPqCW7juhxu8rKeWHgqJ2rUqCFXX32112kgyqWmpsr+/fvF5/M5Pt6tWzfp37+/ZGRkyJkzZ2TkyJGc4FCstWvXypIlS0TkXG3l5eVJYmKi//H27dvL3XffLddee60cOXJEZsyYIU8//bTUrVvXq5QR4Ro2bCgNGzYscc7LL78sRUVFIiLSp0+fcKSFKPb4449LSkqKtGnTRho1aiQiUuw5EAiEeoKbuC6Hm7yup3LVXBxA2VSoUCHgBVKbNm2kQ4cOIiKybt06OX78eDhSQxRauXKl//v/+Z//URadzmvcuLE88MADInKuF9S///3vsOWH8mnWrFkicu6PPRaeEMjQoUOle/fu/kUCoCyoJ7iJ63K4yet6ipiFp4KCAnnzzTfl4YcflvT0dElKSpK4uDipU6eOZGZmyoQJE0r9gy9dulSysrKkfv36UrVqVUlNTZXHH39c9uzZE9T2X375pQwcOFDS0tKkWrVqkpCQIGlpafLII4/I1q1bQ/kxEUbUlDkXLyCcPn3aw0zCh3oqvZ9//tn/fWpqarHzmjZt6rhNeUdNuW/btm2yevVqERHJzMyU5ORkjzMKH+oJbqKe4DZqyhyuy6knNxmrJ8slubm5lohYImKNHj261NtnZmb6ty/uKyUlxdqyZUux+7j4+NnZ2cXuJykpyfr444+L3U9hYaE1ZMgQy+fzFbuPSpUqWdOnTw/4XOTm5jrOSU5O9s8pi/P76devX5n2E4moKefnwnRNBXLgwAHrkksusUTEql27ttFjuYl6cn4uTNbT+++/79/HlClTip03ZMgQ/7wNGzaEfLxwo6acnwsvX6NGjhzpP8bMmTONHccE6sn5ufCins7vNzMz0/V9hwv15PxcUE+ho6acnwuuy0NDPTk/F+W5niKmx9PZs2elRYsWkpWVJa1bt5YGDRqIZVny7bffyrvvvivz5s2TnTt3SteuXSUvL0+qVq1a7L4WLVoka9eulbS0NBk2bJhcc801kp+fL2+99ZbMmDFD8vPzpXPnzrJx40bHW2EHDRokf/nLX0RE5Fe/+pXcf//9kpqaKvHx8bJ+/XqZNGmSbNq0SQYMGCCXXnqpZGVlGXtegvXxxx9Lenq6fPPNN1JYWCj16tWTNm3aSK9evaRLly4x+f5yaso9p0+flr1798rSpUtl/PjxcvjwYRE59/apWEE9ld7tt98uKSkpsnPnTpk8ebI8+OCDkpCQoMz5/vvv/R93n5GREVO96qgpd1mWJf/4xz9ERCQ+Pl569OjhcUbhRT3BTdQT3EZNuYfrcurJTWGrJ7dWsMq6arl169YSH//oo4+sChUqWCJivfLKK45z5KJVxeuuu846duyYNmfWrFn+OT179tQeX7Jkif/x4o5z8uRJq0OHDpaIWMnJydaZM2eUx72446mkr7Zt21rff/99mY7jBWrqAi9Wwi8+ptNX3759rdOnT7tyrHCgni4IZz2tWrXKql27tiUiVtOmTa1p06ZZn376qZWbm2tNmDDBqlu3riUiVmpqasDnONJQUxdEwv/WLV++3L//3r17GzmGSdTTBV7X0/n9RvMdKtTTBdSTO6ipC7guLzvq6YJYqaeIWXgKRteuXS0RsTp37uz4+MVP1tq1a4vdz5133mmJnLvlbd++fcpj54uie/fuJeayefNm/7GWLFmiPBbO4rniiiusrKws66WXXrKWL19urVu3zsrNzbXGjh1rNWrUyH+M5s2bW0eOHCnTscKNmrogkl6QmjRpouUXDainC8JdT7t377aGDh1qxcXFafVUrVo1a8yYMdahQ4fKfJxwo6Yu8PoPO8uyrAcffLDY/KIB9XSB1/V0fr/RvFBAPV1APbmDmrqA6/Kyo54uiJV6ipjm4nYHDx6Ubdu2ycaNG/1fderUERGR9evXl7htixYtpFWrVsU+/uCDD4rIuVv0li9f7h8/evSoPw50i37z5s2ldu3aIiKyatWqQD+OZteuXWKdW/gr9bYXW7Nmjbz33nvy2GOPSWZmpqSnp0u7du1kxIgRsmnTJrnttttERGTLli2Sk5NTpmNFO2qqdK6//nrZsGGDbNiwQdauXSvz58+X+++/X3bv3i39+vWTv/3tb64cJ1pRT8GxLEveeOMNmTdvnpw5c0Z7/Pjx4zJnzhxZsGBBmY5THlBToTt16pS8/fbbIiLSsGFDueWWW1w/RrShnuAm6gluo6ZKh+vyklFPpeNFPUVMjycRkc8++0ymTJkiS5culZ9++qnYeT/++GOJ+7n++utLfLxNmzb+7zds2CD33HOPiJz7yMCioiIREenVq5f06tUrqLz3798f1DwTatSoUexjiYmJMm/ePElNTZWffvpJ/vrXv8pzzz0nlStXDl+CHqOmQpeQkKD022nVqpV069ZN7rvvPrnrrrvk4Ycflj179sioUaM8zDK8qKfSKSoqknvuuUfeeustERF56KGH5LHHHpPmzZtLYWGh5OXlyfPPPy/vv/++PPTQQ/LVV1/JpEmTPMnVK9SUOxYsWCBHjx4VEZH77rtPKlSI2P9XM4p6gpuoJ7iNmgod1+U66il0XtRTxFyZZWdnS0ZGhsybN6/EwhEROXnyZImP161bt8TH69Wr5//+4mMdOHAgiEx1J06cCGm7cEhKSvL/4ygoKJC1a9d6nFH4UFNm3HLLLTJ48GAREcnJyZH//Oc/HmcUHtRT6b388sv+Rafs7Gx55ZVXpGXLllK1alVJSEiQtm3bynvvvSd9+vQREZHJkyfLwoULPcnVC9SUe2bNmuX/vm/fvh5m4h3qCW6inuA2asoMrsupJzeZrKeIuONp2bJl/reBpaamytChQyUjI0MaN24sCQkJUqnSuTRHjRolY8aMCbi/UD/BrbCw0P/99OnT5aabbgpqu0suuSSk44XLVVdd5f9+z549HmYSPtSUWV26dJHnn39eioqKZP78+fK///u/XqdkFPUUmldeeUVEzt19OXz48GLnjR07VmbPni0iIjNnzpRf//rXYcnPS9SUe3744QdZsmSJiJz7H7uLz3mxgnqCm6gnuI2aMovrcurJTabqKSIWnmbMmCEi534Jq1ev9r8f0y7QauZ5P/zwQ9CP16xZ0/99rVq1/N/Hx8eXm4/1DvUfUzSjpsy6+Pn89ttvPcwkPKin0GzZskVEzi1+V6lSpdh5l112mdSrV09++OGHmPmfOmrKPXPmzPFf/PXr18/jbLxBPcFN1BPcRk2ZxXU59eQmU/UUEW+127Rpk4iItG/fvtjCEZGg3yb2+eefB/34xQWSnp7uX6T57LPPgjpWNNi8ebP/+wYNGniYSfhQU2ZdfOdctWrVPMwkPKin0Jz/H6ezZ88GnHu+8fj5bco7aso9599mFxcXF3R/hfKGeoKbqCe4jZoyi+tyZ9RTaEzVU0QsPJ3/o6SgoKDYOevWrZN///vfQe1vw4YNsm7dumIfnzlzpoiIVKxYUdq1a+cfr1Onjtxwww0iIjJ37lw5ePBgUMeLZPn5+fLGG2+IyLmV2NatW3ucUXhQU2ad79sjcu6TIMo76ik0KSkpIiKyceNGOXLkSLHzNm7c6P9fqfPblHfUlDs2bNjg/7SaTp06+T8xJtZQT3AT9QS3UVNmcV2uo55CZ6qeImLh6YorrhARkU8//VS2b9+uPX7w4EF/89lg9e/f37EY586dK//85z9FRKRr165Sv3595fGRI0eKyLmPR+zRo0eJfyydPn1apk6dKqdOnSpVbiIiTZo0EZ/PV6a3wS1evLjEZmnHjx+Xu+++Ww4dOiQi5z5RqqS3u5Qn1FRoXn/9dcnPzy9xzrx582T69Okicq55fVZWVsjHixbUU2jO92o6ffq0/P73v3f8CNhTp07J7373O3/cuXPnkI8XTagpd7z22mv+72O1qbgI9QR3UU9wGzUVGq7LnVFPofG6noy8pyEvL09effXVgPM6dOggjRs3lr59+8rChQuloKBAMjMzZfjw4dKqVSsREVm5cqVMnDhR9u/fLzfeeKOsWrUq4H5bt24ta9euldatW8uTTz4pLVq0kPz8fHn77bf9T2RiYqJMmDBB27ZTp04yePBgmTx5snz88cfSvHlzGThwoGRkZEitWrWkoKBAtm/fLp988onMnz9fDh8+7FlPieeee0569+4tv/nNbyQjI0OaNm0q1apVk/z8fFm5cqVMmzZNvvvuOxERSUtLk+zsbE/ydAM1FR7Tp0+X/v37S9euXeVXv/qVpKWlSVJSkhQUFMjXX38tb7/9tv/F1+fzyeTJk5X3OkcL6ik8fv/738vf/vY3OXDggPz973+Xbdu2ycCBA6VZs2ZSWFgo69atkylTpvjfDty8eXO5//77Pcm1rKip8CssLJS5c+eKyLmeC+Vp0ZJ6Cp+8vDzJy8tzfGz//v3a76FHjx5R91YW6il8YqGeRKipcOG6XEU9lY3n9WS5JDc31xKRUn29++67/u0feOCBYudVrFjRmjRpkjV69Gj/mJPzj40ePVqZa/+qXr26tXz58mJ/lqKiIisnJ8eqVKlSwJ8hISHBOnHiRLHPRW5uruMxkpOTS/xZgpGZmRnU85yZmWl9//33IR/HK9SU83MRCTV1ySWXWHPmzAn5OF6gnpyfC5P1ZFmWtW7dOislJSVgnunp6dauXbvKdKxwo6acnwvTNXXehx9+6N/fo48+6so+vUQ9OT8XpuuppJ/T6Wvnzp1lOl64UE/OzwX1FDpqyvm54Lo8NNST83NRnuspIt5qJ3LuvZOzZ8+Wm2++WRITE6VKlSqSnJwsffr0kZUrV8rgwYNLtb/s7GxZvHix3HXXXVKvXj2pXLmyNGnSRB599FHZtGmTZGZmFrutz+eTUaNGydatW2XYsGHSunVrqVmzplSsWFESExPlqquukt69e8trr70m+/btk1/84hdl/fFDMmHCBHnuueekS5cu0qxZM6ldu7ZUqlRJqlevLs2aNZN+/frJ4sWLJTc3Vxo2bOhJjl6ipkpv1qxZMnXqVOnVq5e0bNlSGjRoIHFxcZKQkCDJycnSuXNneemll+Sbb76Re++915McvUI9hSY9PV02bNggU6dOldtuu00uvfRSqVy5slSpUkUaNWokWVlZMnv2bFmzZo0kJyd7lqcXqKmymT17tv/7WH6b3XnUE9xEPcFt1FTpcV1ePOqp9LyuJ59lOTTdAAAAAAAAAMooYu54AgAAAAAAQPnCwhMAAAAAAACMYOEJAAAAAAAARrDwBAAAAAAAACNYeAIAAAAAAIARLDwBAAAAAADAiErBTCoqKpK9e/dKYmKi+Hw+0znBY5ZlybFjx6RBgwZSoYL7a5PUU2wxXU8i1FQsoZ7gNmoKbqKe4Dauy+EmXqPgtmBrKqiFp71790qjRo1cSw7RYffu3XLZZZe5vl/qKTaZqicRaioWUU9wGzUFN1FPcBvX5XATr1FwW6CaCmqZMzEx0bWEED1M/d6pp9hk8vdOTcUe6gluo6bgJuoJbuO6HG7iNQpuC/R7D2rhiVvkYpOp3zv1FJtM/t6pqdhDPcFt1BTcRD3BbVyXw028RsFtgX7vNBcHAAAAAACAESw8AQAAAAAAwAgWngAAAAAAAGAEC08AAAAAAAAwgoUnAAAAAAAAGMHCEwAAAAAAAIxg4QkAAAAAAABGsPAEAAAAAAAAI1h4AgAAAAAAgBEsPAEAAAAAAMAIFp4AAAAAAABgBAtPAAAAAAAAMIKFJwAAAAAAABjBwhMAAAAAAACMYOEJAAAAAAAARlTyOgG3/Otf/1LiP/3pT9qchQsXhisdACj3KlRQ/+/ipZde0uaMGzdOiXfv3m00JwCRrVevXtrYZZddpsQvvPBCuNIBAECqVq2qjQ0ZMkSJn3zySW3O/v37S9zvDz/8oI09//zzSrxs2TJtzqlTp0rcbzTijicAAAAAAAAYwcITAAAAAAAAjGDhCQAAAAAAAEaUmx5PLVq0UOI///nP2pyOHTsqcZUqVbQ5tWrVUuJ9+/YpsWVZAXP5+eeftbFnn31WiY8cORJwPzDD3g+sXbt2xo7l8/mU+B//+IcS79mzJ6T9Ll26VIk///xzbU5+fn5I+0Z4xMfHa2MnT55U4mBeb7w0duxYJW7atKk2x/4aCiC22HvBDRs2TJtz7NgxJabHE4pTr149JV68eLE2Jz09XYnt10wiInfddZcSO127o/yxX/OPHj26xMed5OTkaGPZ2dllyAqR4KqrrtLG7H+/O6levXqJj1955ZXa2M0336zE3bt31+a8++67AY8dbbjjCQAAAAAAAEaw8AQAAAAAAAAjWHgCAAAAAACAESw8AQAAAAAAwIhy01zc3vxr4sSJ2pxBgwaFJRenxuELFy5U4o8//jgsuUD34osvKvHcuXMDbjNkyBBtLC4uLuB277zzjhLfcMMNStyzZ8+Q9vvEE08o8fr167U51113XcD9wIw6depoY/bXpC+//FKbY29A+Mgjj7ibWBk1atRIifv376/Ev/71r7Vtzp49azQnAJGtZcuWSnzttddqc956661wpYMol5WVpcTXXHONNqeoqEiJO3TooM2x/91gv65C+WRvHh7KBwzRSLx82rRpkzZm/zCMSy+9NOB+evfurcT2D0Rw8tprr2lj9r8l/vrXvwbcT6TjjicAAAAAAAAYwcITAAAAAAAAjGDhCQAAAAAAAEZEZY+nLl26aGPjx49X4unTp2tzTp8+Xepj+Xw+JbYsS5tj79+0fft2bc63335b6mPDjEWLFpV6m1deecVAJiK33nqrNnb55Zcr8ZQpU7Q5FSqwZhzJrrjiCm3M/p5vpzn2nmBeuuSSS7SxN954Q4l37dqlxJ999pnJlABEoapVqwac889//jMMmSAa2fucuNX7cNq0aa7sB5HD3q8pNzfXlf3m5OS4sh9ENqd1ggkTJgTcLj4+Xolvu+02JQ6mx5NTP9TZs2cH3C7a8NcrAAAAAAAAjGDhCQAAAAAAAEaw8AQAAAAAAAAjorLH04ABA7SxZcuWKbFb7wEHTLL3cxIRGTJkiBIH089p586druWE0uvVq1eJsYj+Xu3hw4drc/bt2+duYqXQqlUrJZ40aZI2p3HjxkqckZFhMqWoY+8vISIyevTogHMi2fLly7Ux+88QzBynHhmZmZklznHaL6KPvb8dUBoJCQlKbO+nEow9e/ZoY16eb1F69nOK/dzqNMct9mM5HdvO6fzFOS76paena2P2PsBXX311wP0cOnRIibt166bNOXnyZOmSiwLc8QQAAAAAAAAjWHgCAAAAAACAESw8AQAAAAAAwAgWngAAAAAAAGBEVDYXByJRUlKSNta/f38lbtq0qRL37dtX26ZKlSpKfPbsWW3OzJkzlXjEiBFB5wn3PfTQQ0qclpamzalTp44S/+c//9HmjBs3zt3EitGkSRNtbOTIkUrctm1bbY69afq3337ral7RLpzNTsMlmPyDmRNMM9YVK1YoMY1Xywf7BxcApXHFFVeUGDs5c+aMEt9xxx3anBMnTpQtMRiTnZ2tjQVzDokkTudFznHRp1mzZkq8ePFibU7dunVL3IfTh/XMmzdPiVevXl365KIQdzwBAAAAAADACBaeAAAAAAAAYAQLTwAAAAAAADAiKns8/fjjj9rYzTffrMTXXXedNufLL780lhNiT0ZGhhKPGjVKm3PLLbeUuA+nmly/fr0SP/3009qc7777LpgUYYj9/dz215saNWoE3MeYMWO0sVOnTilx7dq1tTn2fc+dO1eJ161bp23Tp08fJR4wYIA259prr1Xib775RpuzdOlSbSyW5ebmKnGo/Zzat2+vxKb6PjjlZx+zHzvUnyna+nHAnJYtW3qdAmJMUVGREm/evNmjTOB0DrGfOyNJTk5OwDmc32JHenq6Egfq5+Rk69at2lis9HSy444nAAAAAAAAGMHCEwAAAAAAAIxg4QkAAAAAAABGsPAEAAAAAAAAI6KyufiECRO0sS5duijxggULtDmTJ09W4vfeey/gsY4fP67E1apVCyJD3b59+5S4oKAgpP3AfRUrVtTGBg0apMROjcMTEhKUuFKlwP+cbrvtNiX+5JNPtDlnzpxRYsuyAu4X4XXgwAElHjFihBL37dtX2+aXv/ylEleooK/7P/LII0pcWFiozbE3+LbX0I4dO7Rt6tSpE/DYM2fOVOKhQ4dqc/Lz87WxWBZK4217I3ERc83EgzlOoGOHmlt2drYS8zoWO+wfgODz+ZT47Nmz2javv/66yZQAeMRUI26nc9OKFSsCzgnlnBZKM3Sn49jPi4h8y5YtU+I5c+Zoc3r37l3iPuzrDyIiHTp0UGKnD/05fPhwMClGFe54AgAAAAAAgBEsPAEAAAAAAMAIFp4AAAAAAABgRFT2ePrqq6+0sbvuukuJP/jgA23OCy+8UGLs5NChQ0pcq1atYFLUfP3110ps76ciIvLiiy8qcVFRUUjHQuncfffd2pj9d+GWhx9+WIntdevEqafZkSNHlPjEiRNlygtlM3369BJjEf13/dRTT2lz6tWrp8R5eXnaHHvfgMcee0yJU1NTS0pVRERmzZqljQ0bNkyJ6efkDntPp3D1c/JaKP2vUD507dpVie19FOfPn69t8/PPP5tMCVEiLS1NG5sxY0ap9/Ppp5+6kQ5ckJOTo40F6sUUzvOk/VwVSj8nET1np36OiD4HDx5U4n79+mlzxo8fr8T2HtIpKSnaNj169FDi+vXra3PuvPNOJbb3nY5G3PEEAAAAAAAAI1h4AgAAAAAAgBEsPAEAAAAAAMAIFp4AAAAAAABgRFQ2F3dibyR40003aXM6d+6sxC1atCj1cd5++21t7PTp00rcrFkzbc4f/vAHJX7++ee1OZZlKbFTU2m4b9WqVdrYmjVrlLhatWoB91O7dm1tLD4+XomdGpkHMnjwYG3Mnt+QIUO0OatXry71sWDOokWLlHjJkiXanEqVKpUYi4j88Y9/LHMuffv21cauvPJKJXZ6DYXK3jTVqSFqrDQTt6O5eOwK9Noxbty4MGWCaPPQQw9pY40aNSr1fhYuXOhGOnCBqfOi0zkmmPNOZmZmqbcJhlMTdZQ/Th/8tXHjRiW+9dZbldj+4T0iIv3791fitm3banMWLFigxB07dgw2zYjFHU8AAAAAAAAwgoUnAAAAAAAAGMHCEwAAAAAAAIwoNz2e7DZv3hzUmAmLFy/Wxuzv0/zss8+0Ofa+T/Zttm/fXubcoNu1a5c2duONN5Z6P5dffrk2VrNmTSWuW7euEjv1M6hVq5YSO/XLaNOmjRI/9dRT2pz77rtPiQ8fPqzNgXfOnDkTcKxhw4banIEDByrx0qVLlXjbtm3aNr/97W+V2Kl3VKtWrZTY3vNJRGTr1q3aWCzLzs72OoWI4NQjw95HIxix2g8rmvl8Pm2sefPmJW5j72cJnNerV69Sb2Pvsyoisnv3bjfSQQTJzc1V4kjrI2jPz6nnE9cMsWHHjh1KPGjQIG2O/Xr/scce0+bcfPPNSmy//hcRmTZtWigpeoY7ngAAAAAAAGAEC08AAAAAAAAwgoUnAAAAAAAAGFFuezxFGnsfoRdeeEGbM3HiRCXu2bOnEo8bN871vOCeUHpwffDBBwHnjBgxQht75plnlPiOO+7Q5tx7771KPHXq1FJmh3Cz9wn74osvtDmJiYlK3KNHDyU+evSots3s2bOVeMmSJdqcatWqKfGQIUO0OY888og2BjgJpv+GvacTPZ6iT1pamjbWtm1bDzJBrFq/fr02Zu+Riuji1AvJrZ5OTr2XSntsp1xGjx5dYizCOS9WOfV0ta8DdOrUSZuTkpKixE8++aQ2Z+/evUr8/vvvh5Ji2HDHEwAAAAAAAIxg4QkAAAAAAABGsPAEAAAAAAAAI1h4AgAAAAAAgBE0F/fI119/HXBO5cqVw5AJIt348eO1sauvvlqJ77nnHm1Ot27dlJjm4pHvj3/8oxJXqKD/38B1112nxMeOHQu439WrVyvxpEmTtDkjR45U4qSkpID7BcrCrWaxiGybNm1S4s2bN3uUCSKN/UMtKlasWOp9TJkyxa10ECFCbbptqnl3MPt1aiYeaA7NxWPXd999p8Rjx47V5syYMUOJk5OTtTl33nmnEtNcHAAAAAAAADGJhScAAAAAAAAYwcITAAAAAAAAjKDHExDhfvGLX2hjWVlZHmQCN11++eXa2L333qvEa9as0ebk5eWV+dhfffWVNnb27FklfvHFF8t8HMSGYHpbOMnJyXE5E0SiHTt2KPGpU6c8ygSRZsCAAUpcr169gNtYlqXEhYWFruYE7zn1PioP/ZDoa4jzLr30UiV+9NFHQ9rPG2+84UY6YcMdTwAAAAAAADCChScAAAAAAAAYwcITAAAAAAAAjGDhCQAAAAAAAEbQXByIcB07dtTG4uPjlbioqEibs2LFCmM5oexatWqljZ04cUKJR44caeTY3bt318Z27typxF988YWRY6P8CbVhanZ2tqt5IDL4fD4lXrx4sUeZINI9++yzpd5m/fr1Sjxv3jy30gGAMqtbt64SP/HEE9qcxx9/XImrVKmizTl69KgST5w4UZvzySefhJKiZ7jjCQAAAAAAAEaw8AQAAAAAAAAjWHgCAAAAAACAEVHR46lJkyZK3Lx585D2s23bNiXevn17qCmVWcOGDQPOsfdJQGzo2rWrEr/11lsBt9mwYYM2NmbMGLdSQphs3bpVid3q02V/vbnjjju0OS+//LIrx0L5F2pPJ8QGy7K8TgER6KmnntLG4uLiSr2fUaNGuZEOELJQ+xPm5OS4mwjCLiMjQxtr1KiREk+dOlWJa9SooW1j/xvf6bxpP9bGjRuDTTNicccTAAAAAAAAjGDhCQAAAAAAAEaw8AQAAAAAAAAjWHgCAAAAAACAERHZXPyWW25R4gULFihxQkJCwH188cUX2tj06dOV2Mvm4t27d9fGdu3apcR/+ctfwpQNvNKzZ09t7LXXXlPiChX09eE9e/Yo8ezZs91NDK6Lj49X4gEDBmhz7M0GK1asqM0pLCws8TiVKukv6y+99JISr1y5UpszduzYEvcLnEdzcZTE/jpWvXp1jzJBJAmlkbiIyKeffqrE//rXv9xIBxHEfk5xOscsX768xNgkez6jR48OuI1TfqE2JUfp1axZU4mHDx+uzbn11luV2L5OICJy+eWXK/HgwYO1OU7X6hf7/PPPtbFFixYp8TvvvKPN2bJlS4n7jUbc8QQAAAAAAAAjWHgCAAAAAACAESw8AQAAAAAAwIiI7PGUl5enxO+//74SZ2VladvY+z4tW7ZMm/Pll18qcWpqqjZnx44dwabpV7lyZSVu3LixNufBBx9U4ttvv12bY3/f6IEDB0qdC8zIyMjQxux9B5xcc801Svy73/1Oie+++25tmypVqiixU0+fQYMGKfF7770XMBd4y7IsJba//1xErxen94UPGzasxONMmzZNG7P3WLG/Z11E5Pjx4yXuF7HJqddGMP0t7HJyclzIBtHA/lpn72U4fvz4cKYDj9j7DTpdGwfj5MmTJcaIfsH0UMrMzFRiUz2enM55ubm5pd7PihUrXMgGoXrmmWeUeODAgQG3cau3sr1eOnfurM2J1dcx7ngCAAAAAACAESw8AQAAAAAAwAgWngAAAAAAAGBERPZ4OnTokBL37t1bidPS0rRt7O/lHDBggDbH3hvl7Nmz2hx7Hyifz6fE9t4FIiJVq1ZVYnufFhGRY8eOKfH06dO1OS+//LI2Bm+MHDlSiUeNGqXNefHFF5W4bt262pxu3bopcVJSUqlz+cMf/qCN0dMp+tjfzz1u3Dhtzt///ncl/q//+i9tzkcffVTicfLz87WxBx54QImPHj1a4j6A80Lp5ySi93TKzs52IRtEmp9//lkbKygo8CATRJomTZoocZ8+fULaz6uvvlr2ZBDRgjnP2HsmhXpOsfeKcurpFAp7zynOeeFVsWJFJW7RooUr+92/f78SO/VenTFjhhLbewDHaj8nJ9zxBAAAAAAAACNYeAIAAAAAAIARLDwBAAAAAADACBaeAAAAAAAAYERENhcP5Ouvv9bGevbsqcQ1atTQ5txwww1KfPvtt2tzateurcT2xuZO7I2eJ0yYoM35v//7PyU+ePBgwP3CO7/97W+V2N60TkRvVh+K+fPna2PDhw9X4h07dpT5OIg8b775pjZWWFioxL/85S+1OfZm82vWrFHixx9/XNtm7dq1oaQIhNx41d5oFeWT0/nJ/trWsWNHJbZfZ4mI/Pjjj+4mBs8NHDjQlf1s2bLFlf0gctnPF07nnVA/6MIN9vzsjc5FaCbuNfv186ZNm5S4fv362jZjxoxR4lWrVmlz7B8Otm/fvlBThHDHEwAAAAAAAAxh4QkAAAAAAABGsPAEAAAAAAAAI3yWZVmBJh09elSSkpLCkQ8iSH5+vlSvXt31/UZDPbVv316JP/zwQ21OXFycEi9atEibY3+P8TfffKPEr7/+urZNQUFB0HlGE1P1JBIdNQV3UU/hEcQlgiOfz+dyJuZRU3BTrNeT/Wc/fPhwwG3WrVunjXXq1EmJDxw4ULbEolh5vS6393QKpseTUx9B+3ZOc5z6MwVSXvs3xfprFNwXqKa44wkAAAAAAABGsPAEAAAAAAAAI1h4AgAAAAAAgBEsPAEAAAAAAMCISl4nAESi3NxcJa5atapHmQBA+ITSRNWpgSuA2Hb06FElrlixokeZINLZzyFO55Ty2uAbiCXc8QQAAAAAAAAjWHgCAAAAAACAESw8AQAAAAAAwAh6PAEAABERyczMLPU2K1asMJAJAAAAygvueAIAAAAAAIARLDwBAAAAAADACBaeAAAAAAAAYAQLTwAAAAAAADCC5uIAAEBERNq1a+d1CgAAAChnuOMJAAAAAAAARrDwBAAAAAAAACOCequdZVmm80AEMvV7p55ik8nfOzUVe6gnM44ePVrqbU6dOmUgk/CjpuAm6glu47ocbuI1Cm4L9HsPauHp2LFjriSD6HLs2DFJSkoysl/EHlP1dH7fiC3UkxmmntNoQE3BTdQT3MZ1OdzEaxTcFqimfFYQS5JFRUWyd+9eSUxMFJ/P52qCiDyWZcmxY8ekQYMGUqGC++/GpJ5ii+l6EqGmYgn1BLdRU3AT9QS3cV0ON/EaBbcFW1NBLTwBAAAAAAAApUVzcQAAAAAAABjBwhMAAAAAAACMYOEJAAAAAAAARrDwBAAAAAAAACNYeAIAAAAAAIARLDwBAAAAAADACBaeAAAAAAAAYMT/A7UHkA32x681AAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Incorrect cases\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABJ4AAACuCAYAAAB3JsdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwWElEQVR4nO3deZxMV/r48afb0mht77ZrZDL2bySWSRBbZmyxtCAjxDoZW4jwJUiMJYZkEMEQxNJiia1FMJYRGWssIYh90mL52lvsS2vdun5/+CnOPbe7lr63qkt/3q+X18tz6rn3HFWPW9Wnq54KcjgcDgEAAAAAAAAsFuzvBQAAAAAAAODZxMYTAAAAAAAAbMHGEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbMHGEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbMHGEwAAAAAAAGzxTG08BQUFSVBQkIwYMcKv69i8ebNzLZs3b/brWpA21BSsRD3BatQUrEQ9wUrUE6xGTcFK1JNvWbbx9PQd5u8HL6N5+PChLFy4UF5//XUpVKiQZM2aVQoWLCh169aVGTNmSFJSkr+X6BVqyj+OHj0q48aNk6ZNm0rJkiUlW7ZskiNHDilVqpS0bdtW1q5d6+8leoV68h+uUbBKQkKCrFixQoYMGSJ//OMf5fe//73ky5dPsmTJIvnz55caNWrIsGHD5Ny5c/5eqseoJ/9JTk6WJUuWSFRUlBQvXlx53vvzn/8s69at8/cSPUY9+c+zWE8i1JQ/PYs1RT2lL9OmTXM+HkFBQTJ37lzL58hs+RnhUxcvXpQ33nhDdu3apYzHxcVJXFycbNmyRWbOnCmrV6+WwoUL+2mVCBSdOnWSefPmmd52+vRpOX36tCxZskQaNmwoixcvljx58vh2gQg4XKNgpbNnz8obb7xhetu1a9dk586dsnPnTpkwYYJMnTpVOnXq5OMVItBcv35dWrRoIdu2bdNue/y8t3TpUmnVqpUsXLhQQkJC/LBKBArqCVajpmC3CxcuyODBg22fh42nABYfHy9NmjSRAwcOiIjIH//4R+nRo4eUKlVKrl69KjExMTJr1iz56aefpGnTpvLDDz9ItmzZ/LtopGvnz58XEZF8+fJJ69atpW7dulKyZEnJnDmz7N+/XyZMmCD//e9/5d///rc0a9ZMtmzZIsHBz9QndmEhrlGwQ0REhNSrV0+qVasmkZGRUrhwYcmSJYucP39e1qxZIwsXLpS7d+9Kly5dJDw8XJo0aeLvJSMda9u2rfMHulKlSsnAgQOlUqVKkpiYKD/99JP84x//kN9++02WL18uBQoUkOnTp/t5xUjPqCdYjZqC3Xr37i23bt2SiIgIiYuLs20eNp4C2NSpU50/0HXp0kVmz54tQUFBztv/9Kc/ycsvvyxdu3aVffv2yZQpU2TAgAF+Wi0CQfHixWXGjBnSqVMn7Tcm1apVk7ffflsaNmwo27dvl+3bt8uCBQukY8eOflot0juuUbBa6dKl5dKlS0odPa1ly5bSrVs3qVWrliQmJsrQoUPZeEKK9u7dKxs2bBCRR7V14MABCQsLc95er149efPNN+WFF16QGzduyMyZM+Xjjz+WiIgIfy0Z6Rj1BKtRU7DbypUrZcWKFRIeHi6DBg2S//3f/7VtLt6qEMAef/YyNDRUPv/8c9MX4l26dJGaNWuKiMi4cePk4cOHvlwiAkx0dLR069Ytxbfp5siRQ6ZNm+aMY2JifLU0BCCuUbBacHBwiptOj1WvXl3q168vIiL79++XO3fu+GJpCEA7duxw/v39999XfqB7rESJEtKlSxcRedRnZffu3T5bHwIL9QSrUVOw0+3bt6V3794iIjJ+/HjJly+frfOlm42nu3fvypIlS+Sdd96RypUrS+7cuSVLliwSHh4uderUkfHjx3v84nHjxo3SvHlzKVy4sGTLlk1Kly4tvXv3dn6cyJV9+/ZJjx49pEyZMpIzZ04JDQ2VMmXKSM+ePeWXX37x5p9pmfj4eDly5IiIiLzyyiuSO3fuFHMbNWokIo96qph9PvhZRU3Zo2LFilKgQAEREfn111/9vBrfoZ48wzXKNWrKPk+/OE9ISPDjSnyHevLcgwcPnH8vXbp0innPPfec6THPMurJc9RT6qgpz1FTKaOe0m7IkCFy7tw5qVu3rm8+weKwyKZNmxwi4hARx/Dhwz0+vk6dOs7jU/pTqlQpx7Fjx1I8x9PzjxgxIsXz5M6d27F169YUz/Pw4UNHv379HEFBQSmeI3PmzI4ZM2a4vC82bdpkmhMZGenM8ca5c+ecx7dv3z7V3C+//NKZO3LkSK/m8wdqyvy+sKumPJErVy6HiDgqVapk+1xWoZ7M7wuuUd6jpszvC39fo+Li4hx58+Z1iIijQIECts5lJerJ/L6ws55WrVrlPMfkyZNTzOvXr58z79ChQ17P50vUk/l9QT15j5oyvy+oKe9QT+b3ha9eQ+3cudMRHBzsyJo1q/M+io6Ods4RHR1tyTxPSzc9npKSkqRSpUrSvHlzqVq1qhQpUkQcDoecOXNGVqxYIUuXLpVTp05JVFSUHDhwINUGtGvWrJG9e/dKmTJl5IMPPpD/+Z//kZs3b8qyZctk5syZcvPmTWnatKkcPnxYihcvrh3fp08f+eKLL0REpHbt2tK5c2cpXbq05MiRQ37++WeZOHGiHDlyRLp37y6FChWS5s2b23a/pCRnzpzOv9+8eTPV3KdvP3r0qG1rSm+oKXvs379fbt26JSIi5cqV8/NqfId68gzXKNeoKeskJCTIhQsXZOPGjfKPf/xDrl+/LiKPPpqQUVBPnmvYsKGUKlVKTp06JZMmTZKuXbtKaGioknPu3Dnnx4Zr1aolFStW9MNKfY968hz1lDpqynPUVMqoJ+8lJiZKt27dJDk5WQYOHChly5b1zcRW7WClddfyl19+SfX27777zhEcHOwQEcesWbNMc+SpXcWXXnrJcfv2bS1n3rx5zpw2bdpot2/YsMF5e0rzxMfHO+rXr+8QEUdkZKQjMTFRud1Xu5aFCxd2iDz6jW5CQkKKec2aNXPO9corr3g9n69RU0+kp3cTtG7d2jlPTEyMrXNZiXp6gmuUNaipJ/xxjXp6TrM/HTt2TLXu0hvq6Qlf1tPOnTsdBQoUcIiI47nnnnNMnz7dsX37dsemTZsc48ePd0RERDhExFG6dGmX93F6Qj09QT1Zg5p6gppKO+rpCV+/hho9erSzZuLj453jdr/jKd1sPLkjKirKISKOpk2bmt7+dPHs3bs3xfM0btzYIfLoLW8XL15UbntcFK1atUp1LUePHnXOtWHDBuU2XxVP9+7dnecYM2aMac62bduc/+lExFGxYkWv5/M1auqJ9LLxFBMT45yjSpUqjuTkZNvmshr19ATXKGtQU0+kp42nkiVLausLBNTTE76up7NnzzoGDBjgyJIli1ZPOXPmdIwaNcpx9erVNM/jS9TTE9STNaipJ6iptKOenvBlPcXGxjqyZcvmEBHHunXrlNvs3nhKN83Fja5cuSKxsbFy+PBh55/w8HAREfn5559TPbZSpUpSpUqVFG/v2rWriDx6i97mzZud47du3XLGrVu3TnWOcuXKORss79y509U/R3P69GlxPNr48/jYxwYNGuRsoPrRRx9Jv379JDY2VhITE+XSpUsydepUadKkiWTO/OQTlfHx8V7PF+ioqbQ5duyY81szsmfPLvPnz3f57VLPMurJNa5RnqGmPFOtWjU5dOiQHDp0SPbu3SvffPONdO7cWc6ePSudOnWS2bNnWzJPoKKe3ONwOGTx4sWydOlSSUxM1G6/c+eOLFy4UL799ts0zRPoqCf3UE/uo6bcQ025h3pyT/fu3eX+/fvSpk0b55f7+IxVO1hW7Fpu377d8eabbzry5ctn+lvMx3+yZ89uevzj27t27ZrqPGfOnHHmfvjhh87xzZs3pzpvSn969uyZ4n2R0q6lVdauXevImTNnimvLlCmT0ri3cuXKtq7HStSU+X1hd02ZOX/+vKNkyZIOEXEEBQU5Fi1a5PM1pBX1ZH5fcI3yHjVlfl/44xr1tI0bNzpCQkIcIhmrWb3DQT156uHDh442bdo45/rLX/7i2LdvnyM+Pt5x584dx/bt2x3Nmzd33t63b1/b1mI16sn8vqCevEdNmd8X1JR3qCfz+8LOenr8jqZcuXI5zp8/n+LtIs/4O55GjBghtWrVkqVLl8q1a9dSzXX1G/GIiIhUby9YsKDz70/PFRcX58ZKdffu3fPqOCs0btxY9u3bJx07dpQ8efI4x4OCgqRevXqybds2pYFZ3rx5/bBK/6CmrHHt2jVp0KCBnD59WkRE/vnPf0rbtm39uyg/oJ68wzUqZdSUPV577TXp27eviIiMHDlSjh8/7ucV+Qb15Llp06bJsmXLROTR/Tdr1ix58cUXJVu2bBIaGio1a9aUlStXSocOHUREZNKkSbJ69Wq/rNXXqCfPUU+po6Y8R02ljHryzJUrV2TAgAEiIjJq1CgpUqSIz9eQLr7V7vvvv5eRI0eKiEjp0qVlwIABUqtWLSlRooSEhoY6P4YxbNgwGTVqlMvzefvxn4cPHzr/PmPGDKlRo4Zbx/n7B6Xnn39evvrqK0lOTpaLFy/KvXv3pEiRIs5vPdi+fbszt0KFCv5apk9RU9a4ffu2NGrUSI4cOSIijy5U7777rp9X5XvUU9pwjdJRU/Zq0aKFjB07VpKTk+Wbb76RDz/80N9LshX15J1Zs2aJiEhYWJgMHjw4xbwxY8bI/PnzRURkzpw50qxZM5+sz1+oJ+9QTymjprxDTZmjnjw3a9YsuXr1quTJk0fy588vixcv1nJ2796t/P3xNwHWr1/f5eacO9LFxtPMmTNF5NGDsGvXLufnMY1c7WY+dvnyZbdvz5cvn/Pv+fPnd/49R44cAfd1lMHBwVK0aFFt/KeffnL+vXr16r5ckt9QU2kXHx8vzZo1kz179oiIyMCBA2Xo0KF+XpV/UE/W4Br1BDVlr6fvzzNnzvhxJb5BPXnn2LFjIiJSvnx5CQkJSTGvWLFiUrBgQbl8+XKGeAcd9eQd6ill1JR3qClz1JPnEhISRETkxo0b8vbbb7vMnz59ukyfPl1ERDZt2mTJxlO6+Kjd43dT1KtXL8XCERHZu3evW+d7/IOyO7c/XSCVK1d27nj+8MMPbs0VCB6/RTN79uzP/A74Y9RU2iQmJkqrVq1ky5YtIiLSo0cPGTt2rJ9X5T/Uk724RlFTVjt//rzz7zlz5vTjSnyDevLO49+KJyUlucx93NT36S9DeFZRT96hnlJGTXmHmjJHPQWmdLHx9Pg/0927d1PM2b9/v/L2r9QcOnRI9u/fn+Ltc+bMERGRTJkySd26dZ3j4eHh8vLLL4uIyNdffy1Xrlxxa770bMOGDc7/CO3bt1d6rDzLqCnvPXz4UNq1ayfr1q0TEZEOHTrIF1984edV+Rf1ZB+uUdSUHR5vZoo8+raaZx315J1SpUqJiMjhw4flxo0bKeYdPnzY+Zvzx8c8y6gn71BPKaOmvENNmaOePDdixAjnt+Kl9Cc6OtqZHx0d7Rx/+t+cFuli4+n5558XkUd9Pk6cOKHdfuXKFWfTNHd169bNtBi//vprWbt2rYiIREVFSeHChZXbH3+U6NatW9K6detU/5MnJCTI1KlT5f79+x6tTUSkZMmSEhQUlOavo3/6t7pGhw4dcr6VLn/+/DJmzJg0zRVIqCnvOBwO+etf/yoxMTEiItKqVSuJjo5Oc50GOurJe1yjzFFT3lm0aJHcvHkz1ZylS5fKjBkzREQkd+7cSvP6ZxX15J3H77BMSEiQ/v37m35N9f379+W9995zxk2bNvV6vkBBPXmHekoZNeUdasoc9RSYbHkv3oEDB2Tu3Lku8+rXry8lSpSQjh07yurVq+Xu3btSp04dGTx4sFSpUkVERHbs2CETJkyQS5cuySuvvCI7d+50ed6qVavK3r17pWrVqjJo0CCpVKmS3Lx5U2JiYpwvRsPCwmT8+PHasU2aNJG+ffvKpEmTZOvWrVKuXDnp0aOH1KpVS/Lnzy93796VEydOyLZt2+Sbb76R69evS6dOnTy7gyzUuHFjiYiIkBYtWkjlypUlZ86ccuHCBVm7dq3Mnj1bEhISJFu2bLJo0aJU34qY3lFTvjFgwADnbnfFihXlww8/dH6+PCXp+fPMKaGefIdrlIqaSpsZM2ZIt27dJCoqSmrXri1lypSR3Llzy927d+W///2vxMTEOF8gBgUFyaRJk5R+DIGCevKN/v37y+zZsyUuLk6io6MlNjZWevToIWXLlpWHDx/K/v37ZfLkyXL06FERESlXrpx07tzZL2tNC+rJNzJKPYlQU76SUWqKesogHBbZtGmTQ0Q8+rNixQrn8V26dEkxL1OmTI6JEyc6hg8f7hwz8/i24cOHK7nGP7ly5XJs3rw5xX9LcnKyY+TIkY7MmTO7/DeEhoY67t27l+J9sWnTJtM5IiMjU/23uKtChQqprq948eKO77//Pk1z+As1ZX5f2FlTT5/D3T+Bgnoyvy+4RnmPmjK/L+ysqTp16rh1P+fNm9excOFCr+fxB+rJ/L6w+xq1f/9+R6lSpVyus3Llyo7Tp0+naS5fop7M7wvqyXvUlPl9QU15h3oyvy/srqfUREdHO+eIjo62/Pzp4qN2Io8+Ozl//nx59dVXJSwsTEJCQiQyMlI6dOggO3bskL59+3p0vhEjRsj69evl9ddfl4IFC0rWrFmlZMmS0qtXLzly5IjUqVMnxWODgoJk2LBh8ssvv8gHH3wgVatWlXz58kmmTJkkLCxMypcvL+3bt5evvvpKLl68KNmzZ0/rP99r48ePl169eskLL7wg4eHhkiVLFilUqJDUrVtXJk+eLMeOHZP69ev7bX3+RE3BStSTd7hGpYya8ty8efNk6tSp8tZbb8mLL74oRYoUkSxZskhoaKhERkZK06ZNZcqUKfLrr79Ku3bt/LJGf6GevFO5cmU5dOiQTJ06VRo0aCCFChWSrFmzSkhIiBQvXlyaN28u8+fPlx9//FEiIyP9tk5fo568Qz2ljJryDjVljnoKPEEOh8mHRQEAAAAAAIA0SjfveAIAAAAAAMCzhY0nAAAAAAAA2IKNJwAAAAAAANiCjScAAAAAAADYgo0nAAAAAAAA2IKNJwAAAAAAANgisztJycnJcuHCBQkLC5OgoCC71wQ/czgccvv2bSlSpIgEB1u/N0k9ZSx215MINZWRUE+wGjUFK1FPsBqvy2ElrlGwmrs15dbG04ULF6R48eKWLQ6B4ezZs1KsWDHLz0s9ZUx21ZMINZURUU+wGjUFK1FPsBqvy2ElrlGwmquacmubMywszLIFIXDY9bhTTxmTnY87NZXxUE+wGjUFK1FPsBqvy2ElrlGwmqvH3a2NJ94ilzHZ9bhTTxmTnY87NZXxUE+wGjUFK1FPsBqvy2ElrlGwmqvHnebiAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwRWZ/LwBIi5CQECXOmjWry2Pi4+OVOCkpydI1AYCVIiIitLGBAwcqscPh0HJat26txJGRkS7nCg5Wfx+VnJzs8pijR49qY6NGjVLipUuXujwPAAAAnk284wkAAAAAAAC2YOMJAAAAAAAAtmDjCQAAAAAAALagxxMC2rZt25T4pZdecnnMunXrlPjTTz/Vco4dO6bE165d82J1AOA5Y3+k999/X8vJkSOHEpv1eDJyJ+fcuXNKnD17di0nT548SlyuXDkt5+uvv1biXLlyaTnLly9X4uvXr7tcHzIGY42JiMyfP1+Jc+fOreUYe5Lt3r1bic16jf38889KTN9H32nTpo0SL1q0yONznDp1ShuLiopS4ri4OC3nypUrHs+FwGLsAysikjdvXiXu0aOHEoeGhmrHGJ87q1WrpuXcuXNHiZs0aaLlbN26VYn37NmjxMbnTRGRAwcOaGOwh9nrnRdffFGJlyxZouVcunRJiY3XpIcPH2rHHD9+XIlHjhzp9joDGe94AgAAAAAAgC3YeAIAAAAAAIAt2HgCAAAAAACALdh4AgAAAAAAgC2CHG50G71165ZpE8eMoGzZskq8f/9+LefQoUNK/PLLL2s5xoaXgeDmzZumDWHTysp6MjZsc6d5rjvOnz+vxO3atdNyLl++rMSnT5/WcmhS+oRd9SSSsa9RGVWg1lNYWJg21rZtWyUeN26cEufMmVM7JjExUYk3b96s5Ribd585c8bl+mJjY13ObXyO6927t5ZTsWJFJQ4KCtJyVq1apcQtW7Z0uT47BWpNPQvq1q2rxCtWrNBy7Lr/hg8frsTG5v7eop5UZuv929/+psTvvfeex+cNDtZ/h258zW32mFr1OPtSILwut0uFChWUOHNm/fuxGjdurMT169fXcszGnmb2XGXVzxbGcxvPe/HiRe2YGjVqKPHZs2ctWYsI16iaNWsq8eDBg7Uc45dLbdy4UcsxNoXPlCmTEr/yyivaMbNnz1biqlWrajk3btzQxtI7VzXFO54AAAAAAABgCzaeAAAAAAAAYAs2ngAAAAAAAGAL/QOyGVzhwoWVeMmSJUr84MED7ZixY8cqcSD2cwpU06dPV+Lu3btrOQkJCUp87NgxJS5durR2TNGiRZV4y5YtLtfyr3/9Sxsz9l2ZOHGiy/Pg2WTs47No0SItx50+AsZr0vXr110e8+WXX3o8z82bN7Uxsz5m8EzTpk21sWnTpinxyZMnlXjo0KHaMf/5z3+U+OjRoxaszj2HDx9WYmMvKRGR0aNHK7HZtbly5cpKbHz+Net3gcBTvXp1Jf7ggw+0HGOPJ3d6g5jVh7GGPv/8cyXesWOHdoyxpyPsUaxYMW3Mm55OePbkz59fic1eK7dq1UqJQ0JCtBx3XtsYrxvG5zOzHk9xcXFKPH/+fJfzmMmRI4cST5kyRYmN1y8R/VpoZY+njKR8+fLamPFntPHjx2s5kydPVmJ3XpcY+w+b/Qxp7Ol069Ytl+d9FvCOJwAAAAAAANiCjScAAAAAAADYgo0nAAAAAAAA2CJD93iqU6eONjZ48GAlrlSpkhK3adNGO8asvwV8o2/fvkps7HsiIlKoUCElnjp1qhK3bNlSO2b27NlKnCtXLpdrMevdYhwz9rEw+zxxbGysEl++fNnl3Ej/jJ8vN+sFl5iYqMSbNm3Sct58802P5zbrr+OKWe+oIUOGKPHMmTM9Pm9GExERocTGflsi+nVgzJgxSpzeP/tvViu9evVSYmPPAxGRnj17KnHnzp2V+JNPPkn74uBz+fLlU+KVK1cqccGCBV2ew6zvUo8ePZT4+PHjWo7x/9Jvv/2mxLxeA9KfKlWqKPFbb73l1XmMz0Vdu3bVcg4cOKDEvuyZlD17diU+deqUy2PM+m3CtRIlSiixsZ+WiP7YDx8+XMsx6+1shRs3bthy3vSOdzwBAAAAAADAFmw8AQAAAAAAwBZsPAEAAAAAAMAWbDwBAAAAAADAFgHZXDxPnjzamLFJV1BQkJbz3nvvKbFZE7HJkycrcZkyZZS4SJEibq4SvpCUlKTE3jQOXbFihTb266+/KrFZc3Fjw+bKlStrOeXKlVPiZs2aKbFZQ/Iff/xRiQcOHKjl/PDDD9oY0rdZs2Yp8UcffaTl3Lt3T4nN6iMkJCTNa2nRooU2ZqxVs/UVK1YszXNnNHFxcUpcr149LWfv3r2+Wo7fXL16VRszPk//9a9/VeK5c+dqx1y8eNHSdSFtMmXKpI1NmDBBib1pJm58rhTRmwL37t1by6lVq5YSG6+pANKfLVu2KPGf/vQnLadRo0ZKbPyyHhH9OnLo0CEtx5fNxI1iYmKUuEaNGkr83Xffacf4c72BzPhzm/G+FhH5v//7PyW2q5E4nuAdTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsEVA9HgqUKCAEo8fP17LWbBggRL/7W9/03JKlSqlxB06dNBy1qxZo8Svvfaa2+vEs+PgwYMuc7Zv367E4eHhWk7RokWVuE6dOkrcs2dP7Zjq1asr8fr167Wchg0bKvGOHTtSXyz87vLly0r89ddfazlRUVFKbNZTzorP+y9atEgbM9bvO++8o+WULl06zXNndBmhn5OZf/7zn9qYsUdPiRIllDh//vzaMfR4Sl/Mejx17NjR4/Ps27dPiY39nET0Pooff/yxlpM5s/qy9vPPP/d4LfCd4OC0//7bnXOY9X1F+pGQkKDEmzZt0nLMxtKT7NmzK/GgQYO0nCZNmiixsafQxo0brV9YBmV8rWDWG7d48eK+Wo5XIiMjlfjOnTtajln/zPSMdzwBAAAAAADAFmw8AQAAAAAAwBZsPAEAAAAAAMAWbDwBAAAAAADAFgHRXPzdd99V4rffflvL6dSpkxL/61//0nLq16+vxCdOnHA599atW91ZIiBXrlxxOWZsmLpy5UrtGGMz8d/97ndaTq5cubxYIfzJ2DzTrLl4u3btlLhmzZpazuLFi61d2P+XLVs2Jc6XL5+W06BBA1vmxrPPrAGm8cs82rdv76vlwEtZs2ZV4piYGI/Pcfr0aW2sf//+Lo9bvXq1EufJk8fluTNqM/9AkZyc7JPzli1bVsspVqyYEp87d86WtSBj6NGjhxIPHTpUyzHW5dixY5X4s88+s35hGZTxNcfIkSO1HOPPW+vWrdNyjF/6Y3wtbxWz1z+zZs1S4l27dmk59erVs2U9duEdTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsEVA9HhasWKFEt+5c0fLMfaKiI2N1XIePnyY5rUEB7NXB+tUqFBBGytatKgfVoL0qHz58j6b6/XXX1fiLFmyaDlmn3+Hf9SuXVuJJ02a5NV5jD1wJk6cqMRHjhzx6rxWqFixojZ2+PBhP6wkY8qePbs2ZuyNWbhwYZfnMb72MvZCERH59ddfXc4dEhKixA6HQ8sZNWqUy/Ug42ndurU2tnz5ciWmxxPcNWbMGG2sV69eLo8z9n2aO3euVUuCC2Z9nZcuXarEzZs313KMfZVWrVql5ezZs0eJd+zY4fH6xo0bp40Zn/M+/vhjj8+b3rCLAgAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW7DxBAAAAAAAAFsERHPxgwcPphrbaffu3Uo8YMAALWfy5MlKbNbwEhARyZkzpxLHxMRoOcamzpcvX9ZyTp48ae3CkC4dPXrUZ3NFRka6zFm5cqUPVgKjqlWramPGL9Qwa8bsjoSEBCU2NsU0u0YZGzifPn3aq7ldadSokTa2ePFiW+aC7p133tHGvGkmPmLECCXesGGDy3OYNeotUKCAEi9ZskTLiY6OdnluZDzLli3TxoxNgwER8+fS2bNnK3GTJk20HHde33/yySdpXB28deHCBW2sc+fOSpwtWzYtx9hIvk2bNlqOcWznzp0u11O9enUlLlSokJZj/NINYxPzQMQ7ngAAAAAAAGALNp4AAAAAAABgCzaeAAAAAAAAYIuA6PHkT5s3b1biWbNmaTm5c+dW4hs3bti4IqRXWbNm1cbq1q2rxP/+97+VODk52eV5g4KCtLEOHTq4PM7YnyMiIkKJjb3JRPTeLdeuXXM5D54Nxt4tV69e1XK2bt3qq+XgKcOHD9fGjP0kYmNjtZwGDRoosTu9mIw95Yw9EERE6tWrp8TG64aIyLx581zOZeylYbzWbdmyxeU5YJ+//OUvXh134MABJR49erTLY/7whz8osVnNG7nTKwrpx4kTJ7SxgQMHKvG4ceNsmfv48ePa2Pnz522ZC4HF2ENx5MiRWk7Dhg1dnmfw4MFKPGHChLQtDD53//59bax///6pxt6qXbu2Ehv3G0RE5s6dq8R37tyxZG5/4h1PAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwBT2eXLh165YSJyQkaDnGfhcrVqywdU3wPWMvEhGRPHnyKPGXX36p5TRu3FiJjT2dHA6Hy7mNvZlERIYMGeLyOCPjXH369NFyjGOZM3OJeBaVKVNGG2vTpo0Sr1+/Xssx6/sE69WqVUuJjb3iRPRegsZ+TiLu9XQyKlmypBIvWLBAy2nRooUSz5w5U8tp1KiREk+fPl3LeeONN5TYeI3as2dPqmuFtYzPNbly5XJ5jFnvHGN9uKNGjRpKbOxhJiJy8uRJJZ4/f77H88B/ihcvro3169dPiYODPf99eKZMmVzmhIeHa2PG+ja+3kfgCwkJ0caM15pVq1Ypsdm158GDB0ps9nxLT0J44s9//rMSm/Xz3bFjh6+W4zO84wkAAAAAAAC2YOMJAAAAAAAAtmDjCQAAAAAAALZg4wkAAAAAAAC2oHOwh5YtW6aNDR06VIlXrlyp5RibSiN9q1OnjhIPGzbMZY47jM2ZFy9erOUYmyHu3LlTyzE26Xz55Ze1HGOtDhw4UInNGkzDd8yaxvuKsaGriN7U9bPPPvPVcmAwYMAAJTb7cgNj421vGombiY+PV+LOnTtrOXPmzFHili1bajmtWrVS4tatW2s5xmbixuvjnTt3Ul0rrDV16lQlNjaaN2P2mujChQupHvPFF19oY506dVJis0aro0ePVuKkpCSX60P6ceLECW3M+Lpk4cKFlsxlfM3do0cPLcfYDHr58uWWzA3/qVKlihJ/8sknWk79+vVTPUdsbKw2ZnzNRCNxeKJixYramPHLDIxfGCNi/uUdgY53PAEAAAAAAMAWbDwBAAAAAADAFmw8AQAAAAAAwBYZusdT5cqVtTFjr4q8efMqcdGiRbVjXnzxRSU+c+aMltOxY0cl3rRpk7vLRBpFRkYqcWJiohL36dNHO6Zr165KnD9/fq/mPnjwoBK3a9dOiX35+V1jbdPjybdCQ0OVuG/fvlrOgwcPlPjkyZOWzG28jtWtW1fLMV6TduzYYcnc8JzxmmXG7HnGDrdv39bGRo4cqcQFCxbUcmrUqOHxXAsWLFBiq/pWQdesWTNtzOw1kSvGvlBmjM+fr776qpZj7GNm7P8lIrJ27VoPVwfgWWV2vfr222+VuHDhwi7PY3wubdCggZbDcxHSwmzv4N1331XiY8eOaTkXL160bU3+wjueAAAAAAAAYAs2ngAAAAAAAGALNp4AAAAAAABgCzaeAAAAAAAAYIsM1Vz87bffVuLo6GgtJ1OmTKmeY+PGjdpYUlKSEkdERGg5sbGx7iwRHjI+XsOGDdNyOnfurMQJCQlKXLp0aa/m3rt3rxKPGzdOy1m5cqUSG2vFTuHh4UrsTuPYJUuW2LQalCpVSolfeOEFLScqKkqJf/zxR0vmnjhxohI///zzWs6ECRMsmQu+Ybz++NLhw4eVeObMmVqON83FjU3vGzdurOWsW7fO4/NCb/A9duxYLee5555zeZ727dsr8ZUrV7ScsLAwJf773/+uxBUqVHA5z+zZs7WxuLg4l8cBZpYtW6aN7dq1yw8rgbc+/fRTJe7SpYuWY7zOmTVnnjJlihLPmzfP5TFAWpQoUUIby5kzpxKvWrXKV8vxK97xBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW2SoHk/Gz3gbe/2Y+e6775T45s2bWs7w4cOVeNCgQVoOnxm2R9asWZXY2MdLRKRo0aIen9fYt6JXr15azvr165U4Pj7e43msYtabY8GCBUrszv0watQoy9aUkZl9ntt4/dm9e7eWY7zeWKVt27ZK/P3332s5c+bMsWVueC4oKCjVWEQkNDTUlrmrVq2qxGa9pFq2bKnEc+fOdXne4GD991zJyclKbOxDFxMTox1TsmRJJTbrMQSdOzXlju3bt7vM6dixoxJ3797d5dwHDx5U4g8++EDLcTgc7iwR0Bw/flwbO3/+vB9WAjPG67pZv5uyZcsqsVlPXmMfuGbNmmk5Bw4c8HyBQBoMGTLEZc69e/d8sBL/4x1PAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsEWGai5ubCZubPbrrREjRijxRx99pOU0bdpUiVeuXGnJ3BmdsaH33//+dy2nQYMGSnz58mUlNmuMe+vWLSU+efKklyu0R3h4uBK3adNGy6lYsWKq5zDWrYhIbGxsmtaFR6pXr66NFS5cWIlbtWql5dy/fz/Nc7/77rvaWObM6qV+7NixWk5SUlKa54Y11qxZo8Rm/5eNDZtHjhxpydw///yzEg8ePFjLMdaYO02fJ02apI2dOXNGiTt06KDEZv8mmol7J0+ePEr8+9//3uUxP/zwgzZmbAzeu3dvLcfssX7anTt3tLFPP/1Uia9fv+5yfQh8xtfhFSpU0HKGDh2a6jnMmkwbGb8ESETk6NGjSrx8+XKX54E13nrrLSUePXq0EkdGRro8x1dffaWNde3a1eO1GL+oo2DBglpO69atldjsGufOF1YhY8qVK5c29vDhQyVet26dr5bjV7zjCQAAAAAAALZg4wkAAAAAAAC2YOMJAAAAAAAAtshQPZ58Zc6cOdqYsX8BPZ7sER0d7dZYIKlXr542NmzYMCV+9dVXXZ7H2L/AWJMi+meO4Z3t27drYy1btlRiY38Jbxl7t/Tt21fLOXv2rBLv27fPkrlhjylTpiixsZ+TiEjevHmVeP78+VqO2ZgrQ4YMUWJ3ri0XL17Uxoy9f9x5zvv8889d5sA7Fy5cUGKz/k01a9ZU4ueee07LWb9+vRKXLVvW47WY9cFctGiRx+fBs8esX1xycrLH53HnmD/84Q9K/N1332k5xn6fsEajRo2UuESJEkpsVgd9+vRR4mnTpmk52bNnV2KzXnbly5dX4v79+yvxSy+9pB1z7949Jd66dauWs2vXLm0MEDF/vn3++eeVOKNca3jHEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbEGPJxsMHz5cG4uNjVXiihUrajmHDx+2bU0IHPny5VPihg0bajkHDhxINTYzceJEJU5KSvJ0aXDTpUuX3Bqzwu9+9zslNuvL0q9fPyW+du2aLWuBNYw9k8z+fxt7v7311ltajtmYK0FBQUps1mvj+++/V2JjXygR+oilN8YeJZcvX3Z5TKFChdwaM0pISFDir776SonnzZvn8hzImDZv3qyNvfHGG0pcrlw5S+Z6//33ldisP2tG6bsSCNq0aaPEUVFRWk7OnDmV2NjHy8yZM2eU+Ntvv9Vyxo0bp8T0c4In6tSpo43lypXLDyvxP97xBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW7DxBAAAAAAAAFvQXNwGv/32mzZ28OBBJf7ss8+0HLMm0sh4jI2fBw8e7KeVIBAUK1bMZc60adN8sBLYpUWLFtqYsdHqrFmzLJlry5YtSvzxxx9rOTt27FDiBw8eWDI3fMf4mkREb+LsjuTkZG1sypQpSjxw4ECPz4uMyXj9ERHp3r27Ei9atEiJixcvbuuaYL1jx455fEzt2rWV2PhFGCLmX4bhyqhRo5R47ty5Hp8DSI3ZF/oYm4svXLhQy2nXrp0SG794JhDxjicAAAAAAADYgo0nAAAAAAAA2IKNJwAAAAAAANiCHk82SEpK0saMvRN+/PFHLcf4OfWzZ89auzAAAc/Y1yAqKkqJza4/3vQ9QPpx9+5dbczYh4K+FPDEmDFjtLE1a9Yo8bBhw7Scc+fOKfH69eu1nNWrV6dxdcATu3btUuLXXntNiX/55RevzjtgwAAlPnXqlFfngeeMfW7/85//KHGrVq1cnqNatWra2J49e5R4+fLlWs7p06eV2KwvL2Clbdu2aWPnz59XYrP+TWY9FAMd73gCAAAAAACALdh4AgAAAAAAgC3YeAIAAAAAAIAt2HgCAAAAAACALWgu7iOXL19W4lWrVmk5Zg1kAeBpWbJkUeIOHToo8Zw5c7RjzBqOA8i4zK4JP/30kxK3aNHCV8sB3Hby5EklzpyZH2UCTWJiohIbv3DJ7AuYgEDVqVMnfy8h3eAdTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsAUfjPaTPn36+HsJAAKQsTfCt99+q8QtW7bUjunZs6cS0/MJAAAAgK/wjicAAAAAAADYgo0nAAAAAAAA2IKNJwAAAAAAANiCjScAAAAAAADYgubiABBAHA6HErdq1cpPKwEAAAAA13jHEwAAAAAAAGzBxhMAAAAAAABs4dbGk/GjHcgY7HrcqaeMyc7HnZrKeKgnWI2agpWoJ1iN1+WwEtcoWM3V4+7WxtPt27ctWQwCi12PO/WUMdn5uFNTGQ/1BKtRU7AS9QSr8bocVuIaBau5etyDHG5sSSYnJ8uFCxckLCxMgoKCLFsc0ieHwyG3b9+WIkWKSHCw9Z/GpJ4yFrvrSYSaykioJ1iNmoKVqCdYjdflsBLXKFjN3Zpya+MJAAAAAAAA8BTNxQEAAAAAAGALNp4AAAAAAABgCzaeAAAAAAAAYAs2ngAAAAAAAGALNp4AAAAAAABgCzaeAAAAAAAAYAs2ngAAAAAAAGCL/wd0iHdDj1n3MAAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABJ4AAACuCAYAAAB3JsdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwPUlEQVR4nO3deXyM5/r48SuxS8RWJLbgnFYRPVpbLW3Qc2y1RNFT+/LtQZWj7YuW05ygSvtFVR3qqH0vopZSih77VlsqttOo5YtEaO1LQ2R+f/gZ7ud+ZCaT55lJzOf9enm9ct1zPc99m7k8M7nNXBPgcDgcAgAAAAAAAFgs0NcLAAAAAAAAwJOJjScAAAAAAADYgo0nAAAAAAAA2IKNJwAAAAAAANiCjScAAAAAAADYgo0nAAAAAAAA2IKNJwAAAAAAANiCjScAAAAAAADYgo0nAAAAAAAA2OKJ2ngKCAiQgIAAGTZsmE/XsWnTJudaNm3a5NO1IHOoKViJeoLVqClYiXqClagnWI2agpWoJ++ybOPp0TvM1w+ev+jevbvzPnf3z6xZs3y9bLdRU96XkpIiy5YtkyFDhsif//xneeaZZ6RIkSKSK1cuKVq0qNStW1diYmLk7Nmzvl5qhlFP3sc1CnY4cuSIjBkzRlq0aCHlypWTvHnzSv78+aV8+fLyxhtvyHfffefrJXqEevKtX3/9VWJiYuS5556TkJAQCQkJkeeee05iYmLkt99+8/XyMox68o0rV67I+vXrZeTIkdK6dWspWbKk83Fo0KCBr5eXKdSUb/CcB6vdu3dP5s+fL6+++qqEhoZK7ty5pUSJEtKgQQOZMmWKpKam2jJvTlvOiiyrYsWKvl4CsrAzZ87Ia6+9ZnrbpUuXZOfOnbJz504ZN26cTJo0Sbp16+blFeJJxzUK6enWrZvMmTPH9LZTp07JqVOnZNGiRdKkSRP5+uuvpVChQt5dILKl3bt3S1RUlJw/f14Zj4+Pl/j4eJk2bZosX75catWq5aMVIrt4/vnn5dSpU75eBp4QPOfBaklJSfLaa6/Jrl27lPELFy7IhQsXZPPmzTJ16lT59ttvJSwszNK52XjKxkaOHCkDBw5MN+fy5cvSoEEDSUtLk2eeeUbq1KnjpdUhuypevLg0bNhQatasKeHh4RIWFia5cuWSc+fOyerVq2X+/Ply8+ZN6dGjhxQrVkyaN2/u6yUji+IaBaudO3dORESKFCki7dq1kwYNGki5cuUkZ86ccuDAARk3bpz897//le+//15atmwpmzdvlsDAJ6qrACx25swZadmypVy8eFFy5swp7733nrRo0UJERFatWiXjxo2TpKQkadmypezbt09Kly7t4xUjK3M4HM6fS5QoITVr1pRVq1b5cEXIznjOg5Vu374tzZs3l7i4OBER+fOf/yx9+vSR8uXLy2+//SaxsbEybdo02bdvn7Ro0UK2b98uefPmtWx+Np6ysVKlSkmpUqXSzZk8ebKkpaWJiEiXLl28sSxkYxUqVJDz589LQECA6e1t2rSRXr16Sf369eXu3bsSHR3NxhMei2sUrFamTBmZMmWKdOvWTfLkyaPcVrNmTencubM0adJEtm3bJtu2bZN58+ZJ165dfbRaZAcffvihXLx4UUREFixYIO3bt3fe9tJLL0n16tXlr3/9q1y4cEGio6Oz1ceB4X39+vWT8uXLS61ataRMmTIiIo99TQW4wnMerDRp0iTnplOPHj1k+vTpyvXpL3/5i7z44ovSs2dP2b9/v0ycONHlfyBnBFuiT7gHb88MCAjglzq4FBgY6PIFUq1ataRRo0YiInLgwAG5ceOGN5aGJxTXKGTEzJkzpVevXtoL8Afy588vkydPdsaxsbHeWhqyofPnz8v8+fNFRKRJkybKptMDr7/+ujRp0kRERObOnat9HA941MCBA6Vt27bOTScgM3jOg5Ue/MdJUFCQfP7556a/8/Xo0UPq1asnIiJjxoyRe/fuWTZ/ltl4unnzpixatEjefPNNqVatmhQsWFBy5colxYoVk8jISBk7dmyGf8HdsGGDtGrVSsLCwiRv3rxSoUIF6devn/Nti67s379f+vTpIxUrVpTg4GAJCgqSihUryltvvSU///yzJ39Nr0pISHB+fjMyMlLCw8N9vCLvoqbsU6BAAefPKSkpPlyJ91BP1uMaRU3ZISIiQp566ikREfnll198vBrvoZ4ybuXKlc53XPbo0eOxed27dxcRkbS0NFm5cqU3luZz1BOsRk3Zg+c86skdt2/flsOHD4uISJ06daRgwYKPzW3atKmI3O/7tHXrVusW4bDIxo0bHSLiEBHH0KFDM3x8ZGSk8/jH/Slfvrzj6NGjjz3Ho/MPGzbssecpWLCgY8uWLY89z7179xzvvvuuIyAg4LHnyJkzp2PKlCku74uNGzea5oSHhztz7BIdHe2cY8aMGbbNYxdqyvy+8GVNORwOx4ULFxyFCxd2iIjjqaeesnUuK1FP5vcF1yjPUVPm94Wvr1EOh8MREhLiEBFH1apVbZ/LKtST+X1hZz116dLFeY6kpKTH5iUmJjrzunbt6vF83kQ9md8Xvrg+PThvZGSk5ef2JmrK/L7gOc8z1JP5fWFXPZ09e9Z5fKdOndLN/eqrr5y5w4cP92g+M1mmx1NqaqpUrVpVWrVqJTVq1JCSJUuKw+GQ06dPy7Jly2Tx4sVy8uRJiYqKkri4uHQbXa1evVr27t0rFStWlPfff1+ee+45uXr1qixZskSmTp0qV69elRYtWsihQ4dM3wrbv39/+fLLL0VE5OWXX5bu3btLhQoVJH/+/PLTTz/J+PHj5fDhw9K7d28JDQ2VVq1a2Xa/eMrhcMi8efNE5P7bMNu1a+fjFXkfNWWdlJQUSUxMlA0bNsj//u//yuXLl0VE5J133vHtwryIerIW1yhqyi4HDhyQa9euiYhIpUqVfLwa76GeMu7IkSMiIlKwYEEJDQ19bF5YWJiEhITItWvX5OjRo95ank9RT7AaNWUPnvOoJ3cEBwc7f7569Wq6uY/e/uB50hJW7WBldtfy559/Tvf29evXOwIDAx0i4pg2bZppjjyyq/jCCy84rl+/ruXMmTPHmdO+fXvt9nXr1jlvf9w8t2/fdjRq1MghIo7w8HDH3bt3lduzwi74pk2b3N7VzKqoqYd8UVOPzmn2p2vXro6UlBRL5vIG6ukhrlHWoKYeygo19UC7du2c88TGxto6l5Wop4e8VU8lSpRwiIijSpUqLnOrVKniEBFHaGiox/N5E/X0kK+vTw/O6+/veKKm7MFznjnqSRcWFuYQuf+JlfR+h2vZsqVzrjp16ng8n1GW2XhyR1RUlENEHC1atDC9/dHi2bt372PP06xZM4fI/be8Gd9a/aAo2rZtm+5ajhw54pxr3bp1ym1Z4WLUs2fPx64vu6CmHspKG0/lypXLljVFPT3ENcoa1NRDWaGmHA6HIzY21jlH9erVHWlpabbNZTXq6SFv1VP+/PkdIuKoXbu2y9xatWo5RMQRHBzs8XzeRD095Ovr04Pz+vvGkzuoqYzhOS991JOqd+/eznOMGjXKNGfr1q3ODTsRcURERHg8n1GWaS5udPHiRUlISJBDhw45/xQrVkxERH766ad0j61atapUr179sbf37NlTRO6/RW/Tpk3O8WvXrjljVx/7qFSpkrOR286dO139dTSnTp0Sx/2Nvwwf68rvv//u/FaDUqVKySuvvGL5HNkRNZUxNWvWlPj4eImPj5e9e/fKN998I927d5czZ85It27dZPr06ZbMk11RT57jGmWOmsqco0ePOhtE58uXT+bOnevXX2NOPbn2+++/i4hI7ty5XeY++Fap27dvezxfdkY9wWrUVObwnKeinlz74IMPnF8Q9eGHH8q7774rCQkJcvfuXTl//rxMmjRJmjdvLjlzPuzGZOVzXpbp8SQisn37dpkwYYJs2LBBLl269Ni8X3/9Nd3z1KxZM93ba9Wq5fw5Pj5e3njjDRG5/xnZB99u0qFDB+nQoYNb685qX627fPly52d9O3fuLIGBWXZ/0XbUlOeCgoIkIiLCGVevXl3atGkjnTt3lldffVXefPNNOXfunMTExPhwld5FPVmDa9RD1JQ1EhMTpXnz5nL9+nUJCAiQGTNm+FWviweop4zJmzev3Lp1S+7cueMy98E3uObLl8/uZWUZ1BOsRk1Zg+e8+6injClfvrwsWrRIXn/9dblx44aMHz9exo8fr+TkyJFDJk+eLL169RIR9ZvMMyvLvNofNmyY1K9fXxYvXpxu4Yi43nkrXrx4ureXKFHC+fOjc124cMGNlepu3brl0XF2mTNnjvPnrl27+nAlvkVN2eOVV16RAQMGiIjI8OHD5dixYz5ekXdQT9bhGnUfNWWNS5cuSePGjeXUqVMiIvKvf/3L+aLQn1BPGffgBbU7X7l98+ZNEVEbtD7JqCdYjZqyBs9591FPnmnWrJns379funbtKoUKFXKOBwQESMOGDWXr1q1K8/PChQtbNneWeMfTDz/8IMOHDxcRkQoVKsjAgQOlfv36UrZsWQkKCnK+3SsmJkZGjBjh8nyevs3w3r17zp+nTJkidevWdes4Kx+QzEpOTpZ169aJyP13qFSuXNnHK/INasperVu3ltGjR0taWpp888038o9//MPXS7IV9WQdrlH3UVPWuH79ujRt2lQOHz4sIiIjRoyQt99+28er8j7qyTOlS5eW5ORkOXv2rMvcM2fOiIiYfqPRk4Z6gtWoKWvwnHcf9ZQ5Tz/9tMyePVvS0tIkKSlJbt26JSVLlpSgoCAREdm2bZszt0qVKpbNmyU2nqZOnSoi9x+EXbt2OT+PaeRqN/OB5ORkt28vUqSI8+eiRYs6f86fP7/yMaPsYv78+c5/BN26dfPxanyHmrLXo/fn6dOnfbgS76CerMM16j5qKvNu374tLVu2lD179oiIyKBBgyQ6OtrHq/IN6skzlStXln379snVq1fl/PnzEhoaapqXlJTkV19XTj3BatRU5vGc9xD1ZI3AwEApVaqUNr5v3z7nz49+zDDT81l2pkx4sGvbsGHDxxaOiMjevXvdOt+Df5Du3P5ogVSrVs2547l9+3a35spqHnyEJVeuXG5/zvRJRE3Z69y5c86f/eFjB9STdbhG3UdNZc7du3elbdu2snnzZhER6dOnj4wePdrHq/Id6skz9evXd/78oJbMPHpbvXr1bF1TVkA9wWrUVObwnKeinuy1ZMkSEbnf07Bly5aWnTdLbDylpqaKyMPPz5s5cOCA7N69263zxcfHy4EDBx57+4wZM0TkfvOsBg0aOMeLFSsmL774ooiILFiwQC5evOjWfFlFfHy8s2t/8+bNnZ3z/RE1Za8HFySR+98E8aSjnqzBNeohaspz9+7dk44dO8qaNWtERKRLly7y5Zdf+nhVvkU9eaZVq1bOLzeYOXPmY/NmzZolIvf/d/jR3hdPKuoJVqOmPMdzno56ss+6deucm2idOnVS+kBlVpbYeHr66adF5P7nCY8fP67dfvHiRenSpUuGztmrVy/TYlywYIF89913IiISFRUlYWFhyu0P3rJ47do1adeunVy5cuWxc6SkpMikSZOcX8ebEeXKlZOAgABLv/Zy9uzZzp/9uWGvCDXlqYULF8rVq1fTzVm8eLFMmTJFREQKFizoFy/CqSdrcI16iJryjMPhkL/97W8SGxsrIiJt27aVmTNn+vVXSItQT54KDQ2VTp06iYjI999/76yrRy1ZskS+//57Ebn/C9/jPo73JKGeYDVqyjM855mjnjz36KdWjOLj46Vz584icv9jhKNGjcrUXEa29HiKi4tz/u9Qeho1aiRly5aVrl27yrfffis3b96UyMhIGTx4sFSvXl1ERHbs2CHjxo2T8+fPS506dWTnzp0uz1ujRg3Zu3ev1KhRQz744AOpWrWqXL16VWJjY52/MBcoUEDGjh2rHdu8eXMZMGCAfPHFF7JlyxapVKmS9OnTR+rXry9FixaVmzdvyvHjx2Xr1q3yzTffyOXLl7NEn5J79+7JggULROT+Z09btGjh4xVZi5ryjilTpkivXr0kKipKXn75ZalYsaIULFhQbt68Kf/9738lNjbWefENCAiQL774Qvmsc3ZBPXkf16j7qKnMGThwoPOdKREREfKPf/xDjh49mu4x2a3nggj15E0jR46UtWvXysWLF6VDhw6yd+9e5/Vp1apV8tlnn4nI/f/Z/vjjj322zsygnrwnLi5O4uLiTG87f/689ji0a9cuW7YsoKa8g+c8FfWUec2aNZPixYtL69atpVq1ahIcHCyJiYny3XffyfTp0yUlJUXy5s0rCxcuTPdjjB5xWGTjxo0OEcnQn2XLljmP79Gjx2PzcuTI4Rg/frxj6NChzjEzD24bOnSokmv8ExIS4ti0adNj/y5paWmO4cOHO3LmzOny7xAUFOS4devWY++LjRs3ms4RHh6e7t8lo9asWeM8X9++fS05p69RU+b3hZ01FRkZ6db9XLhwYcf8+fM9nscXqCfz+4JrlOeoKfP7ws6aevQc7v7JLqgn8/vCG9eoXbt2OUJDQx+7xtDQUMeuXbsyPY83UU/m94Xd9ZTe39Psz8mTJzM1nzdRU+b3Bc95nqGezO8Lu69RVapUSXd9ZcqUcfzwww+ZmuNxssRH7UTuf3Zy7ty58tJLL0mBAgUkT548Eh4eLl26dJEdO3bIgAEDMnS+YcOGydq1a+XVV1+VEiVKSO7cuaVcuXLSt29fOXz4sERGRj722ICAAImJiZGff/5Z3n//falRo4YUKVJEcuTIIQUKFJDKlStLp06dZPbs2ZKUlCT58uXL7F8/0+bOnev82d8/wvIANZVxc+bMkUmTJkmHDh3k+eefl5IlS0quXLkkKChIwsPDpUWLFjJx4kT55ZdfpGPHjj5Zo69QT5nDNUpHTcFK1JPnateuLfHx8RIdHS0RERESHBwswcHBUrVqVYmOjpZDhw5J7dq1fbpGb6OeYDVqClainjwzduxY6du3r/zpT3+SYsWKSa5cuSQ0NFQaNGggEyZMkKNHj0qjRo1smTvA4XA4bDkzAAAAAAAA/FqWeccTAAAAAAAAnixsPAEAAAAAAMAWbDwBAAAAAADAFmw8AQAAAAAAwBZsPAEAAAAAAMAWbDwBAAAAAADAFjndSUpLS5PExEQpUKCABAQE2L0m+JjD4ZDr169LyZIlJTDQ+r1J6sm/2F1PItSUP6GeYDVqClainmA1XpfDSlyjYDV3a8qtjafExEQpU6aMZYtD9nDmzBkpXbq05eelnvyTXfUkQk35I+oJVqOmYCXqCVbjdTmsxDUKVnNVU25tcxYoUMCyBSH7sOtxp578k52POzXlf6gnWI2agpWoJ1iN1+WwEtcoWM3V4+7WxhNvkfNPdj3u1JN/svNxp6b8D/UEq1FTsBL1BKvxuhxW4hoFq7l63GkuDgAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW7DxBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW7DxBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW7DxBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW7DxBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW+T09QKAzMiTJ48S586d2+Uxt2/fVuLU1FRL1wQAVipevLg2NmjQICV2OBxaTrt27ZQ4PDzc5VyBger/R6Wlpbk85siRI9rYiBEjlHjx4sUuzwMAAIAnE+94AgAAAAAAgC3YeAIAAAAAAIAt2HgCAAAAAACALejxhGxt69atSvzCCy+4PGbNmjVK/Omnn2o5R48eVeJLly55sDoAyDhjf6R33nlHy8mfP78Sm/V4MnIn5+zZs0qcL18+LadQoUJKXKlSJS1nwYIFShwSEqLlLF26VIkvX77scn3wD8YaExGZO3euEhcsWFDLMfYk2717txKb9Rr76aeflJi+j97Tvn17JV64cGGGz3Hy5EltLCoqSokvXLig5Vy8eDHDcyF7MfaBFREpXLiwEvfp00eJg4KCtGOMz501a9bUcm7cuKHEzZs313K2bNmixHv27FFi4/OmiEhcXJw2BnuYvd55/vnnlXjRokVazvnz55XYeE26d++edsyxY8eUePjw4W6vMzvjHU8AAAAAAACwBRtPAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwRYDDjW6j165dM23i6A+effZZJT5w4ICWEx8fr8QvvviilmNseJkdXL161bQhbGZZWU/Ghm3uNM91x7lz55S4Y8eOWk5ycrISnzp1SsuhSelDdtWTiH9fo/xVdq2nAgUKaGNvvPGGEo8ZM0aJg4ODtWPu3r2rxJs2bdJyjM27T58+7XJ9CQkJLuc2Psf169dPy4mIiFDigIAALWflypVK3KZNG5frs1N2raknQYMGDZR42bJlWo5d99/QoUOV2Njc31PUk8psvf/85z+V+O9//3uGzxsYqP8fuvE1t9ljatXj7E3Z4XW5XapUqaLEOXPq34/VrFkzJW7UqJGWYzb2KLPnKqt+tzCe23jepKQk7Zi6desq8ZkzZyxZiwjXqHr16inx4MGDtRzjl0tt2LBByzE2hc+RI4cS16lTRztm+vTpSlyjRg0t58qVK9pYVueqpnjHEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbKF/QNbPhYWFKfGiRYuU+M6dO9oxo0ePVuLs2M8pu/r3v/+txL1799ZyUlJSlPjo0aNKXKFCBe2YUqVKKfHmzZtdrmXVqlXamLHvyvjx412eB08mYx+fhQsXajnu9BEwXpMuX77s8pivvvoqw/NcvXpVGzPrY4aMadGihTY2efJkJT5x4oQSR0dHa8f85z//UeIjR45YsDr3HDp0SImNvaREREaOHKnEZtfmatWqKbHx+des3wWyn1q1ainx+++/r+UYezy50xvErD6MNfT5558r8Y4dO7RjjD0dYY/SpUtrY570dMKTp2jRokps9lq5bdu2SpwnTx4tx53XNsbrhvH5zKzH04ULF5R47ty5Lucxkz9/fiWeOHGiEhuvXyL6tdDKHk/+pHLlytqY8Xe0sWPHajkTJkxQYndelxj7D5v9Dmns6XTt2jWX530S8I4nAAAAAAAA2IKNJwAAAAAAANiCjScAAAAAAADYwq97PEVGRmpjgwcPVuKqVasqcfv27bVjzPpbwDsGDBigxMa+JyIioaGhSjxp0iQlbtOmjXbM9OnTlTgkJMTlWsx6txjHjH0szD5PnJCQoMTJycku50bWZ/x8uVkvuLt37yrxxo0btZzXX389w3Ob9ddxxax31JAhQ5R46tSpGT6vvylevLgSG/ttiejXgVGjRilxVv/sv1mt9O3bV4mNPQ9ERN566y0l7t69uxJ/8sknmV8cvK5IkSJKvGLFCiUuUaKEy3OY9V3q06ePEh87dkzLMf5b+vXXX5WY12tA1lO9enUl7tChg0fnMT4X9ezZU8uJi4tTYm/2TMqXL58Snzx50uUxZv024VrZsmWV2NhPS0R/7IcOHarlmPV2tsKVK1dsOW9WxzueAAAAAAAAYAs2ngAAAAAAAGALNp4AAAAAAABgCzaeAAAAAAAAYIts2Vy8UKFC2pixSVdAQICW8/e//12JzZqITZgwQYkrVqyoxCVLlnRzlfCG1NRUJfakceiyZcu0sV9++UWJzZqLGxs2V6tWTcupVKmSErds2VKJzRqS//jjj0o8aNAgLWf79u3aGLK2adOmKfGHH36o5dy6dUuJzeojT548mV5L69attTFjrZqtr3Tp0pme299cuHBBiRs2bKjl7N2711vL8ZnffvtNGzM+T//tb39T4lmzZmnHJCUlWbouZE6OHDm0sXHjximxJ83Ejc+VInpT4H79+mk59evXV2LjNRVA1rN582Yl/stf/qLlNG3aVImNX9Yjol9H4uPjtRxvNhM3io2NVeK6desq8fr167VjfLne7Mz4e5vxvhYR+b//+z8ltquROB7iHU8AAAAAAACwBRtPAAAAAAAAsAUbTwAAAAAAALBFtujx9NRTTynx2LFjtZx58+Yp8T//+U8tp3z58krcpUsXLWf16tVK/Morr7i9Tjw5Dh486DJn27ZtSlysWDEtp1SpUkocGRmpxG+99ZZ2TK1atZR47dq1Wk6TJk2UeMeOHekvFj6XnJysxAsWLNByoqKilNisp5wVn/dfuHChNmas3zfffFPLqVChQqbn9nf+0M/JzL/+9S9tzNijp2zZskpctGhR7Rh6PGUtZj2eunbtmuHz7N+/X4mN/ZxE9D6KH330kZaTM6f6svbzzz/P8FrgPYGBmf//b3fOYdb3FVlHSkqKEm/cuFHLMRvLSvLly6fEH3zwgZbTvHlzJTb2FNqwYYP1C/NTxtcKZr1xy5Qp463leCQ8PFyJb9y4oeWY9c/MynjHEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbMHGEwAAAAAAAGyRLZqLv/3220rcuXNnLadbt25KvGrVKi2nUaNGSnz8+HGXc2/ZssWdJQJy8eJFl2PGhqkrVqzQjjE2E//jH/+o5YSEhHiwQviSsXmmWXPxjh07KnG9evW0nK+//trahf1/efPmVeIiRYpoOY0bN7Zlbjz5zBpgGr/Mo1OnTt5aDjyUO3duJY6Njc3wOU6dOqWNvffeey6P+/bbb5W4UKFCLs/tr838s4u0tDSvnPfZZ5/VckqXLq3EZ8+etWUt8A99+vRR4ujoaC3HWJejR49W4s8++8z6hfkp42uO4cOHaznG37fWrFmj5Ri/9Mf4Wt4qZq9/pk2bpsS7du3Scho2bGjLeuzCO54AAAAAAABgCzaeAAAAAAAAYAs2ngAAAAAAAGCLbNHjadmyZUp848YNLcfYKyIhIUHLuXfvXqbXEhjIXh2sU6VKFW2sVKlSPlgJsqLKlSt7ba5XX31ViXPlyqXlmH3+Hb7x8ssvK/EXX3zh0XmMPXDGjx+vxIcPH/bovFaIiIjQxg4dOuSDlfinfPnyaWPG3phhYWEuz2N87WXshSIi8ssvv7icO0+ePErscDi0nBEjRrhcD/xPu3bttLGlS5cqMT2e4K5Ro0ZpY3379nV5nLHv06xZs6xaElww6+u8ePFiJW7VqpWWY+yrtHLlSi1nz549Srxjx44Mr2/MmDHamPE576OPPsrwebMadlEAAAAAAABgCzaeAAAAAAAAYAs2ngAAAAAAAGALNp4AAAAAAABgi2zRXPzgwYPpxnbavXu3Eg8cOFDLmTBhghKbNbwERESCg4OVODY2VssxNnVOTk7Wck6cOGHtwpAlHTlyxGtzhYeHu8xZsWKFF1YCoxo1amhjxi/UMGvG7I6UlBQlNjbFNLtGGRs4nzp1yqO5XWnatKk29vXXX9syF3RvvvmmNuZJM/Fhw4Yp8bp161yew6xR71NPPaXEixYt0nJmzpzp8tzwP0uWLNHGjE2DARHz59Lp06crcfPmzbUcd17ff/LJJ5lcHTyVmJiojXXv3l2J8+bNq+UYG8m3b99eyzGO7dy50+V6atWqpcShoaFajvFLN4xNzLMj3vEEAAAAAAAAW7DxBAAAAAAAAFuw8QQAAAAAAABbZIseT760adMmJZ42bZqWU7BgQSW+cuWKjStCVpU7d25trEGDBkr8/fffK3FaWprL8wYEBGhjXbp0cXmcsT9H8eLFldjYm0xE791y6dIll/PgyWDs3fLbb79pOVu2bPHWcvCIoUOHamPGfhIJCQlaTuPGjZXYnV5Mxp5yxh4IIiINGzZUYuN1Q0Rkzpw5Lucy9tIwXus2b97s8hywz//8z/94dFxcXJwSjxw50uUxtWvXVmKzmjdyp1cUso7jx49rY4MGDVLiMWPG2DL3sWPHtLFz587ZMheyF2MPxeHDh2s5TZo0cXmewYMHK/G4ceMytzB43e+//66Nvffee+nGnnr55ZeV2LjfICIya9YsJb5x44Ylc/sS73gCAAAAAACALdh4AgAAAAAAgC3YeAIAAAAAAIAt6PHkwrVr15Q4JSVFyzH2u1i2bJmta4L3GXuRiIgUKlRIib/66istp1mzZkps7OnkcDhczm3szSQiMmTIEJfHGRnn6t+/v5ZjHMuZk0vEk6hixYraWPv27ZV47dq1Wo5Z3ydYr379+kps7BUnovcSNPZzEnGvp5NRuXLllHjevHlaTuvWrZV46tSpWk7Tpk2V+N///reW89prrymx8Rq1Z8+edNcKaxmfa0JCQlweY9Y7x1gf7qhbt64SG3uYiYicOHFCiefOnZvheeA7ZcqU0cbeffddJQ4MzPj/h+fIkcNlTrFixbQxY30bX+8j+8uTJ482ZrzWrFy5UonNrj137txRYrPnW3oSIiP++te/KrFZP98dO3Z4azlewzueAAAAAAAAYAs2ngAAAAAAAGALNp4AAAAAAABgCzaeAAAAAAAAYAs6B2fQkiVLtLHo6GglXrFihZZjbCqNrC0yMlKJY2JiXOa4w9ic+euvv9ZyjM0Qd+7cqeUYm3S++OKLWo6xVgcNGqTEZg2m4T1mTeO9xdjQVURv6vrZZ595azkwGDhwoBKbfbmBsfG2J43Ezdy+fVuJu3fvruXMmDFDidu0aaPltG3bVonbtWun5RibiRuvjzdu3Eh3rbDWpEmTlNjYaN6M2WuixMTEdI/58ssvtbFu3bopsVmj1ZEjRypxamqqy/Uh6zh+/Lg2ZnxdMn/+fEvmMr7m7tOnj5ZjbAa9dOlSS+aG71SvXl2JP/nkEy2nUaNG6Z4jISFBGzO+ZqKRODIiIiJCGzN+mYHxC2NEzL+8I7vjHU8AAAAAAACwBRtPAAAAAAAAsAUbTwAAAAAAALCFX/d4qlatmjZm7FVRuHBhJS5VqpR2zPPPP6/Ep0+f1nK6du2qxBs3bnR3mcik8PBwJb57964S9+/fXzumZ8+eSly0aFGP5j548KASd+zYUYm9+fldY23T48m7goKClHjAgAFazp07d5T4xIkTlsxtvI41aNBAyzFek3bs2GHJ3Mg44zXLjNnzjB2uX7+ujQ0fPlyJS5QooeXUrVs3w3PNmzdPia3qWwVdy5YttTGz10SuGPtCmTE+f7700ktajrGPmbH/l4jId999l8HVAXhSmV2vli9frsRhYWEuz2N8Lm3cuLGWw3MRMsNs7+Dtt99W4qNHj2o5SUlJtq3JV3jHEwAAAAAAAGzBxhMAAAAAAABswcYTAAAAAAAAbMHGEwAAAAAAAGzhV83FO3furMQzZ87UcnLkyJHuOTZs2KCNpaamKnHx4sW1nISEBHeWiAwyPl4xMTFaTvfu3ZU4JSVFiStUqODR3Hv37lXiMWPGaDkrVqxQYmOt2KlYsWJK7E7j2EWLFtm0GpQvX16J//SnP2k5UVFRSvzjjz9aMvf48eOV+Omnn9Zyxo0bZ8lc8A7j9cebDh06pMRTp07VcjxpLm5set+sWTMtZ82aNRk+L/QG36NHj9Zy/vCHP7g8T6dOnZT44sWLWk6BAgWU+OOPP1biKlWquJxn+vTp2tiFCxdcHgeYWbJkiTa2a9cuH6wEnvr000+VuEePHlqO8Tpn1px54sSJSjxnzhyXxwCZUbZsWW0sODhYiVeuXOmt5fgU73gCAAAAAACALdh4AgAAAAAAgC3YeAIAAAAAAIAt/KrHk/Ez3sZeP2bWr1+vxFevXtVyhg4dqsQffPCBlsNnhu2RO3duJTb28RIRKVWqVIbPa+xb0bdvXy1n7dq1Snz79u0Mz2MVs94c8+bNU2J37ocRI0ZYtiZ/ZvZ5buP1Z/fu3VqO8XpjlTfeeEOJf/jhBy1nxowZtsyNjAsICEg3FhEJCgqyZe4aNWoosVkvqTZt2ijxrFmzXJ43MFD/f660tDQlNvahi42N1Y4pV66cEpv1GILOnZpyx7Zt21zmdO3aVYl79+7tcu6DBw8q8fvvv6/lOBwOd5YIaI4dO6aNnTt3zgcrgRnjdd2s382zzz6rxGY9eY194Fq2bKnlxMXFZXyBQCYMGTLEZc6tW7e8sBLf4x1PAAAAAAAAsAUbTwAAAAAAALAFG08AAAAAAACwBRtPAAAAAAAAsIVfNRc3NhM3Nvv11LBhw5T4ww8/1HJatGihxCtWrLBkbn9nbOj98ccfazmNGzdW4uTkZCU2a4x77do1JT5x4oSHK7RHsWLFlLh9+/ZaTkRERLrnMNatiEhCQkKm1oX7atWqpY2FhYUpcdu2bbWc33//PdNzv/3229pYzpzqpX706NFaTmpqaqbnhjVWr16txGb/lo0Nm4cPH27J3D/99JMSDx48WMsx1pg7TZ+/+OILbez06dNK3KVLFyU2+zvRTNwzhQoVUuJnnnnG5THbt2/XxoyNwfv166flmD3Wj7px44Y29umnnyrx5cuXXa4P2Z/xdXiVKlW0nOjo6HTPYdZk2sj4JUAiIkeOHFHipUuXujwPrNGhQwclHjlypBKHh4e7PMfs2bO1sZ49e2Z4LcYv6ihRooSW065dOyU2u8a584VV8E8hISHa2L1795R4zZo13lqOT/GOJwAAAAAAANiCjScAAAAAAADYgo0nAAAAAAAA2MKvejx5y4wZM7QxY/8CejzZY+bMmW6NZScNGzbUxmJiYpT4pZdecnkeY/8CY02K6J85hme2bdumjbVp00aJjf0lPGXs3TJgwAAt58yZM0q8f/9+S+aGPSZOnKjExn5OIiKFCxdW4rlz52o5ZmOuDBkyRIndubYkJSVpY8beP+48533++ecuc+CZxMREJTbr31SvXj0l/sMf/qDlrF27VomfffbZDK/FrA/mwoULM3wePHnM+sWlpaVl+DzuHFO7dm0lXr9+vZZj7PcJazRt2lSJy5Ytq8RmddC/f38lnjx5spaTL18+JTbrZVe5cmUlfu+995T4hRde0I65deuWEm/ZskXL2bVrlzYGiJg/3z799NNK7C/XGt7xBAAAAAAAAFuw8QQAAAAAAABbsPEEAAAAAAAAW9DjyQZDhw7VxhISEpQ4IiJCyzl06JBta0L2UaRIESVu0qSJlhMXF5dubGb8+PFKnJqamtGlwU3nz593a8wKf/zjH5XYrC/Lu+++q8SXLl2yZS2whrFnktm/b2Pvtw4dOmg5ZmOuBAQEKLFZr40ffvhBiY19oUToI5bVGHuUJCcnuzwmNDTUrTGjlJQUJZ49e7YSz5kzx+U54J82bdqkjb322mtKXKlSJUvmeuedd5TYrD+rv/RdyQ7at2+vxFFRUVpOcHCwEhv7eJk5ffq0Ei9fvlzLGTNmjBLTzwkZERkZqY2FhIT4YCW+xzueAAAAAAAAYAs2ngAAAAAAAGALNp4AAAAAAABgCzaeAAAAAAAAYAuai9vg119/1cYOHjyoxJ999pmWY9ZEGv7H2Ph58ODBPloJsoPSpUu7zJk8ebIXVgK7tG7dWhszNlqdNm2aJXNt3rxZiT/66CMtZ8eOHUp8584dS+aG9xhfk4joTZzdkZaWpo1NnDhRiQcNGpTh88I/Ga8/IiK9e/dW4oULFypxmTJlbF0TrHf06NEMH/Pyyy8rsfGLMETMvwzDlREjRijxrFmzMnwOID1mX+hjbC4+f/58Ladjx45KbPzimeyIdzwBAAAAAADAFmw8AQAAAAAAwBZsPAEAAAAAAMAW9HiyQWpqqjZm7J3w448/ajnGz6mfOXPG2oUByPaMfQ2ioqKU2Oz640nfA2QdN2/e1MaMfSjoS4GMGDVqlDa2evVqJY6JidFyzp49q8Rr167Vcr799ttMrg54aNeuXUr8yiuvKPHPP//s0XkHDhyoxCdPnvToPMg4Y5/b//znP0rctm1bl+eoWbOmNrZnzx4lXrp0qZZz6tQpJTbrywtYaevWrdrYuXPnlNisf5NZD8Xsjnc8AQAAAAAAwBZsPAEAAAAAAMAWbDwBAAAAAADAFmw8AQAAAAAAwBY0F/eS5ORkJV65cqWWY9ZAFgAelStXLiXu0qWLEs+YMUM7xqzhOAD/ZXZN2LdvnxK3bt3aW8sB3HbixAklzpmTX2Wym7t37yqx8QuXzL6ACciuunXr5uslZBm84wkAAAAAAAC2YOMJAAAAAAAAtmDjCQAAAAAAALbgg9E+0r9/f18vAUA2ZOyNsHz5ciVu06aNdsxbb72lxPR8AgAAAOAtvOMJAAAAAAAAtmDjCQAAAAAAALZg4wkAAAAAAAC2YOMJAAAAAAAAtqC5OABkIw6HQ4nbtm3ro5UAAAAAgGu84wkAAAAAAAC2YOMJAAAAAAAAtnBr48n40Q74B7sed+rJP9n5uFNT/od6gtWoKViJeoLVeF0OK3GNgtVcPe5ubTxdv37dksUge7Hrcaee/JOdjzs15X+oJ1iNmoKVqCdYjdflsBLXKFjN1eMe4HBjSzItLU0SExOlQIECEhAQYNnikDU5HA65fv26lCxZUgIDrf80JvXkX+yuJxFqyp9QT7AaNQUrUU+wGq/LYSWuUbCauzXl1sYTAAAAAAAAkFE0FwcAAAAAAIAt2HgCAAAAAACALdh4AgAAAAAAgC3YeAIAAAAAAIAt2HgCAAAAAACALdh4AgAAAAAAgC3YeAIAAAAAAIAt/h/GUeBQoaf6VAAAAABJRU5ErkJggg==\n"},"metadata":{}}]},{"cell_type":"markdown","metadata":{"id":"5JXyu9BxlUSO"},"source":["# Play around\n","\n","Now it is your turn! Let's try to change the model architecture and the optimizer to see the effects.\n","\n","For example,\n","* Change the number of fully-connected layers (in this [section](#define-model))\n"," * e.g., 2, 3, 4 layers\n","* Change the number of hidden units (in this [section](#define-model))\n"," * e.g., 10, 128, 256, 512\n","* Change the optimizers (i.e., `optimizer`)\n"," * e.g., [keras.optimizers.RMSprop](https://keras.io/optimizers/#rmsprop), [keras.optimizers.Adadelta](https://keras.io/optimizers/#adadelta), [keras.optimizers.Adam](https://keras.io/optimizers/#adam)\n","* Change the learning rate of the optimizer (i.e., `learning_rate`)\n"," * e.g., 10000, 0.00001, 0.001\n","* Change the number of training epochs (i.e., `epochs`)\n"," * e.g., 1, 10, 20"]},{"cell_type":"code","metadata":{"id":"-P9dZSYrlRL-"},"source":[],"execution_count":null,"outputs":[]}]} \ No newline at end of file diff --git a/fall-2024/aicore/aic-501/00030/iris_dataset.csv b/fall-2024/aicore/aic-501/00030/iris_dataset.csv new file mode 100644 index 0000000..c813297 --- /dev/null +++ b/fall-2024/aicore/aic-501/00030/iris_dataset.csv @@ -0,0 +1,151 @@ +sepal length (cm),sepal width (cm),petal length (cm),petal width (cm),species +5.1,3.5,1.4,0.2,0 +4.9,3.0,1.4,0.2,0 +4.7,3.2,1.3,0.2,0 +4.6,3.1,1.5,0.2,0 +5.0,3.6,1.4,0.2,0 +5.4,3.9,1.7,0.4,0 +4.6,3.4,1.4,0.3,0 +5.0,3.4,1.5,0.2,0 +4.4,2.9,1.4,0.2,0 +4.9,3.1,1.5,0.1,0 +5.4,3.7,1.5,0.2,0 +4.8,3.4,1.6,0.2,0 +4.8,3.0,1.4,0.1,0 +4.3,3.0,1.1,0.1,0 +5.8,4.0,1.2,0.2,0 +5.7,4.4,1.5,0.4,0 +5.4,3.9,1.3,0.4,0 +5.1,3.5,1.4,0.3,0 +5.7,3.8,1.7,0.3,0 +5.1,3.8,1.5,0.3,0 +5.4,3.4,1.7,0.2,0 +5.1,3.7,1.5,0.4,0 +4.6,3.6,1.0,0.2,0 +5.1,3.3,1.7,0.5,0 +4.8,3.4,1.9,0.2,0 +5.0,3.0,1.6,0.2,0 +5.0,3.4,1.6,0.4,0 +5.2,3.5,1.5,0.2,0 +5.2,3.4,1.4,0.2,0 +4.7,3.2,1.6,0.2,0 +4.8,3.1,1.6,0.2,0 +5.4,3.4,1.5,0.4,0 +5.2,4.1,1.5,0.1,0 +5.5,4.2,1.4,0.2,0 +4.9,3.1,1.5,0.2,0 +5.0,3.2,1.2,0.2,0 +5.5,3.5,1.3,0.2,0 +4.9,3.6,1.4,0.1,0 +4.4,3.0,1.3,0.2,0 +5.1,3.4,1.5,0.2,0 +5.0,3.5,1.3,0.3,0 +4.5,2.3,1.3,0.3,0 +4.4,3.2,1.3,0.2,0 +5.0,3.5,1.6,0.6,0 +5.1,3.8,1.9,0.4,0 +4.8,3.0,1.4,0.3,0 +5.1,3.8,1.6,0.2,0 +4.6,3.2,1.4,0.2,0 +5.3,3.7,1.5,0.2,0 +5.0,3.3,1.4,0.2,0 +7.0,3.2,4.7,1.4,1 +6.4,3.2,4.5,1.5,1 +6.9,3.1,4.9,1.5,1 +5.5,2.3,4.0,1.3,1 +6.5,2.8,4.6,1.5,1 +5.7,2.8,4.5,1.3,1 +6.3,3.3,4.7,1.6,1 +4.9,2.4,3.3,1.0,1 +6.6,2.9,4.6,1.3,1 +5.2,2.7,3.9,1.4,1 +5.0,2.0,3.5,1.0,1 +5.9,3.0,4.2,1.5,1 +6.0,2.2,4.0,1.0,1 +6.1,2.9,4.7,1.4,1 +5.6,2.9,3.6,1.3,1 +6.7,3.1,4.4,1.4,1 +5.6,3.0,4.5,1.5,1 +5.8,2.7,4.1,1.0,1 +6.2,2.2,4.5,1.5,1 +5.6,2.5,3.9,1.1,1 +5.9,3.2,4.8,1.8,1 +6.1,2.8,4.0,1.3,1 +6.3,2.5,4.9,1.5,1 +6.1,2.8,4.7,1.2,1 +6.4,2.9,4.3,1.3,1 +6.6,3.0,4.4,1.4,1 +6.8,2.8,4.8,1.4,1 +6.7,3.0,5.0,1.7,1 +6.0,2.9,4.5,1.5,1 +5.7,2.6,3.5,1.0,1 +5.5,2.4,3.8,1.1,1 +5.5,2.4,3.7,1.0,1 +5.8,2.7,3.9,1.2,1 +6.0,2.7,5.1,1.6,1 +5.4,3.0,4.5,1.5,1 +6.0,3.4,4.5,1.6,1 +6.7,3.1,4.7,1.5,1 +6.3,2.3,4.4,1.3,1 +5.6,3.0,4.1,1.3,1 +5.5,2.5,4.0,1.3,1 +5.5,2.6,4.4,1.2,1 +6.1,3.0,4.6,1.4,1 +5.8,2.6,4.0,1.2,1 +5.0,2.3,3.3,1.0,1 +5.6,2.7,4.2,1.3,1 +5.7,3.0,4.2,1.2,1 +5.7,2.9,4.2,1.3,1 +6.2,2.9,4.3,1.3,1 +5.1,2.5,3.0,1.1,1 +5.7,2.8,4.1,1.3,1 +6.3,3.3,6.0,2.5,2 +5.8,2.7,5.1,1.9,2 +7.1,3.0,5.9,2.1,2 +6.3,2.9,5.6,1.8,2 +6.5,3.0,5.8,2.2,2 +7.6,3.0,6.6,2.1,2 +4.9,2.5,4.5,1.7,2 +7.3,2.9,6.3,1.8,2 +6.7,2.5,5.8,1.8,2 +7.2,3.6,6.1,2.5,2 +6.5,3.2,5.1,2.0,2 +6.4,2.7,5.3,1.9,2 +6.8,3.0,5.5,2.1,2 +5.7,2.5,5.0,2.0,2 +5.8,2.8,5.1,2.4,2 +6.4,3.2,5.3,2.3,2 +6.5,3.0,5.5,1.8,2 +7.7,3.8,6.7,2.2,2 +7.7,2.6,6.9,2.3,2 +6.0,2.2,5.0,1.5,2 +6.9,3.2,5.7,2.3,2 +5.6,2.8,4.9,2.0,2 +7.7,2.8,6.7,2.0,2 +6.3,2.7,4.9,1.8,2 +6.7,3.3,5.7,2.1,2 +7.2,3.2,6.0,1.8,2 +6.2,2.8,4.8,1.8,2 +6.1,3.0,4.9,1.8,2 +6.4,2.8,5.6,2.1,2 +7.2,3.0,5.8,1.6,2 +7.4,2.8,6.1,1.9,2 +7.9,3.8,6.4,2.0,2 +6.4,2.8,5.6,2.2,2 +6.3,2.8,5.1,1.5,2 +6.1,2.6,5.6,1.4,2 +7.7,3.0,6.1,2.3,2 +6.3,3.4,5.6,2.4,2 +6.4,3.1,5.5,1.8,2 +6.0,3.0,4.8,1.8,2 +6.9,3.1,5.4,2.1,2 +6.7,3.1,5.6,2.4,2 +6.9,3.1,5.1,2.3,2 +5.8,2.7,5.1,1.9,2 +6.8,3.2,5.9,2.3,2 +6.7,3.3,5.7,2.5,2 +6.7,3.0,5.2,2.3,2 +6.3,2.5,5.0,1.9,2 +6.5,3.0,5.2,2.0,2 +6.2,3.4,5.4,2.3,2 +5.9,3.0,5.1,1.8,2 diff --git a/fall-2024/hcd/hcd-201/00020/.~lock.HCD-201:00020 - Thanawin Pattanaphol.odt# b/fall-2024/hcd/hcd-201/00020/.~lock.HCD-201:00020 - Thanawin Pattanaphol.odt# new file mode 100644 index 0000000..272cddc --- /dev/null +++ b/fall-2024/hcd/hcd-201/00020/.~lock.HCD-201:00020 - Thanawin Pattanaphol.odt# @@ -0,0 +1 @@ +,slimbook,wins-slimbook,29.11.2024 22:25,file:///home/slimbook/.var/app/org.libreoffice.LibreOffice/config/libreoffice/4; \ No newline at end of file diff --git a/fall-2024/hcd/hcd-201/00020/HCD-201:00020 - Thanawin Pattanaphol.odt b/fall-2024/hcd/hcd-201/00020/HCD-201:00020 - Thanawin Pattanaphol.odt new file mode 100644 index 0000000000000000000000000000000000000000..c06b977bf64a81b46c0c01e1eaaccaddd62e00b8 GIT binary patch literal 47463 zcmb5U1CXW7*5_Nc)n#^dv8#63wr%dRZQHidW!tvZW!pBpYWh8QzAx^~oO^D}6Oplh zk&*wzihOpiT+fo10*Al=0f7Mlq4o6E&>dz(pa1~@`KSD?0cE&bFwua8u#x_oLPR4Fd^8ZU`fA#N zb>qlL|5xU00Cb@L|5oAu8!yXy^Dp#V{~1|Jp}?+yD0i_m>=<+^viq>D;WXF7d_^)>|KQYUIr=6vzD0 z%BskRHkD#Ziig85?TaqQ?cqpCU>PK8L24K8sJ`O(CQ}c9hq84Y1k3E^L{{*&L+dxS zH$%wJ65Q{kmcT4+3Ha^b*SI^%E*TX{G1C(~{?PC~- zK<&p{NRA!td3fRCtxM+TPnkKUD3S<@i9T7A0dhN@3tUT z0dm_K5$^@!np6Q(CQK^wk+^e(fzAL(1mtc1rwxPqxOfES8IAU$F!XL2g@9MpAgzqu zg=rV9;Vo*s(|8`^F?ow{tzwxtc9%(W9&dR5$K`c4EIm*CQs(`d1a8SPbP8DJkfv#a za^G)Ec+{skBU?EhBr=TON9n5Jc^)Ns7)Sw*F)_ZGG=*RQ=XsvcBPAFT$+7~+xMsoKU1~_-)E6CfXX{fM*b)@U6 z>`9l!zb);wB@Y;zC?DFyX)O{?ecZx8Hz&u0ciuj+*QGHPR|AENCA3S$jYY^W z3K)M*2*>73Pz~T1_jBxD0ah?wLt~_2V#5$!A_S{FM5x`yIu|iihY9haN{ej+AaNyW z?I#);yoCkRB2@O|P129XkQ(|vL&yu`F+Bqe@ffDvsxsuy$T!HSlz(JcOD$w%=hObo zxWA3oA$i779pQni`?d=>Vxw;)v~er+m8x6bPmLm0Zzr~(6%^caWYGPQjB@R#G>cx2 z&WAcpgN=hqLQCliV`iKp^DfduqAzzCHTP4}Jrb=)4Cm0deD}1krUbWk1NpZMDUy85 z97K_v!qrbnhlL-P?v<#EsZDLvKEL-?LZtPcI%Iyg7e4)i<|`V#-iEksa#wTsO7 zfGPP=%@8`0_kxR~r55sAN-Ga*Z@67;-3a(o_tgg zgQIXA@(*!bU>ol^kCuD23!Dp-DqQN^Di2jCo#|qlQ?P4zzp76qIq=G2 zWvImjDmF`mbd+XaZ1V|m~$PL<9$_*51!58&352;;aWXfhbA zthrH){~~0Dtq#*_2KKdwNm0E7apto<6%BnKJ|tf5m>{5p1d=z9s=DJ1Xd6%SsML;} zl>NXLwSbgNMeyj|qhw1cuh&M=#wwk^z+&VTq{VezlE9PMA-^e@d?J0${O}p3q*lq6 zbphU6oNC~ByW!w~83ET?~+$A})YHqog(Krobs>DNm?3RNVR+d=A!1;>?CeGcl) zNG;L_;X{0KM4V5BI0l{-DlSUozXVNxD0*L%I$7*nz;F8cZfn+*MgFRHN*WrMtsq&; z<8>G@9_x5w!O|_=R!P-5p3^dj{=t&PYfNBK(vDQ1wfn17Dmn6^E3U~p9i+k)tH6;; zP1N{CiSc$$VkuoOvto7jLos>+HE{qnfd(dJ8<}k$&&-UF=_^MNT`C1!u>&op0d$xB zJ1(@`2c}}j2K|X=8kG=oWo>f=Z&`o&zL&Rp`IBcSoWdM%M)A*8`T8998G{69Hj7o6 z#EOpcneKur(=68Bh=;rSv6^CEUo=|azyXU@!F7**9Li7)n|OB|moHQLk9UGeqdJht zQD2{5%9~$Jn8wlEV3P`%m*?M42CTN(#mkV@F{vot#I1QXDorX#E2dnqCM-h}XgWsK z&{rI%&km%qJ`?yP&mIWRxd**t?FS%7_&g6`bzdC`2V!(^RdV_6pPYW172w9Kizjy^ zN6NUp)^=?9BJ;vrTV!)#D`y`0P+?VQrO*KX{HDv-a7U_fnAEe+jgZTL_eNO1*`vp0 ztR@+LK^lS55o^WwTf2PncHbLoA%~GZ$ESR!6VjZ?W*iNwg61gWgteN9pF`@c1hd-$@|zesq4Ks zc{q>d!Z^MwUPRCoyu#F?cb?HKo?GX4N2PgPr3i579$*VHQ}_o$;y^_ZRDrsU{PYeQt#LjGgZ7?4+!=MH&| zxXPd{q-us)2~#KM-(}Ny9pUv@BL7PQYl6oi(5B||VNSxnK`g>@RtGCo&>d@bmPx&! zjju;~Wx=U?Ee|y4o|7bF<`yM9l5-b#G(=o`33g!W#|2yY4{a7$Qvttsm{`+N);D+G z`S{k#3?kOc4wa(GR<)Jv&?+>(j=gdc!?>o29M&D`>9^SDu z);IH$c3)$&;OqH3??ee&Q;1*?dbAgjW1)$TyS@3|myXY3YGjY5t;F_A9R>?PpM=Zc zFOd8&`oU@0zlfUh-i`7L3HBidUwrJEH0fRR=Eoy#x5mLQUO_x*dlGn*9Un5;MnXl$ zu6U5>jkv<`zAT&<$rW6RXH#gjCF>HUxQT{eGkr^JqP^}J&FR{tgi!QE zWevc4a2Nb51jF_Tk!s{gcNlvr_vKS%Oz`QjxMe_}QY0_#DAO4pZEa#Cu8MuA8k#hF zcyN&xV@!Rys>NpXkv*^~QNg0w>6$%L=e&{r$3;*qH9>{k(&UQnX7yq&p5Jbk1VuwI zpXH-r2Yg3=-`z_7&Ak5@eP_f-1?6FT1bb!<$&E3xif7YKw@_RSs*-j+|2qEE!9uL6 z7N(ANgEf;Mg#E|>&H{p@Y%+J%Hc9H{?}RZ;(+0%Jiyw8A1@%IeGqp#2rxBqHfbWZx z#8J=n>Cv`6K92=#_knXgU#~TDQfAv66kKTN_NvcUL`tN5jzYI5Vw3rKnTWnF{-;vY z{_&jNZa8ob6stG_T48oF2m*1w5 zM<+T5Ba^AbDVsn5O3*cTu<`T?KRqO*1Lb&|MQ$%kh&m+wT?X1#cTA$HLSgw??!tbx zDARUKW9B6ge>Aebv`?AYkcxa<+^p%8hO>jNt!SNdZKaupD1+eEBCsfzy4}@=nnN!o z_$M2J)l9=LO1F%AZn;jafIQ<7#LW>XhHMG120^T={;BzH3g^hyg2t~VxGuN z&a%9EIAF74S7BWWz)!|pZSs(hS$@KMr=uVjOx>gwytjTsri<2IE#?$8lSJ5@3EZQ zU>6MF(UtHcgsTx1Gp^d#1~0M@&%Pi z((39)U-A;}=@s9@=5EsbbT0PC=B~P`bv6T!`jC;pCuleEulE~XOIu}w_0>u+j(Z8J z`_tM$^LYE?O6%&#WNWVZM7T^cSX^A0bgTh8``@d>8m8g1++!jH5ih{5z1?~3S=dZ# zZN=lpXls1QkLaWq+K2nT$l`fs*fNEk7WYy6-SSOyXNUWKAAOq?oiTQ{wRma6+MfWY z3BFI}!|+})+Cm$(B2?{eDjwvP6c!d2&+~vBQ?B#i^g}aG%s`(_FIlKx+m(i?))ohn zcI$1mKlux#%;FvbE<2vVT5K5?@lGyU(0P-?U8+9DWRux+$(5*34U7O_z2H?T^DMtxvBkUE+;z1A(ft(=b}_lT+F5*tTsH8l z(6b{vA$6a1re*Pw$FWRdfZbA_s79c8(EVQbI%Y2O2scze=+}ZYrHTau<{EVB<7giJ zn!V@!!Zjoyt#E&{PQ8kFkA^k*>`{=*@%~UekVH&tE(EcKm@XbQ(v{>2JaUA_*o4Sx zv8$o`OLTfV`Dl)A;Y-Cr!r@`-^IWg9qs3CAW5o`y?K+$@>A>ZHU zL*R4vfWihJ!qDb`f|n0=glA~M%N_tDmmp@Z4@h}M6tg!m12y4syg5g{o%8Tco*SrK zNnV!52`x8GKSNI~-5T_+Lcwj=H9rA|PM7aI1nX&9pinaomulB~7L+~j11JaVqD841 zo14ydmHuLuqEvV8|J2BJrIBuhF!-yyt^)?29QeQnmXFttKv(Jk`^jO-+WX?bTXO-;PU61F4y= zBG|ebfX5e&<567TF?=V=u(#J-Tx7C#INGYe7j;NVCgkYpsY!aP)8-8W1#BV96^lAx zddDG2q$whxNPG|S5hFv)u^lecL*2gKAW#D7WWbsFTNW;CH|KlOF?6!sijS~M6cV9^ zr~!ddPsrJPE1xE2k~=kWKJSmdcOsm^>{2>~w$#bJzm?HRn~O6H5{Sk?%wShh2pi<1 z3@iDoab5Dm2{LVBjIhUXkTZmKcwFYJ-1elAQhRYZrjDVDTi!^EH?jxG_CSU^dCha0 z+gAg_$PG~kF37T*=)X5Qblo^53R90(bYyn6R~$YPeR&SvwU<)YMt)0Hw`B`|RF%5e z{<=0JUn=`vJuNkUX2qtF?QL(iLRDB_)H?a+TcWz}-&Q^B+!x9ZdfBOuddD4O=N}V7 z1LdC;_x+#e25jLvUiN7#Ro|al+h^EN)Frgaa2r@ zI%^ctMJ^b}&nO%GZ5L*w@>e4J54IlsgHr!n?aFr-4C8p8f6eh*ZbJGMPcW7 zI`Cu6i^clbekwzFxo1kdBZ*AD8T-P@6GcZ*qu zzp0HvEGGx%&{*&2Zl@(BhkV0O7Z?5`01Lj$kEZs!T>oKE5y^??o(7V%Mkn_<&+My9 zLI`cr?Tf&Vy63ql@`sNWy)PyA)%N`7DXycE{2VeKA~#~MtdB12AG8eC6pVYN&Eoj6 zn1Jbm*g2RFkYYA;53uu{Ejiomk5%yFqi7{mJM91q_vhB$EUO=+n!mz&VTgd?-80E( zLa1Omjipqn^Rq~B2}TbvedesFcDccl9=z(YP(MMCM9{(nnYAPoEkPy4_7TxhL3~H7%JnZ8wKTU{@NdveO$Y^1$HRF$Lx?^h2!c?5 zNP9A+hxm^K5c_vG;`ycQOky@_Rk`d;wM+`{beUB9oYrVOC-5N0+98GwL72! zp9-}!lXa|89$A{UIzv6dgmY~IkeVMVwgmU^(=o@gPTIQ&uAG#>`t%m{;>&x+b%v}~ z`2)z@8O?Ds38noGZVBV*P09#~Rd9h2X2uC4-yxHq1i8p;6#VIc zwX9)1h8KR7yWw?>W_@uq-hmF&ZMJM?z=`?Y?#5kT15q1{TG|3XYIhz21JVW;ByKEi zXpd-`v$IC!Opf1u2g&Cwq!*K))<3g=`6*fi{Rcvk*Nqo{cO68R3eWHuYqgZ zVCe}AJ|Ih;iRPJ@`QM~^U$7sdA@%2nh2k6u`h~!R&-pO@g<*wzB^8N=jwkG`Foo*< zP$1`W5C#F^Bp66Og+Ubqlwl zb@dHD*(mky=_!I{fVHc^^;Uuh?COrzw(F~R1>!8ZVw@5eM3;-uLZy|6YZWPd5Y}s= z`s4OUwGv4nvh}W{iAR-Y$BjnIl7!Tzj0xwBXIMewPXm4AiC&PY1n1rWk_K_BX?;Hk zt(g0te(_j6-3IqO35=4;<|BG@V^h{ioDy!dS+ccN1?~AKZfQL;LR<$)BZ8oVae(VF z1JkgjQNN@4lRRY-*>1ZjbAl-CSJ_wWdOu20Kc07Zg@v>!bkmm{Y)p2kK|{qxI`72) z^cuYtC6qL(L#nzqTd+tc8sX@y2o8y)Xb za4>bGo!2;$wF2y1au|hs(hWO9P;W;gS2RvNXf;~fe~j3D=ZzB`f$`xQ6$S&?3~(@@ zy8n9=_e8mWKArn!GDtgEqj1)h$+B_`y`L!Yu#g0V4nA>cARKp?vig~CrZ{74yt9$r z*7&*BbaC|x=#{7=Q@W2`{_aIi6IcHTBqDa0G>Vc08mSotYPL&;rt>y3Rzexdb&>#x z!}3{*+(p#Yp7`+k%xlxqXug$Sa3U6+pp;@ja@4XJI^sQ*W?iu>t`HapyR65L$`95lP1IDHw-5AdG^u&XW(THoYXjaB>~mhD$ccl4Gns(-;urX5W zOWxM{N}ghLrkG5lvUSiqS;M8H?THdtsE6T(Vew9PAl;!$h3tcmnlD>D8@_JHIwK-U z*k{WgcZ=#htUW>sAH`HR4$Hka9AsBn)pdIx27ueE8fy_`0$&b$18wU)x z!oRU#en3WM61q>D2$B>uRW>f(g(o&BVu^D2$r!S4q&VWmQ2BzHmx_=n-A&PSkNb2G zK6_b(6VeeOtlQw+571A21$&%69x40`3@wtw_Wp7J-I*{@q$9<9|Qx!{BUM8uVgh{%X>^v5wA@ZwrQvmikYRkKHd6d zRf-Fv${K71F7XE)vNE~(EsjJ#@cVYUG_l4IcgAn^a8&lAB~^DBQM@q{8@Rx!fV8Ad z!;E@}4<%d!9%;+OuOv7j$q(?PE?^BlERW zNImeUoC8vO1fCkw075xf@;eXNVG5(Dakipjfv*+=`t1jO#iKcjuw<;Z?U$d?2 za$7jOO88ULkby9S3Jm%=X(G5~^?5-+03-~0!$frQt`6eEX1xU6RrK|?@G}liv{b6&$le1lB`~?4hBxl}IGt z{bKgqY@(=zphP1K?efN`L}pGn+*H+jN#RvC4J|8&J;F~DV$6dbDZ1r$wjqUtIh{JB20Pn(B4%QRcX^?wJB!V& zcoCZc>0l|8@W<$JQDSAANn`zC*A7)V{90GNyJd`U+z`c@oU?leRuZbFzC=(Ntz!$Z zn;DIkCw~8hDu-<4#WG28|Gcd_CBGWf7vb*^-TDV_1>V!y4NGQ~=A0hd3K5qbUcSvg z7YZd%O96+IPznm>=c!1{j$T8M0SJG_X7~>j7CMHa6S*@D;(}Mt1a!sMokoeb&BtRn zP!dnRE9y3e*t6k+%A1rp`~-c;fHB#MZFiZWN#FjFpbqmeDuOj=d=mU~Dv|~l!@0w4 z-vrXcn!ip4bUhC*}2YoFtZt`-Xy+ zbj&js|g2yB)0@Y z0`M52S0Q5Jm1X6`QRLA5UYOBW5(hIeQ(|$D(FKC8u^kRu#+A*IGZDYJlWClPQAH%rKkDK-GxsVDf z-QxmnoFcA*-+_f_l+1n)qz-3SR;Mayf$Nh3`;C1h`;GOGs9wp=#ADpLDe4($QLtN# zt#Hs4d7$&aqWJ9qJ89et(XDc$wLXD0r=GaEhEE3R**NLxJZ^seMF|Pwq>`!A$lsZgIO!+06LO6Y25jT>b&`04LO459vZd2 z;zH-SI2zODljxt&EuF$%MgS%V2!H*53f=xIG0E5o_)pw6T1h506M)hAtR~#323QI4 z6Is!c(`r&wGPjL4>_NFk!^3GP{Oa~HX^=qbx;>f#*ydb*oO+e3UhCr-KMY3(%xd{# ziBjv>bn>lV`<(G$>Nz;FQ-Vt4&gJlPeL=+3c$C?wn-^8GZq2o2kSsXs%*OYwpzQ*_ zmkK9vUG>nMbbB-ypxAaUS(vyL;1<8a;vPXTv78JAc-yVAFDXme*OhB&MT;sDm+GUi zP{NTm+RY^YwvGJ}Sx+lu=$emfNH++Kpt?p2{8iRnJ96erHratEG`Xz?PoZ09J5@E?NF=-$NPEg4KB@|QM=zoSEM?f<+2=dIQuWAvcD^`AToL6vO} z!GdiKiN*Z^+2vDt`*bBLpQ7ikqR8i4J=rCPw|Hhy_tMJ#Zgx?r+0ou!9%8%Pf@{di zmT=)^ynFO^dg{*d)!D}7#pwd1p&95`{pzuw(m3?E3~hQ{&Q)zb@RcnL4f47NI;SUj zSMMa?(W7DE)u=r2JkOYR@BWd2H?aCW{)X2hefxKxS32l$@l-9(@Ts^S;?s9PEA^wz1?`KzppENH}0WK{>to@B3xXqFlHBXPsj8!w*Ce|v{Q%h_|B%YN%^?yyQvcY za-{8H-%3SxuAUBNswcbNncBB+B8QwD3OAppXoGh~ZYVt5Y1Bz!hn;hbTbV{*9%;ur~~E1tI~&!>+@YLv9Rj5#KGoaW^cp4Z!oZ;`d9@7LlnvQR_uQ|IijaZ z^~BlXFt9)LaT|?6P(qfbpI`?Ul@2L{T&0}iH{RT^Ul1@CN-Ky14xq4#_3P@l5Zbjk zXQP9eLJbh+(b_pp4Ge{Dy(d6}^cZ7zHy%1Z-m>ACRZ}L7kiN-b*8clH`2GhwJ#hvW zNI1ih?2tb?--GZYdMF6snG_K={u5l=u-CcJImfRpauVS+$O&t#Ci)c3oOgvH>BiXR zTS{p90)ojVDd&iFVj-NaSbTCB#pg5%hJeDnM83vi&}{Js4&_E{n*xL0?GF~2>&u#| zmA?3bq5=Bu^MQKm)*!>Bu<(FSCrLK|Ko$+}P-3k|3vLZnvXJNzMnt-Hasu*``du@nxL3nEeIxCG0w<#uLlk+W(3DD*i#|CXFyfO$aJ!( zJS?LX5~dkK2Wl(9&%p-M>MVREQKYGW5XGLx#Z@P0Z5wc@rVOMefcc&Kf&bhe?dc;5 zEPO^RutEdQuhFd3d3iW|hWR=CV7~hmHYY|xgX7v7)H0o{?A#@I!uJoulY!sll)>Uq z`4-J}>z{9l-P6mz%-J_e8xzdxRxH? zqKWN64m(aV{rnD|0$q(_DAuWIUxvC;kR$KQZ`LRPl_Co7eJ7G0F3(ocU^A(na%Oj( z6NL!jX$6TGZwhn3UG8uu)xE#B=(IG#>^?v(Nr{s375JmN5LN$+TzbXPPtC+^AqW1v zjK*8qa2H2&#^>mCwg8$w?^BF|D5gP^kMpD=O=*C7P<4)lm1L>(0}$lMPPMmzPdjt! zae)$2G03!G!r#XjW(EZ^YDy%&!x}X0>@3IG?C;B7V;Yc+cdyUgtis#CUj_8NOFg$# z9JW`q5axzJ#j8^Pv9sH0fQj-mk4bNrds!QU=A`B0XKl9)%|1JRNE&}M*a}ula@f+eo46Xo8~~9g5f4 zp2M*7%Vmh>m}U?L=;k0-i_bz$DQy5>AFk6H^2Z|~ri=GM+TDpc-lfq;OGdXS+b?8} zv~WEG=ns7xeQL&`XP=cNpuU>p6CLtVr1-#unR>KZ11gr0?4LUmG{6qh^Te(65m*U! zKwz)zDa;fQ~rIbqA8)a2S8G_t#sE^-h_sMsUe^%Zt zl(HpfonG6gqbD;gOM%(a_K^F)?v*aR~_tNl8g5DJf}bX&D+CT3T86_R8&+nG&FQ{bPNm(OiWD7&(E)~ukY{gpP!%K-`{_Je*PWj>+4Gb z;^gBm!P<#yID&w{qyJMtK{B%bE`bqdEpRF3 zl3i?_eaceRIzgujA`H}o7nBKk-{*sMWS|S~s=t-U6}S;>&-a($_kI4-x8Xm3i7x8> zFX>=E|1Z=5xEj&H{ws+6OaG_zKXvk7Qm>cz53}aj!v0dt^pN8S$pS6pT*AkQ5PR@r)&p36}P;Z79~kwn`)H+(b*ZBZX(9dhe|F~|pALz3F6A2eVk;i*!dnb04N(Wpf4?62+t!!zbyvZ7V9NQBLY z%DHlUIxi(K`)eD9T$#Jx?9sP>x0mMgs$M~!J;&jUnyy+Yt;<$>hqi&nvifr}a<{dP zrsG<3UzdLT1aw_-=fhlca7?!LgZ@OaAAtB(NzpB(z3H{eCbDL^V)vZ)q28#0|Jl8A zpL(r5sM*#k4rAtBlg+{2Hvq6O@aQyN5;QPb7F$7AjpTA#f`HhR4~V!Y#4Y7pmLt!K zkTx|PXucofl~m$m;0ObhxYP;59;H64geSdY%anyW#2?`jokMMdfA^Jil8JppV-+e= zU*Oc{>@r3q?>ee?lne$MFa;MOMgtXBR7- zr9xF0{x z%q-`{mLpLHR7`uO_L#Vk^X{DaB33fi9*8^s>68M_BDODdUULEDeH zetn#ZmB?LN38N)wxdGcsmuBmEei<(4J7NGXsJX%Z_V2Jvg6MwtHjx*Dzi$=6IXJ>B z&hP^+uvOymK2=j{W~6OxXFx-6F|d0?lRi+d!%xrSahNZK(L=Nq#FI5h&Y`PWPLLO( zb+^CfxAv3w4K$MjvZ)J!sSCAJhlL}SK6!(=#da|0qpR_`{KSumU@LuVorX3-y*Fo$ znhEDwWAlqn+S6S)0>9b{ygRSo?}2)M+E%7eZu98I{Nwg0s`!SoV^e6-OdzVLiD3mm z)goHY1fsUy#(atY;r<;dn00+~tu!eYH@M~quXlv0pWr9$cd&_#u><<$y2V#(+K zd@4)N?Md3A?j{w3j3JU2N#(t!a?=Q;Z;B4#3l+24?7~+&h$xfZuSku0-hbC`ZSFmE z;~Wryls!(0p?3v-IOD&zpP_!S3EvWt-SB>Tj(mj!PL>xe_b`cVAvD~Je)9DgGhb+! zC4YO`OYH!BQiX9VY?YQuDH8DnNc#2hPI!SGqN?z+=+fWK!s_So6qc#+W8Er4d^mg? zmg9u!dXsQ}_1ao*zwq8nB~4u{F7jF+Lm4ikqtl~x`4ycZC*%j{CqGi+l~eD8-#5j7 z0&)-~LHFC;9k?~0eNWW=h9SySp~D1I0NPd+i+fx|w;W3BFTY2AFyhq?zh6QylT>nl z+Sz2hxh6>m8bSry?-m3c2UQ9LoS3IUd$GY+PBlNY@(J>3&b)4nmTd;#D#d)H-=QpX zQs2Br zdiCd?M3)_@&tLGwFR~E=^@6_OBu_$3go4nmjV6;rvAdfE-DE;5>;?6gU!KKZ#kAv4DmnBdyATBp zT-;)~a~h>UGd0ikcm4KVIs!&<*>9{?vb19Y1H{WD+Qzf08v5jgxfD@@;tN~mLjwl% zE>atIO7`Bg1i$gf0^u~}CF(rh!{me28fNhJ_Ljy6Y&7^ps*3b3;HGj`1fy6K*%Oxf z_fx`ls9{@DBe(DA((M;!CqEZ+`od1F#~Pte({#^~M6_7!(Kv<434-D&RRa}-R#Dkw zNM>i=m$HE1?choVC~c04KED8Nn*!6VfwD2)lwD@sP&Y*aP6~h^(S$OR8BC15n`u#6YST;vGEaxEg&gzAVb3m12@!A2Qz4i? z;}Teym%cZLkWOe6-=e<;U3(u3ocul!|t;} zMs%*r%L3l1sNI3YZvHMM?EBUe3%%F6{zqZTvyA{=VYzaJvxpb9P^zX&k6ynvrFqH% zA$cedyoDcOyAu9le+qm1*2JA+Kl`5oFaenCMIP+^YcuG>sUchQBW$dy`+qj^)?Cr7 za(@mC`YhCbs5D!D?d`KkufHHMO+=C>zP{z5YMl!vFRtZ{J}G zYWFWAd~XxTyWB#*wJ$!me~9#p$5t(I_ZylwMMX^9RkTF~SYB)4zA8DG*fdrAeD*Bz zsRhVB*7I0A=8b_nmN4NQIOxoqqbSTA>+r$!y*+xJUUX_-C%^6XyG?rhEUBxvZ{9bO z-PC4+5pv)(;BlTldw%f_0>YAycPXxH7a$l9hk^6JhaR_Gy~)g^w~oA=u4!+7 zs7pQVo?{95(jPip%&^TwexF>1|5I*uFKX_q1YGERqq90K2a3Oy)xFIS)nf{T3$nB=;lX3sTe@Q9M}Ab5%7MsUGXgOt3Y=7{a+f{P46j(WmrVnuasaDDm{X(+ zR@Bj=D#>k433UEu1&}2mqP?=(?+C#Y(HT@_g_3H zVyZ604?HC}Qx2Nm16zhEfQr_>Z3m3G-)N6URRCPwtrh2J^AI{2?H{8O+GOQx#Y1my z42vp)(Ui%{Mn)p+3N+vjJ;^QK{sh$p0ygwboGYN`8v7UPf@EL%f(U;DaP}8>ap@DF zvn%+_OUPj@zl$OFdddm5_mLA#-S_R97}KbAXmR8GmNL6tqYk+q65d0d_wP0$rxQTn zq{gJAgDNr+NIe3wg#y5W18Vydf_?)PQ&v>7ezXGMq43UXQYeSCk3*18)%#SIBnQB6 z2L~3dGY;Da5{+gS5&=hV%2nn#J*G2$(94ZDl!QD%0(RN^GT5B&I*Dg{GT7|Ganlx9 zs;R9U+Rz>_LSgYgbJ=Lrf-x5RM=}A@;SC9Y+j_x~1ppF$`&3UZLJoh{lXC{onPGsh zx2`1|F_mSpr;f)%I8#sQ+f>jUv}$n#lTb@a&`^4;SOpNFR|NOdW3-14k9c4~Jv82W zK1BiYglGZ=FvuACvBBlYS*zdZcD|X3XeT%!C_$#apqCP$grK4so^c~9DaUn2k_$k3 zUyjCX8IS6~&ecM*hQf5jyM z`^8CID(52xFtFf5%6jvN=p1(+@r%W;kGa#n8^Z~)Te!sU)D;6(h}mD7x8<>&sV6uW znTKfvXVQ!Op)jz;;kNg?m3Q2?{3_WwDOWPVW^S5_h5Q452j91RKi>8}NFPz2B;%v9 zo1`Z*SPF6N{c@(h!PVmWopq}GahS5;bV_iHT-vL^Km^yRatV8KSzuQ-qe%FppB5CO zXH#+T0C3IeBLwW^)m;hGzxgEUl3Lztu@iF+?f&9BsR&pD-b*EUfGfXR-&9uv5$xzG z&qa_kx`V_zrjS&}!`#E87N1_g$jH*BN?(~eAg3wmf|oa-_ym7U9novH%IFRBd=eH7 z_sr+&H2+zKEwF925oix!Uf{3jo81@#bv`L%K1O{NpA_?v93@q%vy&mfq!G7a`DoMeBQdu3u=93DbbojQhQQ-u?sai#`y;UN$tR~ zkZt~wVEYi`!s`e3phi9GE)&7p=|Ir#Y1;H-I1-u_hAw4V1;)?V=7^u5&X)q_D!r8D zYIH6kEDeExMlB8+#ldm3#PTf2Gt&lhIVC0-r z7SN#AAYqwk?<7&1p<0Y1((zYd;}md&hli#a2FuLBg}DnPd<)L>_cf9 zc`b^i?tp4&3YW*xYVDVhew2Jc_FZ8^0LqzPFw0Cflq7onIt1koXI=~#=01YMjXqZ#&|Y4R3XO~(8+4t^ zk3E|UYWFl*3xHGKEySlX@woY_M>Y7=S|3gRMtI@Cn3(@87|53??*{NoZ64E zO*o0!kJ5v8s-pmwf=&$yy2gwn^)7Y}Aj&cZdaiIyg#yybS&2K2!ul0&Zj2$t@mtB} zt_gyG#3W{l;MD#1AW;wjumBi@RZF>N7P^07G>os3)!f$*O3(6ym_a^`;|uY8q0P z(QkG$!|+jBVFpMcRL}z$P57|uTGKZwHzIzNdn$@nqYJc@2*JRg;ZVdPz%>5SbS_~L z<}8l}2S^Yf2~8_%1%Ku?4`&1=<-4fsQvKeEtQsUuh|D-R!)%u%&J!m9mN3XB0uLE~ zG_jW?ela)t9e6Oq&)9o`l{w7^$-DeAfX<~&bnDDp#jX>ZAquuAGt z&Su%^TPNqVF`pU8j^+ICMo!%s!ibO2_nk&<`KcMUK}06@kE{~x_%9P!Vsu(PF^eA1 zQ(Exy2Nxj;0L;U}X%!Cg9=BP2%Iower8QR=GW?u@&JH|Bo=WiUsx7(+Gsxrs_{t~>O8O7|c2%~@R%$K`i`#UCm z|8|;f?jh}8Nx#2euKq>p{fjL6Hy@$DQ`-JT*8R(b`g^(c4;DrrrnoK+Q`^GwDU#-W94I6C8?)DNY?q45x(yRU#eay~&WY35Vh%Lo*4O}B^nl%!1=VIM4 zle(g#jNK2g8~q|iThkmO3fM$YA2N&$j0eZDP-D=!P&hu_l!p!hi}oQV4?bPUpnECI=<`+HJI$(biPt- z==)8-=uO+mb=oEQzb1X&b`otV0pWT`-(RJusTg=Hrbn= z*pVANmxoHqR2pIP#|Z;KVJkxT>25{hE9!D_YvCHLhA4vqFi88nloi^6hReaRgG|*B zKwG!nT^&vcS*s)m6Vii??9u%TpP#qs=>q*GfPo9C1BUNl`heB$cer0TZmH*6SiqJA zvtK$j?X*#NSTjpkd)34-BQs9-Icj&*J8`iWxPDi{m?cod49`Jmsi1#B25Y5;24dll zhpU`So0oawOahBdITA=k-xN$iiX>m4;b`Cw^yrefX2xumMH#6BsEQ&#Hh@;4fl&7k z>>0q#GRVX`tvDZ+M4iUE#5vF|L^j+M%)i!)y5dYupy-o)&}kCIwN9Te+VPg8)pTSj zcl1u<(c=hLo8F_OH)jiAMxikrc;RRb0X7<=t%!@J8m#yon4>Dr!L(#^I@@Tlg~7-r z)oD+lx&|O{L}wnr9RjbnqE)V3g?zbJDsDm&d|jnCbQFWLkLaSsYihfoz6z@cx6&CM z0OkN`(Gdis$Tbd;V61boX)3{h1S=NKDnaygP+@khy)gmqC+*{O#wN`f38%3+1%od{ z2D&3kI6Crmq%#afVL$^E#qACBMpu&JvXmZ%PGHW;r!b&Zm&mmP z3Wvlt0#sRG^whL%==4MZfD1NE^mQ|#tX|-RqZiOKph5HnB_O>7#&ZnUKu91*pq99I zNE8s#DXFG{lWROj5Ayh6VK57$kStQkhDsBL90_$9=^TZiF56Z|-U)5kjA+UGzN1g9 z3)_;7e5Kfem0Ue&cH?{|R1QXEQP7BT6N6LH8B<;0BN&T1QASx9$Brd28txu(O0X() z76S^FGv0U3&<-e6?olO3qrb3nm(r0!pXSJDCxBa8-XmJ zUCDhUXY{{n+8%}<{?oW4`K9IeHv05ChHLwZwfZW7-rsvK{wgV2-?MxBOFt{GeXe}I z+wX6(SNgfY9bY#515@^2oLq|fUkfZ8|9)lpw}sB-YhQk)Fuvrt{)H2tmo2=1z0vd+ zSA4?_(AyNg8OiQFCr&*nJkmfF}W`M1zqF+q!^Y7Mh=f9?B1V>T;wkbeL zxf4)^p|G4e0n%}%!yjBd+jHuf0T$-MGcp>!_fcpJTZ69?vD$&Kke%=gsNHt)u_j2a z8<%bzhO@P<07fD61=A)`jR-uf(W7S_$+{f~=LWR_ zS5thO14^A(Q2{TlTH^-@1I%`unPWV5tv6&kDFg76vp`B*(oAvAAqdGu8E*=mTR9ZMcr$2UM=6BAPw#gz0PGVRL2 z&}S*cO|pg)ngIP%7{(dqi;2l^P~t_a3sg!0VMxC>j}NXgHvVJ?cLQJ~;basrm8$^a zZOydKHJFArhbsqZUv9!^9O=q3Cw|5dScJmq0k=ClhhDE82tlu24{Pbg#h~jVr6t>DU*t(5aS9u*(40d zZt8K#bFI)eRB@EznocTcRGDz!=!}-D2$EQaF9o4XO5`;YBB%7=FnDx6oa>@eRa8f3n38P;I1W_}T`0Ay-`jXZZ48d;!?yD0ZuQQC{>3n;qAg_v=_Wa`H z)0@e6u6+08(?2i_lk)bL{=Ub~{voFA2OmZIUyw@-FNIY9E`$dCG25$ua1mSYy?>Q@ z#!Fgy+qz!Nk9{%i*S|h{_m$TmU!Sadl}G;`74~m^@9$0&zVn);kFU=}_VL%*@5hAU z_GOd$D@HTE6T8jIJujkk)22&bwD$KVT@K(%;pHmOW?v=$8LPhkd@qaHCxSkILEdO{ z9`AGN@2n^HuMN^;-mc%~C|}^}TLkUzkz=zzf0!a^C|u^B=L@E0d^-3`h55GlHY*n| z`Iu`#E1A|k2B5BRYuseF#^V+Rq9P={#rf)AAf9T6g%8wRKp4AQtv$HbnK?%Z zPqV>TwkD~7wy2hpD3-2nD>Uu?3g)oWkOTMdu=7cFOWe;DM#g<`Oe5lqMn;lzGRyOoU5ZZV12^Ey0NaUs$EQdIOzBskjT| zt-|wF)46Mt^eCZ;Go^8jr-o)t`G_}u3k0AWQmjUAkS_p@gglWwiEQv=XGOR<8>xxb zU_P-RtY*hXs~ISwNE(6S;Qzr&;f08H6ds?i;lmh1+2mTtgo3>bJ&V92v${Y&aMj#0 zhx??UC261`jOlE;?jCy=OQ;94H&^I&GdKe<{+pz)%>;=cSDb?RQw*z&M`= zsE7^Y$>3JxwD$1(b(sJFAOJ~3K~z16M14hW+WPK%-E}A{2r4?_RN|j!;R-A3Z~@w? zL4F2dApdbApa4SA4qqm}`64+`C$9Efq25@EN?RE4T*!)rBBUtsg5&0#g#+ZKAPg9- zn!+~QcP|27~_0aa#h7c!#YpaP+MvZfn>?RBtB~o^9mBw9-el8A1 zI8LN1q(itPEb~crT&VFgg~1C31UL`}>VN|bQH*0C_aI@I5{1rLIpQ5b;h3Omk!>pi znz5EEKw!sf9m|vb>YSdV0y>l|5}44{9Xd7Fw^=xli6yjR2qW2(nRF#6a3BOZL^fO)pWw$V%fL;r7*t|yQ6sB*3+#rfoMNDe8!Dn@5O$^#VbRXQ zcP19>!gTk*fylMN`2-Ih%rq*5N|b~SKY_Lo0J0JaAlS7)!Cl39K{C;459S9WHvDzY znC6VKm`@)sV=?r1Y}{jtKv+ert;AFFf-msOIH2HeEufGTaCdBwQ zkhb>?b}#4pgV$WE&F97b@01W*ZG20@{fAB5zXyGP4bgu36dz_Ef6zkd_HQl|?e3jB zt9IXMs_7rBO8r6TJ923CX_fN3Zwuy^+TK|e`LZ>ZxoH&setBh%=|;t`+R>Zf9KF2G z6cD{niwwdtO?)@Bh0mZ zL`W0tC#JyOk_9B+EhLVQidl3Rj(syMnKQB!(|yGiTq#Ie%o)r(H#7$eS~tUEhcfo7 z1lR=i>;VICKR*=ijHdI*oL6-LDvMPPQ#FeX%9v?)VxJ3vIU?@Xg4n^L3kjY8patv( zd_R2AlELr55m>O{#Fi>#7A05=V6dr6#Dah&FSd^nMgRtjYcRk*mU>nez$IKQ24uAq zRhGO)t+;a2hsy3XMsU=5&3jRn6lM0b`Yl+v%qD?zbzopx0H#XnT?+3+iIHJ1 zQu1QzFw6m~VZHIf$S+e&SbgFRgt zjxjRuJ{>{`wd3MR1arL`4u+=eV5%pHGjK*(t0M1S%(qQ>ubDVV(}Phz&|Vi3f1u6a zrerYOv6bP9MonBgmSjeO;{iZ%0@RdlGq}I5bLAy5NM7(EE5o51r~nBmVv!{~0f+;l z<2d=yI4%>tE!-4A;wHs_gR(#uC<1QQPLzb@N|d)iF-9t@0&-Nua1aJADO7e>(x9i8 z%p1?Va*kN8XIdZ9Guj?8K;3iC*l{9%NEJ6rI(!9q288B_qihO80-?se0Qpu9lqRF9 zo7M0~8d69Ak;q8XxTt|!b+-n+2GWcidxolyX+vnGK^MRTKty!f!y*SxUom=K-72?- zFraE^CUNgF0Wqu7u)M)X7|I189mz`KD=2T%iY`OSTpbz>$+&Zh?dem~&@-@s2Of@| z0ezS_pib-=PNcdu1>`{$lpb9N0l7BjXvaaBM!bba@3b9|ICN1~0CAg)ds{z77zMo% zX;9!@2n+2L_=!n;izemPr9^6z1BT~zY*5Gduh26)BR097pL4BUbR`T?{c>H#irhlYo| z0wh0ISYZ50%+btwOAR_h*21CN#DOm&dYGSswkyO8tqg`imL3 z{%SI9Zey)qO#FTRQs%Efh_@1a0e0;jg6yByojxsiF0UuCUxM9>tDhOKOn|Es+{#3` z{$kbYvGw(U!lPKY0ru_6*51lr71R%I%K!fR`2KRFGC#hVj)!lJRCd06wu$HH-hBgu zIW-FmJ&XN2cikI#(bJy1)ep zgC5EUR6b?N4yQUZVeryZnJ?!SIq>3hoSug7AsU4Dl+k z%8ffFXA@8!%l2FlZ4Gmp`mZB%k3Vhdyi zoHh4>86`m&#`wl2Ms=LmY>ed~Ip!pcI=0^hF&8g@>Aiaa8RJ|XzB_`fS(hXN3XrB| zsm76a0{k@i=EDdV1s8rUPgGZNP7HecT-AyghaN2zt~s2%2%Mj_oE9Z!46ui@e-Bkfd|pKO*)0fyu(hLR<~n`>nJmC6`9{ELEH>8HHEr* zD=^YYCS?B@z2 z`@#_6Bn;?~yTSqVpfMp6K%Rr)8Ary5>m_S*pw~>*_}f%5P#QU3_~FPppgkrgI-;16 z!Ow9Xt_`4fS^?dGKVnt^Mt573FvDh-LSdktrtXbQMSwX}Dj*XcIuc~@xD~k`n+IQyxEV0D2@EGA=IdN;U!Nw-K3Cff==zfco{19K@8z5vma-mL*$)KlZ&STZ*Y#H~63|)EamO!x z74Q#wh6wJxR;A-lE~2=tGVgC*fX#`y>Rxo0DAE_1$LT%cc1L+VM7^C)Y~&`w=dp{W z-%l7t$f`t{b9^3jtfRq+4fL3nasa4J9n3u7SO^;f<(@!c)(p0n0s}{=+bkgNKLN8! zHXxx4Iz3nP&uVG5px&QJvY|&3yy|JfEH*BCmlG=;m6) zlgas#|C)8d=`VcsA9-2|@iZ!EQ2=uQNkbj}K!8L8^;^Cq8g>xhF$)NFxz^nPlhOc4 zgkJr??%SM2EToep@#XuqP=GeY%+rJ!pdnY&ct$$(Ogrv)zT)CbbmNjXZ4_Ys=B4(C znU=<-LO+S8EHuuW+(=LaoN7cX6nY7q_WLni2amBw;7u#$S~QXwu$gu&L|i4Solej!JD8wMqZdD=aUSfL1)R3aqLgZaMrhsW zKm_MM6;2v5&Fdt|f;;Q*CU#7i9W!ZcVkOWa09}TT76x)OYdERLGg!DxOQ#I_mluN0 zoq0lWZUL8P&p;C7#SvrFT+1l{_&70G*2C}QbT|oE%H3R_$+ePpPM!R2!oUV&Gc?Gu zx~=V2Udle^0#accUNF@SR zP7)LWryEJbHH#E5(LYVsp_@+RO%C{XO|xg{tUQHITH5a>jO<1eEa4nqMOtzNXSj+h zX7~iSId|#L6(A~S-W4kyb%w{8uu>RrIN>%S$-~&pOXHw`Bs4oM6o$P(qHhhPHdqSLc0FAaHcCuJ}NN&>Jbe9zM5CaHpVx__xn_&(_KR0Jm8n~@naeN)PX7tnb@|+Q%&3Qu1A#kBaP?B zd_R8p6kq?LO!~hw;dl?(@PFGg?#EpicVXO*yD;v;xF2_6+>g63?!veqKTjC9pxf~~ zGe;f0G<*hf^Lgf{xAxVz+W~h4+!hReN%O70jxCp!lEs%lR~Y``Sm8+bZ@fIfs(cXR zYM;-L{CowGWA9&i_ppgE^o;5=%=SgPOUSSG5%Nd2=f%9q`OgtX*-q0n*PzTV>rOAl ztjj*=h2`tng>?v#7W6KdKYgl;kJrUXJ~l_QzwBG13(1eCxOaQG=Dh4zymDD&TM7D5 z-%e@<+Fr;duMfdp_8~93TNXR$nfQklg9Mz{Zr5$?)Af2CS68oR8%R4Bq5iaCYSFV9 zQf5#2!EaKX>)CC4yU6&M&*>VjoUCJ{E7@0<^tQ!II<<4SSo7Gm{uDP+&*?G9B|ek| zeZFXRuAe+3_T0|6)odvbd6jx;kNPUbxduqYor^4I@2}yp?9`s>$&Dc%&I<@*30 z_NNgq{(`|qhTY|*oVubCQj*v+@@X((w)UWyV{8aUcfE|#&nc|tI`n2%kOA}z9LcU0 zKAs{y)5|jcKw<0{VTD1BJT}Vp1AQ!TlAYIO07K}z8vtYl4$j%DAMa@ru5&0gDifAnS< zXAlNMVO*R#Zx@U*`bhscVfZ{S*kp_)4BKOon~T$Kn!da&t|Z0}&Ec1(y`L_~Tr*T$ zMlh~4T^#y#9@S0j2|jxGm;?H9PIK3R8!-)&yLM=`Rqfq$_?0Z&Sye!T3v--7cHslY z2f~Gw`HvIE+e7`}W<0qrX55co1%3S+C;E3U{#vZJzm@Z!A&hR6GT*6-FMM;>9=~-* z|7N9ziZ{phPTU6n{Jr(>&8x@1z=lV<@!7$u`=OFHC%@CZX3kPtryDKCh}r?$0hPHH|J zUgyAh4V)IoY13(Cth4GEI@30A&)}SAj*-baXIs&XmYunf2+5wHBa>mc=sZaeMsaSO z`?_+CiGmeD%n(F$dD~x?I8T|==yqnH2y!?=v#O9oV^OG#5kmM<1(BU@d4_;WhVx+| z2elf7F8A9`l3*bV6}vR>aZiN>p_GNW#_y4cCH>Zi(TsdQ!4q9p{2$Kr!E0 zz{Q9nECFM1OF8yx^ODeyy)e@YeI^!zu+f^)sr=SPxdx)zg^#@?E|_2a1_jptlx_={3Hqwc z%x%R9+4$UQCk=HbII!v(o167UTJc(-dD<(d(wiBneS?3&EanECV4yD&EXit}X^t9n zyU1}bdeY6P_v-4dk;Oewj~gy4#mIw&;39Sb?NqFX`x@z)xng(+M*`1>pBp7Ig8_MT#gID< z6HHJTbbtk=%;<-7Oc%};y|vf|V2M7Yp=f}^)tQ(Xz^X?&Lldhx_;eBq`mqBM698bTVCa z<5!8neE&1Th*vYs2km=+SW-Rszdm4Coav!Ob)1H*?3}&@N=|_K?A@!ob^> zD!ri>$O22?GrR-h9`wITdy-(+z7Fq@ZWQ;Q8Kz{Q5k`StPPJSB+L-2s zE4zRKkwPN=k?Qe9RoDRdpv4ZZwFxv}Kn>y1eR9J{e_LQIP_tD0LP2(Z$NLUW!q=s{ zrQQgjI6%7qm!Lo4Engi+KP(abAVGtN&vLBT?hVFeTodA+f`Q@!s#N(C0&8_x}Cvy5Q@+_IG|FQk$rp| z-p2VQV(gqYUmHwLnmQW8q9V(|wJIL5qmlMzkX40P2@pA4$^-tN?1rmxk0%ts4Ad1*Z(WRcs6zRuiK05Z;k~0V@D9hd2?ip|IRS=edzf;+g<W`y+)x>LRwh>A;1J7lEtOtl-gXOvG#AWf!z9 zV$DLbYSX=1KU5eL`iArv&3guX!+-><=1dt3Th}lgwJ>C8tC;KeO8w}bfnFR@7%n>} zM<%>4DTEoEj@^WTo;*w3?+WDOhbc0Y*W5F%G5pG+hvLkGFi2b79H#2*8G=O@@74OD zrfr4)TJL$3G*{^0iW^km=wG~6_$~E$#a)5lIpZ#j`|%qHO`P7!W)>YbpOqUzx8DnDz5&k<`And--#^;bpqht) z=#{e;SgBKijJb-WV$g}2Td6&Q76BcjDXsvW7Zt$7i~;VC-%v^sz9hJ5CQ##3LUAzU z$ibzhfRqi8vR6D)BvxaNpt>-fqV$++^3%LYxlwMr9U*55pD|m|bC?$*>ZqY(bc_;5 z$?$KeV|PHSvuNp99no@YM^uAh`P8ocRcuW$63j+-vExd= z$_TTWDmtjRdM9v;Ur?6gs`^Nn7BkE;XL74d@wO7r74KADJ%;rYGDDJs3*2U|ofS-1 z!lbq=f<*_l!)KH%sf|NE8rS_TCUT)aP8j>c z3&$x+LB$OyrC}7KQH~};$2f>I=BwK^D~U%r_qjYK(flSzB8z_aXAWUsX)1TB341=tYGAj31 zOJwnaJ6zPoLZi*OwO~j;F}E{?umzbh(m~=9?DY9i+t91qB!_ejwCs0IT1KVV3_2XPh{|$!vK6dHICuox`lR)!l0fc z62u`4hIM!}H(;o09fp#iF58k6y9vY0XlSHk=tvqc!Z6--!HP6@zSeHS=FB*kGp(;pbJ9CzrYvpS3 z7DISqJixgtX%16au+4-$t~izz0@$x;XJUb23P!07Bu=yB>mdvnXKV4KPgUu-i*kay5|(`HO^sy09VarE*i?VE^>v6sRu%LHL~e z=ZhvLwyEdX^vaT3)zHk37y|uC-yN1ff~#|f^gtQbF<%W&WskSFKF`gsfTIz}6K;a? zJSlKU5cO$AW1+R%-jE8X=RdtCZFf|&kmYmH+T1$uGOL15gggJO6Kc#XL9@@No(deF zreR*K9n=d3h(JRyr`EKGCie<#Rwj9y2hyQj1$u`IM zZ2xusvZ3q?m7%Y zQ_kpcEa*Ctr86v$8yz>F2R$fQakw|2;=YBX@*mVQ`kI*LV1U@wTs~J_K8nY$>UnrBz-eS@lqGgf}w{FrrLr6AmR*+bNw9we>3{VSScnDVa z*fszFAOJ~3K~%SBYK(W5qm{pFD%Ff`>4>VU5OcGob{>q>f%5d922yI1>GhowN7`f1Wlv&cnWa0FrhS9ekfzUu=Va2op zj9F?r-{E8Td-G9yKsXSFQXSo|;08=rfoMQiNCP=puUIYwl4rq}CI3Of5GoL;!vTtb zgEEzZ7?Xm`1lwd*ZN>1bM0wjNv6;#}iQ#Rb6l!%wvCrGsb5Vr=PYHBo13EzrL0J=+ zRs?Mxrw?e(_GT%mHh8aUk)2XGB-;}@qv9n}5;`L;5$hoLgi+x#XR3?##|Y!CjoQC` z@|Ev|VZLsDyf9m5gv0TUyM))`T?~_aa!0fAb{4vMF$JB0r7v;w5aNoBx zz4!O-{i2WbZws@(z4n{^qW{~C>|=%Dcf#7YC)hgM_wsT!4+eHnC+cY+IuPzy1Q#bf zR#RPl5fGq!X{^S#l$Ru8$+rt@Zn4GX>o+2A7_!Lpjda9Uw(05@(s1?{3Zp;!5G`u~ zh1%nY`RdUl7w*l@-d3Qmtm6#8VL0v#PX*8B9!wmhBz;YQejvc)=oCN%d6~gU$>`VA zE`aB4`u=J&B63g}Cj?75wtANtCL9W4V=@?4y(Kn$flT1~V9?J_#8-&Oq0>7xdXer| zd^_tk249C_cB@nfjvnnpc4lcYTOdn%rgVlJ{3S;1t2cPi~xwic(sDF=;RLP zBqA8HK>&Y~x=n=Zzz#%FqlHnB7WX7b=?jPFqSG}6_ZwK#%7-0D^K*_y`utO4pc&*@6 zhIHV>jHHY#dOHP4GX{rp)zfh&{}nfQ}p$p2g7H0LxJ%nFTN*RcbmJf#(gZMc_bexbU+80Z8Q;Q>2Z; zy3uPBR$2_}jXq-zA1#23JSEYU+VkUv?nPtckRHqEs4}QTWZk)h(Mju}4GvEf{&2S{ zCM$?8;9D>OH$Z9k5cRHktHPsCNnFLslbR8d{lTKgDa^GqWr2p`%zC={WaxBBZEztU z_E!p{y&k5}QwTJTvNwS7;kk;L4QTZPJzPwWsF^^|2ym7Lz(gz1TV@tQcjFI)!=AyQ zDLdokfIgNuTue5AYMl7V(74;u;w3`w5QbGF=Oi9h3q}R!I&G0l9W)99r$Rv(dov|8cvSU>Ik|DE^_duC>@|SMx*d$&PUr)uF&S{@%DCwh$_VwQ#Bn zxj^@o7}jR8C|m^;3S)w&G&?t(AQH2V_*_~qf>jQ=7`nTEM;NcbtAE?loiEPmI|%3U z*QZ5ZIC~S~Wgah4q`#!U<5lGtZ@hr_FACh>#mVQB8Pe&ud8htf;iP5uCDXS4Ri}Wz zC-k*{us-^Y@%+_icBcLuvt57N+f30vCDhQvPwf|<{m*~VG~S

u+!GZy@fyPSxLO zz`eieoc+rl+rQHG`}+^_ZXbV}SpNou{^j>EAJQ|LYhT#c`ehq!{0CD?A%ADoJJHLSRwY~$I(9B2+5`S@MHG5^ z2Kb7to6v~GlYmtfy(Z)Dc=f!)k7i7-&ci=L?m3moSO(|&(BpD59&bcSgJB4)ADmS* z*ObuhGLjpZ#GtLqFm@D7HmNWuz~vg}YEQ74q-}E=5R+pGSB4@Fg3&zmG7#>nL5Q34 zk-p&sBhDrsPpL`=1RTxcdcx`)&N0HD2HAEPc>z-m-~);DF9-t=&xSeu=BNXc z6y2d`AU*&hYBFPmb^E6ED5Yb0P|rQ^bY}#1g(SUmRXFVjiH6Eb6)fg5)z;S zRm0H*Fc~i6%G0?R3ms@Jwe`9vO(CUGc#Nzq#FUjSKmpW%!|CWOmJh&~!|v=Jfo4GM zyxA9Jf@^W``ao|L`hRX&$>1190NRDk0=q*G5EV0kA{H91u^7ZL>S&VDJCeh7PJGf= zB}JyP!x4mm=I~NzI3j0;WWnRD*vT&zMoOMa4eSQY6hsw3K29OO$D zEh=C+zH3tcu$f$6bCz!Jumvr9#D=_mCJZV&EXPRsQ$Ip*sC2>SIsBU2z+j^;Ne z2DN$!reU6T!7kT4pqvAa_RGa5+;*ZIo-z*r8C|<+ZZ34UT#&Q#CQ*F>I-(2@>Ry@PiB+<5_Wy9(eUdY z4X*kBAT9q}Tq1rT^z~1b2N+)^zVQ(pzOkY(KCxi&@!zjA<$ub6{(|quCl_!2EVFC5 za>Bpn>N6-zmo;pmwdZ!zhed2<432NDV+lkx00@WrkV?uef2?_5xWv3!?vK=$J>$h< z$?7RXyu!nGTOj&wOJ9DxSJWftc+!%M0ZqVH{1UhVLV&<^3@vBfPg>;x1d5j zBG5`=9%!Ix4{G4M$%``91_Mp~)gy)xfHU;@bj*3{v=S@;E_U3BtydeBbs3%MCNE)3 z|Nrm>4%A&5w1QIrX8;&pZrJAl373hLS$&0HX+XnYL=P+gG@dSgYt*9|&T_K>=h1-r zDo3khW-xmTW)3gYtNe3>@oeeK*YJRjoswrz1Nk!oAy9y>N3!JMW}pR(mSvYxSYWxu zMb0vzSV096NU=(fHi^wpC)TL3gb|#L5url(Y5qZNM_>iIE41>UOQI=Bt)gI{R0A^~ zD^JOIz`-nJ>Yz|pVkn0n;mU4iIAk?+Ck5V@>0+2&JSSA1TtMT%|Da*&+0qA(y`a>vOA-baeXE20#y5#n7mQ7ke@gMpS4wOnl8bfbhQW$aWco!Dnd9br-N2BAp6h zG<4_}69&@<+qdB}@|;uBcjy}vJL32QCvf06csPa90Qd*@%$^WPQjIj&IX7LdfxJvD zCwgQ?g0)D|A{GF5l{99&UkU?COmC-zq$T44vx3gk?Ro;?2h4HTmyrw6eg;r2PK-Y&p!KB7W#|VnO=0JZd zslmlQpb_pG=hy~D?-ijXj}+P}z=U)KbTG`E!ua>=gU_o4q)l7`K|80k#X!%9YzCuD zl@k*%dAA&!Q7{~FZ_cZ7|4iYaEok_orTYAQAmriE;zdT7-l#@RFKbRteioMQ9(;?`4 zH+0JUeu?Ifg1(!j4`$|}xt|XIF^B#~BNnH5A5xl?=*+Wap4F_V*o7VqX85k9K~;AK zEJRJa=eir1{n1^?m*L%qItLyLru%L`U{)`#r`N0nFngw9rlLOr1? zG>MoGJ*?miRwJ=ZL`>_DCZ>PG&@%MQbwma@P)Ju0e1~f)eB!?e=g)7U8bbmiM^Z@eaaxhQ35P(Q{K; zRjK#xDBdt!Dv*W=0_|^Q9!^mYVq?c5we-7IrmRGQQ@Y(qr*S!iHDgGOQUbOVq0-<5 z{THxm2k#gJwmM=KDtF;c73f5eq*{S?D*@|*&f{vDVwjs%2aEy4u}4n9s*{*e&tBw* zD&0(i<67F3n7cBngyAt71EM5NykPJj2t#8cNjNq9lnS05ZwannH_6f(!bYA{x+Q1J;&B$jEZ=%tAln6Ii^s zuwpE^-^T9d1BT>j*uq{3mRz3JN*8G+k3Azd7&|7xZbN*)&UA%7WDn?6lZIq{@B}>? z^3gNqMNa(yR}jlJk^;kNyM&IVE8|>r1VaU354dYbhsvzK?*v{g7VaLB*Cw^<27`>zyLjdZbH=E?D@BGL6TQ(~ zL|4rcY83(ocWnRl?mH+7=hBH30`D1Iwnb#37Ij)Az^^VGVTc`7*~e_s$7`> zv(S24%x}6{@lwKU@IQU^n<+}vo@f<&j18YC$JU>GiFY>eiSiOY5SGR~6>>ocI95~*N zlPq+#+MX489&8^FS}HXzTEMlzvnz;HJCc@ z+jssgK@oqYFdUCv0lp%>HK_)0k(*J#9Iixz37`yh3x?FZT9_4`+>`Is!Bn1Mj#md4 zPRyid7BD6*W7I6S$oCZO!B}lUH_XgHR(8f^r4rZSKvgoBSkG`bIOd+ne%gi%8Sol- zg6sRw2*Z)&LHmY#MJ5#xkJBI;%`3#gq+HQH)vfGSW`c=3%12Zw2N|z?_jlZmz6r zaGw1BM#LW`3`MP|^?$8$cnm~oYwQGp*ju0-Oy0XZOn#W=gIT4_R7v!#FqlXNJ_Gh3 zz(IViHTDfTL8*@bAjZ33^Nq1^m;&{dC9R3&%SSU9YY{LpnXWQ>TEc+Aj8#vqLkfc< zYx>_2hG#=`4w!L;p22~I;Q6pbfPhdKMr9#fQ8=fAFtqFnkbTP>Bmg}_%7YFK#`o17 zNQGg~Kz6{w3OYdFI2a3~uUF4t(BztEMMelZLC;u~eFan;&9?5~?lyREhrylT9$W^3 z4eky>gS!TImjFYM;1Fz(1PLy|g1ZF|K_35I@7#C(bI-kZy_(f)b@fzzwQKkEp02&W zs$%qp6>UMRb4kHp7*~V)JH9*8=hl6B(BH)z4L~}+KmVs;Wo zm5KGyLK4I6!5Rp^xUBimTXd%^X$v4ciA7aPpjJSj5{?4G5PlnDR31u{wle>ftwaS1 z6|sFE6uzm2_IEnps(VmpB;1$JM=wKND&4|~lBGR@NTJ`f9@&!*J-UoHQ5Y5hNfwrz zx4|L0jqkCIA4!C_R@5MQ{X(tUz)H~f6T%^ucn{GCH}tKQCrb#T)0Loz1ooeHO8eg< zkuFY!CJqMt#h0TKrk!Whbn(WbV-$Z%?8oAu6?Hta8;yr+rb27os;ds;xmafx!U?}< zZGUs;6FsH>-r{Oi@ws{&^h{T1>|Mr@lE}7jiSoPI30OMNJ>2-I1w7$AbRINT>E2@p zx7dv|#x#wD>e3Eu`={x=88WB|-RnY2rY43L)Yc^BZxV$6VoPZ?Zk%tG>%c{}q-I;_ zdbLP;eRKFFnGQn}->QvnId#`txlg_%4MzQmV3(dTpDPO~*j+??Sra&PMB|I1Fo=Oa(_iQA5qtF07aImoL{Y83anX`O41b@)J5122u>V73 zHaY^SiQ9p9Qab^^9#(0_L^K*;>lD^ovIHmYroV*ls8~qmcLn3-(>w6r{A65T5GF8C ztD3hZ!l$%wjDZG4f+%w`dDT;AM@%yb)N0#Yxgv6~Q}3QyC?6o38JD9dQKA3&an z5&JvG`>w;0`{}eF_1&p^jg6W3?#4%bW=vthD1)+;EU*>1hfja%*GbZ@cUcprC}`rg zx`t_~J0KI=OJ`qf$pJW?C9ZcNN8V+qO2uGW5i!s;K>(k)3cT88j;YqFK;lH^uygz3)o~0 zk&9tEg;otem}aXrgjOWOb@Zia0vYE)g9u3h zyFu0+h@l2f;$BhewfMmE_CBOvO-y9Ik@}b&O4mV&pbUX@g$aU7&dy}1H>6pE4%UYk zst7Y;>YIAf8x5XWp=ixZMsj{e9Yhm-?BBuSE0O3pPVD*Ux@IgDcZj>iHS?1qxS z2)0Ee4OnqR^jkHYfe*#~ zKHYH7;9u>5hlxk-l|h$7%XnVA&YiSYAeW!Uo0oVC z@0_DZkvJ{OU2N`F@yzd#A&J*L#r3ziLmv6)sx=0vuBoxq0sXTJ0QX*9Fd5o6Y=Rtv z@QPEBc_K=awA`c5ZMI*u1>2IZ5h{pSLQ_W+Q~O&fJzqJ4N^{#~E0r^KQ3=tH zMZoW(ZR71j&)-?z$zKh)maqp?vg{+hDnR)| zGgG?@#=AxQW<|R$cGt|WC3Hr=mHTv^H`v4yY;?@64EToLM%I_Bq&564s2Q{wFjig- zN1G@T7$G?A@d}_hlHtVD11GzYyDI?#u!z_#N%udTe%Ng*$I>A-NhfXk-9-cqW5GZ8 zE`-w-MVMK_wC@4b!CON{pzR2*@K)MyXv5`rJJr5Q(4uEz^9p+`)@E-$jPL#QNbzVN zKbn;YhG>^8kdR{?{HftVlId6z8;%G{JA@C|(i>M6BESr0Y}QK~6AKBPS`}gB2)3wG zGjC$d6N!)(TPQ~8kWC*Dy^42R;N53E`f_+Rh~$n|5CWp7ih0tT=ru}aP?^0$GK--@ zYcj$`&Y<|VawZ7rEk%Ie7k&)qX6HgQAd60T7ks08unDn@Y%kHISka9`{8*T&5-{V?c}3M-3yw#u}$)y&s5;J}saklZQSIH+6EV4LtP;01M%}-X#Dwe|6wu z-A`Gfsmn4Yf8>k%vu;EJ3oNoeT4-eQ?q$H>!8NjAo8;9wTzNZD%k6;75^!8lq#}@O zxh@9B6~Pb4`EJN=&mwNXz;pA8ROAZ&9R8%YilDwy*OeYkzpn0Vgp>-wheQzRW&6Z! z+@t=9-~$CkMwS2c~wuXJ&ibaK`Pu{&Xjb}c+7lIO}`D<<>Dq62Lc zJdO8r$o*Rty6Ei1)dc!lcF^0U)xN;|iR};gGNA_iz|xBH0hro0G7-sO zZaOnrk)XuU&`-O{l?62i1>E0F;O~ND7XG{)qZ&#+Jrydq0M-{x0H*!1udM~ zTX)qDm1n|*Y+*U9oCIJ9-FAC6&JhPqkJl51b6bvX$&rZ2YFP(4f~|jaA~|$IXGG1 zNdiJ2d+mV41twnN8^0wK8h;vblEcU|W{X@?=&NDLo9VvEdXib%kTJRGi>}#A`BRp` z@2orR6vK-HBq5c{B_OWf5yfr5tr5{)kQUHJ!m(G;yMbqJOg=6=i~xc&Vz{*cx0t&# z$Pi}q1vqLMc#|5*sNZ!2kti8#R385g&U=nei3BJ``rIzWZucfJ56PdtsM}Ej9__RNF*P0S z)cfPe6zfNys+hE*gdD;fBDSC}vyNapj)oL25sIK(5MPGYJ3h-qWJaW=_9-o4D0kIH z;x!MF0WYAMTPltplWGwk`77$V_YaghOTeC;?KbOD3DU<$HL{GsGKBOgI#EpIGdHvD zYAIQCu$!N?2Jp>!OP!3a<|OOaAxB3`tH4ZjBP`RVE z1YnMVT|t_5&)MUg9_|llJ#lf>{*`n)D@G_3L^m4AFMwM;$yZIALQZ~NXhJ1crD(UZ zh&5iRbpj$f4uOiXK)6V_XqzX;yTYF>@O&JdG1m}P3ujtY!xSaI`5_UB>>DE9>`eM9 zA(v#%t6=Cu;96j&jPX`}Dgyn_Iz?1_w#T;e7~Ua24NYG5DsmQ+)Pqk6#iQEW2T()_ zMchb**M&Gi?oUR^qOMR&MXL=^jlj%M3Np>$F#ZHP1N6M!tqatBg^#rDx;ac~y1Mi2 zF%PIV07u!&P3aD^2xlT+tmpKrOth_ZYlgD>Y02a8yEJ#P9`!<0q76~S`$1BIZk=JhQFecf`@+Xn0B zAm47GvC`jAt$pQ&#+1;2h_EF3{b3^(Y!bw^j6?6hy^*Sw{21(~XS4VLY9$X{KsmK& z`4e9MNA(PevCXB3sEvPc0TicRWyG0*z2`~RTiI{QJ|3b5;-^mV_cs#0N0*At`xc1` zjU18~_U<$>cc$O(oV7T4>$yD^TFwk^w%UU((>JDeqJuf{G$xq(uXz~Y2^q1NHuG)x z2pJn{Gq($0Wo90jC;h4Gp_`^s7PGJMlGD=#2T)!9s*QJ#hM9SwG5rZ+GW&Xp( zO1=0R-9$!aiqu1w4nabt%vaJ~ZfnjZOa8M{>SaACJ4*smX+kA~vmMG|?{X1I$&u<6$qKTF868ZDAG!aQRAQtDZOQ@15Jl@jh%;EdW5E3dGwngq_qCS?L4MKi5 z1Okr&)UVN}CH<)Z2Z=;KJ2S~RL2hQ5;!Y-bg+R;V zJJ>=Fz*E72+msx62kTw;7Q69Gd1-Y6cs?E`!`2OA!n=%;1e?>J&b_$FGV4hYmoYfm^!WsDaHOr3my1$~H4(o5x?}HGE<5gH zAL7&1F1^2I-%qK6nRbaV@@W#rkS;8^U6zgW)T3RVyM*`XTPTu0FFwpgxPQ8d#S7?b z+bNA%=iBzXT(uyI7eEwwPc-Q;1tOWkUzFl6)quU5>d+Qzjl$?{IXMj8XKzoB@DFJNpULj0FJYZ?2V3CE37=b?N|$zX z^S80?ylo;>4aj$nI(9kSOX?T47v008NYs^}Zt{DR*#lT_*V}vvtaZd>EZA(Ak2{Nn zAuW@U*Bz+Y-Cj8Oq63BMc2^w|@QhqdC~ZPkTeML-H$C0Bnk^x2uW^IMF;x7fJT^Y+ zG$qQ^+7WI2m~iM!?q%St#`3`5Z;Of1)CCcxtWyEljvSEHnfuJ$$jRL1*OV7pe7%ae z?I)tA)i=I=bhFhpP5mM|Jg*hN1rgJwP_n!dXAcUTHF?|L)fDVr-aiYP+-XUZIJZk( zJlyA3uYsHu93I=c4JMydMxOuL%v{1eA!8ghF4r&`+`;7`YZH-6yS2*Hg)ouF6%S+SDW4BDOL4G28|<-j7MnQ<|R6SMz{X zNmq%UA-e^?qDA2MQ4piv23!PNtS`E2?l@*zn-p_=Mk;=bw9cVSNbi>+gI_puQTMC2@({~k;5E3g zaF>4ObJ}^#=`_dR$y%OcFD%WTmmu2AkGja#4unLam9}4kgHutV-mOyV-yVFmXj91lVY9z z4-s3NRYE{E`wdGXWJHq@UfUimtO&IJ*ovLX)UG1nzL2f-C1q>h3`qu}k=JXMWiA&z zKAPX@`60j^7`T3LmO-kw_sV<02RZ2*6cMK_G3-c?#~DPA2CT5`R)f}u{^*;3TvwId zCW>S+G{YR_!7`uxIqS4lNQLRW^o|6X@nx$q0fK%VVmEkdq2D(WpnZ5Myuk}nkoMlJ zE18jpiOPA;A~xe{XC&LA)thx6N!$0T>%##nkmqLg@h=vR+uR{_KV6^16I&V2TXr2c zLKv*Ryjed#a)KX5sO1$?TldNE3O1RKSue7JiUj-EsZjQ=x)Q4oBMD$`9tn_f%!w{OKF^``7slO??=6GjGE$C7V{bd zrUM`qqKJlE$N-_G{?Jk3lZ}^{v`@UWWJMBctOGZ4cpnO?3&axXD>Oc5PTrVA!pq=l?$@NBDq?< z4Kwy?v|=Y({su3obO)3&*&lN0*rzz=cVg?HFkzf*Bp%6P|IwARchVQ82t?*RXN(V~ zkSCjn5XTSeU)8BL7`&86hY`N-eH&WyV?7uu?Y}?k8UkeW>r1O&IPX+lPa2De6Ko6Z z_-aGpD!@~RwYPu((4QG}J5raeZ^1nt3VH;ei!3^g=RW>YP_2PyZ<$xwaBY+D*RV2W z5;B8Q)qF&HVIwr|KYvUq^m8>WLHF%ju=Avy<9$T6>*y>lxO*JSWCu_Ex1F zE3u%b6@16F8Go}Je)}}=CeUT_7%eb}|0*Gdtv!jxZ`pM)4 zf#V7*e(+OPGU*gf?7z^$A4#SfoZtPZ#6%eM%3AL2cONH#tnbjyM?uLfGvwr2aVz|OYA zq^NfK`-&NJbjXYrAf|X?UAuM)RzXa3oqHvOV@Xqi$uo__x#$oNS5$V+aK1Gc(m_4} zIaHaf6njh0D6+(cFe-|QP@@(7s?zmX6Br1h+GuCpu_0znA>ypsL+*93q?Zb|4@FvT z-l*A+lYmCzkNf*y8f>=}L$X4DVJ!KD$eEI*L#GT}v+w~nC5-RTw=gE(;domWd3=X&Tn@_A zbbdtCZg#U||3jrV^{80o{kiQrR}TAGxM#)PesS|{#Y4dKSHo}9{T!g;|;lMs96Oli;{z< z&}MLW9bZJe&0tf6opI;bWb_pN6dW4i;L)T?ATRsbVq|UA{g2|wQvCf_>D76(4cRXW zxeG}B4V{UuKfDEcs<8%r=VrJTOgax@b_x~ey$`W6*T6OV0@mvlDW?gwLU)A>n2+bj z0<9|XyD8G-kdoN2a+JEXkQ$Y@o!~KXW(I2`NBT*6^oVDzZ_yj)Of34geYGiBjBou( z!>1|9&C%6ch28&1*1i~ZCVQ1pl)4SiJQcBTgJ(qJ)b3%GN#&L74PedRa7VeMjE@ZN z2tQ8~A++6N>;cF6d&kyFxX6EE%WQ??{Yz3&b`Mz59l=BWU-d^f7Gr$K+9yX|BkIX6 z5nQ?ov#Hfilh)~_7C+pBrU-}(T|Ze3EvF|6|CtHzd%9g&M%#6;WII*#PM?hB6Kof| z9(XmgSP{`X#bm_cHEoLJRbnxavV?_&se)Ffsw-mwRbIeRkimW9Ztd=4dDo{o^U1a7 z6Teb`FL~qiBI|msF%P1}&3Y{d zoh<+EsEd@%N$h~ELua7FHf%}EV}os@g)|T+_w~z<(h(hI5$pFLYOS??6r3mn>UtYQ z88HEp0Szwl^xu_eTWd3ZSlUpl53w6d`p}uyN_*#*IqKzjafoK@$4v&3)NTqyg4nlq z7x?mua=gc+tf*`}028uthi}Jmx}6D7#5VB_C?l{dbw447 z{WjmxtBZ$bQKv;%gBC2CYX%)gaHh1a}3xbt0Mt=o|PI zvjafv!P!2`b;@`q%G6=jp-zg(22O}cwmB+eXBMX{F|%H%TOU1=OPBS&9FF?3;G`9+!%Bm*32=LjLApYY?05`$EwD@N7B|b1A%wv5NemYn`)i zE4-bKN&0G8=QchP6x4G!Hfy?1brIMPSc|P0vH!erbA_*8)D(;y!S9vhhLNLcPq;e| zcNldh2?irK_sNoL(#Fi9T^>@-!I^T{_9Kp2nU~nGDrXn5z66_6Jynd<*3=*?E}rzk zg7H#rvTKpa5+X=}=&#}kkqFCM6)ErGPEkFwYGfj7O{@yp*5IG)N?w*N0qf|$_F+gD z|HyeJX+kpkg)cbC5FQ==_CyMD7vWtAI*sy!r%R!!G11j{r>uJp8{cNy#t!=BOAq0^iU6X`Lk~}(h?&&2QPl1 zH<~oANr8*Uk`_-ms>#(^>`kOs1v%87Ny53QO~);2|K!Ri)Hyv=g|A-Jw$& zt<9np(Ll@bDMfL+$Z?H$0P@caEZ}EfBaOYuY8Y z4NAWz9b_oiQMjC&;MuZrrviUMi*8%gpC zWomOVsrVB|qBv*k>%blB0$}k+kDv{RaL7qCf`R=y`!j{Tjgz@TvUp^F+nCcj3aA-mbqp1;@$1^Ic|X;_j=* zl!`O~bQdkEH%XBq_Gr0bW(Dw0(l9dBdmjBa$~Kap%g1v#EKI(C%s3!q8x^O@w3_m@ z3iGnTwM7?`7Q&IR$Fhz67Dvf%OM7B@NZIDeI~EHwipWqN?3e=T+j4x+>NVhpaleq@ z#mR=QVtcsc>*eLfZFk~{bL!z-lr*SL1-php=~Piw$ge68qs`d5QVQz7ewjq$HSVyg zCm)7|SF)I?Cb4}fl|xv=M?UH{ml&rcYtRwT7(sB#zGuK3rL{gXJTQa0VqI>UQMx(o zCbDzE%h9n==?8;+5Fnn;2a7xhQuaQ7c)PHbdL_U!L;T5a)id58B#E8EY%~ucUstt% zDYtOo#Y>0de3$$~xt8V->5=dd8Z+vP{&voTKRCQ_Tf*{vf7Dx%G@03u zqS6XlC6_&_rNsS^Z8kUsW{$J{x#f_BuS(~IJ?IAHF*=v_Rn(!+FCJI(k!edXp@-!#kBDY}o;frg4h%KELg580?a8C`m*^3*+N}B3ae*VG&ML*eRN45gY{ABQ3sea%ZD8|foP1@sOxWj!u~MaAB73-64663>;O z2`iK}X$57B)xEJ2^uEme4>BO3wb=eqU-;A|n185hwcAD2l;5pjSshPa?O+WoZlba3 zhL&y+46ttz(=-aZh8!(1dGk)@4mF?S3g?xMR>qkY5*D zFn>0+R?8>3>{t>rcYO*jDr;o6O(R}e{Sw0umFd+6>=7R*NAcb(r5Lj7MzbsfZHKa# zzYX|-oiRQMCfrLUl}S$GL1{Y#bKc^*tS9oN zw8&CukJ37f=qXMW=$$C8^;1zk95;G4r7-7ff8bvtL=6Kk+?b_rxFt=lW$lY63>o4( zR$k)}$yX;4$kFC!wX?h|NF6$@4HTZr3ZqMuRLQYm>vGg`ZsO5ql+XkQbgU|4H9f&DKuVS414UhUw+64yY z!7cU>iNT})^ug+T4e(9_Yj_QVjJ)*B)jX8BPyPNN2#{TuY>b@7?8&7q`DYk_8Mp+5FHetv`| zvul!gm?WEt8@yhZ=|=qYBqM<7B^2G-a%y6rXQ%VMdf*~JGSf`Ay|~XFflICbCbGQ^ zWuLSHf5O8dr~*{Lq|6t$MB{THy_xp`0$s>Trb0foGt-;guUk2xh=n1Rw7?^1$NuP> z#R_D^$e!dA!4TujvP00Hsl5g6Wts>**lj_jo3c6xVFaZ5Y@KD z5zi5BAOEn+ol2BX)&pVailJ2z=yQ7=_{1LJf^fTpcL>(3Ha|xdFW%?TbYCW(c*wQg z&k@@UQa_vbY?v?p8N6yf6WhHL)X*r5Z|d3V-%cX0&{Asuw3CEz;pg(ma4!D3yHYO2 zjdT796XNp}a`;Ef_xpgp2<>wlp=DYn>iaB^VSu&8QiX#&m`z^4(f?%t&TnsP(D}01 zj7BQ=Oc`1AtcC4V3iO_^A16vevP#6DdtN13jYUCxKgB;yFRq?)kUkagp}xb;riujp z{UQNm=dY68bG$+oH^DE=`uTZ#v-2Y1Nz)*z)UGtGvhm=1uK3vJWNqZvRQHJmA$Y#4 za2h0A8=4l43`joyh;y=ey!WqTPCU3IdT~TpN7ZQ_5a)>Vx8NR+zq%=!xT6nlgnrz# zgT@p?T~U676=shjpJ&z-Ru^jdyxSLT{izD9EWc(#+p51>9j=uyygH0?ouh&vz8zF? z23{b(uVeSYB1^lGr?5JrR%%Rg$?$sY5QHP4DdY$)ed^T>f0+O=0lt60IN^^Qt>D($ zYVa||Z)IXK%^E;qD?asBuPdlyb)!6!>&*`s&7pejfOlnT(-Qq7gy-Vw$`n|DOxcqP zT4GcAnFiu^IL$Pe;1*24f1%C$ywK(?Xfxj<)2@2L%-XNJRKzhJQt__V*2D8FEx%M$Z9M%c<3kFMsH_{U2TIhrxA#vo5&ydw^#OyJm+`)V%+L*^O1 zssK28%KBX6IkmuVt`rX>83*V$aN?Ht$=-Ir0_INA0HCr?o1G|D>*X!}kV1xplR=A} z`rC^So@699a`;UGBF012PB8*gUrr5#a@O%gr(qy^B2qQA6OKu}aU*kUgp$TPWI?B#Ielin0i4oVBPAc=pqU zr4$k67xQ`FH?n_5x$hd3x>P_;4OMS-` z_G(%>;1F2^&8DCz~MvQ0F{(xL#)K8J648!1*1WG2#=%LH#6E08y z00;?6vQj!)nJ+t({j5A$Yx5p~>AT)PF7o@k1X!d-Sv|qhN`Pz48^TBL|BNV%Zup_j z*TjKoOoV&3&YUnhG*xO6c)aF5)n~38KG$F)I<3%yOYWcDiD)EAQt{4CbKch#xK-w@ zum_fS787C4!|h_BSU4ntY~l|)wf=D1+=*#RPJEzgxPwIeDAmITfwPiJ-LF29DlZ*6 z09g5K8(~6SlP8!+@>QGV=x;nfi{XF9g)I!pC6O8~7Oa11DQ%}gzfyqe_<<2OY8Wk# zD0VTD_6k|_7`S=s2|9}3qV+OUI8dReS&w9EY0_*VN$Q87bzvApX<$1mSl#BLZ^h-3 zOb1krPk?%^CkzRt`tAbVqaUUB*-Wu@f>5-zIeT!To`krr1gH}NqP*&wD_@^IeL)ut zJV5lbXlVWHwe}#J*}7{Qd-@vt-Xw}DLQo|1?&3b$|BzDd3qL=H%eaT|c3cgOvh0T0 zEY;7`>RKtSN@Wv7JM;#=AUXcj8=x*>n9hx~AHX-uQgAPp4TBT({IaC+GYP3!6f zW;t&PPcoytmb+D#rIrMXikET-O;W0osg}N`#R5Cc5fQgDmCYYrs}LnI)uZ&Qc{(YX z7)#SJ!q&GR3G}6KDLUW3*W}r_-AsHZ?e(TS=Qx>$*WSnde1_%5!6@06L#L7X3yv*x z%WnmQFJB%B`4e|ZZ=jueNInmm^i#M#c;%EOb>$H}oa^^H9Ygd1@y95K}bR$hLC=hn!4g?Ip` zvG2^;P#Ra+9c$h<08dN|R25ezz5ph7);Ni}}ytx{EN% zn_S~cRQ_=0N|_HoHQUmOR0_&;;lk+Wq>>vl=Hd8T)F?I5g7$V4J9IG+&W>4~*o_#C ze~u_AF3Tpw`rf05#vvrhsF2z<50Pz4L+DQg2PvdVLwJ(@ynh*?aF=WU(&2VnSm;8u z)ktr6r@_6G*XPGa|9$q{4JCjyf7mfBhM!7;!_G04+6tEIlT3;Kiz1(C`&tV^DK@Ys z2@F3qixM-ptxL&2ZF9Lo@V%HFwU<|;j7oUDDk^*JIR)U}b-8(XL#-g{V0h8Ih6)@!A%GA7Kn47V#!ZHJFqvL7 z{nznw>0gqQos*TPudCI+*81mSz<Tym+N0b{eMVw{cms}78X{HRxjOj z`JemtcMWm9+=+kHkhP-=#MA13M)`Zcto{v(hbP3->wneH-=)d_H#nXyE{^|yTAulD zP+TF-R*wIpmZ|@Cw=m%Ut8VO^AU0MWT+())P7qg*{{;Jo$=JR)tE0vM0H$680O)@M zQ+xsQ@bq=G^7zYY{Nu;>k9tkFw$n&2Vuv9B0GNNPSBM1w{HMKfx3vD(nw*-OIiWAs zNwN_Dcxm{b(i%1ZVBzBIY32MMhU#A{_NseMufH^T^U~zspS5iImnN+|A^%QLUA9rP zbrb*~P4Hg@tz&%Ypp~bmowLo~y7-T0JI%icGcX(g`0M!lUH`@j0O;6yIhi{{>>NF~ uJpXaZ>FR9ruTuZB_4vys|GyOQ`M?a9Q+#Q4XydFS2d)V{as>|1rdb@lqPs@Cd$ ze%1YuD~U<5P)%Yb1^rzhw;j-)6tE+97hf)Fl3(dp7&69zW^B-)N3Upj=*Ak z9eOpsa21SDU1x>ner$JOu0Bfvj`eEWJojYtWJ zfX{ssQlo#Mv)c76H#4Qbl@{o5JuBGf>%q_UjR>R<3q}C)qZ@i+8`mRzaqYKq_fdND zI3Fzd^LoE3`s4EIVS&Jd<~pd}$#hbTd*1E@2p<}y-` zG~HfFW4!D=Z@fa}^vG_gts^*(LDlY1$6XzdBbs)2!uHZ%M}BiW)Iai>@g=>b^+@yY z2L-9~J*rY~Naro!@S~{!w?8gc6&oB2 zI=A|}zK#OiP9B=e|LESBUGODS8lR6((f_KAgk< z&9AL|BeV1B-#?f0(4Jc)kLk?+OQ?!fb-`#RI^$>^jN^HDZ1a@E4x}BGl()TQWEy)T zg)36CLP1v2gcA(haW=HGU`rfYWsdg#>eHW^3mVH3VclFXOjaZc$H`x}mIR@%mhxFT zs)dApJV?V7sheSFXpO7ybv(E|RVGHK_AaY5-LdyA?g}cmSwV%3Oa&yJJ%ijYiLJfM zl?@~GlYHAj@wY$OU9>B06{hSY2|qET=ZsL+no-)pg<2FW6L=xi0V!59ol+%=7c ztn;yfPTroleIQE-*06WH)i`tx-^g_Cw^H(%HZh(1MZR3QWRaw{F7-}|G1U|4^FhQ_ z`st~kO!T_sSOIf*R877}r$s%x3DVk$l3*~VhnCF6o`_q#?LA^HnPgZ2V5 z2-X&n7E1M0<(u%eL;ifO#G}Dv*N~t6l<74frqiVFME{H?^Mt#B&8|B`36|tiw5nq{kwU?>_)7$G1oj9FsoTc%^?n)0&SSaMdG`@bKzwu2K6Y#t756I z_|{%XP&H+(xe?ca3?*rs4Ar6@K=)K2Jz&03Mkl zcfYNMi3|@z1Iwfqz+t5Af)xa^*3OTceRy{E_h~zjI?XG;{ z&suShnz4+-5MjOWc~ucu${$l)b=M53Ok;%u<5R(3SSg@oqnM%FNN=s#Q(A&avT#b| zQO(Nv?+tY_W^QxIWK~rvWo=CLXR=nTjGI2|AH>~{q#5tKu`kcH$DJqMNC;g{@5dtiR5K2`5n^{ro09!X zjbz9g_I>ThptUWxgiN6z^`PETIjVwu?ezRvDvYg-s$f@Cm=k%gF{Wm=$m5CV63x>w zu@}*uz>(1y={$Ap7*2i4i7GeZ%@|Fo z`e}8IFjlPaat>GXmHB>x1YPUwR}DEsCY2(rCtP@!=y{ll8=sPtg9CI6+_6Qm15Wx= zAsVs4_8@~F-c`(=HF{D*$81uIR2-=TPS}$aLt3~<5TOD&>Ct0(PBB-M>A&?@yo^8I z%hSvh4VCU{##tF)FPl|TTGj4f4j*PIRe#LFlwvi)#mo(atq_t9JvO24c{ubmy2KM^ zx~(=daj$@jluzFw?xM5qGrlC=mR;y{@an{(sjc)K$R>I57!Cfi&l zT#cAK@lOX)PcgN!BV7m5L-tZjRJG9Hna1k0@3@JfE0%+=%XrvERBmGgX~hWa-}=q0 zEFlbAtvqSHs2adL@#sv2E77e~Q>Odr=X$7HPNz=Gm zQv7uT_Q|s-dQk0p9%~xim+~ibOWRJM?m#KJ;p!G9+p~5)r~3;h`uanJ{>kGF4i|s;aQ_5#JV7 zacsRwcjqRKSZJO5mULzJN|l!v==;ftVg%d^WA0$~zs>Y-^dDxy{6|;+8L+UjvH$1s ze@$|7{2vPAr zxo2cXLgWcAej);6K>&C5tQHYdl+|EJ=yTXMa=p`mCq1y1-4IF$C8VYQ>M;BpbU>WY zXVouOsnhw>4uaXwo!bwM{sZr5p>gbeN63Kq0rm)`0#0KE9523G#Ji=*8|XJ`g1}>D z4b78;q3IWvxwF*_!u*JgiWhe@C;aey94h6+uX_V;akj&QeD?}xPh(CAgC>6yVcE*( z+kj=8fVf_6@o`v{Pwtxn&bo)@JkBPR5Oq*pko#yp%WJC&WsLhLcnnGsUSm6SQl;8$ z2AtM-iA_#6$pb1RMnp2~7#jljZeTP`DM&`#2n~2)aOHe>Ag$1fi~&v$tG}LBMb-xh z%z2nxy`qX3^i%s748If=fvbW!-H#N51uOROLjd-`>4rm=Vz(~!>|Zxay_*rP&f@ESN#ErUa=AZOMnE|O;m#q_0ihqv!BmYGj2BB_OI^Nk zB@cVT=m8qR57we%UlSHqYX5W{kY3SH%zlXfIcqIdtNH72uw6H|4Zxx|}UHQu6S^gcSlOL%fY!t(a>#>1A=lJ6K| zv4u^v!X>Mvpl|0au#?#`c-1b-BELozbds}L_SY|gmk3d)=X~d$GfFBZStCx*W#gCx zkF}a2uC=HDDhh^>)!Yg!1vATb7!B2zaw*Xa&uIOX z0tI~@M}O*}(E8io_(v$t|52>Q4HJIySoV<^vRaJz8XFA7k?>k7r6vHE2U@u7LJJ-& z8wFX4DQsQz*LihG8Mr6!=2|tgZxv>Z82(_B|8A>z{?y}`if*Y}ZTHA@1s@BA#fY}p zq}Zr`a-J;N5LjJ_uv)1}5vogBMAEWcXoUQqz#a4MVZlQj!`Z3EAKdz zIOXgZ+{C)d+Hj}A-!bY<>?b18IOvoHHQ?-itbt1GftARAJ>dD%EvmAG*>0QHn>Q52 zgjAG-&B22kU}&X8xOMm&i+8$?Ld5l{Pnl*mgHMWs;GYaJZ6~0)so~(jFz@_W=q0z( z>fLy;70isy>s+6!bDqFV;;iMcmGe?b4}Wct=Kp5Th;CSazI(FjVs~2S8L=6Mz9@0r z3U!lIe@?j0o9QS5tCT;w%*<3tu0Zo=N7l#ehPCgO`Bal<2ZnZ%e<4CzVM7VdEcfL~ za=oLJnPSa_IeF-#F2jX>o7Pq3t)ul` zdP>MLuHM3&Ieq_q_P6<6j5E4em12h!OCBoeJM~zysrTq7c{ON92`C$$+fkU0K>IytAU1@wX zK6OGn?5{*+cBwGyZU@lxtd>7d%E?~F6HT(}wF-F$ZQ&YeZ=gE-@%m+)BW*>c4{rnw zX`3O95YD6XVK}Iljaea_$%*=o-AbG6i0%595Q>&d{v+>e^{^W0Wr(m6Jqve}C!5k` zO%FQrGi#9#O(#j*PUp<(Itv}k+A%NG02yOhjYT@*fh&U%2Pt!wex<01UR(}RV;QtQ zySAG)lPjN_oC<0v%a?BZUii%2+Nk&>N+sO277g6YlGB{hw2i1UHF>q^vt)^I8k`hl4)c;30(Vp z_lIsvmD}oMusR0MP>=^^)|;Znow$h|jOx-=#LVfw)sV*TPXbO`R_*J6Epg0dU>X4S<}oLQ*z0GdjRT0fN;LK_aJDc>YZPId6i;$-V8@IQ|r- zvQpG=lXhhnQx6=Tk|=p|Ra{<{8?$T`VS&TnldWvSRU2HE&VGE?x{9g-R`(a>Dj`{N z^n%vi7}txJOFL6l4+FL2V@;(ca_1~;Fj&+U)l1Q_#;DyjZB84vC8_9Cm;!!AmkZAW zf6eNRhHh!s3vs9)RhX^5tNIM0C9@VW!JcX@_f9W3(OML}Zhr*HV5~YdjmnDi+X8YI zempNtZiZ;EGaALT3o1mUmLPrl({)g8ibNS^uDo&Ui# z|K*kcf(IutSUNk}zS{gy&YN5H?M3?Wd;4tzi+3bUU~D+91iU_wanWz2?Rm;)aKoWX>I9#w-l-k&S4HZ!tcGfiB$3S_v{@R)Jt+p z1dspRK7uO=>|TUW(hn?h`+?V;<_;|p2r0}@bTwtI7GAdjKX?6M(@QrK5Bzdt(PV@9 zD#52>!AF0w3Sw8_ML)&whMQ3v(SD)){0gS<5x|`PgzY-K+=|wN5OSbUjWhOq^-9M} za6sXFu=f9cyXtACwA)4vIDJ(3?2KS#aV`;DzOws-4z-oCgmDR5$Rid;I^|AO|MJ%l zwB&73{OT|ICbP$o2S-y})&+{`F395_qV1Eh!yfPoF}0$Gwm^Q$g~&!C_S$0ug6IH^ zCk}-5^GKIt-XJE9u212m8jci&3wlnuIriX&%%fimx9R9(W9v0jx5OkQ8q$=3uwa8KW-%z?ZY5P!Nj{*QLn1PrUxPR~GpRbI z-vEf5F0-sWNmNn&g_-Tu({q9CO=d2>gm^t1WBM}}9YfPR1UAIR+-T)1NcYbYH8>U8$I zD0cmUC1UvZxl#L!*Uc7k159kK$H>N>iEt7`2~ZYqUGsdL)=lgNUU@t4tq2MU9gSym z?LCwrBgz=XG2^5o#bc^+h?f1~Xxb&*ufC-K>@M&l8|pb2L1cMB@gCF2_=3vECHG57 zsdCH*?=r8X;ylT|D<&h{mMASpCKIu6o@AP%NeNYsB_00PJOK2#1{C+*-|$U_-;!8Y zBZ*W^xi0Hc2g5~29Fg}1FuT2kOcv9qWA`NagF5}ch~c3ZJ**k~#OPod+EUjq&4@!X z>CJ1Rea9oH6*O9!bJ4G%_y4RJAhEc#YfbY_*bQ1qUuw}lJ{_+tvNdsdxA=ye452{! z$b@x)M#mUma%PQsigait90rV+dI%)|_nd3yen+t|o<8%s21#%|pO-^)F7V%NqvP8? zfeJs)gLMM8`JBSKPrB*!?W4o|NdB=u)1-4MEjE=X zbCRiwDuRu3#$@8U0U|^u&A$_Q7LWS@Yl*fW>3iTTHJQ{C9bzJnR+FY{VsoiJE|7N( zwY(mRQj4igG|~Hu+o*h20{hLruS&~Wx3;Uc?(8IrpIFI@NMy`zD>-b^t-c?TI$bLt z{#Qp0hL@(^&iv zikEXI5kuPkWwWujKNX7teGVXn!p8ui=}CBO84}&}^ZM^!Hi|So1AjGO!QJsYylnSp z73j>}Bu26ca<;46x(NPfq$ecnS$Y3(mSz?y;H}0^=Gwi&rc-_I)CB*mspM|t!uLz# z<@xZuJL_KrS)JP{k#v)kWAdx(y+7}JfIEX% zqB2b9S%x;+=QS#aE8NHdAdD^dvugygIqat1qe8}uiLU=v3KA&Fv6lNec$X;5@WA0; zmRf8U9_#G{2J&d=WwCeAm!Yi6l=7@x43!g~omH5@SN~@%*2>apD>f|Z^$CvIZEp*A zL$n>;ON?ULra#R&h19lJFb6NdDbg=2%1I+BCuzsTx`fO`jK$?^9|*N?1Ps5fnf5c{ z%1)6?+iyWm@xlrzL1y8ZC#YI}r!_yRM@BRjm#i$p)t}w@{QH>%`ipB#EjPjMmhdbV ztqM5OFGHq#by`XmllKJb0F}*-5f%M*Lmv$Ud&gIzev2G&VfPJ~5|5J*3wrJa&rxWM zAxMG%S3cKi2O|rcQj%%|qd#Q3IuG;d_!4HGoC$uqjZM0_;|uU$%Ne|tz8!uNnzt{_ zzBsGcJoheo%<~Pgi}&BJjAuwm>i>fb{#V}rhX%~toSgqn0~WUbFyKGa|L@fk3p>;Q z1r6G?WMluE1{?L&4$|-=gM4OEQHT_<+*pLUTnNxZiDQWa1wL-F{3^2dD8nHVyrk}{ z2Q>}-46B281tUvGM;C+zg5U2?UjDwkpZ;!=t6Y}}^g^h-TpkMo|FOa6_T9AcUPXSu z`}^H=MFL}iLPbSK$IXqTr-0$jnffKKn-lY+mmUeS{PF`L)Cth5RD82A2 z6v6x_rcpj)>w>s|ZX{0+F+HLi4oL(>gs{B%mtV#h8a>~pgzLI{JT?RMUIwmkbKeY~ zI*)jfXy0_34M!D1uJWw?EpM_t+F9K&n4f1WI>n<&Ztw_R-tIC6?lJn?#ZSy(?Ib6a zH-@jU@N8Tf^A`mFc>yw za7gN0@C0S}VLT!pBi#XS)1Y6%5~KcA6~(ePN1TggLzo{}XYiNtsSO^yfQvS(olZm1XGh)KA@TXVH z(mDGBlk@XJRFw4>uQ2*leaKEU5LzF$EWoGD#Nw`gDqn!JEn0MPXvTxdY3geiM zYI8k|mYET^Ys?Hr3c8=mM06vXKyyc`eyhu@^jQA2+Xw;Akz@lPNzD(`s7PiCBXXX7 zn|4I0Y#lAax{Dd++N1oLtk5K|Y+4Vl(`hB21nDAmbM>mBxqkh|daBzOLCu2G7(E1hq^_@3?l2E1jB2=={Ez;E zlttV&HDWIIS48z1uk%T9&)c*ddXf}CJb1$B)~AvU^Hbh@ zm&YsT(Ar++O)~CxXb3I^V8R|dTb7I(Wm5ibGZo4ikIh)O$bJ4e-M9fYrHxrFv*~sdQ~{& zs&k}7g`rvGp~%Lsa#|TCFZ{b<(b*j&!7EF#3D8Kf3UB5`(k>W7YAfNuqBP^*+8Yi8 z<9Ae37%;=}Fu&bilg*2}vg;LyAs#jVDCelE*JDbhWU0bJt3Hz=Ts`JMEX0_E#MTLN z79Uh-azVx?`ZNu<+?$BXV11-C&#q~g9Wr*l9L*u2Gb!Kg%U4+0u_Si-!uz;U^kOWc zITmBLH0Xk^2U*r2`xTsbBiAdnX9u%n8tW(((C4h?2+eOzkXpgVGYwr*+oVpOT&RlD z{5D7BAU6MQz1WHwVzar7WCRD>o1hmp6%Qk?Xj%NZJetBXV`5w&quh|~)smMZNfYQ# zz|v$!9#lECy$mnH;9@ub=!hxQHkNb2Pd7op5u-vEOFaJXq$GMc99Nfl>` zC$T8(Y&Zsn0oM~nkm0`O%4!N&sY3G<^w~IwwcHfAd$W#lGstd4=fy5$8@Sc5@eR2C zU(vO$1(jx1tsaR@^;L=cA_SMW!HQuH@0JXwJNQ4~#pRvX|3iTOuT=c60Oe%o{_g-~ zW%?hw8%+Oy?T!E4?qDWjXW?Y!`2Th}uKK*a&?efrbkzG4=Ki)=c}Ua8v7z7u14WAy zl^_#gv^aton;{Vi*`Xu@9jM1++Fh=VO81g8@9giOs;^Kp-YWC>0RnEY$5>-K*10#6K#* zVZ&`Jblg9ynz4fRi5!5A6Ioi2SdQUUjaBh1yO!pU4~Rl=8IXG-riCd&zvaz;*LoE_ zpR;1>z0-dL@`2nnT~9zsl%*W~1hx@Hbb;qns8jF6oeS~#Gk-VFeiZw!wfQ1H}FJDZ? zMihZ7Z4eIS+yDZTE&!gOFDQc4>;&9EjJw5a5`vO}L&SO!mH-}>sMf^DP7X5B_>sL1 z6n4=5o53$0z(J#5Zo1PMLBdF$+l5-4Od>DL_ZH(Uqc za25nij5reP&hCCMMwp?U^rcbaDszjr_IjbLn?Tb0NHFP`I8Nc$s6^u8!4>Z}9$e;c6qi6Xr0v z7hXO>rgqHgzWgiA;Ni@x@TaK8GvNVgP}%N*V&NYT6k~G&5sAb*GmOuAGI=x9b?Iwj z{zLeCa7t&5*(q~p@-4IaVB3A3PW!DsJZ)Kkr z-^Abk-~PtYx7D}xl~K5(x?=`+17%5zT-NPuk~WFg=?GE{)6+pbhGHKJu37#B1^W(% zHeFw*3@WpbQw>uM!TA}*X1OlMF8Tzm6>S zti1?yWFyY1q7A;OJJs(Pi&;OBD>oa6k7~ql`}6%sHs%F>Ns%AExjIl0o*0Nby4)B= z2ZDV?Yc>)V5DV^GfTDkf5mM5LcyGNdBy`EY^0XE#la%Tu-hlDsM;CzfGZ7+A6gX3l zCS?hUmvjyk<;?TkL%Kn{-`SrE^d=j|U5gyO>O2bgfcT6N8JB30SO7AlSqDPBoDfMq zQ3dd4_0D?XR(^zM$_-9UuZVGGkYT5IYgJV>rqj#5Tjk zKOOIEMgcr(lLa8x9`u~KbDsI1Ui6U_mbBp!#$`2zNxE*N_53 zpy2GHgoaRhm#dYMxr#muHbcR|7eu22*}1V875PGlr5Yu1Rlf5^dyt!|t0FNy3q7X} zt+>0%y%251c&FTs2WP`%E+Uz!IC36|g2~>8JHc15YYd~nkI0_^aEJ$CBUX?9nW={5K+wk}P(Bsm8)Zb$;Iw?8{7Dc3| zk;y?gWn8V!nBVlvFF4C$$K^bod-USR%AXLR=#w1>pgaBqg)1i?AUVnUs*w!H4M>N z^QIJw%uUtmMb$%PI`(Q8JOa$sPy1u87{H%1(F;Cx7jU7LOkR|sS3oC6L$EsbMl)h{ zu#8JKJrwrZEhQf7Vp0wb>RCv6^QCYM;=bs#K^j5bp9_Ec)&vn)gI;YXF3F|ZMT@#c z7NXnqhfc+GLKx~B+nvo(>+RVei^K@#f8vxISkGs8Kcb$ z+1B>+_!~QmCA`;{>I?Vg&YQnae~**Lc6W~ZWJl5>yeVAX8~XFi|3F3eP||JWW8)lq zEJI|ozjvBWc+_10xMNvFA5Po)2^NDqr2(bpycEKJJwZ?^W|oLJU1YzC8T??)sur^6 zbL~h7oHZ4quA-R0LC`ScM{M*QLy{RVI=4D;b;{Bx{x#oZeen3c-*g90cjBA??MP=6eF z!X~9J%3`9j6t*hiPH4}u1ATJxRIyU%`EsRk=S%O=y+!&yG8}t#_DX+*+21lB@^xiE3POe`d5 zS30yP7ik_Ae=W0%eOQ2@nOI-5W^yo17UEwD_p0gg(^VgG#+zNgDo*$G{xOHI2JEp* z98|(rK99kNp#60ZCnX~+_KF$9UeibxA~-4eIj3r8&=|=F%p+^m?s<^Ytnl0293GzR z?sq3m5G9Ua3843-zF!l-$RiMXh=Hj*kQoXf5*?-!rIj4k6V3Q>eO0qZ%JOm7Tv7%^ zjF(n*`W7e(j_33EfO=`qzo7Mh_n7CYp>PH`V;pl@ID;K?I=mKy(bcLpj~O>4nX($~ z{JwTTpmg1oK)+}Gpr6X}AB9U0t#Be_u1Q&92?a8RDpSJm|Ag{4oQ_4kO_dW$(E3DQ zSDa&yX-PmQeri14`$!G{nh7na{ct~Tij7-i39Do~L<(sFZ4&xQV5xw9z%)nf=*Za4hN}iWsCvbSBv5R|#dGxqBtY&t#2|J*z8C$Hj?bEu3 zE_woJPt(3y_HXc`i+#SC8qcz>wVF+x*$`hXIA+$UAo+Mmp6I}-roLLq)KUw%z>dU) z3gM-#{1AsK#H%v+5^sru1!suG_Z3aiQpEvmfcPLKD`0eED45Ze2X%jS))iNE*7s^9 z_Q7-UPB`4`li#lB!{DO02Fsl#n5ZD#L2TbtE3*TL-bW#`)V=iq0S_#MqC@ zxXpmkex45WNxmYlW}3sG8A%MMzA8i?xII0RbC)cp-dMmrQXX5!-D&RF!o84t34jg*o?9RwzUAXAN+GU8(I zR)$(oOWH@(kq`=mOAoTjF*O+4wpGQ&YsmZbp$n7%sKuQLcaRPypq;a3k&5ZBW0b); zKDjbU5x4-cW9zm(fk6V}S1om=G`#+{+Wwn@82QMo%v6 zTWOZqS6aF#z+$WBB{#L44B;y}rQ_>5)m+4T*@56Q|I#;~@?2{ogMpSH4n!7$=0ozT zb{D({*f$+Q9UGYOsnN?fGUL6ND`Q?{As(jwUc2=@1 zZYJp=HK7wJCJ`F$4W4>xT|`xg>JO|~g_5rbDuV44Z;TNnNLkyu23|XO>zAZ#C(PJI z0-%y9%*0tT5jFKS5g|`hO&Afz82$IXP6q+Y-25Nc-D{09e??u2(M4$!G?F7}oy!QD zz2hmaGqj&j(|H1oi3a328dWS<-!-##4p8d5n?p{;sU6A;xNTX^N8Jx zLyHYt7k)u@hf*h)0)gDePd3aMGkj~bUO^~HH~%3JRFATZ3I?6VaD{&2G@3IuTu#HNIS=m-@^oz-a(>$hFaTs~5fFLw0erfnU2jCDOU zjSi+Z9er)uZSGD8qhB)!ZM9kaL?5yxP1iZ;Gan!6SsioF+}A|G!+(ztWvn>D*maxg z6yMzwYv%PiO`Dh8>5d_{c}c9Nnrr^)wxd0o+!P*35GMTPlCiQC%7^`_G843o-AD^M z%MlH?Ck25w8zhR&6z7OyMFxssIama@mM&9n>R~=eaLQz{ zz6`gP2i(JA#OsD2Bk0lqto3gvkowcOK@0P?^l3e9_<3V9d=vJ7b2qKCi~?ng5g&Uj zHd+gXR1h|1MO8^d341p?90@C3v`grMcI{@2srXS!D+Ikd=0kBM%E0*V67t9?KxU9Z z1bWT9WP5zmQny9M<-kj`%7|elh?M1PXurXtQHLv6Sr4XOM zgPz2TJ*YNV(2`9A<;5blf3Ks3{nF?QN88Z9!w_|SeRfg)l6>bk>xw!z(T2Q6dO)K$ zKXbzj`nZFy1{Nt#<8~CTR^a$u!&~SOgYBWz>2!e4l#94NI`hVeI}}h*yCBPFberz= zbl-PcWd3}zvjwj)|=Zbm@;itwf zp|FJLl2PfOV1w-N<~u-`Af|Y;5Sa}U4jpW*{1#8q*rHil3l-vOG?6 zkMirVufQmxYXbDY>&s5dFdGurE!hxP(zt8*qVY-feRb`VskfjQzcuTZ56h4AHy!_6 z#{I1-fm#&xqY-3rk;q9^DA0DxGX{=Vb1DDGq*-UWG-f8ELz)M3PpaxXfxxvbLrIn7Vm}ImP>J$%-He*42 z$V6H3qmiU(+M_qBiV1IK4jd;<0-CSay~ruW#+SK)5d^z^*vu3 zl+JlSO$52I+;$^lQynP

V&wzr;+d5y==g~_3V^NvTRa>;~w^IpKw$>CAze463n z2E^*-^N`SKDuhXdU4&vYu1q#X=QgLn652(L`N&7wc%7jW34|x-34{Z$B?l9LINKE0 zNfrQmY4J3QOcE;T3jI{|M(lLY0z)L+OPK7&Q74KsO@%Yw%dZPaPZi_#qMJ|br%!B( zb``ljENAsWC@lt=+i8$}?~|T^{HE8*xXl=bSdkZ*S?&>j2{uOy~Qr?L}!5Ti`ii_jo2p}yx{3xxy<%s?iK zsE&*9mLQ1*brh>o*Lpr?PUQl>gXYYC88wJYv z%iomOlms1=uI>g$n?Kz?_E_*WaZa~eNECvy;xqWAER=YZTN}hlOS{*uO~RU1ionRSHDtW10&icEE5NUTG_DTz#`!?lIWLSIViq0#8Of_ zBDCKdguhFVD8C0BgZhLV)k8>yJNJqFh0BaK9F4E0$@9MW$CeC`TlYfA1#vCXu*~~N z;l~0s4qM$c3~>B+kb|y>)FACsX0=&o9kBnHP;%rnKa6d2CXz(#ThS@o zfI9_YtJaV&!Y>aEHkQ{u%oJQiN<;eO&z-~R;iA};7yp+5n9hz5k*R^7gLs1Li9#dx zttxi;{#z`3UI);6C2)SoPLS``9IA}PZYvNJAa-GiDy&Ys0hI+rSZpT8;d#nh3r1$( z1u!z8#eZcJE6T6NMBoSPuXN5)=vgo^)I^|3s;c!HB?vmRK|dXI9Cb@<>8@|OX@%*L zbcSi=Y2Ne}3}|f^`nq(5X@-%DRC04=7kVt?Xv$piLxhTW9O~3%=T%cOm_bGHDkY&$ zhHvBkSi#=~`(q`a+WABV2a3a}bE;Xt5YqTozP{8B0a^89w5?FR83-J`_2eu>QxKv+ z3>2BYBXg-$zm^(`m7pUP+JPAPQ70&pRO>g|&n^y=xeiVWBX<8TEsgxFMx$ajzpjOI zx=$7OBAUSv3Z&mc<(?AvtQb5wZhhppYf zkB4{#lKkD`SMGMs>fJMEcGfTQhr&jW!N0hCB6EaU2fitU_^-{`dJZEB14R}JMb^C> zOIcS>5trrJXjglYK01skF&S8_h!Bn(5WCwH+?ne~NzSg$^Q4{n8MQWN*_Wi>Wj}vg z9czT)>Z*dnc4yIXzTp!-Hd8kzx!qW)7CDCa*ra{YK~Hn+h|`U5PbV$D5c+ZLxF!EM z--I>AEVq>`4|+JA6ORl2=-sc)L?Ejfh9nR^0$&II)m99NSl z%Fa$(h_{pb_TLzhs^EOmbj7$W=Dw(S@eor@MdX{`ox!a(Dy>oZP~hyXV9}|xSgOW8 z5YMM|6f@AskM&Ak|BN@&Y83pq#Qb6MVQV|R+uw#vLJT{h3j~*>?8)3$n@rfV=@RwG z_cnhEMGsgvclG85CZ&9|YEW;2KmF7GYt~NI^SGEtw zfW7pKE$oFrI#Qfv(O3G@zws&t&&SkzTlkYLPCyXJB+HVdZ%Vqj7mK_#20mfLtM4<=@MDP0z^tJbw`)sxEvz-$!p%S57>>*DTT!{gT0y6lk7$%>vv za?wMl$LUK2U7m=|M|15mQ>icJR5;;0PC!17W`M*mL>90d#DC?->|hE_f#pBOV*b3M zdeS4l(E_kH*{CneLJQttlB_cVBvb%@`zj;2lL@!CDAM}T_~5@&dylt zLXyM9s=_hb6e=NYT}%M;7Tx)jkCs z>IM%-)P{7P!_a-=6W|xYG1zpIni?$h%~-s#SrX4IPd1#R9hzO5-MMYc59A$r58Z;s zD@n*v(Rjmq$Ed(ozrnygzg>TY&ta6NnATAa4|Q>WpFD%S%X1F5^2U9qdxyhh@-8J8 z44$oUC~mUZc>D0@on_o;<<_4~X<~*Vpmx&+$Wjwcx#*tb2iG+6`lotZeO|p7S%7du z@k|ltpE4hH?N7YVCCewauQSx)TS5h(oU-?HGA%T5h%7B-eFjTM8=OjQ2c?E`3Jq$7 z$me3&WcH~ekBMMH*pR~@4~ACWUXLD82yfE*NdvDu8sqS8lnAKwt=>zwbvzFZzK(5+ z6mw}1bXhmvJOoIU-V=3R0}IDC&kgRvV?uH?`}7dqR9v*;$7FEmX*x^?=j}ZbhIcb{ z@LoA9bRKYppvjLr@3}X1xgVHWuGM*@Q`gMd1%K6<8w?>+R4HF%M42DvK>2I= zRE1MiE1qSt2~HyhbN>iQeFdqOVE^u`O8F=)V$1QjV&g8gESP2f>K1%(*F0D2D89of z20SsDC~6I(_5;U%gVosmSTMN`Tq}$sJ!aq^*$NOF3l@yV)T+JU?(vWD5 z0<5P-BJ*pHrwjNxZAZ-^pUHd?1i4RN{AzD}EA$%@EkzrXQF4 z&U^x%d$Wjka_wTh*vXVTw?2Y3G2Bm4&^FrICB#%1zNAd%qfk&& z9BUQii^&9~>D~3tVh=`YQ&hl^IwsLsO!`~DM5rRVyVor_wX*0;eR?%x$ItcU`zzne zd6u+i*;zgz8Qs&w+W$Vs^V#25!Wyd5*Z2PcNItv%Or56k z)moQEac zcq{Z;&S~%IoKsp#^F{f%8qXTRk5MP_m#d4_cdh@Gom8zZ2j`1K=;Dqq;;h@5B$|E_@dAxwsn7!l2rvF6s+1m@UX)wjhI5S|H52 z8K(V@Ham;TBxKAM(y^PiIS%Gd9u>fuljQnZ3^Q1OhVSe5HG1C}rrx^QA}Oe^ZD^Cn zTt4wZAEXpe zb^l|@3wKN((|3V;{P?j~fA{Juzo(pTV(J6F2x!5Mg81zNSpiyFk4dUdin}HX1zCVw zQi8V0;uN_~te01d&9Ypfj&YCijR@4L)7;a1wSgtV63bk*!QJ4S8`vOhu&h)!xHtG# z2DaiXizwKy;N}bSl`CxPxhA1WS#MMP5nggdtXA&;g79V#gf~qPYMr+r%$h&UNCA4( zM|6gPE>N&Os2aX!83izabvO#Jjz|HcFCI-e3JNQRN*GBhbaqZkFUB9JlZL$$#$g)A zN|#gsc9=BdF!d>ivF2V=2Qr<_L0Pby@n0L`y%DA}v9%IoNscW^A|GSL3CNnR^$}z< z(nV&vlxz3WLZD$Gx~#%DL_?ZrC~>Hp;=rgI`aKPm>P+<+U=o`e&?XpF6P9_xJj-%n zxrH|ePLDbYs0U?v+4_nngLEc7e*4e=gnifi*B$R9&m7#h{nmZmw`|`>Jhjjmw#iV^yK=rH}BU&!u>LeTb|Lawk&ct_x8!R4&LWx&=9IFbQ}`;|a0V6F<80M>y-aoq}T1>eqf@O)v>2(B_RftxB# z&#uj#STLz*9#=0d$zE7|yT=iwW2#|xqXUH|5Ho=y6NoZ#M~|!ng(eU)fg(DOGKoUP z_E-Ta;ED=IIxC_R3v0_3Yjx2Dh3l|E@`yl}9>Cl)lIgAI)6jPSx8I?nT$?1}6K~anu7qR(YNuT=l`hC2g zj;E9*7Q~i3XJ7iu>sp?gH+#w0trvdq zi{w8Zz`s{FeskgY_KCHtqyEPDsK=UGezvmtS2sHDxa-C%W|fz(D;~Rl%jOg99UoGD znfib`MfVosdk>-zUBCxML^O}D!b!!%pxav!_uvBAZM!%b4-=8*N^E3YBPp=vH+1#Q(J-6s*hAV#BXY7<_Q+|BZ zkNq=4l*D{=iZOIHL|Q`+hq^+k5FfIcBcjbD0Gmz{-E{6VJ;7+f$f8+JT25Jbi^(+E zgrR`Km(GLan(wbEP4qz&^w`hK#UJBenKP-l>s=N}YYR{ax{W-xv6tL&aH~!>T$_ zIAWDtNXY`q3DhVVbQ3U59)bUtV|2KGRuL7toC8QKb6MVL#!D2`ISWH*t83rpkOe$pZxx~y$r4W<;f;knlGYnQJ z9Wj>EmqAYro2nQ`0?EAUv@TuIDQnQjT!u_e1ucVYMpU?&SrgC;&Je4((M`v0_}%8U zuiv!n-m>mK?U~J6ez^OZs~)-ap*t@;whMDR=F||!7n6wlSFil+r8j?dj7nC|!{tUM zSyguva~6Oz0b;J-aR0~k8)B~CaQ}z(n*()p7K1Q3Y4l~fyi{JH-vTgL8_%oy=f`fkeLPwO3%N*1SNe&M_3Ga zbwb}9oN#Noc!CULEWyO3<~Wh;A25qE&@k(~vCx%U=Z|R?tW&*(O~BA48Mrc9x1^Cc(n?>Iz8(hrZzLDiIUg_c zVlWU25YejG6uZKSSw64NvWK4 zVIDQRO;7&d&!1j=eSJs!%&Wh3{FdZiT=}gZ4y&DU-};%)CVwRy%F3R;JbB{SkCMqJ z8;3tTa#-z$PrUc9k{oD{1t7V)gri7>_IOKQ7f2|f9A5B3uk~A~2FftYY}XlfU5MF? zQx%G;SqxLuwD>rk*f+GFupy`oNJ*au0N_2-9Q9+}93GNX8B&?0Gh(xG=_LEpOw8oP z?c_G=ZO)e+f<>|hNUdjj*5$zo;rX5=SxbU*!|SAV))k)hS?hw!!rRDJaf|h8=XUXa z>0b5az?V!)h^0o!Si!M?;B6>BmYumS zlU2G*l5^=?w7bsL&XgD%q@*FbizuyT%0^UVifw3T&M)pr>zj=AozGaW)0NAHO{hVi z&0W+ZYC$yu(#t-gS$~>31ro_AGeFMDQbcQW;6GMRkw+54ZvKS0BR>~{ifsTCvXh=bS?^gO1Xai78Y#-ZbU-Q)q8 ze}=~vBnpJH2-rsOD+KoLfc4x{6OEXP(y4T@sa6|xBlyHjVB z4w{yLH6bAoA!t2>tMDy|jzy>GD3mGY=zE5$=~{tl9%(SQyr@eQr4b`Xjw&Y?dTL&q zf8SrrI{0hGU7P#k$*(MhQr4y3<9&daINoRUENd{pm{uTyn9dNV>uPvVRIxj4&KyM< zl$8_Va|T6(LH4NK76@YG))))cq!`;>1kqzObFWvF2H*=y~$+WA`7Lf4isH`ljbUF%)x+ic(Fz16F&3~m>v*e$0LC2W$}SS74y|QlA%5UsUe(=W6QuwC8 z1KYd4aqT1Chsaget@y^xH*5QUv3lRirQaWt^OL)dCja>!?Mqb%@e&Cup{Go$Bo35(N3%zREItZolkkmIF(H0^zmw7$K` z&~aG*`>Nb1AE)`z+*oFb$zz4F;$h)=@v!s@`Q?Z-)mCqt?^tJB>A2c`wdZ#C5%;^H zcf)5xw&$(Sc}R|;%A)v6B;<`mLUJU;VIqejoIOXSL_5ocUA;K4pOzERf^}nJQw9*6 zl0k53p*&%)Q`-Hn0pcmq;lt!cq#+fLPS{-gtI1N*LT(^DIYbIjF236!Fh*Wg>bd?w z{tTlizfMxy9Yf-d>(pbq>SK^s!V*>^YPOoAia$-A1%f|?WVl2-2^1l)?GFM$sFfoIUUCs1Y{Es{22>S|N4jjgWRai7q;OD-cnMMmVAy zBaj6EoIXI`A^RP@_)bPIf2X539Z!snk?*N&I8o14od+F8Ux3~|B+diHIGs*&CDxvL zd!M@!`rqpbYk4J?Ke&?Pv$Lyc67|5I=)AJmmataZI%ikf60u5Kegy7=_1%s2U$rQU zm?;)6XRB143zK{MZYDqY_De7IBuC(-KjaQvy!?mBM}XMB+qVuGa$%72Ayh)5IwyM0 znj65NsRndOSzHh>cNPWcfLlz5+JKAk9TyvST>)2V+*+JNZR}<_IETZFW@F3-KD!E> z3iCM;dp_;5lszAdHw>rS5zY)Z>=WWt`csd;eq4R)=V|VgQHYP2WJ&?hd+4C*Vsrjq zlk32|F3GAaGo!@hF`?CNkb@b}cbvbv2?#Ox2_hjfu=p)~I+Ih`$ zneQRrvp#Ojpp_yi&Y9&{>L3nBgl2+Yn@yz@vZjY-n_E+q!H9A*7*TG9%AboXku@Wp zHDj}+H6xxC*pn;321&p~Kn;+<&Qc6x<9@Wi(Cnp!W>+jUMbN@_mnryYu7r!YcE*2U zj+ktkkC}c_Fug;>*dKBx&BhL+BH&!n)T!<~P1H=TwFy)}W4IhgMpP8hIXt){U|Mb$ zlQmFzVvT>amVKJzAd^@kl-?R)at>mI@L z)T=j6zu^z9wm{uFEdSvhtUj3hTk_N7`^oMfKhITs@4&I|-??WG(CG}I(=4FVY*dn# zvT~g`7ca#e4j1Pn?AUIH!7D64yV#W+pdFPCYfP6>bNni$AwQF`{7jee8;S=dho3WI zVK`8aHBizRye^0*N{OtA!HL>p_k3*~w^CXuuXV4~I^@lfTjX0KZ^*CvToN-^Dl)B< zqIBpCQz(xG&|=ND6DU|1zqVATl!V1BByG!m(3S&+ufhzfDa??U3fomi3Mxh_Ffgdw z+2?5AQ+JjE=NjFeV^TzpNf9|f5r+v*vEq?N6yI;8YR>M>Ey${_FgabIg1=!q6{5a%7 z?B*^SBP1zTOJ+PTz$orMNYaNQ7~v^!D6M}x-z!1xFgz8&{^gK zitj7^?$F1TCvA@vJzm@$`+3Y)Yz}z&CJ;4&0ux|yXoKaOK-2^ZOdy+{Sm4g7Tr3wA z+7v#d#j<$oknB(|c`A_~EM-%=!Rp|w;L_lp;EAB<4CV$~g6{{fTLdV!{udjlQwW`Baf$@+f+3T}Ob|g#U^=!gAbNN<0n@?;4vp;^;pO3WE12GC?m=*Uh}DmiR6dUst(h?OO;sH9@q@T0>? z_3+N&WH{ZVWt2rAqAeJh13j70biX~;AAEWPF4}8M&mo_3bL0L z#Oa`=aN2a!Ons`*Rp-oq2VuG^n4sV=W1nTirWvLg3DcxhxVOzTH{{3To9J|QhS~L* zHpG;z>NA^|Mnu<@>53Y?=_`?jQaWK+_X`Z+`y1y5^UzJMl++S!7*X)5Oc7fx_WaZ=5-KTXAlD$~CJ4bC=8=6^&$jl!Ee_ zYnLqEweT6>Iv$|yPT@7=$0HLtUJG^x%Ys9LiC}B+d$#Y}pR~&%d$GMMcr?fdDN*Ex zax1cBJ7;r76r4rkUJuU!qu%Ak-jqjg^ylh42|mrh{3f&Z8#BSyI)5RLIC2lxjShwx zMhEdoZpBW7g9%3b2|MN0UdFqN*_=~8faGtPCOCMKX;LYuLfzccYO4b%d#im92EE}b^KAUsaR+%=p!CYM`mI5#rE zGr>R4Gta-wv&{cJ@;&ZB`{U~4bR9IPtR>CdT4A$|nh!r=+iy9b?6=u`wp(p~Bb+0D zsk6m-gOhV&%4TCj*_y~QC>GuFe+q#%j+{;_>Mvsiiq58czq}CVtaBDP*nsTF4+G8y zL_?{M)6r0YHJ%Gp1&k`;i0cL!34{7@!oV6HsdFX`yqFPNf?2RlVRmaFX16vql4TNY zmMLLm84NA2F00^#gz3r~F}8)X(-0(P%qp3tO~$rzYE~7l=$9dML$?fpqRlvz>L49m zM%P1V+d0bL+Du{CRavGsfV^>#;Y^l6846dmH~W(xznT13+lRM5 z`{&#}!5bFe_SEAyue}T3;(zW0&c@0!nB2JMk?^|pFTVE13*P{ohUg97xu2GaI*?BNf{YYd#G--(i!5Lw6tLr#%HnTRkqXvr_E zKt8y@)0>Iwi-%Mo4K7aGAXIFLDV1o1G6hXm>Tn&Ymls)9;Z>wrZnj*7w&Ja1n|zgJ ztFj$$C%1C9OSj28EI&Z^TfU_{gC13Wf}WH1Dlem-D{rFTDSt(79rvGRR{^Iy~3Pdg!<5`BWkLdaI!fM#6~}g3uY9}ju8Q@Fkd1FHY=6! z---inz#WetkE1fWw}9d&F-nnSxzM6`EfxiMs%iZ%C<+MAY(KRqDHaZ4q0EMD`EnwW zuyk68r5A_yCxlLc2mmE48cE=M>qoz(gnEXW@b@)@0%uM)7#90!YkpVdb|KSjzn<+R zVMp0y%ziZVPl}kEmp$be|2Vn+r>6^Z1M$BfOm5_3eK)UenZJeHcHvDJ=Eo=Ja3295 z%mK~v{lqe>6-Hxgp?A8q)+<`FgW09ln71@qX&vdk+&alyCoQtBv3{ZaGs`g~T3R$N zI<9DX(azF`OQn%{BL`KNPO?tQs~t2yZ~mZWX+_?OLCZ=zOW!Q|An)VoCq*v5Pt58i zdwYr_9*J=$RYOA=Z|X!xL2ZygLA)-Z3XzCYsm+hr6kk?(VYxEER#VA1DyDyav!G5X z3JLVKG#|8oCSQ@keG?*8LdYd4K1{wV$21>S?azH%FiU z)r&8^NXOe%srQ8~AnjzMzWpo6+H5Mk>j#FhO`1z7q@m&V6+jLh*`4U-?49UA;c4!N z_JdrH{TKF==ydi!vRw{$wktcED-nxbB@r!mvc1l`Fsm-OMp&19jr$JwgWLm-2P3=j z<7Bt%cMcEoqLAuULp(h^ZC`OEQxvq~O4W%lANJ(fxNr_{QDe@_QH-8#5X$wNwh#Sc zl(7{;q08~06YCrI681WonR>{3-R6t4iB+5!(U=#uP%1hUnN6uuWbVW{Al9c8{upRzP2aWLIa3hlIG zyVWEOtJ&eLId9){A=>`IHAon0l;K9pSvx7YV+?6x=0n2K*en;P&Y7?9YszL+|? zFOMB)xX(v#Z|_qpMg7K}Z0xqzYMfHY#w?nZ`z;>JULWM<^;WS9ymfwGfWG|qy4Aj2Y0KiJTPVWf*<$#q)~e(J;ITKxRm$wzJw4qZHgyOLY_R+8MSlULAQ@(6IE ze6}Y$H=)Fwi}*$I%QDY4H~TzU6&3tgc@lrQyv6y1@PSjZA-W0g@IKMv9bmKL9k7AG zu-WOZ^Tvp2VnouXSQ6H>bOA*_#ga5=KCJm>`v^VMsnf^#zIF%JfjWCkQ?O#5!KrA* z`i*YIqnK7aN_r!f!W$b>bYmVRZOo%IWYNx@27fHZ+&L?Al1 zqIQZ*XLj++URasD@cOTlU$nk3`Pu8tJT2jy$3K{WlegP{n%+Qch`A0k)NTT{bo})82otcI05uOalS*?r zYCM`L4`(Z0Cuij%L8n`^ik^fUM&g7`bFx_=P{-q;w?cvAp`c1{Y|@d2v?Xw5mMb;u)k$t3Xqa&{N&7S70ZQ>UDHrLhOtFvyg?{MAezSDEN_kLx!^@w`db;$dX^1k<<_CEDV`^r1sOk2MnJofDlmgG>=jS3;i}b*E1i8s&7_RF~TgGHTH4@f5lhFFZJHPM59F zs(=o!c<4c#R*@!vB5H(`MV^n4NH3}0?*xn_yuD<8!dmT4xXDuY^KRnq#p4e+aXzXI zD>R7VETP$k+Gg3f*|wC8Km&~LE(5I+(&!0m*8;*0A*cyG52#8$Hm%DsZ(3KNe~;&3edj>x18UMxA2$~ky{Wek zjH*=fM^!pt9NM2%>B`s7M6IVh1DF+MBk=)$DDElJWuj5+#2-U;ri;{iIr45MJlZ=8O9t*nH!)TgbW#zuYsveje=u z>$wl{Wx~rqf*pz2Ytr8&vR8UhBA?3m+wvnaX_vntlLc}UC=4K5SUDs=E%oBri5$#* z4myMtRbfQ9DkP1Tix6VxFWG*uO`n$o?oan}fsofnF$Yp0J2VWv47x$vCiugfHqo{1!04Goz9{6#^4$`aB*gLh zo>S@j8qutTgsi;9WK@~w?i%YTmjCTm(d3u5iYjB5WOAqm{rJEtCQ_YFZxW@4aR84h zchNI9sN2oGb@5%&)i+x>^lWm>vwdua=YE7lC)7&i%DUwet1%V>kii1z{^Rp{sbq)U z#hCQRJroeA^+_>>Z2B3*P8(-In8+5Z1IZSmSVeYZ4ja3zP`3l@tQ-~Tv(5U#hlzoU zJp=3q*@*y0kE$n69;Gv(>2M4c z2uN^5hLK>XAOk4d<~rxn)d3>YPfNkD>u{*FotC*ffoUBgyJ0jLwolMNrW>~3W>L&- zWQt;*cB^O!+YMH1Jp|QuU@OEWy>N4~d9Tb9eb4Jcz;ks-bGE8j?Im^3X~Hsne?HmW z?V`hM5IQJy(EvLznsGgN3S~T=ZUCMKNK-R@A@$6efqFi4W&QB7oH>gZ{RFt(1)$hB z5J|l;T0im324TgSo8IlI&-OYL8fe&9ynZ0B(oven>@0vQI);y8;QqnjJJ^)L=oC5I z^sXNhorl@MXL+uu3uG$S{kQ;MG1M0vftO<8aI$Vsa*=T8!l&PwGW&bn#V;oDuU;6z zpSqyYUUx6>k`m~30=gq%!-VH@1SGQqddQFVOC)Vu&YAp!OY;xz-?mde|0O$R@vH2V z-)qnVbTs#mwm1E62LI~$yZ`UO zzp-5vK}{%gmU)K?)y{-4-8oxWCA^vaPyP$lre-;Kk)SYLXH~Ky4r^e*j)*|UOkN;8 z5u0BZC^%`wsx@I}{x=py1Stwfr1_wINuwykhq*_f=WGh{tX9sh!?Ktent`6)X z=2EU~OqjaLsoJ4itn%iWoyMZAewtQ!`p8Ajuv7}xafO6@^&aM=c`B*7nc0@Hnb|#H zGxKMcZe|X!Nnx+PnK@_jzym)sHZwE7(`?^FI>?k_^&@{Ww>0NP^|O6)NS2DC`9+-9 z-#^oV2mh$2ZSV3un-a-Se{y6UsaWu>EzkUL^Ok3XLw*0ed)D2rv?o7FzVQQm@AC`p zIR5I%myRRog?$JK_3ZpB2U$^*jc~?s-%7@*$(9U%Ap_?7_sXP=$V5JEO=illf_X|N zL=(-^g!ul0b?7+oQ)ACX+Oz)@L7&;IHdApmP2m*t(0n0%dcMOfhUp_Y4CNL(oT{$Y z^ca9X4$$N06ZQS0kA9|mnL1QmEw8aGQ*YyTsxJ#KiAUA5s#O;1aUGehuCaEh|FHeT z{tt(RxAAt~!C4hhym_15A&U~o&jK%tHVGq?-pPkF$p#v{jc^?G%VP5k8gKK$Tb3Lc z19C)8>?N%U3zBUgCO~u{hd_eD*qU(LG}I(_;+}2r+#2q!aCb_RC>q8?X+PV zeO8^)35nbwb%MhGZRZ=m*AHY3f`k9S8J%&T0lr-oI#Ycb7&-h?ejTUsDlqK0VG+rW zxm1rGa~uOPR=>lbm}cbZqf~e&CrgJ?XX!EV%whz$4V=-v^e>9(2_t!&Cy%2iQF5gG zH)PRUPxpQAkw4=9eqa*tEV=^)A4yImi}Ae&w|?^u%9A&M#(PkB4He>5iBQ-Z&LYc- z@RhO$ySah_l;`%7LX^W+(d(Vo7hG~Id3mUSgA0>wu(AGZ{*|y}squ(H*MMn0pI;h6 z=uu*lnB{fzRL^j6)5(UrlP4ekLvmM7H=g~cT^QdJ+mpBaK+7#JY|R_J9g}Zee|8+H zeg^lQYHL4;ul&OsxV>j}?{|i_cFve{^Q_x;9ZP=J**FTjXd54b%XV}eai}m6AXP{q zRZCF|x&iG${KF9bFwf2xKHtzlCnjM;1jXRc@#DwoyH6$G#y7#c3YxiJ;gIySNL7#+ z=BhviQ7}!6g9jvzmd4CNda@702>-CvIJ20YB|=ZeJCmu1=$UwR<>SEd*$anPj^vIX z-*iW8MzHY;x}J!8$y%}j%3PWVwvtwk%)m1s%P1ltp_T61%rl9uH#CKWcGWSBhUaGe)a@>dSSMIkyM|y3)w7%l_mHH<4JIinEe^TF7+~#>$RvU7= zoB=xwgCdU$&T%XHqL9aaf-#laYO_)#%4pxEH`#fwO?<` zSDcNa<@$uui^I<)#MxpeW33Ys4vo8>sFxKtM97k&M={?{|G9| z9vcjKw!zTmE1k~mGCNpGzrsyo3VxL_>)7K6WLH|*2T!sqZTbF64jg^nmshE>sj#d{ zoS#=|Nkq&~olw=D9^hwc_T?Ct`>7B+icSl1Mc9dNPCoFL$A&~o3%h@x{1(3BtvAOc zKP1IC`T69b& zE^~G|`5d;~mBYkBCtL1vrkA^%Y`M$nGwgqoy1MK1QIX4Onj^93OqOu zqt{KEyKNX9cOC_bp=Y~V(N7auY}PD2Wu{nitVm|({&-b)g*2bLTvIeVQ9}0rmosSn zNVQnL2D`SgSA6Xp+PTwT!f56^T3*(pe8I(sxcJ52aW~VswCZP)cB(Bi34wjbz=3W_ zlmY!)zioZYde$lcNl~MVNlKm4r0iGzsz_GFA<^#}NL8XJIC$&R3Y8|JLKV+Gd2l1B zOrli9E2FJrgfhOGCvrnPEE>BDgIk8vudc*#3nCDgAYxP^h{FD9zj+Y#q-yaAQ zEj!_w<(cJAgcb>lEDO~IuBD#E{-uGs(8BN?{s)K}%;7k9j@6Pipo?W?bg?Y6iyf%T zifIy-ewwkNRsyDLobdLsd7j%@^E|hY%;Tiana4?eq07rss52X9J5BO&n&jh5%gfFf zrJnR&TSIULC0@*!y$eQG^v|)HE7lF^t)S^eAaet5L&GMIit>i@bVoLmX-Dbb%BUc~ zY|#pQ8y@*8p7eB2^1$;al81Kx5@-MZPdL2o!*BgM`FrvT-hhAbLh^@yekb|x{$Jw7 zKTZBCc>-79a5uJoJNYi{N5vq&y$-bHz`y9mU;Y9ebPIPcd08fIJlyT4YskM&SOCD| za@dOU3yI4C7(|LKWojj^RHoudWRg79GD}^8=ac#JV#{oGJzhap$ZIXv;12m3%N_U@ z`F6|a_#6ob?K_?5a_6j=Hjyx)4(Q#5=?1do_fYWhiJE`_jL)$9#UFgm4 zGM;G69jcCF#+0&Q_zEJ`{y{hlef5{NV^JM(K&zSQ=TLmsLz2Z(o$0#jWi7 zSmVQSB<&)WoJh#<>-6JE5b63e5a(N50A&}Ws zQVkRIqpYvkOwnfruGH-MHMdkoLy9*8h590hwwjiXUFt#h_4!V z8lIR6K%wLE$mQBR>ypTZNSoy<$2R9J%5Bd3>`yv-ogX;f2a(%m(_Buk%jI-AZ5DT! z5**#ROE!S(y5MdxyMlY z!kdg!T;EQFf|V{%%-rA{pb4n?UU0eK(jP#q&kzkj8}LNAA*3i4jj|I(nYftu2-$J$ zS69FC+Kl1_(^KbOSg>*7;Jj&n!H?W>@67uiOAZwd&HClG@4t~5|uzdH`0Xm0p?u@FR#?LgSG)A(hS;Lb%lZ%4F-@jn1>K5oPQ=z|jxSAR( z%KX@%(}bz$ZYsYSCv>~ho^t<$qF|oz&8I`{{U@z?0{u$#rN^%&O6p>69K=2=8RQ=1 z8I4DAqvg?-(e^Qp5$;hQ#qH7Dc@=JY0cLlK8v59cyT!Q6lycVtz|&Y9y==u>tt7?| zl8UV*j+lESKSmy7r72F4=kpEn66<2eeD`YH#IKdtS(_bA?#=wwGCfjlt9z^GR(^-H zL-{V>D?jIciGNxCJ^u&!kB&Fo@ADtXA2{A~mx}Bt1)Ga3P<`}jmFbmEL3dN2UmMTz zssY7iYU31AnKmvfgnU^WZxD4|oN3~!>Tyz4TvhEZx5ty##yyG^iz@M06pu$s>*97T zQxPW~rijaBSvbq@4{5dpTToy6oTltljw&3;QoZ|^l3j$rNYk58#GZsYTRow2Dnv>s z8VY)|UdUUvn++QD>pTsCcY|jd&NKkPKG1Wic0S-RXr`Pq^;}?D?R#+p0a)*Tq);=>Bw<(U!;4BchfwMb& z{wj~#=f6w_wpqpT0I?~6AutB#yDP1>?7Yh`%Fe5@Dik6VvU&XA=kbFdg$O_cCrmRp z2?Oi6^w2gsOQ0`xG2e&nNEqyaCeom}|N6gMi(o?_Dm0UO3%2vLtXfyrt&}YU$ke?;;V}mNJq9O^1$4G!4 z_pwEmp|z1DS1C^2E|`uBc4vj>C{=X21(pPkmony!y79cF%V zCLZ@tftV|2*PX+U4}NRd@u6Hd_MbhQ{7}Era?a!aK^6nQvLZkFLt@FU;GQ7)MEb-- z-jUw%kQ34g4|!gC-b40Cdpu;9w97;8mhSeD>!s^GV0!cW|E*hn-+sl^s>lEuOOzWu6x42I+2zldxyBx5{C+Rl#tV@P{fKo3S)n zhPt9Ej=LL1!eGFtE}O}vU)*445HJW;)4BtX%v1+-jX*UG9`GjP4>#bfDBT${$}fsi zUIvW4KhsLCC>>S7;qRCbf9y9uytQifph^BK7WPAcsma`jWG1uS@S{H^W-?5jmCt$! zma&(dl1_QZN$I4A9F>lGNSD;*A&*LrddNM}Js$E6=^Gx>Dz$n@licJb^W=F3rkpk_ zhrCaFC~jn6BuS*Yks;+6W^^K3I%L8Qlb}S*raKxs z?buGNrl8Yrov8~t&(&Eq<1`)Jgzn!Ec;qh&JU&CY*6dib&$iRU`+2&~->@lTQ%O~( z^fTc5(3K6w(dNulF^_(P8Lp4NK)!h4g+5U@)b|8g{KX{F-8TbD+KT?lkL6!PB3hiV z-OY6hgcC$gCc~BppXRzWt#6y z=mu=LpkWgu|0bNU+_kC|SUCn(oIR}qn-(_>-rtY*M zZ`xELefVVBN;7SENWSz{Lfe;Y64M63T>3Oi6R;cW>4kN?P$-P$%Y|D7!7mGf!~^OD z55jgU0WpDh305iN+hqU^NdTx+#;mX)KnNr_SH!(O_r z66-})_IX!p4zmXV6*MI9pUp4@0i< z^6jdu9|q@;RcB0Al`ytAB>ezP`q9<_!!zYPSU+}%T9`^=H2>C~KrC(=qoHD8q)_No|t5ZI$j!(UjilM_9VE z+5Kp@+eiK1PD}_wo`r=Vssw|V@g?+Qkkr&%vB-+R@w}!Rn8P5i=|<;@f&{{2B3WgS zAUOguA>T{JB%DJ9{IJj^92HIpyl}Zp{j5VJtVx|x7Yv!bJOvqbupSgoCUF(qV{aU4}eHFY0IiZt*}r?QSEAlu`{U)5EBZd0Tp9S_ii2T0q#~1G>?|qcy5!33B_{Rr_%nMg8byodT4$FxCJ^Htz5@h^Q zZXsQa4TCE5V* z9s>6iq*ViPoe(w!%5g8aN2x!=SpojVG%Z>$@VAiPqbni)JaCi2|8f2q)M~gk{EO71 z^nJk3NPHPd@xK+`6+Q5qC!Liqg7mOJdDr?U$7jwTs;gZa+_!nAXK6lCbyg)0juAr^~ct*)>qj=kj|1qRHaiDb9|^AKl?0ShQV zIt^Ha`1c#IgjSL#3|K}(ImLi2Xa_gOfbI4ecg&H<8=6@@LWd`5NU<<`z@CgG39EOh?FyJu!iU9)-!+$Vfz+og}z<|R@ z%zy!hk#Pnrq2-b31`Ifi{Mdj2hmp4p7;u=qhQSIgXUSa*w$iedJjh@h^M8uL4hA1! zuu98T@&bcB0J}?0GT6)F{FT93ES--T>|_2(1_$Z8afQKQ8YdoLa5jw-FJ^EqgDV(Z zz~UzuT*Ba)3?57=F}{StGAq9Uv%KQ0UN+sogTbsW@lNz4($H`;6b(b=0L@2hP!rr| zpcb?dTnE|)av=4Y08ecI(`zI6H?tT+AfyJZho6S#g5PR*zXP?irzW^JLF_GXUCCmC zyn?2{({k`_LR-OS7E662W#fG)T7v(riX60A2xbD}=SB^U>0!AIeG} zOFxZ5rK}8%kU}fO)ga$S$cLt}0qPO;%<8fJYs<5W;X*^> z;dwcPP~S#|iGg+0(`hkksuuqeNz0jrq5O55-?=x&`~|LBl(s6wUBvJ7A%P#iTW& zZMhoCwVsvnQrZ}k5mUP)u7-*selyFpC0*A+8E@3FnzpA)GZJzhjYed|m;p7<%)!KH zBf}4+Y`q0ko58o}3x(qDE~SOyk`UajKyfWvT!IyMmmW z-1pv1zF9M~XOFFK_GIOg{p*V>xdFC2p-mURlz+bWdF)Hrx>mUmCvafwSwULJbZkTM z9+gbNG-EF$W#C#m>N0c#VmWS5n*RTQ+rny+-)vSFJr{L z(D(U^?L{OIzueH|jj5NNz>&3k897$K6a~61r+Z4@!=VgKxhYK$zND7iF>jz!R~}~p z`yAj8(JCo0Q{Pj!5#&vO;zKE$)H-H$1ezNksRI=56obq6UUuvuqaCoNp?V1z@fp$~ z)+GftMhjrrCtKr{!V56C$f)TDjJgxcw4u(m)&bj&ODV#9PTt?xd_4hjl3$l|uZ@sn zD4M*T>6%urxu*bQd1$$xXVLGChL}!92*EQ4Wy|k+{OSwecvrM9W+qI=NW(_tTh4MN zUT>Zh=A1Zt*t&-zfC+kC+K830z^>*}rh3|7xz*ZXL> zGzUFFa5j!%XO!f?zO#8!M-{91i=*X)A9t`-Fg16XXk?S>bFvHknF>$K2kb0=M^*tw zKAhzYt$`Xz4ee0tFwQhS)463PjrP>JH3v|^W5Z%_UW7+|g^qe&MheI0Kzr)epe5?s zDX4i?f;$gmI7PJpxdWBZU};zH=$I4!E&n3Ju)oLztO?FAc4)GdB} z=Cq@!7#Oj_&#C2oEZp{Q!Cwpk;N|2 zvybfiB%{B0(dp(9-^_9Nnc?XzS+0^$yj81GP^q2Hf!LmO{tDPViDrR>l?2)YeYx~l zwy>mUP~dKt6D|KdK#vRA;y6iAF5nJ8&HP})tkrY*CunB3GST7N5}?C{cLfY_g+h?m zt6|dV`ICN#3A87j$CufDmz}r!UYK7+HX1wXThJK&f=5$>FqJ+um9tZD zuV8pS;>bfs{HfG{JDYwQNJnJ9ud~|>b6QQk${+88URv&nm%@VMNvwGiX1Atv2sva*Oe!rkA$xiB#yB~8tx#I0L${Hk&!Op**2^PRiK?Z~ zm|o%vy=eO1YoG}iqLq5xcA~?atZ7&CdHmbb)^`&IJ4;WTa!V2M5N7gat&|#MX6sUB zYY6!$Giiu9=g~aaAw{G7!2FFrQ_EFrZK1^@UcFoZWVQt_6^&Y2FL7tQy?60Ldw3Va z+H3f57k?=%e$Lt&N)DkFs?iCbT>hhMZL{?-$GP;o55lOWUIMo^tUYHnlW(QBDDRNm zp5Lgeosl$F6c4iYyt=#|Wh9vgOGaW9yyuu*(gxL+n)@#oMV3OW<(76Kj44Ys7+O(< zSG5PDjLD!nF39XsN^(s;`f!SRnUz*y>AY8MoZJcHQnI$i`)?GCDZC^p^Yxg87GN74 zp?Zt!-D`+7EvS!8Vf1`9%nVp=4$f-CFoboIvpxYP#fV8peWw8I9P_6PB&|)a!Z?|aNS9@67a`=< zZzChEb%UT0pDa}jO?Dq?gTSOD^%f~vtK@jy#abX|bI6GnSYhM(Mi-FbHGyD)?7*F-m-}~ zt=TGXFH|skK(0*f4&+2JGah1r0}L&7m6MV>O025NhltgI%E30)T8k^(xp~%3#9j;m ziL&U1b4;30B6Z*UsmC-xGnWfrPx>%RjS&v2+zpoZoSEUb+d}#up!8@dAGGyxpx8-3-l)mg2|qYp@dX(lu=gy9l%;(Fc@l>i7 z>jFJ&PFmcSN*b4Dh^q?}O5e8^0_eW#v;8<68C-I8wcTYR0_BVP1d8vCPnicxDyx9^ zCVNb0#?si{Q-J#v(gdBny$V4VhfhhsQR!%N2&mcg^r;ZnH)L$qlr@phW3EMO!282T zK8M2*X$R_rCE{AZ9;Tm8r$TXQ0HXEk@8pB&Z|a<=nNWvs_p~F)xCY89)JFQ&oQC7H^&`SV}Xl#1j^l9T|A@vWSw%1Oi7#Ch7>dGT%{-kj$`1}`(; z02Z8Yt?>A;@W+cX?~N(6H`yJwEGd_op3b=8QUBT<^WUcD-GF>!!gjSaElo#}s0C$8 zP@#C~v6a`gGvR{4`C?jE`@=~wA->{MUBFbye0^rASl-7D7FH4{g!t>&Vc^#I?pibGiUx%EqRr}nfzKZ`D6y!6#@fazvbMI zll)(c^qVCC-`jF2ZH%{iHG-Z^g!y@6&Bk&o8h@8dI|%$T*Jse6Zw!A|jfedft&wGd77o59feT>qiCGV5N4{yE0;H^jb? zTf@I-U9U=EWb9-otl7wK<(E{0$UYu-7y1(6_?W-|{*T4SzFk`PM)P_;a6`2zo0Ln$ z@5*9?c>+6+4gt(aDcMG{bBzsmxCZ(E2u?q8W1}Q>i*njAuRHtkNr*LAu~aDxtAWEB zs9I#1Q_@l?z233Bj|{MXpwNo{VX0(s6~kwvjdaihUUr|=GKcsb9X zlLX}s&<#NB2m7}pC`88``E4od5W8+NnQrWDtW$w8%O3ey;bu#QRUyUf*+@Z`L<7vP(1I58!x6w>Gk z#E5gae?$p^y?=kB#<_PB+wKIuSP20K$IdGea=-iJMsDv-Zn16}pp8(5pNcd=3e)Px z+j#(Xe) z45xu^L(q`7eu_XByC?n97T0L=Wt+`iLK4e?@*(G2?UAxSLkp*$E>(Y=l7KPfUiv6aGNHsP(bNhAX9& z#X!FD{xq)5F@_blPp1)EV@RhXooUD`ZbVTCs*aoDv>`)Z%9BfxG6~X-=J%R)G>tAuyi`boy_lD@K)&7l>==I zy%05NgKzg|k>@$=X4m8Wn_=Gy#MM(3I-g@hM#(E3hdVA_tdja3=3oaeSz#sSj+(d$U~ zbT4MQky6qf*_TorWA8=pXy>ABWzBDV8qr=qY9;;A{#!Ykpp;=NkxdAY;QG6<<7sty z#UC!wj(|t|@`8G}#(4?ay|VBMUs{3nA!k<^Zil@-f<1XZD6M4t9_KOI? z=s4QC>ceo==PQnwnBzQc&MilUUmB_ha@z-SW)(8~ar-GJNb$%`WKM1k7RF007p_|K zllbOK_N7NpE#|E1yG*Az*;_vnJV=s3KA!XYcQtzSob_N;Ppt&tW0-^ods{JuXY+t{ zE77R_Ot{L-QM_G($Gc}$D(AnKqin5&YnP)B?s(_cg&3;M{f!KCa!+By99zki^z3Xf zW2a3nODz(*3MTU|=mo+I&E8t`^?Mew1mry#o7J_rn47Qp^$!w=jX&NVzK8 zytP=%j4q;sUr9G%d!M+%>AKgyZc)pPO>PPN>1PbQrPhOO72ywmk6+~)M1UIJZ$x5i z>mhQ|)B65BQzRuGfS}-Sxk;Z}9@ZuvK^1qKJQOATDy;lh-vLQ~w)h9EPjp?`>sVnG zpRvgdl@1?reiJL%C`dJ??euKCaAONZKK~}}_eR<5dHvg-e{sQmN}=6uC~d7$O?yzcP50G^ObG zuO`>|CA(D?M-KNEA{S8#0m+w~rSmr%&iJ<2DD0`RKQiK^$l(@ey2(*o<9FtmpBpF7 zfBw(0-D4b2Xb2SanA9VNlxI|kx4YmLzk@b0rD_PR7Su%=_3(jM?Y!==zA!b%aO$m@ zgh!rL1>}eXfDz^=sPTb>8qW#o68j;n)|$C+&?s8W$p1APko+ag0;plWQG~v6_2$&CaJ@#raR+gyiqs z!Z5H;t`$3-$@))BNhB*rF|~TIOREofL8Q@s;TT(G?a1YC&by^wm5h6*iH^Pxaya%) zzQVn`sn+?w03!kap+NovMso15bFlv(#7N-(AeU9$>`YiCZEYOIO&pBuE$kd^?f;XN zH?THg6%+aQVHB~qFtCzSMPZe+GB9(X0=^~QDu{~Ox@t3nKtL*H00)qYgN==iik%I} zrpqerXkcYwBw}M`WkSVmde7R5h!gCx2s>T%V z7^ISe!L}b*E-xN#W;~%*S}e2iv6&vL3;AoXpK#pIUnkX`yXU=c>O*?wa5Vj^9V%vM zwRC-gBlWPRmqI@%dVKLi`{|l3wSSgj&^x$xnL}u*z=Jc}utOy`v5{6co=X`OF7I%`I9?YZA&-_D;dHXzjfXmnXPTS+a$=llZVEX_#S z*!-oIK7U}@UXCl|_*$yQBPPFhlamxM3lC0juIDu`ZURn-wgx!Qym!pfnw!Y8OcB$V zVVz(t3P*W}t1O=YTmA)$wU5~zxJ>Z51IJSiWv-47I`wGx_@9EG;>M(21RS^5M1Qqo znO|yfhg16$x(%Fl7!8~`raxuh53>G=qHZ^rzYGteZ8vASmvD&HAIh}e4q21*-mZ+% z7l_f{8`MAGzn7iqiCrrUdD=nXouf3X*)H$+-f8QQll&y_5WBWf#(YnHXga9RKzC0* z#S%pC0_yheG?XL#jb+?RLK0c; zVv0+`Cc^tt_Zxn`1s!>G5MjH|9r?Y4z&2s(aE$&8}c+w%|^w=!9m5z38LZ#0R9tmaB)%n z3xKyg4-i1b@n7Zt@*sA$|LFXy0|J3i{^|Xz`!D>{dz1Z7{;ll4+x~Bz|4)qauT9Q3 z6a7y+Z}GqMKb`;7drSX!{GYbp`u^`R{?qx_Ki7Ya^}oma-}V2E<6rnE|EKd${;#cn z`G0Z%C-C3={?q?|`rv*W$A5+Yo`>%LGWh@5g5IqD-yWrm!m4VkW@GWsl;1@Etp5MA z5pey_Is31T0KmrmPwoG*8T@bdE#M7)`~PO&KD+6tO4Y$cYRtCQ+n$li+4_2=1e;o5 z1xkvC>KH4DzlTLnr1tlf$@XO;0ffe?vH& zxY|r%XCLe#)bC?Yar9A`wZ`Hw6}(zKyL#Mud=AVnl2=Pp87@@WOD*!SaBqHGil(@x z!5Cx)r!*^bVk1*S`2s6yO}xr$oY$@vVKRijSZOWRT9*EeQ4Wokl>EZ!F`EowM6@k^ zelMEu9q6A?W&^f)-r9MLK#D8#1Lc1rp{-zLlyCkBu zHv4z(I==Z1cc48WdWTXmctgww3R7gBZr75DGfPq`Z_AcELI93no;$T`TKRE-tim75 zHJR}HSV3A&7Sq^RUgCA_5j!%|mEb1Zbv0@eJ1mt9b>n70T1!ghlAeuG1bH$;1p4s- zPQDk1q-%`|@d2gz9H{E&3jOqD*c%vjDgsgsaW-I-5p}MCSNl$3_ikVP>ASJlHm)Ob z6RrS`8-hONBH}gQMERr!oB!)J`;b&Pj1RJ2adOMIxM*u0oW&>tdvDZPkPse^rW?*hB8SHLDXfpE2$_%D3P{y38$oS!X( z_b~TLa1X@pIDL2>G*A575*pbl6J86w&m@^16XQxmN76JJA6j4p)H3t_z*!3~PY6PJ z>ozSn676U&w+85QMcF^&_sv8KcDlJzyZxS*GL>4DO33Qo=VH@;Al_izxS&`BS#PVnHT=?9vwul&&MlwVFg9@S0NK=` zxnYhmy4y;Zs5aOxh_@dy`o}lQx7XI!2yF=J!bc77p3={CH}nI2DBWl;J)+5JYR;r~ zIwp^V87L%JGwZXixAw>PSyjC=pTD^hw~@IYbZTGxy(7HSxVybmN&IA(AtL1r}1Eg_tb!;2i-xcG0GKiwpVaDeaGNUOz9Ul zh`oza+hx>++a=pY{KoE7o6URBY|(2`dTySCPQIe$oFCeK=7+B;Mv!hI;l5CTzOm3m zGy~@Sa$aF+1pUUk7#b=G3pyH5?Rd(1P%rZCq#Drmqw3fBF1+4oxJce8rZ5gvA0h;V z!=#xlXsx#;tAbV}F}n7U+#oGdkulS3_K161?^b|i{@Q)IeNG)@?u~LQkd8&Z2CtQr zmE{%sQ=?O0Npe6&*X@PI)$NtXeZbRM(EBc}JN^$XR1rw+gkz|CYT`TUy~S0k8h)K-~pH&yfa;8cYF++ zT@@^nT9`)RpI8Kgm5Yo8;i0W}-+qVq1c8c?5R(&y{17fO29RG&?2+9GxeN%~6OOR- z==7lQ<~eEGJeN%A0T{8ORloUrsGq34(Y%l@z44n!^+P=-aPNTWq2;~zt^oItg+?t; z8iojdQP+}A{5v#%?98J(b;tYmIsXQjXJjv&7kb5l`R>iMEUPvvp!5DxpHlgPj@t#)n}&FiY0a zU6Ew8M8E|(?VT+USA>J07h`h^Li18=qUnqYsg4sQQVoRtAmtXkr3W0{Fs-bRgFhsc zzWCgMD8kk8_U&-qbOwOr0NjglzcOU!KiHo#-))p9W=5Q651>tr31EU~-|fJCZ{3{u zIB^VhPN8R21Iy{z~oP_;FL00a9j_w|(HP%c<)H8K?$8o{Pnq577(HOYz zqy^DZMScV94t>6g!uID11fwrN0C-k6(pwn$jJ`0;K)ZyWNZ(h zXH2~0rUl6c{b2)$FS@c%dur0|N*--srmMFdnVKRB=2S2{P0x zALD|C=F3;r=TuQf$tNsiJwI75ji5OS7sDwcDh_NM@%oZiv%~$&vD$_8pFto}9XMfR zMs4)WbA+d6X)I~vRBdf&D*=ujSr3dLZNw6+g<)NeA}75=dmmR}BU%(2JFC$bw}{5Jsc% zAZH^jV9R$go9)JT67M}UI8=Dql{|omH;4h;#}j_=(-WTxi@H$4KW66fyF9>r1_Wmf zPJ%T*pZ4`*m_cEjqL}&(v<8gl?)(<~_%X$6s?LWh8fNWaoHhX{C968P>qCX2%tK7b z`G+z<%uo2UKw8*O&39lFqtww$wZNgm3=v3n4{*^`q#3YTsu)R^9cJZVoNj zB*oXwH?VCM{*Qn!V<^DDFSw<|#KobyqTq*q%f7)BPpU!0MGIzXWpsfZ2>U205`Azp_nJdy(lVB--2D|=7v zLzlUUSkLIQNxGm2|p(5#l9@%w$eL4;sx;uqRUk z;6v0l+2~`9qB}x(a`ErkBw1=@kZ@0Vj-^QKTG9rH*)kZ(n01T=wHxeeu<&861TiOT ztjc@A(!ogGn&Yx718(1h*FJ<&W)*DdPH6C^-aGD_*;fS<){sq_|8hI>#&950Mt;Yp zty=8#h565?*_02#SylnGzhE0jyMgBi{Ghu;LXJzEWE~G zBL2i+SY$Q+(7kQ!+uuhS4PvSyFy{3CO(CgcY|NJBOB&oW8Vkq%-cL9aHopVeGz>*$ zu-3I-sM(HzzPE70C}$j5N>ZPyckTDDBT26A)MT21z~P|!jh@T&mVMJv<~r@;=1H$2 z4bC&Wv;CJ&i&)OW2UW3T=FwF;sD%x|jA6vST@N>z#m6*Rf*#ck?+v|C@JhL(D0bO9 zm%P5Oto&mg58VyHOk-5CwFqA>I2JcXwr3?5&Cy916H@HrkW;ob%_e{mDm&uf{CI$u zjZT=LR0+L{Gk;{195Ggw!q1&kl&^MO$ZrkwtWIV$=ywl3u7Urmc~q=O?{W7 zsQES~hp$}gKyK}sqW8rGk9&8K^tkv$)X&I$CBES?NSC+MNV@N5kLE8q(^^Iop*W21 z5t4+t)v-not(upn9-;GwanZ(OAY1@Gs)g2xaV0mQuNxqS*$^k3WPYQM$TqUuroL}! z{r5Y{3_@*thfA|xEtzW>o40@EaMCTBY#QhRK095c>QA0f>(qxm@Z}yeE0c~2-=oFG zmzLMO^TJoxhhV?>AxF&DseAq$r-SmF6TX@$%UpZ?i27(}4jBJr8jtEqG}&L6d}AZh zI-q`sJbz*(>D}mXA4hcZlfk~A-8aztoP}l(5mvilEJ{C*#vPtDGod`l-2h%*O5*ae zAT4AiWJ_;P--+VwOYT%GyD76Nixb~Ov3>UAbnCXKSj`4Gujumc)g6vmXmL-eyghAW z>`Ln2an_xBUdk|!&o5blUKfuzGwQ#;%SYqne=1REU^g)9@<2X>U$3yL??u4<`OQ`) zv-_iCF2`So4$orp+*p2o@d}EMc7?}R`_)i!RA!xQ;@MU%-sBy!= z;Y1V3$AfF`=|XriPnN~Dd9(k5vi;>ig;|U-Y+U`Z(2*6Ax(TU}kz8NYwck-&DqU)I z&1g`lp1+IO-s=v)R}zx|Usp`l3+nVe-6a}V)>Mgp5L+!z zg+n;XI4GSZlW+d0_D@gCf%JW2s*vZQ-Y!D&M)f(WO@innmZo|6WFgUSs0Wf;mo1h2YXP^d*8~wkOTC1`e4$^$!!c>t?Z3`# z6T+(%Vkz~~fR(TO8Hhg&kpC)frB_5$B9Ymf7Kt-CFw6AJ`r`Ax$-m|YW6N!k&9v@ZKj86I}Q>EyiYCQ?LaguZyT+%2#grUU2Y*LzU7e z9KStwwtNoZ#poaYk z%z;Xn+x`M>VdMWu#?ub@l0)~$TN~#-k#*Cod-1h>yZ1UDfsyE)N^|XB?^1`HBR%`_ zm-$_NzSr;GQD^^Xt z*NIN$&lT6vx<6N%u=Pi6EX@ySdg-Pj{E%m;C$1mv->_=CP7_AZ7I zQQyzOnKJf26XOk8hd2~F)=N1IbNJ+;OFE|yo2Y!45#aUX0~pS72pwFQQ;;e<-%&>c zhXV=N=uuvgei_@3V6!0T)zqrcvfcSAZkExglG*MCqR{2jeKXDK^+j;Fu(a7|?Fv(O zF6nwWp@Q;CvuDtwaE=~fH4o;@>NCabF&l?eTkNpY`&%#t+cAd_?eVN&vD+Nmv3jw! zD@9TjLolW+ML>@1>=vB1^8mU)EYWids;~rU!w8)Ke5Y6!zIZaMwk^^aU}c0L4O(r z8?e@Eg-D-al~?mp$Nh5raJgBc8C3X9C0^kmwaNoUsCQd!7(qqxM8;f0lPqz&GZmqj zdO6j;sC0l{fn5a8Eco-Pa?gnPq0n{caZ7rEWN}azk!_P6r@jonoUhqf_Se-b7!_Np?v~l6S2G1QTOLHApt6?@ zy032(oZSJ`w}kIz&#&ffGD7BcS{rk7Lr!z7qTd4sM0wq$DU`mc3Oa>#Z=U}(YaMsC z9TGSonN+u-nKMHVft0%oLA^}46aL5mnAmHGPbdF^|E9QVvJyOQ=PJJz^{BrR91$#! zhH`zhxO_G#vj6KT7FW2!N2m1ltIWmT(N&9Es9RghN2NS`CX({$=xl|rU!kGWq4ttd zFAU3l3)dE22iiuqUwx=<(xCyNh+e_oE!{tguU?@2(_+L7A@eLAULwt8XUOiycW``l zdqu6YgM6{lRmWeEXqy3l2Dq7)vJcTx)BLJA?E3I*>xfev3{W{HXYlA>s^asif{W-i z){6`n==S`csXiS2sVF(ZV8c9Tg7KUFe8{(5$fj<3;BpAo`{jS#;^>;(PnAHE0hXQ@;SPt*v^ zQ;RiY5R*6!xZR6{kR_rh*^`J*lnrkDU~+Nfb?wKgPff%FHvXvP+oYWwEJsa+9J;vM zz!c+T9-Dj%B342~&-K!!(Lxl0gqbDaxyjA#mq_HR{`AGnAm_l_w|;nsf^mrIE0#eq zfnQ-A;73skj*!mR4sf@mf5F3QYFT$wj2*HNhkrh(xPtoQLJNf6d`XcrgRg#BSK@Eb zu`WYjLeAQMk-SV*wX^}W!)~_-Ne{=py*=^F-do1!_L)gnf@F7&^KNZDPH#@8O~)@5 zyi^RgG{(wX?#JpyGm}sKOQ9d{V4cSPqkrPD3Y)46ZJ^QxDQ{(tt_xjF`#SZ!3Q{pGitrk>s)M1D43~#7Sq{*m={CEy(q1 zo53jQhVnG2l&O!vZ&A&PLeM>#&&oAtymlm#s6txCdM=S^f5PP7c!_^H$~fbF#oCl> zm7Ay9rWPq!fgsL=BR6DRi*9iOC1h z(B4=~e+59UAn3G{_~EIk0t7rI?4aWc98za{5+%mNG{>!^Xrm5ndpo)42yX6vwq3-| zT$NuTh6i4<8Z{MJ;nd3L+%L3DG)Zzyk00|1=6d$o&>ZqA6UCb|*F>`7O0qM6J{Iqvj z&Pe?aOrW}EGRMabH?Hx`;o(u)y69plNBRr;t2D;4Z+1?8@(zEU7DgWx0*}ftd-_{5 z(wiHsmIUrbacy7uJyFm5iS$P1&%N;i0uW0J-$iCUj20q#SR>{zPkoV~>BKMztXkVj zCx(X`Aa#_COUfj|rxbIIgrk$ipN1duB05Vb<^4rHoEVn7aJ-POdHR*fl;umd&=-|O z5}{8-sAFvU9fR^3c7TvZgVYaTq~T7Hz}=Dtn8Azb0O&r-CD`NBP&Ev9H&(ap3^4}$ zoD(ZBLjbu=+(;e!SlEFYK^=c$E4LN~X3{+WoqR3M6Hq;Pq~kKF<5FZbB2s*;BW7y^ zb}S<4c33qH>s}K?!X&}IOGGHHZWhBv#sh#SPR0<`vnZzSBgNh7&5pVHl%LDyGJ&N2 z%y^8trW~tdf3SPl8?NJUsjhRn`J5wp+3RNC@T2!rXuJ@yJIS9t4Op%344NL4L!C$4 zv)S6@tRENtUTy96YJ7a1eDae3{8c+`nrWY^9rCGum7mu=6*%qwQQqW(TcA;hR_Po! zoSrQcZf$2x#q~>|s6ee<{Xidyg6mgcZmLB*nix(knzX$kgLqlsceAPckFly_@;i&` zL%OlP2PYz*H;&*1sj1=iJ`l^u4Zw+MZ|0pwCp3xaElQ(P9(W}aUL!Db9*HR?U^{hb zq7V@~$_{}3{1h3UcWT_I?TxnoW|hSsf?!d3l;bJbRk;KO7t4^}L5F{JK1nCH%dU?6l3Q zLfO!~5pUMjUB6mGCAgNy!b-W)bX+%dXH4(?W3l91dydRZW}_sJ=jACEv_3?Rbb(HV z?p&ko9L64*XmU7f>7Cdw;xwUC#KP%iNTB+A5Sd`oT=Bq(7tIp;@#IToV-?alWyI7VzV!Hd4&@`hI4XlX-1qaq6I(7p#T{yubgL94 zudVM3-H(*KnpF>dlq!woaE-Q+TJ34}`L!amnbs8ypff=>JADhFuF69}bdrwZo4d9B zwj3ugr-aR3Kj%< z^)e_jkTvBv5$-WKQX$0W6; zae9ASuKUzVwJDlPU<-UTY8Wd;!Y`&8PBM9{ zxXkG=>%h60mz=k&yX(Px+bd|k2KMfI30c5Y+f(HY(2K&x{$&JoPcwGK9a9~ub=Psy zQ6ZbhpQn_{Z8&c5Ylz`~^SZ!hU1l}^Gu&bFQRVhluQNs#sqt~mI_KH4f`*QJySw6B7fzs1gYh(v z<)jl;<8VjVzFjIAV{TKm{|AUFPk=p3O!)YLkrPG;C5M7pkIOWN-Z z;#%w)DI{8DAbUMb>qXIp({M=Ud{BsQ&koquac#n`lgSAurhZ%ZCZ^*|9q;hj2ze*I zC`1f-q1^Ow|FMMq<(Gjxzwvu*#PLtW?tCQ|+6w9O@U+Rz$XAZ{Wa8@w1c42n69}fz z#8mfkUrtFK#uB^-c$Q%;TOI4;s!J`1^x5Pu@`s=4cn8H$aiOoE0gG%TZGRdDYlf*r z&c$RF^zt9Jb*FW)J9DFR&vQBItCo`9mX6cLV!W-fU5!zBZN{I{2vo}ifR#T+te6S^TwWw9 zn;XuUDwF4iqm6jd8(!n@_wJwX!R@5`hQ~urRU-q$ydpN=9 zJSD2ua?2dcp2v^mU%0NA{>0|MUWe*#O~ay2m& zbMPEEAy`vu(JxMvCDthEPDFXIgruFri2X{G#Z^ZEWD7vE2@RQ{8Iv*P486^&DN9Z{ zi)V}GY45Tn#?wimQgmDXqqkvCM3>BG%R(@6w5^UU2Z4oA-ESAF`o zoMhu?m|v9+ymHWu?-dFN#+KU{zkaz780HwVZSjHfANS7-Up&2satm-N#BDVYufL4I za8_r~i0|~rMl)j>v_C-T_N%ug-P!2*L-4@7&MRJWJg4>u$?30;3s>dK9h>u_!_Ls? z9mEAG7VgHTK z#)kRKRvCmOL&@mcc-}Nyzxv!U>pp`&MY0$A_&h_k#Ihi1GdZ%iT)t8d)6CB)an&?k z3BHZRPdHnaKlg30ehWf(m-cA0+o5z>hjL-uf zpy)R0D6W*Sljm7*mBX_Z{~a_c%Cs~3I)S1LF|-~?NZeLP&xBakK?I>f+(h0d)qLIh zHr-QYk&zy!2m1>WIJUh-)*Bi^uNmjVT#^)z2S!oo{LlrXEfp>&|GfMY* zKpRY=@zsg9H8g2GA-j*Lw<&vH4b4f8_1ub2eMiu#*Whc{9_IYnAAdRXcCVeVBU_tq zwfH(`hjZsX!BX9OUH!ue5#C+o6z-dJVjh%PZ3l1eR0X3o(O)nZ|7@sQ67DHpsYi?1 zElotLX^5}Y5;c{?@cy8&cemD!9>$&pDXBVGii*p3<7WGzvBF`niV0-oxc?GhTw!T8 zesf_b-S2ep;AAY!l}!`NqAlfUDOaO}?jf$DO**sv)g2(t*BNATSp8!pJc#U<=k6{w zl6Jl_dh^bbM&Ae>ArCb;f?lK+9-I6cKq98dTpjX#Xx0?D`%ox%SmpNUa-oOihXQ&L zm>P$hFQI#oOn>Ze?rI^0B4&|-eUU~3*X&s_Pld`M6_>1TUfZwbQi}DPVzCue%d|^7 zb}rU0+d4OP7lBp-L&!LxlG)6dGN*BztA!%Uh}hjM86QM2K5$}7&~1&{H1D5|kTu)%$iIVe^-`gv)DU3^Kf;(ag4Q zjcJgmo$VZKRD9yn{mTE&0dYIiOceElor!w^&o!Al@o?f@gl3>Wje=kQ? z^^3km!Y&*%idQO8UXRe=J5<29j-qZT?lgwMil{$z;SVJH#+^H5Nu^7*XZM8_7QX;- z^~zm-;!qr-l}8{UvhL>IGYQ@(38?wj_ko7Jt5H(7q!TKEfd4Jr5zDy8U`qtK8LgbG z&!%_MrI{eIDJ>_*X8w-~Pe0WTyb7L^?8p$v=++!4NdS_$3G3sD9g?=57eWfg z6G4A)29nRkhzK|7C`~ue^HI>v&=Gl{Pk^f4Y(d+CZ%0wzw*?5*bABYwYgvVVuDa?pq9~XK?wORJ` zrJ~l#+jEIMA!<6wPb>*CH`V&V^Ipg~?Y~x`9s4KdiWrF%h=dbjk!~32M)wL&oO3_@ zb-#SLj-MrfHNr8f)->WK?Hm!4Sr><>gTrT+u%|4ZEzunyK<@0$l>)2U16bA-Qi2YkaGEl;(OX_1g55F-MHYVA{3y86TNHc`X3ph#eHia z*NZa(*H`rcUVLRnz91y2FMv&Yz7o5o{*-&~7q}Pr@vCl4Ixv^R^9te$a^&8^5yE?3 z3%9Ig4oQQq4>)QU?mj_E$o|9&n?o&^*E`pq%mIK;YO0oY*zzX0QGx_A3 zvms?4*ARkrUjS`&f6Fxg_ubKM*D$Lgw~5?q^Xl5vIkk%OWOf!vRSM2Is*tF}x(|LD zLd-jpuE-iFHPfgydoij65>QPO^#9a$9q?3s|6eHzrJ+JdTO@b53&}{!UKK+2rjVwz zP*JIQJbNpCUdxZ<3d#1))#RE_vWhY8mzs0e-*)sF zZAAP1tTaBj{)_5QSDSCwFWG*7{Otbl_rE)izPJ7O;r*c}4t-*CI^#|Ic3i#fGE?+* zUQ61jvjN%hjKH6Vlrkr2oO^kr>33%S%aczcdTG^(_^R@Dw}}sG zCPh0BYYk@@H__jpk6%6YqT{FOQ$E@k?{#^R+&wc~xnyLxS;)y75oE`#>7`>k#qvh_ zq!(sniWR2c`TYKS`sk40c<&mY-CnAD-79mU3%`{r0JCnU9uBFB`AFWrbwpmdT@5 z%zozh_{inO1@#|RIz}$aB%c|ly)bXy&iSSWJszVpg66KfKX1FpbPnVpZU^ckA9pS$m?*fFxa?&;4RG0W}jsvkeU z7=~OO7cFzQ{^s2|nnse^9&MN7F3kLLab$7iTa=_2%7j)&2TPpAlGZkkb=rZ)s2VOP!}7ed)`aeSUTY9d8Z4hAr6CS^I(UZPxpa z{gVr_FVFg-oBgZ$`{%QUQjE7nU8OV|`>s8k-=$3|anl^up7OqMfiPWh;>M~K-Jgf2 ziPWUNns8OAr^lyq$n&YqUmBNjwKD3dU(#@{jF57GddY#YfUHQG*-VUIi%9Gc+0cLdyEWU z$>5-|d^9t~;7D_h)m#3W?=q`f4NOv}!x+7xadIlVU6w z`&)G0rlcF{y<;vZq;D<%`JiX${PjO>h${|nsGTO*t2M8(BJiX4O1aDvRya?-Bj%*VZR?*uu^= ztwNw!_F>7DBTrVI8g4^sQ0#EhkTM=<)xRFO*<>jFfrn>uO2wrkR!XbBPTuNyt-iO&)al}_m4y>eeV&ympjMg? zdNJ2}Zi%y2{^U{gPZUDlienl8sDWy+;%Fb9G)9+@XGy%v2!wFzf5qVNNqeUB~fK6eB_46mHFp3 zUOQiVZpec5(M2yWOn!S><(=`yAEfw*(!T6hT}yl4%^rT{hnMU7d|mC;tMqBv7ZgM_ z9ZoCMU+kQfc_vzNb>f*-zEzhl9-dcX^s6`Y^9n!jXO9E@XR~O%&!vv$Y?%1zt@_RD z`{b{Y9X7V^KWUS{s(t43u{Q()-F4u_+^}&WS*iodCrQ{T|rO8mN$zf z<#;{LJN{(ax|plhW$ET+R!81UbWBvqm5d~Bb+p+p)HVH4O+=(jb=%IMqsAJKF2{EoP`&5Awa)Mp)SxZS3k_;}@2L9Hcm;uD@cUvGKf zy7QNr8~q9=Xnr2^KBwq=X=BQYhr=V3`nLR*%HHuyivCOYW3#x%<_Ga!M^1?JB?hH8 z*w0?jU4QeV-^tx^;wsCZ3Tq@Wgf?_lTpByhEqqeqA<>Y^Undu=DL2zT_(8F8c%szJ zr_NJ4UT!v-w<~pw+|=Rcgf~xXO&o2OH%y1T%Uj`kM4wWlj(NgIt=O?T!=s-LNgVy* z{f=w<^|fr=?F_U|2)w6l^AkL7GxhAA{9M^J?|1gtSq`ZlpkE5)LW81+c)esd7hWmekTjhLlU7Z z)f3JO9poDBPB2}mWpsXyNT$HE388wAmc{SA=^0&Sm3&Ufr@3XJ!_FHOzkI!Ib8r0A zlL&LUxG;&NeJ$p|O_}bMwWh}wTYD{&m>Bg;O&NT>Xog6H`|*p@L^2Q7Y+5H#mq6(} zY5F+f>VsZkcd1V@JuZQ^V?#H-4zj(y`o8kn&T@r^(+fJM3S}m&dLtcqQ{(*AFsZp_ zMOW+&+$>hAw-FN(4C~20kVHBVm#re1mH2bLS2F3t0?j!hy6PXzp^sZPNrcgxH^U#j zB!qt75nt#q_U!H{`)?Na4O_I1kI?V*i@*gZNt!z zJvRe2+$3d0-{gz=NVFV`CWqb#+IxzuE+V+Kbf{2)T`1?fV z5Baibw~bWV5Y12WmxeBDsuWU4cRagZ>$=mgx!dX(I!(cq`-i;^(mC<=%wXnA?DYaP2~VuI9?sWB^6f=!xkw&({aCB7Y{)l{~uS0FQH zt&!t%sidsM!z1_jpFUZ&j`XbDvByU&dDPiZ%{ixStmf)1Rt;0i?UqwW{MjjOe?#>Ksg9zDPDOXL9; zwZgAD8^^Dq&hD{er0*k_)2W)K>E14@61H4Bw06szzNJZhmn8Zk*J~fwmue9z?h?3? z*j+SE^KI3|3TH~=$j-WQ*Xz4$vs^#9zti7_oYEh^{`q6;^%s88^MjnK{XaG+7506) z>}vR8$jLpFqjq)AkI4jGkS#d4HfQ{|=Qr{!K7B2>cp3OqPMc(<-iqE21#0tR z8iuRAihWV#ntMDw>wr>hotIN*jhIVdcBX(+);y)gmhSg$k5%c1Toc|p7G5O#Dh5oM zT-H~*_t%N#x_kSKCX1FfMvW_d(=DQ4&eY8R?enlPdyn-AQUBhYxi61x3BFE~u_^5M z7+gu!c2nw3U1DI9ciqx}qMlSRb7xtBx@WpXp#g0n)ke_e?46YJJFC{~tvgXISR1w1 zr9<-Q5!b*Q(-%}Np9ki6vQ@J@Mh@by`WjC3cbpT9r5 zNN+u4ET9xm-@Z67CT48DapU;Dpv?yQm#A0CT@jrbk?-3w$j?HK9``q_+CRQ^K0RCX zcVp10$l`@XcR z-imACZ=-3=PLfSchh5sAw|0cemAbO3d<~AYi^e@J{&x9G-{t*IS5NjHmNhLm$Ul8@ z$w#uvhc_a{?y;*!Zt4p)THdok>BNm=zm9)5ZoDQ1V9&=}U)f!KCA+U-pQwiP1;a_- zR84aX(mEV^b*yqGR9&%uvX>rGkr8wtAR&CIr?8i8!_vLVC*70#a?D6ob!CF@_c&T4 z`row`v9lPZl)jD9(NL>ZW_CA5$74=(iohbDJk8Lvk5eDcDigdm^Wn2OK997njp!a_ zP#-gW&l`{IaUUjW+eGJ!)n3rNpK#GS%&Mf(ZbYi6ymG`V)4k&qtcGqBsc>mDY4;mz zGN*O_-ZQ}#i>!s;RDTnjeIR4UXD0o8XjJC*FRglB5s7a_>f~e>yuBWGBck+wk^Iw2`fQ@t z!aJ7)G$*-QKHNY$u&-rk-!l2LVFzozwCecCUXZZVvbyhT{owM7iEpG%z8!j`fTZM- zy6myH!iqWK%ZAvEaCpaj@3}H7GSyYb>+r_)b26`QOMRHbls-x-x6F+@FFkYaiaT|C z>s%MspARc*E-19SKO;BNVZsHe`u+M#ScmOgdYr1$drWB#GnRz}`pn+%Vvvy2S_i%&G9ZU6RpT1ty_`G(`?9JBM7MHFXT0d^6YADFfG*oQwde_nA z`_AWm*D=KjIabqa^Kz`8Hi66MymdK#UMCf$#6C4H54_|Pm2tIEtwW(~N6WsG!G+bw z%Prq3o9VmNm-;T7Ue$6TVCDkDZfeT$7Mg8l>c%oz<&(-QblQKG*UDC3E2@)gG=JLh zMb4w_R?zaGApL;G6E<$}VE zWpU-SvrbvZ?k$^PJtK9Vw_p3alwYZ~3bu`PPjzi#HPnhctW#FFUh zUb$3Im|AF+;o~aSelTsq!@C}BU5D%Fe$lxAmKC3#PcEJDQC38=o_w74k4j)&y-ku>l z##$irZ1Vby8T-~fYshs?j&6)kn|tS0zFO%y6}1^IpWCtunl`m{DcH;k6o1|9Q|35* ziBGuQrlvYGxu8qBIcHB!R;vr78+SiWj~`16z2EWdQN zy|+A4%zEdM?7I8qG%qz!Am_HCu65NDLBWnL$w?*T?fSM)o0@1;rOdNV9bsRTnhF}N zn@*e#3d*^kbY*VwD!B=d^Tg7xWO^BHwh@1Ok{<9;HYoSx$K?`ELvC+4(cQh*NRoLn zq^UQbcFs%Ec=mhk`#DPsqKtBmXKRa(_kJ;nls2ku`8tN6pfxom=IOc9T1RY_GuG$q zurgmB%7{E;QB`%oGRH%BtwnE|&pM@y zF`L?wm5khuO+EY8+sA%s4ZSofTl1JnMTgi`<%ISL!G$J|bw!i?hf*Kz*z+}SyKm^k zHqXUZ0;>`!LmN}iGm_$5cRoIMHQ?>_W7A{46ulcQX%KiSXva-wrz=TkQ`Z~Znzw{< zcY~LDlRfp$t!o?gT6^jca-T)+xlP)7Qqh)k6|K&tl^xASIyK~#t zSza5q$iAd>g_-436La!%^=hv(Ao4sQh`T@w}+h9Azat0iRm4S9|W7-%#>!`a12t z@{e05y6({m&xlWcA<=zrMx1D>QiF$^<4H5K^0v*hYZpGaeD=wwCrVF5$4oi4azXmf z@Y&i6G)DG@v>r~F5-<4cgG^g^tJVSy;og_5O7V*ATQ`jEDGA{Er=qW{%5P`&e|&v* zM}hW8JVniI{-^Vs9Nrt>`qkQa@M2!<@+_a|BPvqc@Z+ydgR~O zo&J=hYDbZ;vd+F5HC34HOpF3%y&KH)W`{>+YE&1Z9GU+qcBaj2p%3CZ#N&tS|g_dtAxEu>!6w z=er*k1oWP2j^8F|K2Kr+`SPxb3&=B$wwzO4f8>y>p;LQ;b^1gfR=gu4%0*lLu0&{t zeAl*flW&TSu^=VPt`r_KZ4C1r`Q5=A{^EHb6jYrR^Vc4jCYHQKqHyHYq1$&>Ef5LV zC=o2D{L;ZTkFN`yEY?1$*mi$du9VJ#UBAXW+a;f1w0phoZmkyrn}&7BY46&+ zYx9Q6F7hO=E2omm#*FwXKym0Derx)ZU|rYJ6F4tTijx~x#4tk8Mct1{apFI*Gb{>pF4-rSlNKS@<9$)^W| zFYFW{IR~{^2u{k@Ip)=@7A1ZpaD0lnywCRNd7nkHCp;OW241b|)etwKU=ys(*vi4-2Y1`KPY1S9Q z#Y*E2I*wZ0mq5PtbhPLi_0BD=Q6Y;)D}D(`SC~9>h@790J9T`okATlk%O)YEi=&o% zP8Rc=ykyEN-|fe31ZGDRNUvKvxzcDv!H_h^3F;%n=0Dt)@+ht(E+Sy4)5D6PO62IP z;i`+&D6I*!utZjPPib6I>lL}EPjc?&Et|q+%Hzu2t_0F!BB#2^%xse$wl+9EKtW${ zSJ2fN6#*ZMN8CR)%=iB4tl1V_+chRQi{E^`&Oe&6=bGWO)CY!rpOp1OCL2EAoz|C_ za&WA_MT5j^<>T=R`)5z7ey=qnWKqG8X|JuiDffkTe7#4K9nLZuojh&H0qvp*)g@6a zI-8s;e@w0*Ny+UPR{Hxz!VRO@`gU?+&U!l9+Cn=}75&x}dBYt& zdXydGrUnl&o1HQ}WzsL9>eJd@WjlISs|JT^EY^$D&>fv96*YR4bo&^cozo1zh-bKW zKaw}|ueFMAy=(q@1`aPqDSe4liV!P$$sk79no5g3()Q>eQ%3G{RKis6fy=&IF zkb6P9KOJ1CwMqW&n4m*8Lf?Oyd{lV2r#vEI>uzDmN5j@m+BxP{%g08lnBp`>qT+~Q zjgN;pP#W5-S{4_&RXL-&p`*(IqrLO}=qoIGL(^f}T|KtX65^h5HtfQgs@^nLL?!u%UBu{fJ<@sMsS6g>U+D3SuBaY$x5CW* zKx*OL%;D<>-liVc!BqtX?QT&(UP;NS*82l@~UC z7kU+o(ftIey6x^m3zxRK8HVM6;mT?#|;TP1gG3AyiGX>e&u z@57f;J;ql17>?HJmD(jZ=8M*4IUUViG9zNg9GbderIp%?`UiWeW}Vs@HS~t4 zc9N}pfo$C3Og-f(vxKg>wXG0Z*wwA0)g!OpVql zoc2>S>&f`2cT;-ec6Hb*+&jE8-fike@5=GJQr41O6lWYAm3Hmr9QuoycT3Exuew`{ zeoFHwOK_W$pe)yuqCHO1;G=n0V4H%JXU&@VY9l@TqZOC7-($4J4qy5z;q*4gOj8lt z4Ou#|-W!GvJMOPbN~jQT-X!-xt-__xxYzT%&0~Ir%WsLO zi1|BjTkjSB@={B6R8@~hMf__U4RIYC=J%-9trZp(Z(~b56^cfc28(t&Rt6NR8pKCA zY5a=!Huh^-YJ9-0=yZd5vxh-gw|2z=jfyIVB%xKt@yyrhVM0o)C*Io`f8}0@_wG0G z`{Wu9znT*jpZrsg8XfeBdMa5)i?!^%RPpnk*A9x!`rYBVdPb8fcB|ihaEtY7Zq@8r zd(CeRt4hlU#lw@WbLui`J!6iq7*8{6YO5C?-ezyrWZ`=J%m(RCV)XIS@>#EZTBox|bjuh1T+Cm2i#Pr4yJXTw%`VGR{S0b?(%tzoV8 z(vorq<~-Z(WMM5daw4#ntDLk zgfd@jc=>I)x+vibzWAd8Gyf4;#zyhQu-_p+Jx+`-)~)HK z7aH_^U3WMqYm|<;`;Xq*a+5xhrE2HWReFtce;I-T>@|5;lpnQvDUI^!j#(z0R=DM0 z$5D^Zs`l+edi))cee$57YKds4ngBu-Cgi zDScjAtzKS^W8(_)+sq~N9D`#n0$h9cf`ml@ZPzC{w2!Is&<;EC>e{G)u9oZuiv;nC zZZ*bj*_UItinR|NHMP*s=&r!_SYy!%%?jxgSh*gDtRCCo9x zul!rR(zLw`uO}5!UZ1sHZmc(R2E%?!*`_w}%%G(6U(CLRZc!2a5W9QNrg^y6b&=tu zUyUkOqNnE_6gwldQ0IV1q3*j~apkQycKC$}v@*{-kRoJH-3v>+<-BQYyX^h@=4Q<7 z>cGmkWr_9=V#QNb4VRlW92!|%{`zFB`X}K-!W7}|_M_|N8U;h+=Rb-b?fUkmiC=HVNnwCWk_=Eu4yhzbqyJ+i zNgAj#$-R;!R4tCPfE*}vhft@XftH7pSEVqx6p!PmBzd^Zw}Uih(btV4Dw`)+I?m3G z*fni!;*z<&$<>-#ON4w=BF4v_d-1k2w!$ZM-tPTxKR&!ix>sLNRxTd!Te{TO_=4K# zBJn_}oW$wt5^7#heJmCP23X&_pnl2x$en^8O)hDl%BS3ULwWH0RfEfD#=1)#cLaak z>pog(F8Oom)8MSHYYVR%)r6=WK4p23wy&dI@{`8Jnt;t|t9+ln@7mG{lKKe_~+1&l!6&<5J-<7;wLPllBGHx1unUZ^b^|KvU zvgZ|hxqegs^60~QnVgq?SB`{T4|Wc_9<$+F{i+ou&#l1U(l2UVa|*luM$`S15?s$>l_jZgN;8CShVtTlL367~J{JsFMQ5cL}7 zN9FIqLmBhy&T-RcGI>Da{d&uz%p-U8BwK^;Y`CL>&f5v#q3 zYX@~7;aZRE-+^jDLjU3ViQs-JlLi0I1Xt)j=x=bnMdT`i-3wpQI*ia~s2(HK2XyVP z{RsMl{s#RH^~J3gBV_8FwHUz{2&P0CU@TUPkxYed<6=&1wHV11cH4Thyv%R%oe3c& z#-Vk>GxhT=(%w~OJ~p}%t)RGE(PEFwp6JiY$D<=tm5NuHDjgzUc`$dWo>>%q_>)I7 z8zr=NOw;mrKRndObcUp2cyHy-oq6H%wTYoqlcx-6)UA@~(BC%H=iuF7>Z)bullu~8 ztZ)6g_0zK-Wt-Jy&U-Icbq||#V{~%+4(qNNw}b?)3(Cv3f2P=Kemp<^qy52%vlFPH z>aF>GLspBvOm*o#;g$QHp((uP+J4R4thDT+>)&-p7JnbvEADde*t3GSL)Vz*ZN3oN zy{P)#*92MZ0+wG&t@@hbiArIY(so=m?P)R|n>QgZJ$quF==O;9RnLk$?Wz=F)L)+X zI>h??mLhl0+wY1`zfTAr|5o$bh@$VAQi%~w^l#Tg3WaitzrK(?w&Rlg$X_3Z-5nDq zu}WyY4gWDn+|OcOgwRA=za60HwvRt)=RRU)yq0BObc-=+b)0M9(CHP^@lC;?{fDQ@3je9e0?yXmz*Os1B-ubDQ+)R%BtsPx6w`Ob0=($SKc86v?ayz55VnxTC z%l4ux7I|2w9?ck^VUcRN^zKp()?_{7tOMh{Et-W&^F&fl2NnF{K6&id6jOV@Fl3#Knk-8@4NF2bCy{$lF2T&)=zd*d-HX5bmabh2V-sQmh8M7&^j~p zdGp@99hpZVe}e)&P}1odxIv(BDk1vTW#{(N+8hCt#F z|K6_HPsU=S!i?kFIsyysTK?*ObE)TM*OM->?`yV}S3X~LtR~{Zr`6M^98|uOxu5L5 zUF9WXubWSkgYB5iX2{bW$Vwb^fj{p|HqvkQM6o?vO)@PoQ`_P9OY_Dw$8ytaFb zqTVdC^ysT!y=b4;%{cz*TjP)QG7Fyyc%AnBF7N-@y6Nuq7fOb&)?6-Z{GC}69@=c# z#f-mQ$z+ntzyB&6NxA%9M^4SYD?dc%)|bV{f|L&*s66s<80h?SiOjgRdeP)ZMBMvEKOEDKgO`~d#IkYW!kuiJUJ>!>$KAMxU`y$>-3a1JAQ22pt@uK z^c$zer;XEZZmx2FE$=$@lud=ltdka>Htt+(Sf;0U*Kvy?eRAr$oBmT$0z6qK%=O#s z6g|H0$mooBq|Y9@M#h~Pf0}AV%Q;)UG&#j@)7+pDN>{V1q-e<;l3|4ylrNQ))Y10V|pbP zS9XPmhfn))dsL0y=c~(ao>$3s-{L<_RdSs2nP!IvWSN_rK8u~qIwPuQXzV?4dE}N= z4=lPfHfqTvD6JH_U$x!jvY)(x_^cN)@ms(HToc2_6oo?t3f1-pM3u0{iz(cgW#>|v zux-k(oAo}Pu_-2RcbBW0w%^pGk}>sz!^t6A%#STPsp09a<0EIW zQhQZt7Wv>>nVj7*YlrRl&~s3F zVcx^vsdA0XIH*;@+#Bji+tWb z9^h=-S9L-PVGSN;jIx*`bJM*uuZB?!rXJ$wYV(94MucRkH;=G0*ecaG zbDq-DIw^r~Qyv_>eU)n_1|y)jDnQSKOo&*Xo(-zCmmm-$xP}IA;N>jznyVRyWzkJEH@#UKL zuXZzZilTJ89l}cPc&wi9Jtz3(j;XrfO?BbpD>hQv8|Eq~t?QD#6#VQ!w;eiSM>`-jKwlgjFr$8~t4kER)od?olhUh%fYnckuyv+Dhxa8-l9th>%l>|E1vAi)00>r@&|p21S( zmfgbohRbe=mBz_zmBts5<*D#80%W$(3ko0tz(*=*g+Fql3IX=&xofW-bAK>-?Qu0zjuo z*>gh|XAcMH%?wb2P6x`#U{P#UEF2sIRLmg__Fv}|h;$MF)v4D7mFz)>0rIdG1AWBS z_Y5{2hL=hI{qWEWAh6-VvLDdHHa?lg#_<2A2|yN(O@K^;`NuW`it2#mRQ{i4KxLZ& zMHOCVvCRN40z`Ux-Yz~sl0cRYzRnK*&LS!%@@TPq6E}HSFTguDHe zc)9+^qk*+C@D3cj#qX8<*CSFmhl67h6j^~1z?#cBo`E9>l_t<6p~$5&pf&n7V8PBY zaY8WW?1^0mk+nX1cf6GlQegkUrM}LPLnFSDakst$_wQe$HTP5lDy|MX;BU$92ftcny}qy&+MJlRt1Ml80sp zbOF~Z1s{Sqg^#kGf@}qGc8jw(3YO||S4eg>0^3tKt^6xB>SsHc76;GaetFmg#&d4u zz|$vihi&Van~@F5bC|85H-u6=&v`q2jOPT0uWtjoNCq95xYle*k!nbC*=!7Q@bSD#2|2k>}vm zTR3+Kcg=%K{cPt#5ljI=)%p0V!P$;FD}-1a+kuzoDNNXB!5hfzOvkw75fG?i0Dc&) z^Ko?X_waR7(e?0m@^-w^Kl4JF@h~@f;UbX}m3lo#!-y z+598V!I3O@J0Q-_!M*%muw6^y0J~{sNC)0k`FW zQVrq|_=I=FdjdOyISsC`mVqmpaB!$9JPMDQV5-V3V!{y;kcg0vCy}>Gpvx{U;T?|P zP_Jn6z%gC;Y@Nq+A;$d$-xhiVIAKW<$}NOY95G;rl&3)>-U+p4s}j}8adb9Ai;&j{ZugSS&a6AK2x9{`@? z+$Dpz#jx|7K`@(t<2eZ2AZByu5ZpBnE@5ovMiEQ_fkAxy)u3#LISYD2h{d@V*dOtj zCKMb84=Q}J3dD5+#|E<*TwxUhGl8Xup9ydG)W3<#En>nE5|D^^SA563^#RE$Xar3F z$sOt&5c=`GLSNv+IM~Oq`+7{fhrWCh@i&cGiu}?-ovNXWSj#<`sYCyruu`B29rYM79T%0 zxb`EA1|6b=vmjRhX40C^FO8t9N;9wpc^>bu#WPS&OC{^fVHW0RA zAk^XyoymNTFFB|};i~LC{uNdI$p|=5#gPQbmWQA)9V2rk3L%2v8u;yn!dgWp!N~_c zf+451Kwq)LRNQ=dXAJmYrwEAQ=^sUaj}$Oo=#NA|OpQR` zL2#*f1LOk%!#26OivYGtNCc=4!HIx(QqeC0VnP9I8@Es)^Fb?dh=2{`gW1(TiU7CB zA;UfYkqEdEg%Cls0^V+mw+LXt01;qF2u>03L1tkhU_)hL34zeo$_)=7>Ep+8KG;~hwUAMgM8ho^!~BsE4&d#c4|t11nEy?zWJ_2ON_nuOKbmk2{79e&JVrwUr2bqz5d3W( z!wjCaAc+Y)1iBQ!85SR#MI$_LWB5fX@wlJN2hqhL3t*M_9{VSvJpdvuvTpSDor$6{L2@Dk)yfY3FAn+oN9{)`Q z_``BCKRj5!2)GhO=8AVB!}ktO8k)Cow*m~=fy|5$E@8k2kFGHh5VH&*0{m)>50;5j z1Vk15M-dQ@_{sbbVgpj(Mi-eY0*cHBpvPMZSOO2vj35PAbUdU0G!;bN!2=S%qy+=2 zAjS*@TSWb!4`>?0X_@d?JSNo7K(28YiL=l!h)xnxBFHW9=$%KlfZ>i&Zs2-m@(C9Z zABhsj^p40yw$nLeO9zmIBud}|LON~+S;W`o?-54SJd zpM>JD7i500pnkW-ohXC~f_H{*=D{c=147VTu&j`WZovUObP54))dF{cfgx~0fWjb; zzERae;7a(;@p?+TNv{t_*3t7jHe+q*~?U4Tr zQblGvi)AMYA3Og7Rz+qzSMKlfuZS8*V5ndPh6^BnddNH&WiTZK?fRp0Wiq^g!iftc zG1$>EN;zJ=_`#jfB!&$D($6-~IX-m3(5J!efWz7mxD;m!@sEbw?X8iK#0d%h3^N8tl`{4a(CrNME|o&w_?2iMF0VpN=Cr|>&6Mxqr30m-b#Yof9lUk5zGXK)1mN#T48i?U3cT*7Zg4vsMrNVL4aES16}=TDL6U> zho(5Xcq8@u-9Lp5Mb>YF0OZ0IJ%-#oxZDtrMS<~#1aFA28f3aC5}VMd6AdLvH?OF`)Yi$lUNN z4+@Nr;n6oH1}@195Ch&*@d1W$ih+xb{gt5)hym}tK%T~HOJcwp`ioS8nt}t`Md6Af zqws-0^05XqzoNi%BZz??<_Z-94F4mT8vfCA3LjV)hZqpV)_>ubz^NrT&&HoSQ}}`J z`fY+caR@O)hVgND@KS9s*Mwogkhu~1<^!OHlPR8YikMGv?6ILv7;=s9BW2JB*uKCA zgb8?O$qygi&%;3iG6G!#-6Ou5&^_cMcsK!+nFG(iu^S6^5BJhk8vm_(VThAT7ZV3dr1uee+qKVq)Nu z{sY~@2QNODGfpwUYgZp#?d3hPo2Y1QEWOhj0-SA508z#su64 zg15t)I1EkW(KjXrt{d3+LID&$xHAqhu;H}&S@3US09Xc2hVg@S4Tym&SqK?KjfHOJ z!7AQjK=%MB7(NI$W8RO@VV;%^Uf0hv@K`V8;(;N9#Ikz~!%0DyfHzTiFdo$Q z^N@QSM&d4@lY)2%Lic5`TxYmDR4qyucHx1s$Dg(v`=gt|1(xM=)4J2+DAeF)u6iN9DtRc^danEnK22PIT zigzA2U`*W803_~1c{f(I4IzjiRDLKpG}v%aS75Oi1`cHaJ^|-Q83C zb}`t@=5!nUpm+UobP&q8mMEd{gKHof2BQxN83)2@NR2V98g9mXtOSz;m)rwL0w2Km zV8b{i!6h{Rm4*#S0)HgS4|g{p2JU2Wg^^MCAR$rjJ(w8K42gnO_2Co)Kim~62DVaf z>;{29lI4R9;}8P^+WJon0v|;A;qLmyFbG*(VPq6OFi75Fz+gxe46B9{1E0+lObpze zIo{v$0fupkfr}>oqcz}nwc)x^f0D}}kU&mV07lLgLq_2PgXALyEV;*OT5*bj50Dx; z1>_Z>_~kN)`-Pk$%y#erL!}~g5rRBC*q`u_dnl%0&@l?)9td%sj~C{dLtxl2G-l)b z=J${ukT=`2pZ#tHQ$8Xq**Ec!+zIfHD|Dao7a&b8CWTFbd%l5eaDh!xup^tM(2fSA;3;mqdL2qek!$4gj--e zgA5*}i-L`X2oT)Ep-Bjzh?Z~R@8V+S=Lhi;eq}23J17!_VrI?!yj=_()_}LsVNPDf z1bs&WIzHzh?BE^n!l?io5t6(Oc$Fo@azq+`{u36P2tpn56A>MXGegVsU>8KlC^81U zplA>To&vr73z`P{R5yAEfu0Uy7X(XzmMTHdL(l_4^uP=~8$q9{M@5Fdrv+66R9LtR zJh}+7aFs_d=u#AYgcQ3VoJF^b(6uSLYk{uP(UmiLu@xZ$CZh_ByC5t>l^J(|%|#wf zr;z|6f@X|pdVwY`DAXB^pQxT;B_)xvn`XeE5ayv*5v=YHR${3Cik6$h3fYm-7lL6` z)yS9(Q5XvuMHgX}rifQWIk1`p16OoDs5Hs&**ushQUyhXj26zoN^+3l(@OAn)cOXl zX#c2?F$XYkg?S8&9zj(PToL|ak8WX)iD6e;5ekqR_V_UNWHK2QJNA$)85KPCye9G# zC731p*dXpIf`Pn|XSl$9sCda}f-rDJsY3GwGMYz{(Z?ysXl+Rtw}s1agXfL<{N zhxxaGE8^x5G_Vwznxi`X^^wkOkn zMfd8lV*vCjLO~y(#P+3;-D1dxA-Y9D_tLO!x`8VqT`XNguOiqYnu4y+2d=18Q1hpt z_D?|_00s2`SPG2>9T6<}3|tZIz(UYpUPWw0Y}t0cke7F}hb-vb+5sZOw|Rq@@8KK( ztO@q;=u@xgF)nt11;QbCi}gD24qa9DF<>vlK8CJCpo6!c8wiJBEbIm1P;_*2G4ykG zQLzkgF7~{4-yy@d8rQ;X9p4%0|#F> z1s7jsOY=D*DuxdJUQ2yl{XnFJKDs!|gEx@7fQfRzpr60SBE3b6NF*AA zL}CCNq_ezrJ$`&4z2d+6X^_H~j{XPVrvs@$-v_sl zKq5e*g8nFa;L1d=;P3G7;BU}9K)FaX@E`g+74$;`{Xtjwd!Rq~9?%9||8{&;XfDwF z79#%{U|w`E7mQ8@3(yF&0*GLtL!gVoLN)NLgDNOx$^tHeMx!Z_7_&*F*>l+VxWV7W z733vU3RMJ53H>Ker_q2XSUU7i-WP2HpP|^q*#;a1i0m9~ERdxE`{QV% zL);*=(ID@KyARw+Xk$R>2JSv4be_xE#$Z9-n6r(>ggiKB8~?xPcQmrhrOGDFV(=9 z@@2pg9rs-p1Qz6MW59VEu8l;rBL?t5gzr)z>@x1VG=fdj8B}Ps$8jHnM1~-?xHb}$ zD{{2anQ*yK&Ndc{C?h7EapCS`LfH*x8Gy ziswB8Opn+`C-`;-SiBJE02M_Da|TI1fi|$sg4Y+|atJ<*0Uk9Y&<4_WLVq+8^w<+8 zy%Z+2D&uTZWfAO`0n%y0TvX{qU87P7ew;xCg2RtNg)?Q&aj9@ABwQPVV3)w!pdC-# zeRQJSs5EH*mGeGTxZ(+C8<;ZjJ`%xiFsLkO{muDZ5aWq_A?61l8-jL4aNngu&voG1 zxY!mj27q_F;1UUKG`Ktl=NNP*k*72eSn+eAQK1zp=XU|Q1bS&yq91~iYQlFJ zgnW%bV-ey9$dHISM5jWlea^YiNre1`0agM8-JruId~n|di3y=URp@LScORXQTQKM} zqCaI&i8jpu%7O2XK_lcA3SjRk@&?mm!R5&SriIKdBr z)Qk|{0P6{PA`=v8!1Ibpq7mX7lSCo-P9{(e!u&vp!rKv8l@auhNuoo0ksN$sl7Qd{ zZ45%5$OLID;k#hV7N3JK!8R*lE+9X^+X9nI{AGeIRRV2bgA*?|CfF(^%mr-N5xxr^ zRw2*^!UCZ`uuLJygHBvW0gHxCc{uq8&}f7<5M~Jd0T2s;2dc#NJ`<$qg!{k}5%0r* znL{T`oO7WP*WFAiouK1PkmeBPOr;TWQ6^Ot+U4XN1FY?d-v!$%`1^pl;q4c!&Iz%W zsS1KJ{=2HgwHi~Em_IXB;U}6o=SOD}dcyDfY=DM z0hJ`k9IWjL`~&Joun!tBA7|233AqoGM$E66V5^ES7dl)(4>xBfVXuWrClU3T1{O_t zdchVKLFRNAvBxqfBrCE5bW83_Hcz`%I^f#okj55Ure@LeuzdnQOl3H>qQGcr!z19c|$ zMAkaFRDHVf!%&A~GgQpF&5%#pe zVFbaZ!P1nFw^ISL@cn@;b3$GR+6Xxpm@y&d(OATFJPm9i3cku9b@fU%>As(9`&}l\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CI TypeLower BoundUpper Bound
0Mean (σ̂1)5.43075.8110
1Mean (σ̂2)5.42465.8171
2Mean (σ̂3)5.39735.8444
3Median (σ̂1)5.62476.1013
4Median (σ̂2)5.61706.1090
5Median (σ̂3)5.58286.1432
\n", + "" + ], + "text/plain": [ + " CI Type Lower Bound Upper Bound\n", + "0 Mean (σ̂1) 5.4307 5.8110\n", + "1 Mean (σ̂2) 5.4246 5.8171\n", + "2 Mean (σ̂3) 5.3973 5.8444\n", + "3 Median (σ̂1) 5.6247 6.1013\n", + "4 Median (σ̂2) 5.6170 6.1090\n", + "5 Median (σ̂3) 5.5828 6.1432" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "n = len(Data1) # Sample size\n", + "Z = 1.96 # Critical value for 95% confidence level\n", + "\n", + "# Mean and median estimators\n", + "mean_estimator = np.mean(Data1)\n", + "median_estimator = np.median(Data1)\n", + "\n", + "# Standard deviation estimators\n", + "std_dev_estimator = np.std(Data1, ddof=1) # σ̂1\n", + "mad = np.median(np.abs(Data1 - median_estimator))\n", + "mad_estimator = mad * 1.4826 # σ̂2\n", + "q1 = np.percentile(Data1, 25)\n", + "q3 = np.percentile(Data1, 75)\n", + "iqr = q3 - q1\n", + "iqr_estimator = iqr * 0.7413 # σ̂3\n", + "\n", + "# CI for the mean\n", + "def CI_mu_mean(hat_mu, hat_sigma, n, alpha=0.05):\n", + " z_critical = norm.ppf(1 - alpha / 2) # Two-tailed Z-critical value\n", + " margin_error = z_critical * (hat_sigma / np.sqrt(n))\n", + " return hat_mu - margin_error, hat_mu + margin_error\n", + "\n", + "# CI for the median\n", + "def CI_mu_median(hat_mu, hat_sigma, n, alpha=0.05):\n", + " z_critical = norm.ppf(1 - alpha / 2)\n", + " density_at_median = 1 / (np.sqrt(2 * np.pi) * hat_sigma) # f( ̃μ)\n", + " std_error = 1 / (4 * n * density_at_median**2)**0.5 # Standard error for the median\n", + " margin_error = z_critical * std_error\n", + " return hat_mu - margin_error, hat_mu + margin_error\n", + "\n", + "ci_mean_sigma1 = CI_mu_mean(mean_estimator, std_dev_estimator, n)\n", + "ci_mean_sigma2 = CI_mu_mean(mean_estimator, mad_estimator, n)\n", + "ci_mean_sigma3 = CI_mu_mean(mean_estimator, iqr_estimator, n)\n", + "ci_median_sigma1 = CI_mu_median(median_estimator, std_dev_estimator, n)\n", + "ci_median_sigma2 = CI_mu_median(median_estimator, mad_estimator, n)\n", + "ci_median_sigma3 = CI_mu_median(median_estimator, iqr_estimator, n)\n", + "\n", + "# Prepare the results in a table, rounded to 4 decimal places\n", + "result_table = pd.DataFrame({\n", + " 'CI Type': ['Mean (σ̂1)', 'Mean (σ̂2)', 'Mean (σ̂3)', \n", + " 'Median (σ̂1)', 'Median (σ̂2)', 'Median (σ̂3)'],\n", + " 'Lower Bound': [round(ci_mean_sigma1[0], 4), round(ci_mean_sigma2[0], 4), round(ci_mean_sigma3[0], 4),\n", + " round(ci_median_sigma1[0], 4), round(ci_median_sigma2[0], 4), round(ci_median_sigma3[0], 4)],\n", + " 'Upper Bound': [round(ci_mean_sigma1[1], 4), round(ci_mean_sigma2[1], 4), round(ci_mean_sigma3[1], 4),\n", + " round(ci_median_sigma1[1], 4), round(ci_median_sigma2[1], 4), round(ci_median_sigma3[1], 4)]\n", + "})\n", + "\n", + "result_table" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Question 4**" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "95% Confidence Interval for σ: (np.float64(1.0191), np.float64(1.2924))\n" + ] + } + ], + "source": [ + "# Degrees of freedom\n", + "df = n - 1\n", + "\n", + "# Critical values for chi-squared distribution\n", + "alpha = 0.05\n", + "chi2_lower = chi2.ppf(alpha / 2, df)\n", + "chi2_upper = chi2.ppf(1 - alpha / 2, df)\n", + "\n", + "# Confidence interval for σ²\n", + "lower_bound_variance = (df * (std_dev_estimator ** 2)) / chi2_upper\n", + "upper_bound_variance = (df * (std_dev_estimator ** 2)) / chi2_lower\n", + "\n", + "# Confidence interval for σ (square root of variance bounds)\n", + "lower_bound_sigma = np.sqrt(lower_bound_variance)\n", + "upper_bound_sigma = np.sqrt(upper_bound_variance)\n", + "\n", + "# Print results rounded to 4 decimals\n", + "ci_sigma = (round(lower_bound_sigma, 4), round(upper_bound_sigma, 4))\n", + "print(f\"95% Confidence Interval for σ: {ci_sigma}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Question 5**" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
CI TypeLower BoundUpper Bound
0Mean (σ̂1)3.37947.8623
1Mean (σ̂2)3.30677.9350
2Mean (σ̂3)2.98528.2565
3Median (σ̂1)3.61708.1090
4Median (σ̂2)3.54418.1819
5Median (σ̂3)3.22198.5041
6IQR2.95738.2097
\n", + "
" + ], + "text/plain": [ + " CI Type Lower Bound Upper Bound\n", + "0 Mean (σ̂1) 3.3794 7.8623\n", + "1 Mean (σ̂2) 3.3067 7.9350\n", + "2 Mean (σ̂3) 2.9852 8.2565\n", + "3 Median (σ̂1) 3.6170 8.1090\n", + "4 Median (σ̂2) 3.5441 8.1819\n", + "5 Median (σ̂3) 3.2219 8.5041\n", + "6 IQR 2.9573 8.2097" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "n = len(Data1) # Sample size\n", + "Z = 1.96 # Critical value for 95% confidence level\n", + "\n", + "# Mean and median estimators\n", + "mean_estimator = np.mean(Data1)\n", + "median_estimator = np.median(Data1)\n", + "\n", + "# Standard deviation estimators\n", + "std_dev_estimator = np.std(Data1, ddof=1) # σ̂1\n", + "mad = np.median(np.abs(Data1 - median_estimator))\n", + "mad_estimator = mad * 1.4826 # σ̂2\n", + "q1 = np.percentile(Data1, 25)\n", + "q3 = np.percentile(Data1, 75)\n", + "iqr = q3 - q1\n", + "iqr_estimator = iqr * 0.7413 # σ̂3\n", + "\n", + "\n", + "def PI_mu_mean(hat_mu, hat_sigma, n, alpha=0.05):\n", + " z_critical = norm.ppf(1 - alpha / 2)\n", + " margin_error = z_critical * np.sqrt(hat_sigma**2 + (hat_sigma**2 / n))\n", + " return hat_mu - margin_error, hat_mu + margin_error\n", + "\n", + "def PI_mu_median(hat_mu, hat_sigma, n, alpha=0.05):\n", + " z_critical = norm.ppf(1 - alpha / 2)\n", + " density_at_median = 1 / (np.sqrt(2 * np.pi) * hat_sigma) # f(μ̃)\n", + " std_error = np.sqrt(1 / (4 * n * density_at_median**2) + hat_sigma**2)\n", + " margin_error = z_critical * std_error\n", + " return hat_mu - margin_error, hat_mu + margin_error\n", + "\n", + "def PI_iqr_nonparametric(q1, q3, iqr, alpha=0.05):\n", + " # Critical Z-value\n", + " z_critical = norm.ppf(1 - alpha / 2)\n", + " # Inverse CDF of the normal distribution at 0.75\n", + " phi_inv_3_4 = norm.ppf(0.75)\n", + " # Delta calculation\n", + " delta = 0.5 * ((z_critical / phi_inv_3_4) - 1)\n", + " # Prediction interval\n", + " lower_bound = q1 - delta * iqr\n", + " upper_bound = q3 + delta * iqr\n", + " return lower_bound, upper_bound\n", + "\n", + "pi_mean_sigma1 = PI_mu_mean(mean_estimator, std_dev_estimator, n)\n", + "pi_mean_sigma2 = PI_mu_mean(mean_estimator, mad_estimator, n)\n", + "pi_mean_sigma3 = PI_mu_mean(mean_estimator, iqr_estimator, n)\n", + "pi_median_sigma1 = PI_mu_median(median_estimator, std_dev_estimator, n)\n", + "pi_median_sigma2 = PI_mu_median(median_estimator, mad_estimator, n)\n", + "pi_median_sigma3 = PI_mu_median(median_estimator, iqr_estimator, n)\n", + "\n", + "pi_iqr = PI_iqr_nonparametric(q1, q3, iqr)\n", + "\n", + "# Prepare the results in a table, rounded to 4 decimal places\n", + "result_table = pd.DataFrame({\n", + " 'CI Type': ['Mean (σ̂1)', 'Mean (σ̂2)', 'Mean (σ̂3)', \n", + " 'Median (σ̂1)', 'Median (σ̂2)', 'Median (σ̂3)',\n", + " 'IQR'],\n", + " 'Lower Bound': [round(pi_mean_sigma1[0], 4), round(pi_mean_sigma2[0], 4), round(pi_mean_sigma3[0], 4),\n", + " round(pi_median_sigma1[0], 4), round(pi_median_sigma2[0], 4), round(pi_median_sigma3[0], 4),\n", + " round(pi_iqr[0], 4)],\n", + " 'Upper Bound': [round(pi_mean_sigma1[1], 4), round(pi_mean_sigma2[1], 4), round(pi_mean_sigma3[1], 4),\n", + " round(pi_median_sigma1[1], 4), round(pi_median_sigma2[1], 4), round(pi_median_sigma3[1], 4),\n", + " round(pi_iqr[1], 4)]\n", + "})\n", + "\n", + "result_table" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Question 6**" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAKyCAYAAAAEvm1SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU5dfG8e+mNxJaQieEAKF3QaT3jqJ0CyACgiiKiq+gFEVR9Idgo1gAxQqKioI0AQERkN5r6C0ESWgJSXbeP5ZdsySB9EnC/bmuvXYy9czszm5y8jznsRiGYSAiIiIiIiIiIpKNXMwOQERERERERERE7j5KSomIiIiIiIiISLZTUkpERERERERERLKdklIiIiIiIiIiIpLtlJQSEREREREREZFsp6SUiIiIiIiIiIhkOyWlREREREREREQk2ykpJSIiIiIiIiIi2U5JKRERERERERERyXZKSomIpFGZMmWwWCzMnj072eURERHUrVsXi8VClSpVOHXqFACrVq3CYrE4Pdzd3SlYsCAVKlSgW7duTJkyhfPnz6d47KNHjybZR0qPo0ePZtk1sLt06RJPPfUUwcHBeHh4YLFYaNas2R23mz17NhaLhTJlyqT6WPbzSs5ff/1FmzZtKFiwIC4uLrd9fTIq8WuQHdf4TnGk5Rra3e5a5mQbNmxgyJAhVKlShfz58+Ph4UFQUBBNmzZlwoQJHD9+3OwQOXXqFI8++ijFixfHzc0Ni8VCv379AOjXr1+63pv2+8W+H7GZO3cu9evXx9fXF39/fypVqsSgQYNYv359uveZ0mesr68vlSpVYtiwYYSHh2fqeWREs2bNsFgsrFq1yml+et9r6ZEb3p+Jv38lbezXLjXf7SIi6eFmdgAiInnJiRMnaN26Nfv376devXosWrSIQoUKJVmvb9++ABiGQXR0NCdOnOCXX37hhx9+YOTIkbz00kuMGTMGd3f3FI/10EMP4efnl+Ly2y3LLIMGDWLevHmUKVOGBx98EC8vLypWrJjlx03s9OnTdOzYkaioKBo1akSZMmVwcXGhXLly2RqHZJ1r167xxBNP8M033wBQtGhRGjVqREBAABcuXGDjxo38+eefvP7663z33Xc88MADpsRpGAYPPvggGzdupHLlyjRv3hx3d3caNWpkSjx52auvvsqECROwWCw0bdqUokWLsmfPHj755BNu3LhBgwYNMnyMxJ+xp06dYsOGDXz00UfMmTOHRYsW0bhx40w4k5zt6NGjhISEEBwcbGoSPifq168fc+bMYdasWTk6ISciktMpKSUikkn2799P69atOXHiBK1atWLBggUpJoaS++/1pUuX+PDDD3nttdeYMGECBw8e5JtvvknxP7vvvvtuulrJZJa4uDgWLFiAl5cX27dvx9/fP0uPt3fv3mTnL126lEuXLtGnTx+++uqrLI1Bsl9cXBxt27Zl7dq1FCtWjOnTp9OlSxendeLj41mwYAGjRo0y9Q/nY8eOsXHjRkqXLs327dtxc3P+NWvixIn83//9H8WKFTMtxrzg5MmTTJw4ETc3N5YsWUKLFi0cy3bv3s2OHTsy5Ti3fsaeOXOGDh06sG3bNvr27cuBAweSvMY5RXa+17p27cq9995LQEBAlh9LRETyHnXfExHJBFu2bKFx48acOHGChx56iN9++y3NLZXy58/PK6+8wo8//ojFYuG7775j7ty5WRZzRp05c4b4+HiKFCmS5QkpgIoVKybbCsveZat8+fJZHoNkv9dff521a9eSP39+1q1blyQhBeDm5kb37t3ZunUrTZs2NSVOEr0XQ0JCkk1WFCtWjIoVK+qP9wz6+++/SUhIoGbNmk4JKYAqVarQu3fvLDlusWLFeO+99wAIDw/nn3/+yZLjZIbsfK8FBARQsWJFJVtFRCRdlJQSEcmgP//8k+bNmxMREcHAgQP5/vvv8fDwSPf+OnXqRLdu3QCYNGlSJkZ6e/v27aN///4EBwfj6elJwYIFadmyJd9//32SdS0WC8HBwXCzdUji2iu31jbJLLfWA7HXMRk7diwA48ePd6xzawuy69ev87///Y97772X/Pnz4+XlRVhYGCNHjiQyMjJL4k1sz549jB07loYNG1KiRAk8PDwoVKgQrVq1Svb6Jvbrr7/StGlT8uXLR0BAAI0bN+bnn3++4zHXr19P+/btyZ8/P35+ftStW5fPP//8jtul9Volridz8eJFnn32WUJDQ/H09MxwDZLLly8zdepUAMaMGUNISMht1/fz86NWrVpJ5i9ZsoROnToRFBSEh4cHxYsXp2fPnikmFRLX6dm2bRsPPvgghQsXxtPTk8qVK/O///0PwzAc69vrENkTYqtXr062vtvt6vzEx8czZcoUqlWrhpeXF4GBgTz00EPs3LnzjtfpwIEDDB48mNDQULy8vAgICKBJkyYpJrXTen63+uOPP+jevTslS5bE09OTwMBA7rnnHsaOHZvseySt8d2JPeF38uRJbty4ka59pFedOnUc0/bXNXHNnWvXrjFmzBgqVaqEj49Pks+izZs38/DDD1O6dGnH52zbtm1ZtGhRisc8ceIEjz/+OMWKFcPLy4vy5cszevRorl+/nuI2d6optXnzZvr27UtISAheXl4ULFiQGjVq8OKLL3Ls2DHHPuz33K2f88l9FqfUhW3jxo306NGD4sWLO+rAde7cmWXLlt0x9vDwcB599FGKFi2Kp6cnoaGhvPLKK8TGxqZ47mllrxN59OhRVq5cSZs2bShQoADe3t7Url2bL774wml9+/0+Z84cAPr37+90XcaNG+e0fmZ/pi5ZsgSLxUKlSpVSPKf4+HiKFi2KxWJh+/btjvkbN25k5MiR1KtXj6JFi+Lh4UGRIkXo3Lkzy5cvT/O127x5Mz179qRkyZJ4eHjg7+9P2bJleeihh1L1PSUiArb6ByIikgbBwcEGYMyaNctYuHCh4eXlZQDGSy+9dNvtVq5caQBGaj56f/75Z8e6Z86cccwPDw93zA8PD8+U8zEMw/j1118d5xEWFmb06tXLaNGiheHq6moAxuOPP+60ft++fY2HHnrIAAxfX1+jb9++jsfevXvveLxZs2YZgBEcHJzqGG+9dmvWrDH69u1r1KhRwwCMGjVqOGJ4/vnnHeudOnXKqFatmgEYBQsWNFq1amV07drV8TqWKVPGOHr0aKrjSM9rMGDAAAMwKlasaLRt29bo2bOn0aBBA8PFxcUAjOeeey7Z7SZPnuw4Vr169YzevXsbdevWNQBjxIgRKV7D77//3vHaVa1a1ejdu7fRqFEjw2KxOLZL7n2Ynmtlfy07duxohISEGAUKFDC6dOlidO/e3Xj44Ycd6yW+b1LLfh9YLBbjwoULqd4usVdeecWxj4YNGxq9e/c2atasaQCGq6ur8dlnnyXZpmnTpgZg/N///Z/h4eFhVKpUyejVq5fRtGlTx3UdPny4Y/2IiAijb9++Rtu2bQ3AKFKkiNM9ERERYRg375vkrkFCQoLxwAMPGIDh4eFhtGnTxujZs6dRpkwZw8vLyxg6dKgBGH379k0S6/fff++4dytWrGh07drVaNGiheHr62sARv/+/TN8fok9/fTTjvdPzZo1jV69ehnt27c3ypYtawDGypUrMxzfnVy8eNGx/dNPP53m7W/nTvf3yZMnHct//PFHw0j02V6/fn3jnnvuMXx9fY327dsbPXv2NFq1auXYdsqUKY57vmbNmka3bt2MRo0aGR4eHgZgjB8/Psnx9u7dawQFBRmAUaxYMaN79+5Ghw4dDG9vb6NBgwZGgwYNkr3uKb3XDMMwJk2a5IijQoUKRo8ePYzOnTsblSpVctrmk08+SfFzPvF70f4ZkNz7c+bMmY5j1apVy+jdu7dx3333Oa7huHHjkmxjj3348OGGv7+/ERwcbPTo0cNo1aqV4e3tbQDGAw88kIpX8z+3+/61fza9+uqrhsViMerUqWP06tXLuPfeex3bvPfee4717fd7aGioARgNGzZ0ui4LFixwrJsVn6kJCQlGyZIlDcBYv359suf7yy+/GIBRu3Ztp/ktW7Y0XFxcjGrVqhkdOnQwunfvbtSuXdtxnlOmTEnx2jVt2tRp/vLlyw13d3fH92+3bt2Mrl27GvXq1TM8PT2N+++/Pw2vkIjczZSUEhFJI/svkx07djTc3NwMwHjnnXfuuF1aklKJ//BZvny5Y35WJKXOnj1rBAQEGIAxYcIEw2q1OpZt2rTJKFCggAEYM2fOdNrOHktaEkt2mZGUshs7dqwBGGPHjk2yzGq1Gg0bNjQAY8CAAUZ0dLRjWVxcnPH8888bgNG8efNUx5Ge12DVqlXG4cOHk8zft2+f44+LDRs2OC3bvn274erqari4uBjz5s1zWjZ37lzDYrEkew3PnDlj5MuXzwCMyZMnOy1bvny5I0Fw67VM77Wyv5aA0bJlSyMqKirZa5CepNSrr75qAEbZsmVTvU1iixcvNgDDy8vLWLp0qdOyTz/91AAMd3d3Y9euXU7L7EkbwJg+fbrTshUrVhgWi8VwdXU1Tpw44bQspT/e7FJKFHz44YeOZNaePXsc8+Pi4owhQ4Y4Yrn1j/4dO3YYnp6ehpeXl/HDDz84LTt69Kjjj+E5c+Zkyvm9//77BmAUKlTI+OOPP5Kc34YNG4zjx49nOL7UGDVqlOMcXn/99TRvn5I73d/21wowjhw5Yhi3fLZXr17d6R8Jdr///rthsViMwoULG6tXr3ZatmPHDsfnwKpVq5yW3XPPPQZg9OjRw7h+/bpj/rFjxxxJkbQkpeyJXi8vL+O7775LEufu3bud3oOp+ZxPKSm1Y8cOw83NzbBYLMYXX3zhtGzRokWOZNyt96Y9dsAYPXq0ER8f71i2c+dOR0Lyr7/+SjGmW6UmKeXu7m4sXLgw2XMLCAgwrl27lmycKX2mZeVn6ujRow3AGDx4cLLH7tq1qwEYH3zwgdP8RYsWGadPn06y/l9//WX4+/sb7u7uxsmTJ52WpfS51rx5cwMw5s6dm2R/ly5dSjFhJiJyKyWlRETSyP4LrP3RtWvXVG2XlqRUTEyMY93Efzgk/oPpdo8aNWqk+nxef/11AzDq1KmT7PJ3333XAIzy5cs7zc8NSSl7UqJmzZpGXFxckuUJCQlG1apVDcDYuXNnquLI7MTgjBkzDMB48cUXneY/8cQTBmD07Nkz2e3uv//+ZK/hhAkTDMC49957k91u+PDhyV7L9F4r+2vp7u6ebOLNrkWLFkZYWJijdUlqPPnkk7c9lztp2bKlwc1WZcnp1KmTARgDBw50mm9P2jz44IPJbteuXTsDSPKHdnqTUuXKlTMAY9q0aUm2uX79ulG0aNFk/+jv2bOnARjvvvtussfbuHFjsvd2es4vLi7OCAwMNIAkCaaUpDe+O/nhhx8MPz8/47777jN8fHwMwJg4cWKa9pGSlO7v06dPGx9//LHh5+dnAEaXLl0cyxJ/tv/555/J7rd+/foGYMyfPz/Z5d9//70BGA899JBj3tq1aw1utlJKrqXgggUL0pyUsrcS/N///pem65GepJS9hWhK77Nhw4YZgNG6detkY69Tp47TP0ns7J8Lr732WqrOwUhlUiqlz4mKFSsm+9reKSmVlZ+phw4dciTLEicrDcMwzp8/b7i7uxuenp5GZGRkClckqZdfftkAjI8++shpfkqfa5UrVzYA4+LFi6k+hohIclRTSkQknZo0aQLAggULePPNNzN131ar1TGd0uh7Dz30EH379k32kVwx6JTYa0D17ds32eUDBgwA4ODBg5w+fTqNZ2Ku3377DW5eq+QKT7u4uDhex7/++itLY7ly5Qrz5s1j1KhRDBo0iH79+tGvXz9++OEHuDl6Y2L21+WRRx5Jdn8pvV727R5++OE0bZfRa1WrVi3Kli2b7L4BVqxYwb59++jatWuK62Sm+Ph41q1bBzdr1CTH/t5euXJlsss7d+6c7Hx7LZdTp05lOM5Tp05x6NAhSOG19vLyokePHknmW61WFi9eDEDPnj2T3XfdunXx8/Nj69atxMTEJFmelvPbvHkzERERFC5cOFWvYWbEl5w//viDnj17Uq1aNf744w9+++03fH19efnll3nnnXeSrF++fHksFgsHDhxI1f4TCwkJcdQJKl68OEOHDuXKlSu0atUq2VpNQUFBNG7cOMn8CxcusHHjRry9vVO85vb6a4nvLfu93K5dOwoVKpRkm/vvvz9NhczPnj3Ltm3bcHFxcbz3s5I9/jvdf2vWrCEhISHJ8k6dOiX7/ZeZ919imX2/Z+VnamhoKE2aNCEqKooFCxY4Lfvqq6+Ii4vj/vvvp2DBgkm2jYyM5IsvvmDkyJEMHDjQ8V20evVqSOa7KCX16tWDm981a9euJT4+PlXbiYjcKmeOYysikgv079+fnj17MmzYMEaPHk1CQgKvvvpqpuz7woULjunkfqkkmeHK08v+i3ZKRaTz589PwYIFuXjxIidPnqR48eIZPmZ2OXLkCACvvvrqHV+biIiILItj4cKF9O/f/7ZF1aOjo51+PnnyJNzmdUlpfnq3y+i1yoz34q0CAwMBOH/+fJq3jYyMdCQ6Ujrn0NBQuM0fm6VLl052vn20ydQmUm7H/noVLlw4xRE7k4s/MjLS8Z4pVarUHY8TGRlJiRIlnOal5fzsxa/DwsJSTJRndny3MgyDYcOGER8fz7Rp0xyFnxcvXkyHDh0YOXIkrq6ujBgxAm4Wyj927BjFixdP1+icDz30EH5+flgsFry8vChVqhQtW7akfv36ya6f0j0QHh6OYRhcv34dT0/P2x4z8b11p3vZPqhD4kLWt2MfHbJYsWLZMirfnb5b7PdfTEwMkZGRBAUFOS3PjvsvK4+X1Z+pjz/+OH/++SezZs1yGnFy1qxZcPN3lFt98sknPPfcc1y9ejXF/d76XZSSiRMnsmPHDhYvXszixYsdheGbNWvGww8/fNtC7CIiiSkpJSKSAUOHDsXV1ZUhQ4YwZswYrFarYzS4jNiyZYtjulq1ahne393K3uKsUaNGjj+AUlKlSpUsieHUqVP07NmT69evM3LkSB5++GHKlCmDn58fLi4uLF26lLZt2952tLPskNFr5e3tnekx2Uc6Cw8PJzIyMtnWIlnJxSXnNihP3JoypdZviSWXDMnK88uM+G518OBB9u7dS1BQEDVq1HDMb9y4Mb///jvt27fn+eefx9XVleHDh/Ptt98SFxfnGB0trdKa+E/pHrBfCz8/Px566KE0x3G3yu77L7OPl9Wfqd27d+fpp59mxYoVnDx5kpIlS7JlyxZ27NhBiRIlaNOmjdP6mzdvZvDgwbi6uvL222/TuXNnSpcujY+PDxaLhZkzZzJ48OBUfxcVLVqUf/75h9WrV7N8+XLWrVvHhg0bWLduHW+++SYTJ07kpZdeStW+ROTupqSUiEgG2X/JGzRoEOPGjcNqtTJ+/PgM7dM+VHqNGjWS/Pc4s5UoUYJ9+/Y5/qt7q6ioKC5evOhYNzext9C4//77eeGFF0yJYeHChVy/fp2uXbvy9ttvJ1l+8ODBZLcrUaIEhw8f5ujRo8n+wWIfjj657fbt25fi8pTm54RrdavmzZuTL18+Ll++zBdffMFzzz2X6m0LFSqEp6cnsbGxHDlyhOrVqydZx/6eN/N9bT/2hQsXuHLlSrKtpZJ7zQoXLoy3tzfXr1/n3XffpXDhwlkap70VyYEDBzAM445JnqyI79KlSwDJdvVq2LAhS5YsoV27djz77LNcu3aNDz/8kMDAQF588cUMHzsj7PeWxWLh888/T3Xyw/7eSOmeJVELttSwv4ZnzpwhKioqy1tL2T/Djhw5QtWqVZMst99/Xl5eKbYIzs2y+jPVx8eHHj168NlnnzFnzhxGjx7t6Fbat2/fJO+zefPmYRgGTz/9NCNHjkyyv5S+i27HYrHQrFkzR/fTmJgYZs+ezVNPPcWoUaPo1q3bHRNyIiI591+AIiK5yBNPPMFnn32Gi4sLr732Gq+88kq69/Xbb7856gwl94tjZrP/Mjlnzpxkl3/++edwszZLbktKtW/fHhL9Mm4Ge0IvODg4yTLDMPj666+T3a5p06Zwsz5Icr744otM3S4nXKtb+fv788wzzwDw2muvER4eftv1r1y5wtatWwFwc3OjUaNGAMnW/yHRe7t58+aZHHnqlSxZ0lE3Jrn3QmxsLPPmzUsy39XVldatWwPw/fffZ3mcdevWpXDhwkRERPDTTz/dcf2siC8sLAx3d3ciIyNZtmxZkuUNGjRg6dKlBAQEMGrUKE6fPs2cOXOypava7RQvXpzq1atz+fJlfv/991RvZ7+Xf//9d8fnSGK//PKLI1GXGkWLFqVGjRpYrVbHe/9OPDw84GaNtrSyf7fc6f5r3LhxsjWXcro7XZvs+Ex9/PHH4eb3d2xsrOMzJLk6Xrf7LoqJiXH83pERXl5ePPnkk1SvXh2r1cqOHTsyvE8RyfuUlBIRyST9+/d3/Bf8jTfe4OWXX07T9pcuXeKNN97gwQcfxDAM+vTp41QnIqsMHDgQf39/tmzZwptvvun0y/PWrVuZMGECgOmtDdLj/vvv55577mHjxo30798/2bod//77L9OnT8+yIq32uhrz58/nzJkzjvkJCQmMGTMmxQLrTz/9NK6urnz//fdJCtl+++23KSYGBgwYgJ+fH+vXr+f99993WrZq1SqmT5+e7HZZfa1atmxJxYoVk5zLnYwZM4b77ruPS5cu0ahRIxYuXJhknYSEBBYsWECdOnUcxXoBnn/+eQCmTZvGihUrnLaZPXs2v/zyC+7u7gwfPjzN55OZnn32WQDGjRvHvn37HPMTEhJ44YUXUhxgYOzYsXh4ePDiiy8yZ84cpy5zdrt27eLHH3/McIxubm6MHj0agEGDBvHnn38mWWfTpk2OOkhZEV9AQABPPPEE3CyunNJ7oWjRoo6fE78fzGT/HO3fv3+ycRuGwYYNG1i6dKljXuPGjalduzZXrlzhqaeeIjY21rHsxIkT6Wp9Y+9ePnr06GSTEHv27GHv3r2OnwMDA/Hw8ODs2bPJJsZuZ/jw4bi5ufHTTz85Wv/aLV26lBkzZgDkmJaZaVWyZEkAdu/enezy7Pj+ue+++wgLC+PgwYO89NJLREZG0qhRo2RrqNm/i+bMmcPly5cd82NiYhg6dOgdk/63evfddx11yhLbt2+fo9VVcgkwEZFb5b5/S4iI5GB9+/bF1dWVfv368dZbb5GQkMCkSZOSrGf/L6ZhGFy5coXjx4+zfft24uLicHd3Z8yYMbzyyiu37SLzwgsvpFgYGeCZZ56hdu3ad4y5SJEifPXVV3Tv3p3Ro0fz5ZdfUqtWLc6fP8/q1auJj4+nf//+DBw4MNXXIbXOnDnDvffem+Ly2rVr8/HHH6d7/y4uLvz000907NiROXPmMH/+fGrUqEHp0qW5ceMGR44cYefOnSQkJNCvX780/7e+a9eut62F8/fff9O5c2fq1KnD5s2bqVChAk2bNsXX15cNGzZw+vRpXnrppWS79dWsWZOJEycycuRIHnzwQerXr09oaCgHDx5k06ZNPPfcc7z33ntJtitevDiffPIJjzzyCMOHD+fTTz+latWqnDp1ijVr1vDss88mu11WX6vDhw9z7NgxoqKi0rSdh4cHS5YsYcCAAXz//fd06dKFYsWKUadOHfz9/YmMjGTTpk1cvHgRT09Pp6LK7du355VXXmHChAm0bt2ahg0bUrp0afbt28eWLVtwdXVl+vTpWVZPLLWeeuopli1bxsKFC6lRowbNmzenQIECbNiwgTNnzjBkyBCmTZuWZLvatWszd+5cx+hZr7zyCpUrVyYwMJCLFy+yc+dOTp48Sc+ePXnwwQczHOfw4cPZv38/06dPp2nTptSqVYuwsDCio6MdXYBXrlzp+GM9K+KbPHkyp0+f5ueff6ZLly5UqFCBypUr4+bmxs6dO9m/fz8BAQG88847TJo0ibfffhs3NzdHUsgsnTt3ZurUqTz//PN06dKFcuXKERYWRkBAABEREWzfvp3z58/z0ksvOdUC+vLLL2nWrBnffvstf/75J40aNeLatWv88ccfVK9encKFC7N+/fpUx9G1a1feeOMNXnnlFbp160bFihWpUaMG169f59ChQ+zZs4dZs2Y5Ehju7u506dKF+fPnU7NmTRo1aoSPjw8An3766W2PVa1aNT766COGDBnCo48+ynvvvUfFihU5duwYf/31F4ZhMG7cuCS1j3KLBx54gPHjx/P++++za9cuSpUqhYuLC126dKFLly5Z/plq179/f/7v//6PqVOnQqLWU8mtN3XqVLZu3UpISAiNGzfG1dWVNWvWcP36dYYPH+7YR2pMmDCBF198kYoVK1KpUiW8vb05ffq0YyS+xx57LFW/g4iIYIiISJoEBwcbgDFr1qwU1/n6668NV1dXAzBGjBhhGIZhrFy50gCcHq6urkb+/PmNcuXKGQ8++KDx3nvvGefPn09xv+Hh4Un2kdJjwYIFaTqvPXv2GH379jVKlixpuLu7G/nz5zeaN29ufPvtt7eNJTg4OE3HMQzDmDVrVqrOoWnTpo5t7PNuNXbsWAMwxo4dm+LxYmJijOnTpxvNmzc3ChUqZLi5uRlBQUFGzZo1jaeeespYsmRJqmNPy2tgd/nyZWPUqFFGWFiY4eXlZQQFBRkPPPCA8c8//zjeF4nPNbGff/7ZaNSokeHr62v4+fkZ9913nzF//vw7Xv81a9YYbdu2Nfz9/Q0fHx+jVq1axowZM257LdNzreyvZd++fW973VJz39zJ+vXrjUGDBhmVKlUy/P39DTc3N6Nw4cJGkyZNjDfeeMM4efJkststXrzY6NChg+N8ihYtanTv3t3YsGFDsus3bdrUAIyVK1cmuzyl99ydXsu+ffumeA3i4uKM//3vf0blypUNT09Po1ChQsb9999vbNu27Y7XODw83HjuueeMqlWrGr6+voaXl5cRHBxsNGvWzHjrrbeMQ4cOZcr52S1evNi4//77jSJFihju7u5GYGCgUa9ePWP8+PFGZGRkhuNLjR9//NHo3LmzUaRIEcPNzc0ICAgw7r33XmPChAlGRESEYRiGsWHDBsPHx8cAjDFjxqRqv4nv7/Dw8FRtc6fXPbGdO3cagwYNMsqXL294eXkZPj4+RtmyZY22bdsa77//vnHq1Kkk2xw7dszo16+fUaRIEcPDw8MoW7as8dJLLxlXr15N8bW83XvNuHkv9e7d2yhRooTh7u5uFCxY0KhRo4YxcuRI49ixY07rRkZGGoMHDzZKly5tuLu7J/n8uNP78++//za6detmFC1a1HBzczMKFSpkdOzY0Vi6dGmy698p9tR+5iSW+Pv3VvbPppRe79vFs2DBAqNhw4ZGvnz5DIvFkux9k1WfqXanT592/L7h6+trXL58OcV1IyIijKFDhxqhoaGGp6enUbx4ceORRx4xDh48mOJxU3p/z5071+jfv79RtWpVo2DBgoanp6cRHBxstG/f3liwYIFhtVpTFb+IiMXIKYUjRERERERERETkrqGaUiIiIiIiIiIiku2UlBIRERERERERkWynpJSIiIiIiIiIiGQ7JaVERERERERERCTbKSklIiIiIiIiIiLZTkkpERERERERERHJdm5mB5BbWK1WTp8+Tb58+bBYLGaHIyIiIiIiIiKSIxmGweXLlylevDguLim3h1JSKpVOnz5NqVKlzA5DRERERERERCRXOHHiBCVLlkxxuZJSqZQvXz64eUH9/f2z9dhWq5WIiAgCAwNvm2EUkayn+1Ek59D9KJJz6H4UyVl0T4rZoqOjKVWqlCOXkhIlpVLJ3mXP39/flKRUTEwM/v7++kARMZnuR5GcQ/ejSM6h+1EkZ9E9KTnFncof6d0pIiIiIiIiIiLZTkkpERERERERERHJdkpKiYiIiIiIiIhItlNSSkREREREREREsp2SUiIiIiIiIiIiku00+p6IiIiIiIhkuoSEBOLi4swO465ktVqJi4sjJiZGo+9JpnJzc8PV1fWOo+qlen+ZshcRERERERERwDAMzp49y6VLl8wO5a5lGAZWq5XLly9nWvJAxM7V1ZWgoCACAgIy/P5SUkpEREREREQyjT0hFRQUhI+Pj5IiJjAMg/j4eNzc3HT9JdPY31fR0dGcOXOG69evU6xYsQztU0kpERERERERyRQJCQmOhFShQoXMDueupaSUZKV8+fLh6enJhQsXCAoKwtXVNd37UudSERERERERyRT2GlI+Pj5mhyIiWcjX1xfDMDJcN05JKREREREREclUap0jkrdl1j2upJSIiIiIiIiIiGQ7JaVERERERERE7hLx8fGMHDmSUqVK4eLiwgMPPGB2SHIXU1JKRERERERE5A5mz56NxWLhn3/+cZofFRVFvXr18PLy4vfffwdg3LhxWCwWx8PHx4fSpUvTuXNnZs2aRWxsbJL99+vXz2mbxA8vL69MO4/PP/+cd955h27dujFnzhyee+65FNdt1qyZIwYXFxf8/f0JCwvj0UcfZdmyZRmK4+OPP2b27NkZ2se0adPo3r07pUuXxmKx0K9fvwztT7KfRt8TERERERERSYfo6GjatGnDjh07WLBgAe3atXNaPm3aNPz8/IiNjeXUqVMsWbKExx9/nClTpvDrr79SqlQpp/U9PT359NNPkxwnI6Ob3eqPP/6gRIkSvPfee6lav2TJkkycOBGAq1evcujQIX788Ufmzp1Ljx49mDt3Lu7u7mmO4+OPP6Zw4cIZSiS9/fbbXL58mXr16nHmzJl070fMo6SUiIiIiIiISBpdvnyZtm3bsm3bNn788Ufat2+fZJ1u3bpRuHBhx89jxozhq6++4rHHHqN79+78/fffTuu7ubnxyCOPZGnc58+fJ3/+/KlePyAgIElMb731Fs888wwff/wxZcqU4e23386CSO9s9erVjlZSfn5+psQgGaPueyIiIiIiIiJpcOXKFdq1a8eWLVv44Ycf6NixY6q3ffjhh3niiSfYsGFDhrvAJXb16lWef/55SpUqhZeXF1WqVOHdd9/FMAwAjh49isViYeXKlezevdvRLW/VqlVpPparqyvvv/8+lStX5sMPPyQqKsqxbNasWbRo0YKgoCA8PT2pXLky06ZNc9q+TJky7N69m9WrVzviaNasGQAXL17khRdeoFq1avj5+eHv70/79u3Zvn17kjiCg4M10mMup5ZSIiIiIiIiIql09epV2rdvz6ZNm5g/fz6dOnVK8z4effRRZs6cydKlS2ndurXTsgsXLiRZ38PDA39//xT3ZxgGXbp0YeXKlQwYMIAaNWrw+++/M3LkSE6fPs17771HYGAgX375JW+88QZXrlxxdMmrVKlSmuPnZmKqd+/evPrqq6xdu9aRmJs2bRpVqlShS5cuuLm5sXDhQoYOHYrVauWpp54CYMqUKTz99NP4+fkxevRoAIoUKQLAkSNH+Omnn+jevTshISGcO3eOGTNm0LRpU/bs2UPx4sXTFa/kTEpKiYiIiIiIiKRS3759OX36NPPmzaNLly7p2kfVqlUBOHz4sNP8q1evEhgYmGT9tm3bOoqoJ+eXX37hjz/+YMKECYwePRrDMBg8eDB9+vRh6tSpDBs2jNDQUB555BE+/fRTXF1dM6WbYHLnsXr1ary9vR0/Dxs2jHbt2jF58mRHUuqBBx7glVdeoXDhwkniqFatGgcOHMDF5b+OXY8++igVK1bks88+49VXX81w3JJzKCklIiIiIiIiWcowIC7O7Cj+4+4O6e31de7cOby8vJIUKU8Le/2jy5cvO8338vJi4cKFSdZPXJcqOYsWLcLV1ZVnnnnGaf6IESOYP38+ixcvZtiwYemONyXJnUfihFRUVBRxcXE0bdqUJUuWEBUVRUBAwG336enp6ZhOSEjg0qVL+Pn5ERYWxpYtWzL9HMRcSkqJiIiIiIhIloqLgzffNDuK/4waBR4e6dt2xowZjBgxgnbt2rFmzRrCwsLSvI8rV64AkC9fPqf5rq6utGrVKs37O3bsGMWLF0+yP3vXvGPHjqV5n6mR3HmsW7eOsWPHsn79eq5du+a0fmqSUlarlalTp/Lxxx8THh5OQkKCY1mhQoUy/RzEXCp0LiIiIiIiIpJKlStXZtGiRVy/fp3WrVtz4sSJNO9j165dAJQrVy4LIsw+t57H4cOHadmyJRcuXGDy5Mn89ttvLFu2jOeeew5uJpzu5M0332TEiBE0adKEuXPnsmTJEpYtW0aVKlVStb3kLmopJSIiIiIiIlnK3d3WOimncHfP2Pb16tXjp59+omPHjrRu3Zo1a9YkWwsqJV9++SXcrBWVGYKDg1m+fDmXL192arW0b98+x/LMlpCQwNdff42Pjw+NGjUCYOHChcTGxvLLL79QunRpx7orV65Msn1Ko+bNnz+f5s2b89lnnznNv3Tp0h27MUruo5ZSIiIiIiIikqUsFlt3uZzySG89qcRatmzJN998w6FDh2jXrh3R0dGp2u7rr7/m008/pUGDBrRs2TLjgQAdOnQgISGBDz/80Gn+lClTsFgstG/fPlOOY5eQkMAzzzzD3r17eeaZZxwjA7q6usLN0QDtoqKimDVrVpJ9+Pr6cunSpSTzXV1dnbYHmDdvHqdOncrUc5CcQS2lREREREQk17D/rZoZSQWRjOratSuffPIJjz/+OF26dOH333/Hy8vLsXz+/Pn4+flx48YNTp06xZIlS1i3bh01atRg3rx5SfYXHx/P3LlzUzyWr69vsss6d+5M8+bNGT16NEePHqV69eosWbKEhQsX8uyzzxIaGpruc4yKinLEdO3aNQ4dOsSPP/7I4cOH6dWrF6+//rpj3TZt2uDh4UHnzp0ZPHgwV65c4ZNPPiEoKIgzZ8447bdOnTpMmzaNCRMmUK5cOYKCgmjRogWdOnXitddeo3///tx3333s3LmTr776irJlyyaJbeHChWzfvh2AuLg4duzYwYQJEwDo0qUL1atXT/d5S/ZQUkpERERERHKcGzdg3z64cAEuXYKoKNvz5cu2li6FCkHhwrZHoUJQujTcHAhMJFv179+fixcv8sILL9C9e3cWLFjgWDZkyBC4Oape4cKFqVmzJp9//jl9+vRxGmXOLjY2lkcffTTZ44SHh6eYlHJxceGXX35hzJgxfPfdd8yaNYvg4GAmTZrECy+8kKHzO3nypCMmPz8/ihUrRoMGDZg2bRqtW7d2WjcsLIz58+fzyiuv8MILL1C0aFGGDBlCYGAgjz/+uNO6Y8aM4dixY0yaNInLly/TtGlTWrRowahRo7h69Spff/013333HbVr1+a3337j//7v/5LE9sMPPzBnzhzHz1u3bmXr1q0AlCxZUkmpXMBi3NouTpIVHR1NQEAAUVFRjqaJ2cVqtXL+/HmCgoJwcVGPSxEz6X4UyTl0P4rkHJl1PxoGnD4NmzfDrl22xFRqubpClSpQvz6UKJHuECSDYmJiCA8PJyQkxKnFkGQvwzCIj4/Hzc0txdpNIhlxp3s9tTkUtZQSERERERFTJSTAli3wzz9w7tx/8wsVgrJlISAA8ue3Pfz9ISbG1oIqMtL2fO4cnD0LO3bYHqVK2ZJTlSrZklUiIpIz5dh/K3700UeUKVMGLy8v6tevz8aNG1Nc98cff6Ru3brkz58fX19fatas6RjNwK5fv35YLBanR7t27bLhTEREREREJCVnzsDMmfDbb7bkkpsbVK8O/fvDsGHQsSM0agRVq0LJkrakVFAQVK4MjRtD167w5JMwaBDUqGFLQp04AfPnw7Rptv2LiEjOlCNbSn333XeMGDGC6dOnU79+faZMmULbtm3Zv38/QUFBSdYvWLAgo0ePpmLFinh4ePDrr7/Sv39/goKCnIbYbNeunVPV/+T68IqIiIiISNaLj4c//4S1a8FqBR8faNLElljy9k77/ooXtyWoWre2df/buNHWiurTT6FFC7jvPhVHFxHJaXJkUmry5MkMHDiQ/v37AzB9+nR+++03Pv/882SLmzVr1szp5+HDhzNnzhzWrl3rlJTy9PSkaNGi2XAGIiIiIiKSktOn4aef4Px5289VqkCHDpBCDec08fODpk2hXj1YuBD27IFly+DQIVvSKpvLw4qIyG3kuO57N27cYPPmzbRq1coxz8XFhVatWrF+/fo7bm8YBitWrGD//v00adLEadmqVasICgoiLCyMIUOGEBkZmSXnICIiIiKSJtYEuHIUzi6Hw7Ng/wcQkeh33/ircHIhRO2DhFgzI82wLVtsrZfOn7clobp3tz0yIyGVmLe3bb/3328brS883Nadb+/ezD2OiIikX45rKXXhwgUSEhIoUqSI0/wiRYqwb9++FLeLioqiRIkSxMbG4urqyscff+w0PGW7du148MEHCQkJ4fDhw4waNYr27duzfv16XJOpfhgbG0ts7H9f+NHR0XBzZBGr1ZpJZ5s6VqsVwzCy/bgikpTuR5GcQ/ej5HpXT2A59DFErIWLm7FYnZNNRuXRGIXq2364cgKXP7vY5ltcwL8yBDbCCGwMRVuDZyEzzsAhtffjunWwfLmtD13lyoajdVRW3sY1athqUf3wA5w5Y+G77ww6d4ZatbLumHcz+3vB/hDz2K+/XgfJCvZ7PKUcSWp/P8txSan0ypcvH9u2bePKlSusWLGCESNGULZsWUfXvl69ejnWrVatGtWrVyc0NJRVq1bRsmXLJPubOHEi48ePTzI/IiKCmJiYLD4bZ1arlaioKAzD0JDXIibT/SiSc+h+lFzHGo9L3EWsnrYaqa7XzhC4d5JjsWHxIMG7NAlepbC65SOWEsTc7N/meu0S+f2q4nr9CC4J1yBqF0TtwnJoOobFlctlR3EteKh5p3aH+9Ew4M8/Pdi0yQOAevVu0LjxDa5ehatXsyfGzp3hjz882b7dnW+/Nbh4MZZq1eKz5+B3kbi4OKxWK/Hx8cTH6/qaxTAMEhISALComJpkgfj4eKxWK5GRkbi7uydZfvny5VTtJ8clpQoXLoyrqyvnEo8FC5w7d+629aBcXFwoV64cADVr1mTv3r1MnDgxSb0pu7Jly1K4cGEOHTqUbFLq5ZdfZsSIEY6fo6OjKVWqFIGBgfhnc0d0q9WKxWIhMDBQv3SLmEz3o0jOoftRco3YC3D4MyyHpkGhehgNv7fNNwIxLj6Nkb8GFG4IfqG4uLg66mt4Av/91hkEZbaDYWC9fhoiN2CJWAPnVmKJ2olf8br42QcEijkHcdGQr3y2neLt7kerFX79FfbsseDrC61bG9x3n0+2xZZYnz5QoABs2mRh3TpfChZUi6nMFhMTw+XLl3Fzc8PNLcf9uXnXSS5ZIJIZ3NzccHFxoVChQnh5eSVZnty8ZPeTBbFliIeHB3Xq1GHFihU88MADcPNLbsWKFQwbNizV+7FarU7d72518uRJIiMjKVasWLLLPT09kx2dz8XFxZRffC0Wi2nHFhFnuh9Fcg7dj5KjxV6Eve/A/vch4ZptnsUFCwa43CwfUfd90tyGwa+U7RHczfZz9EFcfEuD/T448D7seRuCe0H11yBfucw7p9tI7n6Mj7d1m9u71xZely5Qq5a5rTY6drTFsnGjhYULbSPy1a5takh5iouLCxaLxfEQcxiG4bj+eh0kK9jv8ZR+D0vt72Y5LikFMGLECPr27UvdunWpV68eU6ZM4erVq47R+B577DFKlCjBxIkT4WZXu7p16xIaGkpsbCyLFi3iyy+/ZNq0aQBcuXKF8ePH89BDD1G0aFEOHz7MyJEjKVeunNPofCIiIiIiGZYQC/sm2xJDcVG2eQVqQdhwCO75X0Iqs/jf0iLq+mnAgGPfwPHvIXQAVJ8AXoGZe9w7MAz4+WdbQsrVFbp1g0qVsjWEZFks0L697XnDBvjlF9t8JaZERLJfjkxK9ezZk4iICMaMGcPZs2epWbMmv//+u6P4+fHjx52yblevXmXo0KGcPHkSb29vKlasyNy5c+nZsycArq6u7Nixgzlz5nDp0iWKFy9OmzZteP3115NtDSUiIiIikm77JsP2Ubbp/NWg+htQopMtC5IdGsyBsGdhxytwehEcmgnH50HNSRD6OFiyp2Xhn3/Czp22Vkm9e0O57GmwlSoWC7RrZ3v++29YuBACAiA01OzIRETuLhZDpfhTJTo6moCAAKKiokypKXX+/HmCgoLUPUHEZLofRXIO3Y+SY8VdgRUtIOxpKPNwtiWBknV+DfzzNFzabvu50gtQ651MP8yt9+OuXTB/vm1Z585Qp06mHzJTGIatpdTWreDjA4MGQf78ZkeVu8XExBAeHk5ISEiqa8pI5jMMg/j4eNzc3NR9T7LEne711OZQ9BuciIiIiEhGRPwFG54A4+bw1+5+0HYDhDxqbkIKIKgxtPsHak8G32BbC6osduIE/PSTbfq++3JuQoqbLaY6doTixeHaNfj+e1sdLJGcqkyZMvTr18/x86pVq7BYLKxatSrTjmGxWBg3blym7S8r9evXjzJlymTLsW699rNnz8ZisfDPP/9ky/GbNWuW4kBuuZmSUiIiIiIi6WFYYdcEWN4YDn9m6yZnl5NaJri4QcXnoPNB8Cnx3/zDs2ytujLRpUvw7be2xE5YGLRqlam7zxJubtCjB3h7w+nTsHix2RFJTmVPQtgfXl5eVKhQgWHDhiUZPT6nW7RoUY5LPI0bN87p+vr4+FC6dGk6d+7MrFmzbjuQWVrs2bOHcePGcfTo0UzZX2bKybFllRxZU0pEREREJEeLi4b1feHkzSZBZR6B4N5mR3V7LomGhj/5M2x43Fb/qsmCTBmhLzbWNtLe1atQtCg89NB/AwLmdPnz2wqxz50LmzdDiRIqfC4pe+211wgJCSEmJoa1a9cybdo0Fi1axK5du/Dx8cnWWJo0acL169fx8PBI03aLFi3io48+SjYxdf36ddzczEsVTJs2DT8/P2JjYzl16hRLlizh8ccfZ8qUKfz666+UKlXKse4nn3yC1WpN0/737NnD+PHjadasWZpaWe3fvz/LywXcLralS5dm6bHNoqSUiIiIiEhaRB+EP7tA9D5w8YB7ptkKiOcmnkHgVRSidsHv90DDb6F4xkalXrbMk/PnLfj7Q58+kMa/kU0XGgrNm8Mff8CiRbbEWvHiZkclOVH79u2pW7cuAE888QSFChVi8uTJ/Pzzz/TunXxy+urVq/j6+mZ6LC4uLpleu8vsWmDdunWjcOHCjp/HjBnDV199xWOPPUb37t35+++/Hcvc3d1T2EvmMAyDmJgYvL29TR8kLa2Jx9wil/zvQkREREQkB7iwAZY1sCWkvEtAqzW5LyEFENgA2m2GQvdC3CVY3REOf57u3e3cCfv2uePiYtCjB2TzuECZpnFjW7fD+HhbfalM6i0keVyLFi0ACA8Ph5t1jvz8/Dh8+DAdOnQgX758PPzww3BzUIApU6ZQpUoVvLy8KFKkCIMHD+bff/912qdhGEyYMIGSJUvi4+ND8+bN2b17d5Jjp1RTasOGDXTp0oWCBQvi6+tL9erVmTp1qiO+jz76CG7Wj7I/7JKrKbV161bat2+Pv78/fn5+tGzZ0ik5RKLujevWrWPEiBEEBgbi6+tL165diYiIyNA1fvjhh3niiSfYsGEDy5Ytc8xPrqbUt99+S506dciXLx/+/v5Uq1bNce6zZ8+me/fuADRv3txx7vbrV6ZMGTp16sSSJUuoW7cu3t7ezJgxw7EscU0pu2vXrjF48GAKFSqEv78/jz32WJLXM6U6XYn3eafYkqspdf78eQYMGECRIkXw8vKiRo0azJkzx2mdo0ePYrFYePfdd5k5cyahoaF4enpyzz33sGnTpjS8CllDLaVERERERFLLGmerw1SwLjRdCN5FzY4o/XyKQ6tVsGEgHP0SNgyAa6eg6itpqokVFWVrWcTNpE6injW5jsUCXbvCjBnw77+wYgV06GB2VJLTHT58GIBChQo55sXHx9O2bVsaNWrEu+++6+jWN3jwYGbPnk3//v155plnCA8P58MPP2Tr1q2sW7fO0fJnzJgxTJgwgQ4dOtChQwe2bNlCmzZtuHHjxh3jWbZsGZ06daJYsWI888wzFCtWjL179/Lrr78yfPhwBg8ezOnTp1m2bBlffvnlHfe3e/duGjdujL+/PyNHjsTd3Z0ZM2bQrFkzVq9eTf369Z3Wf/rppylQoABjx47l6NGjTJkyhWHDhvHdd9+l+dom9uijjzJz5kyWLl1K69atUzz33r1707JlS95++20A9u7dy7p16xg+fDhNmjThmWee4f3332fUqFFUqlQJwPHMzW56vXv3ZvDgwQwcOJCwsLDbxjVs2DDy58/PuHHj2L9/P9OmTePYsWOOhGFqpSa2xK5fv06zZs04dOgQw4YNIyQkhHnz5tGvXz8uXbrE8OHDndb/+uuvuXz5MoMHD8ZisTBp0iQefPBBjhw5kuUtzm5HSSkRERERkdQKagQtlkKB2rZR9nI7V09oMAd8SsKeibBzDATeB0Vbpmpzw7CNtBcTY6FYsQQaN87yiLOclxd07gxffAGbNkHVqlC6tNlR5SHxV1NeZnEFV6/UrYsLuHmnb90MioqK4sKFC8TExLBu3Tpee+01vL296dSpk2Od2NhYunfvzsSJEx3z1q5dy6effspXX31Fnz59HPObN29Ou3btmDdvHn369CEiIoJJkybRsWNHFi5c6EhsjB49mjfffPO2sSUkJDB48GCKFSvGpk2bKFy4sGN7wzAAaNCgARUqVGDZsmU88sgjdzzfV155hbi4ONauXUvZsmUBeOyxxwgLC2PkyJGsXr3aaf1ChQqxdOlSx3GtVivvv/8+UVFRBAQEpOoaJ6dq1aqQKAmYnN9++w1/f3+WLFmCq6trkuVly5alcePGvP/++7Ru3TrZ0ewOHTrE77//Ttu2qevS7OHhwYoVKxyJneDgYEaOHMnChQvp0qVLqs8vNbElNnPmTPbu3cvcuXMdLfGefPJJmjZtyiuvvMLjjz9Ovnz5HOsfP36cgwcPUqBAAQDCwsK4//77WbJkidN7N7up+56IiIiIyO2EfwVRe/77OahJ3khI2VksUPNNqPsh1Hgz1QkpgPXrITwc3N0N2rePIZm/AXOlsmWhVi1b0m3hQlt3Pskk3/ul/FjzkPO6PwSlvO6q9s7r/lwm5XWXN8nUU2jVqhWBgYGUKlWKXr164efnx4IFCyhRooTTekOGDHH6ed68eQQEBNC6dWsuXLjgeNSpUwc/Pz9WrlwJwPLly7lx4wZPP/20U0ubZ5999o6xbd26lfDwcIYPH07+/PmdlqWl1Y5dQkICS5cu5YEHHnAkpACKFStGnz59WLt2LdHR0U7bDBo0yOlYjRs3JiEhgWPHjqX5+In5+dk+dy9fvpziOvnz5+fq1atOXfzSKiQkJNUJKW6eb+KWRkOGDMHNzY1F9iakWWTRokUULVrUqY6Zu7s7zzzzDFeuXEmSLOzZs6cjIcXN1wXgyJEjWRrnnaillIiIiIhISg5/Zuve5hVkq8HkUyIVG+VSFZ5y/jnuCrh6g0vymaZz52zd2wDatoWCBY1sCDL7tGkDBw5ARASsXQt3aLQgd5GPPvqIChUq4ObmRpEiRQgLC0syKpubmxslS5Z0mnfw4EGioqIICgpKdr/nz58HcCRvypcv77Q8MDDQKamQHHsrInurooyKiIjg2rVryXZhq1SpElarlRMnTlClShXH/NK3NC20x3xrnaW0unLlCoBT659bDR06lO+//5727dtTokQJ2rRpQ48ePWjXrl2qjxMSEpKmuG59nfz8/ChWrBhHjx5N037S6tixY5QvXz7Je8/e3e/WJGBWvS4ZpaSUiIiIiEhyDn0KGwfapkt3B++7aCi2uMuwsi0EVIZ6nySpMRUfDz/+CAkJtsLgtWvbkjd5ibe3rZ7UvHmwZg1UqQKBgWZHlQf0uJLyMsstCdCHzt9mR7d0+rn/dgmAzO0gVK9ePcfoeynx9PRMkiywWq0EBQXx1VdfJbtNYB55gyXXbY5E3QfTa9euXQCUK1cuxXWCgoLYtm0bS5YsYfHixSxevJhZs2bx2GOPJSkAnhJv78zr6nknCQkJ2XasrHpdMkpJKRERERGRWx37DjYOsk1XeAbqTElT8e9c78LfELkBLqwHj4JQa5LT4tWrbS2lfH2hS5e8e2kqV7Yl3fbvh19+gccfz7vnmm3cfM1f1yShoaEsX76chg0b3jbxERwcDDdbViXuMhcREXHHVi2hoaFwM4Fzu5pEqe3KFxgYiI+PD/v370+ybN++fbi4uFAqm0Y3sBdlv1PXOg8PDzp37kznzp2xWq0MHTqUGTNm8Oqrr1KuXLl0dWO8nYMHD9K8eXPHz1euXOHMmTN0SDRKQoECBbh06ZLTdjdu3ODMmTNO89ISW3BwMDt27MBqtTolQPft2+dYnhuoppSIiIiISGJnl8P6RwEDyg+9+xJSAMVa21pIAex9B/a87VgUGQl//WWb7tTJlpjKqywW6NgRPD3hxAlb4XOR9OrRowcJCQm8/vrrSZbFx8c7khatWrXC3d2dDz74wKkVy5QpU+54jNq1axMSEsLUqVOTJEES78v35o176zq3cnV1pU2bNvz8889O3dHOnTvH119/TaNGjfD3979jXBn19ddf8+mnn9KgQQNatky57l1kZKTTzy4uLlSvXh1uFp8nDeeeWjNnziQuLs7x87Rp04iPj6d9+//qnoWGhvLnn38m2e7WllJpia1Dhw6cPXvWaVTD+Ph4PvjgA/z8/GjatGmGziu7qKWUiIiIiIjdxa3wZ1ewxkHpHlDn/bsvIWUX+jjcuAhbX4Rt/wceBTBCB7Foka3bXvnyULGi2UFmPX9/aNUKfvsNli+HSpXgNiVtRFLUtGlTBg8ezMSJE9m2bRtt2rTB3d2dgwcPMm/ePKZOnUq3bt0IDAzkhRdeYOLEiXTq1IkOHTqwdetWFi9eTOHChW97DBcXF6ZNm0bnzp2555576NevH8WLF2ffvn3s3r2bJUuWAFCnTh0AnnnmGdq2bYurqyu9evVKdp8TJkxg2bJlNGrUiKFDh+Lm5saMGTOIjY1l0qRJyW6TEfPnz8fPz48bN25w6tQplixZwrp166hRowbz5s277bZPPPEEFy9epEWLFpQsWZJjx47xwQcfULNmTUetpZo1a+Lq6srbb79NVFQUnp6etGjRIsVaX3dy48YNWrZsSY8ePdi/fz8ff/wxjRo1chp574knnuDJJ5/koYceonXr1mzfvp0lS5YkeT3TEtugQYOYMWMG/fr1Y/PmzZQpU4b58+ezbt06pkyZctvaWzmJklIiIiIiIna+wZC/uq3Ad4MvUizyfdeo9ALERsKet2Djk5yIKMHhwx1xc4P27e+efF3durB9O5w8aeu6aOLo6ZLLTZ8+nTp16jBjxgxGjRqFm5sbZcqU4ZFHHqFhw4aO9SZMmICXlxfTp09n5cqV1K9fn6VLl9KxY8c7HqNt27b88ccfjB8/nsmTJ2O1WgkNDWXgwIGOdR588EGefvppvv32W+bOnYthGCkmpapUqcKaNWt4+eWXmThxIlarlfr16zN37lzq16+fSVfmP/ZRC728vChcuDA1a9bk888/p0+fPnh6et5220ceeYSZM2fy8ccfc+nSJYoWLUrPnj0ZN26co4tb0aJFmT59OhMnTmTAgAEkJCSwcuXKdCelPvzwQ7766ivGjBlDXFwcvXv35v3333fqijdw4EDCw8P57LPP+P3332ncuDHLli1L0uorLbF5e3uzatUq/u///o85c+YQHR1NWFgYs2bNol+/fuk6FzNYDLOrWuUS0dHRBAQEEBUVlS3NExOzWq2cP3+eoKCgJMXyRCR76X4UyTl0P0qWib8GRgK4547/Mmc5w7AVfD/8GdEJpZh65CCNmniSqITKXXE/HjsGs2aBiwsMHQp3aLBy14qJiSE8PJyQkBC8vLzMDueuZRgG8fHxuLm5ZXoNJRFSca+nNoeSN78xRERERERSyxoHpxb997ObjxJSiVkscM80Tnk9zhfHl+Kf35NGjcwOKvsFB9uKnlutsGKF2dGIiOQNSkqJiIiIyN1tywhY3RF2jDE7khwrItKdz3Z9xoW4irRvD+7uZkdkjlatbDm6vXtthc9FRCRjlJQSERERkbvXwelw4EPbdIFaZkeTIxkGLF5sayEUFgYVKgBn/4BNT9kW3kUCA6HWzbfJsmV33emLiGQ6JaVERERE5O4UsQ7+edo2XX0ClOpqdkQ50p49cOQIuLlBu3ZAzHlY3QkOfmx73GWaNbNdi+PH4cABs6MREcndlJQSERERkbtPTASs7QlGPJTuCVVGmR1RjpSQAMuX26YbNYICBQCvIFsSD2DLc3Dhb1NjzG7+/nDvvbbp5cttLchERCR9lJQSERERkbuLNQH+ehiunwL/ilD/E1uhIEliyxb491/w84P77ku0oOJzUOohW5H4td1tSb67SKNG4O0NERGwbZvZ0YiI5F5KSomIiIjI3eXcCji7DFx9oNF8jbSXghs3YPVq23TTpuDhkWihxQL3fg75KsC1k1jWPwxGglmhZjsvL2jSxDa9ciXExZkdkYhI7qSklIiIiIjcXYq1gcYLoP5nkL+K2dHkWBs2wJUrti57tWsns4K7PzT+EVx9sJxbge/R902I0jz33AP588Ply7B1q9nRiIjkTkpKiYiIiMjdp9QDUKaX2VHkWNeuwdq1tukWLcDVNYUV81eBe6YB4Hbt0F01HJ2bGzRsaJtet85Wf0tERNJGSSkRERERyfsMA3aOh2snzY4kV1i3DmJjoUgRqFr1DiuHPIq1+QqiKn9419XmqlkTfH0hKgp27TI7GhGR3EdJKRERERHJ+w7NgJ3jYEk9iL9mdjQ5WnS0reseQKtWqcgzWSxQpNl/K95FraXc3f8biW/t2rvq1EVEMoWSUiIiIiKSt0Xtgy0jbNOVRoKbj9kR5WirV0N8PAQHQ7lyadw49iKs7Qbhc7MoupznnnvA09M2Et/+/WZHI3ndwYMHadOmDQEBAVgsFn766Sdmz56NxWLh6NGjd9y+TJky9OvXL1tilcyRltfsxIkTeHl5sW7dujQfZ8+ePbi5ubErm5t9KiklIiIiInlXwg34qw8kXIeirSHsGbMjytEuXPivaHfLlunojRc+C078CP88ddd0lfTysiWmUGupu8bhw4cZPHgwZcuWxcvLC39/fxo2bMjUqVO5fv16lh67b9++7Ny5kzfeeIMvv/ySunXrZunxcqoyZcrQqVOndG27aNEixo0bl+kx5QSvvfYa9evXp6G94F0aVK5cmY4dOzJmzJgsiS0lSkqJiIiISN61ewL8uxU8C8G9s8GiX39vZ/VqsFohLAxKl07HDioMh0L3Qlw0bHjirsnQ3HuvrfD5yZNw7JjZ0UhW+u2336hWrRrff/89nTt35oMPPmDixImULl2aF198keHDh2fZsa9fv8769esZMGAAw4YN45FHHqFkyZI8+uijXL9+neDg4Cw7dl6yaNEixo8fb3YYmS4iIoI5c+bw5JNPpnsfTz75JAsWLODw4cOZGtvt6FtZRERERPKmf7fB7om26XumgU9xsyPK0SIj/yvW3bx5Onfi4gYNZoOrF5xZAoc/y8wQcyw/P6hVyza9Zo3Z0UhWCQ8Pp1evXgQHB7Nnzx6mTp3KwIEDeeqpp/jmm2/Ys2cPVapUybLjR0REAJA/f36n+a6urnh5eWG5ywYayEkMw8jyVnJ3MnfuXNzc3OjcuXO699GqVSsKFCjAnDlzMjW221FSSkRERETypl1vgBEPpR6C0t3NjibHs3c9q1ABihbNwI78w6D6BNv0lhFw9XhmhZij3Xefrbvj4cNw5ozZ0UhWmDRpEleuXOGzzz6jWLFiSZaXK1fOqaVUfHw8r7/+OqGhoXh6elKmTBlGjRpFbGys03b2rmhr166lXr16eHl5UbZsWb744gvHOuPGjXO0hHrxxRexWCyUKVMGINmaUoZh8Oabb1KqVCl8fHxo3rw5u3fvTva8Ll26xLPPPkupUqXw9PSkXLlyvP3221itVsc6R48exWKx8O677zJz5kzHOd1zzz1s2rQpyT737dtHjx49CAwMxNvbm7CwMEaPHu20zqlTp3j88ccpUqQInp6eVKlShc8//zxVr8WtUhtfv379+OijjwCwWCyOh53VamXKlClUqVIFLy8vihQpwuDBg/n333+djmd/zZYsWULdunXx9vZmxowZVK1alebJZPWtVislSpSgW7dujnnvvvsu9913H4UKFcLb25s6deowf/78dJ0/wE8//UT9+vXx8/NLEmtyNamaNWtGs2bNnOa5u7vTrFkzfv7553THkVZu2XYkEREREZHs1GAO+FeACqojdSdRUbB9u226ceNM2GHYs7baUhf+gg0DoPnSdBSoyl0KFICqVWHnTluCr7vyoHnOwoULKVu2LPfdd1+q1n/iiSeYM2cO3bp14/nnn2fDhg1MnDiRvXv3smDBAqd1Dx06RLdu3RgwYAB9+/bl888/p1+/ftSpU4cqVarw4IMPkj9/fp577jl69+5Nhw4dkiQfEhszZgxvvPEGHTp0oEOHDmzZsoU2bdpw48YNp/WuXbtG06ZNOXXqFIMHD6Z06dL89ddfvPzyy5w5c4YpU6Y4rf/1119z+fJlBg8ejMViYdKkSTz44IMcOXIEd3d3AHbs2EHjxo1xd3dn0KBBlClThsOHD7Nw4ULeeOMNAM6dO8e9996LxWJh2LBhBAYGsnjxYgYMGEB0dDTPPvtsql+XtMQ3ePBgTp8+zbJly/jyyy+TbD948GBmz55N//79eeaZZwgPD+fDDz9k69atrFu3znGOAPv376d3794MHjyYgQMHEhYWRs+ePRk3bhxnz56laKLs/tq1azl9+jS9evVyzJs6dSpdunTh4Ycf5saNG3z77bd0796dX3/9lY4dO6bpvOPi4ti0aRNDhgxJ13VLrE6dOvz8889ER0fj7++f4f3dkSGpEhUVZQBGVFRUth87ISHBOHPmjJGQkJDtxxYRZ7ofRXIO3Y8imee33wxj7FjDmD07fdsnez9G7TeMb70N48cShnHlaKbFmpOdPWu7juPGGUZkpNnRmOP69evGnj17jOvXr5sdSqay/z14//33p2r9bdu2GYDxxBNPOM1/4YUXDMD4448/HPOCg4MNwPjzzz8d886fP294enoazz//vGNeeHi4ARjvvPOO0z5nzZplAEZ4eLhjWw8PD6NDhw5O9+SoUaMMwOjbt69j3uuvv274+voaBw4ccNrn//3f/xmurq7G8ePHnY5dqFAh4+LFi471fv75ZwMwFi5c6JjXpEkTI1++fMaxY8ec9mm1Wh3TAwYMMIoVK2ZcuHDBaZ1evXoZAQEBxrVr1257fYODg42OHTsmuTapie+pp54ykkuFrFmzxgCMr776ymn+77//nmS+/TX7/fffndbdv3+/ARgffPCB0/yhQ4cafn5+Tud16zneuHHDqFq1qtGiRYsk55r4NUvOoUOHkj3u7bZv2rSp0bRp0yTzv/76awMwNmzYcNtj3uleT20ORS2lRERERCTvsMbDsW8guA+4uJodTa5w5Qps2WKbbtIkE3fsXwGa/QYF64J7vkzccc5VpAiUKweHDsGmTdC2rdkR5TyT109m8vrJpsYwosEIRjQYkaZtoqOjAciXL3Xv5UWLFtmONcL5OM8//zzvvvsuv/32m1M3r8qVK9M4UTPFwMBAwsLCOHLkSJriBFi+fDk3btxg6NChTl3Tnn32Wd58802ndefNm0fjxo0pUKAAFy5ccMxv1aoVb731Fn/++ScPP/ywY37Pnj0pUKCA42d7zPY4IyIi+PPPPxk+fDilbxktwR6LYRj88MMP9OjRA8MwnI7btm1bvv32W7Zs2ZKuEeTuFN/tzJs3j4CAAFq3bu0UU506dfDz82PlypX06dPHMT8kJIS2t9zkFSpUoGbNmnz33XcMGzYMgISEBObPn0/nzp3x9vZ2rJt4+t9//yUhIYHGjRvzzTffpPm8IyMjAZzOPb3s+0h8DbKSklIiIiIiknfsnwpbX4Bj30LTX/N8l7HMsH49xMdDyZJws0RN5imS3orpuVe9erak1Nat0KIFJOrtI0B0bDSnLp8yPYa0sndjunz5cqrWP3bsGC4uLpQrV85pftGiRcmfPz/Hbhmm8dYEDjeTA7fWMkrtsblZ4yqxwMDAJEmLgwcPsmPHDgIDA5Pd1/nz528bp31/9jjtyZ+qVaumGF9ERASXLl1i5syZzJw5M1XHTa07xXc7Bw8eJCoqiqCgoFTFFBISkux6PXv2ZNSoUZw6dYoSJUqwatUqzp8/T8+ePZ3W+/XXX5kwYQLbtm1zqjOWkYL1RiaMeGrfR3YVzldSSkRERETyhqvHYccY23SpB5WQSoXr120terjZSirLLplhwJHZ4FsKirbKooPkDOXK2epL/fuvrb5U7dpmR5Sz+Hv6UyJfCdNjSPM2/v4UL16cXfYhKlMptX/Yu7om37IzM5IMt2O1WmndujUjR45MdnmFChWcfs6MOO0F1B955BH69u2b7DrVq1dP9f4yKz6r1UpQUBBfffVVsstvTdwlbumUWM+ePXn55ZeZN28ezz77LN9//z0BAQG0a9fOsc6aNWvo0qULTZo04eOPP6ZYsWK4u7sza9Ysvv766zvGeqtChQpBKpNvdoZhJPv+tO+jcOHCaY4jPZSUEhEREZG8YfNwSLgGgY2gbH+zo8kVNmyAGzdso+2VL5+FBzrwIWx+BnxDoOMucPPJwoOZy8UF6taFZctsCb9atZQfTSw9Xedyik6dOjFz5kzWr19PgwYNbrtucHAwVquVgwcPUqlSJcf8c+fOcenSJcdIelnBvu9Dhw45JZUiIiKSJC1CQ0O5cuUKrVplTrK4bNmyALdN3gUGBpIvXz4SEhIy7bhpkVKiMDQ0lOXLl9OwYcMUE06pERISQr169Rxd+H788UceeOABPD09Hev88MMPeHl5sWTJEqf5s2bNStcxS5cujbe3N+Hh4ckuT66F37lz55yKsduFh4fj4uKSJCGZVVyy5SgiIiIiIlnp1K9w8iewuME908CiX3PvJDbWlpTi5oh7WZo4KdsffErB1XDY9XoWHihnqFUL3NzgzBk4edLsaCSzjBw5El9fX5544gnOnTuXZPnhw4eZOnUqAB06dABIMnrd5Mm2elppHV0tLVq1aoW7uzsff/yxUwuhW2MB6NGjB+vXr2fJkiVJll26dIn4+Pg0HTswMJAmTZrw+eefc/z4cadl9lhcXV156KGH+OGHH5JNXkVERKTpmGnl6+sLN88vsR49epCQkMDrryf9jIqPj0+y/u307NmTv//+m88//5wLFy4k6brn6uqKxWIhISHBMe/o0aP89NNP6TgjcHd3p27duvzzzz/JLl+/fj0xMTGOn3fv3s3BgweTbUG2efNmqlSpQkBAQLpiSSu1lBIRERGR3C3+GvzztG264nOQP+VaJvKff/6xdd8rXBgSNeTIGu5+UPdD+PN+2PsulOkD+atl8UHN4+MDVavCtm221lKlSpkdkWSG0NBQvv76a3r27EmlSpV47LHHqFq1Kjdu3OCvv/5i3rx59OvXD4AaNWrQt29fZs6cyaVLl2jatCkbN25kzpw5PPDAA05FzjNbYGAgzz//PG+99RadO3emQ4cObN26lcWLFyfpkvXiiy/yyy+/0KlTJ/r160edOnW4evUqO3fuZP78+Rw9ejTN3bjef/99GjVqRO3atRk0aBAhISEcPXqU3377jW3btgHw1ltvsXLlSurXr8/AgQOpXLkyFy9eZMuWLSxfvpyLFy9m6jVJrE6dOgA888wztG3bFldXV3r16kXTpk0ZPHgwEydOZNu2bbRp0wZ3d3cOHjzIvHnzmDp1Kt26dUvVMXr06MELL7zACy+8QMGCBZO0COvYsSOTJ0+mXbt29OnTh/Pnz/PRRx9Rrlw5duzYka7zuv/++xk9ejTR0dGOGmh2ly5dokWLFjz88MNER0fzwQcfkC9fPnbt2sWMGTMYPHgwAHFxcaxevZqhQ4emK4b0UFJKRERERHK33W/A1aO2ljhVx5gdTa6QkAB//22bbtjQ1uUsy5XsAiW7wskFsGkItFqTp/u11atnS0rt3m0bhe9m4wzJ5bp06cKOHTt45513+Pnnn5k2bRqenp5Ur16d//3vfwwcONCx7qeffkrZsmWZPXs2CxYsoGjRorz88suMHTs2y+OcMGECHh4efPLJJ47kz9KlS5O00PLx8WH16tW8+eabzJs3jy+++AJ/f38qVKjA+PHj09VapkaNGvz999+8+uqrTJs2jZiYGIKDg+nRo4djnSJFirBx40Zee+01fvzxRz7++GMKFSpElSpVePvttzPlGqTkwQcf5Omnn+bbb79l7ty5GIZBr169AJg+fTp16tRhxowZjBo1Cjc3N8qUKcMjjzySptEAS5YsyX333ce6det44okncL9lxIMWLVrw2Wef8dZbb/Hss88SEhLC22+/zdGjR9OdlHr00Uf5v//7P3755RceeeSRJOecL18+Xn75Zdzd3Rk6dCj16tXj4Ycf5scff3QkpVasWMHFixdTrPWVFSxGVldOyyOio6MJCAggKioqSdYxq1mtVs6fP09QUBAu2fIbg4ikRPejSM6h+1EcLm6GjUOgystQqqvZ0eQKO3bAjz+Cnx88+6ytq1lGpPp+vHYSFobZan81mAshD6e8bh7wySdw6hS0bGnrInk3iImJITw8nJCQELy8vMwO565lGAbx8fG4ubll2yhqYr4BAwZw4MAB1qxZ45hXpkwZmjVrxuzZs++4/QMPPIDFYmHBggV3XPdO93pqcyj6DU5EREREcreCdaDt31DyAbMjyRUMA9avt03Xq5fxhFSa+JSEqqNt09tegoTYO22Rq91zj+35n3/g5oBjIiJZZuzYsWzatIl169aledu9e/fy66+/JltTKyup+56IiIiI5E7WOHC52SVChc1T7fhxWwFuNzfbKHHZruIIuLjF9uzqmYoNcq+qVWHpUoiKggMHoGJFsyMSkbysdOnSTgXN06JSpUppLmyfGfTtLSIiIiK5T0IMLKoB216G+KtmR5Or2FtJ1ahhK8id7Vy9oPF8CLzPhINnLzc320h8YCt4LiIiztRSSkRERERyn31TIHovhEdBldFmR5NrXLwI+/fbpu+91+xobrp+FryLmh1FlqlbF/76Cw4fhshIKFTI7IhE5G5y9OhRs0O4LbWUEhEREZHc5foZ24h7ADXfAnc/syPKNf7+21ZTqnx5CAw0Oxpg1wT4JQROLTI7kixToACUK2eb3rrV7GhERHIWJaVEREREJHfZPhrir0ChelAmb4/elpmuX4dt22zTDRqYHc1NNy7ZumJueRYSbpgdTZaxd+Hbvl0Fz0VEElNSSkRERERyj4ub4cjNYa3rTFWB8zTYsgVu3IAiRSAkxOxobqo2BryC4PJBODTD7GiyTIUK4O0Nly/DkSNmRyMiknPoW1xEREREcgfDgM3DAcPWQqpwTimKlPMlJMCGDbbpe+8Fi8XsiG5y94dq423Tu8bDjSizI8oSbm5QrZpt2t5aTURElJQSERERkdwieq+tpZSrj62WlKTanj0QHQ1+fv8lR3KM0CfAvyLERsKeiWZHk2XsXfj27bN1pRQRESWlRERERCS3CKgMnQ9Bw6/Bp6TZ0eQq9lZS99xja7WTo7i4Qc1Jtul9U+DqcbMjyhJFi9q6TsbHw+7dZkcjIpIzKCklIiIiIrmHTwkoeb/ZUeQqp0/DyZPg6gp16pgdTQpKdIKgZrbpyA1mR5MlLBaoWdM2rVH4RERslJQSERERkZwt7gpE/GV2FLnWP//YnitXtnXfy5EsFqg3AzofgNLdzY4my1SrBi4ucOoURESYHY3kRmXKlKFfv36On1etWoXFYmHVqlWZdgyLxcK4ceMybX+S1Lhx47DkmOJ+5lJSSkRERERytn3/g2UNYfOzZkeS61y/Djt32qbvucfsaO7AvwL4ljY7iizl5wfly9umVfA895k9ezYWi8Xx8PLyokKFCgwbNoxz586ZHV6aLFq0KMclnuyJmgsXLqR529OnTzNu3Di26cbKdXJaj3IRERERkf9cPwd737FNBzY0O5pcZ9s2iIuz1TIqVcrsaNLgwt+20RYDG5gdSaarWRP274ft26FlS1vLKcldXnvtNUJCQoiJiWHt2rVMmzaNRYsWsWvXLnx8fLI1liZNmnD9+nU8PDzStN2iRYv46KOPkk1MXb9+HbccV3zu9k6fPs348eMpU6YMNe39ZCVX0EegiIiIiORcu16D+KtQ8B4o1c3saHIVw4BNm2zT9erZesjlCodnwdIG8M9TYFjNjibTVagAPj5w5QocPmx2NJIe7du355FHHuGJJ55g9uzZPPvss4SHh/Pzzz+nuM3Vq1ezJBYXFxe8vLxwycTsppeXV65LSmWVrHrd5D9KSomIiIhIzhR9EA7NtE3XmpSLsio5w5EjcPEieHraahnlGiU6g1s++HcrnPjB7GgynasrVK9um1ZPo7yhRYsWAISHhwPQr18//Pz8OHz4MB06dCBfvnw8/PDDAFitVqZMmUKVKlXw8vKiSJEiDB48mH///ddpn4ZhMGHCBEqWLImPjw/NmzdndzLDNqZUU2rDhg106dKFggUL4uvrS/Xq1Zk6daojvo8++ghu1o+yP+ySqym1detW2rdvj7+/P35+frRs2ZK///7baR1798Z169YxYsQIAgMD8fX1pWvXrkSks4has2bNqFq1Knv27KF58+b4+PhQokQJJk2a5HQN7rnZP7l///6O85k9e7bT9WjXrh0BAQH4+PjQtGlT1q1b53Qse/fBPXv20KdPHwoUKECjRo149913sVgsHDt2LEl8L7/8Mh4eHo7Xb82aNXTv3p3SpUvj6elJqVKleO6557h+/Xq6zv9uoKSUiIiIiORMO8eCEQ/FO0CRZmZHk+vYW0nVrAlp7NljLq/CUOl52/SOV8Eab3ZEmc7eu2jfPlvdL8ndDt9s8laoUCHHvPj4eNq2bUtQUBDvvvsuDz30EACDBw/mxRdfpGHDhkydOpX+/fvz1Vdf0bZtW+Li4hzbjxkzhldffZUaNWrwzjvvULZsWdq0aZOqljvLli2jadOm7N27l2eeeYb//e9/NG/enF9//dURQ+vWrQH48ssvHY+U7N69m8aNG7N9+3ZGjhzJq6++Snh4OM2aNWPDhqSjZT799NNs376dsWPHMmTIEBYuXMiwYcPSdE0T+/fff2nXrh01atTgf//7HxUrVuSll15i8eLFAFSqVInXXnsNgEGDBjnOp0mTJgD88ccfNGnShOjoaMaOHcubb77JpUuXaNGiBRs3bkxyvO7du3Pt2jXefPNNBg4cSI8ePbBYLHz//fdJ1v3+++9p06YNBQoUAGDevHlcu3aNIUOG8MEHH9C2bVs++OADHnvssXSff16nNnkiIiIikvNc2gXHvrVN13jD7GhynagoW90ickOB8+RUfA4OfADR+yH8Swjtb3ZEmapoUdvj7FnYvRvq1jU7IkmLqKgoLly4QExMDOvWreO1117D29ubTp06OdaJjY2le/fuTJw40TFv7dq1fPrpp3z11Vf06dPHMb958+a0a9eOefPm0adPHyIiIpg0aRIdO3Zk4cKFjlZMo0eP5s0337xtbAkJCQwePJhixYqxadMmChcu7NjeMAwAGjRoQIUKFVi2bBmPPPLIHc/3lVdeIS4ujrVr11K2bFkAHnvsMcLCwhg5ciSrV692Wr9QoUIsXbrUcVyr1cr7779PVFQUAQEBqbrGiZ0+fZovvviCRx99FIABAwYQHBzMZ599Rvv27SlSpAjt27dnzJgxNGjQwOmcDMPgySefpHnz5ixevNgR0+DBg6lSpQqvvPIKS5cudTpejRo1+Prrr53m3XvvvXz33Xe8+OKLjnmbNm3iyJEjTq3K3n77bby9vR0/Dxo0iHLlyjFq1CiOHz9O6dJ5ezCH9FBLKRERERHJea6fAZ8StjpSBVS0Nq3++cdWU6psWShc2Oxo0sHdHyq/bJveOQ4SYs2OKNPZu1Tu2mV2JJJWrVq1IjAwkFKlStGrVy/8/PxYsGABJUqUcFpvyJAhTj/PmzePgIAAWrduzYULFxyPOnXq4Ofnx8qVKwFYvnw5N27c4Omnn3bqVvfss3cegXTr1q2Eh4czfPhw8ufP77TMko4u0AkJCSxdupQHHnjAkZACKFasGH369GHt2rVER0c7bTNo0CCnYzVu3JiEhIRku7+lhp+fn1OiycPDg3r16nHkyJE7brtt2zYOHjxInz59iIyMdFzzq1ev0rJlS/7880+sVufadU8++WSS/fTs2ZPNmzc7WsUBfPfdd3h6enL//fc75iVOSF29epULFy5w3333YRgGW7duTdf553VqKSUiIiIiOU+x1tD5IMRFp2JlSSw+HrZssU3nylZSduWHwr734NpxODQDwp4xO6JMVaUKLFsGx47B5cuQL5/ZEWWTyZNtDzONGGF7pNNHH31EhQoVcHNzo0iRIoSFhSUpNO7m5kbJkiWd5h08eJCoqCiCgoKS3e/58+cBHMmb8uXLOy0PDAx0dBNLiT1pUrVq1XScWVIRERFcu3aNsLCwJMsqVaqE1WrlxIkTVKlSxTH/1tZA9phvrZuVWiVLlkySUCtQoAA7duy447YHDx4EoG/fvimuExUV5XRdQ0JCkqzTvXt3RowYwXfffceoUaMwDIN58+Y56mzZHT9+nDFjxvDLL78kOd+oqKg7xns3UlJKRERERHImVy/bQ9Jk7164ehX8/SGZvyNzDzdvqDYGdr4GnoFmR5Pp8ueHUqXgxAlbF7577zU7omwSHQ2nTpkfQwbUq1ePunfoc+np6ZkkUWW1WgkKCuKrr75KdpvAwLzxPnd1dU12vr37YHbuz94K6p133qFmzeRb3fr5+Tn9nLi1k13x4sVp3Lgx33//PaNGjeLvv//m+PHjvP322451EhISaN26NRcvXuSll16iYsWK+Pr6curUKfr165ekRZbYKCklIiIiIjlH5D8QtRvKPAwu+lU1PewFzuvUgUwcJd4cZftDyGN5NjlZtaotKbVr112UlPL3h1u6uZkSgwlCQ0NZvnw5DRs2TDbxYRccHAw3W/kk7jIXERFxx9ZGoaGhAOzatYtmzVIeICK1XfkCAwPx8fFhv71IXSL79u3DxcWFUqVKpWpfWSml87FfD39/f1q1apWhY/Ts2ZOhQ4eyf/9+vvvuO3x8fOjcubNj+c6dOzlw4ABz5sxxKmy+bNmyDB03r8vtX1MiIiIikpdsfxn+7mcbdU3SLCICjh+3JaNq1zY7mkzg4p5nE1Lc7MJnscDJk5DOnk25z4gRthM285GBrnsZ0aNHDxISEnj99deTLIuPj+fSpUtws2aVu7s7H3zwgVNroClTptzxGLVr1yYkJISpU6c69meXeF++vr4ASda5laurK23atOHnn3/m6NGjjvnnzp3j66+/plGjRk7d18yS0vnUqVOH0NBQ3n33Xa5cuZJku4iIiFQf46GHHsLV1ZVvvvmGefPm0alTJ8dxSdSiK/F1NgyDqVOnpuuc7hb695OIiIiI5Azn/4Szy22JiHKDzY4mV9q82fZcoUIeq1FkjYdj34A1DkIfNzuaTOPnB2XKQHi4rQtfo0ZmRyRZqWnTpgwePJiJEyeybds22rRpg7u7OwcPHmTevHlMnTqVbt26ERgYyAsvvMDEiRPp1KkTHTp0YOvWrSxevJjCdxi5wMXFhWnTptG5c2fuuece+vXrR/Hixdm3bx+7d+9myZIlcDNZA/DMM8/Qtm1bXF1d6dWrV7L7nDBhAsuWLaNRo0YMHToUNzc3ZsyYQWxsLJMmTcqCK5V2oaGh5M+fn+nTp5MvXz58fX2pX78+ISEhfPrpp7Rv354qVarQv39/SpQowalTp1i5ciX+/v4sXLgwVccICgqiefPmTJ48mcuXL9OzZ0+n5RUrViQ0NJQXXniBU6dO4e/vzw8//JDuWlp3C7WUEhERERHzGQZsf8U2HfoE+JUxO6JcJz4etm+3Td/8ezPvOLkA1j8G20ZCXNLWDrmZvR61RuG7O0yfPp2ZM2dy/vx5Ro0axcsvv8wff/zBI488QsOGDR3rTZgwgfHjx7N161ZefPFFDh8+zNKlS51a5qSkbdu2/PHHH5QvX57JkyczYsQIVqxY4dTV7MEHH+Tpp5/m999/59FHH6V3794p7q9KlSqsWbOGqlWrMnHiRMaPH09wcDArV66kfv36mXBVMs7d3Z05c+bg6urKk08+Se/evVm9ejUAzZo1Y/369dStW5cPP/yQp59+mtmzZ1O0aFGee+65NB2nZ8+eXL58mXz58tGhQ4ckMSxcuJCaNWs6rlP58uX54osvMvVc8xqLkd5qY3eZ6OhoAgICiIqKyvbmiVarlfPnzxMUFJSkWJ6IZC/djyI5h+7HPObscvijNbh4QpfD4GNyzZlcaOdO+OEHCAiA4cOzt55Ult+P1nj4rTJcPgg134LKL2X+MUxy7Rq8+y5YrfDUU5Dba13HxMQQHh5OSEgIXl55t+tlTmcYBvHx8bi5uaW6fpRIWtzpXk9tDkW/wYmIiIiIuQwDdo63TZcbrIRUOtm77tWqlQcKnN/KxQ2q3GxJt/edPNVayscHbtZiZvdus6MREcleee3rSkRERERym/OrIWKtrZVUHmoBk50iI+HoUVvR7Fq1zI4mi5TpA37lIDYSDn5sdjSZKnEXPvVjEZG7iZJSIiIiImIuNz8IagqhA8CnuNnR5Epbttiey5e3dd/Lk1zcoGrebC1VsSK4ucGFC3DunNnRiIhknxyblProo48oU6YMXl5e1K9fn40bN6a47o8//kjdunXJnz8/vr6+1KxZky+//NJpHcMwGDNmDMWKFcPb25tWrVpx8ODBbDgTEREREbmtQnWh1Sqo/Z7ZkeRKCQmwbZttunZts6PJYmUeBr9QiL0AB6eZHU2m8fS0JRRRwXMRucvkyKTUd999x4gRIxg7dixbtmyhRo0atG3blvPnzye7fsGCBRk9ejTr169nx44d9O/fn/79+zuGuwSYNGkS77//PtOnT2fDhg34+vrStm1bYmJisvHMRERERCRFrh5mR5Ar7dsHV69CvnxQoYLZ0WQxe2upoCZQ+F6zo8lU1arZntWFT0TuJjkyKTV58mQGDhxI//79qVy5MtOnT8fHx4fPP/882fWbNWtG165dqVSpEqGhoQwfPpzq1auzdu1auNlKasqUKbzyyivcf//9VK9enS+++ILTp0/z008/ZfPZiYiIiAgAF7fA9tEQc8HsSHI1e9e9PFngPDkhfaHVaghqbHYkmap8efDwgEuX4ORJs6MREckeOe5r68aNG2zevJlWrVo55rm4uNCqVSvWr19/x+0Nw2DFihXs37+fJk2aABAeHs7Zs2ed9hkQEED9+vVTtU8RERERyQK7Xofdb8K2kWZHkmv9+y8cPmybzrMFzm+VR4e3d3eHsDDb9N69ZkcjIpI93MwO4FYXLlwgISGBIkWKOM0vUqQI+/btS3G7qKgoSpQoQWxsLK6urnz88ce0bt0agLNnzzr2ces+7ctuFRsbS2xsrOPn6OhoAKxWK1arNQNnmHZWqxXDMLL9uCKSlO5HkZxD92Mud2kHLid/wsCCUfEF0OuYLv/8A4ZhoWxZg4AA8y6jKfdjzHksB97HyBcGIY9m33GzUFgY7NhhYc8eg5Ytc2f+LfF7wVA/RFPZr79eB8kKie/15D77U/t9kOOSUumVL18+tm3bxpUrV1ixYgUjRoygbNmyNGvWLF37mzhxIuPHj08yPyIiItvrUFmtVqKiojAMA5e7ok22SM6l+1Ek59D9mLsF7BqHNxAT1JmomIIQk3ztUEmZ1Qrr1vlw9aoLZcpc5/z5BBNjyf770efEJ/gfnEiCVzAXvFva6k3lcv7+EBPjy8mTFnbvvkZQUO5L1lqtVhISErhy5Qru7u5mh3PXMgyDhATbZ4IlN2Y3Jce7fPkyVquVS5cuJfu5f/ny5VTtJ8d9chcuXBhXV1fO3TIW6rlz5yhatGiK27m4uFCuXDkAatasyd69e5k4cSLNmjVzbHfu3DmKFSvmtM+aNWsmu7+XX36ZESNGOH6Ojo6mVKlSBAYG4u/vn+HzTAur1YrFYiEwMFC/dIuYTPejSM6h+zEXi96H5fwvAHjWHk9Q/iCzI8qVDh60tZIKDDS47z4fXF3Ni8WU+7HgsxjHpuIWc4yg2NUQ3Dt7jpvFatSA/fstXLjgQ9WqZkeTfpGRkbi4uODj46OkiEni4uLMDkHyGMMwiI+P5/Lly0RFRVGwYMEU8zReXl6p2meOS0p5eHhQp04dVqxYwQMPPAA3v+RWrFjBsGHDUr0fq9Xq6H4XEhJC0aJFWbFihSMJFR0dzYYNGxgyZEiy23t6euLp6ZlkvouLiym/+FosFtOOLSLOdD+K5By6H3Opfe8CBpS8H5eCyf+DUO5s+3Zb967q1S3khAYp2X4/euSDsOGwcwwue9+GMn1yZ3+3W1SuDAcO2BJTLVqYHU36FCtWDIvFQkREhNmh3LXs3apcXFyUFJRM5+rqSvHixQkICEjx/ZXa74Icl5QCGDFiBH379qVu3brUq1ePKVOmcPXqVfr37w/AY489RokSJZg4cSLc7GpXt25dQkNDiY2NZdGiRXz55ZdMmzYNbn5BPvvss0yYMIHy5csTEhLCq6++SvHixR2JLxERERHJBtdOwtG5tunKL5sdTa517Rrs32+bvmsKnCcnbBjsnQSXdsLp36BEJ7MjyrCwMNsoiufOwcWLULCg2RGlncVioVixYgQFBam1jkmsViuRkZEUKlRI/7iRTOXm5oarq2umJTtzZFKqZ8+eREREMGbMGM6ePUvNmjX5/fffHYXKjx8/7nRjXb16laFDh3Ly5Em8vb2pWLEic+fOpWfPno51Ro4cydWrVxk0aBCXLl2iUaNG/P7776luUiYiIiIimcEFyvaHK0ehcH2zg8m1du6EhAQoVgxuU+Ei7/MoAOWHwN53YPdEKN4x17eW8vaGMmXgyBHbKHwNG5odUfq5urriama/0ruY1WrF3d0dLy8vJaUkR7MYKsWfKtHR0QQEBBAVFWVKTanz588TFBSkDxQRk+l+FMk5dD/mcoYVLHrd0mvGDDhzBtq3h/o5ILdn6v14/Qz8HALWWGi1GoKaZO/xs8CmTfDbb1CqFAwYYHY0khvpO1LMltocit6dIiIiIpL9lJBKt7NnbQkpV1eoVs3saHIA72JQ/kkoNxh8g82OJlOEhdmeT5yAVA5gJSKSK+m3ARERERHJegkxsGEgXNxidiS53rZttuewMPDxMTuaHKLOFKg3Pc8kpfz9oWRJ2/S+fWZHIyKSdZSUEhEREZGsF/4FHP4U/nwArAlmR5NrJSTAjh226bu6wPldoFIl2/PevWZHIiKSdZSUEhEREZGsZU2APe/YpiuOABcVPk6vAwdsI+/lywehoWZHkwNF/gPresOVcLMjybCKFW3PR4/C9etmRyMikjWUlBIRERGRrHVyAVw5ZBspLfQJs6PJ1bZutT3XqAGqXZyM7aPg2Lewf6rZkWRYoUIQFARWqy0ZKSKSF+mrTERERESyjmHAnkm26QrDwN3P7IhyrStX4NAh23TNmmZHk0NVesH2fPhTuPGv2dFkmLrwiUhep6SUiIiIiGSd86vg4iZw9YIKT5sdTa62fbut1UypUlC4sNnR5FBFW0P+ahB/FQ7OMDuaDLMnpQ4dghs3zI5GRCTzKSklIiIiIllnz9u257KPg1eg2dHkWobx36h7aiV1GxYLVLzZWurA+5AQa3ZEGVKkCBQoAPHxcPiw2dGIiGQ+JaVEREREJGsYBhRtAz6lodLzZkeTq506BRER4O4OVauaHU0OF9wLvIvD9TNw7Buzo8kQi+W/guf795sdjYhI5lNSSkRERESyhsUClUbA/eHgV9bsaHI1eyupSpXA09PsaHI4Vw8IG26b3vs/W3I0F6tQwfZ88GCuPxURkSSUlBIRERGRrGXRr5wZERcHu3bZpmvVMjuaXKLcIAioDGX7gxFvdjQZUrq0LRF59aqtxZyISF7iZnYAIiIiIpIHHf4cXH2g9EPg4m52NLnavn0QEwP580OZMmZHk0t45IcOu2yt9XI5V1coVw5274YDB6BkSbMjEhHJPPq3lYiIiIhkrvjrsO0l+Ks3nPrV7Ghyva1bbc81a+aJHEv2yUMXy96F78ABsyMREclcSkqJiIiISOY6OhdiL4BvMJTobHY0uVpUFISH26Zr1DA7mlzIGg9Hv4Wdr5sdSYaUL2/LsZ09a3tPiIjkFUpKiYiIiEjmMQzY955tOmw4uKhaREZs22a7pCEhUKCA2dHkQpd22Frs7XoNrp4wO5p08/GBUqVs02otJSJ5iZJSIiIiIpJ5ziyB6L3glg9CB5gdTa5mGP+NulezptnR5FIFa0NQM1ux84Mfmx1NhqgLn4jkRUpKiYiIiEjmsbeSCh0A7v5mR5OrHTsG//5rG3mtcmWzo8nFKj5rez40A+KvmR1NutmTUuHhcOOG2dGIiGQOJaVEREREJHNc2gVnl4LFBcKeMTuaXM9e4LxKFXDXAIbpV7wT+IbAjX9t9c5yqcBA2wiM8fH/1RkTEcntlJQSERERkcyREAOBjaBkV/ALMTuaXC02FvbssU3XqmV2NLmciyuEPW2b3v++rV9kLmSxqAufiOQ9SkqJiIiISOYoVBdar4EGX5odSa63ezfExUHhwlCypNnR5AFlHwc3P4jaDedWmB1NuiVOSuXS3JqIiBMlpUREREQkc7l5mx1Brpe4wLnFYnY0eYBHAJTtB0FNwDX3vj/LlAEPD7h8Gc6eNTsaEZGMU1JKRERERDImIRb2/g9iLpgdSZ4QGQnHj9uSUTVqmB1NHlL7PWi1GgIbmh1Jurm5QWiobVpd+EQkL1BSSkREREQy5vg82PoCLG2gPkWZwN5Kqlw5yJfP7GjyEBc3syPIFKorJSJ5iZJSIiIiIpIxBz6wPZftp75mGWS1wvbttumaNc2OJo+KiYDdb0JctNmRpEv58rbnU6ds3fhERHIzJaVEREREJP0ubITIjeDiAeUGmh1NrnfkCERHg7c3hIWZHU0etbIdbB8Nh2eZHUm6+PlBiRK26YMHzY5GRCRjlJQSERERkfSzt5IK7gVeQWZHk+tt3Wp7rlbNVj9IskC5QbbnA++DNcHsaNLF3oXv0CGzIxERyRglpUREREQkfa6fg+Pf2aYrDDM7mlzv+nXYt882XauW2dHkYSGPgkcBuHIETv9mdjTpUq6c7fnwYUjInXk1ERFQUkpERERE0u3QTLDGQaH6UOges6PJ9XbutCUYihSBokXNjiYPc/OB0JtdTfdPNTuadClWDHx8IDbWVltKRCS3UlJKRERERNInPtpWS6rC02ZHkifYR92rVUv14rNchafA4grn/oBLu82OJs1cXCA01DatLnwikpspKSUiIiIi6VPrHbj/OJTubnYkud65c3D6tC3ZUK2a2dHcBXxLQ8n7bdMHPzY7mnSxd+FTUkpEcjMlpUREREQk/byLgKuH2VHkevZWUmFh4OtrdjR3ifJPgYsnkDubpdlbSp0+DVevmh2NiEj6KCklIiIiImlz+TBc2ml2FHlGQgLs2GGbrlnT7GjuIkWawwMn4Z4PzY4kXfz8bLWluFnwXEQkN1JSSkRERETSZvcbsKg67Hzd7EjyhIMHbS1d/PygfHmzo7mLWCzgVdjsKDLE3oXv4EGzIxERSR8lpUREREQk9WIj4ejXtumiLc2OJk/YutX2XL26raaUmODfHRC1x+wo0syelDp8GKxWs6MREUk7fe2JiIiISOod/hSssVCgNhRuYHY0ud6VK/+1cqlVy+xo7lJ734XFNWDHGLMjSbOSJcHTE65dgzNnzI5GRCTtlJQSERERkdSxxsOBmyOVhT1t6/4kGbJjh62FS4kSEBhodjR3qWLtbM8nf4JrJ82OJk1cXaFsWdu0RuETkdxISSkRERERSZ1Tv8K14+BZGIJ7mR1NrmcY/426p1ZSJspfFYKagpEAB2eYHU2a2bvwKSklIrmRklIiIiIikjoHp9meQweAq5fZ0eR6p0/D+fPg5gZVq5odzV2uwlO258OfQMINs6NJE3tS6uRJuH7d7GhERNJGSSkRERERubO4aLi0HbBAuUFmR5Mn2FtJVaoEXsrxmavkA+BdHGLOwYkfzI4mTQICbF0/DQOOHDE7GhGRtFFSSkRERETuzN0f7j8GLVeAX1mzo8n14uNh507bdM2aZkcjuLj/l2w9+JHZ0aRZ+fK2Z3XhE5HcRkkpEREREUkdV08o0tzsKPKEffsgJsbWyiUkxOxoBLAlpSxucPkwxFwwO5o0SVxXyjDMjkZEJPWUlBIRERGR27t+FqwJZkeRp2zdanuuUQNc9Bt5zuBdDFqtsrUI9CpsdjRpUro0uLvD5cu2OmUiIrmFvgJFRERE5PbWPAQLy0PEX2ZHkidERf1X+0dd93KYwIbg6mF2FGnm5vZfi7uDB82ORkQk9ZSUEhEREZGU/bsDLvwF106ollQm2b7d1sUqOBgKFjQ7GkmWNQGuHjc7ijQJDbU9q9i5iOQmSkqJiIiISMoOTrM9l+oK3kXNjibXM4z/Rt2rVcvsaCRZF7fAwlBY2TZXFWgqezNnfPw4xMWZHY2ISOooKSUiIiIiyYu7DEfn2qbLDzE7mjzh+HG4eBE8PKByZbOjkWTlKwexFyB6H0SsMTuaVCtcGPz9bSM7Hs9djbxE5C6mpJSIiIiIJO/oXIi/Av4VIaiZ2dHkCfZWUlWq2BJTkgO5+0NwH9v0welmR5NqFst/raXUhU9EcgslpUREREQkKcP4r+teuSdtf/FKhty4Abt326ZV4DyHKz/Y9nxiPsREmB1NqtnrSh0+bHYkIiKpo6SUiIiIiCR18R+4tBNcvaHsY2ZHkyfs2mVLTBUqBKVLmx2N3FbBOlCwLljj4Mhss6NJNXtLqbNn4epVs6MREbkzJaVEREREJKmCdaH1WqjzPngUMDuaPGHLFttz7dpqeJYrlH/S9nxoBhhWs6NJFV9fKHpzPAJ14ROR3EBJKRERERFJymKBwIZQ7gmzI8kTzp+HkyfBxQVq1DA7GkmV4F62+lJXDkPEOrOjSTXVlRKR3ERJKRERERFxZhhmR5DnbN1qe65QAfz8zI5GUsXNF+p+BG3WQ2Ajs6NJtcR1pXQri0hOp6SUiIiIiPzHsMLvdWDTUxBzwexo8oT4eNi+3TZdu7bZ0UiahDwChe/NVf0tS5cGNzeIjobISLOjERG5PSWlREREROQ/Z5bBv1vh6Ffg5m12NHnC/v1w7Rr4+0O5cmZHI+mWS+pKubv/V0hfo/CJSE6npJSIiIiI/OfQDNtzyGO27kuSYfYC5zVr2mpKSS4TcwE2PgmLa4I1wexoUkV1pUQkt9DXooiIiIjYXD8DpxbapssNMjuaPOHSpf9aq9SqZXY0ki5uvnD8e7i0E84sMTuaVLHXlTp6FBJyRx5NRO5SSkqJiIiIiM2R2WDEQ+EGkL+q2dHkCfYC52XLQoECZkcj6eLmDSF9bdP2loQ5XNGi4OMDsbFw6pTZ0YiIpExJKRERERGx1cs5/KltWq2kMoXV+l9SSgXOc7lyg23Pp3+FqyfMjuaOLJb/uvCprpSI5GRKSomIiIgInPsDrhwBd38o3d3saPKEw4dtI6B5e0PFimZHIxkSUBGCmt5M3n5mdjSporpSIpIbKCklIiIiIuBfEaqMgrBnVeA8k9gLnNeoAW5uZkcjGVbuSdvz4U/AGm92NHdkryt16hTExJgdjYhI8pSUEhERERHwKQk13oDq482OJE+4cgX277dNq8B5HlGqK3gWhuun4dSvZkdzRwEBUKiQrRvp0aNmRyMikjz9z0ZEREREJJNt3WpLBpQsCUWKmB2NZApXT6g0EuKioGAds6NJldBQiIy0deFTF1IRyYmUlBIRERG5mxkGbBoKJTpBsXbg4mp2RLme1QqbN9um77nH7GgkU1V+0ewI0qRsWdi4EcLDzY5ERCR56r4nIiIicjc7/yccmg7rekHCdbOjyRMOH4ZLl2wFzitXNjsauZsFB9tG4ouIgMuXzY5GRCQpJaVERERE7maHP7E9l+kD7n5mR5Mn/POP7blmTXB3NzsayXTWeDi5EP5+HKwJZkdzW97eUKyYbVqtpUQkJ1JSSkRERORuFRsJx+fbpkMHmh1NnhAVBQcO2Kbr5I6yQ5JW1jhY/xgcmQVnl5sdzR2FhNielZQSkZxISSkRERGRu1X4l2CNhQK1ck3h5pxuyxZbma6QEChc2OxoJEu4eUPIo7Zpe0vDHMyelDpyxPbeFBHJSZSUEhEREbkbGcZ/f1CXG2grPCMZkpBgS0oB1K1rdjSSpUKfsD2f/BlizpsdzW2VLg2urrZWfP/+a3Y0IiLOlJQSERERuRtd+Aui9oCrDwT3MTuaPGH/flsxaT8/qFjR7GgkSxWoDgXvASMewr8wO5rb8vCAkiVt0+rCJyI5jZJSIiIiInejhBjIXwOCe4JHgNnR5An2Aue1atlapkgeV+5mHbbDn+b4fnGqKyUiOVWOTUp99NFHlClTBi8vL+rXr8/GjRtTXPeTTz6hcePGFChQgAIFCtCqVask6/fr1w+LxeL0aNeuXTaciYiIiEgOVLQltN8KdT8yO5I8ITLSVrPHYlGB87tGcC9w84Xo/RCx1uxobitxUiqH589E5C6TI5NS3333HSNGjGDs2LFs2bKFGjVq0LZtW86fT76/9qpVq+jduzcrV65k/fr1lCpVijZt2nDq1Cmn9dq1a8eZM2ccj2+++SabzkhEREQkB7JYbEWbJcM2b7Y9lysH+fObHY1kC/d8tsRUgVpgvWF2NLdVsiS4u8PVq5DCn1QiIqbIkUmpyZMnM3DgQPr370/lypWZPn06Pj4+fP7558mu/9VXXzF06FBq1qxJxYoV+fTTT7FaraxYscJpPU9PT4oWLep4FChQIJvOSERERCSHMAw4+i3EXTY7kjwjPh62bbNNq8D5Xabuh9B+i63lYQ7m6grBwbZpdeETkZwkxyWlbty4webNm2nVqpVjnouLC61atWL9+vWp2se1a9eIi4ujYMGCTvNXrVpFUFAQYWFhDBkyhMjIyEyPX0RERCRHi9wEf/WGX8pCQqzZ0eQJu3bBtWsQEADly5sdjWQrVy+zI0g11ZUSkZzIzewAbnXhwgUSEhIoUqSI0/wiRYqwb9++VO3jpZdeonjx4k6JrXbt2vHggw8SEhLC4cOHGTVqFO3bt2f9+vW4JlOJMjY2ltjY/35Ri46OBsBqtWK1WjNwhmlntVoxDCPbjysiSel+FMk5dD+mj+XQTCyAUbQthsUddP0yxDDgr7/AMCzUrWsr1nM3XtK7/n6Mi4bTv0HpXrZusTlQcLDtfRoebhAfDy45rnmCZKa7/p4U06X2vZfjklIZ9dZbb/Htt9+yatUqvLz++89Fr169HNPVqlWjevXqhIaGsmrVKlq2TNrcduLEiYwfPz7J/IiICGJiYrLwDJKyWq1ERUVhGAYu+vYQMZXuR5GcQ/dj2lnirxB47BsswMVC3YhTcZkMO3HChSNHfHBzMyhZ8updW6/nrr4fE2IIWlcbl/h/uRBXiHj/mmZHlCwXF0hI8OXiRQs7dlyjeHElK/Kyu/qelBzh8uXUlQnIcUmpwoUL4+rqyrlz55zmnzt3jqJFi95223fffZe33nqL5cuXU7169duuW7ZsWQoXLsyhQ4eSTUq9/PLLjBgxwvFzdHQ0pUqVIjAwEH9//zSfV0ZYrVYsFguBgYH6QBExme5HkZxD92M6HPkVl4RrGPkqUKB85xzboiM3WbUKfH0t1K5tEBzsa3Y4prnb70dLiXZw7BsK/fsjRrk2ZoeToipVYN8+C5cv+xAUZHY0kpXu9ntSzJe4kdDt5LiklIeHB3Xq1GHFihU88MADcPOGWrFiBcOGDUtxu0mTJvHGG2+wZMkS6qaiwuTJkyeJjIykWLFiyS739PTE09MzyXwXFxdTbmqLxWLasUXEme5HkZxD92Mahc8GwFK2P5ZkyhdI2kRFwYEDttzevfda7vruUHf1/VhuIBz7Bsuxb7DUngzufmZHlKzQ0P9n787jo6zO/o9/ZiZ7IIFAFsKShX3fBBREFlFWEbUt+rTForWtre1jqbalrVvbp7i2Pm1dWvtT6WJF6yPuuERBVkF22bckbFlYkpCQdeb+/XFIAhIgy8zcM5Pv+/Wa131m5p5zrih3MnPNOdeBXbsgJ8fBuHF2RyO+1qqvSbFdY//dBeS/znnz5vHcc8+xcOFCduzYwZ133klZWRlz584FYM6cOcyfP7/u/EceeYT77ruP559/nvT0dPLy8sjLy6O0tBSA0tJS7r33XtasWUN2djZZWVlcf/319OjRg8mTJ9v2c4qIiIj4TcluKFwJDidkzLE7mpCwbp2pH5WRAV8qhyqtTdJ4aNMDakoh9xW7o7mg2mLnublm10gREbsFZFJq9uzZPP7449x///0MGTKETZs2sWTJkrri57m5uRw9erTu/GeeeYaqqiq+8pWv0KlTp7rb448/DoDL5WLLli3MnDmTXr16cfvttzN8+HCWL1/e4GwoERERkZBTuBxwQKcpEJNqdzRBr7oa1q837VGj7I5GbOdwQPfbTXvf3+yO5oI6doS2bU1C6uBBu6MREQnA5Xu17rrrrgsu11u6dOk597Ozsy/aV3R0NO+//75X4xMREREJKt1vh5RroaZxhUfl4rZuhfJyaNcOevWyOxoJCJnfgi2/gmOroWgbtOtvd0TncTjMbKktW+DAgfqZUyIidgnImVIiIiIi4gOxXSG+n91RBD3Lgs8+M+2RI2n1taTkjOgU6HydWSJ7bKXd0VxQbSLqEt/ri4j4RcDOlBIRERERL6kqgoh2dkcRMnJyID8fwsNh6FC7o5GAMuQRuOxPENPF7kguKD3dHA8fhqoqiIiwOyIRac30vY6IiIhIKKs4Bq93gk+mQk2Z3dGEhNpZUoMHQ3S03dFIQInrFdAJKTBLTuPjwe2GQ4fsjkZEWjslpURERERCWc5L4K6AigIIi7U7mqB38iTs3GnaKnAuF1VxzO4IGuRw1M+WOnDA7mhEpLVTUkpEREQklO173hwz59odSUhYtcrUlOrRAxIT7Y5GApK7Cj6ZYmYolgXmFne1SSnVlRIRuykpJSIiIhKqTmyEos3gjID0/7I7mqBXVgYbN5r2mDF2RyMByxUB7kqwauDAQrujadCX60qJiNhFSSkRERGRULX/zCypLrMgMsHuaILeZ59BTQ107lz/oV6kQd1vM8f9L4DlsTua89TWlfJ44GBgTuYSkVZCSSkRERGRUOSugOx/mXbmbXZHE/SqqmDdOtMeM8bU5RG5oK43QVhbKN0PBZ/aHc15zq4rpSV8ImInJaVEREREQtGhN6HqpNkJLGWS3dEEvfXrobwcOnSAPn3sjkYCXlgMpN9i2rV13QKMklIiEgiUlBIREREJRalTYORfYeCD4HTZHU1Qc7th9WrTHj0anHoHLY1RO0Px4H+gqtjuaM6julIiEgj0J1VEREQkFIXHQY87oPvtdkcS9LZuhZISaNMGBg+2OxoJGh1GQnw/cJdDzst2R3Me1ZUSkUCgpJSIiIiIyAVYFqxcadqXXw5hYXZHJEHD4YABD8CovwXk7peqKyUigUBJKREREZFQYlnw6Y2w689QU2Z3NEFv924oLITISLjsMrujkaCT9jUzWzG8rd2RNEhJKRGxm5JSIiIiIqGkcDkceh02z7c7kpBQO0vqsssgKsruaES8KyPDHFVXSkTsoqSUiIiISCjZ/4I5ps2GsFi7owlq2dmQmwsul1m6J9Is7grY9UfImgSearujOUe7duamulIiYhclpURERERCRfUpyHnFtGt3/pJmsSz45BPTHjoU2gbm6isJBo4w2LYA8rPg8Nt2R3MeLeETETspKSUiIiISKnJfBfdpiOsNHa+wO5qgduAA5OSYwuZXXWV3NBLUnGGQeatp73ve7mjOo6SUiNhJSSkRERGRULH/zAfejG+ZrbWkWSwLPv7YtIcPh7g4uyOSoJc51xyPvgunj9gdzTlqk1KqKyUidlBSSkRERCQUlOyCwpXgcELGHLujCWp798KhQxAeDmPH2h2NhIS43pA4BiwPZP/D7mjOobpSImInJaVEREREQoGnBrrMgs7XQUyq3dEErbNrSY0YAW3a2B2RhIzaOm/7njf/0AJI7WypAwfsjkREWhslpURERERCQbv+cNXrMPb/7I4kqO3aBUeOQEQEjBljdzQSUrp91eyIeWq3mdUYQFRXSkTsEmZ3ACIiIiLiRQ5959hcZ8+SGjUKYmPtjkhCSnhbSP8GVBaa5FQAqU1KHTli6kpFRNgdkYi0FkpKiYiIiAS77Jehwwho293uSILa9u2Qnw+RkTB6tN3RSEga8UxAbkJQW1eqqAhyc6FHD7sjEpHWQl+liYiIiASzimOwZg681QNO7bU7mqDl8cDSpaZ9xRUQHW13RBKSAjAhVUtL+ETEDkpKiYiIiASznJfAUw3th0FbTW9ors2bobAQoqLg8svtjkZC3qm9sOcZu6M4h5JSImIHLd8TERERCWb7njfH7rfZHUnQqqyErCzTvuoqk5gS8ZnK4/B2X7BqIHkixPW2OyJQXSkRsYlmSomIiIgEqxMboWgzOCMg7Ra7owlay5dDaSkkJJgC5yI+FdkBOk0x7f0v2B1Nndq6Uh6PqSslIuIPSkqJiIiIBKv9Z2ZJdbkBIhPsjiYonTwJq1eb9uTJ4HLZHZG0CrUzG/cvBE+N3dHU0RI+EfE3JaVEREREgpG7ArL/ZdpautdsH3wAbjdkZkKvXnZHI61G6nSITISKPDi6xO5o6igpJSL+pqSUiIiISDAq3gaWG2K6QPLVdkcTlLKzYccOsyHalCkBvTGahBpXBGR807T3/T+7o6lzdl2pykq7oxGR1kBJKREREZFglDAcbjgK494Gp9acNZXHA0vOTFC57DJISrI7Iml1Ms/McDz8NlQU2B0NnKkr1b69uT4OHrQ7GhFpDZSUEhEREQlWYTHQfrDdUQSljRshL8/stDdhgt3RSKvUrj8kjICwWCjaanc0dbSET0T8KczuAERERESkicrzICpZ682aqaICPv7YtMePh5gYuyOSVmvMSxDdGcKi7Y6kTnq6SdoqKSUi/qCZUiIiIiLBxLLgwyvhnX5QtM3uaILShx9CWRl07AgjRtgdjbRqbXsEVEIKIC3NHFVXSkT8QUkpERERkWBSuBxK98HpQ9Am3e5ogs7+/bB+vWnPmAEuleOSQGBZUBoYU5NUV0pE/ElJKREREZFgsv8Fc0ybbWrRSKNVVsKbb5r2yJH1tXNEbFV2EN7pC+8NgZpyu6MB1ZUSET9SUkpEREQkWFSfgpxXTDtzrt3RBJ2PPoKiIjMTZNIku6MROSOmM7groLoYDi22Oxo4Kyl14IDdkYhIqFNSSkRERCRY5L4K7tPQthd0HG13NEElOxvWrTPtmTMhIsLuiETOcDgh41umvf95u6OBs+pKHT2qulIi4ltKSomIiIgEi9oPrN1v0857TVBVBW+8YdrDh0Nmpt0RiXxJ5q3mmJcFZTl2R3NOXancXLujEZFQpqSUiIiISDAo2QOFK82sivRv2h1NUPn4Yzh5EuLi4Jpr7I5GpAFtMiB5ImDB/oV2RwOqKyUifqKklIiIiEgwaJMJEz6AwQ9DTKrd0QSN7Gz47DPTnjkToqLsjkjkAmrrxO1/ESyP3dEoKSUifqGklIiIiEgwcLqg0zXQ7167IwkaJSXw6qtgWTB0KPToYXdEIhfR9UYIj4OyA1C4wu5oVFdKRPxCSSkRERERCTlut0lIlZVBcjJMm2Z3RCKXEBYDw56EiVmQeKXd0dCunbl5PHDwoN3RiEioUlJKREREJNCt+z5suAfK9MmwsT74wHyQjoqC2bMhPNzuiEQaoftcSJloascFgNolfDn2114XkRAVGL/tRERERKRhFcdg399g5xNQdcLuaILCli31daRuvBESEuyOSCQ41S7hU10pEfEVJaVEREREAlnOS+CphvbDoP1gu6MJePn58NZbpn3VVdCrl90RiTRReR5s+Aksu97uSOpmSh0+DFVVdkcjIqFISSkRERGRQGVZsO//mXb32+yOJuBVVMCiRVBdDd27w/jxdkck0ky7/hcOvwnFO2wNo107iIszdaUOHbI1FBEJUUpKiYiIiASqkxuhaAs4IyDtFrujCWhVVfCvf8GJExAfDzfdBE6905VgFJ0CqWcq8+9/wdZQHI762VJawicivqA/1SIiIiKBqvYDaZcbIFKFkS6kuhr+/W9T2Dw6Gv7rvyAmxu6oRFog88zMyAN/N8t3baRi5yLiS0pKiYiIiAQidwVk/8u0M+faHU3Acrvh1VfhwAGIiIBvfAOSk+2OSqSFOk+HyESoyIcjS2wNpbbY+aFDJgEsIuJNSkqJiIiIBKKa05AxB9oPgZRJdkcTkDweeO012L0bwsPh61+Hzp3tjkrEC5zhkPFN07Z5CV9CArRtaxLAhw/bGoqIhCAlpUREREQCUWQCDH8SpmwAp8vuaAKOZcEbb8D27eBywezZ9TM6REJC7QzJw29BRYFtYTgc9deW6kqJiLeF2R2AiIiIiFyEw2F3BAGnqgpefx127DDFzL/6VejRw+6oRLys3QBT8Lxtb7A8toaSng5ffKGklIh4n5JSIiIiIoHm0FsQ3gaSxoFDE9vPVlRkiprn55sZUjfcAH362B2ViI+Mf8fuCOBLdaVqaiBMnyJFxEv0LkdEREQkkFgWbPgxZE2EnEV2RxNQsrPhr381Cak2beBb34IBA+yOSiT0dewIsbEmIaW6UiLiTUpKiYiIiASSwuVQug/C2kCXmXZHEzA+/xz+/nc4fRpSU+E734GuXe2OSsQPLA/kZcH+F20LweEwS/gAcnJsC0NEQpCSUiIiIiKBpHanrbTZEBZrdzS2Ky6GRYvg7bfNbnsDBsDcuRAXZ3dkIn5SsAw+ngTrfww15baFoWLnIuILWg0sIiIiEiiqT0HOK6adeZvd0djK7YbVq2HZMqiuNgXNJ0yAK69U7XdpZZLGQUw3OJ0LhxZD+i22hFE7U+rgQXN9urQpqIh4gWZKiYiIiASK3FfBfRriekPHK+yOxjYHDsAzz8BHH5mEVFoafO97MHasElLSCjmckPkt066dSWmDxESIiTHX5JEjtoUhIiFGM6VEREREAsX+580xc26ry7643bBzJ6xbV788KDYWrr0WBg1qdf85RM6V+S344teQ9xGU5UBsmt9DcDhMgnjHDnONqqabiHiDklIiIiIigaD6FFQUgsMFGXPsjsZvSkpg/XpzKy01jzmdMHw4TJwI0dF2RygSANpkQPIEyP8E9i+EgffbEkZtUionx8xcFBFpKSWlRERERAJBeFuYsROKt0N0J7uj8ZnKSsjNNR9qs7PNMiCPxzzXpo1JRg0frkLmIufJnHsmKfUiDPiVWdbnZ7V1pXJzzXXrVDEYEWkhJaVEREREAoXDAe36e7VLy4JTp+DkyfpbWRnU1Jx783ggPBzCwupv4eEQGQkREeZ2dvvs++Hh5vVn36qqzCyokhKzg15xMRw7Bnl59UmoWunpMGIE9Omj4skiF9T1Jlj3A3BFQPkRiOni9xCSk83sxfJyOHoUOnf2ewgiEmJalJQ6cuQIqamp3otGREREpDUqPwoR7cEV1eKuamrM7lj795tbfr55LJC0b28SUbW3+Hi7IxIJAmExMG0zxKbbVmTN4YBu3WDXLjPTUUkpEWmpFiWl0tPTmTp1KnfccQfTpk3DqfmbIiIiIk33+Q8hLwtGPQfdvtLkl1dVwZYtplB4To7ZHetsTqdJ/LRvDwkJZpncl2dFORz1s6aqq+uPVVXmVll57vHsttttxnG5zFhOp+kzLs7c4uPrb127Kgkl0mxtMuyOgPR0k5TKyYExY+yORkSCXYuSUpdffjlvvfUWb7/9Np06deK2227jtttuI712sbGIiIiIXFzFMTj8JniqoW3PJr305ElYuxY2boSKivrH27SBzExz69YN2rXzbe0Xj8cktbRDnoif1JSbJXxtu/t96LQzG//l5KiulIi0XIuSUp9++im7d+/mueee4x//+Ae//e1v+d3vfsekSZO44447uP766wkLU9kqERERkQvK/pdJSLUfBu0HN+olOTmwahXs3m1qRgF06ADDhkGPHpCU5N8EkT6UivjR0Q9hxVchvh9cu8rvw6ekmHpylZWmRpyquYhIS7T4LUSvXr147LHHOHToEK+++irXXHMNH330EV/72tfo3LkzP/vZz9i9e7d3ohUREREJJZYF+5837e63XfL00lJ47TV44QWzfMayoGdP+MY34K67zFKa5GTNWBIJae0GQk0pHFsNxTv8PrzTaWZgciZBLiLSEl77XissLIybbrqJ9957j+zsbB544AGcTiePP/44ffv2ZcKECbzyyitYtV/niYiIiLR2JzdC0RZwRkDaLRc8zeMxy/T+9CfYutUknYYPN4mor3/dzI5SIkqklYhOgdRppr3/RVtCqK3Wkp1ty/AiEkK8Ptna4/Gwfv161q1bR2FhIZZl0bVrV1auXMktt9zC4MGD2bNnj7eHFREREQk++18wxy43QGRCg6ccOQJ/+xu8+65ZLtO5M3znO3DdddCxo3/DFZEAkXlmZuWBv4PH/9tr1ialcnPrlxCLiDSH15JS+/fv5xe/+AVdu3blxhtv5IMPPuCmm24iKyuL7OxscnNzueeee9i5cyd33nnnJft76qmnSE9PJyoqilGjRrF27doLnvvcc88xduxY2rdvT/v27Zk0adJ551uWxf3330+nTp2Ijo5m0qRJSo6JiIiIfTzVkP2SaWfOPe9pyzKzo/72N5OYioqC6dPh9tuhUyf/hysiAaTzdIhMhIo8OLrE78N36gQREVBeDvn5fh9eREJIi5JS1dXVvPzyy1x99dX06tWLhx9+mKioKH73u99x8OBBFi1axIQJEwBISUnhkUce4fbbb2f16tUX7XfRokXMmzePBx54gA0bNjB48GAmT55MQUFBg+cvXbqUW265hU8++YTVq1fTtWtXrr32Wg4fPlx3zqOPPsof//hHnn32WT777DNiY2OZPHkyFWdvVSMiIiLiL85wU6R44K8hZdI5T9XUwJtvmtlRHg/072+W6o0YoaLiInLm90fGN0173/P+H151pUTESxxWC4o8JSYmcuLECVwuF9dddx3f/e53ufbaay/6mocffphf/OIXeDyeC54zatQoRowYwZ///Gc4sySwa9eu/PCHP+TnP//5JeNyu920b9+eP//5z8yZMwfLskhNTeUnP/kJ99xzDwDFxcUkJyfz4osvcvPNN1+yz5KSEuLj4ykuLiYuLu6S53uTx+OhoKCApKQknHonKmIrXY8igSNUr8dTp2DRIjh0yNSJuuYauOIK1YySwBaq12NAK/oC3h1oElQ3FkBEO78Ov3w5ZGVB374we7Zfh5ZG0DUpdmtsDqVF/zpjYmJ46KGHyMnJ4bXXXrtkQgrg+9//PgcOHLjg81VVVaxfv55Jk+q/MXQ6nUyaNOmSM6xqnT59murqahISTG2GAwcOkJeXd06f8fHxjBo1qtF9ioiIiPjaoUPw17+aY3S02VVv9GglpESkAe0GwPA/wbRtfk9IcVZdqZwc1ZUSkeYLa8mLs7OzcTTxXVJcXNxFs2THjh3D7XaTnJx8zuPJycns3LmzUWP87Gc/IzU1tS4JlZeXV9fHl/usfe7LKisrqaysrLtfUlICZzLOF5vl5QsejwfLsvw+roicT9ejSOAI6utx5xM4jq3B6jMPOl4BwN69ZoZUTY2DpCSL2bMhIcEs3xMJdEF9PQaznt83Rxv+u6ekQFgYlJU5yM+3SEryewhyEbomxW6N/bfXoqRU9+7d+fGPf8wPf/jDC57z1FNP8cQTT7B///6WDNVoDz/8MC+//DJLly4lKiqq2f0sWLCAhx566LzHCwsL/V6HyuPxUFxcjGVZmnopYjNdjyKBI2ivR8ui466nCSvPprjtOCo83TlwwMXixVG43Q4yM2uYPr2Cmhq4QDlNkYATtNdjKLEsv0+rjIuLIjc3jI0bKxk6tNqvY8vF6ZoUu506dapR57V4ptTJkycvek5RURE5Tah+17FjR1wuF/lf2sYhPz+flJSUi7728ccf5+GHH+ajjz5i0KBBdY/Xvi4/P59OZ21Xk5+fz5AhQxrsa/78+cybN6/ufklJCV27diUxMdGWmlIOh4PExET9QhGxma5HkcARtNdjwac4y7OxwtoS138uhTmxfPQRREU56N3b4qtfBZfLv+81RFoqaK/HUHBiPY7tv4OYbljD/uDXoQcNguPHHZSUxGimVIDRNSl2a+wkoRYlpRqjuLiYyMjIRp8fERHB8OHDycrKYtasWXDmgsrKyuKuu+664OseffRR/ud//of333+fyy677JznMjIySElJISsrqy4JVVJSwmeffcadd97ZYH+RkZENxu10Om25qB0Oh21ji8i5dD2KBI6gvB4PvAiAI202Bw61ZdEicLuhTx/42tccuFx2ByjSPEF5PYaCmmI4tBjC2+EY8jCERftt6IwMWLoUcnMdOByqfxdodE2KnRr7767JSalPP/30nPvZ2dnnPcaZHfAOHjzIv/71L3r16tWkMebNm8ett97KZZddxsiRI3nyyScpKytj7ty5AMyZM4fOnTuzYMECAB555BHuv/9+XnrpJdLT0+vqRLVp04Y2bdrgcDi4++67+e1vf0vPnj3JyMjgvvvuIzU1tS7xJSIiIuJz1acg91UADkfN5aWXoKYGeveGr30NJaREpOmSJ0JMNzida5JT6bf4bejOnWvrSsHx49Cxo9+GFpEQ0eSk1Pjx4+uKmzscDhYuXMjChQsbPNeyLBwOBw8//HCTxpg9ezaFhYXcf//95OXlMWTIEJYsWVJXqDw3N/ecrNszzzxDVVUVX/nKV87p54EHHuDBBx8E4Kc//SllZWV85zvfoaioiCuvvJIlS5a0qO6UiIiISJPkvgLu01RH9+bFt6+gpgZ69eLMkj27gxORoORwQua34Itfw/4X/JqUCguDLl0gO9vclJQSkaZyWFbTNvB88MEHcTgcWJbFr3/9a8aNG8f48ePPO8/lcpGQkMCECRPo27evN2O2RUlJCfHx8RQXF9tSU6qgoICkpCRNvRSxma5HkcARlNfjB2Pg2Co+LXmEj/N+So8ecPPN5oOdSDALyusxlJQegDczAQdcnw2x3fw29NKl5jZgAHxpjoDYSNek2K2xOZQmvwWqnXkEsGzZMubOncucOXOaH6mIiIhIa2BZuLt8jZP55awt/CZJSWaGlBJSItJibTIgeQLkfwL7F8LA+/w2dHq6Oebk2LIBoIgEuRa9Dfrkk0+8F4mIiIhICLNw8H/b/ptt+/6bmBi45RZowl4wIiIXl3nbmaTUCzDgl2ZZnx907myWH586BSdOQIcOfhlWREKE5vGJiIiI+MGyZbBtm/nwNns2tG9vd0QiElK63giJY6HPj8FT47dhw8NNXSnOzJYSEWmKJs2UyszMxOFw8NFHH5GRkUFmZmajXudwONi3b19zYxQREREJavvXrqRow24iHF9l6ow2pKXZHZGIhJywGLjm/F3R/SEtzSSksrNh2DBbQhCRINWkmVIejwePx3POfcuyLnk7+zUiIiIirUl+PlRtfpxZKbdxy6BfM3So3RGJiHjXl+tKiYg0VpNmSmVnZ1/0voiIiIjUq66Gd17L59b4twFIG3+r3SGJSKirPgW5r0BUMnSe4Zchu3QBpxOKi6GoSMuTRaTxVFNKRERExEfefx86V/8Tl6MGd/tRONv3tzskEQl1e/8Cn30btv3Ob0NGRJiC52CW8ImINJZPklIlJSV8+OGHLF++HEvzN0VERKQV2rEDPv/cYljc/wPA1fM2u0MSkdYg/RvgcMGx1VC8w3/DnrWET0SksVqUlHruuecYN24cJ0+erHts8+bN9OnThylTpjB+/HjGjh3L6dOnvRGriIiISFAoLoY334QuUZ+RGLkDXNHQbbbdYYlIaxCdAqnTTHv/i34btnYDB82UEpGmaFFS6h//+AeVlZW0P2vR8E9+8hMKCgqYO3cu06ZNY/Xq1TzzzDPeiFVEREQk4Hk88PrrUF4OYzo9bx7s+hWIiLc7NBFpLTLnmuOBv4Onxi9Ddu1q6koVFZnEvIhIY7QoKbV7924GDx5cd//48eN88sknfPvb3+Zvf/sbb731FiNGjOBf//qXN2IVERERCXgrVpiZAhER0L3LCcAB3bV0T0T8KHU6RCZCRR4cXeKXISMjoVMn09ZsKRFprBYlpYqKikhMTKy7v3z5cgBuvPHGuseuvPJK7dInIiIircLhw7B0qWlPnw4RV/8Hrs+GpKvsDk1EWhNXBGR807T3Pe+3YVVXSkSaqkVJqQ4dOnD06NG6+1lZWbhcLsaMGVP3mGVZVFdXtyxKERERkQDndsMbb5jlewMGwKBBZ56I7QYObXgsIn6WOdfM1PRUg+Xxy5CqKyUiTdWid0iDBg3ijTfe4IsvvmDv3r289NJLjBkzhtjY2LpzsrOz6VQ7j1NEREQkRK1YAQUFEBMD064uwFF+xO6QRKQ1azcAbjgC49/yW2K8WzdwOODECSgp8cuQIhLkWvTb6ac//SknT55k8ODB9O7dm6KiIubNm1f3vMfjYcWKFQwfPtwbsYqIiIgEpMJC+PRT0546FWJy/whvdIUtD9odmoi0ZtEpfh0uKqq+rpSW8IlIY4S15MUTJkzgzTff5IUXXgDg5ptv5rrrrqt7fuXKlaSmpp5TY0pEREQklHg88OabZvler14woJ8b3lpolsvE97M7PBEROH0ILAtiu/p8qLQ0OHLELOEbONDnw4lIkGtRUgpg+vTpTJ8+vcHnxo4dy8aNG1s6hIiIiEjAWrcODh40O0/NmAGO/I/MB8CIBOhyvd3hiUhrt/1R2DwfenwPRjzl8+HS02H1as2UEpHGUdVNERERkWYqKoKsLNOeNAni4oD9Z3a6Sv86uCJtjU9EhIRhZuZm9kvgrvD5cLV1pY4dg9JSnw8nIkGuxTOlANauXcu6desoKirC7Xaf97zD4eC+++7zxlAiIiIiAcGy4K23oKrKLFe57DKg8jgcWmxO6H6b3SGKiEDyRIjpBqdz4eBiSL/Zp8NFR0NyMuTlmdlS/fv7dDgRCXItSkqdOHGCWbNmsXLlSizLuuB5SkqJiIhIqPniC9i3D8LCYOZMMzOA7JfAUwXth0L7IXaHKCJidt7L/BZ88Wszk9PHSSnO1JXKyzN1pZSUEpGLaVFSat68eaxYsYLx48dz66230qVLF8LCvDL5SkRERCRgVVbCBx+Y9lVXQYcOZ57IfskcMzVLSkQCSG1SKu8jKMuF2G4+HS49HT77zCSlREQupkUZpLfffpuRI0eSlZWFw+HwXlQiIiIiAezTT+HUKUhIgNGjz3piwhLIeRm6fdXG6EREvqRNBiRPgPxPYP9CGOjbVSxpaeZYWAhlZRAb69PhRCSItajQeXl5OVdddZUSUiIiItJqHDtmdpYCmDLFLN+rExEPPb8LkQl2hSci0rDMueaY+4rPh4qJgaQk09YufCJyMS2aKTVkyBCyNSdTREREWgnLgvfeA48HevUyt7on9CWdiASyrjeBuxLSvuaX4dLToaDAJKX69fPLkCIShFo0U+qBBx7gzTffZM2aNd6LSERERCRA7dxpipu7XGaWVJ2cRbBkBGT/28boREQuIiwGenwbwuP8MlztEj7NYRCRi2nRTKm8vDymT5/OuHHj+PrXv86wYcOIi2v4l9ycOXNaMpSIiIiIraqr4f33TXvMGFNPqs7+5+HE51Cy067wRESaxvKYnfl8pDYpVVAA5eUQHe2zoUQkiLUoKfWtb30Lh8OBZVm8+OKLvPjii+fVl7IsC4fDoaSUiIiIBLUVK6CoCOLj4corz3qiLMfsaMWZHa5ERAJZziuw/RHoeaeZOeUjbdpAYqIpdp6TA336+GwoEQliLUpKvfDCC96LRERERCRAnTwJK1ea9uTJEBFx1pP7FwIWJE80O1yJiASyshw4ucHM8PRhUoozs6UKC80SPiWlRKQhLUpK3Xrrrd6LRERERCRAffQR1NRARgb07XvWEx437Pt/pp15m13hiYg0XsY3YfN8OLYaindCvO+yRenp8Pnn2oFPRC7Md4uIRURERELAwYOwbZvZXG/KlC9tspefBadzIbwddL3RxihFRBopOgVSp5n2ft+ufKmtK5WXBxUVPh1KRIKUV5JSr7/+Ol/72tcYNGgQPXr0qHt8586dPProoxw+fNgbw4iIiIj4lWXVFzcfMgSSk790wt7nzDHjmxCmKr4iEiQy55rjgb+Dp8Znw7RtCx06mN+lubk+G0ZEgliLlu95PB5uueUW/vOf/wAQHR1NeXl53fPt27fnl7/8JW63m/nz57c8WhERERE/2r4dDh2C8HCYOLGBEzK/BZ5K6O7buiwiIl6VOh0iE6EiD44ugc4zfDZUWhocP27qSvXq5bNhRCRItWim1B/+8AdeffVVvvvd73Ly5Enuueeec55PTk5m7NixvPPOOy2NU0RERMSvampMLSmAMWPMN/7n6Twdxr0J7Qf5OzwRkeZzRUD6N0x73/M+HSo93RxVV0pEGtKipNSLL77IiBEjePrpp4mLi8NxTpEFo0ePHhw4cKAlw4iIiIj43bp1Zte9tm1h9Gi7oxER8bLut0GX66H77T4dprau1JEjUFnp06FEJAi1KCm1d+9exo4de9FzOnTowPHjx1syjIiIiIhfnT4Ny5aZ9oQJEBHxpROOrYUt90Npth3hiYi0XLsBcNViM+PTh+LjoX171ZUSkYa1KCkVHR1NcXHxRc/JycmhXbt2LRlGRERExK8+/dTsFJWcbAqcn2fP0/DFb+CLX9sQnYhIcNESPhG5kBYlpYYOHcr7779PxQX29zxx4gRLlizh8ssvb8kwIiIiIn5z4oRZugdw7bXg/PK7paoiyH3FtLvf4ff4RES8qvQAbP4VHP/cZ0PULuHL1uRSEfmSFiWlfvSjH3Ho0CFuuukmDh06dM5z+/bt44YbbqC4uJgf/ehHLY1TRERExC8+/hjcbujRA7p3b+CEnH+Duxzi+0FHffEmIkFu60Ow7X/MDFAfqZ0pdeQIVFX5bBgRCUJhLXnx9ddfz89+9jMeeeQR0tLSiI2NBSApKYnjx49jWRb33XcfExvcQ1lEREQksBw5Al98AQ4HTJp0gZP2/s0cu99hThQRCWY97oADCyFnEQx/EsLjvD5Eu3amtlRxMRw8eIGEv4i0Si2aKQWwYMEC3n//fWbMmEFMTAwulwuPx8OUKVN47733eOihh7wTqYiIiIiPZWWZ48CBkJLSwAknNsDJDeA8azt1EZFg1nE0xPUF92nIfslnw6iulIg0pEUzpWpdc801XHPNNd7oSkRERMQWBw7Avn3gcpkd9xq078wsqS43QFRHf4YnIuIbDoeZLbVhHuz9K/T8nk+GSU+HzZtVV0pEztWipNThw4dZvHgx69at49ixY3Bm6d6IESOYNWsWnTp18lacIiIiIj5jWfDRR6Y9fLjZvrxBYbEQ1sZ8gBMRCRXp34RNP4eTG+HEekgY7vUhaoudHz4M1dUQHu71IUQkCDU7KfXAAw/w6KOPUlVVhWVZ5zy3cOFCfvKTnzB//nzuu+8+b8QpIiIi4jM7dpgPShERcNVVFzlx6GMw4AEIi/FjdCIiPhbVEbreZDZy2PscjPR+Uqp9+/q6Urm5qislIkazklK//OUvWbBgAZGRkXzjG99g/PjxpKamAnDkyBE++eQTXn31VR588EHcbjcPPvigt+MWERER8QqPx+y4B3DFFdCmzSVeEH6pE0REglCPO+Dw2z4pdM6ZVYJnL+FTUkpEaE5Sav/+/Tz66KNkZGTw3nvv0atXr/POmTt3Lr/61a+YPHkyv/vd77j11lvJyMjwVswiIiIiXrNpExw7BjExMHr0BU4qy4Xyo9BhpHbcE5HQlDQebjxqlin7SEaGSUodOOCzIUQkyDR5972FCxfi8Xj4xz/+0WBCqlavXr345z//SU1NDX//+99bGqeIiIiI11VXw9Klpn3VVRAZeYETd/8JPrgcPv+hP8MTEfEfh8OnCSnO2oHvyBGorPTpUCISJJqclFq5ciUDBgxg9AW/Sqw3ZswYBg4cyPLly5sbn4iIiIjPrF0LJSWmzslll13gJHcV7F9o2p2u9Wd4IiL+Z1lQuBpKvT+dqV07U1vK4zF1pUREmpyU2rFjByNHjmz0+SNHjmTnzp1NHUZERETEpyorYeVK054wAcIuVNTg8JtQWQjRnSB1mj9DFBHxvw3z4MPRsPMPPum+tqqLlvCJCM1JShUVFZGUlNTo85OSkigqKmrqMCIiIiI+tWYNnD4NHTvCoEEXOXHf38wxcy44m71xsYhIcOg0xRwP/ANqyr3efe0Svuxsr3ctIkGoyUmp8vJyIi9YcOF8ERERlJd7/5eZiIiISHOVl8OqVaY9fjw4L/SOqCwHjn5g2pm3+S0+ERHbdLoGYtOguggOvub17mtnSh09ChUVXu9eRIJMk5NSIiIiIsFu5UqzfC8lBfr3v8iJ+14ALEieCG21f7mItAIOJ2Tebtr7nvN6923bQocOpnRVTo7XuxeRINOsOej//Oc/WbNmTaPO3bt3b3OGEBEREfGJ0lL47DPTnjDBbDh1QflZ5tj9Dr/EJiISELrPhS8ehIJPoWQXxPX2avcZGXD8uKkr1du7XYtIkGlWUmrv3r1NSjY5LvpuT0RERMR/VqyA6mro3Bl69brEyVcvhbwPIHmCn6ITEQkAMV2g0zQ48jbsfQ6GPe7V7tPT4fPPVVdKRJqRlDqgbRJEREQkSBUXw7p1pn311ZeYJQXgdEHqVH+EJiISWHrcYZJSBcvMWjsvTjSoLXael2c2nIiJ8VrXIhJkmpyUSktL800kIiIiIj726afgdpsPRLXFdhtUXQquSHCG+zE6EZEAkjoNJnwAKY3J4DdNmzaQmAiFhWa2VL9+Xu1eRIKICp2LiIhIq3DiBGzcaNoTJ17iM9aOR2Fx1zOFzkVEWiFnmNmJz+Gbj4y1XwxoCZ9I66aklIiIiLQKS5eCxwM9e0K3bhc50VMD+/4fVORDmNaUiIjgroLqU17tsnYJn6rDiLRuSkqJiIhIyCsogK1bTXvCpWqWH34byo9AZCJ0ucEf4YmIBK59L8AbXWH7w17ttjYpVVhodkUVkdZJSSkREREJeUuXmjq9fftCauolTt77F3Psfhu4IvwRnohI4ApvCxUFsO958FR7rduYGEhJMW0t4RNpvZSUEhERkZB29Chs325qSF1yllRpNhx937S73+GP8EREAlvnmRCVBBV5cPgtr3ZdO1tKSSmR1ktJKREREQlpH39sjgMHQlLSJU7e9xxgQco10La7P8ITEQlsrgjIvN209zzr1a5ri52rrpRI66WklIiIiISs3FzYswecThg//hIne2rM8hSAHt/1R3giIsGhx3cAB+R9CCV7vNZtWpqZxXr8OJSUeK1bEQkiSkqJiIhISLKs+llSQ4dCQsIlXuAMgwnvQ997octMf4QoIhIc2qRD6lTT3vdXr3UbFVVf52//fq91KyJBREkpERERCUkHDpg6JS4XXHVVI1/UfhAMfRSc4T6OTkQkyPT4njnufwHcVV7rVkv4RFo3JaVEREQk5Jw9S+qyyyA+3u6IRESCXOo06PdzuHqpV3cmzcw0xwMHzO9uEWldlJQSERGRkLN7Nxw6BOHhMHZsI16w9SFY9U04ucUP0YmIBCGnC4YsgHYDvNpt164QFmZqSh0/7tWuRSQIKCklIiIiIeXsWVKjRkGbNpd4gbsK9jwN2f+E0n3+CFFERM4IDzeJKbSET6RVUlJKREREQsq2bZCfbwrojhnTiBccWgwVBRCdCp1n+CFCEZEgVvQFrPoGbLjHa13W1pVSsXOR1kdJKREREQkZbnf9LKnRoyE6uhEv2vusOXa/XQXORUQupfwoZP8L9j0HNWVe6bK2rlR2Nng8XulSRIKEklIiIiISMjZtghMnIDYWLr+8ES8o2Q35n4DDCd2/7YcIRUSCXMrV0KYHVJdA9r+90mVqKkRGQnk55OV5pUsRCRIBmZR66qmnSE9PJyoqilGjRrF27doLnrtt2zZuuukm0tPTcTgcPPnkk+ed8+CDD+JwOM659enTx8c/hYiIiPhTTQ0sW2baY8dCRGM2h9r7V3PsNBViu/k0PhGRkOBwQs/vmnbtTNMWcjohLc20VVdKpHUJuKTUokWLmDdvHg888AAbNmxg8ODBTJ48mYKCggbPP336NJmZmTz88MOkpKRcsN/+/ftz9OjRutuKFSt8+FOIiIiIv61bZ3Zvio+Hyy5rxAtqymH/C6bd47u+Dk9EJHRkfAucEXBiPRz/3Ctd1i7hU1JKpHUJuKTU73//e+644w7mzp1Lv379ePbZZ4mJieH5559v8PwRI0bw2GOPcfPNNxMZGXnBfsPCwkhJSam7dezY0Yc/hYiIiPhTZSUsX27a48aZ7cUvyXJDv59C0lWQOs3XIYqIhI6ojtDtq6btpdlStcXOc3JMfUARaR0CKilVVVXF+vXrmTRpUt1jTqeTSZMmsXr16hb1vWfPHlJTU8nMzOTrX/86ubm5XohYREREAsGaNXD6NHToAEOGNPJF4W2g389g0jJwunwcoYhIiOnxPXPM/jdUFbW4u6QkUw+wuhoOHWp5eCISHBrzPaLfHDt2DLfbTXJy8jmPJycns3Pnzmb3O2rUKF588UV69+7N0aNHeeihhxg7dixffPEFbdu2bfA1lZWVVFZW1t0vKSkBwOPx4PHzlhAejwfLsvw+roicT9ejSOCovR5LSz2sXAmW5WD8eOvMc3ZHJ9K66O9jK9ThChypM7ASrwTLO79409Jg2zYHe/dadO3qlShbLV2TYrfG/tsLqKSUr0ydOrWuPWjQIEaNGkVaWhqvvPIKt99+e4OvWbBgAQ899NB5jxcWFlJRUeHTeL/M4/FQXFyMZVk4nQE1uU2k1dH1KBI4aq/HZcsiOHEiksRENx07lnOBMpTniMl9Fk9kJyoSp5q6KCLSIvr72Er1ec4cT1YALf+M1K5dGGVlUWzZ4qZ///KWx9eK6ZoUu506dapR5wVUUqpjx464XC7y8/PPeTw/P/+iRcybql27dvTq1Yu9e/de8Jz58+czb968uvslJSV07dqVxMRE4uLivBZLY3g8HhwOB4mJifqFImIzXY8igcPj8VBW5mT37nbExjqZNcsiObnhGdDnqDqJY9kjONwVeCYth46j/RGuSEjT30fxhuHDYeVKByUlFu3atW3cLqrSIF2TYreoqKhGnRdQSamIiAiGDx9OVlYWs2bNgjMXU1ZWFnfddZfXxiktLWXfvn1885vfvOA5kZGRDRZOdzqdtlzUDofDtrFF5Fy6HkUCx2efReJ2O0lLc9CrlwOHoxEvyv47uCug3WCciWNo3ItE5FL097GVclfCwdegLBv6/6JFXXXoAAkJcPKkg4MHoWdPr0XZKumaFDs19t9dwP3rnDdvHs899xwLFy5kx44d3HnnnZSVlTF37lwA5syZw/z58+vOr6qqYtOmTWzatImqqioOHz7Mpk2bzpkFdc8997Bs2TKys7NZtWoVN9xwAy6Xi1tuucWWn1FERERa7uRJ2LLFfL929dWNzC1ZHtjzjGn3+r4SUiIiLVW8DVZ9HbY+COX5jXjBxdXuwnfgQMtDE5HAF1AzpQBmz55NYWEh999/P3l5eQwZMoQlS5bUFT/Pzc09J+N25MgRhg4dWnf/8ccf5/HHH2fcuHEsXboUgEOHDnHLLbdw/PhxEhMTufLKK1mzZg2JiYk2/IQiIiLiDUuXgsfjoHt3i7S0RiaX8rLg1B4Ij4O0//J1iCIioS9hGHQYBcc/g31/gwG/bFF3GRmwYQPs3++1CEUkgAVcUgrgrrvuuuByvdpEU6309HQsy7pofy+//LJX4xMRERF7FRTA1q2mPXFiE1645ylzzPgWhLfxSWwiIq1Or7tg9Wew91no9zNwNv9jZu1Mqbw8KCuD2FjvhSkigSfglu+JiIiIXMrHH4NlOejVq4bU1Ea+qCwXDr9l2j3v9GV4IiKtS7evQmQinD4Eh99sUVdt2sCZRTJawifSCigpJSIiIkHl8GHYuRMcDovRoysb/8Kqk2anveSJEN/HlyGKiLQurkjocYdp7/5zi7vr3t0c9+1rcVciEuCUlBIREZGgkpVljoMGQceOF1/Cf472g+Ga5TDuLZ/FJiLSavX4LjickP8JFG9vUVeZmea4fz9colKLiAS5gKwpJSIiItKQAwfMhxSXC8aPh6qqZnQSFuODyEREWrnYbtD5eqg6DjWnW9RVWpr5PV9cDMePQ8eOXotSRAKMZkqJiIhIULAs+Ogj077sMmjXrgkvPvAPqDjmq9BERARgzL9h0jLocFmLugkPh27dTFu78ImENiWlREREJChs327qSUVEwNixTXhh0VZYPQfeTIfqEh9GKCLSyrkivdaV6kqJtA5KSomIiEjAc7vra0mNHm12Z2q03U+bY6epEB7nk/hEROQsFYXmd28LCkLVJqWys83fABEJTaopJSIiIgFv/Xo4ccIko0aPbsILq4og+x+m3ev7vgpPRERqearhnX5QeQzi+kDKxGZ1k5ICMTFw+rSZJVu7nE9EQotmSomIiEhAq6yEZctMe/x4s3yv0fa/ADVlEN8fksb7KkQREanlDIdus01795+b3Y3DUb8Ln5bwiYQuJaVEREQkoK1cCWVl0KEDDB3ahBd63PUfiHr/yHzCERER36udmXr4DSjLbXY3tUkpFTsXCV1KSomIiEjAOnUKVq827UmTzBbhjXb0PSjdD+HtIP3rvgpRRES+LL4fJE8EywN7/9LsbmrrSh0+DBUV3gtPRAKHklIiIiISsJYuhepq6NoV+vRp4otLdoMzAnp8G8JifRShiIg0qNcPzHHvc+CubFYX8fFmlqzHYwqei0joUVJKREREAlJhIWzYYNrXXNOM1Xd958H1udD3Xl+EJyIiF9N5JsR0gcpCyH212d3UzpZSXSmR0KSklIiIiASkjz4yu4n36dOCXZeikyEqycuRiYjIJTnDoMf3zIzV06orJSINC7M7ABEREZEvO3AAdu0Cp9PUkmqSqmLzAajdQB9FJyIijdLrB9DjOxCV2Owu0tPN34Ljx6GoCNq182qEImIzzZQSERGRgOLxwPvvm/Zll0HHjk3sYP/z8O4gWPtdX4QnIiKNFdGuRQkpgKgo6NzZtDVbSiT0KCklIiIiAWXTJsjLMx9Exo9v4os9btj9Z9NOGO6L8EREpDlOboby/Ga9VHWlREKXklIiIiISMCor4eOPTXvcOIiJaWIHR9+D0v0Q3g7Sv+6LEEVEpKnWz4P3hsDuPzXr5bVJqf37zWxaEQkdSkqJiIhIwFi5EkpLISEBRo5sRge7/miOPb4NYbHeDk9ERJojcYw57v0LuCua/PLOnSEyEsrL4ehR74cnIvZRUkpEREQCQnExrFpl2tdeCy5XUzvYAXkfgsMJPX/gixBFRKQ5ulwPMd2g8hhkv9Tklzud9bvw7d3r/fBExD5KSomIiEhA+OgjqKkxOy317t2MDmprSXWeCW3SvR2eiIg0lzMMev/QtHc9CZbV5C569DBHJaVEQouSUiIiImK7Q4dg61ZwOGDyZHNsEo8bjp7Zsq/3j3wRooiItET328EVA0VboWBpk19em5Q6dMgs4xOR0KCklIiIiNjKsuD9M/mkwYOhU6dmdOJ0wfRtMPY1SGrqln0iIuJzEe0h81bT3vlkk18eHw+JieZvxv793g9PROyhpJSIiIjYassWOHgQIiLg6qtb0JErErre2IxpViIi4he9zsxkPbEeqkub/PLa2VL79nk5LhGxjZJSIiIiYpvKSvjwQ9MeNw7atm1GJ+V5ZvmeiIgEtvg+MPFDmLkfwts0+eVn15VqRlkqEQlASkqJiIiIbZYtg9JS6NABRo1qXh+OVbfA272gcKW3wxMREW9LmQSuiGa9NC0NwsOhpAQKC70emYjYQEkpERERscWxY7BmjWlPmQJhYU3vI6xkM47CT6EsF2K1456ISNDwuKH0QJNeEhZmdmhFu/CJhAwlpURERMTvLAveew88HujdG3r2bF4/sQf/ahppN0NMZ6/GKCIiPnJyC7zVEz6+psnLr89ewiciwU9JKREREfG7XbtMoVqXCyZPbmYnpw8RVfCmaff5sTfDExERX2rbHapOQuk+OPJuk17avbs55uRAVZVvwhMR/1FSSkRERPyquhref9+0R4+GhITm9ePY8xQOqwYrcRwkDPNqjCIi4kNhsdDjDtPe9b9NemmHDtCuHbjdkJ3tm/BExH+UlBIRERG/WrUKTp6EuDgYO7aZnVSXwl6zdM/qc7dX4xMRET/odRc4XJCfZZbzNZLDoSV8IqFESSkRERHxm5MnYfly0772Woho3gZMcPgtHNVF1ERnQOoMb4YoIiL+ENsNut5k2jt/36SXKiklEjqUlBIRERG/sCx4912oqYHMTOjfvwWdpd2MZ9JySnr9Fhx6OyMiEpT63mOOOS/B6SONfllGBjidcOKEuYlI8NK7OBEREfGLHTtgzx5T3HzaNLMEo9kcDug4mqoOE70YoYiI+FWHEZA4FjzVcPC1Rr8sMhK6dTNtzZYSCW5hdgcgIiIioa+yEpYsMe0xY6BjxxZ0Vl0K4W28FZqIiNhp6GNguSFxdJNe1qOHKXS+dy+MHOmz6ETExzRTSkRERHxu6VIoKYH27VtQ3BzgxHp4PQU2/MSsBxQRkeDWcVSTE1KcVVcqO9ssCxeR4KSklIiIiPhUXh589plpT58O4eEt6GznH6CmDCryW7j+T0REAk7lCfA0LsOUnAxt2kBVFeTk+DwyEfERJaVERETEZywL3nkHPB7o16/+m+1mOX0YchaZdp8feytEEREJBFsehMVd4eD/Nep0hwN69jTtPXt8G5qI+I6SUiIiIuIzGzbAwYMQEQFTprSws11/BKvGFMVNGO6lCEVEJGC4T8OOxxu9PLtXL3Pcvdu3YYmI7ygpJSIiIj5RWgoffWTaEyZAXFwLOqsqhr3Pmnbfe70Sn4iIBJBe3wdnJJxYB4UrGvWSzEyzo+uJE3D8uM8jFBEfUFJKREREfOK996C8HDp1glGjWtjZ3r9CdQnE9YXO070UoYiIBIyoJMi81bR3PN6ol0RGQlqaaWu2lEhwUlJKREREvG7XLti2DZxOmDnTHJvN8sCep027773g0NsXEZGQ1GeeOR5+C0p2NeolqislEtz0rk5ERES8qrLSFDcHuOIKM1OqRRxOuGY5DLgP0v/LGyGKiEggiusNna8DLLPbaiPU1pXKyTF/f0QkuCgpJSIiIl6VlQUlJZCQAOPHe6nTmC4w6NfgivRShyIiEpD63mOOOf+GmtOXPL1DB/P3xu2G/ft9H56IeJeSUiIiIuI1ubmwbp1pX3cdhIe3sEN3hTfCEhGRYJE4Fob9AaZvg7CYRr1Eu/CJBC8lpURERMQramrgrbfMTt5Dh0JGhhc6/fhaWDodSlQsRESkVXA4oM/dZoZsI51dV8qyfBeaiHhfmN0BiIiISGhYsQIKC6FNG7j2Wi90WLgKCpeDMwLCYr3QoYiIBJ2qYoiIv+gpaWkQEQGlpXD0KKSm+i06EWkhzZQSERGRFsvPh+XLTXvqVIiO9kKnOx4zx4xvQow+YYiItCqnj8An0+DdgeCuuuipYWGQmWna2oVPJLgoKSUiIiIt4nbD4sXm2KcP9OvnhU6Ld8KhN0y7zz1e6FBERIJKZAco2gSnD0LOS5c8XXWlRIKTklIiIiLSIqtWmeUS0dEwY4YpB9JiO58wW4J3uR7i+3ihQxERCSquSOj9Y9Pe/ghYnoueXltX6sgRKCvzQ3wi4hVKSomIiEizFRTA0qWmPXWqqSfVYuVH4cDfTbvvT73QoYiIBKWe34XweCjZCYfevOipbdtCp06m0LmW8IkEDyWlREREpFk8nvple717w8CBXup4z1/AUwWJYyBxtJc6FRGRoBMeB71+YNrbF1xya73aJXxKSokEDyWlREREpFlWrTLLJKKivLhsD6D/z2HkX2Dgr73UoYiIBK1ePwJXFBxfCwVLL3pq7RK+vXvNFyYiEviUlBIREZEmKyyETz4x7alTzbIJr3FFQY/vQMpEL3YqIiJBKToZMm8z7b1/veipnTtDbCxUVkJOjn/CE5GWUVJKREREmuTsZXu9esGgQV7q2F0FHn21LSIiX9L3HjOD9vIXLnqaw1G/hG/XLv+EJiIto6SUiIiINMmKFXD4sA+W7e15Gt7pCwf/z0sdiohISGiTYWbQuqIueWrv3ua4a9clS1CJSABQUkpEREQa7ciR+t32pk2DuDgvdeyuhB2Pwak9UHncS52KiEjI8bihuuSCT3fvDuHhUFQE+fl+jUxEmkFJKREREWmU6mp4/XWzfK9/fy/utgdwYCGUH4HozpAxx4sdi4hIyDj6gZlRu+GeC54SHg6ZmaatJXwigU9JKREREWmUjz82Bc7btIHp0724bM9TA9sfMe2+94Ar0ksdi4hISAmLNTNqD7wIpw9d8LQ+fcxx507/hSYizaOklIiIiFxSdjasWWPaM2dCTIwXO89ZBKX7IbIj9LjDix2LiEhISRwDSVeBpxq2P3rB03r1Ml+cHD0KxcV+jVBEmkhJKREREbmoykqzbM+yYPjw+p2NvMLywPbfmXafH5tvwUVERC5kwH3muO85KM9r8JTYWOja1bS1hE8ksCkpJSIiIhe1ZIn5prl9e5g82cud538CxdshPA56/sDLnYuISMhJvho6XA7uCtjx+AVPO3sXPhEJXEpKiYiIyAXt3AkbN5plEDfcABERXh4geSJc/QkM/yNExHu5cxERCTkOR/1sqT3PQEVhg6fV1pXKzoaKCj/GJyJNoqSUiIiINKisDN56y7RHj4Zu3XwwiMMByeMh81YfdC4iIiEpdSokDAf3aTj4nwZP6dABOnYEtxv27vV7hCLSSEpKiYiIyHksyySkysogORkmTPDBAFVFXu5URERaBYcDhj1pZtr2+N4FT6udLaUlfCKBS0kpEREROc/mzWbpnstllu2FhXl5gPyPYXEX2PqQlzsWEZFWIelKM9PW4bjgKbV1pfbsMTOmRCTwKCklIiIi5ygqgvfeM+0JEyAlxcsDWBZsfRBqyqDyhJc7FxGRVqfyBFSXnvdwly5mJ76KCsjJsSUyEbkEJaVERESkjmXB4sVQWWm20x492geD5H8ChSvAGQn9fuaDAUREpNXY9Wd4Iw12//G8pxyO+tlSO3f6PzQRuTQlpURERKTOmjVmp6KICLNsz+ntdwq1s6QAenwHYlK9PICIiLQqEe2hphR2/r7B2VK1Saldu8yfIBEJLEpKiYiICAAFBZCVZdrXXgsJCT4YJP8TKFyuWVIiIuIdabOhTQ+oPA57njnv6cxMCA+H4mLIy7MlQhG5iIBMSj311FOkp6cTFRXFqFGjWLt27QXP3bZtGzfddBPp6ek4HA6efPLJFvcpIiLS2rjd8H//BzU10LMnDB/ug0EsC744U9i8xx0Q09kHg4iISKviDIMBvzTtHY+dN1sqPNz8XQPYvt2G+ETkogIuKbVo0SLmzZvHAw88wIYNGxg8eDCTJ0+moKCgwfNPnz5NZmYmDz/8MCkXqMTa1D5FRERam6VLzTfIMTEwc+ZFNzNqvlN74NhqcEZAv5/7YAAREWmV0r9xZrZUIez+83lP9+1rjtu3awmfSKAJuKTU73//e+644w7mzp1Lv379ePbZZ4mJieH5559v8PwRI0bw2GOPcfPNNxMZGemVPkVERFqT3FxYscK0r7sO2rb10UBxveC6PXDF3zVLSkREvMcZBgMfMO0dj0F1yTlP9+oFLhccPw6FhfaEKCINC6ikVFVVFevXr2fSpEl1jzmdTiZNmsTq1asDpk8REZFQUVlplu1ZFgwZUv9tss/Eppn6HyIiIt6UdgvE9YaaU1Cw/JynIiOhRw/T1hI+kcASZncAZzt27Bhut5vk5ORzHk9OTmZnM/fwbG6flZWVVFZW1t0vKTHZdo/Hg8fjaVYszeXxeLAsy+/jisj5dD1KqHn3XTh50kG7dhaTJ4PP/mmX7DYzpbxI16NI4ND1KPZzwKgXIDIZ2qSf9wetd2/YudPBtm0WV11lW5B+o2tS7NbYf3sBlZQKJAsWLOChhx467/HCwkIqKir8GovH46G4uBjLsnB6fW9uEWkKXY8SSvbscbFyZTQOh8WMGeUUF/vmjWvEyZUkbPwK5UmzKO7/tNcKVul6FAkcuh4lMGTAaeD0+bWD27eH8vJYDhxwsHNnGQkJoV1cStek2O3UqVONOi+gklIdO3bE5XKRn59/zuP5+fkXLGLuqz7nz5/PvHnz6u6XlJTQtWtXEhMTiYuLa1YszeXxeHA4HCQmJuoXiojNdD1KqCgthVWrIDbWwZgxFsOHx/pmIMvCsfkJAKLiU4n80szlltD1KBI4dD1KwDm5CWK6QWRC3UP9+8P+/Q4KC2Po08fW6HxO16TYLSoqqlHnBVRSKiIiguHDh5OVlcWsWbPgzMWUlZXFXXfd5dc+IyMjGyyc7nQ6bbmoHQ6HbWOLyLl0PUqwsyx4+20oL4dOnWDiRAc+++d8+B04vhpc0TgG/AqHlwfS9SgSOHQ9SsDY9AvYvgD6zYchv6t7eMAAOHAAdu1yMG6crRH6ha5JsVNj/90F3L/OefPm8dxzz7Fw4UJ27NjBnXfeSVlZGXPnzgVgzpw5zJ8/v+78qqoqNm3axKZNm6iqquLw4cNs2rSJvXv3NrpPERGR1mT9eti92+xEdOONEOarr6gsD2z5lWn3uguiO/loIBERkbN0vNwcd/8RKuq32+vTx6wgP3IETp60LzwRqRdQM6UAZs+eTWFhIffffz95eXkMGTKEJUuW1BUqz83NPSfjduTIEYYOHVp3//HHH+fxxx9n3LhxLF26tFF9ioiItBbHj8P775v2pEmQlOTDwQ6+ZpZPhLWFfj/z4UAiIiJn6XwdJAyHE+thx6Mw9DEAYmMhLQ2ys2HHDhg92u5ARcRhWVZoV3jzkpKSEuLj4ykuLralplRBQQFJSUmaeiliM12PEsw8Hnj+eTh0CDIyYM4cr9Ucb2AwN7w7AEp2woAHYNCD3h9C16NIwND1KAHn8LuwbDq4omHmfog29YTXrjU7z3btCrffbneQvqNrUuzW2ByK/nWKiIi0EsuXm4RUVBTMmuXDhBRA6V6oKoKIBOg7rxEvEBER8aLUqdBhFLjLYVt9Xam+fc3x4EEoKbEvPBExlJQSERFpBQ4fhmXLTHvaNIiP9/GAcb1h5j4Y/x6E+3eGsYiICA4HDD6TjNr7LJQeAKBtWzNLCswSPhGxl5JSIiIiIa66Gv7v/8zyvf79YeBAPw0cFgMdR/ppMBERkS9JmQgp15hZu6X76h7u188clZQSsZ+SUiIiIiHuww9NgfO2bWHGDB8v26s5DTmvmJ33RERE7Dbq/5mZuymT6h6qXcKXkwOlpfaFJiJKSomIiIS0vXtNUVcwdaSio3084J6nYeVsWHa9jwcSERFphNiuEBZ7zkPt2kHnzmBZmi0lYjclpURERELU6dOweLFpjxoF3bv7eMCqYtj+sGl3vcHHg4mIiDSB5YHsl+GY+aZmwADz8Nat9oYl0topKSUiIhKCLAveftssS+jYESZNasSLWmrHo1B53BQ5z5jjhwFFREQa6YvfwqpbYOM8sCz69zfL2XNzobjY7uBEWi8lpURERELQli2wfTs4nXDjjRAe7uMBTx+GnX8w7cEPgzPMxwOKiIg0QffbwRUFhSvhyLvExUG3buapbdvsDk6k9VJSSkREJMQUFcG775r2+PGQmuqHQbc+CO5ySBwDXVRPSkREAkxMZ+j1I9PePB8sT90Svi++sDUykVZNSSkREZEQYlnw+utQWQldu8KVV/ph0OLtsP950x7yqI+39xMREWmmfj+D8Hgo2grZL9Gvn5lRfOSI2aVWRPxPSSkREZEQ8tlnZovriAi44QbzZtvnPFWQcBl0vRESR/thQBERkWaITDCJKYAt9xEbVUlmprmr2VIi9lBSSkREJEQcPw4ffWTa114LCQl+Grj9ELh2DVz+gp8GFBERaabeP4LoTlCWDXuePmcJn2XZHZxI66OklIiISAjweGDxYqipgcxMGD7czwE4HBAe5+dBRUREmigsFgb9BhKGQ8Jl9OkDYWFQWAgFBXYHJ9L6KCklIiISAtasgYMHITISrr/eT2WdDr0BW+6H6lN+GExERMRLMufC5LWQNJaoKOjZ0zysJXwi/qeklIiISJArLISPPzbtyZMhPt4Pg3qqYeO98MVvYNcf/TCgiIiIlzic5naGlvCJ2EdJKRERkSB29rK9Hj1g6FA/Dbz3OTi1B6KSTH0OERGRYFNdClsepG/Rt4iIgJMn4fBhu4MSaV2UlBIREQliq1aZN9BRUTBzpp+W7VUVw9YHTHvA/RDe1g+DioiIeFlZNmz7Dc6chVzRcxVoCZ+I3ykpJSIiEqQKCuCTT0x7yhSI81ed8W2/hcpjENcHenzHT4OKiIh4WbsBkHkbAJdH/ASw2LbNzEIWEf9QUkpERCQIud1m2Z7bDb16weDBfhq4ZA/s+l/THvZ7cIb7aWAREREfGPRrCIslumwNQxJe5dQpyMmxOyiR1kNJKRERkSC0ciUcOWKW7V13nZ+W7QFs+aUpct5pKqRO9dOgIiIiPhLdCfr+FIBrEn+Oy1HJ5s12ByXSeigpJSIiEmTy82HZMtOeNg3a+rOk09DHIf3rMOwJPw4qIiLiQ31/AtGpxFoHGNXuT2zfDlVVdgcl0jooKSUiIhJEzl6216cPDBzo5wBiu8Hof0J8Xz8PLCIi4iNhsTDotwCM6fA47upKdu60OyiR1kFJKRERkSCyYgUcPQrR0TBjhh+X7VWe8NNAIiIiNsiYA33v5YtOq3FbkWzaZHdAIq2DklIiIiJBIi/v3GV7bdr4aeCqYninL6y4WckpEREJTU4XDH2UXsMyADhwAEpK7A5KJPQpKSUiIhIE3G54/XWzTXXfvjBggB8H3/Y7qCiAok0Q7s8CViIiIv7Vvj2kpUFyxEa2bPbYHY5IyFNSSkREJAisWGEKnMfE+HnZ3ql9sOtJ0x76BDjD/TSwiIiIPWYkf5/vpQ2jfOe/sCy7oxEJbUpKiYiIBLjCQvj0U9OeOhViY/04+IYfg6cKUq6B1Gl+HFhERMQe7TqnAXB55E85mnvK7nBEQpqSUiIiIgHM44E33zTL93r18vOyvcPvwOG3wBEGw//Xj9OzRERE7BM+4G5KHT1oG5ZH+ef/Y3c4IiFNSSkREZEAtm4dHDwIkZEwfbof80LuClj/I9Pu82OI7+ungUVERGzmiqSkxx8ASK/4Pe6iPXZHJBKylJQSEREJUMXFkJVl2pMmQXy8Hwc/tRfclRCdCgPu8+PAIiIi9ksZNp39FVNxOaopXzHP7nBEQpaSUiIiIgHIsuDtt6GqCrp1g8su83MA7QbAjJ0w7m3tuCciIq2O0+XgSMofcFvhtCl5Gw6/a3dIIiFJSSkREZEAtHUr7NkDLhfMnGlTOafwNpAw1IaBRURE7NdzeG/WnLyb0pokKitq7A5HJCQpKSUiIhJgyspgyRLTHjcOOnb04+B5WbDvBbA8fhxUREQk8CQnw87w+/lz9i42HZtpdzgiIUlJKRERkQCzZAmcPm3eDI8Z48eB3ZWw9nvw2W2w649+HFhERCQwDRzahgpPO9avN0vrRcS7lJQSEREJIHv2mKV7DodZtudy+XHwHY9B6V6ISoHut/lxYBERkcA0aBCEhUFBgcWJjS/Byv9SdkrEi5SUEhERCRCVlaa4OcDll0Pnzn4cvGQPfPFb0x72BITH+XFwERGRwBQVBf37Q9uwI8Tv/Dbk/BuyX7I7LJGQoaSUiIhIgMjKguJiaN8eJkzw48CWBevuBE8lpFwLabf4cXAREZHANnw4nKrpzPITvzIPbJwHVSftDkskJCgpJSIiEgAOHoR160z7uusgIsKPg2f/C/KzwBUFI562aas/ERGRwNS1KyQmwopj91Ae0RcqCmDzL+0OSyQkKCklIiJis5oaePNNM2FpyBDIzPTj4O4K2HiPaQ+4H9p29+PgIiIigc/hgGHDwE0EHxY9bR7c8ywcW2t3aCJBT0kpERERmy1fDoWFEBsLkyf7eXBXFFz1BnSbDX1+4ufBRUREgsPgwWbzkQ2HxnM6ZQ5gwbrvgafG7tBEgpqSUiIiIjYqKIAVK0x72jSIjrYhiI6j4MqXweXPNYMiIiLBIyYG+vY17RWlj0FEezi5EfI/tjs0kaCmpJSIiIhNLAveegvcbujdG/r18+Pg7ko4tdePA4qIiAS3YcPMcf22JKqHPQdXfwKdrrU7LJGgpqSUiIiITTZsMAXOIyLMLCm/1hfftgDeGQC7/uTHQUVERIJXRgYkJEBlJXxRfBMkj7c7JJGgp6SUiIiIDUpL4cMPTXviRIiP9+PgJ7fAtv8BTyVEJftxYBERkeBVW/CcM18s1SnNhiPv2RWWSFBTUkpERMQG778PFRXQqROMHOnHgT018NltYNVAlxug21f9OLiIiEhwGzIEnE4z07mgADixEd4dACtvhtOH7Q5PJOgoKSUiIuJn+/bB1q3mG9frrjNvbv1m5xNwYr0p0DriKT+vGRQREQlubdqYOpAA69YB7QZBfH+oLoHPf2AKRopIoykpJSIi4kfV1fD226Y9ahSkpvpx8OKdsOUB0x72JER38uPgIiIioaF2hvPmzVBR5YJR/w+c4XDoDTj4H7vDEwkqSkqJiIj40aefwsmTEBcHEyb4cWCP2yzb81RCp6mQ8U0/Di4iIhI60tMhKQmqqmDTJqDdAOj3C/PklgfA8tgdokjQUFJKRETETwoKYOVK0546FSIj/Tm6BV2uh8hEGPkXLdsTERFpJoejfrbU2rVnVuz1nw99fgJXfwIOfcwWaSxdLSIiIn5gWWbZnsdjalH06ePnAJxh0O9ncP0BiO3q58FFRERCy6BBEBUFJ07A3r2AKxKGPQ7R2tVWpCmUlBIREfGDjRshNxciImDaND9OVPK4oaa8/n5YrJ8GFhERCV0REWYnPs7MlhKR5lFSSkRExMdKS+GDD0x7wgSIj/fj4DufgCXD4PjnfhxUREQk9I0cab5k2rMHjh+3OxqR4KSklIiIiI998AFUVECnTmbHPb85uQW23AclO6Foix8HFhERCX0JCdCjh2mvW2d3NCLBSUkpERERH9q3D7ZsMd+kXncdOP31l9ddCau/CZ4q6DwTMuf6aWAREZHWo/bLpo0bzW58ItI0SkqJiIj4SHU1vPOOaY8cCampfhx864NmdlRkIoz8q3bbExER8YHu3aFDB6ishM2b7Y5GJPgoKSUiIuIjy5ebXXnatoWJE/04cOFK2PGoaY/8i3YCEhER8RGHA0aMMO21a81uuyLSeEpKiYiI+EBhIaxcadrTpkFkpJ8Gri6F1XPA8kDGrdD1Bj8NLCIi0joNGWJ24ysshAMH7I5GJLgoKSUiIuJllgVvvQVuN/TuDX36+HFwdzm0yYSYbjD8f/04sIiISOsUFWUSUwCrVtkdjUhwUVJKRETEyzZuhNxc863ptGl+LucUlQgT3odrPoWIeD8OLCIi0npdfrn5e793L+Tn2x2NSPBQUkpERMSLysrgww9Ne8IEiPdXXqimvL7tcEJsmp8GFhERkYQE6NfPtDVbSqTxlJQSERHxog8+gPJySEmp3yba5zzVkDURPvsO1Jz206AiIiJytjFjzHHrVigutjsakeCgpJSIiIiX7N9vtoN2OOC668Dpr7+yWx+E42sg9xWoLPTToCIiInK21FTIyACPB9assTsakeCgpJSIiIgX1NTA22+b9ogR0LmznwbO+xi2LTDtUc9p2Z6IiIiNamdLrV9vZk6LyMUpKSUiIuIFy5fDiRPQti1MnOinQSuOwepvAhZ0/zZ0+6qfBhYREZGGdO8OyclQVQWff253NCKBT0kpERGRFioshBUrTHvqVLM1tM9ZHlj9DSg/AnF9YPiTfhhURERELsbhgNGjTfuzz8xMahG5MCWlREREWsCyzLI9txt69YK+ff008Bf/A0ffB1c0jFkEYbF+GlhEREQuZsAAs/tuaSls2WJ3NCKBTUkpERGRFtiwAXJyICICpk0z35D6RYfLICIBRjwD7Qf5aVARERG5FJcLLr/ctFeuNF9giUjDlJQSERFpplOn4MMPTXviRGjXzo+Dp06F63ZD5q1+HFREREQaY9gws5z/+HHYudPuaEQCl5JSIiIizbRkCVRUmC2gR470w4Ceaig7WH8/soMfBhUREZGmiow0u/ECfPqpZkuJXIiSUiIiIs2waxds2wZOJ8ycaY4+t2k+vDcYDr/rh8FERESkJa64wizvP3oUdu+2OxqRwBSwSamnnnqK9PR0oqKiGDVqFGvXrr3o+a+++ip9+vQhKiqKgQMH8u67575h/9a3voXD4TjnNmXKFB//FCIiEooqK6H2z8wVV0BKih8Gzf0P7HwCqk6Cp8oPA4qIiEhLxMTUz6ReulSzpUQaEpBJqUWLFjFv3jweeOABNmzYwODBg5k8eTIFBQUNnr9q1SpuueUWbr/9djZu3MisWbOYNWsWX3zxxTnnTZkyhaNHj9bd/v3vf/vpJxIRkVDy8cdQXAzt28P48X4Y8OQWWH2mdlTfe6DrLD8MKiIiIi01erRmS4lcTEAmpX7/+99zxx13MHfuXPr168ezzz5LTEwMzz//fIPn/+///i9Tpkzh3nvvpW/fvvzmN79h2LBh/PnPfz7nvMjISFJSUupu7du399NPJCIioeLwYaidvDtjBoSH+3jAyuPw6Sxwn4aUa2DwAh8PKCIiIt6i2VIiFxdwSamqqirWr1/PpEmT6h5zOp1MmjSJ1atXN/ia1atXn3M+wOTJk887f+nSpSQlJdG7d2/uvPNOjh8/7qOfQkREQpHbDW++ad5QDh4M3bv7eEBPDayYDWUHoE0mjHkZnGE+HlRERES86ezaUnv22B2NSGAJuHe2x44dw+12k5ycfM7jycnJ7LzAXpp5eXkNnp+Xl1d3f8qUKdx4441kZGSwb98+fvGLXzB16lRWr16Ny+U6r8/KykoqKyvr7peUlADg8XjweDwt/jmbwuPxYFmW38cVkfPpemzdVq6EvDwHMTEWkyaBz/8Z7PozzvwsrLBYrCtfh/B2fhg0eOh6FAkcuh5FLiw6Gi67DFaudPDxxxbdu4PD4dsxdU2K3Rr7by/gklK+cvPNN9e1Bw4cyKBBg+jevTtLly7l6quvPu/8BQsW8NBDD533eGFhIRUVFT6P92wej4fi4mIsy8Lpl+2dRORCdD22XidPOnjnnRjcbgdXXVVBWVkNZWU+HjT+BuJSP6cyYQKVVUlwgdqKrZWuR5HAoetR5OJ69HDw8ccx7N3rYM2acrp3d/t0PF2TYrdTp0416ryAS0p17NgRl8tFfn7+OY/n5+eTcoHtjVJSUpp0PkBmZiYdO3Zk7969DSal5s+fz7x58+rul5SU0LVrVxITE4mLi2vGT9Z8Ho8Hh8NBYmKifqGI2EzXY+tkWbBkCURFOcjIsBg/Psbn33DWSfk7UX4aKtjoehQJHLoeRS5twgRYtcrB1q0xXH65b2dL6ZoUu0VFNe4dbMAlpSIiIhg+fDhZWVnMmmV2F/J4PGRlZXHXXXc1+JorrriCrKws7r777rrHPvzwQ6644ooLjnPo0CGOHz9Op06dGnw+MjKSyMjI8x53Op22XNQOh8O2sUXkXLoeW5/NmyE72xQ1nznTQQOrvr2nNBv2/T8Y+CA4fTlQaND1KBI4dD2KXNyVV8Lnn5tSAPv2Qa9evh1P16TYqbH/7gLyX+e8efN47rnnWLhwITt27ODOO++krKyMuXPnAjBnzhzmz59fd/5///d/s2TJEp544gl27tzJgw8+yOeff16XxCotLeXee+9lzZo1ZGdnk5WVxfXXX0+PHj2YPHmybT+niIgEvrIyeP990x4/HhISfDhYVREsmw7bfgubf+7DgURERMTfYmPrd+LLylKZSBECcaYUwOzZsyksLOT+++8nLy+PIUOGsGTJkrpi5rm5uedk3UaPHs1LL73Er371K37xi1/Qs2dPFi9ezIABAwBwuVxs2bKFhQsXUlRURGpqKtdeey2/+c1vGpwNJSIiUuv99+H0aUhONrvn+IynGlZ8FYq3Q3Qq9P5vHw4mIiIidrjySli/HvLzYcsWGDLE7ohE7OWwLMuyO4hgUFJSQnx8PMXFxbbUlCooKCApKUlTL0Vspuuxddm3D/7xD1Pz4dvfhs6dfTSQZcHa78C+v0FYLExaDglDfTRY6ND1KBI4dD2KNN7KlfDhhxAXBz/8oSkP4G26JsVujc2h6F+niIhIAyor4a23THvkSB8mpAB2PGYSUg4njHlZCSkREZEQNmoUxMdDSQmsXWt3NCL2UlJKRESkAVlZUFQE7dpBA5u0ek/OK7DpZ6Y97A/QeYYPBxMRERG7hYWZnfgAli+H8nK7IxKxj5JSIiIiX5KdXf/N5cyZEBHhw8HCYsAVBb3ugt4/8uFAIiIiEigGDTL1KisqTGJKpLVSUkpEROQs1dXw5pumPXw4ZGb6eMDOM2Dy5zDsSR8PJCIiIoHC6YRrrjHtzz4zs7NFWiMlpURERM7y8cdw4oQpPlr7ZtHrTu2D0v3199v1B6fLR4OJiIhIIOreHTIywO027z9EWiMlpURERM44eBDWrDHtmTMhKsoHg5TnwSfXwgdjoOgLHwwgIiIiwcDhqP8CbOtWOHrU7ohE/E9JKREREaCmBt54AywLhgyBHj18MEhVMXwyxcySCouFyEQfDCIiIiLBIjUVBg407z+WLDFHkdZESSkRERHgk0/g2DFo2xYmT/bBANWlsHQaFG2GqGSY+AFEJ/tgIBEREQkmkyZBeDjk5MAXmkQtrYySUiIi0url5sKqVaY9YwZER3t5gJrTsOw6OLYKItrDhPehja8rqIuIiEgwiI+HsWNN+4MPoLLS7ohE/EdJKRERadWqquD11+uX7fXu7eUB3BXw6Q1QsBTC40xCqv1gLw8iIiIiwWz0aEhIgFOnYNkyu6MR8R8lpUREpFX74AM4edJ8Szllig8GcFdAdZGpITX+XegwwgeDiIiISDALC4OpU017zRooLLQ7IhH/UFJKRERarT174PPPTXvWLB/tthfRDiZ+CBOzIHGMDwYQERGRUNCzp5mx7fHAe++p6Lm0DkpKiYhIq1ReDm++adqXXw4ZGV7s3FMNh96ovx8eBx1HeXEAERERCUVTpphZU/v3w/btdkcj4ntKSomISKv07rumbkPHjnD11V7s2F0JK74Gn86Cnf/rxY5FREQk1LVvD1deadrvv29qX4qEMiWlRESk1fniC9i6FZxOuOEGsw2zV7grYPmNcGgxOCMhrpeXOhYREZHWYswYk5wqKVHRcwl9SkqJiEirUlwMb79t2mPHQufOXuq45jQsmwlH3gVXNIx/G1KneqlzERERaS3Cw+uLnq9aBYcP2x2RiO8oKSUiIq2GxwOvvQYVFdClC1x1lZc6ri6FpdMh78Mzu+y9BymTvNS5iIiItDa9esHAgabY+RtvgNttd0QivqGklIiItBqffgq5uRAZCTfdBC6XFzr1VMPHV0PBUghrCxPeh+RxXuhYREREWrOpUyE2FgoKYPlyu6MR8Q0lpUREpFXIza2vyzB9uqnV4BXOcOj2VYjsAFdnQeIYL3UsIiIirVlMDEybZtqffgr5+XZHJOJ9SkqJiEjIKy83y/YsCwYPhkGDvNCpZdW3+94D07dDhxFe6FhERETE6NcP+vY1JQgWLzZHkVCipJSIiIQ0yzKFzYuLISGh/hvHFilcBR9fA1XF9Y9FJXmhYxEREZF6Dod57xIdDUePmsLnIqFESSkREQlpGzfCtm3gdJo6UpGRLezw0Bvw8STIz4KtD3opShEREZGGtW0LU6aY9tKlUFhod0Qi3qOklIiIhKy8PHj3XdOeOBE6d25BZ5YFO34Pn94A7nJInQaD/8dboYqIiIhc0KBB0LMn1NTA669rNz4JHUpKiYhISKqogFdeMW/eevaEMS2pP+6phnV3wsafABb0+B5c9QaExXgxYhEREZGGORxw3XVmGd+RI/Dxx3ZHJOIdSkqJiEjIsSxTDPTECWjXDm680byZa5aqYlg6A/b+BXDAsN/DiKfBGeblqEVEREQuLC4Orr/etFeuhH377I5IpOWUlBIRkZCzahXs3AkuF3zta+ZbxWarKYPibeCKgasWQ58ftyDDJSIiItJ8ffrAiDOb/b7+OpSW2h2RSMsoKSUiIiElJweyskx76lRITW1hhzGpMP4duGY5dJnpjRBFREREmu3aayEpySSkFi82M8RFgpWSUiIiEjJOnYJXXwWPxxQEHT68GZ1YFmx/FA78s/6x9oMhYZg3QxURERFplvBw+MpXICwM9u6FNWvsjkik+ZSUEhGRkOB2m4RUaan59nDGjGassqsuhZWzYdPPYO0dUJrto2hFREREmi8pCaZMMe2PPjLFz0WCkZJSIiIS9CwL3n4bcnMhMtLUkYqIaGInJbvhgysg91VwhsOwP0Bsmo8iFhEREWmZ4cOhXz/zxdwrr8Dp03ZHJNJ0SkqJiEjQW7MGNm40M6O++lXo2LGJHWS/BEuGQ/EXEJUCV38CPb+nguYiIiISsBwOuO46SEiAoqL6EgYiwURJKRERCWp79sAHH5j25MnQo0cTXmxZsPa7sOrrUFMKSeNgynpIHOOrcEVERES8Jjoabr7ZzBA/cKD+PZFIsFBSSkREglZhIfznPya3NGwYjBrVxA4cDojqBDhgwP0wMcvsticiIiISJJKS4MYbTXvNGti82e6IRBpPSSkREQlKp0/DSy9BZSWkpcH06Y1cbWdZUHm8/v6A++DaNTDoIXC6fBmyiIiIiE/06QPjx5v2W2/B4cN2RyTSOEpKiYhI0KmpgUWL4ORJaN8eZs8GV2PySeVHYdkMyJoI7krzmNMFHUf6OmQRERERnxo3ziSnampM4fOyMtXGlMCnpJSIiAQVjwdeew1ycsxOe7fcAjExjXhh7n/g3YFw5F0o2QXH1/khWhERERH/cDjghhsgMRFKShy8/noUVVV2RyVycUpKiYhI0LAsePdd2LHDzIy65RZTR+Giqk7Cqjmw4qtm2V77oaaYedKVfopaRERExD8iI03h85gYi7w8F6++Cm633VGJXJiSUiIiEjSWLYPPPzffBN50E6SnX+IFua/B2/0g+x/gcEL/X5r6Ue36+yliEREREf/q0MF8cRcWZrF3r4M33zRf7IkEIiWlREQkKKxbB0uXmvb06dCv3yVeYFmw5ymoyIO4PjBpOQz+Lbgi/BGuiIiIiG26dIGZMytwOi02b4aPPrI7IpGGKSklIiIBb/t2s2wPzM4yl112gRMtT30Bc4cDRv4VBtwPUzdC4mi/xSsiIiJit8xMN9ddZ9orV8Lq1XZHJHI+JaVERCSg7dxpCptblklGjRt3gRNPbIAPr4QNP6l/rG0PGPQQuKL8Fa6IiIhIwBgyBCZNMu3334ctW+yOSORcSkqJiEjA2rmTugKdAwbAtGlmAtQ5Ko/D2jthyWVwbLWpH1VRYFPEIiIiIoFlzBi4/HLTfv11JaYksITZHYCIiEhDdu6EV14Bj8ckpG68EZxnf5XiccO+v8HmX0DVCfNY2n/B0Ech6lJb8omIiIi0Dg4HTJ4MVVWwYYNJTHk8ZhaViN2UlBIRkYBzdkJq4EC44YYvJaSKd8Kq/4KTG839dgPhsj9D0lV2hSwiIiISsBwOuO46837q88/hjTfM+6xhw+yOTFo7JaVERCSg7NhhluxdMCEFZiZU6QEIj4dBv4Ged4JTf9JERERELsThMDsYO52wdi28+aZ5v3XBDWRE/EDv4EVEJGBs2ABvv91AQqosF7L/Cf3mm3dUkQkw9jUzQyoq0e6wRURERIKCwwFTp5r3V2vWmPddNTX1NadE/E1JKRERsZ1lwaefwiefmPtDhsDMmeCszIPtj8Kep8FTCe0GQecZ5qSUibbGLCIiIhKMamtMuVywciUsWQIlJXDNNQ1sKCPiY0pKiYiIrTweeOcdWL/e3B87FiZecRTHxkdh77PgrjBPJE+AmC62xioiIiISChwOmDQJoqIgKwtWrYKiIjNLPTzc7uikNVFSSkREbFNdDf/5D+zaZd4czZhymuFhv4C3/lKfjOp4BQx4ADpdq6/vRERERLzE4TBfBrZrB4sXw/btZsbULbdAbKzd0Ulr8eXSsSIiIn5RUgIvvmgSUmFh8LWvwfCRUZD3kUlIdRwNEz6Aa1ZC6mQlpERERER8YOBAmDMHoqPh0CH429/g2DG7o5LWQjOlRETE77Kz4dVXLTq4V/K1zk/TdtJf6ZrRxnxXMvyPgAeSr1YiSkRERMQP0tLg9tvhX/+Ckyfhuedg1izo29fuyCTUKSklIiJ+Y1mwdk01uasWc0vCE3SJ/sw8UXUF8EPTVgFzEREREb/r2BG+/W1YtAhyc83xiitM7SmXy+7oJFQpKSUiIn5RVXyYvUueo1/lXxnV6SgAljMSR+atpl6UiIiIiNgqNhZuvbW++Pnq1WZJ31e+AvHxdkcnoUhJKRER8bn8gyfo+Gkm/RxVEAbVriTC+n4PR68fQFSS3eGJiASk8upySipLiIuMIzo82u5wRKSVcLng2muhWzdTAP3gQfjLX8zOfD172h2dhBoVOhcREe8rzYb9C/F4YPly+OuLCewpm8rByqso7PUy4V85iGPQQ0pIiYg0YEXuCm5cdCNtFrQh5YkU2ixow42LbmRl7kq7QxORVqRPH/jud6FTJzh92tSbevNNqKiwOzIJJZopJSIi3lFdCgf/A/sXQsFSAF75ZDw7D6YBsDVuEdOui9QWwyIiF/HMumf4wbs/wOV04bE8AHgsD2/tfovFOxfz9PSn+d5l37M7TBFpJdq3NwXQP/wQPvsMNmyAvXvhuus0a0q8Q0kpERFpPncV5H0IOYvg4GvgPg2AhYPs8gmczC8iMjKNadNg0KBIbaYnInIRK3JX8IN3f4CFRY2n5pznau9//53vMzBpIGO6jbEpShFpbcLCYOpU6NcP3ngDTpwws6aGDIHJkyFaq4ulBZSUEhGR5jv4f7Dqlrq71dG92Fh0KysPf4Pimm5kZsJ/Xa/CmCIijfH71b/H5XSdl5A6m8vp4g9r/qCklIj4XVoa3HknfPwxrFkDmzaZWVMTJ5oElVPFgaQZlJQSEZFLqy6FvI/g0OuQMBx6/8g83nk6tMmkquM0Vh75Oss2jwIcREXBtGthxAg0O0pEWoXHVj7Gk5892ezXW5bF0dKjlzyvxlPDazteI/WJVBwt+AV796i7uXfMvc1+vYi0TuHhZnZU7aypY8dMnal162DKFJO4EmkKJaVERKRhpQfg8Dtw5G3I/wQ8Vebxk5vrklLVtGVtwl6WLXVQVWUSUEOHwtVXo9pRItKq5JXmceTUEb+N15gE1sXkleZ5LRYRaX26djWzptauhWXL4OhReOEFk6y65hpTi0qkMZSUEhGR8314JRR+aZenNpmQOgO6fYXqavj8c1i5EkpLzTf1nTvDtGnmKCLS2qS0SSG1bWqzX9/YmVK1OrXp1KKZUiltUpr9WhERAJcLrrgCBg2CTz6B9eth+3bYtcss57vySiWn5NKUlBIRaa081XB8HeRlQdEmuPI/9WvtoruAwwWJV0LnGSYZFdeb6hoHn38OK1ZAWZk5tV07GD8eBg/WUj0Rab3uHXNvi5fD3bjoRt7a/VZdTamoaoirhJJIqAg354Q5w7i+9/X852v/8UbYIiItFhsLM2aYsg0ffAD79pkE1caNJmE1dix06GB3lBKolJQSEQBqaqCqCiorTfvLN48HLOvcm9N5/i08HCIizC0y0hxdLrt/OgGgphxOfG5mQBWugIJPoeZU/fMlOyG+r2kPeRhGPgMR5uutoiJY/7HZBvjsZNRVV5lklP4fi4i03Lwr5rF452LG5MCPV8OsXeCywO2Axb3h96NhdTc3P778x3aHKiJynuRk+OY3ITcXPv3UFEHftAk2b4b+/WHUKOjSRV9iyrmUlBIJQdXVcPq0SR6UlV28XVlpbm637+Jxuc5NUkVEQEyM+Vbl7FubNvXtmBjt4NFi5XkQ0Q5cUeb+F7+G7Q+fe05EAiRPhJSrISqp/vE26VgW7NtrClfu3m0SkWCmYV91lfnmS8koERHvubLblSwtn82VL7yM22kSUmCOM3fDDTthxc9v1s57IhLQunWDb3wDDh829aZ274YvvjC3Tp3MjKqBA82X2SJKSokEGbcbSkrMrbjY3Grbtcfy8ub3Hx5ubmFh9TeXyySIHI5zb5ZlZlCdfauuNkmuqiozw6o25vLypsXlcEB0NLRtC/Hx9be4uPp227ZKitQpPwon1sOJDWeO66H8MIx/D1KnmHM6joaoFEgcY9rJ46H9EHDUZ/8sCwoK6t84nDxZP0RmpnkT0bu3EoYiIj6xYgVXPboIAKfn3KfCz9y/6pGXYcYPYIwSUyIS2Dp3hv/6L1ME/bPPzHvLo0fNbn0ffGDqTg0aZBJVmj3VeikpJRJgLAtKS00yoPZ24oQ5FhWZ52pnrFyMy1U/4+js2Udnt2NiICrKzGCqncXkzWSD231ukqp2eWBV1bkztkpL69u1M7gsyxxPn4b8/Ib7dzjM7KraJFW7dufe4uPNzxRSPNXmFhZj7ud9BKvnmKTUeRxwajdwJinVeTrccOS8v/qWBYWFsG2buR07Vv9cZKR5wzBiBHTs6MsfTERE+P3vzR/w2m91GuJywR/+oKSUiASNTp1g1iy49lqznG/dOvPZZs0ac+vQwcycGjhQtadaIyWlRGxQU2MSTGcnnM6+VVdf/PVhYfUzhr58rG1HRtr/jYPLZW5RUU17ncdTn7T68iyws2eHud1w6pS5HTrUcF+xsfUJqi8nrdq1C+CklacGTu2F4m3n3k7thiGPQJ8z9USikk1CyuGEuL7QfhgkDDe39kMgvE19n2fNiCorg/37TSHK/fvNf89aYWHQo4dZ+9+7dwD/N2ptHnsMnnzS7igCigNI9HhwaOqehALLMlMILqWmBl57DVJT7f9DfxZdjyJedvfdcG/LNk8INDExMHq02bFv715Ta2rnTjh+HJYuNbfUVOjVy9w0g6p1UFJKxAdqZ/l8OdlUm4A6deris50cDpNESUgw9XvOvsXHm1/oofwL2uk0M6DatDEFExtiWSaxcnaiqqjo3FtlZf3sq8OHG+4nJub82VVn34+M9OEP6qmG0mwo3WuW1SUMNY8Xb4d3B4N1gW/KS3bVt+P6wjUrof1gCItt8HS328yEOnwYjhwxCbwvzz4LCzPL8/r3hz59fPxzS/Pk5Zn/gVLHAWgFr7RajUlg+ZGuRxEvy8uzOwKfcTigZ09zq6w0iamtW80XpUeOmNvSpeazQO156enmfbuEHiWlRJqpvLw++VG7tO7sW1XVxV8fEXF+0qn2fny8aiVdSu3SvTZtzHr1hlRUnP//pfZWW3urdonghT7rR0efm7CKiYGqqjC6djUz0mqLszf4xbDlqZ+dVFUEO/8AZTlwOtccy3LAOlNhvuedkPC0acd0NQkpV4zZDS9+AMT3N7d2/SGmW/0YzjBIHA1nvjw/edIsvzt+3ByPHTPvaRpaCZKSAt27m2RUt24qNhnwUlLM14dSxwI8Hg9Op5MQztNLa9HYmVK1AmwKga5HES9LSbE7Ar+IjDQ7OQ8ebL5I3r3b3PbtMyU+Nm40N4DERJOcSkszt7Zt7Y5evMFhWY2pTiMlJSXEx8dTXFxMXFycX8f2eDwUFBSQlJSEU1Oi/cKyTMKidslYQ4mniopL99O27bmJp7PboT7bKRhUVDQ8w6r21lBhdsuyKCsrIzY2lnBnJT1j36VNWB7to/JoF5VH27A82rgOE0MuhVFfITf5GaKiICa8hD5b48/vzxmNJ7YHNZ1uorrPAzgcZmaTdfowNWGdcHucuN0m1spKc6y91S5drL2VlV14Bl5UlMlnpKaaJF63biaZJhLM9PdRQs6NN8Jbb128plRYGFx/PfznP/6M7JJ0PYoElmC/JmtqICfHJKj27zez/r+sbdv697epqSZXHxurz1iBorE5lICdKfXUU0/x2GOPkZeXx+DBg/nTn/7EyJEjL3j+q6++yn333Ud2djY9e/bkkUceYdq0aXXPW5bFAw88wHPPPUdRURFjxozhmWeeoWfPnn76iSRQVFWZD++1H+RLSuqPte1Tpy7+frBWbKxJMJ293Kv2fny8ed8ogSsqCqIiakjuUFVfONxdAdn/hqrj1Jw+TnXpCWpOH8cqP4arOo8jTOH9wgdxOi2qy2uY3emm8zs+kxg6XZjLB5trH4xjauIPKXWnUFSdRnFNN05WdeeUu9OZRQ/A22d3coHpX5cQGWkKRHbsaI4dOpg/0AkJ+gMtIhLw5s2DxYsvfo7bDT/+sb8iEhGxRViYmdHfvbu5X1YGubmQnW2SVfn55jPbrl3mVis62syoOvumlSiBLSA/Mi9atIh58+bx7LPPMmrUKJ588kkmT57Mrl27SEpKOu/8VatWccstt7BgwQJmzJjBSy+9xKxZs9iwYQMDBgwA4NFHH+WPf/wjCxcuJCMjg/vuu4/Jkyezfft2oppahVkChsdjZoyUl9cfz97VraHbpYqIny021izROjvxdHZby51sZFlQXQLucqg+BTUl5n7tLTYNkq4y51afgnV3nvt8dTFUHjfHzG/B5S+c6dcDn90GZ35BfvmXZI/UHrQdV0FSUhxOZxusj8bjdrWnyplCBSmctjpxyt2JU+5uFMWnMahj/cymTdV/pNqCaidUO6DGBWEO86NYlvn3zJmaWrVF4mvbUVH1OyXWttu0Md8QxcWZY9u2moEnIhLUrrwSnn4avv/983fhCwszCamnn9bOeyLS6sTGQt++5saZiQa15TaPHjXHY8fM58HcXHM7W23N3trPc7Xvo2vLgdTetMGP/wXk8r1Ro0YxYsQI/vznP8OZqYddu3blhz/8IT//+c/PO3/27NmUlZXx9tv10wwuv/xyhgwZwrPPPotlWaSmpvKTn/yEEWQUeAAAEBlJREFUe+65B4Di4mKSk5N58cUXufnmmy8Zk5bvtZzHY95L1dTUH2tqzC+UxtxqP9ifnYC6VN2mCwkLM7904uLqP9CffaytFaSZThdgWeCpAk8luM8cPVXgPnOM7AgxZ2rfVJdC/sfnn1t7fsIwSLnanFtxDDb+BGpOg/v0+ce0m2Hw/5w5twD+7wJV0AEyboUrXjTtmnJ45SKVETtfB+PerP/ZPr0ewuMgogNEnrlFdIDoFDzRXSk4Heuz69GylFQSaaxQ+fsocp6VK+EPf4DXXzdvoJxOuOEGM0MqQBNSuh5FAktrvCarq01d1cLC+tuxY6YsR2MnJkREnJukOvtL4bOPX34sPNx8dmwl/6kbJWiX71VVVbF+/Xrmz59f95jT6WTSpEmsXr26wdesXr2aefPmnfPY5MmTWXxm+vOBAwfIy8tj0qRJdc/Hx8czatQoVq9e3aikVKjYutVMc/R46mdmXKzd2PO+nGhq6H7tLBBfOHv2SGysmS0SG3vhW0SEPvi3SNFmeG/ohZ/vNx+G/M60y4+aJM+F9PpRfVLKqoYDf7/wueVnFYB11SaZHBDW5kwSKR7C4kw7vv9Z50bB0MfN42ffapNOEe3rz3U46hNUDfF44HTBhZ9vIf27FBERxowxt9oCl3FxZk2KiIhcUHi4qQ//5Rrxtbt21+6IXlRkiqiffTt1yiSuqqrMjuknTjQvBqezPkEVFlbfrj2evRLiYse4OLj8cq/8Zwl4AZeUOnbsGG63m+Qv7QOfnJzMzp07G3xNXl5eg+fnndlGs/Z4sXO+rLKyksrKyrr7xcXFABQVFeHxZXalAR6Ph5KSEiIiIlqc5c7Kgrw8+z/1OhxW3fKkiAhzkYaHm3bt/S+3IyPN+7HajHR0dH0yqin/WcrLGy5gLU1QUoHzdP1dy+ECZwS4IsEZjlXuML/tAcrdOKKGg9M8hyvCnHvmvhXer/7cGqD7QxAWDc5oc3TFgCva1HyKTK4/17Jg8lHTz4UyObXnAnS6/fznLaACqCht9I/uzetRRFpG16O0CpGRZqeLs96XBiJdjyKBRdfk+WrLXXTr1vDzZ9ceLiszZWFqNxv68q2q6uy29z9fd+xo0aeP17v1q5KSEjhT3/tiAi4pFSgWLFjAQw89dN7jaWlptsQjEtjcQPmZG8DvztwaYxHwPR/GJiIiIiIiElzuvdfuCLzj1KlTxMefvwt5rYBLSnXs2BGXy0V+fv45j+fn55Py5Xl4Z6SkpFz0/Npjfn4+nTp1OuecIUOGNNjn/Pnzz1kS6PF4OHHiBB06dMDh5/U1JSUldO3alYMHD/q9npWInEvXo0jg0PUoEjh0PYoEFl2TYjfLsjh16hSpqakXPS/gklIREREMHz6crKwsZs2aBWcSQllZWdx1110NvuaKK64gKyuLu+++u+6xDz/8kCuuuAKAjIwMUlJSyMrKqktClZSU8Nlnn3HnnXc22GdkZCSRkZHnPNauXTuv/ZzNERcXp18oIgFC16NI4ND1KBI4dD2KBBZdk2Kni82QqhVwSSmAefPmceutt3LZZZcxcuRInnzyScrKypg7dy4Ac+bMoXPnzixYsACA//7v/2bcuHE88cQTTJ8+nZdffpnPP/+cv/71rwA4HA7uvvtufvvb39KzZ08yMjK47777SE1NrUt8iYiIiIiIiIiI/wRkUmr27NkUFhZy//33k5eXx5AhQ1iyZEldofLc3NxzirWNHj2al156iV/96lf84he/oGfPnixevJgBAwbUnfPTn/6UsrIyvvOd71BUVMSVV17JkiVLiIqKsuVnFBERERERERFpzRzWpUqhi+0qKytZsGAB8+fPP29JoYj4l65HkcCh61EkcOh6FAksuiYlWCgpJSIiIiIiIiIifudsxDkiIiIiIiIiIiJepaSUiIiIiIiIiIj4nZJSIiIiIiIiIiLid0pKBbinnnqK9PR0oqKiGDVqFGvXrrU7JJFWacGCBYwYMYK2bduSlJTErFmz2LVrl91hiQjw8MMP43A4uPvuu+0ORaRVOnz4MN/4xjfo0KED0dHRDBw4kM8//9zusERaHbfbzX333UdGRgbR0dF0796d3/zmN6iMtAQyJaUC2KJFi5g3bx4PPPAAGzZsYPDgwUyePJmCggK7QxNpdZYtW8YPfvAD1qxZw4cffkh1dTXXXnstZWVldocm0qqtW7eOv/zlLwwaNMjuUERapZMnT/L/27vfmKrqB47jnwt0xw0oMAO8S42tFCQnfzVhU7dYYsZITGfxgFuZPoDMyBbWSq2g2R/HiqkzHU/UpTNRR3MObxHISt2Ny3LBxSjrtl2hHmhRKsqlB7/f7ropqfzoHH6d92s7D873fs/5fu4DxvjsnC/5+fm65ZZbdPjwYX399dd69913lZCQYHY0wHI2btyoLVu2qK6uTp2dndq4caPeeustvf/++2ZHA4bFf98bw2bNmqXc3FzV1dVJkoLBoCZOnKhnnnlGVVVVZscDLO2nn35SYmKiPvvsM82ZM8fsOIAl9ff3KysrS5s3b9Ybb7yhjIwM1dbWmh0LsJSqqiq1tbWptbXV7CiA5T388MNKSkrSjh07QmOLFy+Ww+HQzp07Tc0GDIcnpcaogYEBeTweFRQUhMYiIiJUUFCgzz//3NRsAKTz589LksaNG2d2FMCyysvLtXDhwrDflQCMdejQIeXk5GjJkiVKTExUZmamPvjgA7NjAZaUl5cnt9ut7u5uSVJHR4eOHTumBQsWmB0NGFaU2QFwbT///LMGBweVlJQUNp6UlKSuri7TcgH4z1OLq1evVn5+vu677z6z4wCW9OGHH+rLL7/UyZMnzY4CWNq3336rLVu2qLKyUi+99JJOnjypVatWyW63q6yszOx4gKVUVVXpl19+UWpqqiIjIzU4OKjq6mqVlpaaHQ0YFqUUANyk8vJynTp1SseOHTM7CmBJfr9fzz77rJqamhQdHW12HMDSgsGgcnJyVFNTI0nKzMzUqVOntHXrVkopwGB79+7Vrl27tHv3bqWnp8vr9Wr16tVyOp38PGLMopQao8aPH6/IyEj19vaGjff29io5Odm0XIDVVVRUqLGxUS0tLbrrrrvMjgNYksfjUV9fn7KyskJjg4ODamlpUV1dnS5duqTIyEhTMwJWMWHCBE2bNi1sLC0tTR999JFpmQCreuGFF1RVVaVly5ZJkqZPn67vv/9eb775JqUUxiz2lBqj7Ha7srOz5Xa7Q2PBYFBut1uzZ882NRtgRUNDQ6qoqFBDQ4M++eQTpaSkmB0JsKwHHnhAX331lbxeb+jIyclRaWmpvF4vhRRgoPz8fPl8vrCx7u5uTZ482bRMgFX9/vvviogI/xM/MjJSwWDQtEzA9fCk1BhWWVmpsrIy5eTkaObMmaqtrdVvv/2mJ554wuxogOWUl5dr9+7dOnjwoOLi4nT27FlJ0u233y6Hw2F2PMBS4uLirtrPLSYmRnfccQf7vAEGe+6555SXl6eamhotXbpUJ06c0LZt27Rt2zazowGWU1RUpOrqak2aNEnp6elqb2/Xpk2b9OSTT5odDRiWbWhoaMjsEBheXV2d3n77bZ09e1YZGRl67733NGvWLLNjAZZjs9muOV5fXy+Xy2V4HgDh5s2bp4yMDNXW1podBbCcxsZGrV27VqdPn1ZKSooqKyv19NNPmx0LsJxff/1Vr7zyihoaGtTX1yen06nHHntMr776qux2u9nxgGuilAIAAAAAAIDh2FMKAAAAAAAAhqOUAgAAAAAAgOEopQAAAAAAAGA4SikAAAAAAAAYjlIKAAAAAAAAhqOUAgAAAAAAgOEopQAAAAAAAGA4SikAAAAAAAAYjlIKAABglNhsNh04cCB03tXVpfvvv1/R0dHKyMgwNdtf3X333aqtrf3bOX/9PgAAAKMpyuwAAAAA/y9cLpfOnTs3bFETCASUkJAQOl+3bp1iYmLk8/kUGxs7ojXPnDmjlJQUtbe3j7liCwAA4H9BKQUAADBKkpOTw857enq0cOFCTZ482bRMZhoYGJDdbjc7BgAAGKN4fQ8AAGCU/Pl1N5vNJo/Ho9dee002m03r16+XJPn9fi1dulTx8fEaN26ciouLdebMmRGv2dPTo+LiYiUlJSk2Nla5ubk6evRo2Jy+vj4VFRXJ4XAoJSVFu3btuuo+p0+f1pw5cxQdHa1p06apqanpqjnXy+5yufTII4+ourpaTqdTU6dOHfH3AgAA/36UUgAAAP+AQCCg9PR0Pf/88woEAlqzZo0uX76s+fPnKy4uTq2trWpra1NsbKwKCws1MDAwonX6+/v10EMPye12q729XYWFhSoqKtIPP/wQmuNyueT3+/Xpp59q37592rx5s/r6+kKfB4NBlZSUyG636/jx49q6datefPHFsHVuNLvb7ZbP51NTU5MaGxtH9J0AAIA18PoeAADAPyA5OVlRUVGKjY0Nvda3c+dOBYNBbd++XTabTZJUX1+v+Ph4NTc368EHH7zpdWbMmKEZM2aEzl9//XU1NDTo0KFDqqioUHd3tw4fPqwTJ04oNzdXkrRjxw6lpaWFrjl69Ki6urp05MgROZ1OSVJNTY0WLFgQmrNnz54byh4TE6Pt27fz2h4AALguSikAAACDdHR06JtvvlFcXFzY+MWLF9XT0zOie/b392v9+vX6+OOPFQgEdOXKFV24cCH0pFRnZ6eioqKUnZ0duiY1NVXx8fGh887OTk2cODFUSEnS7NmzR5R9+vTpFFIAAOCGUEoBAAAYpL+/X9nZ2dfc0+nOO+8c0T3XrFmjpqYmvfPOO7rnnnvkcDj06KOPjvh1wOHcaPaYmJhRXRcAAPx7UUoBAAAYJCsrS3v27FFiYqJuu+22UblnW1ubXC6XFi1aJP23PPrz5uOpqam6cuWKPB5P6PU9n8+nc+fOheakpaXJ7/crEAhowoQJkqQvvvjiH88OAACsjY3OAQAAbsL58+fl9XrDDr/ff0PXlpaWavz48SouLlZra6u+++47NTc3a9WqVfrxxx//9lqfz3fVupcvX9a9996r/fv3y+v1qqOjQ48//riCwWDouqlTp6qwsFArV67U8ePH5fF4tHz5cjkcjtCcgoICTZkyRWVlZero6FBra6tefvnlUcsOAABwLZRSAAAAN6G5uVmZmZlhx4YNG27o2ltvvVUtLS2aNGmSSkpKlJaWpqeeekoXL1687tNHy5Ytu2rd3t5ebdq0SQkJCcrLy1NRUZHmz5+vrKyssGvr6+vldDo1d+5clZSUaMWKFUpMTAx9HhERoYaGBl24cEEzZ87U8uXLVV1dPWrZAQAArsU2NDQ0ZHYIAAAAAAAAWAtPSgEAAAAAAMBwlFIAAAAAAAAwHKUUAAAAAAAADEcpBQAAAAAAAMNRSgEAAAAAAMBwlFIAAAAAAAAwHKUUAAAAAAAADEcpBQAAAAAAAMNRSgEAAAAAAMBwlFIAAAAAAAAwHKUUAAAAAAAADEcpBQAAAAAAAMP9AXDmad0r7ab4AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Calculate basic statistics\n", + "mean_xn = np.mean(Data1)\n", + "std1 = np.std(Data1, ddof=1) # Sample SD\n", + "z_critical = norm.ppf(0.975) # 95% confidence level\n", + "\n", + "# Confidence interval for the mean (μ)\n", + "ci_lower = mean_xn - z_critical * (std1 / np.sqrt(len(Data1)))\n", + "ci_upper = mean_xn + z_critical * (std1 / np.sqrt(len(Data1)))\n", + "\n", + "# Prediction interval for Life Ladder\n", + "pi_lower = mean_xn - z_critical * std1\n", + "pi_upper = mean_xn + z_critical * std1\n", + "\n", + "# Prepare the KDE and prediction distribution\n", + "x_vals = np.linspace(min(Data1), max(Data1), 1000)\n", + "pdf = norm.pdf(x_vals, loc=mean_xn, scale=std1) # Prediction distribution (normal)\n", + "\n", + "# Plot the KDE\n", + "plt.figure(figsize=(12, 7))\n", + "sns.kdeplot(Data1, color=\"blue\", label=\"KDE of Data1\", alpha=0.5)\n", + "\n", + "# Overlay prediction distribution\n", + "plt.plot(x_vals, pdf, color=\"orange\", linestyle=\"--\", label=\"Prediction Distribution\")\n", + "\n", + "# Plot intervals with shaded regions\n", + "plt.hlines(y=0.01, xmin=ci_lower, xmax=ci_upper, color=\"green\", linewidth=2, label=\"Confidence Interval (μ)\")\n", + "plt.hlines(y=0.005, xmin=pi_lower, xmax=pi_upper, color=\"red\", linewidth=2, label=\"Prediction Interval\")\n", + "plt.fill_betweenx([0.01], ci_lower, ci_upper, color=\"green\", alpha=0.2)\n", + "plt.fill_betweenx([0.005], pi_lower, pi_upper, color=\"red\", alpha=0.2)\n", + "\n", + "# Mark mean as a prominent dot for both intervals\n", + "plt.scatter(mean_xn, 0.01, color=\"green\", zorder=5, s=50)\n", + "plt.scatter(mean_xn, 0.005, color=\"red\", zorder=5, s=50)\n", + "\n", + "\n", + "# Add labels, legend, and grid\n", + "plt.title(\"KDE of Life Ladder: Confidence & Prediction Intervals\", fontsize=16)\n", + "plt.ylabel(\"Density\", fontsize=14)\n", + "plt.legend(fontsize=12)\n", + "plt.grid(alpha=0.3)\n", + "\n", + "# Show the plot\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Question 7**" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "ALPHA = 0.05\n", + "\n", + "N = len(Data1)\n", + "MU = Data1.mean()\n", + "SIGMA = Data1.std()\n", + "\n", + "np.random.seed(111)\n", + "YSample = norm.rvs(MU, SIGMA, size=N)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "def RelativeLogLikelihood(mu, sigma, data):\n", + " n = len(data)\n", + " sigma_hat = np.std(data)\n", + "\n", + " return n * (np.log(sigma_hat / sigma) + 0.5 * (1 - (np.mean(data**2) - 2 * mu * np.mean(data) + mu**2) / sigma**2))\n", + "\n", + "def RelativeLikelihood(mu, sigma, data):\n", + " return np.exp(RelativeLogLikelihood(mu, sigma, data))" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "def RelativeLogLikelihood(mu, sigma, data):\n", + " n = len(data)\n", + " sigma_hat = np.std(data)\n", + "\n", + " # Vectorized computation of the log-likelihood\n", + " mean_data = np.mean(data)\n", + " mean_squared_data = np.mean(data**2)\n", + " \n", + " return n * (np.log(sigma_hat / sigma) + 0.5 * (1 - (mean_squared_data - 2 * mu * mean_data + mu**2) / sigma**2))\n", + "\n", + "# Define RelativeLikelihood based on the log-likelihood\n", + "def RelativeLikelihood(mu, sigma, data):\n", + " # Vectorized calculation\n", + " return np.exp(RelativeLogLikelihood(mu, sigma, data))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [], + "source": [ + "# Calculate the MLE of mu and sigma\n", + "Mu_MLE = np.mean(YSample)\n", + "Sigma_MLE = np.std(YSample)" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "# Find confidence intervals for mu and sigma\n", + "S = np.std(YSample, ddof=1)\n", + "\n", + "LowMu, UppMu = t.ppf(ALPHA/2, N-1, Mu_MLE, S/np.sqrt(N)), t.ppf(1 - ALPHA/2, N-1, Mu_MLE, S/np.sqrt(N))\n", + "LowSigma, UppSigma = S * np.sqrt(N-1) / np.sqrt(chi2.ppf(1-ALPHA/2, N-1)), S * np.sqrt(N-1) / np.sqrt(chi2.ppf(ALPHA/2, N-1))\n", + "\n", + "# Find prediction interval for Y\n", + "LowY, UppY = t.ppf(ALPHA/2, N-1, Mu_MLE, np.sqrt(S**2/N + S**2)), t.ppf(1 - ALPHA/2, N-1, Mu_MLE, np.sqrt(S**2/N + S**2))" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "Probabilities = np.array([0.1, 0.5, 0.75, 0.89, 0.95])\n", + "Probabilities = Probabilities[::-1] # We need to write the probabilities in a dicreasing order\n", + "\n", + "Levels = np.exp(-0.5 * chi2.ppf(Probabilities, 2))" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "mu_vect = np.linspace(5.3, 6, 100) # Extending the range to cover 5.62\n", + "sigma_vect = np.linspace(0.9, 1.3, 100) # Adjusting to cover 1.139\n", + "\n", + "mu_grid, sigma_grid = np.meshgrid(mu_vect, sigma_vect)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHZCAYAAAClwGDeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADpvUlEQVR4nOydd3gU1feH39lNNpteSAgkhARCb6FDkCpNFKQooqAUAQvoF0RRUKRZsAsCKlhA5QdSBRtFkCq99xJIQktCes8m2Z3fH7MJLYEEZnez4b7PM0+S2Tv3ntnMzn7m3HPPkWRZlhEIBAKBQCAow2hsbYBAIBAIBALB3RCCRSAQCAQCQZlHCBaBQCAQCARlHiFYBAKBQCAQlHmEYBEIBAKBQFDmEYJFIBAIBAJBmUcIFoFAIBAIBGUeIVgEAoFAIBCUeYRgEQgEAoFAUOYRgkUgEAgEAkGZRwgWgUAgEAgEZR4hWASC+2Dfvn20adMGV1dXJEni8OHDLFy4EEmSiIqKuuOxU6dORZIkq9laXijp+2sriromBOJ6F9w/DrY2QCC4X86fP88nn3zCP//8w9WrV9HpdDRs2JCnnnqKF154AWdnZ4uMm5eXR//+/dHr9Xz55Ze4uLgQHBwsvqAeYIq7JgQCwf0jBIvArvnrr7/o378/Tk5ODB48mAYNGpCbm8uOHTsYP348J06cYP78+RYZ+/z580RHR/Pdd98xYsSIwv3PPfccTz/9NE5OThYZ90GnLL+/xV0TAoHg/hGCRWC3REZG8vTTTxMcHMy///5L5cqVC18bPXo0ERER/PXXXxYb/9q1awB4eXndtF+r1aLVai02rj2QmZmJq6urRfouy+9vcdfE/WDJ91IgsCdEDIvAbvnkk0/IyMjghx9+uEmsFFCjRg3GjBlT+PehQ4fo0aMHHh4euLm50blzZ3bv3n3TMQXz7BEREQwdOhQvLy88PT0ZNmwYWVlZhe2GDh1Khw4dAOjfvz+SJNGxY0coJsZix44dtGjRAr1eT2hoKPPmzSv2vK5cucLzzz+Pv78/Tk5O1K9fnx9//PGe7Lyxz+HDhxMQEICTkxPVqlXj5ZdfJjc3t1TjFkWBLSdPnmTgwIF4e3vTtm3bUve7ZcsWmjdvftN7VFTcQ1Hvb0n+t6V539LT0xk7diwhISE4OTlRsWJFunbtysGDB4t9H+50TZTUxru9l0VRvXp1nn322dv2d+rUqdCe4oiOjmbUqFHUrl0bZ2dnKlSoQP/+/W+LDyrt9Vaa67045s+fT9OmTXFxcUGSpJu26tWrl7o/gf0jPCwCu+WPP/6gevXqtGnT5q5tT5w4Qbt27fDw8ODNN9/E0dGRefPm0bFjR7Zu3UqrVq1uav/UU09RrVo1ZsyYwcGDB/n++++pWLEiH3/8MQAvvvgigYGBfPjhh/zvf/+jRYsW+Pv7Fzn2sWPH6NatG35+fkydOpX8/HymTJlSZPu4uDhat26NJEm88sor+Pn5sXbtWoYPH05aWhpjx44tlZ0AV69epWXLlqSkpPDCCy9Qp04drly5wooVK8jKykKn05V63KLo378/NWvW5MMPP0SW5VKdz6FDh3jkkUeoXLky06ZNw2g0Mn36dPz8/FT/35bkfXvppZdYsWIFr7zyCvXq1SMxMZEdO3Zw6tQpmjZtWqQdd7omSmtjUe9lUWRkZBAVFcXLL79822tHjx5l4MCBd3zv9u3bx86dO3n66aepUqUKUVFRfPPNN3Ts2JGTJ0/i4uJSqveNUl7vxfHaa68xc+ZMunXrxrBhw7h8+TJffvkleXl59OzZk2bNmpW4L0E5QhYI7JDU1FQZkHv37l2i9n369JF1Op18/vz5wn1Xr16V3d3d5fbt2xfumzJligzIzz///E3H9+3bV65QocJN+zZv3iwD8vLly2/av2DBAhmQIyMjC8fW6/VydHR0YZuTJ0/KWq1WvvUjOHz4cLly5cpyQkLCTfuffvpp2dPTU87Kyiq1nYMHD5Y1Go28b9++294Xk8lUqnGLosCWZ5555rbXStpvr169ZBcXF/nKlSuFbc6dOyc7ODjc9h4V9f6W5H9bmvfN09NTHj16dLHnXBzFXROlvf6Kei+LYteuXTIgr1+//qb9ly5dkgF5/vz5dzy+qP9rQZ8///zzbXaV5HorzfVeFNu2bZMB+eWXX75p/7Rp02RA3rt37137EJRPxJSQwC5JS0sDwN3d/a5tjUYjGzZsoE+fPje5kitXrszAgQPZsWNHYX8FvPTSSzf93a5dOxITE29rV5Kx169fT58+fahatWrh/rp169K9e/eb2sqyzMqVK+nVqxeyLJOQkFC4de/endTU1NumJO5mp8lkYvXq1fTq1YvmzZvfZp8kSfc0blHcaktJ+zUajWzcuJE+ffoQEBBQeHyNGjXo0aPHXd/f0v5vS/K+eXl5sWfPHq5evXrX874balx/xXH8+HEAwsLCbtp/5MgRABo1anTH429cQZeXl0diYiI1atTAy8uryP/53d630lzvxfHll1/i4+PDp59+etP+gumts2fPlqgfQflDCBaBXeLh4QHmWIO7ER8fT1ZWFrVr177ttbp162Iymbh06dJN+2+82QJ4e3sDkJycXCo74+Pjyc7OpmbNmre9dqs98fHxpKSkMH/+fPz8/G7ahg0bBjcEdZbUzvj4eNLS0mjQoMEdbSztuEVRrVq1e+r32rVrZGdnU6NGjdv6LGrfrWOU9n9LCd63Tz75hOPHjxMUFETLli2ZOnUqFy5cuOt7oJaNt76XxXHs2DH8/f1vm245evQoGo3mjv93gOzsbCZPnkxQUBBOTk74+vri5+dHSkoKqampt7UvyfVW0uu9KPLz8/nnn3/o0aPHbYHGBfFWBZ99wYOHiGER2CUeHh4EBAQUPmGqTXGrUO4UT3C/mEwmAJ599lmGDBlSZJtbn5jVsPNexi2KW/PdlLRfo9FYYlvV4m7v21NPPUW7du347bff2LBhA59++ikff/wxq1atuqvXRw1Kmjvo+PHjt3lXAA4fPkz16tXvurro1VdfZcGCBYwdO5bw8HA8PT2RJImnn3668P93I5b+XERFRZGRkVGk0Dpw4ACYRZ7gwUQIFoHd0rNnT+bPn8+uXbsIDw8vtp2fnx8uLi6cOXPmttdOnz6NRqMhKCjIIjb6+fnh7OzMuXPnbnvtVnv8/Pxwd3fHaDTSpUsX1cb38PC4o7CzxLil6ddoNKLX64mIiLjttaL23TqGpf63lStXZtSoUYwaNYpr167RtGlTPvjgg1ILFkvaeOzYMQYMGHDTPpPJxL///kv79u3vevyKFSsYMmQIn3/+eeG+nJwcUlJS7sme0lzvRVHgMdXpdDftl2WZ5cuXU79+/bt63QTlFzElJLBb3nzzTVxdXRkxYgRxcXG3vX7+/HlmzZqFVqulW7durFmz5qblmnFxcSxevJi2bdtazM2s1Wrp3r07q1ev5uLFi4X7T506xfr1629r+8QTT7By5coiBUZ8fHypx9doNPTp04c//viD/fv33/a6LMsWGZdSnI9Wq6VLly6sXr36ppiRiIgI1q5de9cx1P7fGo3G26ZDKlasSEBAAAaDoVR9WcpGzNNp8fHxxMTE3LT/q6++IiEhgYYNG5bItlu9I7Nnz75nr1dprveiKJhy2rhx4037Z86cycGDB5k4ceI92SUoHwgPi8BuCQ0NZfHixQwYMIC6develOl2586dLF++nKFDhwLw/vvv888//9C2bVtGjRqFg4MD8+bNw2Aw8Mknn1jUzmnTprFu3TratWvHqFGjyM/PZ/bs2dSvX5+jR4/e1Pajjz5i8+bNtGrVipEjR1KvXj2SkpI4ePAgGzduJCkpqdTjf/jhh2zYsIEOHTrwwgsvULduXWJiYli+fDk7duzAy8vLIuOW5nymTp3Khg0beOihh3j55ZcxGo3MmTOHBg0a3LXUgdr/2/T0dKpUqcKTTz5JWFgYbm5ubNy4kX379t3kiSgNlrj+jh07BsCGDRsYNWoUderUYffu3YXC4MCBA+zZs6fIZd0F9OzZk19++QVPT0/q1avHrl272LhxIxUqVLgnmyjl9X4rFSpUoE+fPqxevZpBgwbx0EMPsWPHDpYsWcKIESMYNGjQPdslKAfYepmSQHC/nD17Vh45cqQcEhIi63Q62d3dXX7ooYfk2bNnyzk5OYXtDh48KHfv3l12c3OTXVxc5E6dOsk7d+68qa+C5Zvx8fE37b91Ka1cimXNsizLW7dulZs1aybrdDq5evXq8rfffls41q3ExcXJo0ePloOCgmRHR0e5UqVKcufOnW9aoloaO2VZlqOjo+XBgwfLfn5+spOTk1y9enV59OjRssFgKNW4RVGcLaXtd9OmTXKTJk1knU4nh4aGyt9//738+uuvy3q9/q7nWJL/bUnfN4PBII8fP14OCwuT3d3dZVdXVzksLEz++uuv7/g+yHe4Jkpq493eyxv58ssvZa1WK//1119yaGiorNfr5a5du8rHjh2TQ0ND5SpVqsgHDhy4Yx/JycnysGHDZF9fX9nNzU3u3r27fPr0aTk4OFgeMmRIqd63GynN9V6UTUOHDpW9vb1lJycnuUmTJvIPP/xw1+ME5R9JtmQUoUAgENwHffr04cSJE0XGRDzojBgxgm3btollvoIHBhHDIhAIygTZ2dk3/X3u3Dn+/vvvm9LbC65z7Ngx6tWrZ2szBAKrIWJYBAJBmaB69eoMHTqU6tWrEx0dzTfffINOp+PNN9+0tWllDlmWOXnyJJ07d7a1KQKB1RCCRSAQlAkeeeQRlixZQmxsLE5OToSHh/Phhx8WmYTsQScyMpKMjAzhYRE8UNh0Smjbtm306tWLgIAAJEli9erVd2y/Y8cOHnroISpUqICzszN16tThyy+/vK3d3LlzCQkJQa/X06pVK/bu3WvBsxAIBGqwYMECoqKiyMnJITU1lXXr1hVbaPBBp3r16siyXGSVZoGgvGJTwZKZmUlYWBhz584tUXtXV1deeeUVtm3bxqlTp5g0aRKTJk1i/vz5hW2WLl3KuHHjmDJlCgcPHiQsLIzu3buXKLW4QCAQCASCskmZWSUkSRK//fYbffr0KdVx/fr1w9XVlV9++QWAVq1a0aJFC+bMmQPmrI9BQUG8+uqrTJgwwSK2CwQCgUAgsCx2vUro0KFD7Ny5s7CKZ25uLgcOHLgpDbhGo6FLly7s2rWr2H4MBgNpaWmFW2pqKvHx8RatGyMQCAQCgaDk2KVgqVKlCk5OTjRv3pzRo0czYsQIABISEjAajbdVLvX39yc2NrbY/mbMmIGnp2fh5uXlRcWKFUtUCVggEAgEAoHlsUvBsn37dvbv38+3337LzJkzWbJkyX31N3HiRFJTUwu3osrRCwQCgUAgsB12uay5WrVqADRs2JC4uDimTp3KM888g6+vL1qt9rZCeHFxcVSqVKnY/pycnHBycrK43QKBQCAQCO4Nu/Sw3IjJZCqsoKrT6WjWrBmbNm266fVNmzYRHh5uQysFAoFAIBDcDzb1sGRkZBAREVH4d2RkJIcPH8bHx4eqVasyceJErly5ws8//wzm/CpVq1alTp06YM7j8tlnn/G///2vsI9x48YxZMgQmjdvTsuWLZk5cyaZmZkMGzbMBmcoEAgEAoFADWwqWPbv30+nTp0K/x43bhwAQ4YMYeHChcTExHDx4sXC100mExMnTiQyMhIHBwdCQ0P5+OOPefHFFwvbDBgwgPj4eCZPnkxsbCyNGzdm3bp1twXiCgQCgUAgsB/KTB6WskRaWhqenp6kpqbi4eFha3MEAoFAIHjgsfsYFoFAIBAIBOUfIVgEAoFAIBCUeYRgEQgEAoFAUOYRgkUgEAgEAkGZRwgWgUAgEAgEZR4hWAQCgUAgEJR5hGARCAQCgUBQ5hGCRSAQCAQCO2Pu3LmEhISg1+tp1aoVe/fuLbZtXl4e06dPJzQ0FL1eT1hYGOvWrbupzdSpU5Ek6aatIKt8WUEIFoFAIBAI7IilS5cybtw4pkyZwsGDBwkLC6N79+5cu3atyPaTJk1i3rx5zJ49m5MnT/LSSy/Rt29fDh06dFO7+vXrExMTU7jt2LHDSmdUMkSm2yIQmW4FAoHgwSQ7M8eq4zm76kt9TKtWrWjRogVz5swBc9maoKAgXn31VSZMmHBb+4CAAN555x1Gjx5duO+JJ57A2dmZRYsWgdnDsnr1ag4fPnxf52NJbFpLSCAQCASCssTj7s9Zdbx/TMtL1T43N5cDBw4wceLEwn0ajYYuXbqwa9euIo8xGAzo9TcLI2dn59s8KOfOnSMgIAC9Xk94eDgzZsygatWqpbLPkogpIYFAIBAI7ISEhASMRuNtBX39/f2JjY0t8pju3bvzxRdfcO7cOUwmE//88w+rVq0iJiamsE2rVq1YuHAh69at45tvviEyMpJ27dqRnp5u8XMqKcLDIhAIBAKBmd/Tf7G1Caoza9YsRo4cSZ06dZAkidDQUIYNG8aPP/5Y2KZHjx6Fvzdq1IhWrVoRHBzMsmXLGD58uI0svxkhWAQCgUAgMHMvMSXWxNfXF61WS1xc3E374+LiqFSpUpHH+Pn5sXr1anJyckhMTCQgIIAJEyZQvXr1Ysfx8vKiVq1aREREqH4O94qYEhIIBAKBwE7Q6XQ0a9aMTZs2Fe4zmUxs2rSJ8PDwOx6r1+sJDAwkPz+flStX0rt372LbZmRkcP78eSpXrqyq/feDECwCgUAgENgR48aN47vvvuOnn37i1KlTvPzyy2RmZjJs2DAABg8efFNQ7p49e1i1ahUXLlxg+/btPPLII5hMJt58883CNm+88QZbt24lKiqKnTt30rdvX7RaLc8884xNzrEoxJSQQCAQCAR2xIABA4iPj2fy5MnExsbSuHFj1q1bVxiIe/HiRTSa6/6InJwcJk2axIULF3Bzc+PRRx/ll19+wcvLq7DN5cuXeeaZZ0hMTMTPz4+2bduye/du/Pz8bHKORSHysBSByMMiEAgEAkHZQkwJCQQCgUAgKPMIwSIQCAQCgaDMIwSLQCAQCASCMo8QLAKBQCAQCMo8QrAIBAKBQCAo8wjBIhAIBAKBoMwjBItAIBAIBIIyjxAsAoFAIBAIyjxCsAgEAoFAICjziNT8AkE5xZhvJC0pg+z0bLLSs8nJyCErPQdDloH8PCP5efkY84wY842YTDJarQaNedM6aNHpHdG7OuHk4oTe1Qm9qx53HzfcvV1xcBS3DoFAYF3EXUcgsDNMJhOJV5OJuRBHwuVE4i8nEX8pgYQriSTHpZKakE5aQhrpyZkWs8HFwxkPHzc8/TyoEOBj3rzxDfTBP9iPytX98a3ig1artZgNAsGDzNy5c/n000+JjY0lLCyM2bNn07Jly2Lbz5w5k2+++YaLFy/i6+vLk08+yYwZM9Dr9QCkp6fz7rvv8ttvv3Ht2jWaNGnCrFmzaNGihRXP6s4IwSIQlFHycvO4fOYqF45eJOr4RS6fi+HKuRiuRsRiyM4tcT/Obnplc3fG2U2Pk4sOB0cHtI5aHBy1ODg6IElgNJow3bDl5uSRk2kgJzOHnEwD2Rk5ZKZmAZCVlk1WWjaxUfHA+SLHddQ54B/iR0CNSlStU4WQBkGENKhK1bqBOLvqVXufBIIHjaVLlzJu3Di+/fZbWrVqxcyZM+nevTtnzpyhYsWKt7VfvHgxEyZM4Mcff6RNmzacPXuWoUOHIkkSX3zxBQAjRozg+PHj/PLLLwQEBLBo0SK6dOnCyZMnCQwMtMFZ3o4oflgEovihwNrkZBm4cCSKswcucHb/ec4fjuLiqcvk5xmLbK910OIf7ItfkC++VXzwq+KLX5UKeFfywsvPAw9fdzx93XH3dkProJ6Xw2g0kpGcSXpSBmlJGaTEpZJ4NYnEq8kkXEki4WoSsZHXiIu6VqztkiRROdSfWs1Dqd08lBpNqlGjSTXcvFxVs1MguFdysgxWHU/v4lTqY1q1akWLFi2YM2cOmL2uQUFBvPrqq0yYMOG29q+88gqnTp1i06ZNhftef/119uzZw44dO8jOzsbd3Z01a9bw2GOPFbZp1qwZPXr04P3337/n81MT4WERCKyMLMvEXIjj+I7THN9xmlN7znLx1BVMRtNtbV08nKneKJhqDYMJqh1AYM3KBNashH+wn03iSLRaLZ6+Hnj63lnIG41GEi4ncfV8LFfOxRJ94hJRJy4SeewiqQnpXI2I5WpELFt+/a/wmIAalajfpjb1wmtTv00tqtarIqaUBFanb63xVh1v7eWvStU+NzeXAwcOMHHixMJ9Go2GLl26sGvXriKPadOmDYsWLWLv3r20bNmSCxcu8Pfff/Pcc88BkJ+fj9FoLJweKsDZ2ZkdO3bc03lZAiFYBAIrEBMZx4ENRzm46SgndpwmKTbltjbe/p7UaFqdOi1qUKNpNULDQqhY1RdJkmxi8/2g1WrxD/bDP9iPJg83vOm15GupnD8cxdn95zl74DznD0USGxVfKGL++XkrmMVao/b1aNqlEU27NKRq3Sp2+V4IBGqSkJCA0WjE39//pv3+/v6cPn26yGMGDhxIQkICbdu2RZZl8vPzeemll3j77bcBcHd3Jzw8nPfee4+6devi7+/PkiVL2LVrFzVq1LDKeZUEIVgEAgtgyDZw+N/j7Ft3mP0bjnDlXMxNrzvqHKjVIpQGD9WhXnhtajWvToUAnwfiC9m7oifNu4XRvFtY4b60pHTO7I3gxM4znNx1ltN7zpGVls3uPw+w+88DAPhU9qZZ10a07tmM5t0b4+LubMOzEJRXfjv7qa1NUJ0tW7bw4Ycf8vXXX9OqVSsiIiIYM2YM7733Hu+++y4Av/zyC88//zyBgYFotVqaNm3KM888w4EDB2xtfiEihqUIRAyL4F5IS0xnz98H2fX7PvatO0xO5vW5cK2DlnrhtWjWNYywjvWo1TwUnV5nU3vLMsZ8IxeORnNo0zEObjrGsW0nyc3JK3zdUedA484NCe/ZjFY9m1ExyNem9goE1iI3NxcXFxdWrFhBnz59CvcPGTKElJQU1qxZc9sx7dq1o3Xr1nz66XUxtmjRIl544QUyMjLQaK6nZMvMzCQtLY3KlSszYMAAMjIy+Ouvv6xwZndHeFgEgvsgOS6F7Sv3sHX5To5vP4XJdF3/+wVVoPVjijcgrFN9XD1cbGqrPaF10FKzaXVqNq3OU+N7k5uTy8ldZ9n790F2/r6fK+di2Lf2EPvWHoLR31OnVU3aP9Gatk+0onI1/xKMIBDYJzqdjmbNmrFp06ZCwWIymdi0aROvvPJKkcdkZWXdJEowT9tijqm7EVdXV1xdXUlOTmb9+vV88sknFjuX0iI8LEUgPCyCO5GenMG25bvYunwXRzYfv0mkVG8UTOuezWjTpyW1mlV/IKZ4rI0sy1w8fYVda/ax+68DnNx59qabbs1m1en0dFu6PNsOb38vm9oqEFiCpUuXMmTIEObNm0fLli2ZOXMmy5Yt4/Tp0/j7+zN48GACAwOZMWMGAFOnTuWLL75g/vz5hVNCL7/8Ms2aNWPp0qUArF+/HlmWqV27NhEREYwfPx69Xs/27dtxdHS08RmbkW3I1q1b5Z49e8qVK1eWAfm33367Y/uVK1fKXbp0kX19fWV3d3e5devW8rp1625qM2XKFBm4aatdu3ap7EpNTZUBOTU19Z7OS1D+MBqN8qF/j8kznp0l99A/I3eRnizcRrd8S1722e9ybNQ1W5v5QJIYkyT//vU6+Y3OU+Vu2v6F/5fujgPkyX0+lv9bvVfOy82ztZkCgarMnj1brlq1qqzT6eSWLVvKu3fvLnytQ4cO8pAhQwr/zsvLk6dOnSqHhobKer1eDgoKkkeNGiUnJycXtlm6dKlcvXp1WafTyZUqVZJHjx4tp6SkWP287oRNPSxr167lv//+o1mzZvTr14/ffvvtpjm5Wxk7diwBAQF06tQJLy8vFixYwGeffcaePXto0qQJmJXkihUr2LhxY+FxDg4O+PqWfI5beFgEBSTFJrPux82sX/AvV8/HFe6v1rAqDw9sR4f+4VSuLqYgygop8alsX7GbDT9t4fTeiML9XhU9eWRYJx4d2UX8vwQCO6XMTAlJknRXwVIU9evXZ8CAAUyePBnMgmX16tUcPnz4nm0RguXBRpZljm49ye/frOe/3/ZizFcSoLm4O9Pp6YfoMaIztZqHiumeMk70yUusX7CZjYu2kRyXWri/addG9HyhK+GPNxc1kQQCO8KuP60mk4n09HR8fHxu2n/u3DkCAgLQ6/WEh4czY8YMqlatWmw/BoMBg+H6io60tDSL2i0om+RkGVi/YDO/f72Oi6euFO6v16Y2PYZ3psNT4SKlvB0RXC+IFz4dzPAZg9j1x37+mv+PkgvnH2XzqexN31d70POlbiLLrkBgB9i1h+WTTz7ho48+4vTp04X1E9auXUtGRga1a9cmJiaGadOmceXKFY4fP467u3uR/UydOpVp06bdtl94WB4M0hLTWTN3HWvmrCU1IR0AvasTnQe1p9fL3QgNC7G1iQKViImM4+/vNrF+wb+FXhdnNz2PjuxCv7GPieXRAkEZxm4Fy+LFixk5ciRr1qyhS5cuxbZLSUkhODiYL774guHDhxfZpigPS1BQkBAs5ZxrF+NZ+eVf/P39xsKcKZWr+9Nv7GN0HdxBLEMux+Tl5rF5yX8s/+x3ok5cAvNS6ocHteWZCX0Jql02ir0JBILr2OWU0K+//sqIESNYvnz5HcUKgJeXF7Vq1SIiIqLYNk5OTjg5lb4AlcA+iYuOZ8mM31i/4N/CAn2hjUMY8GYf2j/ZWtVigYKyiaPOkW5DOtJ1cAf2rj3E8s9+58iWE/zz01Y2/ryN9v1bM/DtJ6jeKNjWpgoEAjN2J1iWLFnC888/z6+//npTVcniyMjI4Pz584VFngQPLnHR8Sz5cBXrF24uFCphHesz4K0+NO8WJoJoH0AkSaLVo01p9WhTTu89x+IPV7Hr9/1sXbaLrct20bpXM4ZMG0CNxtVsbapA8MBj0ymhjIyMQs9HkyZN+OKLL+jUqRM+Pj5UrVqViRMncuXKFX7++WcwTwMNGTKEWbNm0a9fv8J+nJ2d8fT0BOCNN96gV69eBAcHc/XqVaZMmcLhw4c5efIkfn5+JbJLrBIqX6QmpLFo+gr++HZD4Yqfxg834LnJ/WnUvp6tzROUMc4fiWLJjFVsW74bWZaRJImHB7Vl6PSnqRRS0dbmCQQPLDYVLFu2bKFTp0637R8yZAgLFy5k6NChREVFsWXLFgA6duzI1q1bi20P8PTTT7Nt2zYSExPx8/Ojbdu2fPDBB4SGhpbYLiFYygc5WQZ+m/U3v378G1lp2QA06dyQwVP606BtXVubJyjjXDpzhZ+nLWfLr/+BuX7R46O688zb/fD0FfcFgcDalJmg27KEECz2jdFoZMPCLfw0ZSmJV5MBqNGkGiM/eY6mnRva2jyBnXFm/3m+n7CIw/8eB8DFw5nnJvenz6s9RB4XgcCKCMFSBEKw2C9n9kXw1ejvObv/PACVQvwY+t4zdHrmoduKfwkEJUWWZfZvOMKPby8m4lAkAEF1Ahk1cxjNu4XZ2jyB4IFA3MEF5YLUhDS+fOFbXm39Nmf3n8fFw5kXPxvMD6dm0XlQOyFWBPeFJEm06N6Yufs+4vXvX8bLz4NLp68w8ZH3mdL3E2IuxJWgF4FAPebOnUtISAh6vZ5WrVqxd+/eYtt27NgRSZJu225cuDJ06NDbXn/kkUesdDYlQ3hYikB4WOwHWZZZ+8O/fD9hEelJGQB0ea49Iz9+Fp9K3rY2T1BOyUjJZNH05fw2ey0mowmd3pFn3+1P/zd6iWkigcVZunQpgwcP5ttvv6VVq1bMnDmT5cuXc+bMmcIkqjeSlJREbm5u4d+JiYmEhYXx/fffM3ToUDALlri4OBYsWFDYzsnJCW/vsnMfFYKlCIRgsQ8un4th5ovzOLLlBJgLEr46ZwQN24mAWoF1iD55iTn/+7EwviWkQRCvzXuReuG1bW2a4B7JzsktQSv1cNbrSn1Mq1ataNGiBXPmzAFzmZqgoCBeffVVJkyYcNfjZ86cyeTJk4mJicHVVSlLMXToUFJSUli9evU9nIV1EIKlCIRgKdsY840s//wPfpm2jNycPPQuTgyZPoC+/3tUJH0TWB1Zltm4aBvzXv+J1IR0JEmi54tdGT5jIK6eokaRvdG+96dWHW/bmvGlap+bm4uLiwsrVqy4KTP8kCFDSElJYc2aNXfto2HDhoSHhzN//vzCfUOHDmX16tXodDq8vb15+OGHef/996lQoUIpz8hyiIl9gV1x4Wg0r7SayA8T/4/cnDyadm3E/GOf8+S4XkKsCGyCJEl0fa4DP5ycSbehHZFlmT++3cALYW9w6N9jtjZPUM5ISEjAaDTi7+9/035/f39iY2PvevzevXs5fvw4I0aMuGn/I488ws8//8ymTZv4+OOP2bp1Kz169MBoNKp+DveKmGwV2AVGo5GVX/zJwnd/JS83H3dvV176YihdB3cQGWoFZQJPXw/G/ziaboM78vmIb4i5EMebXabT55UeDP9oEHoXUf7DHli/dIytTbAoP/zwAw0bNqRly5Y37X/66acLf2/YsCGNGjUiNDSULVu20LlzZxtYejtCsAjKPHHR8Xw8ZDbHtp0CIPzx5rw270W8/b1sbVqZIjcnj6RraSTHpxX+TIlPJyM1m6yMHDLTlJ/ZmQby84w3bPnIMmi0ElqttvCnk94RZzcnnF2VzcVdj6ePG16+7nhWcMOzghs+/p5UDPBGp3e09emXGcI61mfe4U/57s1F/PHtBlbPWcuBf47w1s+vUrtFDVubJ7gL9xJTYk18fX3RarXExd28Mi0uLo5KlSrd8djMzEx+/fVXpk+fftdxqlevjq+vLxEREUKwCAR3oyA2YM6rP5CVlo2zm55RM4fRfVinB9arkp9n5MqFa0SdieFyRByxlxKJvZhITHQCibGpNrPLu6IHFQO98Q+qQGA1P4Jq+FO1ViWqVK+Ik3PZ/gKwBM5uzvzv65GE927B58O/5tKZq/yvzTsMnf40A97qLZbZC+4ZnU5Hs2bN2LRpU2EMi8lkYtOmTbzyyit3PHb58uUYDAaeffbZu45z+fJlEhMTqVy5smq23y8i6LYIRNBtMcgyZGUV/7pWC3r99b8zM++5bXZGNt+8tpDNS/7DhESNh+ox4edXqVzd/879ajTg7Hz976wsxe6ikCRwcbm3ttnZYDIVb4er6721zckB85xxdqaBCyevcO7oRc4fv8zFs7FciE4pLNzoKOejucVenZMjXn5uePu641rJF++KHrh7ueDmpMHVzRFnVz0ubk44OjqgddSiddTi4KAFZxdMsozRaELOysGUm4shJ5esDAOGrFyyMnPIzjCQmpRBYmouKUmZpCZmkHI1kbzMnGJPLU/jSMXgCtRoEETtepWoWbcy1esF4u5dRDCqXq9cFwC5uZCXV/x7dmPbvDylfXE4OYGDQ+nb5ueDwVB8W50OHB3v2jYtKZ25byzi3+V7AGjWpQFvfTuieA+ho6PSNyjXQk7x7+9NbU0m5VorSVuBXbN06VKGDBnCvHnzaNmyJTNnzmTZsmWcPn0af39/Bg8eTGBgIDNmzLjpuHbt2hEYGMivv/560/6MjAymTZvGE088QaVKlTh//jxvvvkm6enpHDt2DCenMjKdKQtuIzU1VQbk1NRUW5tStsjIkGXlK73o7cknb25/p7aPPnpzWxeXYtvGhtST8/Pyr7f19S2+3+bNb+43OLj4tvXq3dy2Xr3i2wYH39y2efPi2/r63ty2Q4fi27q4yLIsyyaTSb4UESvHNQ6/4/v2SOCrct/ab8ivPf65fKZmyzu/xxkZ120YMuTOba9du9521Kg7t42MLGxqev31O7Z9oeJA+ZHAV+VHAl+Vf3G/i71791634ZNP7tx28+brbefMuXPbP/+83nbBgju3Xbbsettly+7cdsGC623//POObU2zZ8trf/xXfsxloDyO9nfu95NPrve7d++d206Zcr3t8eN3bvvGG7Kg/DB79my5atWqsk6nk1u2bCnv3r278LUOHTrIQ4YMuan96dOnZUDesGHDbX1lZWXJ3bp1k/38/GRHR0c5ODhYHjlypBwbG2uVcykpYkpIUDwGA7z4ovL7vHk2M8M/2A/K6Qqg/HwTH73wAyf2XiAlIZ1pCVe5Uz3gn/ZMxS/AW5kS678LzhWf3dIa3G1q7tNVY7iAFxHHLuH/w0XYX3zbbyevxP+JDJp1qEuQLFOeJv0kSeKRYZ2o26oGyx4bB1G2tkhg77zyyivFTgEVFAy+kdq1a1PchIqzszPr169X3Ua1EVNCRSCmhMxkZoKbm/J7RoYyJWKhKaG85BTmj/+FdT/8C0CjTvV544dReFf0vH2ax06nhPJy8zm57wIHtp7iwNbTXLkQD4BBo0wrODo5UL9hAA2ah1C7cTDV61fBp6JH8f3eMH1UJC4uit2YxWd+vjptnZ2V95kSTN0U0TYzLZuI45c4dSCK04eiOHMoiuyMXPIkLSZJaVupkgfNHqpOi4fr0fih2rfHwdjRlNCtbXPSs5g3ah4bF20DoHWvZoyd9yKuHubrS0wJCQRFIgRLEQjBYuZWweJqmSRYyXEpTO//Ocd3nEaSJAa+04/npvRHq7V/r0quIY/DO86y46/D7Fp/lIzU618oGq2Ges2r0axjXRq2rkHNRkHonB681TZGo4mo01c5vOMsB7ae4vie8+QZrgsmvYuOlp3r06ZHGM071cXV3fmO/dkL6378l69GfUdebj5V6wYy7bc3qVIrwDKDmUxw8aLye9Wq10WkQGBHCMFSBEKwmLGCYDl/JIp3H/+I+EuJuHg48/b/jaHVY81UH8eaGPONHNh6ms2/7WfPxuNkZ1x/8vb2c6fFw/Vp3qkuTdrVxs3T5Y59PYgYsnM5vuc8+/49yc51R4m/mlz4moNOS8uH69OxTzNadq5v9yuQTu89x7QnPiPhShKuni688+trtOjeWP2BrPTwIRBYEiFYikAIFjMWvsn9t3ovHz33FTmZBgJrVua9398iqHagqmNYC1mWOX/8MptW7mPL6gOkJKQXvlbB35M2PcJo17Mx9VpUR6sVT7clRZZlzh65yM61R/hv7VGuXLhW+JqzmxMP9Qjj4SdaENampt0uFU6KTWZ6/8858d8ZNBqJFz8fQr8xj5XgyFIgBIugHCAESxEIwWLGQjc5WZZZ/tnvfD/h/5BlmaZdGjJp6Tjcvd1U6d+aZGca2Pzbfv78aTuRp64W7vfwcaVj72Z07NOM2k2C7fbLtCwhyzJRp66yefUBtq45wLUr1z0vgdX8ePS5h+jav1XRS6bLOLmGPGaP+o51CzYD0OeVHrz05RD1pkWFYBGUA4RgKQIhWMxY4CZnNBr5eswCfv9aiUjv9XJ3Rs0cioOjfS1Yu3w+jj9/3sHG5XvJTFPiUhydHAjv1pCHn2hBsw51cXC0/xicsorJZOLk/kg2r9rP5tX7C6fddE6OtH+8Cb2GtqdWWFVbm1kqCoT8d28tAnMw7tuLx+Lsqr/rsXdFCBZBOUAIliIQgsWMyje53JxcZjz7FTtW7UGSJF76fAj9xqrs+rYgsixzZOc5Vn6zif1bThXuDwjxo+eQtnTp3wp3LxGTYm0KvFx//byDCyevFO6v37I6fUd0onX3hnY1Dbd1+S4+HjybPEMedVrW4L0/JuDl53l/nQrBIigHCMFSBEKwmJFlSEhQfvf1vb7s9R7ITM1kSt9PObLlBI46ByYs+h/tnwxXz1YLYsw3sv3Pw6yct4mIY5cB0Ggkmj9cj15D2tG0Qx0x5VMGkGWZ0wej+GPhdrb9cRBjvrLsvFLVCjz+fHt6DGxjNwUIT+w8w7uPf0R6UgaBNSvz0fpJVAq5U4aeuyAEi6AcIARLEQjBoi7JcSlMeOR9LhyJxsXdmWmr36Rxpwa2Nuuu5OcZ+WfZHn6dvYFrl5MAcHLW0W1Aa/qO7EjlYF9bmygohsTYVP74aTt//7KD9BQld5BnBTeefLkzPYe0Q28Hq4sunr7CxEfe59rFBPyqVOCjDe9Stc49BqULwSIoBwjBUgRCsKjHtUsJvNllOlfOxeDt78mHf79DjSbVbG3WHTHmG/l31X4Wz1xH7MVEALx83Xl8WHseG9wWDzsM6nxQycnO5d+V+1jxzSZiohVvoZevO/1HdebR59qWeeGScCWRCd3fJ/rkZTx93flo/bv39vkxGGDcOOX3L75QEuQJBHaGECxFIASLmfu8ycVFx/PGw1OJjbyGf7AfH//zLoE1yk7lz1sxmUxs+/0Qiz7/myuRShZaL193BrzSlR6D2th9zo8Hmfw8I/+u2seSr9YTG62IUG8/dwaN68Ejz4SjLcOlH1IT0nj70Q85u/88bl6ufLR+ErVb1LC1WQIbM3fuXD799FNiY2MJCwtj9uzZtGzZssi2CxcuZNiwYTftc3JyIudOWZTLIEKwFIEQLGbuw40cFx3PG52mEBsVT0CoP5/+O5WKQWV3CuXUgUjmTVnFmcPRAHh4u/LESw/z+LD2dhP3ILg7+XlGNq3cy69fbSj0ngXV8Of5tx+nVdcGd62NZCsy07KY1HMGx3ecxsXDmRlr36FeeG1bmyWwEUuXLmXw4MF8++23tGrVipkzZ7J8+XLOnDlDxYq3xzotXLiQMWPGcObMmcJ9kiTh7+9vZcvvDyFYikAIFjP3KFhio64x/uGpilipUYnP/p2KX5UKlrX1Hom7nMSCGb+zdc1BAJxdneg/ugu9n++Ai5sKy0kFZZK83Hz+XvQfi79cR1qyUpuqQatQRk7uW2aXQ2dnZDOp10cc3XoSZzc9H62fVHLRomIAfXknK+8OtaYsgItj6T23rVq1okWLFsyZMwfM3uGgoCBeffVVJkyYcFv7hQsXMnbsWFJSUlSx2VYIwVIEQrCYuQfBcu1iPOM6TCEuWhErn2+eim9g2RMrhuxcls3dyIpvNpFryEOSJLo/3Zrnxj92e8FBQbklMy2b5V9v5LfvthReBz0GtWHIWz3LZKxSdmYOk3t/zOF/j+Pi7szH/7xLnZY1736gCLotMSHffmbV8aJeeqNU7XNzc3FxcWHFihX06dOncP+QIUNISUlhzZo1tx2zcOFCRowYQWBgICaTiaZNm/Lhhx9Sv359Vc7BWoi1mALVSI5L4a1u7xEXHU9gzcplVqwc2HKKl7t8xOKZ68g15NEovAaz141nzKfPCLHygOHq4czQCb34fvskOvVtjizL/L3oP0a2f5/1S3ZhulNFbhvg7Krnvd8nENaxPlnp2bzd4wMij1+0tVkCK5KQkIDRaLxtOsff35/Y2Ngij6lduzY//vgja9asYdGiRZhMJtq0acPly5etZLU6CA9LEQgPi5lSPJVlpGTyeqcpXDgSjX+wH19sm17mYlYSY1OZP20V2/44BOYaPy9O60fbxxqX2dgFgXU5tjuCue8sJ/pMDAB1m4Xwv4+fJqSOhaoo3yPZGdm81e09Tu0+h09lb2Zuf4/K1e8QjyA8LCWmrE8JXb16lcDAQHbu3El4+PVcVm+++SZbt25lz549d+0jLy+PunXr8swzz/Dee+/dk922QHhYBPdNdmYO7/ScwYUj0Xj7e/LRhnfLlFgpfGru+D7b/jiERiPRd2RH5m99h3Y9mwixIiikYesazFn3JiPe7YOzqxOnDkTxao9PWTJrPfl5RlubV4izmzPv/zmRkAZBJMUk82bX6SRcTbK1WeUCF0edVbfS4uvri1arJS4u7qb9cXFxVKpUqUR9ODo60qRJEyIiIko9vi0RgkVwX+Tl5jHtic84ufMM7t6ufLzhXarULDtLl+OvJvPus98we8JSsjMM1G4SzFdrx/PClH4iqFZQJA6OWp548WHmb3mHVl0bkJ9n5OdP/+K1xz+/qcClrfHwUfKyBIT6Ext5jYnd3ycjJdPWZgksjE6no1mzZmzatKlwn8lkYtOmTTd5XO6E0Wjk2LFjVK5cdu7VJUFMCRWBmBIyYzLBRfP8eNWqcEv6eVmW+XjIbDYt2o7e1YmP/5lMvda1bGPrLciyzOZV+/n63RVkpmWjc3Jk6ISe9B7eQaTRF5QYWZbZ/Nt+vnl3JRmpWTg4ann29R48+XKXMlOfKCYyjrFt3yUpJpmwjvX5cO076Jwcb24kpoTKFUuXLmXIkCHMmzePli1bMnPmTJYtW8bp06fx9/dn8ODBBAYGMmPGDACmT59O69atqVGjBikpKXz66aesXr2aAwcOUK9ePVufTomxrxK5Auui0UBISLEvL3z3VzYt2o7WQcvkFW+UGbGSnpzJrLd+5b+/jwBQK6wqb8x6jqAa9pVzQGB7JEni4X4taPxQLb6asJQ9/xxn4Ud/cnDracZ/NRjfyl62NpHK1fz58O+3Gdd+Mke2nOCLEd/w1s+viqnOcsyAAQOIj49n8uTJxMbG0rhxY9atW1cYiHvx4sWbHsySk5MZOXIksbGxeHt706xZM3bu3GlXYgXhYSka4WG5O39/t5EvX5wHwOs/jOKRYZ1sbRKYE8B9NGoh164ko3XQMOi1Hjw1ukuZzmQqsA9kWWbjir18M2kF2ZkGPLxdee2LgbTu2tDWpgGwf8MRJvWcgTHfyMC3+zHs/Weuv2gwwIsvKr/PmydS8wvsEiFYikAIFjO5ufDOO8rvH3wAOiVAbN/6w0zqOQOT0cSz7z7JkGkDbGun+ctk5bx/WTDjD0xGE5WDfZnw9dAymwRMYL9cuXCNj0YvLKzc3Xt4B4a/0xtHne0d1usWbObz4V8D8Nr8l3h0RGdbmyQQqIYQLEUgBIuZIua9L5+9yiutJpKZmkXXwR0Yv2C0zV3P6SlZfDFuEbs3HAeg/eNN+d/HA3B1d7apXYLyS64hjwUz/mD191sAqN04mEnfDS8TU0Q/T13GL9OXo3XQ8snGyTRqb19uf4GgOIRgKQIhWMzcIlgy8+HV8He4dPoK9drU5tNNU24P7rMy0WdimPb8d8REJ+Cg0/LStCd49NmHbC6iBA8GezYe57Mxi8hIzcLbz5135g+nfovqNrVJlmU+HDiTLUt34unrztx9H+Nf1ReyspQGLi4iNb/ALikbYe6CMo/JZGLGs19x6fQV/KpUYMqK120uVnatP8prj39BTHQC/kE+fLH6NR57rq0QKwKr0apLA776+w1C6gSQHJ/OhKdm8/ei/2xqkyRJvP7DKGo2rUZqQjqT+3xMdnyS8vDh5nZduAgEdoZNBcu2bdvo1asXAQEBSJLE6tWr79h+1apVdO3aFT8/Pzw8PAgPD2f9+vW3tZs7dy4hISHo9XpatWrF3r17LXgWDwZLPlzFnr8OotM7MmXVeHwqedvMFlmW+XX2BqYP/57sTAONwmsw6683qNlIxKsIrE/lYF++/P012vVsTH6ekdkTljJ7wlKbJprTuzgxddV4vCp6cuFINLNHf2czWwQCtbCpYMnMzCQsLIy5c+eWqP22bdvo2rUrf//9NwcOHKBTp0706tWLQ4cOFbZZunQp48aNY8qUKRw8eJCwsDC6d+/OtWvXLHgm5Z+lHysFtcbOe5HazUNtZkeuIY/Pxy7ip4//BKDXkHZ8sHg0nj5uNrNJINC7ODHxm2EMm9ALSZL4e9F/vPvcN2SmZdvMpopV/Ziy4nW0Dlq2r7h7unaBoKxTZmJYJEnit99+u6n6ZEmoX78+AwYMYPLkyXAPZbeLQsSwmLkhhqUXfejyUg/GfPOCzczJSM1i+vDvObY7Ao1Ww8vvPUHPwe1sZo9AUBR7Nh7no1ELycnKpVrdAKb//JJNg3FXfPEHP73+I39g9mCLxHECO8X26/DuA5PJRHp6Oj4+PmAuu33gwAEmTpxY2Eaj0dClSxd27dpVbD8GgwGDwVD4d1pamoUttw+M+UYKspdUDwvm5S+H2syW+KvJTH7uW6LOxODs5sSk+cNp2r6OzeyxB7Kyc7kWn0ZKWjap6dmkpmWTlp5NekYOublGcvPzyc01kpdnRJZltFoNDg4atBrlp4uzDnc3Pe6uetxcnfDwcMbPxw0/X3dcXUQej+Jo1aUBn64cw+Qh84g8dZXXHv+C9355yWYFFJ94rSenNx+BPxXBkpmaiasQLAI7xK4Fy2effUZGRgZPPfUU3KXs9unTp4vtZ8aMGUybNs3i9tobP338Ozvpit5Vz8Rl49HpS1+oSw0un4/j7We+Jv5qMj7+Hrz3y8tUrxdoE1vKGmnp2URdSizcrsamcC0hjbj4dNIzciw2rrPeEb8K7vj7eVA10IegQG/zTx8q+ro/8IHPNRoG8eWa13h38LdcOhfHG/1mMXXBCzRoZf3pVEmSGPPNSPjzXQBmv/oDb62Y8MD/jwT2h90KlsWLFzNt2jTWrFlDxYoV76uviRMnMm7cuMK/09LSCAoKUsFK++XIlhP8+vHvyJInkxaMI7CWbQRCxLFLTHr2G1ITM6gSWpH3/28U/lV8bGKLrUlNy+bUuRhOno3h1NkYzl2IIynlzis+3Fyd8PFyxcNdj6eHC57uetzc9Dg5OqDTaXF01OLo6IBGkjAaTeQbjRiNMnn5RrKyDGRkGkjPyCE900BqWjbxielkZBrIzsnj4pUkLl5JYt/hqJvGdHfTUzvUn9o1KlG7hj91a1Z+IEWMf1AFPl81lukjvuf4nvO8M/Br3pn/PC0717e6Le7e12O8/lu1l/ULNvPI8w9b3Q6B4H6wS8Hy66+/MmLECJYvX06XLl0K999r2W0nJyecRKrqQtKS0vnoua+QZZlHhnWiQ/+SVQBVm5P7L/Duc9+SlZ5DzUZBTP/lJbwquNvEFluQlp7NwaMX2XckikPHLnH5anKR7fz9PAipWoGQoApUqeSNf0UP/P08qGihqZvsnFwSEjO4lphOTFwql64kEX05iUtXkrgam0J6Rg77j0Sz/0h04TGVKnrQpEFVmjaqSpOGVano+2D8H929XXl/0cvMGLWQPf8c570R3zPh66E81CPMuoZotfDkk1w8fQXjcYm5Y36kQbu6ZaqyuqB0zJ07l08//ZTY2FjCwsKYPXs2LVu2LLLtiRMnmDx5MgcOHCA6Opovv/ySsWPHWt3m+8XuBMuSJUt4/vnn+fXXX3nsscdueu3GstsFwbsFZbdfeeUVG1lsX8iyzJcvzCPhShLBNSvyP/8rMHUqvP12YWp+a3BsdwRThswjO9NAg1ahTF34QrnPXCvLMmfPx7F9TwR7D0VyJiKWW0PiqwR4U69WZerWqkzdGpUICfLFxcW6U3XOeh1B5umfW8nLM3LhYgJnImI5ExHL6YhYLkQnEHstjbX/Hmftv0o24qqBPrRpEUrbVjWoXzugzFQ+tgROzjomzR/Op//7mW1/HOLDlxYw/qvn6Ni7mfWM0Oth+XICjUbqdX2PI1tOMGPQLGbueA9HnW3zKQlKT8Fq2G+//ZZWrVoxc+ZMunfvzpkzZ4qcccjKyqJ69er079+f1157zSY2q4FNVwllZGQQEREBQJMmTfjiiy/o1KkTPj4+VK1alYkTJ3LlyhV+/vlnME8DDRkyhFmzZtGvX7/CfpydnfH09IQSlN0uCQ/yKqENP23h02FzcXDU8tWmd6jZrpHyghVXFhzfe55Jg77BkJ1Lk3a1mfzjSPTOtomfsTT5RhNHT1xm++5zbN9zjmsJ6Te9HlylAs0bB9M8LJiGdQPxsEPRlp2Ty7FTVzh49CIHj13k7Pk4TKbrtx1PD2daN6tO+/CatGpaDZ2j3T1HlQhjvpEvX1/MppX70Ggk3pj1HJ36Nre6HfGXE3kx7HXSkzMZ9M4TDH3vaavbUJaRTdZNrCdpXEp9zP2shg0JCWHs2LF26WGxqWDZsmULnTrdXuV3yJAhLFy4kKFDhxIVFcWWLUq9jo4dO7J169Zi2xcwZ86cQldZ48aN+eqrr2jVqlWJ7XpQBUtSbDLD671GRkomwz8cyNOvdrutlpClOX0wircHziU7w0DTDnWY/P0InMqhWImIvMa6f4/zz9ZTJKdev0HqnRxp2TSEh1rUoFlYcLmcOimYMtqx5xy79l8gI/P6Cj13Nz0dH6pF1w71aFS3ChpN+Yp7MZlMzH5rKeuW7EKjkXhr7hDa92pqdTu2Lt/F+wO+QKPVMHfvR9RoUs3qNpRVTLG1rDqeptLZUrXPzc3FxcWFFStW3JQGZMiQIaSkpLBmzZo7Hi8ESznjQRUs0578jB2r9lCzWXVm7/oQrSHHqoIl4tglJgyYQ2ZaNmFtajLtpxfLlVhJS89m3eYTrP/3BOcirycy9HR35qGWobRrXZPmYcE42bjkgTXJN5o4fuoKO/ac498dZ0hIyih8zd/Pg0e7NKBXtzB8y1FiQJPJxKzxv7Jh6W60DhomfTec1l0bWnbQIgqZTn/qc7av2E31sGDm7JkhpobMlHXBcvXqVQIDA9m5cyfh4dfjC9988022bt3Knj13ThJoz4KlfPpeBaVm+8rd7Fi1B62Dlte/fxmtgxYMJThQJS6ei+WdgV+TmZZN/ZbVmbrwhXIjVs5HxbPqr4Ns2HISQ24+AI4OWtq0COWRh+vTqmk1HBy0d+2nPOKg1dC4QRCNGwTx8tCOHD5xiX+2nGTrrrPExaexYMlOfl62mw7htej7aBMa1Qu0+9VGGo2G/33yNPl5+fy7aj8fvrSA6T+/ROOHrPtF+eqcERzZfIILR6L5dcZqnpvS36rjl1WkiodtbYKgGIRgEZCenMHsV74H4Om3+hAaFmLV8RNiUpg06BvSkjOpGVaVaT+9iN7OE5OZTDL/7Y1gxR8HOHT8UuH+mtUq0rNbIzq3q2OX8SiWRKvV0KxRMM0aBfPai13Ytvscq9ce5tipK/y74zT/7jhN9WBfnunbks7t6ti1yNNqNYz7YhDZmbnsWn+U6c9/xycr/keNhtZLp+Bd0ZNXZg/nw4Ez+b8PVtL2iVZUayDqcd1LTIk1udfVsOWB8huaLygx37+1iOS4VILqBDJw0hNWHTszPZvJg78l/mqykmdl0ct2vRrIaDSxadsphv5vAe/MWM2h45fQaiQ6hNdi9ofP8P2Xg+n7aBMhVu6Ck5MjXTvUY+5HA/nhy8H07NoIvZMjF6IT+GDm3wx8+Qd++/sQBkOerU29Z7QOWiZ8PYTGbWuRnWlg8pB5xF1KtKoNHQe0oU3vFhjzjXw16jtMJpNVxxeUnhtXwxZQsBr2ximi8oiIYSmCBymG5ei2k7zecQoAX26bToO2da+/WMS8t5rk5eYzZcg8Dm0/g3dFD75c8xr+QRVUHcNa5BtN/Lv9FD8v283FK0lgTtrW+5HG9OnRGH+/8n0dWYP0jBzWrDvMst8PkGIOVPbxcmFA7xb0e6yJ3cb+ZKZlM/6JWUSeukqV0Ip8vvo1PLxVjhe7w2f52sV4htd/jZxMA+O+e4kewzurO7ZAde62Gnbw4MEEBgYyY8YMMAfqnjx5EoBHH32UQYMGMWjQINzc3KhRo4aNz6bkCMFSBA+KYMk15PFS4ze4dOYqj43swth5L97cwGiEgweV35s2VZJPqYQsy3z+2v+xacVe9C46Pl05xqrucLWQZZkdeyL49qetXDIndnN30/NU7+b0e7QJ7m56W5tY7jAY8vhr4zGW/LaPuHil7pdfBTeGPfMQjzzcAAc7zOmSEJPCuN5fEn81mXotqjNjyWh0ehUF2F0ePpZ//gfzx/+Mu48bP56aiZefp3pjCyzCnVbDduzYkZCQkMLVs1FRUVSrdvtKsA4dOhSuwrUHhGApggdFsPz60W/88PZifCp58cPJmbh5Wa8g2uKZ6/jls7/RaDVMW/gCzTvVs9rYanHqXAxzf9zC0ZOXwbzaZ0CfFvR9tLEoDmgF8vON/LP1FD8u+a9QuIQEVeDFwe1p0yLU7oJzo8/E8HrfmWSmZdP5iRa8PvNZ9c7hLoIlPy+f0S0mcOFoND2Gd2bcdy+pM65AoCJCsBTBgyBYkuNSGFrrf2SlZ/PWz6/S5dn2Vhv7v7VHeH/kDwD87+On6TGojdXGVoO4+DTm/byNjdtOAaDTOTDg8eYMfKKlECo2wJCbz5q1h/l5+S7S0pWCj00bVeW1F7sQXMW+phgPbT/DpGe/wWQ0MXJyH/q9oFK9n5wceMIcn7ZypZL59haO7zjFa+0nI0kSXx/4mBqNRW4WQdlCCJYieBAEy8wX5/HXdxup3SKUr3Z9iEZThBs9NxdmzVJ+HzNGldT8kSevMK7Pl+Rk5dJ7eAdemmbdIN/7Id9oYtWfB/lh8Q6yc/KQJOjeqT4jBrUrlwne7I30jBwWr9rL8j8OkJubj4ODhmf6tmRw/9Z2Fd+y5oetfDtlJRqNxPSfX6JZx7olOEod3n/6C7Yu20WjDvX47N+pduelEpRvhGApgvIuWCKPRfNSk/GYTPLtgbY3onLQbWpSBmMe+4y4S0k0aVeb9355Scn3YgeciYjl0683cPa8spSwUb1A/jeyM7Wql6zcg8B6XI1NYeb8Tew+cAGAyv6evPZiF1o3q25r00qELMvMfGMJG5buxs3TmZl/vE5g9furSF9S4qLjGV5vLIbsXN5ZMpaOAx6yyrgCQUmwv+g0wX0zb/wvmEwy7Z5oVbxYURmTycQnr/5M3KUkKgf7MvHroXYhVgyGPOYu2MyL4xdx9nwcbq5OvDm6O1998IwQK2WUgEpefPxuP96b0Bu/Cu7ExKXy5vSVfDDz75vKAJRVJEli9If9qde8Ghmp2bw/8gdysqxjt3+wHwPeUtK9fz/h/8i142XjgvKHECwPGPvWH+bAhiM4OGoZ8dGzVht36ex/OLj1NE56Ryb/MAJ3tZdtWoBzF+IYMe4Xlq7ej8kk06V9XRZ9PZye3RqVuxo35Q1JUnLf/DL3eZ7q3RyNRmL95hMMG7OQg0cv2tq8u6JzcuSd+cPx9nMn6kwMX09acX8dZmYqHlJXV+X3O9D/jcepEOBNXHQ8f3y9/v7GFQhURAiWBwij0ch3b/4CQO/RjxAQap2siEd3nWPR538DMPrDpwipE2CVce8Vk0lmyW97eXH8IqIvJ+Lj7crH7/Zj8us98bHiSirB/ePirOOV5zsx+8OnCajkSVx8GmPfXcqcH/4t80nnfCp6MGHuUDQaiX+W7WHD0t3312FWlrLdBb2LE4OnDgDg/z5YSWbqnQWOQGAthGB5gPjnp61EHruIm5er1TLapiSm8/ErPykeiv4t6fpUyatm24L4xHTGTVnGNwu3kp9vol2rGiz8aijhzUNtbZrgPmhYtwo/zhxKr26NAFj2+wFGvv4LUVbOLFtaGrWpybNvPArA1+8sJ+r0VauM231oR6rWDSQ9KYNfP75z9V+BwFoIwfKAkJebxy/TlwMw8J0n8PCx/KoWWZb56s1fSYpLI6imP6M/KNvF1Q4evcjzY3/i4NGL6J0ceXN0d96f2Acvj7JdW0RQMlycdYwf3Z2P3+2Hj5cLUZcSefGNX9j83xlbm3ZHBrzSlWYd6mDIyeOTV3+2SlyJ1kHL8A8HAbB69t+kJqRZfEyB4G4IwfKA8M/P27h2MQGfyt70Ht3dKmNuWLqbXeuP4aDTMnHu0DJb0FCWZZat2c/rU5aRmpZNzWoVlfo13RqJZZ3lkPDmoSyYNZQmDauSnZPHlE9+Z86Pm8nPN9ratCLRaDS8PvNZPHxciTx1lcVfrrPKuOGPN6dms+rkZBpY+eWfVhlTILgTQrA8AOTn5bPkw5UADBjfG52+hPlU9HrYvFnZikg0dSdiohOYN2UVAEPG96RavcDSG24Fcgx5vPfFX8z5cTNGk0z3jvX4+uOBBAX62No0gQXx9nLl82n9GdivJQDL1uzntcnLSEzOsLVpReLt58H/Pn4agOVfb+Tk/gsWH1OSJAa9o0wdr5mzjvQy+t4IHhyEYHkA2LhoO7FR8XhV9OTRF7qU/ECtFjp2VLZS1BEyGk18/toisjMNNGgVSt8XOt2b4RYmLj6N0W8tZuO2U2g1Ev8b8TBvj33UrpKMCe4dB62Gl4Z04L0JvXFx1nHkxGVeeP0XIiKv2dq0InmoRxidn2yJySTz2ZhFVlnqHP54c6o3CiYrPZuVXwgvi8C2CMFSzjGZTCz7ZDUA/V/vZZVpmT8XbufE3gs4uznxxsxn0ZbBYnQRkdd4afwizkVew8vThS/fG8CTvZqJKaAHkA7htZj/2XNUreJDfGIGr0xcwoEj0bY2q0hemtYPvwBvYqIT+OmTv0p+oEYDHTooW1FZrYs9TMOzk5XYs99m/01GilgxJLAdZe+bRKAqu37fz6UzV3H1dKHnS91Kd3BeHsydq2x5JQv0i7uUyMKP/wBg+Du98Q8qe7VcDh69yKtvLyExOZNqwb589/lzNG5gf5WiBepRtYoP33w8iMYNgsjKzmX89BVs2HLS1mbdhpunC2M+UaaG1vywlVMHIkt2oLMzbNmibM7OpRrzoT4tCKkfRFZaNr+LvCwCGyIESzlGlmUWf6jEkTw+qjsu7qW7UZGbC6+8omy5uSUa76sJS8nJyqVBq9AyWdTw3x2nGT9tBZlZuYTVr8KcD5/B36/8lV8QlB53Nz2fTX2STg/VJj/fxPtf/sWiFXsoa9VLmnWsS5f+LZFlmS9fX0xujmVXDWk0Gp6e0BeAVTP/tFrWXYHgVoRgKccc3HiUs/vP4+Sso9/Yxyw+3qaV+zi49TSOTg6M+fSZogsq2pBVfx1k2md/kJdvpEN4LT6b2h93t9IFEwvKNzpHB6a80YunejcHYP4v25i7YEuZEy0vTO6Lt587lyLiWPKV5b0eHQe0oVK1iqQmpLP2+00WH08gKIqy9Y0iUJWCpYg9RnTGy8/TomNlpmXzw/tKgqlnX+tBFSsVayspS37by8z5m5Bl6PtoE6aO74WTzsHWZgnKIBqNxCvPd+KV55Vg8WVr9jPnh81lSrS4e7sy+oOnAFjx7SauRsbf+YDMTPDzU7a7pOYvCq2DlqfG9wZzXhaTyXRvhgsE94EQLOWUi6evsG/dYSRJot8Yy3tXFn2xlpSEdKqEVixzq4J+Xb2PbxZuBWDIU+GMfaFzmQwEFpQtnurdnDdGKXFfy/84wOwyJlra9GhE0w51yM81Mn/6b3c/ICFB2e6RLs+1x83Llavn49i37vA99yMQ3Cvirl1OWf2VUrsn/PHmVLZwVeHoMzH8vmAbAC9NfwLHMuS5WLZmP18v2ALAsGfaMHxQW7ESSFBiHu8exvjRimhZ8ccBvvr+3zIjWiRJ4sWp/dA6aNjzz3EObDll0fGcXfV0H6Y8jKyZa53kdQLBjQjBUg7JSMnkn58Vj0Lf/z1q0bFkWebbKSsxGU2Ed29Esw51LTpeaVj110Hm/LgZgKEDwhn29EO2Nklgh/TqFsab5uzQK/88WKY8LVVrVuLxYe0B+HbKSvLzLJut9/FR3ZEkiX1rD3H5XIxFxxIIbkUIlnLIv4t3kJNlIKRBEGEd61t0rP2bT3F4x1kcdFpemNLXomOVhg1bTjJzvhIc+Fz/1gx7RogVwb3Ts1sj3nr1ETB7What2GNrkwoZ9FoPPCu4cfn8Nf5e9J9FxwoIrUSLHo0BWP/jvxYdSyC4FSFYyiHrflS+qHsM73x/0x9OTvDnn8rmdHvCOaPRxI8fKIG2jw/rQKWqZSPnyp6DkcyYpUyJPdGzKSPENJBABR7r0pAxIzsD8N2i7fy98ZitTQLA1cOZZ1/vAcD/fbGWjNQsi473yPPKe7Dhpy3k5+VbdCyB4EbKTrCBQBUiDkdy7mAkjjoHujzb/v46c3CAx4oP2P1n6W6izsTg5unC0690vb+xVOLM+Tgmf7wGo0mma4e6vDr8YSFWbsBgzCcpO5us/Dyy8/PIzssjOz8fo2zCSeuAo0aDTqtFp3XAy0lPBWcXdKUoy1DeeaJnUxKTM1i0Yg+fzl2Pt5cL4c1DbW0WPQa24fcF27h0Lo6ls/9h+KTeFhurdc+mePt7khSbws41+2j/ZLjFxhIIbkQIlnLGenPMRnjvFnhUcLfYODnZufz8meLFGDi2O+7erhYbq6RcS0jnrfdWkp2TR7NGVZnwag80mgdPrCRkZ3I2KZEzSQmcS04kJiON2MwM4jIzSMrJLnV/nk56fJ1dqOjiSoinNzW8KxDq5UOolw+B7h5oHjBBOPLZdiQkZbDu3xNM/vh35sx4hto1KtnUJq2DlhGT+jBlyDxW/7iFXsPaUfHGAp4aDTRvfv33+8BR50iP4Z1Z/OEq/vhmvRAsAqshBEs5Ii83j82/7gCg+1AVlhbn5cH//Z/y+6BB4Hi9KOBfP+8g+Voa/kE+PDa47f2PdZ8YDHm88+FvJJnT7b83oQ+OjuXfM5CTn8/R+Fj2Xr3MnpjLnEq8RkL2nacEHDQaXBwccXZwxNnBAWdHRzSSRJ7RSK7RSJ7JiMFoJMWQQ77JRKohh1RDDudTkth19dJNfbk56mhcsTJNKwXQrFIAjStWxtOpfCfjkySJN0d3Jzkliz0HI5n4wW/M/+w5fCu42dSuFg/XI6xNTY7sPMeyuRt55cOnrr/o7Az79qk21qMju7Bkxm8c3nyC2KhrVAopW3mXBOUTSS4r4e5liLS0NDw9PUlNTcXDw37Stm9ftYfpT36GT2VvFkd/g9bhPr+wMzPBzXwTzsgAV8WLkpNlYGj4NFITMxj76TN0f8a2T1iyLPPeF3+xcdspPN2dmff5swT4e9nUJksSkZzI+shzbL0UxeFrMeQab14ZIgHBHl7U8vGllo8vVdw98Hd1o5KrO5Vc3fBy0pdomswky6QackjIyiQ+O4vYzHQupCRzPiWR88lJRKWmkGu6fewGfv50Dg6lS3Ao9X0rltspuYxMAy+/+X9EX06kbs3KfPXh0zZPRnhsdwRvPvkVDjotP+6YjF+At8XGerPrdA5tOsbgqU/xnLlAokBgSYSHpRyxfoEStd9tcIf7Fyt34M+fdpCamEGl4Ap0frKlxcYpKUt+28vGbafQajVMf+vxcidWZFnmWHwc6yLPsS7yHBdSkm563dfZhVYBQbSqXIXGFStT07sCzjd4w+4VjSThrXfGW+9MzSJezzeZOJecyIHYKxyMu8qB2KtEp6VwLD6OY/FxzNy/E38XNzqHhPJ4jTq0rFylXE0fubk68dGkvrw4fhGnzsXw5byNvPVKd5sKtIata9CwdQ2O7Y5g+dyNjPrAckKi25COHNp0jA0/bWHQpCfKXCkOQflDeFiKwB49LEmxyTxT5UVMJpkFp2dRpVbA/XdahIclJzuXoa2nkpqYwbgvBtH1qVb3P859cPDoRcZNWYbJJPPai13o+2gTm9qjJknZWaw6e5Klp49xLjmxcL+jRsNDgcF0rVaD8IAgqnl6lxkvxrXMDLZcimRj1Hm2X44iO//6KpIgd0+eqF2fJ2rVI8ij/IjKfYejGD9tBSaTzJuju9OzWyOb2nPkv7NMGDAHB52Wn3ZNxcffE7KyoF49pcHJk+Dict/jZGfm8HTAC2SlZ/PF1uk0bFd2cjAJyifCw1JO2LZ8NyaTTJ1WNdURK8WwacVeUhMz8A/y4eF+zS02TklITslk+hd/YjLJPNq5AX3M+SHsGVmW2XX1EotPHmFDZEThlIvewYHOVavTvXotOlWthrvu9mXmZYGKrm48VachT9VpSE5+PruvXmLdhbP8deEMl9JTmbl/JzP37yQ8IIgRYc3pVLW63XtdWjQOYeSz7Zj38zZmfbeJ+nUCqFbV12b2NGpTk3otqnNy3wVW/7CV599+HGQZoqOVBio9ozq76nmoX0v++WkrW5ftFIJFYHGED6+csGWZkjCq0wDLJUgzmUz8Nl9ZhdR3RCeLTjvd3RaZ97/8m6TkTEKCKjD2xS5lxstwL5hkmfWR5+iz6v8Y+Mcy/jx/hlyTkYZ+/rzfrgt7n3uZud0e5/EadcqsWLkVvYMDHatW46OO3dn73MvM6vwY7aoEIwG7rl5i+Nrf6L5sIctPH78tDsfeeKZvS1o2CcGQm8/UT/8gx5BnM1skSaL/KCVXyp8/b7doXpYO/duAOX7OaOf/Q0HZRwiWcsC1Swmc+O8MkiTRvn9ri42ze8NxrkTG4+bpTLenLTdOSVjy2172HY7CSefAtDcfR+90/zEbtiDfZGL12ZM8smwhL65fw5H4WPQODgyqF8afTz7HH088x7P1G+NRROI+e8LZ0ZHeNevyS8/+7Bj0Ai+GtcBdp+NcciLjt6yj3f99x/dH9pOTb5+JyDQaiXfGPoqPtyuRFxOY/YNts8C27FyfkNqVyc4w8OfPOyw2TtMuDXHzciUpJpkT/52x2DgCAUKwlA+2r9gNQIN2dfANtFy22ZXzlJvwo88+hLOr7b5Az0TE8v2i7QCMGdnZpu73+2HrpUh6LP+Jsf/+zdnkRNx1OkY3acV/g17gg/ZdaeBr2aKVtiLQ3YOJ4R34b9CLTGzdHn8XN+KyMnh/1xY6//oja86dwmSHoXXeXq5MGvsokgR/rD/K9t3nbGaLRqOh/+guAKz+fgu5OZbx+DjqHAnvrUwNb1+52yJjCAQF2FSwbNu2jV69ehEQEIAkSaxevfqO7WNiYhg4cCC1atVCo9EwduzY29osXLgQSZJu2vT68p0XYtcf+wFo21flAFgnJ1i2DJYt4+zpOE7uu4CDo5bez3dQd5xSkJuXz4ez1mI0yXRsU4vHuja0mS33yvmUJIb9vZIhf63kXHIiXk563mjRlh2DXmB8q3ZUcL7/gEh7wMPJiRcbt2T7oJF81KEblVzduJKRxphNf9Fn1SJ235LzxR5o3jiEZ/oqK+c++3oDKWmWTZN/Jzo83hTfyl6kJmawY+0Ri43zUG/lfPf8dbDMFIUUlE9sKlgyMzMJCwtj7ty5JWpvMBjw8/Nj0qRJhIWFFdvOw8ODmJiYwi26INisHJKenMGx7UpZ+fDHVQ6CdXCA/v2hf3/W/KS4ldv3aqKsOrARP/26i8iLCXh7ujDu5a52FbeSZjAw/b/NdF+2kM0XI3HQaBjRqBlbB47glWaty33CteLQabU8XbcRm58ezviWbXF1dORofBxP/76U0f/8QXxWpq1NLBXPD3yIalV9SU7NYua8TTazQ+ugLUzquPYXyxVFbNqlIY46B2IuxHH57FWLjSMQ2FSw9OjRg/fff5++fUtW5TckJIRZs2YxePBgPD2L/9KUJIlKlSoVbv7+5dO1DrBv3WFMRhMh9YOoXM0y55kUl8q2Pw4B0Ht4R4uMURLORMSyeJVSJff1l7vi5WE/nojN0RfotmwBPx47QL7JROfg6mx4aiiT2nR6YIXKrTg7OjK6aWu2PDOCZ+uFoZUk/jp/hi5LF7D89HG7eXrXOTrw9pgeaDUS/+44zRYbxnY8MjAcB52Wc8cuYaheU1narLLId3ZzpmEHZcn0nr8Oqtq3QHAj5TKGJSMjg+DgYIKCgujduzcnTpy4Y3uDwUBaWtpNm72w92/lBtG6ZzP1O8/Ph+XLOfHWJ5hy86jXvBq1wqqqP05JTDGa+GTOeowmmYfb1qF9eC2b2FFaMvNymbh1A8PWriI2M4MQDy9+euwJfujRj+pePiXo4cHDz8WV99t3ZU2/Z6nvW5FUQw7jt6zj+bWriM1It7V5JaJ2jUoMelIJTP9y3kYyMg02scOrgjsdHm+GQePInMcnw4kTquRguZVWjzYFYM9fB1TvWyAooNwJltq1a/Pjjz+yZs0aFi1ahMlkok2bNly+fLnYY2bMmIGnp2fhFhQUZFWb7xVZljm48SgAzbtbIAeJwQBPPUW7nz7EUTby6LOWWzJ9N9asO8y5yGu4uToxZuTDNrOjNOyPuUKP5T+x5NRRJGB4o2as7T+EDkHVbG2aXdDAz581/Z5lQqv26LRaNl+MpNuyhayLtF0wa2kY8lQ4VQN9SE7N4scllpuSuRuPPqssPd7x12GyLSScCh6Yjm0/TWaqfU3hCeyHcidYwsPDGTx4MI0bN6ZDhw6sWrUKPz8/5s2bV+wxEydOJDU1tXC7dMk+gv2iTlwiOS4VJ2cddS3scXBxd+Khx2yTmC0pJZMf/k+JoXnhuXZ4e9m+MvSdkGWZbw7t4anff+ViWiqBbu4s7vUU77bppErK/AcJB42Gl5q05O8nBxPmV4m0XAMvrV/D+zs3k1fG8344OmoZ84KSD+W3vw5yPireJnbUbVaNwGp+5GTlsuOvwxYZIyC0EkG1AzDmGznwz1GLjCEQlDvBciuOjo40adKEiIiIYts4OTnh4eFx02YPHNp4DICG7euis3AeknaPNUHvrLPoGMXxzYItZGQaqFOjEr26FR9sXRZIzzXw0obf+XjPdkyyTN+a9VjbfyjhgbaZSisv1PCuwIo+zzAyTAks//7oAQb8vrTMTxG1aBxCh/BaGE0yX87baJM4HEmS6N4njG/j/o9GI/soafotQMseSlmMPX+LOBaBZSj3gsVoNHLs2DEqV65sa1NU5+Am5UmmycOWWdp7o/v44SdaWGSMu3HybAzrt5xEkuC1l7qg1ZbdS/ZSWgpP/LaY9ZHn0Gm0fNi+K1883MPuk76VFRy1Wt4J78i33XvjrtNxMO4qvVYt4kDsFVubdkdeGd4JvZMjR09eZrONAnA79m5KcH4S/mmxxF1OLMERpaflY8q00P51h+0mQFpgX9j07p+RkcHhw4c5fFhxU0ZGRnL48GEuXrwI5qmawYMH33RMQfuMjAzi4+M5fPgwJ0+eLHx9+vTpbNiwgQsXLnDw4EGeffZZoqOjGTFihJXPzrLk5+VzdKty3k27WqbY2r7N199XWwTbyrLMtz9tBaB7p/rUrVl2RefemMv0XvV/nE1OxM/FlaW9n2ZgvTC7WnZtLzxSrSZ/PjGY2j6+xGdl8swfy1h74aytzSoWfz8PBvZTcpXM/2UbuXnWz+brV9m78Pft5hV/atPgodo4OjmSFJvCpTNiebNAfWwqWPbv30+TJk1o0kRxJY4bN44mTZowefJkMCeKKxAvBRS0P3DgAIsXL6ZJkyY8+uijha8nJyczcuRI6taty6OPPkpaWho7d+6kXkGl0nLC6b0RZGfk4OnrTvVGwRYZY+ff15NN2eKLd9f+Cxw+fgmdzoHhA9taffySsu7CWZ79YzlJOdk08PXn937P0sS/7Iqr8kCwpxer+g6ka0gNco1GRm34nV9OWCY+Qw0G9GlOBW9Xrsamsnqtbe3csuaARTwgOr2O+m2UWLojm4+r3r9AYFPB0rFjR2RZvm1buHAhmLPWbtmy5aZjimofFRVV+PqXX35JdHQ0BoOB2NhY/vrrr0JBVJ4oiF9p/HADNBr1/42Z6dkc2HZa9X5LitFoKvSuPNmzKf5+ZTOuaNnpY4z65w9yTUa6hdRgee+nqezmbmuzHghcHXV82+1xBtYLQwbe3b6RL/btKJPTEc56XaHo/mnpLtIzcmxmy+WIa5w/UfyqyfshrGMDAA4JwSKwAGU3IEBwR45sVXLLNO5kmfiVPRuOk51rYkGtvsg//gg66wbcbtp+mqhLibi76Rn0hMolB1Ri8ckjvLllPSZZZkCdhnzd7XGxCsjKaDUaPmjXhdeaK0t3vzqwmw92bSmToqVH5wZUC/YlPSOHZWv229SWrastExjbuFN9AI5tO1Um/wcC+0YIFjskPy+f03uUXBQN29WxyBg7/j6MUdKiHTEcadgwsOIXsdFo4udluwB4uk8L3N3KXibY/zt5hLe3/QPAsIZN+ahDNxws4OkS3B1JkhjTvA3vtVWWEH9/9ADT/ttc5r4wtVoNw55WhNXKvw7aLJkcwM51Ry3y/tRqHoqDo5aUa6nERl1TvX/Bg424w9oh549EY8jOxc3LlaA6gar3n51p4MAWZTqorQ1yr2z57wwXryTh7qan32Nlbzpv8ckjvGMWK8MbNWNym04iuLYM8FyDJnzUoRsSsPD4QT7fZ7tkbcXRvnUtQoIqkJFpYKU109hLEgQHY6paFQcnB65GxRN9Jkb1YXR6HTWaKIkRT+0qu4HQAvtECBY75MR/ipio16aWReJX9v17glxDHoFVval24RD89ZeSpt8KmEwyP5m9K0893gxXl7K1JPjv82cKxcrIsOZMCu8oxEoZ4um6jZjergsAcw7uZt7hvbY26SY0Gonn+isp+5f/vp+s7FzrDOziAlFRaKKjadBRmUb+z0IVnOu2VgJvTwrBIlAZIVjskDP7lCR49VrXtkj/uzcoAXPtutRD6tULevZU0vRbgT0HLxB1KRE3VyeesER9pPvgUFwMr/27FhkYVC+Mt1t3EGKlDPJc/ca81aodADN2b+PPCNsFjxfFw23rUCXAm7T0HP42B89bk/DuimDZu/HONdbulQLBcmb/eYv0L3hwEYLFDjl3MBKAWs2rq963yWTiwNZTADTtaJn4mDux/HeleNpjXRvi5lp2vCuX01MZue43DMZ8OgdXZ3rbzkKslGFebtKKYQ2VgnzjNq/lQGzZyQui1Wp46nFFjK/48wBGo8mq4zfvqKR4OHf0EqlJGar3X6NJCACRR6MxlvHyCQL7QggWOyM7I5vL5qRMBXPFanLu6CXSkjJxdnOiblPrFumLvJjA/iPRaDQS/czVX8sC6bkGhq/9jYTsLOpU8GNW555oRYBtmWdSeEe6hISSazQyct1vXExLsbVJhXTvVB93Nz1XY1PZuc8KnojsbGjRAlq0oIKnjpA6AciyzKHt6mfeDaxZGb2rE4bsXC6fVT9ORvDgIu66dsb5I9HIsoxvoA/e/l6q97/fnN22SdvaODhqVe//Tqz8UwlCbNuqBpX9Pa06dnGYZJkxG//iTFICfi6u/NijL25WXuItuDe0Gg1fdX6Mhn7+JOVk88K61WTn5dnaLDDnZXm8u1IXa9nvVljibDLB/v3KZjLRtIPiPT24Vf3pMo1GQ/Uwxcty/lCk6v0LHlyEYLEzLhyJBiC0cYhF+j/yn7JculnHuhbpvziysnL5x1xq4MkyFLvyzaE9/HvxAk5aB354pC8BbmUzgZ2gaFwcdXzXvQ++zi6cTkpg+s7NtjapkH6PNUGrkThy4jKRFxOsOnbT9kr825Gd5yzSf6g5+3bksYt3bSsQlBQhWOyMqBOXAAiuF6R637k5eZw+pGQNbhReQ/X+78Q/206SnZNH1So+hNWvYtWxi+NA7FW+MC+Nfa9dZxpVrGRrkwT3QCU3d2Z1fgwJWHLqaJkJwvWr4E6bFqEA/LnhqFXHrte8OhqthmuXk7h2JUn1/qvWUz7DF0+X7cKUAvtCCBY74+IpJaV2SH31BcuZw9HkGfLx9nMnsHpF1fsvDlmW+X29ssTy8W5lo2BgqiGH/238E6Ms83iNOvSv3cDWJgnug4eqBDOqiZIxeeK2DVwqI/EsPbsp00Lrt5zAkGu9oojOrk6ENlBExfE96sfQVK1rFiynLFMCQPBgIgSLnRFd4GGxgBei4MbVsHUNRTTodDBnjrJZMG7jTEQc5y5cw9FBS3dzam9bM3n7Jq5kpBHk7skH7buWCREluD/GNm9DM/8A0nNzeXXjX+SbrLs6pyhaNgmhoq87aek5bLNy3pIGLZVVhif2XlC976p1lYSWV8/HkWsoG3FDAvtHCBY7IiMlk5T4NACCageo3v+pA0qAXL0W5uXSjo4werSyWTA1/wZz7Eq71jXx9HC22DglZWPUedZEnEIjSXzVpSfuurKzvFpw7zhqtczq8hjuOicOX4vhh6O2reeDeYnzo50V793GbaesOnZ983TU6YNRd21bWipU9sbF3RmT0URspEjRL1AHIVjsiKvnYwHw9vfE2U3dL3ZZljl7RAmQq904WNW+74TRaOLfHUpMQdcO1g30LYr0XAPvbt8IwMhGzWniX9nWJglUpIq7J++26QjA5/v+IzIl2dYm0bm9ct3vPRRFWnq25Qby9VU2M7WbKJ/zqNNXyVa5rpEkSVQyTyvHmO9bAsH9IgSLHXE1QvngB9RQP/jz2uUkUhMzcHDUUr2euT6R0QhbtiibhRJAHT5xiaTkTNzd9LS0QF6Z0vLx7m3EZKYT7OHFWHMFYEH5on/tBrSrEkyu0ci72zfavEhicJUK1KxWEaPRxLZdllm1g6srxMcrm6srAL6VvagY6I3JJHPmcLTqQwaEKvepK+eEYBGogxAsdsTV83Fww41ATQq8K9XqBqDTm6d/cnKgUydly8lRfUyATdsU70rHNrVwtHLel1s5HBfDopNK8O+MDt1wtmKFaoH1kCSJ99t1xUnrwI4r0fxeBlYNdWqr5EXZtN2600J1mpkLFe5XP19KlVrKtPXls2Uny7DAvhGCxY64Zs7V4B/sp3rf508oyw9DG6i/+qg4TCaZnea6SB0fskxdpJIiyzIf7NoCQL9a9WgTWNWm9ggsS7CnF6ObKquGPtmzjRwrFfcsjk4PKfV3Dp+4THqGZR4OiqKOeVro3NFLqvcdaPYEx0TGqd634MFECBY7Iv6yIlj8gnzv2ra0RJ5SBEu1uuoH8xbH6YhYklKycHHW0dgCy7RLw/qoCPbFXkHv4MD4lu1saovAOoxs1JxKrm5cyUhn4bGDNrUlsLI3wVUqYDSa2HdY/SBYsrOhY0dly74eJxNqXm144aT6y48rmh+s4qKtmxRPUH4RgsWOiL+UCIBfFR/V+448qbhtQ+pYL8i0oIZKyyYhNp0OyjUa+WjXVjB/iVV2c7eZLQLr4ezoyBst2wIw99BukrKzbGpPG/PqPIvUFjKZYOtWZbthOXf1+kq8WtylJNJT1D3/SiFmwRJ1zeZxQoLygRAsdkTCZUWw+FapoGq/6cmZxF9VVkuEWjHL7C7zjbkg26etWHr6GFFpKfg6u/Bi45Y2tUVgXfrWrEe9ChVJz81lzsE9NrWlTQslu/Su/ResVsHZzdOFSlWV+8mFE+p6WfyCKiBJErk5eaRcS1W1b8GDiRAsdkKuIY/05EwAKgR4q9p39Fklir9iFR9crZQHJSUti3Pm/AwtrVwV+kbyjEa+PbQXgFebtRaFDR8wtBoNb7VWpgAXnzpCQnamzWypXycAN1cn0jNyOHPeenEfBV7Viyqv5nHUOeJtLmKaeNX2y8cF9o8QLHZCqjlhnNZBi5uXq6p9F9yoqtbwV7XfO3H4uBLkVy3YFx+Vz6c0rIk4xZWMNHydXRhQp6HN7BDYjvZVQgjzq0ROfj7fHzlgMzsctBqaNFSCvfdbIo6lGKqEKp/7SxHqJ3jzqaw8XCXGCMEiuH+EYLETClyqnn4eaDTq/tsuRShPc1Vr3bJc2tERPvlE2VRe4nvwqLKMumkD263GMZpMfG32roxo1By9g1jG/CAiSRKvNGsNwP+dPEyaQd0kaqWheZiyaufAEfXzohRHkPlB5bIFvDo+lb0ASBKCRaACQrDYCQWCxauih+p9XzJ7WIJu9bDodDB+vLKpPFVy0Fx2vmkj2wmWjdHnuZCShIfOiUH1w2xmh8D2dA4OpZZ3BdJzc1ly6ojN7GjeOASAY6evYLBSDZ6Cz33Bg4ua+PibBUts2Sg2KbBvhGCxE9ISMwDwqKD+CpbYi0owb0CI+vldiiIlLYuLl5WS9o3qWS/I91Z+OX4YgIH1wkS9oAccjSQxvFFzABafPIrJRqtaqlT2ooK3K/n5Jk6rLSBcXJTtFiqHKGkSEmNTVS9U6OmnPGClJ6ar2q/gwUQIFjshPckygsVkMhF3RREP/lVvWX1kNMK+fcqmYmr+E6eVJdRVq/jYrNhhZEoyO65EIwGD6gnvigB61aiNu86J6LQUtl+2XgzJjUiSRP06Si6kE2euqNexqytkZiqb680xY54+bjjpHZFlmYSr6npC3H2U+1Vacoaq/QoeTIRgsRMKBIu7t5uq/SbGppKfa0TroMHXPN9cSE4OtGypbCqm5j9uFiwN6wSq1mdpKXD7d6xajSAPT5vZISg7uDjqeKJWfQAWnbDdtFAD8+eiQNhbGkmSqBik5HaKNed6Ugt3H+V+VXD/EgjuByFY7IS0JMWlWnADUIs489SMX4A3Wq11LocTZ5QbccGTpLXJMxpZceYEAIPqNbaJDYKyybPmWKZN0ee5lmWbJc71a5s9LGdjrDamvzm3U9ylJFX7dfdWvDlCsAjUQAgWOyE7XfFwqJ0nJSlOCeatUMk6XgZZlokw51+pHWq9ZdQ3svPqRZJysvF1dqFjVdtXiLYFsiwjm9KR8yOQDf8hG7Yg5x5U/jbGI8u2WyljS2p4V6BxxcqYZJm1F87YxoZqfkgSJCVnkpyikmjKyYHHHlO2IrylFfyVWJNkc/oEtdC76QHItmJ9JEH5xcHWBghKRk6W8oHXu+pV7Tf5muK58bHA6qOiiItPIyPTgIODhhAL1EQqCb+fU6rzPlq9Fg4qLxEvq8jGRMjdgWzYDnnHwBQH8p1TscvaqqBrjuTYHHTNQRuMJElWs9lW9KpRh8PXYvgj4gxDGjS1+vjOeh1VKntz6Woy56Piad5YhTxFRiP8/ff132/Bx5zgTW3B4uyqBLPnZD6YAligLkKw2AkFTyh6V3VXsySZl0v7VLSOhyUiMh6A4CoVbFI/KCc/nw1R58D8xVSekY2xyFlLwLAV8k8W3UjyAG1FQAdyGpjSlZ/IYLwI2ReRs1cpbTV+yPrHkVwHI2mtV3PK2jxWvRbv79zM/tgrXElPI9DdOmL+RkJD/Lh0NZmIqPjCpc6WxNtPCY4teIBRiwIPixAsAjUQgsVOMGTlggUES3K8coPyrmidgn8XohXBEmqlJdS3svNKNOm5uVR2dadZJdsF/VoS2RiPnDkfspYAuddfcKgLTm2RdOGgrQKaikia25e5yrIJ5BTIO4acux9yD0DeUTDFQ9YPyFk/Iet7IrmORHKsad2TswKV3NxpUbkKe2Musz7yHM83amZ1G0JD/Niy82zh58XSePmaBUuCyoLFpcDDIqaEBPePECx2Ql5uPgAOOnX/ZenmOXJ3K6XHv2SuKVI1UP2K0yVhy8VIAB4Oro6mnE1vyMZE5MzvIGsxYP6CcGyO5PIU6NoiaUs2BSdJGpB8wKkDklMHpW/ZAIYdyFkLIXcP5KxGzlmN7NQZyeNdJK1tAqgtRdeQUPbGXGbrpUibCJYqAcrn40qMdRKuFQTHZqSqW7G54H5lzFMvLYLgwUUIFjvBmGcWLI7q/ssyUrMBcPe6/UkbR0eYMuX67ypw2SxYqqhcwLGkbL2k5Ncob8G2cvafyGlTQDY/ITs2RnIbA7o2qsSdSJIT6Dsj6Tsj5x5BzvwBDOvBsAk5YTe4TwDnp8pNjEuHoGp8sGsru69eJic/z+plGwo+H5etVDTQzVMJ5s803w/UQuugTPvmC8EiUAEhWOyEgg+8VuW4j4wU5YnKzbMIwaLTwdSpqo53OcZ2giUyJZnotBQcNRrCA2xXEkBNZDkbOXUK5KxWdjjUQ3J/DXTtLSYeJF0Yku4rZUVR6iTIO4ic9i7krAPPj5G0FS0yrjWp6V2Byq7uxGSms/vqZasL3MBKSk6k5NQsMrMMuLpYNhOzu/nzr7qHxXy/MuYbkWW53AhagW14MJZIlANMRhOA6rlSMi20XLoosrJySU1TnuCqVLK+YPnvilJQrlmlQNxUro1kC2RjHHLiILNY0YDraKQKK5CcOljli0FyqIHk839I7hMAJ8j9DzmxH3LuQYuPbWkkSaJDkBLsuvOK9QoRFuDm6lSYBTrGnHrAkri4K2MZcvIKp5/VoMDDgjmrtkBwPwjBYicUfAHJKtc4MWQrQZlOzkW4vE0mOHFC2VS42cSbk9+5uTrh4mJ9wXAwTklY17Ky7eoXqYWcdxI58UnIPw6SF5LPz2jcxyBJ1nWaSpIWyfV5JN/V4FATTNeQk4ch5+6zqh2WoIX5OjkQa52Ms7fiV0FJEhmfqELSNVdXkGVlc709Xu3Gz39ujnr1hG68XwnviuB+KbVgychQL2Phtm3b6NWrFwEBAUiSxOrVq+/YPiYmhoEDB1KrVi00Gg1jx44tst3y5cupU6cOer2ehg0b8ndB/gE7RtIUCBZ1+y0QLHrnIgREdjY0aKBs2fc/t51gvvH6qpytt6QcNH/xNPW37wBROe8MctIQJZeKNlTxquha2tQmySEUyWcZ6NqBnI2cPBI594BNbbpfmlVSrpNj8XHk5KvndSgpvuY6PAlJli8c6KhzKBQUBhUFi8kkBItAPUotWDw9PVm5cqUqg2dmZhIWFsbcuXNL1N5gMODn58ekSZMICyu6YN3OnTt55plnGD58OIcOHaJPnz706dOH48ePq2KzrdAUCBYV3aqyLBfenJyKEiwqE2+u2OpbwfqCJSE7k6g0ZcVFE3/7zSEiG68iJw8HOVUJrK2wDMmhbMTjSBpXJO+5oGsDchZy8gjkPPv93AV7eOHr7EKuyciJBJUrJ5eAAg9LghXS2kuSVOhlKXiIUYOC+5UkSUKwCO6bUgsWWZaZN28eDz30EG3btmXs2LHs23dv7t8ePXrw/vvv07dv3xK1DwkJYdasWQwePBhPz6ITnc2aNYtHHnmE8ePHU7duXd577z2aNm3KnDlz7snGsoLGHLuiZrT9jXPVjiovly6KJPMS6goqF3AsCcfjlXIAoV4+eDqpmy3YWshyLnLK/8B0DRxqIXnPR9JYJ39OSZEkPZL3N6BrDXImcvIoJcuuHSJJEo3N4vbItVirj1/BvNQ4KVmF9Pw5OdC/v7IVU8i04B6gZgxLQeydxkp1ygTlm3u6ig4dOkTTpk1p27YtJ06coF27drzxxhvqW3cP7Nq1iy5duty0r3v37uzatavYYwwGA2lpaTdtZQ2dXvGA5BlUnF++wV1rjRtKmjnA18PN+oLhbFICAHV8bFMOQA3k9M+UBG6SB5LXt0garxIcZX0kyRnJay5oq4EpFjllDLKs3nVrTer6KAkOzyVbX3S5mwNh0zNUyBJrNMKKFcpWRGp+brgH3HhfuF8K4mF0eusuCxeUT+7psXrx4sV07dq18O+jR4/Su3dvAgMDee2119S0r9TExsbi739zUT1/f39iY4t/QpoxYwbTpk2zgnX3js48ZaOqu/bGgDiN5d216eZslx7u1hcsZ8yCpZadChY5ZwNkLQRA8vwYyaFsBw5LGnfw/loJDM7bi5zxFZL767Y2q9QUXC8F1481cTdntU63UuHAgmlnkxAsgjJKqR+rfXx8CAoKumlfo0aNmDNnDt98842atlmNiRMnkpqaWrhdunTJ1ibdRsEHPs9CAXHWyPqabvawuNvCw5KsfOHUtkPBIhuvIqdOVP5weR5J39nWJpUIySEUyXOG8kfm98h5xdQzKsMUXC9nkxJUX6F3NzwKPSzWESzXA/vVFCzKA5bOCjFygvJPqQVL48aNWbBgwW37a9SowcWLF9Wy656pVKkScXE3B8jFxcVRqVKlYo9xcnLCw8Pjpq2sUVBDyFJl2q1xM84010OydBKsoohKVRLW1fCuYPWx7xc5Y7aSwdYxzO68FJL+EXB6BDAiZ8yytTmlJsTTGwnIyMslPlvdpGp3o2Dpf5aKXtU7YYlbQEHRQ2sE9QvKP6UWLO+//z5fffUVzz33HLt27SIzM5Nr167x4YcfUq2a7dOdh4eHs2nTppv2/fPPP4SHh9vMJjVwcVcyUWaqmInS4YakTvn5RcxrOzrCG28omwqp+XPN5QWcrBDgeyNpBgPpucpNP8CtbAWp3g05/zJkrwFAcn8HSbI/17rk/ppyqzFsRs47ZmtzSoVOq8XfVQkSj8mwbmxbweek4HNjaQrq/Wgd1ItnK7hfuRaVSVsgKCWl/uZo3bo1u3fvZsyYMbRr167wyVyv17N8+fJS9ZWRkUFERETh35GRkRw+fBgfHx+qVq3KxIkTuXLlCj///HNhm8OHDxceGx8fz+HDh9HpdNSrVw+AMWPG0KFDBz7//HMee+wxfv31V/bv38/8+fNLe6plioIPvJqC5cY0/8b8IpZL63Tw6aeqjWcwrz7QWVmwXDF/0XjrnXFxtK8nPTnzeyBfqQmka2xrc+4JyaEasr4X5KxBzpiN5G1fn8UANw9iMzO4mpFOWEXrLYnXmeuG5aq4audOFDy03Pggc79kmTNbu3gIwSK4f+7pmyMsLIwtW7Zw7do1Dhw4gMlkolWrVvj6li4+YP/+/XTq1Knw73HjxgEwZMgQFi5cSExMzG3TTE2aNCn8/cCBAyxevJjg4GCiopSidm3atGHx4sVMmjSJt99+m5o1a7J69WoaNGhwL6daZnAzV1NWVbBoNUiShCzLVilOVnDjtbaH5apZsAS6lb2pvjshG+MhW3kIkNxG2dqc+0JyG42c8ycYtiDnHUdytJ/PY4CbOwfj4Eq6dT0sukIPi3UKBxZ4WBxUrFcmPCwCNbmvb46KFSvSo0ePez6+Y8eOd4ydWLhw4W37ShJr0b9/f/r373/PdpVF3M3ZYdOT1U0ipXNywJCTV3Q6bpMJCgRj1aqguT9XsdGo/O/Urod0NxKylJtmRZfbU5KXaXLWAnng2BAcW9jamvtCcghB1veAnD+Rs1falWCp6GJOkZ+tQj6UUqDVKkGw+UV5P0uLiwsUZCl3uV08yLJMrkF5oHB0Um/aMd2c9K7ggUsguB9ENh87waui4h1IuaZuITRn84qdIoN5s7OhWjVlUyE1fwHWXm2RalDOzd4Sxsk5SkkJSf94ucgSKjn3UX7JWYssWz/V/b3i6aQEiacZVMiHUhrMHxNV/vWSpNQQcnUtskNDdm7h59LFTb2g+JR45X7lVbHoRJ8CQWkQgsVO8KigBIumJapbV8S5YPVRluVvxoV5HqwsWNJylXPzcLL+6qR7RTbGQN5BQAL9I7Y2Rx104aDxAVMS5BafyLGs4WEWumkG6ywvLsCan5Ns82oeSZJUzZmSEq9Mo3n52dd0rKBsIgSLnXBdsKg7JeTsVrBc2gpPjwUPdtbVKzd4WOxHsJCzXvnp2BxJ63+31naBJDmCXplClnP+srU5Jabgukm1sodFLvSwqOBiMRhg6FBlK+I8CgSL3kWH5j6nfm8ktUCwCA+LQAWEYLETCqaE0hLTyVdxmaObhzk5lYrBvMXhaF59kG9Ur4BjSSiotKt3sJ8lwXLeIQAkpw62NkVVJCdz0js7quTsbL5uDEbrTmMZzat2HNVYtZOfDz/9pGxFVJ7OSDWv5lE5C3Xi1SQAvP2FYBHcP0Kw2AkeFdzRmm9cyXHqxbF4mIN505IsH1Cod1JivLNzrJMIqwCjrAgkrT3FgeSdUH7aUXBqiSg4H2M0skndeCxLUZAF2mjlqcwccxCsk5PlV9WlmYNjPVWupJ5wWREsfkH2l7BRUPYQgsVO0Gg0+FRSit0lxSSr1q+HjxK9n6ryVFNROOnMT6oG6z6pFsQCaCX7uNxlUxoYzauzHOvZ2hxVkTReoDWX9rCTVP0O5imSAuFrLXJylZV7ehVX7RRHmrkitIe3eqt5MtOyyEpXPDe+VYRgEdw/9nEHFwDgU1kRLIlX1RMsnmYPS2qS5QVLgYclR8V6SCUh32QucW8vHpb808pPTaBVKjIbjUa2bNnCkiVL2LJlC8ZiqvmqhkNt5Wf+OcuOoxKFHhYViwKWhAJhb428RQUeVjUFS8JlpcK1m5crzq72tUJPUDaxbgYvwX3hF+TLmX3nuXZJvcqx3n5KMG9SXBFJsRwcYNSo67/fJ64F1WczrRu8qNOaY2dM1n1CvmeM5v+vNsDiQ61atYoxY8Zw+fLlwn1VqlRh1qxZ9OvXzzKDmoOIZVMS9iAhC64bRyvnDyooeujmavlg8aRr5mzQKq7miblwDQD/ED/V+hQ82AjBYkf4V1UyCcdFxavWp1+ANwAJsSm3v+jkBHPnqjZWQfXZtHT1crqUhIJg2+x863p27hnZ7O3SqBtPcCurVq3iySefvC0vzpUrV3jyySdZsWKFZUSLZH6Kl61bTPBeyS4I2tZa93aZav6cFHxuLEmi+fPvW1k9j97ViFgAAmoUX3hWICgNYkrIjqgYrDypxF1UT7AU3KASixIsKuPlYRvB4mz2DmUXsTqiTFIgWCTLCRaj0ciYMWOKTOJXsG/s2LEWmR6SCgWL5ach1SDHLHSdrbzKrOBz4uFh+emUxFglALpCJfVW81w9bxYs1cvHsnyB7RGCxY6oFFIRVPawFAiW5Gvp5N1aZE2WIT5e2VRYIVHwpJiSZm3BonzR5NiNh8W8YkuyXP2V7du33zQNdJsJssylS5fYvn27+oMXnJedeFiy8szBrypMi5aGtDRz/iA1PCwuLnDtmrIVkZo/IUZ5YFFVsFyIAyAgVHhYBOogBIsdUeBavRoRq1p6e88Kbjg565BlmWvmJYiFZGVBxYrKlnX/Xy6+5gDfBCsE+N6IlzlTaVKOdYXSPWOFL/SYmBhV25WKgvOyoCBTk4Lrxktv+amZGyn4nFTwUcHTJkng56dstwSfG40m4q4on31/FZcfiykhgdoIwWJHBIT6I0kSGSmZhSmv7xdJkqgcrMTGXI1SL5i3KPzMOR7iE9QtL3DXcc1FD+OzrFu87p7R+Cg/TUl3a3nPVK5cWdV2pUE2mVe5WWEFlBokZCsCy8/ZugIr3lyGo6I5y7WlSIxNIT/XiIOjVrUYFmO+kdhIJehWCBaBWgjBYkfo9Dr8zeLiytmrqvUbEFIgWNSbaiqKir7KCoTk1CxyVczWezd8zV80BV88ZR6N+SnXgoKlXbt2VKlSpdi075IkERQURLt27dQf3JRiHsNb/b4tQIJZ6Ppaudp3gWDxU0OwGAwwerSy3ZKaP8b8oOJfxUe1SuqxUdcw5hvR6R3xDfRRpU+BQAgWOyOwlrLU9eJpNQWLEsx7NdKygsXDXV+YU+KaFb0sBR6Wa3bjYTELFqN6U3+3otVqmTVrFhRRq6bg75kzZ6LVqpAW/lZMZk+exj4ES8F1Y00PS36+kURzMjdfNbLP5ufD118r2y3B5wWe1QJPqxpcPqtMJQbUqKRqbSLBg424kuyMkHpVAIg6flG1PqvWUly20WdjVeuzKCRJIsDscr6sYvK7uxHornh2Ug05hYUQyzQOoUrGATkZjFcsNky/fv1YsWIFgYGBN+2vUqWKxZY0y7IJ8o4rfzjUVL1/S3AxTfEIVfGwXj2cmLhUTCYZvZMjFVRM5lYUF88pn/ugmuqt5ok+cQmAYPP9SiBQAyFY7IyQhsEARKooWIJrK3EKUSp6bYqjaoDiHr54xXLTHbfi6qijotnLEpliPaF0r0iSHhzrKn/kHbboWP369SMqKorNmzezePFiNm/eTGRkpOWSxhkvgJwCOF0/xzJMqiGnMOg2xMN6HqFLZkEfFOCtTrXmOxBt9oYE11IvXinqpCJYQupXVa1PgUAkjrMzqjVUbgCRR6ORZVmVm1nVWpWQJInUxAxSEtLx8rVckF9QoHLTt6aHBSDE05trWZlEpSbT2F/9QFLVcWwCeceQ8w4hOfe06FBarZaOHTtadIxCcg8qPx0bIUk664x5H0SnmhOqObvgprOevQWfjyoBlhdJF88oHpYCT6saRB03e1jqB6nWp0AgPCx2RnC9Kmg0EqkJ6SSqVARR76wrnL+OvNHL4uAAQ4Yom0o5KILMAXjRlxJV6a+kVPdUbvznU6zn2bkfJMcmyi+G/ywWx2ILZMMO5RddM1ubUiIKrpdqntaNt4k21+GxtGBJT84k0Vz9XS3BYsw3cvGkkuOnWgMhWATqIQSLnaF3caKqeV747P7zqvVbra4SzBt58oaYCScnWLhQ2ZzUqWcSag7wPRd5zapfxHV9lXFPJl6z2pj3hVMHZdrEeAHyT9jaGlWQTSlg2ASApH/E1uaUiBMJSvKzer4VrTpuhDkAPtTCdXjOHVM8IQEhfriqVALg4ukrGLJzcXbTiyXNAlURgsUOqdU8FICz+9QTLNXrK4GXF05aNo6lWpAvDg4aMjINxKmUS6Yk1K+gBBQej7cPwSJp3EDfBQA5e7WtzVGH7D+BPHCoi+RYz9bWlIjjCcr1Ut+KgsVoNHEhWhEsNUIsO+65o0osXM0w9Twh5w5cAKBGk2pihZBAVcTVZIfUbl4DgDP7I1Trs3o9s2A5cUO6dlmGzExlU8kb4uioJcScTfPcBeuJh7q+fkhAXFaG3SSQk5x7K7/k/Iks20lZgTsgZ68CQHK2UECvyphkudDD0sDXevVwLsckY8jNR+/kSKBaxQidnSEyUtmcr3tSzh1RPCw1G6kXHFsgWGo2ra5anwIBQrDYJ7VbmgXL3ghMJpMqfRZ4WC6ei8WQnavszMoCNzdlUyE1fwG1zMXQTkdYdhn1jbg66gj1VuJnjlyz3rj3ha4taHyVBHI5f9jamvtCNuyG/OOAIzj3srU5JeJCShLpubk4aR2o6a1eyvq7cSZCEUmhIb6qJXJDo4GQEGUzez1kWeb0oSgAajZSz8NS8CBV4AkWCNRCCBY7JDQsGL2LE+nJmYX5Du4XvwBvvHzdMeabOH+i+KJ4alC/jhIvc/yU5XKMFEWLSkrsz54Ydd4zSyNJDkguwwCQM+barZdFlmXkjM+VP1yeQtLYR+bT3VeV66Spf2UcLZFArxiOn1Y+F/VrB1h0nGuXk0iMTUXroKFW42BV+jRkGwo9LPXa1FKlT4GgACFY7BAHRwfqhis3g2PbT6vSpyRJ1Gmq3LTOHIpWpc/iaFhXEQ4nz8aQn2+06Fg30jpAeYos+CKyC1wGKZlvjZcge6Wtrbk3DJsg7whIzkiuo2xtTYkpuE4KrhtrccK8Uq9BncC7ti0xubkwfryy5Soe1NPmz3n1+lXQO6uzZPvMvvPk5xnxqeRVWF1eIFALIVjslIbtlKRbx3acUq3P2k1C4IYbmaWoGuiDh7seQ24+Z60Yx9KqsiKUTiRcI+2WeiplFUnjguT6IgByxkxkC9YXsgSynI+c8aXyh8tgJK1lV72ohSzLNhEsWVm5nDcH3KoqWPLy4LPPlC1P8dSdPax8zuuo5F0BOPHfGQDqP1Tb4gnvBA8eQrDYKY3aK6ssjmw+rtry4LpNFcFyYu95iy451mikwpvxkePW83ZUcnOnmqc3Jllm5xXLijJVcRkEDjXAlIScMh5Ztp5X6n6RM2ZD/jmQPJFcR9janBJzKjGehOws9A4OhFW0XqLBo6cuYzLJVKroqU4NoTtwcn8kALWaqCdYjm5TluA3eKjsZzEW2B9CsNgpdcNroXdxIjkulchj6qTpr900BAedlsTY1MIKrpaiqTlj70EVSwyUhIeDlZUL/0SptyTc0kiSI5LnF4AecrcjZ8yxtUklQs5ZC5nfACB5TEHSWK8Wz/2yMVq5PtpWCUavUtLEkrD/sBIE2zxMPRFRFDlZhsIlzQ1bqRMcm2vI49g2xePbpHMDVfoUCG5ECBY7RefkSKOOipfl4MajqvSpd9ZRxzwtdHTXOVX6LI4mDRU3+9ETl60ax9I1RFlh9e/FC+SrtMLKGkiOdZA831P+yJyLnLPZ1ibdETnvJHLqBOUPl+ctXl5AbTZGKStdugbXsOq4+44onr8W5s+hpTi5PxJjvomKgd74B6mzAurUrrMYsnPxquhJSANRQ0igPkKw2DGNOypPMUe3nVStz0bhSgXdIzvPgVYLTz6pbCqvkggNqYiHu57snDxOnbPeMuPmlQLxdNKTnJPNgVjrrlK6XyTn3uAyEAA5dTxyftn0EsnGGOTkUSBng64dkvt4W5tUKmIz0jkaH4d0g0fOGiQkZhAZnYAkXfdAWopjuxVB1rC1eoKs4MGpaZeGIn5FYBGEYLFjGrZX5omPbj2J0aiOlyLsIUWwHN5xFpNOB8uXK5ter0r/BWg0Ek3MT2H7DkWq2vedcNBo6Gz+EvojQp0VVtZEcn8bHBuDnIacNAQ574ytTboJ2RiDnPQsmK6CNgTJ6wskyXpLgtXgz/PKe9rUPwA/c5Vva7D7oLIcuHaNSnh6qJMmvzgObVfOsWG4eoJl37pDADTt0ki1PgWCGxGCxY6p2aw6bl6uZKZmcXb/BVX6rNe8Os5uTqQkpHPuqGUDYtu0UObO/1OxxEBJ6FerPgB/nD+DwZhv1bHvF0nSIXl/Cw41wXQNOelp5JxNtjYLADk/QhErxkugDULyWWhXcSsFrDqreCz71LJu+YBd5s/BQy0sm3AtLTmTs4eV+JVmHdQJjk24ksi5g5FIkkTLHk1U6VMguBUhWOwYrVZL44eVaaGD/6gTx+LgqKVp+zoA7Ntk2aJ7rZtVQ5KUFP3xiekWHetGwgOCqOTqRqohh83R6gg9ayJpfJB8FoGuNciZyCmjkDPm27Sqs5z9F3LikzeIlV+QtJZNfGYJTiXGczLxGo4aDb1Ca1tt3Ny8fPab41daWyJDrLMzHD8Ox49zcF80siwTUicAX5VS/+9dexjMWbi9/VUqJyAQ3IIQLHZO084NATiw8YhqfbZ4WHmyPLzhMEiSsmWqX3/H28uVerWUJaM791rPy6LVaOhTUznHFWfssxKypPFG8v4BnAcCMnLGZ8ipY5WKyFZENqVjSp2EnPoayFmgC0fyWWaXYgVg1Vnleng4OBQvvWWnZW7k8PFLZOfk4evjRq3qFki4ptFA/fpQvz77tyrTQc07qrf0+KD5/tPyEeFdEVgOIVjsnObdG/9/e/cdV2X1B3D8c+/lsqfIFhH3Rty4Z6Tm3iNHjoZaaVaa5mqYlaappT93Wqm5UnHjRHGLe4OiyJa9uff5/XEJJUHF7kLP+/V6XsnDec4593S5fDkT8jZsSklI1UqeDdrUQCaTcfuS7vdIadpQM2fm4HH9zsXoVUUzLHQgPJQHKUl6LVtbZDIlcrvpyGynASaQuQsp1h8pbTmSlKHTsiVJjZS5BymuE2Rs0Ny0eheZwwpkCv2du6NNGTk5/HX9Mjzx/tCXw8dvAuDXoLxOJ6zm5qg4tV/zGv/5w+S/UuWqOLs3b8JtezF/RdAdEbCUcG7lXShXwxO1Ss3pXee1kmcpZ1tqNNTP6og2zTXd7ucvhRP3SDsB14uo6OBIU4+yqCWJtVe01ztlCDLLgcgc14GiPEgJSCmzkWLbIqWtQpIytVqWJGUjpW9EiuuIlDgW1FGgKIus1O/IbT4pcRNsn/T37WskZmVSxsaWNmX1tzooN1fF4WBNwNKmaVXdFJKdDdOnEzvqIzISUrBztKaGlvZfuXL8BqmJadg62lC1kX6XgQuvFxGwvAIad64PQPD2M1rLs1mnOlrL61ncXeypUcUNSYJDx/TbyzK0Vl0A/rx2kYycknmw4D9kytrISu9AZvsdKMqAOg4p5Vuk2HaoU35Cyrn0n+a4SKoopLRlSLFtkJK/AFUoyGzA6n1kpbcjM22g1dejb5IksfLSOQCG1PRFIdffR+PZi+Ekp2TiYGeJT00dHQOQkwMzZuC2ahEKSY2ff22tnQR9MkDTbg061EGhx0MihdePQQOWI0eO0LlzZ9zd3ZHJZGzduvW5zxw6dIi6detiZmZGxYoVWbVqVYHvT58+HZlMVuCqWlVHf7UYCb8umoDl1K7zZGdp5xdvs476CVgA2uSdi7T/iPbORXqhcsuWp4yNLUlZmWy6WTLnsjxJc7pzD2Sl9yCz/Rrk7qCOgbRfkeJ7IsU2RZ34KVL6JqSsE0i5YUjq9PznJUlCkjI0wUnONaT09agTP0Md2wYptgVSyvea/OTOyGw+R+Z0GLnNOGQy/c310JXjEeHceBSHhYkJfarW0mvZgUc17/uWTSpjoqUg4nmadtDe0M3JgLMANOpYT2t5CkJhDBqwpKWl4ePjw6JFi14ofVhYGJ06daJ169aEhITw8ccfM2LECPbs2VMgXY0aNYiMjMy/goKCdPQKjEPVhhUp5eZAenIGZ/aEaCVPR1c7Kvvo59C3Ns2qoFDIuXozkrBw3R4J8CSFXM6wWpoP2cUhp8jR0l42hiaTKZFZ9kHmtBeZ3Y9g5g8yS1DHQebfSMmTkBIGI8X5I8XUQR1dF3WMH1J0TaRoH01wEt8VKflLyNwKqgeajwqlDzLbWcicDiCzGo5MrtuzbvTp57PBAPSpWgs7M+3uOfQsaelZHDqmGQ5qr6Ulxs9jY2+BT9PKWsnr3rUH3Lv6ABOlgvr+PlrJUxCKor9DMgrRoUMHOnTo8MLpFy9ejLe3N3PmzAGgWrVqBAUF8dNPP+Hv75+fzsTEBFdXV53U2RjJ5XJa9WnC5vkBHFx3jCZdtNM937SjD+zWSlbP5OhgTZMGFTh64hbb917kwxFtdF9ongHVavPr+ZM8SElm882r9K2m37+udUkmMwWLLsgsuiBJ2ZB9Dik7CHIugioa1NGalT1SqubKp9AM95hUBtP6yEzrgdL3lQpQnnTi4X1ORj7AVK7gvToN9Vr2/iPXyMzKwauMo3ZPZ36Gph3roDTVzkf/kb80gV7d9rWxcXg13x+C8ShRc1iCg4Np165dgXv+/v4EBwcXuHfr1i3c3d0pX748AwcOJDz82QfsZWVlkZycXOAqaVr3bwrAiW1nyEjTzkRLv46+nDLz4pR5OeJjdTshtkveX2d7Dl4hK1t/m7lZKJW8W0cT4C08d+KV6WX5N5nMFJlZY+Q2E5CX+g250x7kLiHInM8hK70TmePfyJwOab52uYrc5RRyx7XIbT5GZtb8lQ1WAOafOQ5An6o1cbO20WvZAfsuAfDWG7rdzj4rIzv/3626aW/o5shGzWdvi15+WstTEIpSogKWqKgoXFxcCtxzcXEhOTmZjAzNMs5GjRqxatUqdu/eza+//kpYWBjNmzcnJaXojclmzZqFnZ1d/uXpqZ+hEG2q0qAibuVdyEzPIvjv01rJ07mCO+v8P2SaY2eO7tft/JL6Pl64ONmSkprJkbwVE/oysLoPjuYW3E9JKrH7srwsmdwamUlFZMpqyBTumq9fo3NgjkeEE/zwPkq5nPd9G+m17Juh0Vy/HYWJiRz/VrpdRn328ONjKKrU0c5J0Hev3Ofu5fuYKBU06VqyJ10LJUOJClheRIcOHejduze1a9fG39+fnTt3kpiYyIYNG4p8ZtKkSSQlJeVf9+/rfv8RbZPJZLQd2ByAPasPaS3fVt00E3r3/XVSa3kWRqGQ06mdZjhmy07tLM9+UZZKUz6o2xiAOaeDSMnO0mv5gmGo1Gq+Oq459bp/tdp42Njqtfy/tmkmq7b0q4y9naVOyzq09fEKQm0FpHtXadquQQdfMRwk6EWJClhcXV2Jjo4ucC86OhpbW1ssLApfqWBvb0/lypW5fft2kfmamZlha2tb4CqJ3hjaCoDz+y8REx6rlTxbd6uHiamC0CsR3L6s20Cus39tTEzkXL7+kBt3ol/gCe15u0YdvO0ciMtI55fzug3OBOPw143LXIuPxdbUjI/rN9Fr2fEJqfmrg3rnrfLTlcT4FE4cucVHTn2I/GunVg4yzc3JZf/aIwD4D22thVoKwvOVqIDFz8+PwMCCB73t27cPP7+ix09TU1O5c+cObm5ueqihYbl5u1C7ZXUkSeLwhuAXeOI50tKwKePMpvu/YKbOYe863f4id3SwplUTzUZyW/L2dtAXU4WCL/xaArD8wlnCk/W7xb2gXynZWfx4SrN68KP6TShlodsejn/bsfciublqalRxyz+eQlcObTlLjgqkBg1w69UBtLBXyundISREJ2HvZEujTnW1Uk9BeB6DBiypqamEhIQQEqJZihsWFkZISEj+JNlJkyYxePDg/PTvvfceoaGhfPbZZ1y/fp1ffvmFDRs2MG7cuPw0EyZM4PDhw9y9e5fjx4/TvXt3FAoF/fv3N8Ar1L9WfTWTbwP/OKqdDNPTMc3VTNg7uOUMmU9M3tOFHp00Z5HsP3KNR4naP7/oWdp5VaCZhxfZahVTjwYa9DBBQbd+On2cuIx0ytuXYnAN/e05RN5Bh1vzDgvsoeNf9pIksXf9CQDa9dLeCqg9Kw8A0HZgc0yUBl1sKrxGDBqwnDlzBl9fX3x9Nb+kxo8fj6+vL1OnTgUgMjKywAofb29vAgIC2LdvHz4+PsyZM4dly5YVWNL84MED+vfvT5UqVejTpw+Ojo6cOHECJycnA7xC/WvZ2w+lqQl3Qu5yOyRMa/m6eJYiNSmdA5u0M6G3KDWquFO9shvZOSrW/629nXtfhEwmY3qzNpjKFRy6H8bWW/rdyE7Qj3PRD1l5STN/ZFrT1ij1vDvr7gNXiE9Iw8nRJr9HUVeunA4l7NpDrMzkvBF+FH74QbNN/38Q9/ARwds0P5sdRrTVUk0F4fkMGrC0atUqb3fNgtc/u9euWrWKQ4cOPfXM+fPnycrK4s6dOwwdOrTA99etW8fDhw/JysriwYMHrFu3jgoVdHBcu5GydbTBL2/G/p6VB7WWb8dBmjH+bSuP6LTnQSaTMbiPZohv687zJKfo9hC/f6vo4MhH9TXlzzh2gNh0/fbyCLqVmZvLpwd3IwE9Klenpae3XsvPVan5c/MpAPp2q49SqdtgafsqTU9r67d8MJ8+BT77TLNN/38QuPYoarVEjaZV8Kpe8lZUCiVXiZrDIryYN4dpJsEF/n5Ua1v1t+3ZEHNLU+7diCTkmG6XHfvVL09FbycyMnPYuEO/c1kARvk0oLqjM4lZmUwLCnyBJ4SSYv7Z49xJfISTpRVTm+h/suihYzeIiErEzsaCzm/o9mTj+Kgkju3UDD11GNRUK3lKksTe1Zo/hMRkW0HfRMDyCqrbvjalPUqR8iiVoM3amShrbWdJ+96afSq2LtPesunCyGQyBvXSLDPeuP0sKanaPXH4eZQKBT+0fhMTuZydoTfZcvOqXssXdONU5AOWhGiGNL9u3g57c/2egZSrUvNb3mT4Xl3qYWFuqtPydvx2FFWumhoNy1O+unZ20b124ibh1yIwszClRW+xWZygXyJgeQUpFAo6jtDsCLx1wU6t5dtluGYVzenAq0SExmgt38K09KtMea/SpKZlsXaT/pcZ1yjtzNi8vVmmHN1HWGKC3usgaM+jjHQ+3L8DtSTRo3J1/L0r6b0Oew5e4e79eGxtzOnR0VenZaWnZrJjtWY4qNvwVlrLd9uvmnPbWvZtgpWtfldWCYIIWF5Rb73XHhOlgmsnbnH91K2Xy0Quh5YtNZdcTpnyzjRsWwNJkti28oi2q1yAQiFn1NstANi84xxx8bo9GqAwY+o2ppFbGdJychi9bzuZudoZXhP0Sy1JjD+wi6i0VCrYl+Kr5u1e4CntysrKYcUfmmXUg3o1xsZatwcs7vr9OKlJGZSp4EwTLZ3MnBCTxJG8HqIuH7yplTwFoThEwPKKcnCxp1U/zbj11gW7Xi4TCws4dEhz5W3M122E5q+1vetPkJqUrr0KF8KvfnlqVnUnKzuX3/7Swr4yxaSQy5nfthOO5hZcjY9hWtABsdS5BPpfyGkO3Q/DTGHCwvadsVLqdiimMJsDzhMbn4pzaRu667h3RZWrYtuKwwD0fLcNcrl2Pub3rDhATnYuVRtWpEr912chg2A8RMDyCuv+YUcADq0/Tsz9OK3kWadZZbyquJGZnk3AmiCt5FkUmUzGyEGa4wa2773I3fvxOi2vMK7WNsxv9xYyYP31S6y6rN9jA4T/Zv/dO8w+qekNnNa0NdUc9b+9QWJyOms2avZCGT6gGWZaOim5KEd3hBATkYCdozVtemjnjJ+c7By2/aIZDur8vv9z0wuCLoiA5RVWuV4FfFrVQJWr4q8ft2klT5lMRu/3NXsvbF5ykIw03Z6741urLE0aVEClUrNwuWF6OJqV8WJiY83w1FfHDxJ4747e6yAU3+W4aD7cvwMp76yg/tV0uyqnKCv+OEZqWhYVvZ14o1V1nZalVqtZt2AvAF2Ht8TUXKn5hrk5HDyouV5ia/7AtUeJfRCPo7tDfs+tIOibCFhecf0mdgdg94oDpBZ359i0NHBy0lxpj59t1a0e7uWcSE5II+A33fayAIx+pzUmJnJOnb9L8JlQnZdXmFE+DehXtRZqSWLsvh1cidPtpGPhv4lMTWH4zi2k5+bQvIwXM5u1Ncgp1KH3Ytm25wIAH45oi0Kh24/cE3svc+9GJJY25nQe0vzxNxQKaNVKcxVzozyVSsW62VsB6DmuM6ZmSm1XWxBeiAhYXnH12temXE1PMtOy2LX8QPEziIvTXE9QmCjo9+EbAGxcHEhmum57WTzdHfIPiFuw/ADZObk6La8wMpmMr5q3o5mHF+m5OQzftZmHqcl6r4fwfCnZWbyzazPR6alUcnBkUfsuet/Nlrw9SxYuP4haLdHSrzJ1aup2kzVJkvJ7VzoPbYG1lk6ADtp8iohbkdg4WNFplP4nLAvCP0TA8oqTyWR0H6uZy7Ll5wBysrWz0qVNj/q4ejmSFJ/K1uWHtZLnswzp7UcpBysiIhP53QDLnMnbn2XRG52p5OBIVFoq/bdtICo1xSB1EQqXmZvDiF1buBYfS2kLS1Z06IGtmZlB6rL/yDXOXLiH0kTB+0Nb6ry847svcutCOGYWpnQb8a/ycnJg0SLNVYydbiVJ4s9ZmwHoMvpNLG30u3eNIDxJBCyvgXZvt6CUqz2x9+MJ/F07QzgKEwVvf6IJhDYs2kdivG5/cVtamjJ2eBsA1vx1grBw7UwiLi47M3NWdeyJp40d95IT6b99A9Fp+l9yLTwtIyeH4bu2cDLyAdZKU1Z27IGnrZ1B6pKYlM7PyzQ9moP7+uHuaq/T8nJzVKyctR2A7iNbYe9oUzBBdjaMGaO5inGW0Nl9F7kTchdzSzN6fNRJ29UWhGIRActrwNTclF7jOwOwfvYWVCqVVvJt1a0eFWqWISM1i78W7ddKns/SplkVmjSoQG6umh8W7UGtNswSYw8bW/7s0gcPa1vCkhLov30DMSJoMaj0nGze2bWZYxHhWCmVrOrYk1pOrgarz8/LDpCUnEGFck4M6K69U5KLsmddMBGhMdiWsqLX+9o7kHD995q5Kx1GtMX230GQIOiZCFheE53ebY+NgxUPbkYSpKUhFblcztDP3wJgx+og4iITtZJvUWQyGePfa4+lhSmXrz9k6y7DLTEuY2PHui598LC2ITTxkehpMSDNnJUtBD+8j7XSlN869aK+m3a2on8Zx0/fYf+Ra8jlMj4f86bODzhMT83k97mavZYGjuuAlZaGbW6cuUPIgcvIFXJ6jX9LK3kKwn8hApbXhKWNBd3y5rKsnr4BVa52elnqtapGjYblyc7K4bcfA7SS57M4l7Zh1Nua1Q+/rjpM+INHOi+zKJ629vzZpS9uVjbcSXxEz61/cDtB/3vFvM5i09Pov20DJx7ex8bUlN/e6kU9V8MFK4nJ6Xy/SLNfSe8u9ahaSfe9PBt/DSQhNgX3ck50GNhEa/mumbEBgNb9m+JcVv/71wjCv4mA5TXSc1wnbB1tuH89gj0rDz7/Abkc6tfXXEXslimTyRg+uSsA+zec4val+9qu9lO6dfClXu2yZGXn8vVPAeRqKfh6GWVt7dnQtS9etvY8SEmm+5Y/OPbgnsHq8zq5nRBPr61/cjkuGkdzC/7o3Ie6Lu4Gq48kSfz4y14eJaRRztOREQOa6bzMuMhENi/RzJV554suKLW0Kd3lY9c5GXAOuULOoC97ayVPQfivRMDyGrGys2LglJ6Q18vy3OXIFhZw+rTmsii6m7laPW9adauHJEksmb5Z55u7yeUyJn3UERtrc67fjmL1ev1v2/8kT1t7NncfQD0Xd1KysxiycxPrrl00aJ1edUfu36X7lj+4l5xIGRtbNnYbYNA5K+Qdbngk+BYKhZwp4zthpof9Sn77MYCszByqNyivtTODJElixeQ/AHhzWGvKVHLTSr6C8F+JgOU189Z7b+BazolHkQlsma+9k5yHTdJsKHX55B2O7bygtXyL4lzahgkfaPaCWbPxBBevPtB5mc/iaGHJ75370LViNXLVaiYe3ss3wYfIVasNWq9XjSRJLLtwhqE7N5GSnUUDVw/+7jEIb3sHg9brYXQi85cGAvBO/6ZULu+i8zLvXHnA/g2nABj5ZTetbYx3Zu8FLh25htJMycAve2klT0HQBhGwvGZMzZQMmdkPgA0//E1KgnYmijp7lKLne5plx4unbSI9NVMr+T5L66ZV8G9dA7VaYvoP20ko7k6+WmZuYsK8th35qJ4fAEsvnGHA9g1igzktSc3OZsy+7XwdfAi1JNG7Sk3Wdu6No4V2Nkh7WVnZuUydvY209GxqVnWnfw/drwpSqdQs+Hw9kiTRoktdqtYt9+wHzMxgxw7N9Yx9aVS5Kv434TcAurz/Bs6epbVddUF4aSJgeQ217t+UcjU9SU1MY33eltuFSk+HcuU0V/rzT2buO6Y9bl6liY9K4rfvdT8BF2Dcu+0oW6YUcY9SmTlnByqVYXs0ZDIZ4xo0ZVH7zlgplZyKfMCbG1az4/Z1g9arpDsb9ZBOG38jIPQmSrmcmc3a8n0rf8wUuj1I8EX8vCyQm3eisbOxYNqEzpjoePt9gIDfgrgRcg9LG3NGTe3+/AdMTKBTJ81lUnSb7Vp+gLtX7mNTypoBecPHgmAsRMDyGlIoFAz/diAAW37eSVxEEStbJAnu3dNcLzAvxczClLHf9QVg28ojepmAa2lhylefd8XcTMnZi+GsWndc52W+iE4VqhDQazA+zq4kZ2cxZv8OJhzcRWoxNu0SIFul4sdTQfT++0/uJSfibm3Dui79GFzT1yBnA/3brgOX2b7nIjIZfDm+Ey5OtjovMy4ykVWzNZvEDZvYGUdX7WyOl5GWmb8yaPC0PtiWEvuuCMZFBCyvqUad6lKjaRWyM3P4bfpfWsvXt3kVWnXVTMBdOGmDXno8vMuW5tPRmvksqzcEc+zUbZ2X+SLK2TmwsWt/xtZtjFwmY+ONK3TcuJogsYrohVyNi6H7lt9ZeO4EakmiR+Xq7Oo9hHquhlsJ9KQbd6KZ8+s+AIb2a0LDut46L1OSJH6ZspGM1Cyq1i1Hx7df8OTknBxYtUpzFbE1/+Z5ATyKSsTV25lO74ozgwTjIwKW15RMJmPk7Lch7yTn66duaS3vkVO7YWljzo2Qe2xddkhr+T5L+5bV6d7RF4CZc3ZwO8w4TlNWKhR80rAZ67r0xcPahvDkJAbt+IsP9m4Tc1uKkJSVydfHD9Jl81quxMVgb2bOovadmdumI3Zm5oauHgAxcSlM/GoT2dm5NKrnzZA+2tv/5FmCAkII3nMRhYmcD2f3Q17EdgNPyc6GYcM0VyG9fLEP4lk3awsAw77qh9JUnMgsGB8RsLzGajSpQvvBLZEkiZ8/WKq1LftLudgx8stuAPz2fQAPQvUTPIwd3pp6tcuSkZnDxK83E/fIeHaebehWhl29hzK0Zl3kMhk7Q2/Sdt0KFp07SZZK/6dPGyOVWs3vVy/Q+s/lLLt4lly1mje9K7G37zA6Vahi6OrlS8/IZtLXm4lPSMO7bGmmfdIZuVz3w1MpCWn8MmUjAH1Gt8e7mvZ6mpZ+vobM9CyqN6lC6/663z9GEF6GCFhecyNnD8LKzpJb58LYsXif1vL17++Hb4sqZGflMG/CH6j1sLzXxETBzM+7UtajFDFxKXzxzRYyMo1nzoitmRnTm7UhoNdgGrh6kJGbyw+njuK/fhV/37qGWsf71xiz4xHhdNq0hslH9vEoM4OKDqVY3akni/274mxpZejq5VOp1Mycs4NbYTE42Fny3ZQeWFvp5zTopV9tJTEuBc9KLvT78A2t5Xvp6DUO/nkMmUzGmJ/fMYq5QYJQGBGwvOYcXOwZ9nV/AFZO+ZNHUQlayVcmk/HR9/2xsDLjyqlQvQ0N2VibM/vLHtjZWHD9dhQzftxh0J1wC1PN0YkNXfvxU5uOOFlacTc5kY8CA/DfoAlcVK/J3i2SJHEoPIw+f69jwPYNXI+Pxc7MnOlN27Cr1xBaeup+TkhxSJLEguUHOH76DqamJnw7uTtuLvo5DfpU4BX2bTipWYX24wBMtbQpXW5OLgvHLgeg44i2VKpbXiv5CoIuiIBF4K332lOpXnnSktL532drHn9DJoPq1TXXS/zV5VKmFCPyhoZWfredO1f0s7mbh5sD307uhqmpCcdP3+Hb+bsMdrJzUWQyGd0rV+dgv+FMaNAMW1MzbiXE81FgAG9sWMWG65fIzC18cmRJp5Ykdt65wVub1jB05yZORT7AVK5gaE1fDvUfztBadVEqdHtg4MtYue44mwM0B25+8VEHalTRz+TfRzHJzB3/OwBdh7ekWj3tBXJ//bid0Iv3sCllzbBv+mstX0HQBZmk633US6Dk5GTs7OxISkrC1lb3yxSNwY3Ttxnb+AvNeSgHp+PTsoZW8pUkiZnDl3Ji72U8K7mwYOenmFmYaiXv5wk+c4cvvt2KSqWmW4c6jHu3ndF2dydnZbH68jmWXTxLUpZm0z07M3N6VanBwOo+lLcvZegq/mdRqSlsvHGF9dcvcT8lCQALExMGVvdhRO36uFob7zLav7afZcEyzZk9H49qS49OdfVSrlqt5su3F3Pu8HW8q7kzb/snmJq/RO9KWhpYW2v+nZoKVlY8uBXJqNqfkJOVw2erxtB+cEut118QtEkELIV4HQMWgPnv/48dS/ZRroYnv577HhOldjblSnqUyvvtviMhJpkuw1rw/lf62+478Mg1Zs7dgSTBoF6NGPV2C72V/TJSsrP44+oF1lwJ4UHK41VEzTy86FGlOu28KmL7jJ1KjU22SsXh+2Gsu3aRg+Fh+fN0bE3NGFqrLsNq1cXBvOhzqozBrgOXmTV/FwDDBzZjSB8/vZW9ackBln21FTNzJT/v+pSyL3v6878CFsnSkkkdvuHs3gvUbV+b73ZPMdpgXhD+IQKWQryuAUvyoxTeqfoRSXEpDPu6PwO+6KG1vM8eusaUQb8CMG3FSBq/UUtreT/Ptj0X+PGXvZB3zsuQvn5G/+GsUqs5cv8ua6+GcOBeKP/8kJrKFTT39KJD+cq0L1fRaJb5PiklO4tD4WHsvXubQ+GhpDyxjLahWxn6VatFx/KVMTcx/qWzgUeu8dVPAajVEn261mf0sFZ6e+/cvBDOJ91+IjdHxdjv+tJx0AvuuVKY3FzYolm2TPfuHPjrBLMGzkdppmTppTl4VBQHHArGTwQshXhdAxaAfWsO8/2QhZgoFSw6PI3yw/N6Q06fBsv/dmbL4mmb+Hv5YaxsLfh55wTcyzlpp9Iv4M/Np/h19WFA09MyclBzow9a/nE/OYmNNy4TEHqD2wmP8u8rZDJqOrnQxKMsfu5lqe/qjqVSP8NtT8rMzeVCTCSnIyM4GfmAkw/vk61+PNHZydKKHpWq06daLSqUoKGtvYeu8u38najVEp3a1eKzMf56e8+kJKYztsP3RN9/RJM3azNl6XCtlf0oKoERNceT8iiVwdP78PbU3lrJVxB0TQQshXidAxZJkpjR8weObT1NlRpuLLy8QPONvHHv/yInO5fPe//MtbN3KV/dgzl/j8NcT/NZANb/fZpFKzSrlXp3rseY4a1LTNDyj1uP4ggIvcnOOze4mVDwSAWlXE41RyeqOTpT1dGJao5OVC1VGnstDrkkZWVy61E8txI018XYKC7GRBUIUADK2znwhncl3vCuSB1nN+QlrJ237bnAnF/3IknQsV0tPhvtr5e9VvjXvC9XL0cW7PwUazvtHPD45M93hTrlWHhyltaGfgVB10TAUojXOWABSIhJYlSt8WTGPGI7eYcjaiFgIe8clLEdfiAxLoV2vRsyfu5AvQYNW3ae56cl+wHo+qYP495tr7dfRNoWkZJM8MNwgiPuc+JhOBGpKYWmszE1w93aBlcra9ysbHC2ssZKqcTCRHNZKpUoZDKyVCqyVSpy1CqyVCoSMtOJTU8nNj2N2PQ0HqalEJte+InYpS0saehWhgZuZWjmUZaKDo4lLhj8x4a/z7BwxUEAunf05aORbfX6Htn4ayDLv/kbpZkJc7eOo2Itz/+ead6Q0KWga0z4+QJyUyWLTs+mfG0vbVRZEPRCBCyFeN0DFoDjf59mVrdvtR6wAFw4dpMv+i9CrZZ4/6tedBmm34mwAfsv8f3C3UgStGtRjYkfvolpCf8rU5IkHqQkcSk2muuPYrkaH8v1+NgCE3e1xd3ahooOjlR2cKRKKScauHngZWtfYgOUf0iSxNK1R1m78SQAA3o05N3BLfT6us4H3WDKwF9Rq9T/fd7Kk56YdNuZbvSdOZBBX+pv8rsgaIMIWAohAhaNnwbOYdwfEwDIiIrFwqW01vLeuDiQ5V//jVwh59s/PsCnaWWt5f0i9h2+yrfzd6FSqfGpUYZvJnXD1sa4V6u8jNTsbKLSUniYmkJUWgqRqZpekvTcHDJyc0jPySEjNxe1JGGqUGAqV2CqUKBUKHAwM8fZyhonCyucLK1wtrTC294BG9OSs0rpReXkqPh+0R72HLwCwMhBzRnUq5Feg5WHYbF89NYcUpPSadurIZ/8pL3eR1VyMgo7zSZ34+uN4/tg7a0CFAR9EQFLIUTAopH2MAYrDxcAFr7zM2OWj9Va3pIk8cOHazi45Qy2DlbMD5iAa1lHreX/Ik6dD2Pq7G2kZ2RTxt2B76f2pIybg17rIBheUnIGX87+m5DL91HIZUwY7U+ndvpbxQaQlpLBuC5zuX8rmiq+Xnz/14cvt99KETZ/u4Eek/sC8PDCbdxrV9Ba3oKgL2KnW6FIVnaPh4D2rDjAyYCzWstbs3V/PyrV9iQ5IY2Zw5eSkZaltfxfRENfb36ZPQAXJ1sePEzgvU/XckFPu/EKxuHeg3je+3QtIZfvY2lhyqwpPfQerKhUar4f8xv3b0Xj6GrH1GUjtBqshF26x5oZf+V/7V7hJfdyEQQDEwGLUDSZDLy8SLF1RAJ+fOcX4iLiX+DBF2NmYcqXy0bg4GRD2LWHfPfBKlR6PvenvJcTi38YSLVKbiSnZDJu6nr+3h2C6Hh89QWdvM17n64lIioRV2dbfpk9gMb19HuWjiRJLJm2mVOBVzA1UzJ1+UhKafF8oozUDL7u9xO52eJEcKHkEwGLUDRLS7h7F7Poh3jWrURibDJf9f2J3Bztffg5uTvw5bIRmJopORV4hYVf/KX3YMHRwZr53/SlddMq5OaqmfPrPr6Zt5P0DOM56VnQHpVKzYo/j/HFt1tIS8+mdnUPlvwwiPJe+tsX6B9/LdrP9lVHAPhk3kAq+5TVWt6SJDF31BLCr0VQys1ea/kKgqEYNGA5cuQInTt3xt3dHZlMxtatW5/7zKFDh6hbty5mZmZUrFiRVatWPZVm0aJFlCtXDnNzcxo1asSpU6d09ApeD6bmpny5YTxWdpZcPX6DZZ+v1Wr+1ep58/miIcjlMnb/cZw/5+/Rav4vwtxMyfRPO/Pu4BYo5DL2HrrKqAlrCL0Xq/e6CLoTF5/K+Gl/sWrdcQB6dPLlp5l9cbDXzgq44ti/8RQrv9sOwKjp3WnRWbvnE/29cDeH1h1DYaLgs9+0N/9MEAzFoAFLWloaPj4+LFq06IXSh4WF0alTJ1q3bk1ISAgff/wxI0aMYM+ex7/g1q9fz/jx45k2bRrnzp3Dx8cHf39/YmJidPhKXn3uFVz5bNUYADbNC+D4ttNazb/Jm7V5/2vNMss1P+5k9x/HtZr/i5DJZAzs2Yh5X/ejdClrwh884t0JawnYf0kMEb0CTp4L451xqzl/KRwLcyWTP+7Ix6PaoVTq/2ToMwevMm/CHwD0fLcN3Ue01mr+V4NvsPiT1QCM+v5tarSsBStXai5T/e+GLAjaYDSrhGQyGVu2bKFbt25Fpvn8888JCAjg8uXL+ff69etHYmIiu3fvBqBRo0Y0aNCAhQsXQt5pp56enowdO5aJEycWmm9WVhZZWY8nfCYnJ+Pp6fnarxIiIwNa5O2RcuQIWFjw67hVbJ4fgJWdJQtPzqJMZXetFrlq9g7WL9iLXC7js4VDaNlFP6fi/ltiUjpfzQ3gdMhdAFr6VWb8e+0M8pe48N9kZeey5LcjbNyumTReoZwTMz7tQtkyhjkm4GLwLaa+vZiszBxadavHpz+/jVyuvb8dE6IT+aD+58RFPKJFbz+mrBtX4vfIEQQM3cNSXMHBwbRr167APX9/f4KDgwHIzs7m7NmzBdLI5XLatWuXn6Yws2bNws7OLv/y9NTCzpKvArUazpzRXGo1ACNmD6RG0yqkJaUztdv3pCUVvvPpyxryWSc6DGyCWi3xw4e/Ebznolbzf1H2dpb8MK0XIwc1RyGXcTj4JoPHruRA0HWD1Ed4OZeuPWD4x6vzg5XuHX1Z/MMggwUr186GMW3IErIyc2jQpjrj5w7UarCiylXxdb+fiIt4hGdVDz5Z9r4IVoRXRokKWKKionBxcSlwz8XFheTkZDIyMoiLi0OlUhWaJioqqsh8J02aRFJSUv51//59nb2Gkk5pqmTaxgk4lXHk/vUIvnt7Aeq8YEYbZDIZY2b1oW3PBqhy1Xz7/krOHLyqtfyLQy6X8Xbvxiz+8W0qlHMiKTmD6T9sZ+rsv0lI1G6gJmhXekY28/8XyJhJfxIe8YhSDlbM/rIn495th5mpYTZMu3UxnCmDfiUzPRvf5lWY8r/hKLVcl6Wfr+Xi4atY2lgwffOnWP6zGWJuLgQEaK5csWJIKJlKVMCiK2ZmZtja2ha4hKI5uNgzbfOnmJorObHjLKu+XKfV/OVyOePmDKBZpzrkZqv4asRyzh+9odUyiqNKBRf+9+PbDO3rh0Ih59Dxmwwes5Kd+y+hVhvFiKrwhJPnwhgydiWbAs7lH164ZuE7+NXX75LlJ4VdjWDygF9IT8mkZqMKTF2u3b1WAA78GcSmn3YA8Omq0ZSt6vH4m1lZ8NZbmitLv/sdCYK2lKiAxdXVlejo6AL3oqOjsbW1xcLCgtKlS6NQKApN4+oqNkvSpir1KzDuf+8B8OesLexbc1ir+StMFHy2YDCN36hJdlYO04Yu4VTgFa2WURxKpYJ3BjRjyY+DqOjtRFJKBt8t2M0Hn//O9VtF994J+vMgMoEvvt3CpzM2Eh2bjKuzHXNn9Gbi2DexsTY3WL1uXgjn8z4LSElMp2rdcsxY/S7mlto93uBq8A1+fOcXAPp93o1m3RtpNX9BMAYlKmDx8/MjMDCwwL19+/bh5+cHgKmpKfXq1SuQRq1WExgYmJ9G0J52g1rQb2J3AH4auZjLQde0mr/S1IRJvw6jyZu1ycnKZebwpRzdcV6rZRRX5fKa3pb3h7bEwlzJ1ZuRvPvpGr5fuIfEpHSD1u11lZaexa+rDjF4zAqCTt5GIZfRp0s9Vi8YSv065QxatyunQ5nUbyEpielU8fXiqzXvYanl4CkyLJpp3b4nJyuHxp3rMfTrflrNXxCMhUFXCaWmpnL79m0AfH19mTt3Lq1bt6ZUqVKULVuWSZMmERERwW+//QZ5y5pr1qzJ6NGjeeeddzhw4AAffvghAQEB+Pv7Q96y5iFDhrBkyRIaNmzIvHnz2LBhA9evX39qbktRxFlCeZ444bWo05rVajVf953L0U0nsSttw4ITs3Ar/2Lt/KJyc1TMGbeWQ1vPIpfLGDd3IO16NdRqGS8j7lEqi1cfZu8hzRwbK0tT+nVvSO/O9bC0EEtHdS03V8WuA5dZtjaIhLxgsaFvOca805pyZbV3UOfLCjl2k+lD/0dWRja1Gldk+qpRWg9WUhPT+KjpZMKvRVCprjdzDs3AwrqQQzxf4GdZEIydQQOWQ4cO0br10/sPDBkyhFWrVjF06FDu3r3LoUOHCjwzbtw4rl69SpkyZfjyyy8ZOnRogecXLlzIDz/8QFRUFHXq1OHnn3+mUaMX7yIVAUuetDQol/cX6t27RX7IZaRl8kmradw6G4pX9TL8dPQrbBystVoVlUrNwonr2f2nZrXX+1/1osuwFlot42VdvPqA+f8L5FaYZq8feztLBvVqRNc36xhsguerLFelZt/hq/y2PpiIqEQAPN0dGDO8NY3rlTeKVTGnAq/wzagVZGflULdlVb5cNgJzLQexOdk5THlrFuf2X6K0RykWnJxFafciVj+JgEV4BRjNPizGRAQsxRf38BFjG00iLuIRNZpW4bs9X2p9nF6SJJZM38zfyzXzZXq915ZhX3TW6rLQl6VWSxwIus7yP4KIiNT8EnVytGZAz0Z0bFsTC3PR4/JfqVRqAo9eZ9X64zx4mACAg50lg3o3ptubdQyyAVxh9q4/wfzP1qFWqWn8Rk0m/ToMUzPtTrBVqVR8N+hnDq0/jrmVGT8d/YqKdbyLfkAELMIrQAQshRABy8sJvXiP8S2nkpaUTuO36jFt0wRMlNrtYZAkifUL97F6tmY1RIsudflk7kCtr7h4Wf8MU6xeH0xMXAoAtjbmdO/gS/dOvpQSG88VW1p6FgH7L7Fpxzkio5MAsLOxoF/3BnTv6Gs0w2+SJLF2zi7+mKfZxLJtzwZ8/OMATLQcSEmSxIIxy9n+6x5MlApmbptIA/86z35IBCzCK0AELIUQAcvLuxx0jc/f+IrszBzaD2nJpytG66SLPnDjKX6a8AeqXLVmmeiyEdg4GM+HcHZOLjv3X2L91jP5wxamSgX+rWvQvaMvFb2dDV1FoxcRmcCmgPPs3H8p/yBKWxtz+nVrQI+OdbG0NI5ABSAnO5f5n60jcKPm3LJ+H77B4E876eS9v3raetZ+tRGZTMYXf3xEq75NX6CCOfC//2n+PWoUKI0jwBeE4hABSyFEwJInIwM6dND8e9cusChkMl8hTuw4y7Tu36NWqen5cSfenTNEJx/c54Nu8PXI5aSnZOJZ0YXpK0fh7q3/E3efRaVSc/TkLdZtOc3Vm5H596tWcqXLGz60aV7VaHoIjEF2Ti5HT9wmYP9Fzl64xz+fTl5lHOndpR5vtKqOuZaHV/6rlMR0vnl3BReO3USukDPm2z50GNhEJ2VtnhfAr+M1B75+uGgEnd/310k5gmCMRMBSCBGw5PkP3ch7Vh0ssC/EO98O0EnQEnbtIVMHLyYuMhFrOws+XziE+q2ra72c/0qSJC5di2DTjnMcPXmL3FzN7sAW5kratahG2+bV8KlRBoXC8PNx9E2SJO7cjWVn4GX2HbpKUkpG/vca+pajT5f6NPAtZxSTaf/t3o1IvhqxjIiwWMwtTfli8Ts0aKOb99/fi3azcOxyAIbM6MugL3vppBxBMFYiYCmECFjy/Mdx7yc/YAdO6cnQmbrZH+JRdBJfj1rOtbN3kclkDP38LXqPbmeUv+AAEhLT2H3gCtv2XsifoAtQyt6Slk2q0KZZVWpV80AuN876a4MkSVy7FcWR4JscDr5ZoB2cHK3p0LYWHdvWxN3V3qD1fJajO84zd/zvZKZn4+zhwPSVo/Cu7vECTxbfjiX7mP++Zkjnpf4AUKng6FHNv5s3B4VxTFAWhOIQAUshRMCSRwsT9Z7swtblX4XZWTksnrqJXb8fB6D5W3UYN2cgFlbaXamkTZIkcf7SffYdvsqRE7dISc3M/569nSX1fbxo6FuOBr7lcNTyMnFDSEnN5NylcM5euMfx03fyJyWTN7+ncf3yvNW+Ng3qlDPqniZVropVs3ew8VfNBpU+TSsz8Zch2Dva6KS8XcsDmTtyMQC9P+nMyO/fLn4wLibdCq8AEbAUQgQsebT0IffXj9v432drABg8vQ+Dvuyls96PnWuP8euXG8nNUeFVxY1JvwzFq4qbTsrSppwcFWcv3uNA0HWCTt4mNa3geS+VyjvjW9OTWtXLUKuaR4lYbZSSmsm1W5FcvBrBmZC7XL8dVeDsJQtzJX71K9DCrxKN65UvEXN5EuNSmD1mNSFBNwHo+W4bhk3qjMJENz0Wu1ccYO7IxUiSRPcPO/L+T0Nf7mdHBCzCK0AELIUQAUseLX7IrftuC8u/+AOAPhO6MGL2IJ0FLVdOh/LNuytIiEnGzFzJuzN68uYAP6MdIvq33FwVl2885PS5u5w6H8aNO9FPpSnj7kDNqu5ULOdMhXJOVCjnhL2dpUHqS15wcvd+PGHhcVy7GcmVGw+59yCef3+6eJVxpL6PFw18y1HPx6tEbax39vA15oz7XfO+sjBl3JwBtOxSV2flPTmk2uUDf8YsGP7y72ERsAivABGwFEIELHm0/CH35PDQW++2Z+yiETrb9C0hNpk5H6/l7OHrALTo7MuHs/thZftiK52MSUJiGmcu3OPStQguXn1AWHjcU4EAQCkHK7w8SuHmYoebix2uzpr/OthbYW9rgZWl2UvNi5EkiYzMHJJTMoiJSyE6Npno2BRi4pJ5EJnA3fB44h6lFvqsh6s91au4Ua+2F/XrlMO5tG6GTXQpOyuHlbO2s3WZZsftspVd+WLxMLwq667nbsMPf7P087UA9PioE+/N/Y8r7UTAIrwCRMBSCBGw5ElLA+e8/UJiYrTyIbdzWSDz3l2CJEm0HdScT1eM1ll3ulqtZvOSg6yavR1VrhoXz1J8tmAw1euX10l5+pKSmsnl6w+5diuS0Hux3Lkby8OoxEKDmCcp5DJsbSywsTbHzNQEpVKBqakJShMFcrmM3FwVuSo1KpWaXJWatLQsUtKySE3LzF/V9CxOjjZ4l3WkUnkXalRxp0YVNxxKwNDVs9y7Gcns0asJu/YQgLeGNGPElG6Y6Wj4SpIk1s7cyG8zNgAw4IseDP2q33/vHRQBi/AKEAFLIUTAolsH/gxi9uAFmq3LO9dj8p/jtL6N/5Oun7vLd6NXEX3/EXK5jB6j2vD2hI5GszuuNqRnZHM3PI4HkYlExiQRGZ1EVIzmSkzKyN947b9QmihwKm2NS2lbnEvb4Oxki5uzHeXKOlLOszTWRjzBubhUKjV/Lz/E6tkBZGflYFvKivFzB9KoXU2dlalWq/nfp2vY9JNmF+dhX/dnwBc9tJO5CFiEV4AIWAohAhbdO77tNN/0+4nszByqNqrEV9s+x97JTmflpSVn8OuXGwncdBoAz4oujJ87kKp1y+msTGOSnZNLcnImSSnppKRmkZ2dS3aOiuycXHJyVKglCROFHBMTBQq5DBMTBZYWpthYm2FjbYGNtRnmZsoSMw/ov7h3M5KfPvmDG+fvAVCvZVXG/zSIUs66+yzIzsrhx3cWcfDPYwC8P3coPT7upL0CRMAivAJEwFIIEbDox+Vj15nadTYpj1Jxr+jKrF2Tca/gqtMyT+y9xM8T15MQk6zpbXm3DQPHd9D6SbpCyZObo+KvX/fzx7zd5GarsLA2Y+SX3XU+YTs1MY0ZPX8g5OAVFCYKPln+Pu3fbqndQrKzYf58zb8/+ghMxftdKHlEwFIIEbDkycyEnj01/960CczNtV5E+PUIJnf8hqi7sdg72fLV9olUbVhJ6+U8KSUhjV+nbuLgljMAuHiW4v2veum0u18wbtfOhrHwiw2EXokAoGHbGoyZ1QcndwedlhtzP47Jnb7l7uX7WNpYMHXjJ9Rr76PTMgWhpBIBSyFEwJJHT93Ij6ISmNxpFrfPh2FmYcqnq8bQsrefTsp60om9l1g0+S/i8nZZbfxGTd6b0RMXT0edly0Yh8T4FFZ+u529608AYGNvyXsze9K6e32dD3/dOhfKl12+I/5hAqXcHPgmYBIV63jrtExBKMlEwFIIEbDk0eO4d3pKBl/3ncvp3SGQt5X/4Ol9dLbs+R8ZaVn8MW83W5YeRJWrxsxcSZ8x7ekxqrVOJwILhqXKVRGw5hhrfgwgNUlzdlH7Po1454su2Oth6fWh9cf48Z1fyMrIxqt6Gb4J+AIXLx0e3KlSwblzmn/XrSu25hdKJBGwFEIELHn0PFFPlati6edr81dJNO3WgM9/G4uFte73Trl3M5JFX/zFpRO3ASjlYsug8R15o28jnS27FvRPkiROH7jKylnbuXtds1S5Qs0yjP6mN9Xq6b53Q6VSserL9az7bgsA9f19mLJuHFZ2Op4EKybdCq8AEbAUQgQseQz0Ibdn1UHmv/c/crJz8a5VlhlbP8PN20Xn5UqSxOFt51g9ewdR4fEAeFZyYdjEzjR+o9ZrsULmVXbldCgrZ23jyqlQAKztLBjy2Vt0GNRUL2cXpSWlMWvQz5wM0PR09JnQhXdmDUChj94OEbAIrwARsBRCBCx5DPghdzX4BtN7/EBCdBI2DlZ8/ttYGnWqp5eys7Ny2LnmGH/O30NyQhoAVXy9ePuTjtRtWVUELiVM6NUI1vwYwIm9lwEwNVPS5Z0W9PmgHTYO+nlP371ynxk9f+DBzUhMzZWMX/o+bQc210vZIAIW4dUgApZCiIAlz5MfctHRBT/kzMzAJO8cmJwczbLJojyZNjcXsrKKTmtqCkrNhm6xd6OZ1Ws2t86GAdDrk84M+rLX4yGaJ9KiUmlWNRVFqXy8lPMF06YlZ/DXon3sWrqfrMwcAKr6lqXfh/74NK2sCVyezFethoyMovM1MdG0BYAkQXq6dtIqFAVXcKWlaSetXA4WFi+XNj2dIrfelcnA0vLl0mZkaNq5KE+8R28G32DjL3s5FXhVU0WFnLY9G9B3bHtKu9oXfD9nZmreFy+Q73PTWlpq6g1ImZnsX3WAxeNXk52RTekypZj0x8dUrlv+qbRkZWl+PopiYaFpZ/KWKefkvHjaxERwyeulFAGLUFJJwlOSkpIkQEpKSjJ0VQwrNVWSNL9Knr527HicbuXKotOBJG3Y8Djthg3PTrty5eO0O3Y8O+3ChY/THjz47LTff/847alTz047bdrjtJcvPzOtavwnj9OGhT073w8+eJw2JubZaYcMebH/DyBJvXoV/P/2rLQdOxZMa2lZdNqWLQumLV266LT16xdM6+VVdNrq1QumrV696LReXgXT1q9fdNrSpSW1Wi1dDL4lfTFgkXTB1KPotJaWBfPt2PHZ7fakXr2enTY1VZIkSUpPSZculm/47LQxMY/z/eCDZ6cNC3ucdsKEZ6e9fPlx2mnTCq2fIJQ0JeeoVEH/rKw0H3FiCKRIe9YFk139MG/0a0zJO1bx1ZKdlcuETj9y6+J9APoa8G0bevEeX/edS7/QaGoZrhpPa9q0YI+VIJQgYkioEGJI6F8KGwrQw5DQv9M+uPmQ7wYv4N5lzS+kzh92YujswZiam+pkSAgKH+Z5FJ1EwJog9qw7QVJyFrkyBdZ2FrzZrzEde/riVtTyVDEkpKHFIaGkR6ns+fMEu34/RkJsCllyJUozE9r1akif4c1w9XjGxm86GBJSq9VsWXqI5ZP/JCcrB1d3OyaufJ8aTaoWnq++hoT+SftkeYJQwoiApRAiYDFemelZLPlkNTuW7APAu1ZZJq39EO9aXgapy/6Np9i69BARYbH5931bVKHDgCb4+dfGRCmWRGubSqUm5OgN9q4/wfE9F8nN1gQPji52vDW0OR0GNsGulLXe6xV1N4Yfhi3i4mHNnJlGnery6crR2JUWnyGCoA0iYCmECFiM34kdZ5kz/BcSY5NRmprwzrcD6PFxJ51vNFcYtVrNqf1XCPgtiLOHr/PPj5SDkw2tezSgRWdfKvuUFauL/qOHYbEEbjrNvg0niX2YkH+/Um1Puo1oRfO3fFGa6n+UW5Ikdq84wK/jVpGRmom5lRnv/jiETqPaif/ngqBFImAphAhYSoaE6ETmjlzMiR1nAajepAqfLHufslU9DFanqPB49qwLZs+6EyTEJOffd/VypGWXerTuXg+vym4Gq19JExUez+FtZzmy/Xz+OT8A1naWtO5enzf6NaJiTU+D1S/2QTw/f7A0/z1Ys1lVPl05WueHeArC60gELIUQAUvJIUkSAf/bz/8+/Y2M1EyUpiYMmtqbPp92wURpuDnluTkqTh+4wqG/z3Fy76X8ZdEAZSu74udfmyZv1qZSbU/xV/gTJEni/u1oTu67zPHdF7l+7m7+9+QKOXWaVaZ970Y0ebM2puZKg9VTrVYTsGQfyyb+TnpKBkpTE4Z+1Y+e49/Sz0ZwgvAaEgFLIUTAUvLEhMcy773/5Z9FVN7Hi0+WvU/lehUMXTUy0rI4uf8yh7ae5eyha+TmPJ6wWdrNnsZv1KROsyrU9quEjf3rt4IjKyObq2fDOB14hZP7rvDw7uP5QDKZDJ+mlWjZpS5+b9Y2yNyUfwu/HsFPoxZzOeg6ANUaV2L80vcpV8NwPT2C8DoQAUshRMBSMkmSxP61R/h13CpSHqUik8noOLId73zTH1tH3R9o9yJSk9I5feAqwXsucvrAVTLTH6+ukslkVKxVBp+mlanVuCKV65TF3kjqrU0ZaVlcP3+XS8G3uXTiNtfP382fOAtgYqrAx68SjdrXpMmbPji62hm0vv/Iyshiw/fb+HPWZnKyczG3MmP4twPp/MEboldFEPRABCyFEAFLyZYQnciv41dx8M9jANiUsmbY1/3pOLKtUf1iyc7M4XzQDc4evEbI8ZvcvxX9VBpXL0eq1ilHtfreVKrtiXc19xJ1inRujor7t6K4du4u18/f5WZIOPdvRaFWF/zYcXS1w7d5FRq1q0ndllWxtDYvMk99kySJoC2nWPLJaqLvaXp/GnTw5eNfR+JcVocnLAuCUIAIWAohApZXw4XDV1j04QrCLoUDUKmuN+//NIxazasZumqFio9K4sKxm4Qcv8n1s3e5f/vpAEYul+FR3pnyNTzwruaOh7czHt5OuHk7YW5hapB6k3f+UsyDRzy8G0f4zSjCrkVw93ok4bejCvSe/KO0mz21/SpS268Stfwq4uZV2ijn8ty7ep9FH63kfOAlAJw8HXn3h8G06O1nlPUVhFeZCFgKIQKWV4cqV8X2X/eyauo60pI0m6817lyPEbMG4lXduOccpCalc/NCONfOhnH97F3uXI0osPLo3xxd7XAt64ijix2lXOw0/3W2xcbBCms7C6xsLbCyscDSxhylqQkKE3mRv3QlSSIzPZuM1EzSUzNJS8kkLTmDxNgUEuJSSIhJJiE2mdiHiUSFxxMXmUhRHyUW1mZU9vGiWr1yVPH1onLtspRyMY5hnqLERybw+1cb2bksEFWuCqWZkj4TutB3YjcsrIyn90cQXiciYCmECFhePQkxSayeup5dywNRq9TI5TLeGNqawdP74FTG0dDVe2GPYpIJvfKA0CsR3L0RycOwWCLCYklNesZOuM9gYqpAqTRBJpehylWjUqlQqyTUqmccMFgEc0tTXMuWpmwlF8pVc8e7qjve1dxxLlOqxPRGJD9KYcP3f7N1wS6yMjTzi5p2a8C7Pw7BrbyLoasnCK81EbAUQgQsr677NyJYMflPgjafBMDUXMlb775Bv4ndcHCxN3T1XlpyQhoRoTHERSYSH5VEfHQSj6KTiI9OJjUpnbSUDNKSMkhLznhq/sizyOUyLG3MsbTWXPZONjg42eKQ999SLra4eZXGzas0do7WJSYw+beM1Ay2LtjN+u+35vfEVW9SheHfDqB2i+qGrp4gCCJgKZwIWF59V4NvsPTztflLU80tzeg65k36fNrVaFYU6YIkSWRlZJOTrSI3J5fcHBU52bmo1RImJgoUJnIUCjlyhRxzS1PMLExLbBDyIjJSM/h70R7++nEbyfEpAJSv7cU73/SnYce6r/RrF4SSRgQshRABy+tBkiTO7rvI6qnruH7qNgCWNhZ0G9uBrmPepJTrMw7OE0q0wgIVj0puvD21N637NzXIEQ+CIDybCFgKIQKW14skSZzYcZbV09ZzJ0Szs6rS1IQ2A5rTc/xbeNcsa+gqCloSEx7L34v2sHPpflITNadPu1d0ZdCXvWjTvxkKE+NZ9i4IQkFG8WfEokWLKFeuHObm5jRq1IhTp04VmTYnJ4eZM2dSoUIFzM3N8fHxYffu3QXSTJ8+HZlMVuCqWrWI492F155MJsOvc31+OTObqRsnUN2vMjnZuexZdZBRtT9hUoevObvvQpGrYATjd+tcKN8MmMfbFcaw4Ye/SU1Mw6OSG5+tGsOKq/No/3ZLEawIgpEz3GEredavX8/48eNZvHgxjRo1Yt68efj7+3Pjxg2cnZ2fSj9lyhTWrl3L0qVLqVq1Knv27KF79+4cP34cX1/f/HQ1atRg//79+V+bmBj8pQpGTi6X07xHI5r3aMTV4Bts/GkHxzaf5MyeC5zZcwHPqh50Hf0m7Qe3xNLGwtDVFZ4jOyuHoE0n2L54b/5cJYA6bWrS46NONOzoa1QbCQqC8GwGHxJq1KgRDRo0YOHChZB3qJinpydjx45l4sSJT6V3d3dn8uTJjB49Ov9ez549sbCwYO3atZDXw7J161ZCQkJeqk5iSEj4R2RoNJvnBbB39SHSUzIAsLS14I0hrXjznTZU8Cln6CoK/xIZFk3Akn3sWXmQxFjNvjVyhZzW/ZrS65POVKzjbegqCoLwEgza7ZCdnc3Zs2eZNGlS/j25XE67du0IDg4u9JmsrCzMzQtu3GRhYUFQUFCBe7du3cLd3R1zc3P8/PyYNWsWZcsWPhchKyuLrKys/K+Tk4venEt4vbiVd2H0z+8w9Ot+7PvtMNsW7eb+jYdsXbCLrQt24V2rLG0HtqDtwGaU9ig5+7m8apIfpXB04wkCfz/KpaPX8u+X9ihFx5Ht6DCiLaXdSxm0joIg/DcG7WF5+PAhHh4eHD9+HD8/v/z7n332GYcPH+bkyZNPPTNgwAAuXLjA1q1bqVChAoGBgXTt2hWVSpUfdOzatYvU1FSqVKlCZGQkM2bMICIigsuXL2Nj8/SS1enTpzNjxoyn7oseFuHf1Go15/ZfYuey/ZzYdoac7FzImwfj27YmbQY0p1n3hljZWRm6qq+87Kwczu69wL7fDhG87UyBU7Drtq9Nl/f9afxWPTE3RRBeESUuYImNjWXkyJFs374dmUxGhQoVaNeuHStWrCAjI6PQchITE/Hy8mLu3LkMHz78qe8X1sPi6ekpAhbhmVIT0zjyVzD71hwuMEdCaaakUae6tOnfjAYdfEvUYYXGLic7h3P7L3H4r+Mc33o6f5M38vZPaTOgOa37N8XZs7RB6ykIgvYZdEiodOnSKBQKoqMLHvIWHR2Nq6troc84OTmxdetWMjMziY+Px93dnYkTJ1K+fPkiy7G3t6dy5crcvn270O+bmZlhZiZ+qQjFY21vRceR7eg4sh2RodEc+COIA38eJfxaBEGbTxK0+SSm5kp829aiUce6NOpUV5zu+xISYpI4syeEM3tCOLXzfP5yZABHdwda9WlC+yGtxHwiQXjFGcWk24YNG7JgwQLI63IvW7YsY8aMKXTS7b/l5ORQrVo1+vTpw7fffltomtTUVMqWLcv06dP58MMPn5unmHQrvCxJkgi9eI8DfwRxeMNxou/FFvi+d62y+LaphU+rGtRqUQ0bB2uD1dVYZaRlci34JiEHL3Nm7wVunQ0t8P1Srva06OVHyz5+VG9SRWzyJgivCYMHLOvXr2fIkCEsWbKEhg0bMm/ePDZs2MD169dxcXFh8ODBeHh4MGvWLABOnjxJREQEderUISIigunTpxMWFsa5c+ewt9ecBTNhwgQ6d+6Ml5cXDx8+ZNq0aYSEhHD16lWcnJ7/F64IWARtkCSJu5fDORlwjpM7z3H1+I0C5/jI5TIqN6hIvXa1qdm8GtUaV8LK1tKgdTaE7Mxsbp0LI+TAZc7uv8C14JsF5qMAVKrrTX3/OjTs4Es1v8piObIgvIYMvjlJ3759iY2NZerUqURFRVGnTh12796Ni4vmZNTw8PACf0FlZmYyZcoUQkNDsba2pmPHjqxZsyY/WAF48OAB/fv3Jz4+HicnJ5o1a8aJEydeKFgRBG2RyWR41/LCu5YX/SZ2Jzk+hfOBlwg5eJkLh65w/8ZDrp+8xfWTtyAvgCnvU46aTatStVElKvqWo0wV91fql7MkSUTfi+XmmTtcDb7J1eAb3D4Xlj95+R9Ono7Ublmdeu18qPdGbXFMgiAIhu9hMUaih0XQh5j7cZzde4GLR65yOeg6UWExT6UxszDFu7YXFXzKUbaaB55V3ClTxR3nsqWNOpBRq9U8ikwg4lYUD24+JPTivfwrPfnpyfH2TrbUbF6Nuu1qU7ddLdwruIqDBwVBKEAELIUQAYtgCHER8Vw5doPLQde5dT6UOyF3yUzLKjSt0kyJW3lnnMuWxtmzNM5lnXDydMTR3QF7ZztKudpjW9pGJ0GNWq0mNSGNhJgkHkUmEPfgEXERj4iLiCcu4hGRodE8vB1FVkZ2oc+bKBV41fCkeuPKVG9Shep+lXEr7yICFEEQnkkELIUQAYtgDNRqNQ9vR3H7fBh3Qu5y/+ZDIm5GEnEr8qkhlMLI5TLsne2wdrDCys4SS1tLzX+tzVGaKVEoFShNTVAoTZDLZahyVahValS5atQqNZlpmaSnZpKRmklGSgZpSekkxSaTGJuMWqV+fvkKOa7eznhUcsO7hiflfcpRvnZZPKt6YKI0+Gi0IAgljAhYCiECFsGYqVQqYsLjeHg7itj78cSExxF7P46Y+3E8ikokMTqJpLgUnR/WaG1vhYOrPU5lSuHoUYrS7qUo7eGYF6S44uLlJAITQRC0RnyaCEIJo1AocPN2wc3bpcg0qlwVibHJJEQlkpqYRlpSOunJml6S9JQMVDkqcrJz8v6bi6SWUJjIUZgokCvkyBVyzK3MsbA2x8LGHEsbCyxsLLB3tsXe2Q670jYoTZV6fd2CILzeRMAiCK8ghYkCRzcHHN3E6hpBEF4NYsclQRAEQRCMnghYBEEQBEEweiJgEQRBEATB6ImARRAEQRAEoycCFkEQBEEQjJ4IWARBEARBMHoiYBEEQRAEweiJgEUQBEEQBKMnAhZBEARBEIyeCFgEQRAEQTB6ImARBEEQBMHoiYBFEARBEASjJwIWQRAEQRCMnghYBEEQBEEweiJgEQRBEATB6ImARRAEQRAEoycCFkEQBEEQjJ4IWARBEARBMHoiYBEEQRAEweiJgEUQBEEQBKMnAhZBEARBEIyeCFgEQRAEQTB6ImARBEEQBMHoiYBFEARBEASjJwIWQRAEQRCMnghYBEEQBEEweiJgEQRBEATB6ImARRAEQRAEoycCFkEQBEEQjJ4IWARBEARBMHoiYBEEQRAEweiJgEUQBEEQBKNnFAHLokWLKFeuHObm5jRq1IhTp04VmTYnJ4eZM2dSoUIFzM3N8fHxYffu3f8pT0EQBEEQjJvBA5b169czfvx4pk2bxrlz5/Dx8cHf35+YmJhC00+ZMoUlS5awYMECrl69ynvvvUf37t05f/78S+cpCIIgCIJxk0mSJBmyAo0aNaJBgwYsXLgQALVajaenJ2PHjmXixIlPpXd3d2fy5MmMHj06/17Pnj2xsLBg7dq1L5XnvyUnJ2NnZ0dSUhK2trZafLWCIAiCILwME0MWnp2dzdmzZ5k0aVL+PblcTrt27QgODi70maysLMzNzQvcs7CwICgo6D/lmZWVlf91UlIS5AUugiAIgiAUn42NDTKZTGv5GTRgiYuLQ6VS4eLiUuC+i4sL169fL/QZf39/5s6dS4sWLahQoQKBgYFs3rwZlUr10nnOmjWLGTNmPHXf09PzP7w6QRAEQXh9xcTE4OTkpLX8DBqwvIz58+czcuRIqlatikwmo0KFCgwbNowVK1a8dJ6TJk1i/Pjx+V8nJibi5eVFeHg4dnZ2Wqp5yZScnIynpyf3799/rYfHRDtoiHZ4TLSFhmiHx0RbaPzTDqamplrN16ABS+nSpVEoFERHRxe4Hx0djaura6HPODk5sXXrVjIzM4mPj8fd3Z2JEydSvnz5l87TzMwMMzOzp+7b2dm91m+6J9na2oq2EO2QT7TDY6ItNEQ7PCbaQkObw0EYepWQqakp9erVIzAwMP+eWq0mMDAQPz+/Zz5rbm6Oh4cHubm5bNq0ia5du/7nPAVBEARBME4GHxIaP348Q4YMoX79+jRs2JB58+aRlpbGsGHDABg8eDAeHh7MmjULgJMnTxIREUGdOnWIiIhg+vTpqNVqPvvssxfOUxAEQRCEksXgAUvfvn2JjY1l6tSpREVFUadOHXbv3p0/aTY8PBy5/HFHUGZmJlOmTCE0NBRra2s6duzImjVrsLe3f+E8n8fMzIxp06YVOkz0uhFtoSHaQUO0w2OiLTREOzwm2kJDV+1g8H1YBEEQBEEQnsfgO90KgiAIgiA8jwhYBEEQBEEweiJgEQRBEATB6ImARRAEQRAEo/faBSzTp09HJpMVuKpWrVpk+s2bN1O/fn3s7e2xsrKiTp06rFmzRq911pXitsWT1q1bh0wmo1u3bjqvp64Vtx1WrVr1VPp/n29VUr3MeyIxMZHRo0fj5uaGmZkZlStXZufOnXqrsy4Utx1atWr1VHqZTEanTp30Wm9te5n3w7x586hSpQoWFhZ4enoybtw4MjMz9VZnXSluW+Tk5DBz5kwqVKiAubk5Pj4+7N69W6911pWIiAgGDRqEo6MjFhYW1KpVizNnzjzzmUOHDlG3bl3MzMyoWLEiq1atKna5Bl/WbAg1atRg//79+V+bmBTdDKVKlWLy5MlUrVoVU1NTduzYwbBhw3B2dsbf319PNdad4rTFP+7evcuECRNo3ry5jmunP8VtB1tbW27cuJH/tbZ3dDSk4rRFdnY27du3x9nZmY0bN+Lh4cG9e/cKbDNQUhWnHTZv3kx2dnb+1/Hx8fj4+NC7d2+d11PXitMOf/zxBxMnTmTFihU0adKEmzdvMnToUGQyGXPnztVTjXWnOG0xZcoU1q5dy9KlS6latSp79uyhe/fuHD9+HF9fXz3VWPsSEhJo2rQprVu3ZteuXTg5OXHr1i0cHByKfCYsLIxOnTrx3nvv8fvvvxMYGMiIESNwc3Mr1u/R1zJgMTExKXKb/n9r1apVga8/+ugjVq9eTVBQ0CsRsBSnLQBUKhUDBw5kxowZHD16lMTERJ3WT1+K2w4ymaxY6UuS4rTFihUrePToEcePH0epVAJQrlw5HddQP4rTDqVKlSrw9bp167C0tHwlApbitMPx48dp2rQpAwYMgLz3Qv/+/Tl58qSOa6kfxWmLNWvWMHnyZDp27AjA+++/z/79+5kzZw5r167VcU11Z/bs2Xh6erJy5cr8e97e3s98ZvHixXh7ezNnzhwAqlWrRlBQED/99FOxfo++dkNCALdu3cLd3Z3y5cszcOBAwsPDX+g5SZIIDAzkxo0btGjRQuf11IfitsXMmTNxdnZm+PDhequjPhS3HVJTU/Hy8sLT05OuXbty5coVvdVV14rTFtu2bcPPz4/Ro0fj4uJCzZo1+fbbb/NPTy/JXvZzAmD58uX069cPKysrndZRH4rTDk2aNOHs2bOcOnUKgNDQUHbu3Jn/S7ukK05bZGVlPTVUbGFhQVBQkB5qqjvbtm2jfv369O7dG2dnZ3x9fVm6dOkznwkODqZdu3YF7vn7+xMcHFy8wqXXzM6dO6UNGzZIFy5ckHbv3i35+flJZcuWlZKTk4t8JjExUbKyspJMTEwkMzMzafny5Xqts64Uty2OHj0qeXh4SLGxsZIkSdKQIUOkrl276rnW2lfcdjh+/Li0evVq6fz589KhQ4ekt956S7K1tZXu37+v97prW3HbokqVKpKZmZn0zjvvSGfOnJHWrVsnlSpVSpo+fbre665NL/M58Y+TJ09KgHTy5Em91FWXXqYd5s+fLymVSsnExEQCpPfee0+vddaV4rZF//79perVq0s3b96UVCqVtHfvXsnCwkIyNTXVe921yczMTDIzM5MmTZoknTt3TlqyZIlkbm4urVq1qshnKlWqJH377bcF7gUEBEiAlJ6e/sJlv3YBy78lJCRItra20rJly4pMo1KppFu3bknnz5+XfvzxR8nOzk46ePCgXuupD89qi+TkZKlcuXLSzp078++9KgHLv73Ie+JJ2dnZUoUKFaQpU6bovG769ry2qFSpkuTp6Snl5ubm35szZ47k6uqqx1rqXnHeE6NGjZJq1aqll3rp2/Pa4eDBg5KLi4u0dOlS6eLFi9LmzZslT09PaebMmXqvq649ry1iYmKkrl27SnK5XFIoFFLlypWlDz74QDI3N9d7XbVJqVRKfn5+Be6NHTtWaty4cZHPaCtgeS3nsDzJ3t6eypUrc/v27SLTyOVyKlasCECdOnW4du0as2bNemp+S0n3rLa4c+cOd+/epXPnzvn31Go15I3r3rhxgwoVKui1vrryIu+JJymVSnx9fV84fUnyvLZwc3NDqVSiUCjy71WrVo2oqCiys7MxNTXVY21150XfE2lpaaxbt46ZM2fqrW769Lx2+PLLL3n77bcZMWIEALVq1SItLY1Ro0YxefLkAufClXTPawsnJye2bt1KZmYm8fHxuLu7M3HiRMqXL6/3umqTm5sb1atXL3CvWrVqbNq0qchnXF1diY6OLnAvOjoaW1tbLCwsXrjsV+fd85JSU1O5c+cObm5uL/yMWq0mKytLp/UyhGe1RdWqVbl06RIhISH5V5cuXWjdujUhISF4enoapM66UNz3hEql4tKlS8V6D5UUz2uLpk2bcvv27fzgFeDmzZu4ubm9MsEKxXhP/PXXX2RlZTFo0CC91U2fntcO6enpTwUl/wSzr9qxdS/6njA3N8fDw4Pc3Fw2bdpE165d9VZHXWjatGmBFZLk/cx7eXkV+Yyfnx+BgYEF7u3btw8/P7/iFf4SPUIl2ieffCIdOnRICgsLk44dOya1a9dOKl26tBQTEyNJkiS9/fbb0sSJE/PTf/vtt9LevXulO3fuSFevXpV+/PFHycTERFq6dKkBX4V2FLct/u1VGRIqbjvMmDFD2rNnj3Tnzh3p7NmzUr9+/SRzc3PpypUrBnwV2lHctggPD5dsbGykMWPGSDdu3JB27NghOTs7S19//bUBX8V/97I/G82aNZP69u1rgBrrRnHbYdq0aZKNjY30559/SqGhodLevXulChUqSH369DHgq9CO4rbFiRMnpE2bNkl37tyRjhw5IrVp00by9vaWEhISDPgq/rtTp05JJiYm0jfffCPdunVL+v333yVLS0tp7dq1+WkmTpwovf322/lfh4aGSpaWltKnn34qXbt2TVq0aJGkUCik3bt3F6vs125I6MGDB/Tv35/4+HicnJxo1qwZJ06cwMnJCYDw8PACfyGkpaXxwQcf8ODBAywsLKhatSpr166lb9++BnwV2lHctnhVFbcdEhISGDlyJFFRUTg4OFCvXj2OHz/+VDdpSVTctvD09GTPnj2MGzeO2rVr4+HhwUcffcTnn39uwFfx373Mz8aNGzcICgpi7969Bqq19hW3HaZMmYJMJmPKlClERETg5ORE586d+eabbwz4KrSjuG2RmZnJlClTCA0Nxdramo4dO7JmzZoSv0dRgwYN2LJlC5MmTWLmzJl4e3szb948Bg4cmJ8mMjKywAoqb29vAgICGDduHPPnz6dMmTIsW7as2FuDyKRXrZ9OEARBEIRXzqv/57MgCIIgCCWeCFgEQRAEQTB6ImARBEEQBMHoiYBFEARBEASjJwIWQRAEQRCMnghYBEEQBEEweiJgEQRBEATB6ImARRAEQRAEoycCFkEQBEEQjJ4IWARBEARBMHoiYBEEoUQICgpCqVSSmZmZf+/u3bvIZDLu3btn0LoJgqB7ImARBKFECAkJoVq1apibm+ffO3/+PA4ODs882l4QhFeDCFgEQSgRLly4gK+vb4F7ISEh+Pj4GKxOgiDojwhYBEEoEUJCQqhTp06Be+fPn3/qniAIryYRsAiCYPRUKhWXL19+qofl3LlzImARhNeECFgEQTB6N27cIDMzE3d39/x7wcHBREREiIBFEF4TImARBMHohYSEALBgwQJu3brFrl27GDx4MADZ2dkGrp0gCPogAhZBEIxeSEgI/v7+hIaGUqtWLSZPnsyMGTOwtbXl559/NnT1BEHQA5kkSZKhKyEIgvAs/v7+NGjQgK+//trQVREEwUBED4sgCEbvwoUL1KpVy9DVEATBgETAIgiCUYuKiiI6OloELILwmhNDQoIgCIIgGD3RwyIIgiAIgtETAYsgCIIgCEZPBCyCIAiCIBg9EbAIgiAIgmD0RMAiCIIgCILREwGLIAiCIAhGTwQsgiAIgiAYPRGwCIIgCIJg9ETAIgiCIAiC0RMBiyAIgiAIRu//mo0CB4YV36wAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(6, 5))\n", + "\n", + "cnt = ax.contour(mu_grid, sigma_grid, RelativeLikelihood(mu_grid, sigma_grid, YSample), Levels)\n", + "ax.scatter(x=Mu_MLE, y=Sigma_MLE, color='k')\n", + "\n", + "ax.plot([LowMu, LowMu, UppMu, UppMu, LowMu], [LowSigma, UppSigma, UppSigma, LowSigma, LowSigma], color='r', ls='--')\n", + "\n", + "ax.set_title(r\"Confidence regions for $\\mu$ and $\\sigma$\")\n", + "ax.set_xlabel(r\"$\\mu$\")\n", + "ax.set_ylabel(r\"$\\sigma$\")\n", + "\n", + "_, labels = cnt.legend_elements()\n", + "ax.legend(_, Probabilities, loc=\"upper right\", frameon=False)\n", + "\n", + "ax.spines[['right', 'top']].set_visible(False)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGdCAYAAAD60sxaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB86klEQVR4nO3dd1yVdf/H8ddh772RpSLiAic5Sk1ylSMbVpajst9ty27KzEpt2O1Iy4ZpWc670oaVWZneJO5tigMRFBSVIciQPc71+wM4eRQUEbiA83k+HudR55zvua73hQofvtd3aBRFURBCCCGEMCBGagcQQgghhGhoUgAJIYQQwuBIASSEEEIIgyMFkBBCCCEMjhRAQgghhDA4UgAJIYQQwuBIASSEEEIIgyMFkBBCCCEMjhRAVVAUhZycHGSNSCGEEKJ5kgKoCleuXMHe3p4rV66oHUUIIYQQ9UAKICGEEEIYHCmAhBBCCGFwpAASQgghhMGRAkgIIYQQBkcKICGEEEIYHCmAhBBCCGFwpAASQgghhMGRAkgIIYQQBkcKICGEEEIYHCmAhBBCCGFwpAASQgghhMGRAkgIIYQQBkcKICGEEEIYHCmAhBBC3Jbx48czcuRIvdd++OEHLCwsWLBgAePHj0ej0aDRaDA1NcXd3Z177rmHZcuWodVq9T7n7++va3v1Y86cOQ18VaK5kwJICCFEnfryyy8ZM2YMixcv5uWXXwZg8ODBJCcnk5iYyB9//EH//v2ZPHky9913H6WlpXqff+edd0hOTtZ7vPDCCypdjWiuTNQOIERzcurgRfZvOs3l5Fz82rvSZ0RbnDxs2LNnD/b29gQHB6sdUTQhiqJQXFhag5Z1z8zCBI1Gc8ufmzdvHjNnzmTNmjXcf//9utfNzc3x8PAAwNvbmy5dunDHHXcwYMAAVqxYwdNPP61ra2trq2srRH2RAkiIOqAoCr99eYhfPz+oe+3YriQ2rNzFOYv/8eeWXwF48MEHmTFjBh07dlQxrWgqigtLefHO5aqc++PtEzC3NL2lz0ydOpXPPvuMDRs2MGDAgJu2v/vuuwkJCWHdunV6BZAQDUFugQlRB7asPa4rfu4YGsjoV3qSY32K1fvf5M8tv2JkZIRGo+GHH36gX79+FBQUqB1ZiDr1xx9/MG/ePH755ZcaFT+V2rZtS2Jiot5rU6dOxcbGRu+xffv2ekgtDJn0AAlxmy6eyeTHj/cCMOrFMAaNDSm/BbBtAQCOFl70bzmeJ98KZ8V3nxESEoKlpaXKqUVTYGZhwsfbJ6h27lvRqVMn0tPTmTlzJj169MDGxqZGn1MU5bpbbVOmTGH8+PF6r3l7e99SHiFuRgogIW7T9x/sprS4jA69fBj4RCcAXn/9dSwtLcnPz8erqBd/R55j+4qLrPhmNVZ25rrPVvXNX4hKGo3mlm9DqcXb25sffviB/v37M3jwYP744w9sbW1v+rmYmBgCAgL0XnNxcaF169b1mFYIuQUmxG1JOJbGiT3nMTLW8OjU3rpixtzcnKlTp/LOO+8wfsbduPnak5max3cLduvabNiwgdDQUC5cuKDyVQhRN/z8/Ni6dSspKSkMHjyYK1eu3LD9X3/9xdGjR3nggQcaLKMQlaQAEuI2/LHsbwDChgTi4m1HTEyMbkpvZaFjYW3Gk+/0R6OBPb/HEXvgIoqi8N577xEdHa2bJixEc+Dj40NUVBRpaWkMGjSInJwcAIqKikhJSeHChQscOnSI//znP4wYMYL77ruPsWPH6h3jypUrpKSk6D0qjyNEXZECSIhaykzLI3r7WQAGjw8lNzeXu+++m44dO3L69Gm9tgEd3LjrwXYAfDtvJ4pWYfHixRgZGbF27Vo2b96syjUIUR9atGhBVFQU6enpuiJo48aNeHp64u/vz+DBg9myZQsff/wxv/zyC8bGxnqfnzFjBp6ennqPV199VbXrEc2TjAESopb2/RGHokDrzh54+Dswc+ZMUlJSsLKyokWLFte1H/lsdw5sOk3ymUz2/B5Hr2GhPP/883z88cc899xzHD16FHNz8yrPJURjtmLFiute8/b25tSpU7d8rGtnhAlRX6QHSIhaUBSFPb/FAdDz3jZcuHCB999/H4C5c+dWWchY2ZozeHwoAL9+fpCS4jLeeecdPDw8iIuLY8mSJQ18FUIIYbikABKiFi7EX+bimUxMzIzpGt6Sd999l4KCAnr37n3DAZ39HmqPg5s1l1Ny2fbjCezt7XnzzTcBWL5cnQXvhBDCEEkBJEQtRG8rH/vT/o4WaEy0fPvtt1Cxh9GNprWbWZhw38QuAPz+1d8U5hXz6KOPYmZmxpEjR4iOjm6gKxBCCMPWKAqgRYsW4e/vj4WFBWFhYezbt6/atuvWraNbt244ODhgbW1NaGgoq1ev1mtz9c7DlY/Bgwc3wJUIQxG94xwAHe/05Y8//iAnJ4cWLVrQr1+/m36217Ag3H3tyc0qZMt3x3FycmL+/Pls3ryZ9u3bN0B6IYQQqhdAa9euJSIigpkzZ3Lo0CFCQkIYNGgQaWlpVbZ3cnLijTfeYPfu3URHRzNhwgQmTJjAn3/+qdeucufhykflb+hC3K6cywUkHiv/+9mhty9RUVEAPPLIIxgZ3fyflLGJEUOfLu8F+mvNMYoLS3nhhRcIDw+/bjaMEEKI+qF6AfTBBx8wceJEJkyYQLt27ViyZAlWVlYsW7asyvb9+vXj/vvvJzg4mFatWjF58mQ6derEjh079NpV7jxc+XB0dGygKxLN3fFdSSgK+AQ54+hmzcKFC/n77795/vnna3yM7gNb4eRhQ05GAbs33PpMGSGEELdH1QKouLiYgwcPEh4e/k8gIyPCw8PZvXv3TT+vKAqRkZHExsZy11136b0XFRWFm5sbQUFBTJo0iYyMjHq5BmF4YvaeB6BDLx+oWPAwNDQUPz+/Gh/D2MSIex4v3zZj83+j0ZZpOXv2LK+88gqTJ0+up+RCCCEqqboOUHp6OmVlZbi7u+u97u7uzsmTJ6v9XHZ2Nt7e3hQVFWFsbMxnn33GPffco3t/8ODBjBo1ioCAAE6fPs3rr7/OkCFD2L17d5W3GIqKiigqKtI9lxVHRXUUReHUoWQAgrp7U1JSgqlp7fZq6j0iiA1LD3LpfA6H/koAx0wWLFiAhYUF7777LnZ2dnWcXgghRCXVb4HVhq2tLYcPH2b//v289957RERE6MZhUDEWY/jw4XTs2JGRI0eyYcMG9u/fr9fmarNnz8be3l738PHxacCrEU1J+oUrZKbmYWxihI07uLm5MXbsWIqLi2/5WOaWptz9SAcANq44TJcuXQgODqawsJAffvihHtIL0fSNHz+ekSNH6p7369ePl1566baOWRfHqI2oqCg0Gg1ZWVlQsaCkg4NDnZ8nMTERjUbD4cOHqzxvfZ6rMVO1AHJxccHY2JjU1FS911NTU/Hw8Kj2c0ZGRrRu3ZrQ0FBefvllHnzwQWbPnl1t+5YtW+Li4kJ8fHyV70+bNo3s7GzdIykp6TauSjRnpw5ehIqtLX759SeysrKIiYnBzMysVsfr91B7TM2NSYrN4Ex0mm5PpFWrVtVpbiHq09Uzb83MzGjdujXvvPOObl+8+rRu3TrefffdGrWt7gf/rRyjPo0ePbrGq2ffSrHk4+NDcnIyHTp0uM2E+q4tRuvzXPVB1QLIzMyMrl27EhkZqXtNq9USGRlJz549a3wcrVardwvrWufPnycjIwNPT88q3zc3N8fOzk7vIURVTh0sv/3VpqunbmbhY489Vuvj2ThYEDY0EIAta4/x+OOPo9Fo2Lp1q2wJIJqUypm3cXFxvPzyy7z11lu61dGvVZse0+o4OTlha2ur+jHqgqWlJW5ubnV6zOLiYoyNjfHw8MDEpP5HvTTkuW6X6rfAIiIiWLp0KStXriQmJoZJkyaRl5fHhAkTABg7dizTpk3TtZ89ezabN2/mzJkzxMTEsGDBAlavXs3jjz8OQG5uLlOmTGHPnj0kJiYSGRnJiBEjaN26NYMGDVLtOkXzEH8kBQBL9xJ27dqFRqNh9OjRt3XMfg+Vr/1z6K8EbMwddQP6f//99zpILETDqJx56+fnx6RJkwgPD2f9+vVwVU/Be++9h5eXF0FBQQAkJSXx8MMP4+DggJOTEyNGjNAr/MvKyoiIiMDBwQFnZ2deffVVFEXRO++1t6+KioqYOnUqPj4+mJub07p1a7766isSExPp378/AI6Ojmg0GsaPH1/lMTIzMxk7diyOjo5YWVkxZMgQ4uLidO9X9r78+eefBAcHY2NjoysAb+T333+nTZs2WFpa0r9//+t+ybm2V+fIkSP0798fW1tb7Ozs6Nq1KwcOHCAqKooJEyaQnZ2t63l76623APD39+fdd99l7Nix2NnZ8cwzz1R7W2rnzp106tQJCwsL7rjjDo4dO6Z776233iI0NFSv/cKFC/H399e9v3LlSn755RddhqioqCrPtXXrVnr06IG5uTmenp689tprer2D/fr148UXX+TVV1/FyckJDw8P3fXUJ9ULoNGjRzN//nxmzJhBaGgohw8fZuPGjbqB0efOndP7S5WXl8ezzz5L+/bt6d27Nz/++CP//e9/efrpp6Gi+oyOjmb48OG0adOGp556iq5du7J9+3bZaFLclpzLBaRfuIJGAwdjtkHFP1wvL6/bOq5PG2dah3qgLVPYvi5GV6hv2rSpTnKLpi8vL6/aR2FhYY3bFhQU1KhtXbC0tNTr6amcsbt582Y2bNhASUkJgwYNwtbWlu3bt7Nz505dIVH5uQULFrBixQqWLVvGjh07uHz5Mj/99NMNzzt27Fi+/fZbPv74Y2JiYvj888+xsbHBx8eHH3/8EYDY2FiSk5P56KOPqjzG+PHjOXDgAOvXr2f37t0oisLQoUMpKSnRtcnPz2f+/PmsXr2abdu2ce7cOV555ZVqcyUlJTFq1CiGDRvG4cOHefrpp3nttddueC1jxoyhRYsW7N+/n4MHD/Laa69hampKr169WLhwIXZ2drq17q4+9/z58wkJCeHvv/9m+vTp1R5/ypQpLFiwgP379+Pq6sqwYcP0rvFGXnnlFR5++GG9Nfd69ep1XbsLFy4wdOhQunfvzpEjR1i8eDFfffUVs2bN0mu3cuVKrK2t2bt3L/PmzeOdd95h8+bNNcpSa4q4TnZ2tgIo2dnZakcRjcjhrYnKM10/V2Y+9J0ycOBABVAWLlxYJ8fetzFOeabr58orA1cpu3fvUfz8/JSIiIg6ObZo+oBqH0OHDtVra2VlVW3bvn376rV1cXGpst2tGjdunDJixAhFURRFq9UqmzdvVszNzZVXXnlF9767u7tSVFSk+8zq1auVoKAgRavV6l4rKipSLC0tlT///FNRFEXx9PRU5s2bp3u/pKREadGihe5ciqIoffv2VSZPnqwoiqLExsYqgLJ58+Yqc27ZskUBlMzMTL3Xrz7GqVOnFEDZuXOn7v309HTF0tJS+e677xRFUZTly5crgBIfH69rs2jRIsXd3b3ar9G0adOUdu3a6b02depUvTzLly9X7O3tde/b2toqK1asqPJ417at5Ofnp4wcOVLvtYSEBAVQ/v77b72vw5o1a3RtMjIyFEtLS2Xt2rWKoijKzJkzlZCQEL3jfPjhh4qfn5/u+dV/7tWd6/XXX7/uz3nRokWKjY2NUlZWpigVX/8+ffroHad79+7K1KlTq7z2utL4b9IJ0UgkVKz+7NPWgXnztwMwYMCAOjl257sDsHO2JCejAKMsJxISEm64p5gQjc2GDRuwsbGhpKQErVbLY489pncbo2PHjnqTBY4cOUJ8fPx1Y28KCws5ffo02dnZJCcnExYWpnvPxMSEbt26XXcbrNLhw4cxNjamb9++tb6OmJgYTExM9M7r7OxMUFAQMTExutesrKxo1aqV7rmnp2e1OxhUHvfqYwI3HesaERHB008/zerVqwkPD+ehhx7SO2d1unXrdtM2157fycnpumusCzExMfTs2VPv+1nv3r3Jzc3l/Pnz+Pr6AtCpUye9z93s61kXpAASooYqCyCvNg5MmTKFgwcP1tneXSamxtw5Kpjflh5i5/pT9BgcWCfHFc1Dbm5ute9du7bZjX5oXLtVS10OtO/fvz+LFy/GzMwMLy+v6wbBWltb6z3Pzc2la9eufP3119cdy9XVtVYZLC0ta/W52rh2/S+NRlNtYVZbb731Fo899hi//fYbf/zxBzNnzmTNmjXcf//9N/zctV/r2jAyMrruemp6e6w2qvp6arXaejsfjWEMkBBNgbZMS+Lxiv2/erTk7bffZsOGDXXaS9PrvjYAxO6/wOWUXEpLS/UGJQrDZW1tXe3DwsKixm2vLRCqa1fbjK1bt8bX17dGM4C6dOlCXFwcbm5utG7dWu9RuSabp6cne/fu1X2mtLSUgwcPVnvMjh07otVq2bp1a5XvV/ZAlZWVVXuM4OBgSktL9c6bkZFBbGws7dq1u+l13ei41270vWfPnpt+rk2bNvz73/9m06ZNjBo1iuXLl+uu5UbXURNXnz8zM5NTp04RHBwMFUVoSkqKXhF07SDqmmQIDg7WjaOqtHPnTmxtbWnRosVt5b9dUgAJUQNpSTkU5pVgZmGCV8v62VfOxduOwC6eKAps/n4/Li4uhIaGysrkolkaM2YMLi4ujBgxgu3bt5OQkEBUVBQvvvgi58+XbzczefJk5syZw88//8zJkyd59tlnb7h4n7+/P+PGjePJJ5/k559/1h3zu+++A8DPzw+NRsOGDRu4dOlSlT1rgYGBjBgxgokTJ7Jjxw6OHDnC448/jre3NyNGjKj19f7rX/8iLi6OKVOmEBsbyzfffMOKFSuqbV9QUMDzzz9PVFQUZ8+eZefOnezfv19XoPj7+5Obm0tkZCTp6enk5+ffcqZ33nmHyMhIjh07xvjx43FxcdGt69OvXz8uXbrEvHnzOH36NIsWLeKPP/7Q+7y/vz/R0dHExsaSnp5eZQ/Rs88+S1JSEi+88AInT57kl19+YebMmURERNRo8+j6JAWQEDVw7mQ6AK4BVqz/9RcyMzPr5Tw97y2/9XU8Kg1XV1fKysrYsmVLvZxLCDVZWVmxbds2fH19GTVqFMHBwTz11FMUFhbq1mJ7+eWXeeKJJxg3bhw9e/bE1tb2prd/Fi9ezIMPPsizzz5L27ZtmThxom5mm7e3N2+//TavvfYa7u7u1W5gvHz5crp27cp9991Hz549URSF33//vdbb3gD4+vry448/8vPPPxMSEsKSJUv4z3/+U217Y2NjMjIyGDt2LG3atOHhhx9myJAhvP322wD06tWLf/3rX4wePRpXV1fmzZt3y5nmzJnD5MmT6dq1KykpKfz666+6XrLg4GA+++wzFi1aREhICPv27btultvEiRMJCgqiW7duuLq6snPnzuvO4e3tze+//86+ffsICQnhX//6F0899RRvvvnmLeetaxqlrm9aNgM5OTnY29uTnZ0tiyIKAH74aA+bV0dj3zGL91dMpXXr1nrrgtSVgtxipgxaTUlRGfmt9/Dftct57rnn+PTTT+v8XEIIYcikB0iIGqjsATqbcQIqBnzWB0sbMzrfHQCAq1lrgPpfC0MIIQyQFEBC3ISiKCTFZgBw9NQBqMPp71XpeW/5YOjCREeMjY05deoU586dq7fzCSGEIZICSIibyEjOJT+niCIll5jY4wDcfffd9Xa+tt29cHC1oizfmI7B5UvRSy+QEELULSmAhLiJpNjy21/5FklQsWBXbdcpqQkjYyO6DGgJgJ9z+Y7Ksi2GEELULSmAhLiJ86fKb3+lFpYPeg4PD6/3c3YZUD4OyCavJdPfnH7DPYaEEELcOlkJWoibuBB/GYBTSeWLgNXn+J9KrTq5Y+dsCRkePDRoMB27+9b7OYUQwpBID5AQN3HhdPmaPysWr+WLL77grrvuqvdzGhkb0bl/eS/Qka11t12BEEKIctIDJMQNFBeWcikpG4Ce/TozyLl3g527011+bP3hBPv+Oo5FUPk2HA8++GCDnV8IIZoz6QES4gYunslEUcDW0QI7Z6sGPXdQV0/MLU2IPXuUhx56SLcCrBBCiNsnBZAQN3AhrnwA9OGMDSxcuJBLly412LlNzU0IDmuBm3X5rbDjx4/LvmDC4I0fP163XxUVe1a99NJLt3XMujjGzURFRaHRaG64l1lToNFo+Pnnn9WOUSekABLiBi7EX6ZUW0JU9E/8+9//rnLzxPrU6U5frEztcbR2Q1EU9u/f36DnF6Imxo8fj0ajQaPRYGZmRuvWrXnnnXcoLS2t93OvW7eOd999t0ZtqytCbuUYtdWrVy+Sk5Oxt7ev8WeuLfZE3ZICSIgbuHgmk4z8c5SVleLq6oq/v3+Dnr9dTx8AnMz9ANizZ0+Dnl+Imho8eDDJycnExcXx8ssv89Zbb/H+++9X2ba4uLjOzuvk5IStra3qx7gZMzMzPDw80Gg09XqeqtTl17s5kQJIiBtIScwiLS8BgLCwsAb/5uXoZo1nS0fcrMpvg+3evbtBzy9ETZmbm+Ph4YGfnx+TJk0iPDyc9evXw1U9Ge+99x5eXl4EBQUBkJSUxMMPP4yDgwNOTk6MGDGCxMR/Zj2WlZURERGBg4MDzs7OvPrqq1y7f/e1t6+KioqYOnUqPj4+mJub07p1a7766isSExN1e/g5Ojqi0WgYP358lcfIzMxk7NixODo6YmVlxZAhQ/Q2P16xYgUODg78+eefBAcHY2NjoysAq3Nt79PNjvHWW2+xcuVKfvnlF13vWlRUVI2+blV9vV9//XXCwsKuyxUSEsI777wDwP79+7nnnntwcXHB3t6evn37cujQoRr+DWh6pAASohqFecVkpuaRllf+jaWqbx4NoV2YN+425StD79mz57ofAMIA5OU17KMOWFpa6vU8REZGEhsby+bNm9mwYQMlJSUMGjQIW1tbtm/fzs6dO3VFQOXnFixYwIoVK1i2bBk7duzg8uXL/PTTTzc879ixY/n222/5+OOPiYmJ4fPPP8fGxgYfHx9+/PFHAGJjY0lOTuajjz6q8hjjx4/nwIEDrF+/nt27d6MoCkOHDqWkpETXJj8/n/nz57N69Wq2bdvGuXPnbnnB0hsd45VXXuHhhx/WFUXJycn06tWrRl+3qr7eY8aMYd++fZw+fVrX5vjx40RHR/PYY48BcOXKFcaNG8eOHTvYs2cPgYGBDB06lCtXrtzSdTUZirhOdna2AijZ2dlqRxEqSjiWqjzT9XPF3tJVAZRNmzapkiN6+1nlqc6LFGMjUwVQ4uLiVMkhVAQN+7hF48aNU0aMGKEoiqJotVpl8+bNirm5ufLKK6/o3nd3d1eKiop0n1m9erUSFBSkaLVa3WtFRUWKpaWl8ueffyqKoiienp7KvHnzdO+XlJQoLVq00J1LURSlb9++yuTJkxVFUZTY2FgFUDZv3lxlzi1btiiAkpmZqff61cc4deqUAig7d+7UvZ+enq5YWloq3333naIoirJ8+XIFUOLj43VtFi1apLi7u1f7Nbr23DU5xtVf11v5ulX19VYURQkJCVHeeecd3fNp06YpYWFh1WYuKytTbG1tlV9//VX3GqD89NNP1X6mKZEeICGqkZyQRUFJDtkF5TO/unfvrkqONl09MTMzY2DLSezfeYRWrVqpkkOIG9mwYQM2NjZYWFgwZMgQRo8ezVtvvaV7v2PHjpiZmemeHzlyhPj4eGxtbbGxscHGxgYnJycKCws5ffo02dnZJCcn6/W8mpiY0K1bt2ozHD58GGNjY/r27Vvr64iJicHExETvvM7OzgQFBRETE6N7zcrKSu/foqenJ2lpabd0rtoc42Zft0rXfr0BxowZwzfffAPlnR98++23jBkzRvd+amoqEydOJDAwEHt7e+zs7MjNzeXcuXO3dF1NhSyEKEQ1UhKzyCxMxsjImDZtAnFwcFAlh7mlKf7tXCmLbk9RurkqgyiFyhp49mFt9O/fn8WLF2NmZoaXlxcmJvo/XqytrfWe5+bm0rVrV77++uvrjlXbzYYtLS1r9bnaMDU11Xuu0Whu+fZ0bY5R06/btV9vgEcffZSpU6dy6NAhCgoKSEpKYvTo0br3x40bR0ZGBh999BF+fn6Ym5vTs2fPZjuIWgogIaqRkpiFl20Qvy7bTWAvdYqfSoFdPTkdnUrcoWR6Dw9SNYtQQRU/zBoba2trWrduXeP2Xbp0Ye3atbi5uWFnZ1dlG09PT/bu3avbfqa0tJSDBw/SpUuXKtt37NgRrVbL1q1bq9y0uLJHpKysrNpcwcHBlJaWsnfvXnr16gVARkYGsbGxtGvXrsbXVxfMzMyuy1qTr1t1WrRoQd++ffn6668pKCjgnnvuwc3NTff+zp07+eyzzxg6dChUDLZOT0+vo6tpfOQWmBDVSE4o3wPMP8iTwMBAVbO06eKJVilj1Xdf8MADD5BXRwNVhVDLmDFjcHFxYcSIEWzfvp2EhASioqJ48cUXOX/+PACTJ09mzpw5/Pzzz5w8eZJnn332hgsJ+vv7M27cOJ588kl+/vln3TG/++47APz8/NBoNGzYsIFLly5Vua5XYGAgI0aMYOLEiezYsYMjR47w+OOP4+3tzYgRI+rxK1L19URHRxMbG0t6ejolJSU1+rrdyJgxY1izZg3ff/+93u0vKq599erVxMTEsHfvXsaMGdOgvWoNTQogIapQWlLGpfPlqy57Bqjb+0PF7vAmJibsi/+DdevWceDAAbUjCXFbrKys2LZtG76+vowaNYrg4GCeeuopCgsLdT0bL7/8Mk888QTjxo2jZ8+e2Nracv/999/wuIsXL+bBBx/k2WefpW3btkycOFH3C4O3tzdvv/02r732Gu7u7jz//PNVHmP58uV07dqV++67j549e6IoCr///vt1t6zq28SJEwkKCqJbt264urqyc+fOGn3dbuTBBx8kIyOD/Pz86xZZ/Oqrr8jMzKRLly488cQTvPjii3o9RM2NRpE5tdfJycnB3t6e7OzsW+5iFM3DxTOZ/Hv4J2w9t4Kx/3qQefPmqR2J2eN+Yun6WSRkHWLOnDlMnTpV7UhCCNFkSQ+QEFVIScgkNfcMqVcSGs3ig61CPHTrATWWTEII0VRJASREFZIT9FeAbgxadXLXbYwqt8CEEOL2SAEkRBWu3gLjjjvuUDsOAC07uuFk2QKACxcuNOjO9EII0dxIASREFZLiU7lccAGAHj16qB0HAEd3G9y9nLEzLx+UePjwYbUjCSFEkyUFkBDX0GoVTsScQEGLk5MzPj4+akfSadnRHRcrH0yMTWo05VUIIUTVZCFEIa6RmZpLSlb5BqhdunRuVCsvt+zoRh/fx+hy10wmTBimdhwhhGiypAdIiGukJGahoMXeyoXOnTurHUePf3s3LExsuHAqW+0oQgjRpEkPkBDXSD2bTTvXvjz20DiemT1A7Th6fIKc0RhpyE7PJ+tSHg6ujX+LBCGEaIykB0iIa6QllfeuuPnYYWxsrHYcPeaWpngGOLD3/Dp69g5j7969akcSQogmSQogIa6RcjYTRVFw87VXO0qV/Nq5kll4kZNxx2U9IGFwFEXhmWeewcnJCY1Gw+HDh+nXrx8vvfTSDT/n7+/PwoULGyxnbURFRaHRaG6431lToNFo+Pnnn9WOcVNSAAlxja17NrM6+hW+WDtf7ShV8gt2xdmyfGba33//rXYcIQBISUnhhRdeoGXLlpibm+Pj48OwYcOIjIys0/Ns3LiRFStWsGHDBpKTk+nQoQPr1q3j3XffrdPzqKFXr14kJydjb1/zX77Gjx9/3Z5eomYaRQG0aNEi/P39sbCwICwsjH379lXbdt26dXTr1g0HBwesra0JDQ1l9erVem0URWHGjBl4enpiaWlJeHg4cXFxDXAloqkrLSkj8WIchaW5GJs1zm3y/Nu54mwlBZBoPBITE+natSt//fUX77//PkePHmXjxo3079+f5557rk7Pdfr0aTw9PenVqxceHh6YmJjg5OSEra1tnZ5HDWZmZnh4eKgy87S4uLjBz6k6RWVr1qxRzMzMlGXLlinHjx9XJk6cqDg4OCipqalVtt+yZYuybt065cSJE0p8fLyycOFCxdjYWNm4caOuzZw5cxR7e3vl559/Vo4cOaIMHz5cCQgIUAoKCmqUKTs7WwGU7OzsOrtO0TQkJ2QqPnbtFUBZtGiR2nGqVFRQojza8T0FUMzMzJTi4mK1IwkDN2TIEMXb21vJzc297r3MzEzd/589e1YZPny4Ym1trdja2ioPPfSQkpKSont/5syZSkhIiLJq1SrFz89PsbOzU0aPHq3k5OQoiqIo48aNUwDdw8/PT1EURenbt68yefJk3XFSU1OV++67T7GwsFD8/f2V//73v4qfn5/y4Ycf6uV66qmnFBcXF8XW1lbp37+/cvjw4RpnURRFKSsrU+bOnau0atVKMTMzU3x8fJRZs2bp3j937pzy0EMPKfb29oqjo6MyfPhwJSEhodqv45YtWxRA9zVbvny5Ym9vr2zcuFFp27atYm1trQwaNEi5ePGiLuPVXw9A2bJlS43OPW7cOGXEiBHKrFmzFE9PT8Xf31+ZNm2a0qNHj+tyderUSXn77bcVRVGUffv2KeHh4Yqzs7NiZ2en3HXXXcrBgwf12gPKTz/9VO11NhaqF0A9evRQnnvuOd3zsrIyxcvLS5k9e3aNj9G5c2flzTffVBRFUbRareLh4aG8//77uvezsrIUc3Nz5dtvv63R8aQAMlxHtiUqliZ2CqDs2rVL7TjVmj5qjWJmbKkAet+0RTNVnNuwj1uQkZGhaDQa5T//+c8N25WVlSmhoaFKnz59lAMHDih79uxRunbtqvTt21fXZubMmYqNjY0yatQo5ejRo8q2bdsUDw8P5fXXX1eUiu/l77zzjtKiRQslOTlZSUtLU5QqCqAhQ4YoISEhyu7du5UDBw4ovXr1UiwtLfUKoPDwcGXYsGHK/v37lVOnTikvv/yy4uzsrGRkZNQoi6Ioyquvvqo4OjoqK1asUOLj45Xt27crS5cuLf8jKy5WgoODlSeffFKJjo5WTpw4oTz22GNKUFCQUlRUVOXXqKoCyNTUVAkPD1f279+vHDx4UAkODlYee+wxRVEU5cqVK8rDDz+sDB48WElOTlaSk5OVoqKiGp173Lhxio2NjfLEE08ox44d0z0AJT4+Xpep8rW4uDhFURQlMjJSWb16tRITE6OcOHFCeeqppxR3d3e9wrCpFECqToMvLi7m4MGDTJs2TfeakZER4eHhNdrtWlEU/vrrL2JjY5k7dy4ACQkJpKSkEB4ermtnb29PWFgYu3fv5pFHHrnuOEVFRRQVFeme5+Tk1MHViaYo5shpCkpz0KChU6dOasepVos2zjhb+pCce4q///6bkJAQtSOJ+vSxTcOe7+Wa3/6Nj49HURTatm17w3aRkZEcPXqUhIQE3erqq1aton379uzfv5/u3bsDoNVqWbFihe6W1hNPPEFkZCTvvfce9vb22NraYmxsjIeHR5XnOXXqFH/88Qf79u3THfOrr74iODhY12bHjh3s27ePtLQ0zM3NAZg/fz4///wzP/zwA88888xNs1y5coWPPvqITz/9lHHjxgHQqlUr+vTpA8DatWvRarV8+eWXultay5cvx8HBgaioKAYOHFijr29JSQlLliyhVatWADz//PO88847ANjY2GBpaUlRUZHe1+O///1vjc5tbW3Nl19+iZmZme6zISEhfPPNN0yfPh2Ar7/+mrCwMFq3bg3A3XffrZfviy++wMHBga1bt3LffffV6JoaC1XHAKWnp1NWVoa7u7ve6+7u7qSkpFT7uezsbGxsbDAzM+Pee+/lk08+4Z577oGKgXiVx6jpMWfPno29vb3u0Zi2PhAN69DB8jE1Xu6+WFs33jV2vFs54WLli7tTC7WjCANX/gv/zcXExODj46P3/bVdu3Y4ODgQExOje83f319vPI+npydpaWk1zhMTE4OJiQldu3bVvda2bVscHBx0z48cOUJubi7Ozs7Y2NjoHgkJCZw+fbpGWWJiYigqKmLAgKrXCjty5Ajx8fHY2trqju/k5ERhYaHeOW7GyspKV/zU9OtR03N37NhRr/gBGDNmDN988w1U/Nl+++23jBkzRvd+amoqEydOJDAwEHt7e+zs7MjNzeXcuXM1vqbGokkuhGhra8vhw4fJzc0lMjKSiIgIWrZsSb9+/Wp1vGnTphEREaF7npOTI0WQgTp+8hgAbdu0VzvKDbUIdOKOFg/iE+TC+PEPqB1H1LcXc9VOUK3AwEA0Gg0nT56sk+OZmprqPddoNGi12jo5dqXc3Fw8PT2Jioq67r2rC6UbZbG0tLzpObp27crXX3993Xuurq41zlpVhpsVnTU9d1W/5D366KNMnTqVQ4cOUVBQQFJSEqNHj9a9P27cODIyMvjoo4/w8/PD3Nycnj17NslB1KoWQC4uLhgbG5Oamqr3empqarXdm1TcJqvsjgsNDSUmJobZs2fTr18/3edSU1Px9PTUO2ZoaGiVxzM3N9d1gwrDpimwxMs2iD69+6gd5Ya8A53RaDQkn8mkrFSLsUmjmNAp6otp4+2NdHJyYtCgQSxatIgXX3zxuh+qWVlZODg4EBwcTFJSEklJSbpfME+cOEFWVhbt2rWrszxt27altLSUgwcP6m6BxcbG6q2t06VLF1JSUjAxMcHf379W5wkMDMTS0pLIyEiefvrp697v0qULa9euxc3NDTs7u9u4ohszMzOjrKyszs7dokUL+vbty9dff01BQQH33HMPbm5uuvd37tzJZ599xtChQwFISkoiPT29jq6mYan6XdPMzIyuXbvqrROh1WqJjIykZ8+eNT6OVqvVjeEJCAjAw8ND75g5OTns3bv3lo4pDE9xYSleJqHc1yaCl1+98aJqanP2tMHC2pSyUi0Xz1ymtLRU7UjCgC1atIiysjJ69OjBjz/+SFxcHDExMXz88ce677vh4eF07NiRMWPGcOjQIfbt28fYsWPp27cv3bp1q7MsQUFBDB48mP/7v/9j7969HDx4kKefflqvxyY8PJyePXsycuRINm3aRGJiIrt27eKNN96o8eKiFhYWTJ06lVdffZVVq1Zx+vRp9uzZw1dffQUVt5JcXFwYMWIE27dvJyEhgaioKF588UXOnz9fZ9fr7+9PdHQ0sbGxpKenU1JSctvnHjNmDGvWrOH777/Xu/1FReG3evVqYmJi2Lt3L2PGjLlpb1hjpfqvjRERESxdupSVK1cSExPDpEmTyMvLY8KECQCMHTtWb5D07Nmz2bx5M2fOnCEmJoYFCxawevVqHn/8cajoHnzppZeYNWsW69ev5+jRo4wdOxYvLy9ZLErc0KXz5YPfLW3MsHGwUDvODWk0GrxbO7Ht7H9pG+rfJFZdFc1Xy5YtOXToEP379+fll1+mQ4cO3HPPPURGRrJ48WKo+Dv7yy+/4OjoyF133UV4eDgtW7Zk7dq1dZ5n+fLleHl50bdvX0aNGsUzzzyj14uh0Wj4/fffueuuu5gwYQJt2rThkUce4ezZs9eNH72R6dOn8/LLLzNjxgyCg4MZPXq0bnyOlZUV27Ztw9fXl1GjRhEcHMxTTz1FYWFhnfYITZw4kaCgILp164arqys7d+687XM/+OCDZGRkkJ+ff93Pza+++orMzEy6dOnCE088wYsvvqj3tW1S1J6GpiiK8sknnyi+vr6KmZmZ0qNHD2XPnj269/r27auMGzdO9/yNN95QWrdurVhYWCiOjo5Kz549lTVr1ugdT6vVKtOnT1fc3d0Vc3NzZcCAAUpsbGyN88g0eMO07dcjyriQD5X3nlindpQa+Xr2dqWtSx8F0JuaK4QQ4uY0Sk2H8BuQnJwc7O3tyc7Ortd7t6JxeXHcG3yy6j/07HgPu6I3qR3nprb+cII3It5lZ9Ia7rvvPn799Ve1IwkhRJOh+i0wIRqLYyeOAuDl5aV2lBppEeiEo6U3AMeOHVM7jhBCNClSAAlR4fS5WABCQ5vGooJerZxwsiwv1hITE7ly5YrakYQQosmQAkiIipmEyRnlC3mF9equdpwasbQxo4WfJ1am5TtHSy+QEELUnBRAQgBxJ+MpKSvESGNC995VrxfVGHm3dsJJboMJIcQta5IrQQtR13Zu3Q+Ak7UnDs4NvO/SbfBq5YSnTRucPGxvafquEEIYOimAhAAO7i/fA6yFW0u1o9wSzwAHOnsOIbCLJ8OHD1M7jhBCNBlyC0wIwNMhgLYud9K9Uy+1o9wSD//yfYtSEjLVjiKEEE2KFEBCAN627bjL73FG3veg2lFuibtfeQF0JbOQhPgkCgsL1Y4khBBNghRAQgBpSeXbYLj52qsd5ZZYWJni6G7NLyfn0jLQlx07dqgdSQghmgQpgITBy8zM5OixI5Rqi3HzaVoFEBW3wSxNy1csl5lgQghRM1IACYO3Yf0ffL1/JhtOfdDkeoCoKIAqp8IfPXpU7ThCCNEkSAEkDN6BPYcAcHfwxcLKVO04t+zqAkh6gIQQomakABIGLzo6GgB/n9ZqR6mVqwug48ePo9Vq1Y4khBCNnhRAwuCdii/fAyy4TbDaUWrFw98BO3NXjDUm5OXlkZiYqHYkIYRo9KQAEgatoKCA5LQkAEK7NJ0tMK5m72KFlY0FDhaeIOOAhBCiRmQlaGHQYmJiUFCwMLGhTXt/tePUikajwcPfgVanuxHevT++vr5qRxJCiEZPCiBh0CoHDTtaeOHm66B2nFrz8Hcg1GMwI+7rRufOndWOI4QQjZ4UQMKgtW/biTDvB7AytcPNx07tOLWm2xIjMUvtKEII0STIGCBh0JysvAjxGEj3tndjbtn0psBXqiyAEuOS2b17NyUlJWpHEkKIRk0KIGHQ0pKyAXBtgitAX83D3wFFUZj34zP06tWLkydPqh1JCCEaNSmAhMHKzc1l3bofyCy42KRvfwG4trDD2MQIB3OZCSaEEDUhBZAwWEeOHGHel6/ze9zHTXIPsKuZmBrj4mWLo6UXACdOnFA7khBCNGpSAAmDVTkDzMnSq8n3AAG4+djjWLEWkBRAQghxY1IACYN1/PhxABwtvZrkJqjXcvWxw9FSCiAhhKgJKYCEwToa/c8aQK4tmlcPUHx8PEVFRWpHEkKIRksKIGGwKntJfD0DmvQU+EpuvvZYmTpgbmpFWVkZcXFxakcSQohGSxZCFAYpMzOTtEupAAQFtVU7Tp1w87FDo9HQxXMIoyPuxMXFRe1IQgjRaEkBJAxSTEwMANamjvi29lQ7Tp1w9rTFyFhDR9eBPDH6MZw8bNSOJIQQjZbcAhMGqW3btjz7wNuEtRjVLGaAARibGOHiXX4tl87nqB1HCCEaNSmAhEFycnKihVVHWjv1aPKrQF/NrYUdWqWM7VG7Wb9+vdpxhBCi0ZJbYMIgKYqi2wbDvRlMga/k5mtPflQ2E6c8i6mpKXl5eZiaNv0B3kIIUdekB0gYpPnzPuBE0j5KtcXNYgp8JTcfO6xNHTE3taSkpITTp0+rHUkIIRolKYCEwbly5QqvvvYKm04vxtrJFDOL5tMR6upjj0ajwdlGtsQQQogbkQJIGJzKndItTezwa+Wldpw6VXk7z87EHaQAEkKIakkBJAxOZVHgaOnZLLbAuJqThw1GxhrszDxACiAhhKiWFEDC4FQWBQ4Wnrg1o/E/XDUVXjZFFUKIG5MCSBgcXQ+QRfPrAaJiIHTlpqgnT56krKxM7UhCCNHoNIoCaNGiRfj7+2NhYUFYWBj79u2rtu3SpUu58847cXR0xNHRkfDw8Ovajx8/Ho1Go/cYPHhwA1yJaAr0boE1ozWAKrn52GNr5szjw5/jxx9/RFEUtSMJIUSjo3oBtHbtWiIiIpg5cyaHDh0iJCSEQYMGkZaWVmX7qKgoHn30UbZs2cLu3bvx8fFh4MCBXLhwQa/d4MGDSU5O1j2+/fbbBroi0ZgVFBSQkJAAFT1AzWkKfKXyPcGM6Nl6GPfeey8mJs1nlpsQQtQV1QugDz74gIkTJzJhwgTatWvHkiVLsLKyYtmyZVW2//rrr3n22WcJDQ2lbdu2fPnll2i1WiIjI/XamZub4+HhoXs4Ojo20BWJxszMzIwN3/9FeMtn8PT2aFZT4CtVrmwt22EIIUT1VC2AiouLOXjwIOHh4f8EMjIiPDyc3bt31+gY+fn5lJSU4OTkpPd6VFQUbm5uBAUFMWnSJDIyMqo9RlFRETk5OXoP0TwZGxvjaO5FS8euuPs6qB2nXlT2ap09k8R3333HTz/9pHYkIYRodFQtgNLT0ykrK8Pd3V3vdXd3d1JSUmp0jKlTp+Ll5aVXRA0ePJhVq1YRGRnJ3Llz2bp1K0OGDKl2MOjs2bOxt7fXPXx8fG7zykRjVtkz0lw2Qb2Ws2f5VPgLmfGMHj2a9957T+1IQgjR6DTp/v85c+awZs0aoqKisLCw0L3+yCOP6P6/Y8eOdOrUiVatWhEVFcWAAQOuO860adOIiIjQPc/JyZEiqJn67LPPiFp3FOMin2a1CerVTEyNcfKw4XJe+UywmJgYtFotRkaq3/EWQohGQ9XviC4uLhgbG5Oamqr3empqKh4eHjf87Pz585kzZw6bNm2iU6dON2zbsmVLXFxciI+Pr/J9c3Nz7Ozs9B6iefr444/5PnIJOUVpzWoT1Gu5trDDztwFUxNT8vPzOXv2rNqRhBCiUVG1ADIzM6Nr1656A5grBzT37Nmz2s/NmzePd999l40bN9KtW7ebnuf8+fNkZGTg6elZZ9lF01NUVKQrgh0tPJvtLTAqCiAjjTGebr5Q0QskhBDiH6r3iUdERLB06VJWrlxJTEwMkyZNIi8vjwkTJgAwduxYpk2bpms/d+5cpk+fzrJly/D39yclJYWUlBRyc3MByM3NZcqUKezZs4fExEQiIyMZMWIErVu3ZtCgQapdp1BfXFwcZWVlmBpZYGXqgIt38y6AAFztvEEKICGEuI7qY4BGjx7NpUuXmDFjBikpKYSGhrJx40bdwOhz587pjV1YvHgxxcXFPPjgg3rHmTlzJm+99RbGxsZER0ezcuVKsrKy8PLyYuDAgbz77ruYm5s3+PWJxqOyCHCw8MDJw6ZZToGvVLnAY+WeYFIACSGEvkbxE+D555/n+eefr/K9qKgoveeJiYk3PJalpSV//vlnneYTzUNz3gT1WpU9QBal5ctDSAEkhBD6GkUBJERDOHnyJFRsgurh1zzXAKrk4m0LgLNJS75ZvYZuYV3UjiSEEI2KFEDCYFT2gjhaeODu17x7gMwtTbF3sYJ06Nm5P/6BbmpHEkKIRkX1QdBCNJQdO3YwMXwOnrZtcG/mPUBcdRtMtsQQQojrSQEkDIaVpRWmuc6YGVvi0cx7gABcK6b5b9+6k9mzZ/PXX3+pHUkIIRoNKYCEwchIzqW0RIuJWflKyc2da8U0/81b/+D111/nl19+UTuSEEI0GjIGSBiEH374ge+//oUr2Y6EdbkTI+PmX/tX3gKzNS4f/yMzwYQQ4h/N/6eAEMDGjRv57uf/kpqXgId/8x//w1WbvZoWO4IUQEIIoUcKIGEQ9GeAGUYBVNkDZFpYfr3nz5/nypUrKqcSQojGQQog0ewpinLVKtCeBjEAGsDa3gIrWzPMTaxxdSm/DVa5FpIQQhg6KYBEs5eWlkZmZiagwd7CzWB6gABcK7bE8GvREuQ2mBBC6EgBJJq9yh/6tmbOmBiZGcwYIADXihWhPZxlV3ghhLiazAITzZ5u/I+lJ3bOlljamKkdqcFUjgPqHzqS9z54gzZt2qgdSQghGgUpgESzd+7cOajYBb657wF2rcpbYEYFdnTq1EntOEII0WhIASSavdmzZ9PBJZw/Vx1u9nuAXUu2wxBCiKrJGCBhEHLTtFia2hrUAGiuWgvockouiz5dxNNPP83p06fVjiWEEKqTAkgYhNSz2QAGNQAawN7FClNzY7RlCl99tZyvvvqKv//+W+1YQgihOimARLMWHR3NwIGD2LBrNYDB3QLTaDS6PcF8vQIAOHHihMqphBBCfVIAiWbt8OHDbN68iQtZsRibGOHsaat2pAZXuSu8m4MPyFR4IYQAKYBEc/fPCtAeuPnaY2xieH/lKwdCO5h7gBRAQggBUgCJ5u7qAsjQbn9VqiyArBQXAGJjY9FqtSqnEkIIdUkBJJo1/T3ADGsAdCW3irWAtFesMDMzo7CwkLNnz6odSwghVCUFkGi2iouLdVO+HaUHiMvJebqVoGUqvBDC0MlCiKLZiouLo6ysDDNjC6xMHQxuDaBKTh42GBlrKCkqY9VX3xDYLgAbGxu1YwkhhKqkB0g0W2lpaTg5OWFv7oFGo8HDQHuArp79Zm3sLMWPEEJIASSas/79+3Nox0nuaxOBjYMF1vYWakdSjWyJIYQQ+mpVAJ05c6bukwhRD1ISszA1NsezpaPaUVRVuRbQ6dgkJk2axLBhw1AURe1YQgihmloVQK1bt6Z///7897//pbCwsO5TCVFHks9kAuAZYJjjfypVrgadk1bM559/zoYNG7h06ZLasYQQQjW1KoAOHTpEp06diIiIwMPDg//7v/9j3759dZ9OiFrSarV06NCB6R+8QGFpHp4BBt4DVHELLDuliICA8i0xZEFEIYQhq1UBFBoaykcffcTFixdZtmwZycnJ9OnThw4dOvDBBx/Ib5ZCdWfPnuX48ePEJB7CzNjC4G+BVe4Kf+l8DsHBwSAFkBDCwN3WIGgTExNGjRrF999/z9y5c4mPj+eVV17Bx8eHsWPHkpycXHdJhbgFlT/c7c3dMNIY42XgBZBLxS2wgtxiWgUEghRAQggDd1sF0IEDB3j22Wfx9PTkgw8+4JVXXuH06dNs3ryZixcvMmLEiLpLKsQtuHoFaCtbM+ycLdWOpCozCxMc3KwB8HLzAymAhBAGrlYLIX7wwQcsX76c2NhYhg4dyqpVqxg6dChGRuX1VEBAACtWrMDf37+u8wpRI1fvAeYZ4IhGo1E7kupcW9iRlZaHi403SAEkhDBwtSqAFi9ezJNPPsn48ePx9PSsso2bmxtfffXV7eYTolau7gEy9PE/lVy9bYk7lIyNsRsAZWVlFBYWYmFhuOsjCSEMV60KoM2bN+Pr66vr8amkKApJSUn4+vpiZmbGuHHj6iqnEDWmKIquAHK08DT4KfCVXCs2Rc3P0JKZmYmDg3xdhBCGq1ZjgFq1akV6evp1r1++fFk3xVYIteTl5REYGIiFqTX2Fu7SA1Th6tWgpfgRQhi6WhVA1a0gm5ubK93pQnU2Njbs2rmbcaEfYGJkavBrAFWS7TCEEOIft3QLLCIiAgCNRsOMGTOwsrLSvVdWVsbevXsJDQ2t+5RC3KK0pGwULVhYm+Lobq12nEahsgDKySjgf5u38P78Ofj7+/P555+rHU0IIRrcLfUA/f333/z9998oisLRo0d1z//++29OnjxJSEgIK1asuOUQixYtwt/fHwsLC8LCwm64qvTSpUu58847cXR0xNHRkfDw8OvaK4rCjBkz8PT0xNLSkvDwcOLi4m45l2iaFEW5agsMmQFWydrOHGt7cwAuXchk06ZNREVFqR1LCCFUcUs9QFu2bAFgwoQJfPTRR9jZ2d12gLVr1xIREcGSJUsICwtj4cKFDBo0iNjYWNzc3K5rHxUVxaOPPkqvXr2wsLBg7ty5DBw4kOPHj+PtXT69d968eXz88cesXLmSgIAApk+fzqBBgzhx4oTcojMA9957L0f/jiHEdiS9AtqoHadRcW1hR172JRwty2dvnj59muLiYszMzNSOJoQQDapWY4CWL19eJ8UPFWsKTZw4kQkTJtCuXTuWLFmClZUVy5Ytq7L9119/zbPPPktoaCht27blyy+/RKvVEhkZCRW//S9cuJA333yTESNG0KlTJ1atWsXFixf5+eef6ySzaNyio6M5n5KIiZHsAn+tyttgFFpia2tLWVmZ9I4KIQxSjXuARo0axYoVK7Czs2PUqFE3bLtu3boaHbO4uJiDBw8ybdo03WtGRkaEh4eze/fuGh0jPz+fkpISnJycAEhISCAlJYXw8HBdG3t7e8LCwti9ezePPPLIdccoKiqiqKhI9zwnRwaJNlXZ2dlcuHABAEdLTxkAfY3KAijjwhWCg4PZt28fMTExtG/fXu1oQgjRoGrcA2Rvb68bS2Fvb3/DR02lp6dTVlaGu7u73uvu7u6kpKTU6BhTp07Fy8tLV/BUfu5Wjjl79my9/D4+PjW+BtG4nDx5EgArU3vMjC3xbu2kdqRGxa1iLaA02RRVCGHgatwDtHz58ir/X01z5sxhzZo1REVF3dbYnmnTpulmuFHRAyRFUNN09RYYMgPseldPhQ/uXV4AnThxQuVUQgjR8Go1BqigoID8/Hzd87Nnz7Jw4UI2bdp0S8dxcXHB2NiY1NRUvddTU1Px8PC44Wfnz5/PnDlz2LRpE506ddK9Xvm5Wzmmubk5dnZ2eg/RNF29BYZ3KyeZAXaNygLockouQW2CcHR0xNLSsDeKFUIYploVQCNGjGDVqlUAZGVl0aNHDxYsWMCIESNYvHhxjY9jZmZG165ddQOYAd2A5p49e1b7uXnz5vHuu++yceNGunXrpvdeQEAAHh4eesfMyclh7969NzymaB7+2QLDA69WMv7nWnbOlphZmKBoFcJC7yIjI6PaCQdCCNGc1aoAOnToEHfeeScAP/zwAx4eHpw9e5ZVq1bx8ccf39KxIiIiWLp0KStXriQmJoZJkyaRl5fHhAkTABg7dqzeIOm5c+cyffp0li1bhr+/PykpKaSkpJCbmwsVizS+9NJLzJo1i/Xr13P06FHGjh2Ll5cXI0eOrM3liiakTZs2eLu2xMnSW8b/VEGj0fwzEPpirvSQCSEMVq02Q83Pz8fW1haATZs2MWrUKIyMjLjjjjs4e/bsLR1r9OjRXLp0iRkzZpCSkkJoaCgbN27UDWI+d+6c3qarixcvpri4mAcffFDvODNnzuStt94C4NVXXyUvL49nnnmGrKws+vTpw8aNG2UNIAMwf/58zOO6kn7hCl6tpACqimsLOy7EXyYt6Z/ZjoqiSDEkhDAoGqW6jb1uoFOnTjz99NPcf//9dOjQgY0bN9KzZ08OHjzIvffeW+MZXI1VTk4O9vb2ZGdny3igJqYwr5jJfctXI1/wv7HYOEjRe60fPtrD5tXR3P1oB5KUXSxevJj/+7//49VXX1U7mhBCNJha3QKbMWMGr7zyCv7+/oSFhenG1mzatInOnTvXdUYhaiQ/P5/z8RkA2LtYSfFTDVfvf2aCFRYWcubMGY4dO6Z2LCGEaFC1KoAefPBBzp07x4EDB9i4caPu9QEDBvDhhx/WZT4hamz27Nm07+7PwYu/ygDoG3DzqSiAknJo164dyFR4IYQBqtUYICqmm187rbxHjx51kUmIWjlx4gTFJcWYGVvJAOgbqBwEnX4hh7ZBvaBiAUmtVqs33k4IIZqzWhVAeXl5zJkzh8jISNLS0tBqtXrvnzlzpq7yCVFjlb0YjpaeMgD6BhzdbTAy1lBaosXZzhNTU1Py8vJISkrCz89P7XhCCNEgalUAPf3002zdupUnnngCT09PmT0iVFdcXKzb1NPRwlN6gG7A2MQIF2870s5lk5VaQJs2bTh+/DgnTpyQAkgIYTBqVQD98ccf/Pbbb/Tu3bvuEwlRC3FxcZSVlWFqZIG1mQNesgv8Dbm2KC+ALp0vHwdUWQANGTJE7WhCCNEgalUAOTo66nZfF6IxuPr2l5uPPWYWtR7eZhBcvcvX8UpLyqZbt26cPXsWR0cpGoUQhqNWIx7fffddZsyYobcfmBBq0hVAFl54ye2vm3Kt2BX+0vkcXn31Vfbu3cuTTz6pdiwhhGgwtfo1ecGCBZw+fRp3d3f8/f0xNTXVe//QoUN1lU+IGgkODqZr8F3YFrTEp42z2nEavcqp8FevBi2EEIakVgWQ7KklGpuHH36Y2J+MOB93WQqgGnD3Le8BSjuXjVarYGSkobi4GI1Gc90vNEII0RzVqgCaOXNm3ScR4jaUlpSRnJAFgE+Qi9pxGj0XbzuMjDUUF5aSlZbH2Kcf4c8//+T333/nnnvuUTueEELUu1qvepaVlcWXX37JtGnTuHz5MlTc+rpw4UJd5hPipnJzczm48xilJWVY2Zrh6G6tdqRGz9jECLeKcUApiVmYmZlRWloqK0ILIQxGrQqg6Oho2rRpw9y5c5k/fz5ZWeW/ea9bt45p06bVdUYhbmjTpk3c0T+UDacW0KKNs6xLVUPufuUFUOrZLNkSQwhhcGpVAEVERDB+/Hji4uKwsPhnw8mhQ4eybdu2uswnxE1V/tC2NXeR8T+3wN3PAYCUs9lSAAkhDE6tCqD9+/fzf//3f9e97u3tTUpKSl3kEqLGjh8/DoCDhaeM/7kFHpU9QIn/9AAdP34cRVFUTiaEEPWvVgWQubk5OTnXT589deoUrq6udZFLiBr7Zw0gT1pID1CNefhX9gBlERQUhEajITMzk7S0NLWjCSFEvatVATR8+HDeeecdSkpKANBoNJw7d46pU6fywAMP1HVGIapVWlpKbGwsAC423ngGOKgdqcmovAWWmZqHESYEBASA3AYTQhiIWhVACxYsIDc3F1dXVwoKCujbty+tW7fG1taW9957r+5TClGNhIQEioqKMNaY0qZtK0xMjdWO1GTYOFhgbW8OFesBDRs2jEcffRRbW1u1owkhRL2r1TpA9vb2bN68mZ07d3LkyBFyc3Pp0qUL4eHhdZ9QiBv4Z/yPB77BbmrHaXI8/B04fSSVlMQsFi5cqHYcIYRoMLdcAGm1WlasWMG6detITExEo9EQEBCAh4cHiqLIFGTRoFq2bMk93R/mSrJWZoDVgodfRQF0NlvtKEII0aBu6RaYoigMHz6cp59+mgsXLtCxY0fat2/P2bNnGT9+PPfff3/9JRWiCp06daKb+wg6ud8jBVAtXL0WEEBZWRlxcXEyE0wI0ezdUg/QihUr2LZtG5GRkfTv31/vvb/++ouRI0eyatUqxo4dW9c5hahSXk4RGcm5ADIDrBYqZ4Klns2mpKQEJycncnNzuXjxIp6enmrHE0KIenNLPUDffvstr7/++nXFD8Ddd9/Na6+9xtdff12X+YSoVmlpKT98/QsFJTk4e9liZWuudqQmp3ImWOrZLExMTGjRogUAx44dUzmZEELUr1sqgKKjoxk8eHC17w8ZMoQjR47URS4hbio+Pp7xz47m22Nv4NVapr/XhmuL8k1RiwrKN0Vt3749SAEkhDAAt1QAXb58GXd392rfd3d3JzMzsy5yCXFTlT+kHS288AuSBThrw9jECFdvO6jYEqNDhw4gBZAQwgDcUgFUVlaGiUn1w4aMjY0pLS2ti1xC3JSuALL0ki0wboNuReiETCmAhBAG45YGQSuKwvjx4zE3r3qsRVFRUV3lEuKmoo9EA+Bk6S0DoG+DZ0tHjmw7S3JCFl1GlhdAx48fR6vVYmRUq7VShRCi0bulAmjcuHE3bSMzwERDOXK4vADycPTD2dNG7ThNlmdLRwAunsnk4dZ3YGZmRl5eHmfPntVtjyGEEM3NLRVAy5cvr78kQtyCgoICEs8lANCpUwdZgPM2eFUWQKcvY2xszLPPPoutrW21Pb1CCNEc1GorDCHUdvLkSbRaLebG1nTo2kbtOE2ah78DGg3kZRdxJbOQDz/8UO1IQghR7+QGv2iSvL29ub/nJLp63Yd/O5kBdjvMLExwqZgJlnxGZnEKIQyDFECiSXJ2csGTrnRwuxs/KYBu29W3wRRFISkpie3bt6sdSwgh6o3cAhNN0sXTlyktLsPSxgzXFnZqx2nyKmeCXTyTSWJiIi1bttQNhr7R0hdCCNFUSQ+QaJI+/+xLUnJP0yLIUQZA14HKmWDJCVn4+flhbW1NcXEx8fHxakcTQoh6IQWQaHKys7N57+NprI+dh1uAtdpxmoWrb4FpNBrZEkMI0exJASSanMofytamjrTv1lLtOM2C3kywywWyIrQQotmTAkg0OZULIDpZeuMXLFtg1AW9mWAJWVIACSGaPdULoEWLFuHv74+FhQVhYWHs27ev2rbHjx/ngQcewN/fH41Gw8KFC69r89Zbb6HRaPQebdu2reerEA1p366DALg5+ODsZat2nGbDM6B8T7CLpy9LASSEaPZULYDWrl1LREQEM2fO5NChQ4SEhDBo0CDS0tKqbJ+fn0/Lli2ZM2cOHh4e1R63ffv2JCcn6x47duyox6sQDe1IxR5gQYHBMgC6Dnm1coKKLTEqC6D4+HgKCwtVTiaEEHVP1fmtH3zwARMnTmTChAkALFmyhN9++41ly5bx2muvXde+e/fudO/eHaDK9yuZmJjcsEASTZeiKMQnnAKgc7cQteM0K1fvCebh4cEbb7xBmzZtUBRF7WhCCFHnVCuAiouLOXjwINOmTdO9ZmRkRHh4OLt3776tY8fFxeHl5YWFhQU9e/Zk9uzZ+Pr6Vtu+qKhIbyf7nJyc2zq/qD+pqank5mcDGnr17a52nGalciZY5WrQs2bNUjmREELUH9VugaWnp1NWVoa7u7ve6+7u7qSkpNT6uGFhYaxYsYKNGzeyePFiEhISuPPOO7ly5Uq1n5k9ezb29va6h4+PT63PL+qXtaUNw9pG0NdvLG07y59TXfLwd0BjpCEvu4js9Hy14wghRL1SfRB0XRsyZAgPPfQQnTp1YtCgQfz+++9kZWXx3XffVfuZadOmkZ2drXskJSU1aGZRc+lJ+XhaB9Et8G4c3WUNoLpkZmGCu689AOdPZZCfn09UVBTr1q1TO5oQQtQ51W6Bubi4YGxsTGpqqt7rqampdTp+x8HBgTZt2txwRVtzc3PMzc3r7Jyi/pyNuQSAX7CrDICuBy0CnUhJzOJ83GUKzdPo378/Li4u3H///fL1FkI0K6r1AJmZmdG1a1ciIyN1r2m1WiIjI+nZs2ednSc3N5fTp0/j6elZZ8cU6lny5SJOZezB2d9C7SjNUos2zgCcj8ugffv2GBkZkZ6eflu3pYUQojFS9RZYREQES5cuZeXKlcTExDBp0iTy8vJ0s8LGjh2rN0i6uLiYw4cPc/jwYYqLi7lw4QKHDx/W69155ZVX2Lp1K4mJiezatYv7778fY2NjHn30UVWuUdSdkpISfvjfUqISl2PvKRt01ocWgeUF0IW4y1haWhIUFATAkSNHVE4mhBB1S9WfIqNHj+bSpUvMmDGDlJQUQkND2bhxo25g9Llz5zAy+qdGu3jxIp07d9Y9nz9/PvPnz6dv375ERUUBcP78eR599FEyMjJwdXWlT58+7NmzB1dXVxWuUNSlo0eOUaYtxdTIgp53d67BJ8StahFYvhZQytksSopKCQkJISYmhiNHjjB48GC14wkhRJ1R/dfo559/nueff77K9yqLmkr+/v43XZNkzZo1dZpPNB5/bSxf0NLdzg9HNxkAXR8c3KyxsjMnP6eI5IQsOnXqxJo1a6QHSAjR7DS7WWCi+dq76wAArfyDZEBuPdFoNLpeoPNxGYSElC82KQWQEKK5kQJINBnHT5TvS9W5c6jaUZq1fwZCX9YVQLGxsbIlhhCiWVH9FpgQNaEoConJcQD07neH2nGatRat/+kB8vK6g6VLl9K+fXtMTOTbhRCi+ZDvaKJJOHnsNAXFV9CgYcDQXmrHadZ0PUCnMgB4+umnVU4khBB1Twog0SQUXDJiTMc5mDoX4Ohir3acZs0zwFFvSwwHVxlwLoRofqQAEk1C4vFLWJs50ie87hbJFFUzszDBw8+e5IQszp/KoFjJY/369eTl5TF58mS14wkhRJ2QQdCiSUg4mgZAQHs3taMYhMoFEc/HXebChQtMnDiRt99++6bLUAghRFMhBZBo9MpKtaz89QMOXFyPnZdMf28IleOAkmLTadeuHcbGxmRmZnL+/Hm1owkhRJ2QAkg0eqePX+BYylYOJf+Gi7et2nEMgm9bFwDOnUzH3Nyctm3bgqwHJIRoRqQAEo3elo27UFCwsXTAy9tL7TgGobIASkvKoSC3WLceUHR0tMrJhBCibkgBJBq9PTv3A9DKr43aUQyGjYMFzp42UNELJCtCCyGaGymARKN37MRRAEJDZQPUhnT1bTApgIQQzY0UQKJRK8gt5nzqaQD69AtTO45BqaoAiouLIz8/X+VkQghx+6QAEo3amaMpZORfAOCO3t3VjmNQfINdATgbcwkPDw/+97//kZqaipWVldrRhBDitslCiKJRO7DjBFqlDBNjU4KCgtSOY1B0A6HPZVOYV8yAAQPUjiSEEHVGeoBEo3blAkzo/DErPliPqamp2nEMip2TJY7u1igKJFXsCyaEEM2FFECi0VIUhYRjaRhpjOjZXwZAq6GyF+hsTDrJyclMmzaNZ555Ru1YQghx26QAEo1WWlIOuVmFmJga4VOxMrFoWH4V44DOxVxCq9UyZ84cvvrqKxkILYRo8qQAEo3W6SMpUPFD2NRchqupQTcTLDYDLy8v3N3d0Wq1Mh1eCNHkSQEkGq3TR1IBaBXqoXYUg1VZAKUkZlFcWErXrl0BOHjwoMrJhBDi9kgBJBqt+MPlPUCtQ9zVjmKw7F2scHCzRtEqnDuZLgWQEKLZkAJINEq5WYWkJGYB0CpEeoDU5N++fBxQwrE0KYCEEM2GFECiUTodXX77y8PfARsHC7XjGLSA9m4AJB6/pCuATpw4QUFBgcrJhBCi9qQAEo1S5e2vVnL7S3UBHcoLoIRjaXh7e+Pm5oatrS2JiYlqRxNCiFqTqTWiUaqcAdZaBkCrzi/YBY0GLqfkkpNRQHR0NG5ubmg0GrWjCSFErUkPkGh0SopKOXviEsj4n0bBwtoMz5aOUNEL5O7uLsWPEKLJkwJINDpnY9IpLdFi62SJm4+d2nHE1bfBjqepHUUIIeqEFECi0am8/dUqRHoaGovKAijx+CXy8/N56KGHaNOmjQyEFkI0WVIAiUbnn/V/5PZXY/FPAZSGubkFW7duJS4ujujoaLWjCSFErUgBJBoVRVF0U+BlAHTj4RngiJmFCYV5JaSezZb1gIQQTZ4UQKJRST2bTV52EabmxvgEyQaojYWxiRF+7a5fEPHQoUMqJxNCiNqRAkg0KpW3vwLau2Fiaqx2HHGVgIoVoROvKoD279+vciohhKgdKYBEoxJ/RBZAbKwCOpb/mZw5mkpYWBgAx44d48qVKyonE0KIWycFkGhUKneAl/E/jU+rTuUF0IX4yzjaueDr64tWq+XAgQNqRxNCiFsmBZBoNLLT80k7l41GAy07SQ9QY2PvYoWLty2KUt4LdNddd9GtWzdKSkrUjiaEELdMtsIQjcapgxcB8AlywcrWXO04ogqtQz1Iv3CF00dSWbVqlazTJIRosqQHSDQapw4mA9Cmq6faUUQ1KrcmiT+cIsWPEKJJU70AWrRoEf7+/lhYWBAWFsa+ffuqbXv8+HEeeOAB/P390Wg0LFy48LaPKRqP2IoeoDZdpABqrFpXDE5POJZGWakWgIKCAlkRWgjR5KhaAK1du5aIiAhmzpzJoUOHCAkJYdCgQaSlVb3fUH5+Pi1btmTOnDl4eFQ9SPZWjykah+z0fFLPlo//ad1ZCqDGyiPAESs7c4oLS0k6lcGTTz6JnZ0d69atUzuaEELcElULoA8++ICJEycyYcIE2rVrx5IlS7CysmLZsmVVtu/evTvvv/8+jzzyCObmVY8RudVjisbh1KHy218t2jhjbSfjfxorIyONbjZY/OEU7O3tKS0tZffu3WpHE0KIW6JaAVRcXMzBgwcJDw//J4yREeHh4bX+ZlrbYxYVFZGTk6P3EA3rlNz+ajIq12g6fSSFO+64A4A9e/aonEoIIW6NagVQeno6ZWVluLvrT3d2d3cnJSWlQY85e/Zs7O3tdQ8fH59anV/U3j8DoL3UjiJuonKNptNHUnUF0JEjR8jPz1c5mRBC1Jzqg6Abg2nTppGdna17JCUlqR3JoGSn55OSmIVGA4GdZQHExs4v2BVjEyOy0/OxNHLA09OT0tJS2RhVCNGkqFYAubi4YGxsTGpqqt7rqamp1Q5wrq9jmpubY2dnp/cQDUc3/ifQGWt7C7XjiJswszDRbYx6dS+Q3AYTQjQlqhVAZmZmdO3alcjISN1rWq2WyMhIevbs2WiOKepfXEUBFCjr/zQZlWO1Yg9c1P3bkgJICNGUqHoLLCIigqVLl7Jy5UpiYmKYNGkSeXl5TJgwAYCxY8cybdo0Xfvi4mIOHz7M4cOHKS4u5sKFCxw+fJj4+PgaH1M0PpUDoINk/E+TEdSt/M/q1MGL9OvXj4cffph7771X7VhCCFFjqm6FMXr0aC5dusSMGTNISUkhNDSUjRs36gYxnzt3DiOjf2q0ixcv0rlzZ93z+fPnM3/+fPr27UtUVFSNjikal5yMfJITZPxPU9OykztGxhoyknMJ8Api7dq1akcSQohbolEURVE7RGOTk5ODvb092dnZMh6onh3YfJql0yJpEejE9G8fVDuOuAXznvyF09GpjJ1+F71HtFU7jhBC3BKZBSZUVTkAWqa/Nz1tKm6DxR64iKIonDp1ShZEFEI0GVIACVWdOlA+/idQFkBscirHAcUeTGbdunUEBQUxadIktWMJIUSNSAEkVJOZlqcb/xMkM8CanFad3DExNSIrLY82fh0BiI6OJjMzU+1oQghxU1IACdWc3HcBKhbWk/V/mh4zCxMCOpZPLsg8V0ZQUBCKorB9+3a1owkhxE1JASRUU1kAtQ3zVjuKqKXKnrvK6fCAbkamEEI0ZlIACVUoikJMRQEU3EMKoKaqcvB67IGL3HXXXQBs3bpV5VRCCHFzUgAJVSSfySQ7PR9Tc2NadZI1mpqqlp3cMbc0ISejgMAWnQA4fPgwWVlZakcTQogbkgJIqKKy9yewsyem5qquxylug6mZsW42WMaZUgIDA9FqtezYsUPtaEIIcUPyk0eoorIAaiu3v5q89r18iN5+juO7knjvvfewsLDQ3Q4TQojGSgog0eDKSrWcOli+AKKM/2n62vf0ASD+SArPfjAOSxsztSMJIcRNyS0w0eASjqVRlF+CjYMFLdo4qx1H3CbXFna4+dqjLVM4uf+C2nGEEKJGpAASDe7EnvMAtO3uhZGRRu04og506FXeC3R8VxK7du3izTffZM+ePWrHEkKIasktMNHgju1KgoqxI6J5aN+zBX+tOcaxXUn8dTqS5cuXU1JSwh133KF2NCGEqJL0AIkGlXO5gLMnLsFVY0dE09emqxcmZsZkpuYR2r4HyHpAQohGTgog0aBO7C7v/fEJcsbexUrtOKKOmFmY0KZiQ1snI38ADhw4wJUrV1ROJoQQVZMCSDSo47vLx/90kNtfzU7HPr4AXDxahL+/P2VlZbIekBCi0ZICSDQYbZmW47tl/E9z1fnuAABOR6dyV5/yfcH+/PNPlVMJIUTVpAASDeZsTDp52UVY2pjRsqNsf9HcOLpZE9DRDYCWbiEAbNy4UeVUQghRNSmARIM5tvMcAMFh3hibyF+95qjrgJYAmFz2xNjYmMuXL3P58mW1YwkhxHXkp5BoMJXT32X8T/PVuX/5AOik4zns3XmAlJQUnJyc1I4lhBDXkQJINAi96e9SADVbLt52+LZ1QdEqFCRbYGQk32KEEI2TfHcSDSJ621kUBXyDXXBwtVY7jqhHXQaUD4Y+GHkGAEVR0Gq1KqcSQgh9UgCJBnFkayIAoX391Y4i6lmXitlgJ/ddIOKll/H29mbLli1qxxJCCD1SAIl6V1RQQsy+8k0yQ/r6qR1H1DN3Pwd82jijLVM4cfg0ycnJMhtMCNHoSAEk6l3M3guUFJXh7GWLd2sZEGsI7rg3EAAHbSsA/vjjD5UTCSGEPimARL07HFV++yukrx8ajez+bgh6DG6NkbEG85wWGBkZcfz4cZKSktSOJYQQOlIAiXpVVqolevtZkPE/BsXO2YoOvXywMLGmtW87kEURhRCNjBRAol6djk4lL7sIKztzWod6qB1HNKA7RwUD4Kwpvx0mBZAQojGRAkjUq8rbXx17+8jqzwamQy8fnDxscDdvC8D//vc/SkpK1I4lhBAgBZCoT1qtwqGKtWAqN8oUhsPI2Ig772+Lq5Uvvq5B/Otf/6KgoEDtWEIIAVIAifp0JjqVzNQ8LKxNZfsLA3XnqGDMLEwZ7BvBkw9Nxs7OTu1IQggBUgCJ+nRg82kAQu7yw9TcRO04QgW2jpb0Gh4EwKZVR9SOI4QQOlIAiXqhLdNy8H/lt7+6D2qtdhyhonvGdEJjpOHIjgSWffYNx44dUzuSEEJIASTqR9zfKeRkFGBlZ05wmLfacYSKXFvYccfQQHaf/46nnhvDokWL1I4khBBSAIn6UXn7q3M/f0xMjdWOI1R279NdCHAMBeD7736grKxM7UhCCAMnBZCoc2WlWg5FJgDQbWArteOIRsC1hR2jx9+PubEVGZfT2bp1m9qRhBAGTgogUedO7DlPblYhNg4WBHXzUjuO+rRlkBQFMd+W/1drmL0fo54No5VrFwA+mv252nGEEAauURRAixYtwt/fHwsLC8LCwti3b98N23///fe0bdsWCwsLOnbsyO+//673/vjx49FoNHqPwYMH1/NViEq71scC0GNIa1n8MG4dLPWH7/rD74+V/3epf/nrBsba3oLxTz8OwP+2buTimctqRxJCGDDVfzqtXbuWiIgIZs6cyaFDhwgJCWHQoEGkpaVV2X7Xrl08+uijPPXUU/z999+MHDmSkSNHXjezZPDgwSQnJ+se3377bQNdkWHLzSrkyLbyvb96DQtSO4664tbB+gch97z+67kXyl83wCLohTfGYWFmTX5JNm8/u4SSYsPsDRNCqE/1AuiDDz5g4sSJTJgwgXbt2rFkyRKsrKxYtmxZle0/+ugjBg8ezJQpUwgODubdd9+lS5cufPrpp3rtzM3N8fDw0D0cHR0b6IoM294/4igr1eIb7IJPG2e146ijJA+KciDyBUCpooFS/vjrxfJ2BsTCwoLhw4cDcDB6D99/uFvtSEIIA6VqAVRcXMzBgwcJDw//J5CREeHh4ezeXfU3xt27d+u1Bxg0aNB17aOionBzcyMoKIhJkyaRkZFRbY6ioiJycnL0HuLWKYrCzl/Kb3/1Hm7AvT8f28Cn9pB38cbtci+UtzMwb70znXWrNtPF8162fn+CqO+Pqx1JCGGAVC2A0tPTKSsrw93dXe91d3d3UlJSqvxMSkrKTdsPHjyYVatWERkZydy5c9m6dStDhgypdurt7Nmzsbe31z18fGTbhto4dzKdC/GXMTEzlsUPRbWCg4O5/4lwRkzqDsCaeTvZtzFe7VhCCAOj+i2w+vDII48wfPhwOnbsyMiRI9mwYQP79+8nKiqqyvbTpk0jOztb90hKSmrwzM3BzorBz537+WNtZ652HPW8mAujfq9BQ2rerhka+lRnwu4LQFFg2fS/2PHzSbUjCSEMiKoFkIuLC8bGxqSmpuq9npqaioeHR5Wf8fDwuKX2AC1btsTFxYX4+Kp/yzQ3N8fOzk7vIW5NQW4xe3+PA6D3CAO+/QVgag1+A8GmBaCpppEGbH3K2xmg4uJixo4dy0sfPEDIQHcUBVbP2sb/vjmqdjQhhIFQtQAyMzOja9euREZG6l7TarVERkbSs2fPKj/Ts2dPvfYAmzdvrrY9wPnz58nIyMDT07MO04ur7VwfS2FeCZ4BDrTtIVtfYGQMd39U8eTaIqjief+F5e0MkJmZGfHx8Vy5coVch1jueaITAN9/sJu183dRVqpVO6IQoplT/RZYREQES5cuZeXKlcTExDBp0iTy8vKYMGECAGPHjmXatGm69pMnT2bjxo0sWLCAkydP8tZbb3HgwAGef/55AHJzc5kyZQp79uwhMTGRyMhIRowYQevWrRk0aJBq19mcacu0bFlbvgxB/9Ed0Giq6/UwMIGjYPgPYHNNQWjbovz1wFFqJWsUnnrqKQCWLVvGqBd6cP/zPQD4a80xPov4k4LcYpUTCiGaM42iKFXN021Qn376Ke+//z4pKSmEhoby8ccfExYWBkC/fv3w9/dnxYoVuvbff/89b775JomJiQQGBjJv3jyGDh0KQEFBASNHjuTvv/8mKysLLy8vBg4cyLvvvnvd4Onq5OTkYG9vT3Z2ttwOq4HDUYksfmUTVnbmzPntMcwtTdWO1Lhoy+DCdshNBhtP8L7TYHt+rnblyhU8PT3Jy8tj+/bt9OnTh0ORZ1g2YwslRWV4tXTkuYWDcfGyVTuqEKIZahQFUGMjBdCt+eBfG4g9cJGBY0N44MUwteOIJuTJJ59k+fLljB8/nuXLlwOQeOISn0X8SXZ6PraOFkyaP5BWIdWP8RNCiNpQ/RaYaNqSTmUQe+AiRsYa+j/cXu04ool5+umnAfjuu+9062/5t3Nl2sqR+AQ5cyWzkA/+tYG9f8SpnFQI0dxIASRuyx/L/gag890BOHnYqB1HNDE9e/akbdu25Ofns2bNGt3rju42TPlyOKH9/Ckt0bJs+hbWLzmAVisd1kKIuiEFkKi1C/GXOfi/MwDc+1QXteOIJkij0fDKK68wa9YsHnroIb33zC1N+b959zBoXAgAv315iBUzt6AtkxliQojbZ6J2ANF0bVh6EIAuAwLwbu2kdhzRRFXOBquKkZGGUS+E4eHvwOpZ29j7RzwajYZxM/tiZCy/vwkhak++g4hauRB/mUORCQDcN7Gr2nFEM9drWBATZ4djZKxhz+9x/Pe97XI7TAhxW6QAErVS2fvTNbyl9P6IOrFhwwZ69uxZ7UbIXe4O4Ml370ZjpGHn+ljWfbK3wTMKIZoPKYDELTt9JIVDkQloNHDv0zL2R9SNn376iT179jBv3rxq23Qf2IrxM/sCsHl1NNt+PNGACYUQzYkUQOKWaLUKaxeU/4bea3iQ9P6IOjNlyhQAfvnlF06erH5j1DvubcPwf3UD4Nt5Ozm+WzYvFkLcOimAxC3Z89spzp64hIW1KSOf7a52HNGMtG3blhEjRqAoCu+///4N2w59qjN33BuItkzhi9f+R+rZrAbLKYRoHqQAEjVWmFfMT5/uA2DoU12wc7ZSO5JoZqZOnQrA6tWruXDhQrXtNBoNT7x5F61DPSjMK2HJq5spKihpwKRCiKZOCiBRY79+cZCcjALcfOy4+5EOascRzVDPnj3p06cPJSUlzJo164ZtTUyNeWZOOHbOllw8ncl/39uO7OwjhKgpKYBEjZw5mkrkt+U7vj/8ci9MzWQzT1E/KgufL774gvj4+Bu2tXex4pk55dPj922MZ+sPMihaCFEzUgCJmyopKmXl21tRtAp3DA2kYx9ftSM1LWVlEBUF335b/t+yMrUTNWp9+/blpZde4vvvv6dVq1Y3bR/Y2ZNRL5Rvwvv9h3s4H5fRACmFEE2d7AZfBdkNXt9Pn+5j44rD2Dlb8tZ3D2Ftb6F2pKZj3TqYPBnOn//ntRYt4KOPYNQoNZM1K4qisOjff3J0xzk8Wzry+qr7MbOQhe6FENWTHiBxQ/GHU9i0+ggAY6bdKcXPrVi3Dh58UL/4Abhwofz1devUStakZGVlUVpaesM2ldtj2Dlbknwmk+8/qHoxRSGEqCQ9QFWQHqByuVmFzBrzI5mpeYQNac2T79596wfJy6uPaI1fWRkEB8PFi9W38faGEyfA2ADHU1lb16jZ8uXLmTJlCv/5z3945plnbto+Zu95Pnr+dxQF/m/ePXS5O6AOwgohmiPpIxZVUhSFlW9HkZmah5uvPY+91qd2B7KxqetozceFC2Bvr3YKddTw964rV66QkZHB9OnTefjhh3FwcLhh++CwFtzzRAibVh1h9axt+LdzxclD/g4KIa4nt8BElSK/OUr09nOYmBrxzOwBWFibqR1JGKBJkyYRFBREWloazz//fI0+M2JSN/zbuZKfU8RX0/9CW6at95xCiKZHboFVwdBvgcXsPc/HL/6BtkzhkSm96D/6Ntb8MdRbYNu2wdChN2/3++9w110NkahxqeEtMIA9e/bQu3dvtFot3333HQ899NBNP3PpfA6zxvxIYV4Jw/6vK/dN7HqbgYUQzY0UQFUw5AIoLSmb2eN+Jj+niDuGBjL+7X5oNBq1YzU9ZWXg719+m6uqf2IaTflssIQEwxwDdIumT5/OrFmzcHJy4tixY3h6et70M3t+j2P5jC1ojDS88sUwWod6NEhWIUTTILfAhE5BbjGfvbyJ/Jwi/Nu78vgbd0rxU1vGxuVT3akodq5W+XzhQil+amjGjBl06dKFy5cv89RTT9Voxec7hgZyx9BAFK3CV2/+RV52YYNkFUI0DVIACQBKS8pY8upmks9kYu9ixaT5AzE1lzHyt2XUKPjhh/LZXldr0aL8dVkHqMZMTU1ZvXo1lpaWtG3b9qbT4is9OrU3bj52XE7JZflbUWi10uEthCgnt8CqYGi3wBRFYfmMLez9Ix5zSxNe/mIYfsGuasdqPsrKYPt2SE4GT0+4807p+aml5OTkGt3+ulpSbDpzJvxCaXEZ9z/fg8HjQ+stnxCi6ZACqAqGVgCt+2Qvf648gpGxhuc+HEyHXj5qRxLipgoKCsjIyKBFixY3bbv9pxj++952jIw1/HvxfbTpcmtFlBCi+ZFbYAbuty8P8efK8pWen3jzLil+RJOQlpZG//79CQ8P5/Llyzdt32dkW+4YGoi2TOHL1yPJychvkJxCiMZLCiADtnHFYdYvOQDAgy/dQa9hQWpHEqJGysrKuHjxIrGxsYwaNYqioqIbttdoNDw2rQ+eLR3JTs9n6euRlJXK+kBCGDIpgAzU5v9G89On+wAY+Vx37nm8k9qRhKgxT09PfvvtN2xtbdm6dStjxoy5aRFkbmnK/80Nx9zShFMHk/l27o4azSYTQjRPUgAZoMhvj/LDwj0A3PdMV4ZM6Kx2JCFuWceOHfnhhx8wNTXlxx9/ZNiwYeTm5t7wM54Bjjz13gA0Gtj+00kivz3WYHmFEI2LFEAGRFEUfv38AN8tKN8pe8iEUO6b2EXtWELU2sCBA/ntt9+wtrZm8+bNDBgwgPT09Bt+JuQuPx6YfAcAP3y4m8NRiQ2UVgjRmEgBZCC0WoU17+9iw9JDUNHzM+LZ7rLQoWjy7rnnHv766y+cnJxISkriypUrN/1M+JiO9Lm/LYoCS6f9jxN7zjdIViFE4yHT4KvQ3KbBF+YVs2z6Fo5sO4tGA6On9Kb/w+3VjiVEnYqJiaG0tJSOHTvWqH1ZqZal0/7H31sSMTU3ZvKnQwnsLNPjhTAU0gPUzGUkX2HeU+s5su0sJmbGPPXeACl+RLMUHBysV/ysWLGCsWPHkpOTU2V7YxMjnv7PADr09qGkqIxPJm8kZq/0BAlhKKQHqArNpQfoyLazrHw7irzsIuycLXl2wSACOripHUuIepednY2fnx/Z2dkEBATw4YcfMnz48Cpv+RYXlvJZxJ/E7LuAkbGGcTP7ccfQQFVyCyEajvQANUMlRaWseX8nn0X8SV52Eb7BLkxbeb8UP8Jg2Nvbs2HDBvz8/EhISGDkyJH069eP/fv3X9fWzMKE5xYOpvvAVmjLyreF+fXzA2jLZJ0gIZoz6QGqQlPuAYrZd4Fv5uwg7Vw2AAMe68j9z/fA1Ez2nhKGJycnhzlz5vDhhx9SWFi+G/xDDz3E7NmzadWqlV5brVZh3cd72fzfaADadPXkyXfvxtHNWpXsQoj6JQVQFZpiAZR+IYdflhxg3x/xANg5WzJ2el869vFVO5oQqjt37hxvvvkmq1evxsjIiNOnT+Pv7w8Vy0NcfWtsz2+n+GbODooKSrG2N2fUC2H0GtYGI2PpMBeiOZECqApNqQBKv5DDnyuPsOOXk2jLFDQa6PtgO0Y+1wNLGzO14wnRqBw5coRt27bxwgsv6F4bNmwYFhYWjBo1iqFDh2Jvb0/q2SyWvh5JUmwGAL5tXXhgchhB3bxk6QghmolGUQAtWrSI999/n5SUFEJCQvjkk0/o0aNHte2///57pk+fTmJiIoGBgcydO5ehQ4fq3lcUhZkzZ7J06VKysrLo3bs3ixcvJjCwZgMbG3sBVFJUyvHd59m+Lobju5Oo/BMMDvNm5HM98G/nqnZEIZqE9PR03N3d0WrLx/uYmprSo0cP7rzzTnr16k1ZsgNbvo6jMK8EKgqhAY91pMvdAZhZmKicXghxO1QvgNauXcvYsWNZsmQJYWFhLFy4kO+//57Y2Fjc3K4ftLtr1y7uuusuZs+ezX333cc333zD3LlzOXToEB06dABg7ty5zJ49m5UrVxIQEMD06dM5evQoJ06cwMLC4qaZGlsBpNUqpJ3LJv5wCsd3J3F8VxJFBaW699vd0YKhT3WWNUyEuEWKonDo0CHWrVvHunXrOHnypN7748eP56MFn7Fh6UG2/3yc2JS92Jq74GTrTtjdHQntG0BgZw+cPGykZ0iIJkb1AigsLIzu3bvz6aefAqDVavHx8eGFF17gtddeu6796NGjycvLY8OGDbrX7rjjDkJDQ1myZAmKouDl5cXLL7/MK6+8AhVTYt3d3VmxYgWPPPLITTM1dAFUVqolL7uQ3KxCrmQWciWzgLSkHNKSskk7m01yYhb5OfobPTq4WdNjUCvuHBWMm499vWcUwhDEx8ezfft23WPSpElEREQAsG/XQcJ6d9O1NdaYYGXqgJWpHXY2TvTpcg9D7hmGm489xpZlRMfuw9XTGRc3Rxyd7LG1s8XS0hILCwusra0xNzdX8UqFEKr24RYXF3Pw4EGmTZume83IyIjw8HB2795d5Wd2796t+4ZUadCgQfz8888AJCQkkJKSQnh4uO59e3t7wsLC2L17d5UFUFFRkd5O0tnZ5TOoqltArbZ2/nKSqO+OU1xUSkmxltLiMkqKS9GW3bwGNTUzxi/YlZad3OjQxw/fIGfdb5x1nVMIQ+Xm5sYDDzzAAw88ABW/kFX++8oryqFPnz6cPXuW8+fPU6aUcqU4nSvF6aTmncH2b3eUZHcAMvLP8+up+dWe547W97Hgk9l06OVLfHw8ffv2xcTEBGNjY0xMTHT/b2RkxLhx43Tf85KTkxk1ahQajQYjIyM0Go3uATBy5Ej+/e9/A5CZmam7jmt7pzQaDQMHDuTVV18FoKCggOHDh1fZFuCuu+7izTff1D0fOHBgtdfWo0cPZs2apXs+bNgwve+vVwsJCeH999/XPX/ooYd033+vFRQUxCeffKJ7/sQTT5CamlplWz8/P5YuXap7PnHiRM6ePVtlW3d3d1avXq17/vzzz3Pq1Kkq29rb2/P999/rnk+ZMoUjR45U2dbCwoL169frnr/xxhtVLsNQadOmTbr/nzVrFtu2bau27fr163V3M95//302b95cbdu1a9fi6OgIwCeffMKvv/5abdtVq1bh4eEBwBdffMEPP/xQbdsvvvhCN5Fg9erVel/Da33yyScEBQXp8nz11VeMHz+exx57rNrP3C5bW9ub98oqKrpw4YICKLt27dJ7fcqUKUqPHj2q/IypqanyzTff6L22aNEixc3NTVEURdm5c6cCKBcvXtRr89BDDykPP/xwlcecOXOmAshDHvKQhzzkIY9m8MjOzr5pDSKj+IBp06bp9SpptVouX76Ms7Nzo7qvn5OTg4+PD0lJSY1ibFJDkeuW6zYUhnrtct1y3XXN1tb2pm1ULYBcXFwwNja+rhszNTVV1w13LQ8Pjxu2r/xvamoqnp6eem1CQ0OrPKa5ufl19+MdHBxqeVX1z87OzqD+sVSS6zYshnrdGPC1y3UbFrWvW9WVvczMzOjatSuRkZG617RaLZGRkfTs2bPKz/Ts2VOvPcDmzZt17QMCAvDw8NBrk5OTw969e6s9phBCCCEMi+q3wCIiIhg3bhzdunWjR48eLFy4kLy8PCZMmADA2LFj8fb2Zvbs2QBMnjyZvn37smDBAu69917WrFnDgQMH+OKLL6BiAN9LL73ErFmzCAwM1E2D9/LyYuTIkapeqxBCCCEaB9ULoNGjR3Pp0iVmzJhBSkoKoaGhbNy4EXf38tkU586dw8jon46qXr168c033/Dmm2/y+uuvExgYyM8//6xbAwjg1VdfJS8vj2eeeYasrCz69OnDxo0ba7QGUGNmbm7OzJkzDW76rFy3XLehMNRrl+uW61aD6usACSGEEEI0NNndTwghhBAGRwogIYQQQhgcKYCEEEIIYXCkABJCCCGEwZECqJGbPXs23bt3x9bWFjc3N0aOHElsbKzasRrcnDlzdEscGIILFy7w+OOP4+zsjKWlJR07duTAgQNqx6pXZWVlTJ8+nYCAACwtLWnVqhXvvvsuzW2exrZt2xg2bBheXl5oNBrdPoaVFEVhxowZeHp6YmlpSXh4OHFxcarlrUs3uvaSkhKmTp1Kx44dsba2xsvLi7Fjx3Lx4kVVM9eFm/2ZX+1f//oXGo2GhQsXNmjG+lCT646JiWH48OHY29tjbW1N9+7dOXfuXIPkkwKokdu6dSvPPfcce/bsYfPmzZSUlDBw4EDy8vLUjtZg9u/fz+eff06nTp3UjtIgMjMz6d27N6ampvzxxx+cOHGCBQsW6DY0bK7mzp3L4sWL+fTTT4mJiWHu3LnMmzdPbwPM5iAvL4+QkBAWLVpU5fvz5s3j448/ZsmSJezduxdra2sGDRpEYWFhg2etaze69vz8fA4dOsT06dM5dOgQ69atIzY2VrdJa1N2sz/zSj/99BN79uzBy8urwbLVp5td9+nTp+nTpw9t27YlKiqK6Ohopk+f3nBL1tx0tzDRqKSlpSmAsnXrVrWjNIgrV64ogYGByubNm5W+ffsqkydPVjtSvZs6darSp08ftWM0uHvvvVd58skn9V4bNWqUMmbMGNUy1TdA+emnn3TPtVqt4uHhobz//vu617KyshRzc3Pl22+/VSll/bj22quyb98+BVDOnj3bYLnqW3XXff78ecXb21s5duyY4ufnp3z44Yeq5KsvVV336NGjlccff1y1TNID1MRkZ2cD4OTkpHaUBvHcc89x7733Eh4ernaUBrN+/Xq6devGQw89hJubG507d2bp0qVqx6p3vXr1IjIyklOnTgFw5MgRduzYwZAhQ9SO1mASEhJISUnR+/tub29PWFgYu3fvVjWbGrKzs9FoNI16b8a6oNVqeeKJJ5gyZQrt27dXO06D0Gq1/Pbbb7Rp04ZBgwbh5uZGWFjYDW8P1jUpgJoQrVbLSy+9RO/evfVWvm6u1qxZw6FDh3TboBiKM2fOsHjxYgIDA/nzzz+ZNGkSL774IitXrlQ7Wr167bXXeOSRR2jbti2mpqZ07tyZl156iTFjxqgdrcGkpKQA6FbCr+Tu7q57z1AUFhYydepUHn300Wa/UejcuXMxMTHhxRdfVDtKg0lLSyM3N5c5c+YwePBgNm3axP3338+oUaPYunVrg2RQfSsMUXPPPfccx44dY8eOHWpHqXdJSUlMnjyZzZs3N/ktTG6VVqulW7du/Oc//wGgc+fOHDt2jCVLljBu3Di149Wb7777jq+//ppvvvmG9u3bc/jwYV566SW8vLya9XWL65WUlPDwww+jKAqLFy9WO069OnjwIB999BGHDh1Co9GoHafBaLVaAEaMGMG///1vAEJDQ9m1axdLliyhb9++9Z5BeoCaiOeff54NGzawZcsWWrRooXacenfw4EHS0tLo0qULJiYmmJiYsHXrVj7++GNMTEwoKytTO2K98fT0pF27dnqvBQcHN9jMCLVMmTJF1wvUsWNHnnjiCf79738bVA+gh4cHAKmpqXqvp6am6t5r7iqLn7Nnz7J58+Zm3/uzfft20tLS8PX11X2vO3v2LC+//DL+/v5qx6s3Li4umJiYqPq9TnqAGjlFUXjhhRf46aefiIqKIiAgQO1IDWLAgAEcPXpU77UJEybQtm1bpk6dirGxsWrZ6lvv3r2vW+rg1KlT+Pn5qZapIeTn5+ttfAxgbGys+03REAQEBODh4UFkZCShoaEA5OTksHfvXiZNmqR2vHpXWfzExcWxZcsWnJ2d1Y5U75544onrxjgOGjSIJ554ggkTJqiWq76ZmZnRvXt3Vb/XSQHUyD333HN88803/PLLL9ja2urGAdjb22Npaal2vHpja2t73Tgna2trnJ2dm/34p3//+9/06tWL//znPzz88MPs27ePL774gi+++ELtaPVq2LBhvPfee/j6+tK+fXv+/vtvPvjgA5588km1o9Wp3Nxc4uPjdc8TEhI4fPgwTk5O+Pr68tJLLzFr1iwCAwMJCAhg+vTpeHl5MXLkSFVz14UbXbunpycPPvgghw4dYsOGDZSVlem+3zk5OWFmZqZi8ttzsz/zaws9U1NTPDw8CAoKUiFt3bnZdU+ZMoXRo0dz11130b9/fzZu3Mivv/5KVFRUwwRUbf6ZqBGgysfy5cvVjtbgDGUavKIoyq+//qp06NBBMTc3V9q2bat88cUXakeqdzk5OcrkyZMVX19fxcLCQmnZsqXyxhtvKEVFRWpHq1Nbtmyp8t/0uHHjFKViKvz06dMVd3d3xdzcXBkwYIASGxurduw6caNrT0hIqPb73ZYtW9SOfltu9md+reYyDb4m1/3VV18prVu3ViwsLJSQkBDl559/brB8GqW5LbMqhBBCCHETMghaCCGEEAZHCiAhhBBCGBwpgIQQQghhcKQAEkIIIYTBkQJICCGEEAZHCiAhhBBCGBwpgIQQQghhcKQAEkIIIYTBkQJICCGEEAZHCiAhhBBCGBwpgIQQQghhcKQAEkIIIYTB+X8s2EkEah3XRQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "y_vect = np.linspace(4, 16, 100)\n", + "\n", + "ax = sns.kdeplot(YSample, color=\"rebeccapurple\", label=\"KDE\")\n", + "ax.plot(y_vect, t.pdf(y_vect, N-1, Mu_MLE, np.sqrt(S**2/N + S**2)), color=\"k\", ls=\"--\", label=\"Prediction distribution\")\n", + "\n", + "ax.hlines(0.025, LowY, UppY, color='red', label=\"Prediction interval\")\n", + "ax.hlines(0.05, LowMu, UppMu, color='darkorange', label=\"Confidence interval\")\n", + "ax.scatter(Mu_MLE, 0.025, color='red')\n", + "ax.scatter(Mu_MLE, 0.05, color='darkorange')\n", + "\n", + "ax.legend(frameon=False)\n", + "ax.spines[['right', 'top']].set_visible(False)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/fall-2024/math/mat-206/00010/MAT-206:00010 - Thanawin Pattanaphol.odt b/fall-2024/math/mat-206/00010/MAT-206:00010 - Thanawin Pattanaphol.odt new file mode 100644 index 0000000000000000000000000000000000000000..cd0bcba7dad89f9978d3cd363bc47dfd16f4a737 GIT binary patch literal 154576 zcmbrl1ymeS(=9r?aYBgM;GS*{Yc#ZVkB@wcN63PZWR81G0Mr&$=&JS(EsLc|J6L5 zTpTT3%w1jo`#b(u^K^4`wEOQzk^C3)w6-_4GNc5?l1Ci`D4($&q_&Heww zR4wcrjor-u-;LWe;yxFJ4k{TAKo&z{iQtl5_S}1 z6VHCQ5+}W9?Ye*udbi1pyY$tRz)VL@`33N1Ta*k%)&F_FI&KSuA{4s&t!{d)lVRb% z;*865^yVGG4NnX!=x<6xjPkxBhgP+G-u4ZDA&FQ(P0F?_4=f_5B`CV$v0C?0^U!*yS8V*bqO-^ z=64eEotT^$WD-PV(32=150GqB>g36b#t1F789KA18cIDZMPRO~7KfhPqb{tHLzu<% zt^e$ffU}be(w)m#&~?;l-9EFVn*n_0=It zBd3RB6GZANl+acwxUzP!@*TwVU$u(CA**JY9Zq@5#`t*UcOx_}&-bv%&W%wgr6%fS z%%4KOkNhN-@#xO^AjWEZPYfx6?#U+Hb=B!DTpBs`OFM)C_eqkByZ6@N^|Eo|wN_xf z2@#kUagSq}z@VMLmK5;<_uYUn5r_U@7Z0KJEHK0P@#&lC!;iaVSkK5ifpH)4xj>bJ z_}l>HhU0|&ecQsn(mWa;_aE1P)BJp{HL4=Hhp%#Fc#X%L_jJ+>CA#@W5f2YO2`U6E zIV><|hdgs^)I+L46;bOl?5NF46G35}W)AgsXTR51xfuBKIX5K8NZWsRHI!Z0KSMNz zl)FXNNEg(>jkZF2Ld1eekVmTiAjXW#W!;BtWEy1RDR{=^+==Sfyq(%J@eXGy#!%rG z{+O=EcfqRhgtM}f;-XHY`w5kr&R-JrQY|wMA$v*-vX+|+89BG+j?C8(zcYAgLpZLD zgi&tX6E3tUH4KI@Kj5PCzzZe%f@m!Cqlr?WwRSf;rzK>at3tJcW*BNXzIX=%58<>7%u6?uuF+B&>@zrxZ^{9)CU3*3xgO2V8+t&V7g4&>fPYPb}YDdE$hfhwvuf zCQ5XR(!`)JHcV3{py*i%bHFgwXs&=bGCIL^UrYITn&2#38m8rUf+$rk3btW(u!3pG4f2KV$FzQ5K&cB$+Oh$vXVMar|9&a+Te_=vo_!?XfQsXGwV|4ilBOmdQwNouVFGD0j8-sAR;xO2J ze9fmrVUk_0BEv^lPvR&sh(et9=nJoR11SXRT`;}X8chsp!giA@l}>+eN;g~aaB=V4 z3Rd3HB&TD;Yr(737~HVMgNe!^JYw0Sph;#sA-)gcmYJBmgEY;|gKtnmy`?odUC5-4 z<_b#gjUivlT)Ccp=896KKldsL32MJ2e27el95nf~(brq!{BoXBd@NX(Gkzj9Nct&w z9A1ZxF_mqABarb>zcF(_r&U*bl{pCa+i&`$wjoJ-XdRiu`UKHcxa^6Ny8`O@F^oKGmvz&q+5{!1mYpp8SkguE+4p*PMX7 zYv6OD*w>{;%vc+FWnpuq68nUg#0Xo7A`YZWvVgMW5siQpSPp#z)-{CyfEM;G-O$O8 z3EUEXnN9!Akj8jKwjkFDlpOpU@KfC&@QKnqlpkzThT!rX^5oua+q$q7LQ-58ebHWT zk}2i3KHSDXYiMt4h^;8rk0*rP@*;sf{)N$3dk?YMJ;$^=HEkDephxErOS27QC}HN* zw~l%AnW&2+MmV#T+t9wDf0xJ>dB5gNwHQPD6O&_MopKH#&Afub`YrKO zrquj>*e}bHzswn_r+8*oXSA1S;F>$1OR4EE18l`ee)uG4R(cRavEfjHnQ_%ZGxCC{ zUb(Yzt(idr;}q4_lkOUs4(R$Gu6EvR$Egn zB~^oA9YEopKcOoe1gR?)XG51G50X)%UazALPIsJSn}7FdTDbPZ=G0RXu?G%2glRahhsa}1NoAS_@=;4EsBALSIp;EO zld$GiPX7K^>C7g?j_4?9UzO0y!_4sXtq&jdDpU8fHN%{x?W4gZm^qe12JZJ- z#Eh6YzYpX2()n~R67nNnBVwVf0249 zllnDRN;be(ZA_t*_D&gIDkIGFXZjLkI{bApUB2tsk*w6!V732ExEYae6ul}mncTyW zWPQ?_HR&rpS-V-fmA%`E$K5Z~Y$KeWxG!N>)*duyBNs7Qv+#`lL-XIh$ly$H;ES|6 z!OfZkjW~5W!D$I|e%~*WORHQSt5wC?t(U`Z5X>pRqNCxL z;i`%WkC28Bjrb-8P4qaFN`jKq-8tV5ybdl)B{%7HoJ7Gh98P7&uMs^-);&K$B~Sd{ z*RFXT1Xj2lyn3=srPhBP!gd^MC`Hb#7^5sA@`^pq9qADkSfeChgrn!bZB(RtE0aoP zYLRVq>HR`(0z;wsv7E*HJWUj^c>);yb7?|b=4&e8C zQv`|YR%!`ITTvTeJnwm3+bh#?B5P2TSS)7&*FJI^h>V2;d7Kdt(P{3v*XDCKoe{ z%M=yc5EjhP?LSy#g0>5NX{wB-b1i)vPqN9GL#DruQDnC?8K?7}wj3g^!pMBsnjAGy^h85MI!+L`xVU=5?eks`HfBYml-1s0qY9#2w5{T zIh05}%}yChYj~exfZRg&uP^Pc^GmlQXf9RCH1DY|#7kSpS=&#)N5}-XdVExzGWFe% zp1(QiX5bi1__OMtdsiK&AA0);{Qca8WmE0FtX)jvz4YmgWGqYRpN&_3ceBP!u>?eLbUnWL|f4W@yDD885uN1vzFh%$)}|SEd5oFv>UPikVb(s|)0GA1g<2 zy-R|hcJuwFwztIir@!7jDf!jH^BS<=)zg_H@;BWIAwp={3K&-&A`&xf9{*#+NF!*H@fY)i!Blc zTX_A;Y=NEmbsoMn9$h3Y){~NpBXQDK2ciZX%u>3(JXbVrr+5wVO>y@yPpwUxZHj5$ zn*|)Wm;#Cl-QQnW7m-_KidDq*9U5;F730kE zOQR$QKUfT43D6q{@pjOef|}0?BR8Y52Ep&KTy8doVsZ`q2T<2Hu~#_y_75+3!}+yd z0{hjyNJ3}jL7{Xa5Wjl9^1N|G6g+UjI9(itqV{fEBZg>xWHGjv_#K0pmZ_h3RjCp8 z)@8CAJ6eGY8SbNc!7=e{`dGKap!udlRGcu%@}KE)D~FJ2g*bf*gou;N2Zfr(`NsBh z+z}|#;X}KpuD^M@JPA%Yu|U5GiR%nL98djyH+Z=zPHqYd6gvnYzxY8BmZufuhxzW% zt5Miba-;c@r(9rhfxJU3#;At6$ZublB5S(Mk|cG%VT)g6*Ma)cIXS@4gNodxdK&jc zt>4%-xFMqN-k=0b#_3Iq>noSd4H=C`+LaN=DIDA-xEKN%ZfTWwZp2(68Z#;3PDvU=_ zywXDdqXi|~`A9{NS>eJLxwln4K{FvuSqK-UM~;C%MSJ7BXeVh&Ry>eNojl<^vkAe$ zO0W>mw7_=8^w7$ompvFc9#Q4S_$|WDn)h0?G{D_H3dwPLt*Okg)E1&G3uaU4e65kS zS^*7fAOT@6U5s8j410b?5sk}c-iu$3y)A^pKA}~mUi}ePy_;8yD!##^dJX4Hzp2Lg z6PW_ZzCMS_+~=yXw()#g>v7tw3c(;(sOB;Bud3Bbd-_^e9xJV}6X;X!H7^%!HFHuvmHGqRo)UuBuBmJJ0X+-FqB#i-r+ z8A-m5nye7IZZ;`HPBFApr6|uhuruNo0g`3n9MWawsQkq82j7r2DBIo7JRt8j`S;L> z*4Oe=^C==qL4aM7wbRWNyF$#_g_?Wenr`eX8!qw_QSz~0!Ua8p zZ{VYA?R6=?O#-YOD^cNtI-~knJyKYSM}T_%z1ag63*kfdudT2%@`($XdjwqMSHbzI zSm>wpjQn$f3sV-t3qHC&?#RJANZSw>brzxMTT{E|6 z(aG*YmBsaFLUA3%G|QNSH{wG9g*QQoqIHhNv4xkKVs@i#+ciAI^T~0~TdjuI`JB!$ z@2J?Iba#vrvD+{37Y@;6(e0GGEc0h%48gziELsIwM1^;SQIAP~#hq`}?8dehFy1kw zpY^Q|?;E2VpQylMW#h+>$6^aknvH&-PW_g6pTz=H@Y@;%`?P6;=M=30Fi^ z$-3N0H^xk1e%70l&sh;W)GIh=KP#rH@^Zm&w`2M#_G<1r%gu=sh^K|DG+Yuh1%;?n zr^)YJ&&!F!f+?Ztm5*m{$0WQp)vg-$t5wz}AZzJHpu|*c*AsEi7^C$>)e|o$l|tqB zpnx-G%=HknC7eh7aRQD3tgjHW1^92ap`u(E18G4gu`GG#SigE|5o^u1WTO_BCPfxx z`eiwxnkT~oQejk2*<`doH0i#(SA1Z0C>b0+V7mL>n4d-_t_a%eHdh-rbar<9W_Uc$A z=eNNR5r-CW@f{^AcD2Hm?%Wc*H*^RxlLey(`Oz1ZA72UhMmgScrcRu@@0Yy$%f~J! zV|8N7gFa+(zKrE7KSY4VbsvX(U|+wN-pDg;L#PtvTdkh!cG~7)>H0~~9-Z90){3Fq zqe%94Z?on#%eAm2I27exaSkbacn}uUZhc7I zNQx76hXAOkeLv+jv4j*J}}kf6z!;V%`Z7) z{WJ%M3Qv-KZTLk=WIyxNs?kD=jwIT#=kKmeRsrug&v^cZOu9hFTp{g(E8%ppGaVLw zXjuFH)F+;Y0+=Mvpa3;`s}ArwFH3&Psp_o)KITz~zGp#`?RD{Z`kl`q;w+Kq^-4*w zfB!Or-3fq2Rj8QrqG~@>vg)4W7dTh3;yY4QMn`>X+W*3eyZz?5jU6Qr-fueslZ<8N zv6sEkW3rld|H^@+1#7=aYTvf95pYpMg%4#3$k>rzxS8j#L!K>us@Umgpi~yYo zCb4x=?|FY$;?>!$sog1>dGJI=CrjD{apLr2tC@^)CAyNt!zevTL4O|Q$SW0JSju&t zEL5>znw`7vy2wEgQ`vFrByAJ?Rng*OkUepK)|sPK`H^dFW%-L*tyDwb=!PkNTwZ}CKycs_ z)AS;Kr;)omwPlN)!o^E+N3D9oY$SHHm6|EnJ7dx1aF-{tu@W$DkrQiyKIOc~52GS| zwFptuKZ1f2zZ|tZ?el<`_0LJ^bBh?ArNkC1Xv8-Z(^gVdcA<_j!4DK`?wx~iVOO$- zG&n*|SH2QPVCsIvbt|%}6JaW()PYX)7KzG||Dmm!u=DxZ+R1Q?wv&y6-1YD#a`cA6 zCI&-VVw9?F#VE{|0UtFnF<;Mc+T!}q4zq4oPd_ex3)vHg1uK6QYZ=myC$=l~9#iAH zTnrvrm_Jiwf}J7kfhm}5BvK<=cJ`E`V@mj)=-kRrB=tA#3^{j}yj9AHSGpbbU!HJ| z65a%#AAa}zeFA?#k1Cw>qqT2rl^nwei(AlnC=j&!`v>!N=Z{wb2leMx7ts(d>d%sz z`%%t(Uo7Z1sc<%_m^Y~$ne6V4`j1BSSN!_*y(Tx5k`Q7=ewVoz-``J$PAM_t5Qo&S zV))XHi(HgNlv_U!<`gE<>PoJ+zkP00RR#IO%|WU)YW(@E)68RhproQHz8)MkjgGbH zm!NPcqhOMdVZQ6rp5U5Yi})<*rabqnDVrIV)>mR6+yard?&cN-+4BUBw?@?47v6w6z&>%xyWt27br$CsnZL^_U1I^&aW_mHl)zF<>Vb~nhi zmr;yn)9Um&Lr2wu&nWrdT@aD>gfzMIfg>_$Xaq#{@$zwA_p9Ml(A-%fDuDjEHx*&ML&t`jAmuHJr$02 zG$Z+Kg)Ery5L+Kb3VWj()vFre^lew&8FG@86Oq0@qC7>bc3DK+nZBG>S&D-HuR(wa zYaucm(;|*ZgO<%R*|0<2%2yk6XLH2zy*RIIL9GVa9c16ZVtA2UsRGZ{N4-0v7=8Z2 zAW=&U%AxWjJ5=wYlS`lL%TkGz(A}$1n)ur8YnB#Ah<^{*uAsILRmE2U*D_F zgsd>~C{0*9sbku*)|bDmPE$NSZxa6oV+SwMB@r%Vs|4^~tmhUy!gU-%%t31I-&Hj< z&B&&+=jH8Sl+aUE)rI|9ml-udPxuHOws`f8GFD40CBrm52$(GXwxNEL*uKF!*4i*O z7Q_kuUbff4K0*cAhU!VJ-Hxt<9eOR|O-f$&qKcs%fq<-X{7jgIfgV}KX&U3is$X3By9cQh1 zgv)DLDKSk?_9jD@5m$7vKiu6AK7q!tH&!t~{?&H%V0no?pd-KXq0>Tvo<>8N4Sk%&@ANLYi|c`>-FfS~{Bas0 z?q{so7#)MSD{UHhimLvA_}3Gpp4B~C#{hv8i~qZx;D7c2nY$VPYY0XsO*pKxph`Ud zffu{f%okT>7S-gGn30HpwgPvj#*y}S&RnkRIM(eJje!J$e>TqFod&@^ zB&!<-({sM2h8t5tVq<(PwD6l$z9J=NrJjfj+Ja1ky|RWQF4!=uz6K&3%7eg$;DH!; zQG|M&H}I1DLhFn%7sI`_u$ETZ?uK#0or*(LNg6pn2p}kqc&qgyf1{$YgikE1`afiA^$rV{cGR5n!CAKJ6Qf_6VQ;}rYk-V;@6&@`~hEC>9x88#t=Rq78G@;T+H zFQc_g4yN_2vRU{uwPw+rLqmhji$~i6 zZiB9L<9&AMkW^UMb@}h(#j_jh?P$hAL;}6{zoHx?$&p3GDSL)l%w}VM38hisPLHPc zSXtk+`xuvVDJC^_E9`u)M?AatUcW=JezrFM9i3b963ynL+E%)_m8-=SexdXNJsd!P zxZlv=l0;&5QKBb9LbRwTnDi+C$%SpR`*tm?pC7~5W9t9~J)T&aXn=h%b9~LgY?tV>7vHwhVYZij#k8Kx zIF+v;T|g3F6^j2$rDoO@lP8a$0HgfkSUfngC)_tYLjIY{>xaaGf@kV$*;xntYlV9M z^^&j=>Y*QB*{Sfz%iJR~@z3dT!YHE@CKZnKB+bJOJTI2>w>}@;F7o@TG25ego3>nc zd1x!|5^;f`;=@|)Z@~tZdO(H#yG6!7H)qhsQEpLl{BhG0>*)(hk4D;J&h8 z8l_kfTv`qbvenw)RRt-&ZS@I9HpY_RuDDU*H!Tk)y{_Q;*0!YIC7>JW1p_UVH#skOg+>`xGe3wb7YCA#e3x1=H8x4MSgiOg$*5*9XZHs)Fcs0xZKA%Mjm%eY1auuEeeD`1Q~H)*41~Na5ZuYruC)7=`-!Yye_lFh^X!C zChXA3{K>j7KjulP{ShTlyvV_Qxr ztG0YqYS%PAin^)sG8utb&$pQAyp@@_AVX*I{$J@*t`08>PJd+a@YUoj*upZY!?_j7 zh3h4crlQ7AVSpZeTFsaYZW>a3dH9nOH`J1he)hHrNo;1Gqy%JuAiQq_XpJ-g#lb8`q6rW+4-~xWdx31!!7-Ukf8feOb zkSa}oUOk9ZMdS*rVL1C&LdyAgc3JGet@^@0I15r{&@SYKheE9fZ?$R-Bt=8bVwwXb zXc2z4z>4P2gvg>AyVeRDuY~sQTbc0t9^8$Qd7EudmeM~;$z^M}_ZD&1CRJGf3{_0z zqVRmUEOB8IsNF%WQx>KhzQ3OI=0Ps&MPnn9kAL|T>*r6sFQ|#U4j;dE`j(hK^@}7! zkU=6?6?c@BVhS63T`1&=GG17zP`h6*5wX{j0SiUcBRIG}GT!NjXQH^>g8ds;(9-Da zcF@=bbp1x|o-lu(Q-nits2S`b7~P;YDzk@vIh03@lsd68i!Ky&3NM2DolbhZa%vRn`uUMJ7Pc?H^o-n2cXUw8QWxruq)^KtD};DN zNF|XK7IMn-#e+!HG1=(5-Xpd4D{3?<=xzySuLUc|mB{}Sk=}q%)OmXUbWs~SaRptj z&d>2$zSm`U4%Yp&Bz&}IkwHoN6lgD8Ee6DVxX<@k)2>YttRVqY%z^Iia(E+oEKzXk z)PerSr+)6Dv zQr%L5Np%KLZh0%A^JVv@@=g6d9S)heFvo3k)%7DgTjUObc8Kg-Xt%+q0Ve7gT9n+B zS;gV)RX2`uH22XU`FBG49X?k$(|FqMH)Gp|-k77xFISV6@!uz`(xP#?&{9UTUVk6b z3RGheDg#xd z$9EAUAwxyYRY%5+18mSk@Wk}L1ZI4lckhbF!O6D3HQ76^y^`_74|-5^NMVx>5bQ8p zd*CF-bl!x+J|M*s!&a7;Q52M$n+_Beg*t^Quqqi`K%#$!$SBJ8Z2m&les9Zcvi7Iv z@HYCG&p+z?QtDiH|LWqt&tUB*S^h5%Ha4;U9I=Y?uu5`DaEX3qV{&q^3|Cf^LW0Ntx2G6M zMp|4I1OjIOfxuQ_0SyA8%YP0Be!w|N>$rkI2!OgpzyJefWC2^VNkKB=BI;gQ7n|PP zN$Vt_8+P_d3&Y_I%A`^n+cjlb-6ks(iHfJov*w@e)=Dx(i;O+8>W%rBE*NAIDHr42 z?52~iA0KJe^uFoQ)5oW$={(oozj&@0y6&LV}?}il9=!T8VIhf=OXt{rgCP zV@NneL{Z>GTyO9Hzr)+bx997T7$SNqs_&wCs%mNw;NZ$M>c+;#CFueJ0xC3^UkPY% zH+zsf=dUhzTrWFs-ux_}5z&Czp!0frdymADe7)V1u(qbfjwIr7Ip_~XSgzC&BSn4H zW((Wyu_SbLKT3vQfA#317{_+4@H`C?2JuY=^A@^oxXIJaZ5sq)e zP)IH=E+{A|hlYlzm2%#%HanK=vaVh>HuNnmEv*3y(3U0BYjJXMxi<6i@#*R6f`bSN z36*JpxnP|*F;XxwO)o59#*Wz9+P=NLdD<-iz_H0e8>3MoO zJFBRu^zAx@z@QlP1PEj+Ue_IXaATR9nK686SC^Eucz?O=q9xvm86>{Y0sprF^{u(+@=xa$ND53g1%FC!y!>V=uzO|+@Cxfs+^P*l|9_xrAyc4=uT ztDTpQj&7~iIHbCoDM&ajG11k@$;#KblIz+!Ha9(n$*|kb%uJjDUB%wY+WOJL@W=U1 zI_g6%;B#AR>u4gr<_g4Ip|3eC#=(V!2Y@{!BqaX)`BPO{X<}kBIW?ts&!FGxbhFd9 zwY5b{ORH65prNeH?Qww%GP+!ADladWiXmL>^lm6CE6dL}>FA%In=4k#mL-qp7Z6C7 zFAfWn>fp!1!ZIC>63J60;Bugdm;RM21enL#&TgaK-8Qxf0wgOZH#IqVc76_^j@@ph zHX$J)E-voq$btcTJu_k5*~tl)&1^LOlN9%asE1)c;KX8u%;L(*i^IbqlR9K#erfXf z*E@1g*TVCqDg-#V)mG<%?(P7=)7K`bue{1;@gIYt1`i&Ge`19w_Akfid`n&?Mudgoyc4lho zh_|k;E*%*etMi`tv>FNu3aA%Ajqd%gY(6bT#p=h?^W_>aP+wnP6)l&;1_*?SiRlDC zvVRLWBTE4f4=;N@3b)CqI@Amc<6!_!EkEJ94$lxFVJR8;@9yKhM&zW3~Pe;=627VT6;nC4hpi01g z977Wm2%xyMw3R6l5q_wS{h!zP1O#9pbaeDD=0Kr!PmqswCdS*U$*;rNjhOW)91aQse<)wzYI`?mPH#Z>8 z+kJ?9?*GAJZf*_^4z8%E=u1;4eb3E@M^a7>GKl5#XFG-8FSnmSy}i9Z=ijTunD7uK z6%?WYi#9g8b)`;SzTQ{vQ|-EUaEc;M<%vL)m#M} zly`T3+#OC7a%xuV!+mu1ZuwsVmx+#!{v;W7(s;I&v@yNY7vifUYHm)MEW0>6Yu(}7 zQDPr?HWj%s6;CV_00h|=1qC2@Cg9&llY8EJ$JkieW^r>*{nxxFgOm-$^^W3p z=Aa=H_w7K#`Neo9fI0fV!J&`{Mny&OJMRtFnT`SJT#YxfC3j5 z)EOD8s)uLo*BVcUqX_`^YpSh{OGpsSQwETJ)R|M&`WQ~fz(A2WcG++2;=%?JR#Ljg zf&bPD4o!9<#BMp=>G#{k&#yByRAQux0zF)s!ot$BMPYJ$T(n>oSh0U)hB!GI?6<6} ztmbh0bMkm;0HX}p6T`zt%j2m@Nf)07pXv^XHSzKA{yZ)lcEO42m+>+(+Rx@oR4J|6JpsvzN-=9i<0CE(m72N)Ulx4>VL*{n!c;kwzGu~CIw=AAPnXDY!Gt~Vuc9ikLB~#Ccv}+JOGxopTEDmo6Zr4 z>@xyL6dxOViT6iye*WIm<@)|e?6t2WG;~N^Qxg&r5+f7SQK6ZIg`~K6;}px+k9R-; zv>;Fb=;@**iI!YnUl#%rAdt=Md4oy)8QMmgjahIB2r_48W|q!B0~r+{;p_6!?#@vL z>%hueSbUs+yGM^A67z~gzP@9zExuy03MLqbBb zv$MfK0DA}A?hU=%?sM6#kdl+{U0*8|%*K!iO((B)b$0d-3{cCb)fx{#Qzf3BpY!>> z+yKeH$%5PG;RGN_AjE(aR8>=BsHc~ikZ=b?&)VABR?^pl(fH9(X*szG4%?-Z(^Ehy zK*7L_3=PT1$vp#}T|YWK1$dOlVWai&e7Qlp^8WZ&EG}z)1#KjdIk-4DknlfS^#wzH z|Neb%Z;#oq+wbp(|GBqh?CZ-%aZwQ%i2TzhV7@FscJjR5auyW@=u}ixw1e!3@E`iz z&r_0;l7O7!=l2fK(BZ*>j}FnvkYzC=4-b#8?;But^NEyb0xp2Vucov40C!KMFrNEI zqdvo#$rDpdcKiLV_j$AdQWgU?J&-3HHn(8Nt|#avZfo%QNv^SA=) zjNkuNT~Ci7c0?(ijgpa3K~K+j=BLQm*jV8)2*G60AM;)Xc3 zk)vqjmwd-rR(3X^l$^LXPG$>gzH}^UDE@F%hUH?y7ejqe1G0tC*N=@WAIY!BXJ+0eHpmB*;Z8|VMC8fBghWSKO_zz+y6{N`f&!VEki;K#l zA|Ow=0iu@yyTkX{L4+$J6BTl7bTp0MyZ$Eu_#-=@Mp1?2GdV8-Zyg>UauZJX_wNBw zaCudKaSf=lQ8PAvjNkxl$BumyQ&Y>SjH3MfV9`8LF)_X=3>+LFi*p062M_v(7yu!S zn`g(zC1qvdBl`e^F)%Q^*K}d`vH?MaiH!|V1)v$eg@t)$sWkQg3Q82UaPxf?b>Y(% zG#PxTiIvsK@$s?(F`#q-2n`PpTUc0J0U@>B?OzpH0tE$Szumn#Fz^YGwg2LKsX5bH z9nc{^1HzOF_LXTC0Kx$hqwge-;}$<~4S-(3K!CIZzy`1Y3dpEo6`;sWPJ0(m&tq>_ zGT30!Zq({oXA(g_ueT>gO9MUL?3}Eu4PF#@{OIPoy4}f#E#zoP+jlK7F^J=8@a|@U ze?<*tKl(RlB>Zm!yYlk#8yg$k^jlh5T0p2Z&))(PH6=CGb7OgZUGK~gNXLK$H|3#_ z{uMze#&DvJTb)3f0f3tj8w+S6&j6ck0pF+3?-iSF&;KeU7K{|KwJZr)$rwT%6_wr7 z(>Aj)bO1nz(DNQtQvh>OQWnL$?KyE1B9HVm|0}BW$r&s~tAI3YIcLa#ZEI&oh=sM7 zK@7Z|qC)`Zm4$}Z*~!?_H`*O!MMOkwY{~)7Yj1xAfFmm_>#)@c2fDexSJToW;k3gA zk#cfA9gHOcBIxL%-v7;mnwlE$Av-%e2?+^&XunPsI$!~OTrYxefOf5{s^W%!G%E~URYWh-oFLHcXxNUDihEVD)vsrwY&f0qOV%16!LZZo77$JK^=#8ruCDiifq^$SH-L)3#>A9QV+nFRR~ume2k|Sf1vj}F zg_G&k21_8N2ms`c313uI)#Y+H4kQ{^&ehdbXJTAj+_cP0TPv%L4$oghL!l^D!T-$t zgU`qN&-ZhmHe`-)ad;#oduwYz1Ok(E_Viqyn>*9aXl#6#$rIB{4c_Mf(mdeIo<9q` z3ts#N8XC!CW?Ma9zXH_*5qsR&L1!nwxw$!Ub1Tw+JowrLWKKh%z_{-DJ3Tq6-xJ_} z&bt6e(kcjSfO7%;6qlR(_h>59dcL@B6|l3XE9d1#8#@(Mac%7lFxK^WddP@HE`?!N zX~OtFHtJbkP1T-25;=2Xed zEM+`MIV#51Wse>+V#Slk4jD43U$KJ>5h-A``V1Y7)@O8^@5M?O^J5@#_r}BvPRAJz zj}=Yj#XN}gDrB49iWHzOjv{yS-&l*=Hs#%mn*P9l@c?4n%Bs}CrqaQ#yx^e=KA%EF zRZ~BLg0_U5{y)!8HFOoFBC1QONhB12(t0(3f_x0k&D{>ipawz^NJaks{(z+BJp!ts zHlR`A>|EE``5p{~(Am|+V_U_^!Ew0_?0^~w14KrFRIH%yQ)O8h?bi&X5Y&agEGJQp zt3|(aBM{~zdk&M550a9PQszq^uAa$%?8EJO1w#gr#*CoVk>``+szm*ukrY>l3@ z#6Q&(F@@9{B4N7AEG}QJeo;b4SM;AbWsJ{&qNl z19Unt;oV;!tU-Yl6}CP;uT^?2>gwv?5D@luc0k3euA%XJ#)UhGb^)dF^ZcCd%WuV zP3lJ7lZtg+Oc~p{^Ye-un~NK(+Y6i98=E_S*5}vOo021pg+=MZk8HQ%`i}MKnVFdx8972S~Mg7f>qz9ITg0 zv{q*-1;{adeZpkf`lN`Z9X*FA(oGJaG666nL#u%Gi)=s{HkIKS`zL*>d#OqC6Lf#nbwV1aB00|Xn#+CU8>ctJacR+ z@;;>GIh4rl!4658Q`~@_~z(7W9 z=?vJB^UNb6q^N)-ZS_Rm1ehM3+#CvPEIwB?U(i2hqMWhDu|q~uMRr8mHmxisX4c4F zOaaQ>8xx+g)T24H&j^!4Is(6NHc_&fYDt6hpa^i~_*+6&>T}-D&e{l!M1zeeFc2yw z95lvbv>jrUon-kr5_$qe&}+@vnGJU2kdE*VF%=b7dishl%>cGEwX|YMgos5@sS?|O zGG6HKI|hi9j0|WrI-kst0j)*}i6K7EtHF_x^OKXCl3Rcyz$FXjR1J%IP?QuR-nA3d zmNJ+ku<&fk1xz+r{1Gi?X?Hbn&|jj4+zmVM7EiEdI@4R6ccwy+%hIwm`6 z?NHe5oA7=m1C)K5I>TNOeQD{#RLuoH&>@4G@y{y43>9J9;Woo#Vgy|dMne&BfDmwX zb#1X*bvc>I0~#X`AYighHj8vXd4vdUYG&4GHkNR3VD`}n4~Ry{g1TbbT^-r?g6Hc2 zH9eYb-#J!tT>r?tVKqdgs)w))E7M!;KF$OjZF$X)l6({uYg!d+>pHv#Y-s8)nDlHm zchZsR!$<7VSPKXL2Vrj=RMq#!jcytQ1f;t|y1Nw+krEJTq#NlD=>`drmXL0wySrPu zQ@Zo6@9&-W{&(j(XPl8Ua`rxZuV;Pgc{akryL_L_$-TE!95ggt%ggC;>zkXZdV1u5 z%JD7)pkVhz5IU@PUB4qFAgD7LCi)M5TrdVo0s#roOWi+aSV~aLBW->(;Pmluw%c7}~s0G*bcB0_ET?DJQ`Zvm3~@Szwei-4yA#^z}*1VHaiRzVaAF$p;~$@8g` zyXE0HSUFsiuEovsN`@dSGu?xV?1y8T&=uV5bImQV@h@@4b_>&x<)C}R`iEkSay*_D zDkUX84$da{b9`)TVzRxl;c&d%40r(0yJTc!z-6+vwS|21@^gq~L8Vvp9_&<0@Soklm8sH(lM8rg3Pzose+Cqr=7(hh|RySWB9R0hNIQI+h z>r;Kwquudl_F2b!iCTqs)A7@y4VWzsl{=~ta67nFxH^t)Pjh0Kp`hV(ti(Scv8=4D zp+OKYoQI3cOiVsY8EWg3;CfHdMAHj}fz|K(aX%Ew9m|zw z{B%Avf7F{kq1)8iTp8C0txv@M+d~=pO+LnG76p_MTP+7EV3R`uInEw zvm(l{_;g#*B1($PR&xmCIeylggmqhC^JkMzt)R@({~R^}?7M$ppe7gG4*B`{tEaB0 zsHouj1JxnQW893J=->TGA-IB~)wp-ca$GFyJqI%Q9pPMZ{IBl}o&IUlX|ewC#h$zP z9@O$T89Rz~d2pSaUZnYfO5jXoAYAb^n`l4d;Lws0pTm+WKPlXl56W!P*eTFc$V8G8 z61tPlc7ab}#Hj)9hT`I(!NDS+=>b_yQZj2vH$6Qa+&I=MKr$EOnc)t+4Gd26Syozt zhuXr|=-5*DEgw}u$(7)<)@NkOcXg&^T<>8T3B{5i5%a1ZZYtqgZL`T2dzD4ucz^Y8 zx=1}ZFmQfu&T&ywPp>R9(+=#x`1py=DSy*Y0DNqx=ps+(R=XY*_Hw?Y-H|3YX6bg* zGW}rphvcNQI1t8v#MNsjV>K@Ng_sWlr2m#Z?nk8Fx~RH*B6*yGBxWtLoXaABgE~4o zKx+|-6#t)BlKCchdwbh?5zw-)b-Kf+NOp2k%G0FB!QiUcZ68gM{jN8wee6Oo^mdC? z+BFR|kjfL(khlBu!SjjoW-~i_JVWn+^!&`^@NF=M+;eJ~@h{3X9@JTp^SQ*(c9?K@x` z-@i*xeQzkhii+Au3)=5#^QVkvld=zLj!fn@=!QY^554oV!N168iVk#XBJVw!N^{&rT49+7#>Extp5BGQE?#yh`s zxr#{CqV6xw9>%8Vwx_Dmyse{U*rfu%CY6^zW$GNLausPG*SC z5JW2jCIi@Qycx!?ObTVcatL*5`Uf zwwX-3(&!{pc!GfGUf7t+0EnTYG6{4pFr^lkmKq0+!FIOV_6;yl4h{~; zx2nnk5DGIhhT7yM4}gdusLi0#Pf?_0%PD%fqYc|m0SSM2NtkrmO^|{T`HYi&#;11$ zeOjIY$71{MYu07C?wr*_2W@t{m)D8cQRoZPhUvPc#eZjj7{$WO3@n-PMg0Ms^!4i9OQjKkFc-y{4qDIr?*sBO}Lu z-F__oUe|usskR{MQ=T^4k1h4X8UeG`@sX`vPGPJO-^&9kzZ!t%n(cwR2pqrUq@?Ox zX5FTr=lVe5MMOjdYVY{?IN1BP-x%s+-g&9vsF6CH$%hZaL!XCu=eJv(DM~2iZNE%? z;+;|Bv41Knv!LQrO6g~bm$u-l4}71=L0Ihb%z*{}i-Q3TvGbNZ7@sy|1KEJzkAPC_ zIR5`;0iqbbCC1_={z#08#ZCk-wfK)p-`m%3D-Su22{qBL6-DffT~;^bzGv=a(6`>) z^bX56heDPUXIWs3`%G~5dpgqv~fgkLwmJCREQ-#vKQ=ik>rUyngysu=Km8}@5=$br{IO*lYp{6DjjsX4oXm(3TE07U(KGBNn^Lmu6aAzo&F^nBp zKfc|e@8i0RH)*@#H;r*`TzW^V~{{o#OVzU3)6qg@gHMGM#K!Ug8x!6_s#(| zMIoSD6kU->$|S8K4*Jtc*+Af;H)eiW3yuG zvjxH%Mt(rbthm;rvxkO;2Jqs5f&&acAYYXT0E6RKVWB&?8)k4glYooO61IL8CR=dJ)Bw$R1JbJ+ljAG@_g7Qw2+|%;4 zG!15N4A!q1qsWhiI}c`8xKhPd+=A#8TTFrTevWp1g zL(hlDzs^zU=bRf#Z?q2^B}c_M8X4INS5BTw`j?%N5wRVmjN7}r!lEKjN4U7E{_|O0 z0j!&rnyPsY{MY|^FbhX>i;Kce`>L-(X&4y`GczmPFZa*R?7>#z+>1g>gkG!zCRIE= zH5I*8_Jw@+8LKcSH4|0L8NmqX<*nd$pRxNmP$+KzRYED`O}|F?Dw z@kvb6cRvB!_gydC833MwYckCNyO*ky{){d%ErZ9qie2VmUCXZ)K zv7Zq=?ZblJEZKKt{&s(9xDVT9MiiLP4w0;Snz@+CFYb>HldUFn_$FQqLr+TYXeS97 z(1-&OA%@qoMA4I+X*psRsYe)z-{F@?XL;YqsZ>29J|}*wfP6WsB5Lo-9$Pe752O6+ z&=Dy!r+AS=FE3d;8p7`UU*=70R00=aqWS!jE5AOwqzmlZJdTeWEnOn=k>?od?s$=WtNZLbjL;HJ85ln9|Oou^kX=-Lr zLQf~L+k*KGx%Fv(F^CCGP(?>^`e5xy;*Hv!CRGZ0SU3zMu0z`P4FeN`5Gg6Unh#7_lh`Sc;I z?)r#VWkK1CF{-Gw^w&2S@Qrl+KHdjJPewh}GILBdn1S3KC?w8J1wp0`tUf|rA9RyPIJ~;Kvshwj+;2hJF>o`4=`%y^q zQePujC&pmy*i-wUBuIKZvhVe;*uLPD6L=k4Y4FJ*qU12rNyZX+R8O}>0yBrb>cYv) z{=;W`go2JJ*FOcJ9b;K5iRju?x5o!rZqlYIOve?Z;8;xMYu=<04bzx6g2U7 zS31TOpYdxJT^%W5A$H5=e~9F!Uw&3RYw32!rP#6gW5146g?t$lx(xRFWY6UzSuWqc z4Ll;keFnmGM2_DqMyzfyot-;f1^;+xmCUGpI{%cC&REI)Q`PnW`M3Ywc+XAE2^2xc zc4b!ptP1){ykodrYkY5;>A@z3e@y`sC|M%3#cgXzE~r=sBM}pA>u{tO@jh&1Gbi6H z)SJqb|^)^5()s+gloi-ncGlMqB-WqlOw`S&k5!#Aj$cQNj?7Yf|81 zPA8e>(&4_70^SMok5Q7uRMJ6*ptG}8QYTHh2y1tSTso`Bz9zU5+~ftqsf;$KFn0_F`Fb^ zqASTL^M9}t7UN&PI=Yko7Ag!c^TSpP1jWXq?!)Z^JgkAC((Km4Sv;>87t zzgO^Vzw75pqgzGbiz?+WG8+BUnb19*BVjK?eO-icaOsOr5b*1zJ|+Kq5?h1<%9@DuUPee+Ant-ypvIya#67wj^md2Y!Pb>$haX{mV@ zHLpD~&@m%G;+UNRb@M|S#j?cCUc zdlS+}oHz;0Uh>Gf**7G2(^!0uQe4?p0*`k=41bGS;Qv3E%fdDaGV&bARAHEeoK`V3O+-d=eYcgzqi^_4GYR9LSF?KvRz?t5lO$ zP1LBfF^zWHbrk&m4h;omjoAX}KkKxxtPBGc)iQ;Jf}(AD8i;}k!zRRpgdm}6baS$% zZF@56M{Rsx1okMgT(UxjLeP^x^o$%&l2*UGy=$HERWS04e&z;oi{)S_Ej#RK#!s5| zd9RsizWd^xWD4Xn=97$RYz&#jP*WGdF9NohT_?e0^~9R!wl-N$=GW>H?i?$HLHq!Y zXfS_TXyN%k6v%nr(a8y9Oi*yLkg3{BMV`=4Hk_vWJ*F3#)rJH(Idd=ct>JF+*ta7{{QGJFj*6uxq zbx~(UwAiol{Q9C2*51Q3b_ebVaY=(sg0%CsMxE;g?5?j#{edZm3X1~7?HV_!7|81Z zor+gxQA$NDMGGQZ`cCF7KKrI2kZ`c+>f`=7G+<}nRYpivc z|7-PkyA7CBWoKn+j)n<>j3|&{;}a0R3dsnS3n?%-Rb1iwQS_#IX2Y(mc7N^FB^e{< zipQ{)z}&p_&q2L^!w{*;tS~k2wM~LA$A26Z^9H=pnG=4097mii^_FAMWsc>uZD&To z&cF-Cny3{$txu+AJP&>6&0@?_{9}z9@C^UIECBKaOfZU&OIk)I52OIQLa{;N0>t6& z?#|D;ewAK5Nbs99ocwT9Kg|8HG(t;zi2lof!%anai^A;G$BiSgQBhbZh^X*bxKUDG z=7bMVTm+=$;*Kqy-{Cpsa!nKt;tV2%R91 zeS?It_hr&`+}un`#323NYV^rZn&+84Lz{lt#ITHV`|MP^#tVmd4fDvGBcAzenDB0d zv95M{$O)2h@mLGa?t4F9Q{O7te%$Q!;%e6TFf$>xQzG27>A@I@I8zFgC?6kwYm6=! zus>%_wl6mW*?Cs)Kl0cV{ceeGGG*9+ZKbuX-x90rKn8QO<++G>IeMPCrZTAM9>Mg> z=Ly6+W7^vUnI%~M$)r)c3deaN8Jxj$-Ix>NGR1mr2(oHyvS~Ol(p5*gRQa#QkvERC zdc9sUYYCnh6Yd_jpGD`>b+O@|=F3(&6yb>WD@F~n!-ouRJz8y|S?4UGTWAFVmm}+ddhkkSpo8 zb!t)T6t9Njd`)HfE63d$LZ+ThWbU?~3laR+R(ad(2@QpG*MTiy4_PyJ0#XyWifvj{rGXB zql1cyD(l}TF)=Y<3<#6i+SsK3{Mk1-^CDA7hKxp7zI|OvgzPX@Ep|;u3fXV*GE#Wg zKH+^P;pg2{uLg$@m?mUy_Scqu8E${90cQSyI5;cPH!Bj7$M3daiDu``c6$s9>1-m+0oYf*$e(pzf*R9~~{zNaH@m zw@z$357tucJyFy^NfFcs)90}8cxlGtLKP)?w}8X85dGxvW|;xCHeT@3C&qJjOf+;M?xR$AuGu=`*;V`{N(r272cx=fgk#8s1*H)1XR@}Vs}c9RB2Hg>}AuA1x1!j+KjU9w7r!?MOGv8D9S^PFS+KuPQRIwIkD4CrLZ@n1CN_0!XYgf`_{ ziCrL&0ZRy2-v55&{2K>fcnxR-a9f<4%g@d2@t-*z?cE)9i58Jm`gm_+rA|6f)E1L+ z<+O4Zj?S|w@%KgWbFGA340AN&dUcSrg^7YjPh#Z|o3X$xZuMmvM&m2|&i?n|vhP=a z(}aF}`;k=%zv zR2`_S{ZUK%rtW_*c5R z#=J@NmT9tmo~<)CqyAkX#ASIU$z9=^zn-K%`;Gm-b`nS{@V{=(NF@pGTtghdp#T;= zpu%r3jsCv3lnXwhYyTG>k@N7##LB~0jmDuQI)+}YM$7}zV(N=>iDZlw6 zCt6CDJe+?%9*0IIT8WQSiCpBPjzo)CbKxsagJ8H>4_oASuHU`;E(`AwcI=#k7RwO* zVNmga2VFj)?5$NA{qt9Et@)}ClDD@vy+SGj8yg=t_r>KUaA_?Q*MNeL^pfPAf&wce zqoBj~5C}veOpG`OP$4hXJD5%vssSM?jl)pd(%@ioGZn#7ATG{!u}=Bx@TLH~#7OaJ z8Ee5bK~}j&1-z@fpV;%}hlNfl^J9CF)Q19`zsL^OqrN>+Fa zY@lbSY$BueJra~(G!VrzO=erlrL7()HmQD%73I6+GQZWeodQrDiH3{eY&|Ye0_wGq z$T0l;)ijtNUk8gy`&{Wd&(I&mF#M=>X?>*QHwA&DJcQ+FlgAgKAczi_|g7+TOMiyvM~_q zKz3aSgiJ?t;bA4-zklHu5qZC(c0{mcuq%|SJ_a&qhlD8+RuQF{U-9edtqz`mP`T5 z#h;>0UnssCWKn!VM z6I3+MA&Mehzr5DWj1&ju_hdGMTGwmj^^Lb-Wjy?s)TFBbjyE6Bc)kj!*M%JXWOjBp zk=2$QDXKf%*W{#E{!SyXWYSe!5OmhzuEL%&EZTTrV>Bidf$YA5i(gvubh0tjgoK~& zj(w&usI=kfcipxdkFAQy$if2HAV@J&W7m^*z0w*c14$nG^ z{_qjVCcV>_1XyUl?CKxZQ_q^^*p!G0I*0!V!_6R@!VfSNyPt5=atiuOn*zC2irrAY zIuA&KHr$_cR!R+N{3N1@GI=cm{<@nMO^xd5y*2IX@+ru-XtLY+H|%lD%n~$`Ci+)g zPi?MeDsy~yxECKN@#+|{QN@jRC)*9m8+Fe+PQXx%E)xUXtKopOp`-KL!PYtXdrCDB zJoN$GzbRL+^0=o6^6mDSvm~~#Z+_UXyaQ{3cSbpgpwQ#78IR3~Pp5LePb{>aGCEEy z$7d@Cjj)*Ap|E`ur88jD07G4$-OLaU-4HI)+S1x!Wh+2bQGSrw4L9+UkyTFajd#Cx zRX=tRidu2E{@8*dTlUA@Q>=`ar49DNMpYy4SXUk>vMH*^XSe!3W;{PS`8;@@w^QFe zItDg3d3QQBlglv&+_nEogE`(O|K@~?Zqcclc$6}F+3{L_3N9+K@cjXzITOiCZ8lZI zwa?7Xs#dw@+r%EtZ@__e|5E;e_r@!lx!%3U?&xA1?lo+6U}va8#niP>!^L01-Xs;Y z6aH~f)>=K&S#*5`_<;s$?$E7~g&UURj0VY;2b> zcw)_h^Y@DB;81%NwzxIFsG{rtHGY8Gl$QSeI}G#_G-XwSeh?NdI#$-w>}=|}ADt95 z?;ME?m-5r}s^m6mo3$h)Ar5`Z2iAd=-zP?ZR`#H5yDteSLK0)-r27+B}Sz1 zng@h@UDQ|A`PAw)k_51&mkP_Vkj>|ZGQ>VsZykgTcTcxjc@&M)gCx-jn%6emw=PqA zpADFpm;k&Vaoyg@=t3FJ-e63x)2LFn%SgBN9D^PQ zY=k9Fsr)mlS_DBXIL3+pejdCr&rwLXZRj+;W#cUfr|2?bU;40gE`~c_|6$qNm^3jN z?GghV#0MRz=JPSo)-WYzV^gUi`n@sm`TSvHZF&~e@@SSCE#4pCCw^gt($6UsY=&Gg z5Xe+y&C|*4q_m$*z9vc|yb``N`RZw?f(o_uiF++*5=Tn-9lw7(q4NOn%?i)s66W5` z(%bxR?GHS5A5jQeY{fVcOTEwSHMU7{g#smY-ihXNS@HkV8=2W+bnjx)=4Y_AtLk<-bx zpdnLpy2}k=Fn&f6d6>0}9Dk*KxR6 zZQ47|_!?XLGbZiYl@~9(x+D$$Zx%q_pb9G`)cqU2wuu4{=JxzV0O530klpMR8FJMLwtQE)TMD(u4x*9`#<*+r||5fT1uP9O9Xd4NG5ktORhA z!m77RgJ%q=i;IRCM&cq;HMFC7M2jAGtgq8eT@tokm5 zfjxWlg8A+fH50Y7)pHY^kja3($Lfl0$h$ThZR39)MipVPs#0p;K@bu{AQ0+rZN3r8r6~EV ztr^jHPCYftO}cQyml8S0|5ILLu2XwM_@mn7pQVlEZeIerIFWX3`qk8`Komv1uqW%t zDPqT^Ubh)lIH;{zroYH#k#Vz~8L{~byK~=J+9V8we}#x|l3-t9q-DzFBr=_=dA4Mj zHVRUgpo`!X*MFqWiJbr{cRco#)hLa`1ZvyjQDZf3q{SPYrKeXzZ)09(gsEFU3T>%y zkkL0R3}2m)d6>(#4`uU|W1-CH*wpl1jm9O=;dz&6G@j2K_*5cH!~!pYKbT^vGp1i`ya7snoP86UJbi&l$fB;BTroa zx&!f;*~QC@E#Sf-B>k=(4REM13ZJKY6H%?n@aNt%{cFYNcl;pcC-wpHeB}E*y*F#FGD_dpe>Lan`Ukndz^lK-Vz{nXsDMJC6~G;jB(J4-y`it340 z@VLcBo^ndE@89u2b6UA$Iw7}K~_FX51AHj<|m?(468LcJrc1+hR z3DB)cYTDW+f{7Kcy}cX-zKoUD5HCmxo7rS7i=it9A@YOI2mMehLS!$XuX7yX;UXrA zu*;qbL-ZjV&UehcCoYwP00TQU!aBTQ{QWz`^d*ZX`yhdHJ4(Rs?y*67^?Z!jl0r(` zMF;v@L#zzq@)1iiS*hIO{JY}~MUTEPX*fAKeRGsC5zkNKW*290FCpLHmeIb;uRj;X z5&bbUy2Re!CF?MP**5hy7NhlqXsbI&4-Zgw<3Tg7o+WIQ2qIK>nAW*tOa#`n?cKS8 zJgISc&_jX>lXN6z*y{!#t$lwZHZm;$4mG(FS`PHz895?~S>h*B*$A`{K$y-fbX@hn z8jIm!L!uDJ$9>1n4U{(y<#~dOc=$e&w|fL3a)WOG_?ZhbWDsOxTTXjrQo<`pYPE>W zYXk4-&S#wNfMH>t8_hnueU9_HY`xOiEl??WFQ^kKO{{X0PaFOnvTVqPqC0CjS>B*g zB}RrD5kYL*C}Dj>$%Pfk5GK4p)dp{Kpb+&IxFHR$>mgqxQN=nT9yl6Rea!XX_{5AB znyoeDIS?=XS~Qe@f2?9q3GxP73e4tW&#&1;T$9(G&N%%0|EqEnlWTl>NbmCXrKE(N zM>P3+;i0d$pNdx^&AfXud62dTVrW{nKP?LMR%7EANf{;}GI6W&iL?@RmvB;k0fj~E zt90_;dWCI}IgXd!ukQQ;`ED&7BHB5<>OWd?`?>2N@Is<(aW7lMWw_&u)XgWJDPl8j ziw(wu$f9Bx=(;0zM9*WmmY;@_di!ct5)$wGoj>7MIKrjO;QJPq=A-)L)gRE0!o0|X z1Yz#qqp?1TD1jyB(5*oW;{3`CQ%x+|Lg+7qADdbl%wuX`#bmmc(7k*(C=j95KVt?5 z$^D*WNHCYnpppymeL#TV#T2f#3`vMAP4$fgB4kZmYG}AN{#*Q$ftBS` zvihm0a004)Kmf*rP=`b24ye`4CMgUK<}dfM4l8B&3}B#xmm~OFv-N$= zHHx*-@ZI;wP2_nN|Cyjdbb(g|B zn2@G!xB8hNJn}=u)WRmGdD~kGqHqnl-@IIes&xJX`btS3@H%?FynQ=v#*FCS9rAAD z#2%iiCQl&lF8r1&64c*slqmEMR7N?Wo}cwPZT9BC-O#$N3V+-3b)GNp7$GXjoFwl1oKLBBNjg^P^v5SRkKVjA2J1Y4q}JAc*`OGnvj%G zz}j2`ywp%+9mUXkiV_v`OKF2!?>txMvd@?09G&XwlMQ6R?sy>TfkFQ~b}(M`NkPdh zZ4xgMk&bSK`~gk5I6rN06I3eU76KUm|6zqP(B(GkvH?LgBVuA<$?eedJ$O_tvlimp zRz;LMkiyV0&dy3cMC(0Wv@$a_-ND6~Z9#HlBh?5))S{TL}#>e8hlbj+rQ2P0{j8F zk3?v5V<8n7*L-9eHzEn*(DBN%=C?`pg~e0vpLcf-ZeM=K(mfwV`n#fck9ri|{;H@@ z2E#8hGbKKLY;)*ua*O%;wOv-jIB7u&pMy&5Rwh*vW_=xk#OdHb&{tfJYk0n+C^M+( zvg_3XZPOzySfiPfieT4#FN^u0$fB+szisZM{as5PTR8^%yqdkbGGgS;RtfI~m{zry zS$X!xcneAP9b;H1Q>ZLMXsF!A$om*Kz*_qG$`VFh83t=F4fDM(j->3ncgM}6Mt7+zX*!C!qc?5$i(Bd777}cY5Nq zMt1U>uuMwbcx z@w@G!V^$LRRyw?J-RI$l_G0mX7$$jiq`|P4KX4OjYOk7(O8*ca5VOzp`sCz|vg7mp z{@>1miYAClxE1P^0G z6K!mWne7~q9B%n|xs6XAwAOu6y&jQ~@i`yVXnJ9~Sa(uqx28UVYrEojp+SW1V=9{L zema-XsWtJb<)KYnQw`-LjQ!Pm;LKgk){~+Z^JbM_yd-o6&!7FycI1}xS@162*b!I zidX2!cJ_onC1inc_({$APt&HVQ~iu%wgr>;)`hsyAsiM5Oq9QBE0@FI?6X~Px1_GS z&CDa0%!zx6oN4LvRr@s!=jo4#S?%W3v8BkL1W?~-uuf}Zt0hlEuxG~p(ZtjF=7HU7 zxIeNAzP171G1+o##Y`(=@+&&$7{;tg7VI*?1;Jevbh3MOZRRyLQ|k7Z;lYB(Y5Mmh zuuA64odpk5lGCE7W?N5C`;%1~p2|C#N!T~0fzlsP(3JZT8_MeQnma4=>x`A{1mpI! zt*6^34({Kh7BvVyB{*Gy%Mj-UH`7HgkAg;O1(!We?VsVvzm+{Y$@jEUF~_hHBkuB4 z%46_Q{&PI@HtBbxsK9O4@wPvvswxB(nd<#+Ht1OAkf{N~qW=|BNQw~#P_nS)SPQ}F z5BTHMIBPQhIDT?~ZOh_O$sam=yb0_hK0dUyo`grLEAeo@`=z;7j%lA?Y_>MSrhYhI zQ=2oU&(Z7V+WejKv4eWlDp|nC+jXjqNy!%Hm8^w+pPq`Tj_YPpE%IH|8HC2JrT0VGsGXt9u1=v6!XqINWT!6>{U%dhmQ|92_kRe5~Gm5 zTI{%;Q{1!R>PJ#YUYHkKj0mapu@B|^-l&ria=EdP*NF3vv)_J$lXcmyzM|7N#F98j zW^j) z=8fQ~Q>ByFje%dC0uL6Vp=U>4RS%e$oCG~`I|m1Y;CV|r zjYqB@Kx1GSE)(#i-%^b?I32h@o1bqFe_+E2%dDWMHdMs(4Grg4#q8Uft3h9=(P1;| z8)Z&-*NvL~^8-uk0y}}c&%A4!6=lH&_4Y`}#<96s9?)hE*_IT*zBX=?KAkgJCwA zNMgnXNn05@JTV-R^{zKXv(ZUrYzewH7OrO3e50iElT%)bkxQ;yp}5$RuuBVq4bPWY z(Is--uPU5^FTXv1Ea#R_C8JM}-G5J9ST<`PO{ed0gPRE^E3}^W5QpPkZe4>ZdQEm4 zJ!(at1O%4WL8N%uThVLz7(CPYHn~N4^8KGFY+U!7ptB2-!mSJ z-mY*$6Fu3r3tQ0z-LKO%(dV26n=Y27;Zj4VlL+RXrIm}dR2o#+_&Nm>!7qV9!7qHk zKpJls_rJ^VhD`z{g=20uV9LTtNl8guybbjJgKW%^E4UcPhux5=D=Plg4n*Mc%%GtB zfzE0r{W_&p3$5p8PE5#+xM2U1H)++@@i8fpa$GF6Yr{bEFAgH!RN;r4Z)ulA zPUYF>Kk6|&IX&$1s}7b%Nj|#H&9`!x_gsgQM>$;|jvaud>$%=G;_j4)t`dfJty^zI z;_D(RSU9um)(}>eVsZAM?Ed|t`L>LLExMa7b2%a{4te#V#p?Y$%3Q1jizFDmmf?N3 zcfI2C+>NjInfV83cm&f}R=np@Y+Lpmw2ccLKy9J}{S;P6tcov`U zug+70-K^HmAKMqRDy5M;ZvWEfow+15#;U1vdEEafE7dXaou-y1{d~8(>5ECc-O1M} z($u2&aAMo55F6S}&p2pev*1}C(L3SWc(z-)DK0i!6LqB6nl%Zt8#UzSD(pLXZ(p7I zd*m+0WlQy2Zs(OsGAs$<6jgj`YLmruA?W&1NEde78A&4}BO~{^82=Y+Jy)K&L8qox zqkYCQT4Z6l8^dHg9xsjS%y=76?`chBZ9VIGwq*_}io~w34>ht}lTrqFem#AtT+&l_ zcD@nFuNl$03O-f&Oz;m)fQD+E?N!gAUM1slXXE6r=kCno6@HHnv+QQJj|Hy(R3;(M zTDH8LrqH~ix6v<7QBTL5h!u_pw+IIKhJ+|4X013)$?HGR^1%>u=1b-CeJtPx$-BC` zn=7&YE&Ef7!rxxJuN|;)-V-J$)t74++Hwpg}r_ zk8CfGpB8Ra@Felj!v)GODvZQh=*W=h*H~?Y@K}8~MN!&%6RXGFYHkjXiiWC>CrR%!3_ zHc1-MD84YxGVY|`h818$Y$s1f$M`fKDQSv!uHNc>zz?@R;mF^&@>y*x2_6VDqB_;1 z8@}0@n)kQf*=wV~4fn}Ny<00rU`%4p%XD5IVXHi_w2JL#Q&&{(`<-}RqacVc83;CE%@sjwj#B%1Y3!N|(KN*6#_0a@8eE znxxmAinXc8!cuN_ve3f}CBGsT8A5FE&Mb9rA7Lx2tp=;gr)o75m*bR|4ZW7-IuLE) zzOC?``gN|&@R`WM%XnS#8+Yr13b~3^RpJ3P*)wpi}rw+LDiS zVv!nWlF{Xh<@=4L5dfVqj^~#PCttc;|82fmgD;a1X&`0yOHFlQ)#RY&U)1Ln^KiZP zIj>_)EnjU9l(k{Ks=g#`e0kz=`RBMwAWGlpg~s6xGL)#G{X0J1*Bb1XU^;9+1{m1M z?&H(!eC8W?el!y;d;$r|2iTW-+QHb>7RJxxKfOzlRmr ze#K9bvZt`jd>Mv%jVkG`%QA=JOl0O<9smJPFYAO zeH*y~>7(iP9!$FBM@FNWomiF?BgX=#2c7(ex(b@(mkFhhRH9D&zTtkz=ypLv$z!WK z6aB&vb>3GUOhKQU!WsQrW&^C-3zfcIby^Z3H6`8YEPJJ5Pv4c9x3yI~&l7Uy!OQ`| z1i05vL$_kVjCD^`c%e_JoR7CTr_l1S==Dy-ADEfU`N^PQ_57rTMI$gp2jzjl7Y=Ky4e~{SRn3nwnnGaSlUb}G268+`K6^ydC z_PQC*-Qgct2>W)PEZ#Y{yfRm9>(^&t7x5k5+HJi%uRAQLNG8JF_#r;Sjj*Hnr0*o4 zRUy3}N-5iJO6%Vsn^;KVW~Jh9lP?+fkz2wK{(^~Pgn|~|M_aumj~nQu?bnY}c@lsL z&2m~P^-_wXN(Ai2xa30OLpR7#sFF#&=VMlYa#j?pUccI zplgdBum|jEKp_8f%#95L^cPE{UvjC?)v* zI5>UVv+p)_;;ax4Y(sD)CI9X^yMr2bqRA=R27cbGM5Zt^D7CuMIB(kap$`lcc1FA*Kw$Bn`74fZoys z+M^g$e6Cc~g^T$);PhoL%4#JIUH>S8A4&9n<1)9QXrteMWp6mwTq3hfF_n%16E$6y z;NDf6$`@aOq_33xmk5VJh1vXrGUR+X%$ve8wL$;82V!W@o*pmUenl@#NgzJI^&)fO zdQ1wF@`c&--~A3vXok>Y21loK-)fqHbaOoP;-3%z|HIW=Mpe~)@xuGiB`Mt@AT8Y`r6AJX64Kpuq>+}C?(XjH?k?#Lk*>R+ z{~hg;?Tq!P&Tx)&2c9tKJh2fTHWL3!AQG%!J zU7MKe8~H7pT8eWIVAD!{&Ncd6^c-b-y9Xrka<2wYytoNzAZdC!>4UQ6!D-J0HTZlN z3YITdVoca=0@gOE!RjUQkF#C6TGR`)OSgVXlqn*NWS#YE|19d5@r+F<8By_Mw|3|O zK03a!4?iWcC+`e^claZPH1uG^Q%U@omc<3Sr4Ss$9S`NOpo&FPtIExRXEr@CvG+g% z+N{MSBK`z<1yg+3yNuO_!G*4b@@kPcC%M(HDRq;&=IWEnPY+8tu#QuGjySzkdrErF znkF3Ao1w8(5FP%Jx?su05DLIVo#EUgw{uehocp+aRS440KeNMwnH+dJOo(h$e5s$+ z+W3B@SIiN@KI?9OdoDukNIQ90_BBn1TolBaQwz2sZvGTOY$a78E*LX`f~Oy{Br13e zp1HdzL*Rxif8zrs?Rym(JTA2c?)h4WP#l77jLhmz?(zzlRV;}RnD~Wa2;6`Jc2@T) zO3wPuR@PtC>)g17H%OE%7`iZQzI&o~0WJs59m35Ea)VD7g?TYO_wB0_KapR=CTPRq zD=DAt=AcaIYa$$EomsVlZ9l5>il+6*xL3(L=dM!cQ(eV%m%Tb z>km3Xfm|iQTat9o$e-2|f56YF)c?lOLB%0z zo=18_ww<+|)+oufV58#KGsz?DB?z})=k+fCOgmv+`nbd1abpAY8cn5|_dvjEkd%lh-cCc24*UiK;h#`IiU4q9^|u@utB|eDGQ}9-xwTu!glq zHLcmbJA?r^XlE*18v|MVUoZ+HVcZ-feobcn5P4FS_a(?c**qQPFgdmM(zjX8{SM%> zB)GbmzYlP94Q^?<9vBRu0CwT)w9sjt(R$p1JzxqMiwdICJE8x*vqji3A%W1dnmzbhHx16uYN8fL^(&NPXbgJW#md`ji<*qyJ)?RVV zVP?K_@%EJhT*<-8Ue4QRl!F`A8X*NsR-Yy|wT2KpJvq6uijZ$^fK~5Qp=TW?Jf$S< zu6M<@Nj%VGDzShd8b2iay!u=SPX|J26}rE8wzmn&dk_Vj#15~VFFH_HFjDmo1^{od zxq>G`M_+6{uHoM&0ngFRt|n|+DjWiySU}^n${JcHb!VDvbhRZHAfC+^&%G)yX76q3*^s8h{Y(4)PM1$b zFI7`NCt7Ac>eHWVahNuD@S8TYeT-IWA z!Z?y94Q9Om9~NNDcZ?T#a|r8`c+1%jiTCmCyrxvpFZdI67A@{=^LJBOjrXBOQGI@~ zboPH~Z156;`yU|R3oTA9%rZJ$E5V2UmCEWnQUH@tIj4F9V0Y{KjWny|%Z$oOP|DZ9 zw?l(W5QDXUd3;k(L4c-IpdM4;E*wML9$J=_ z*9Kg~ zcwn$i3!Z{za4r6$jqC2?mL=DbyldW?zoPwc5VP(R5p!5{3C`~0IwnGi-0??!{L#x>MB6NmaQJspz^ch zmDKlD0Dm9=thEBz!B-k3ru7=@9d3}$WUNmpp$ZAs!~{Y2yM^{Z`{=}J?()xDykA@X zfU*8oZNa_^Om`cg;z(@J^uP=I9arKz5*0XarBpj7Lq)1$s)|B3KDf3Nv4+ncrTPQ*+?_{#|PA`4`0k z0{77J*Gx-me%+-x-w&eJkJLl4!oe!2^e$H2sXn8aW&aQxt*2M&9%hiyc%^k`Dp?6iaw<{EsXQOGiE!Zfq@?f_$-q=E=o(VSXDs#;I_S#jawYK zjqui_pCQ2npblKCGMD-n>X6!9J<_w){`X#KWx9>`@CMQ!of!cPef+AVJ``wWR3rufehB8WtgBFp31A1iB<68YouTG=-{YpE%8 zNR++Pl5%|#zCi~wA(X*MKSP^BG09Lz-QKPCS?3l+1xCZ>1$yaH_4*r5F6WzDn&mn2 zlkSc8tu{5FU9Po~Kx(<1tL5eXWCEFa*4A`vfQ(gI=cLp^8Ej^ydS&F~{33j3ytelm zGbg8WF_%ZE#M{xasd5Y#d|V(2hluizLW=MOrXwm^LFmidaCHN7ps7X`4GU2`p;soB zLe`J>JJNM<8a`S4ibg|0!FJdWUZa? z0_jH1Ax-H{zVOeVlK$F06K^9`(NVx22IQgU;!v=ui)(+X6@ZBDh`qfcd{hm0L#jPY zAtt))U&7J6=Hk*#^I=H-$}JQC@2N6ZkDJJ&$yi^sxs}yDhRE)sAuSGG4JF~QwgTE$ z02`{=`C0hRzS#V8GjmBCC|fbtMjM~D@{|eN-C~K9`<2F>D7=vkRq|`*BV(uC_PbA< zJ2-@z?7c6T?(Es*ai};(5cA+mln=&T(Qmd*G?FKukq_6!-`;ZEd}W_Dr8?%DJ#K%S?2hgzJ zyhiAr5&;awvA>L$VSC0Dy9o*>qhaBtX_+w)*Sl=D*7bh317W&6xL-Rk5@cU^{ zAsAr)zZ6RD@gX=5-`SG~KrA5t87&vIp!bcmra4j?i^0;iG&ZX6Vsb^*T{?PA&&W z;U!3a=Pm&I{rF(s>G<^YfY+oj^`z6Dh6WdwEoC$yy6fJK;^G@x-gLfLNS_s?(o(>6?h zIMcv&8f7h=$ru3tTS>$ui9V4YWe}*&eUCX#7`(gt;K;|<4#h8Jx&YXYba817k&yq$ z4E-Q1s5M>XPjK~V1UsqR&)!r=1ixsW9qsvta8C%~BOSr5ZZw*IUQDf!JlgNsitZRN zT!HFi^9Q1T{XJt4QDxaz*P!JUe@x8jm3qWB;a3Dw*~iB8^Gr50B8Syjq@p>dTgrlh zf{7HKiG_tk!z55faqTh*R58J2R0HLyLnN|6!RNKV3m~fl6bX9&_Ge>bIt>CD@qML1Tmvf4`s28MG;!bTFpRX%O#cgnAR6} zGXW@ATB|h=O0xX4ViAolBh7BJLNFxCr1pWzv)=^Acw4Ob(+ZIhiA2UIg|wM#URsyY zxMlt-{M=7xnpwFC>R>~HV}rp5xqg^q*Jwim@OVygOCuf-9VPtm9W=nep_A8Xu+cT$ zYa16CO&5BM;91uIRlmsxK+!UgN@NdmjO67TY!<Wwej74h3G@>}|2+G6y zh19<*5+1S_S<-Gu0KfegV!SQNnR}{fWP0B52|vhC%HtkroE>a8b0KeRT7>;>eca&~ zB_Et8Tjg|kI^H^80UUEt9v_v46hm@4JMAjYmq0@tQ1Tq4PbDQLCW6ijTVbq!lM~`W zUNA@rx_#oeoG%4`uVBm^U#GPZKzlu+-x~wrR*#v{DUL{QI|S2o`GH9E){x%oc~d~K z+^Y#v1$AnJ-!@^348IBvAG|-KQwTJS3%{Zb`Djo?cWQ~8wR9SRI#o^v{9JaMl8pb1 zoGH8J>j_gsDBxl+5V_(Rr_li;v=Q=Rq$~I9eZWoo$0$#4U;}LVg%fg=ihzOO4jMXu zl&=YqS3%oQh^V)BTjIhi6EEm8addosVSKxnV*7F#<-5ZbOa3uG?#Bp;_=H7q$TEp| zq7-7MVqX{%Zap__2mvRRgj4WT8zHd$k4MTVMGILf*Kg!8*918nKjcAI>iX5{S3k4H z2KDiyBx!sbi738mgTnD>Js7wd|6La$FI0TD&-SfN+L--EbQ2H$qS;NJyw8M(c9Ff%LYiqklug?P>7;x)v8{sU?{lR*=Mj;CE#O3K!jdKx-9 zasijp{RL|2NbvWS_mq!eK{afqVatrRgJW>o(7&Gd4n=QS+e7g6jSW}6u_Xh8hpPPl zCW{ta3DE#AQUsgJ*8z%ri|-wXorOLVZ2m^rL5e~cA(#wgjoz-ZmC!&wNMvKcS z=ohfz^LX0ixbFj+#(*MVulEzai_Ze?-49u2%;G{mBBnDKVXY?YPut`tMn`XG0d_Kp zLa8<6PRXp=*yR`Z*zdv!a?ufH#{PMAjMT`KKiwz2zs|mz>R7#sT|3*AE)-hM>0YMC z9Uqz~Ap@{0pX&vTywQ){nT}c4(zF1VNbuMsbat(V3#yPLB!I$iNoi@;RT}+~q{nAI zw}C%E!-MzA`5L}He**CV!H0t!(B7cDq~usAB{4eM;F(fDz!UV-0*TaMdjRNm4^$RMk$0)1W5x`XeqPL3{};w4D2< z<;K_{RL`t+uB_MShiWb??9{}3o+$@}N1%l~r>TV)T0lBhj>9xX3WP`Zi}5ed7d-(| z*m7@cvQ}hkH;K}aKK|ajnQun%qta(|*alT7IW7UQqBGwV-0fcwhy{M(dHKYl> zp9K12OL)c9!OVCFv#EO;rH7PT4TC1q0UjzZ^lX|lE266vK?d}&mGV5)@;JlT-Bdp7 zREhfjck|(q40(1+o$k`w`EqVQ_Ym?)-`_(@oEwkw038D548`(XJ5?a=WK*Iyg{5fr zt{>}tkaxad!=~bq5`QK~IlOi|`5<^h;FA=u8t~SIT~UNC!}Fl>XEYl&ksnyBLq2xW zF_TRUwQef*&%qYO4|dUOps1@);+#1zHmWn;%h5FJpy&?+N>3XQ>B7B;fW>7k?e{S- zlPQN2D9K+;SD$jPF=COm>kUTmo+j5Ye~83GF`{ zF_u`E$>T$jS1omz-f(6Sj^1fx$9I6tH>)J64K^yX5Re&>k0*>BgTzBldXUXQ0HI%0 zt6q~g0}C@bs3XhVU(8%x6Y-!e9sjq;(YSTAjh300kcY(A#19-~E+qHyV^3Gr)f~gd z_Q4c$yO#c<2Y?uI$sVhkrPPFkn>lrTuv_}u*3s28lm;7+lXS|i+Ul1HDSP*wT!Y-6 z{!FrF9Ig^CYwrjT06R>dJy#NKQ2yaRXcPI`xWP5zn-_A#<`=AEC^k4y;dYkV)s-Lr}Y7+HAhx}L2zfe8Rqi9fD*d3gbSY;;=PJ}fjE zu>!r*79acS+m)5bT*5WWWJyno;tOlJU101CwO7>CmytRd7yZ?QVPHck#C0xFoDe4! z)_c#Kz{@)@c6}=1rph9nar*tS^T=*>sn5Y*kz7L-yOuVkew5Mzz??E)`p@6uoovFt zb!Am$x_h7e4|RMLBF$~+0blm_k;LtM%rKcwGddv%rz z>(wO-569rKf_Hr61CK<=G7}@J6D_q3Xx!WPaOmKa%Y8eiv;pZHOEIz5w*DjpY)p1( zRI}QtgE!Wnu9bAW;Q^)KrFHSzzrQ~qvj`cqctSfXnR+E-uD zR8FcRQCJIs+9rXE?7vbi?lFz1wY`u)0SO%sVv~{-l6k4k^G3CC_LlBKh~c&?3%c4Tx3*M8S_O+W=&r zAH)}Dr{OziBILD;zz-PP#T4^%sSNq|m%WE-DX>Um45lhZ_P|lbK~mANYb_TnFaI*C zUI+1WJi#?E89O`8obn-b>Y4}t_bn+MU=KnRK7an%(eZk^&Vkkg2M3p%n+qB(nuPW)TfgO4W{)* zdupG9AEwXu`mYa(8l%-!V{e$o0E%ib{5IYnQB%eatxo4dHpja+JB_;^&$pj%Jy&it z_JPtX2vcFZ9%3iYYD(RCD%2Wlof`#i;0~6)L(6@E`dr2!fCu{X_*&(cAwmDb0HG+? z%5#lKP{uHpXt3Twm;Z;WHY#LT8VYN+1v`v-P@EcEEqC|#*R7!K+C-ah3MOi}Iz*H` z{9BMt;fWRE=DEz0d|7!`j}awG(`>})`m}Z-Q!yeYTR0fol6tt%OafnqAtW?G@bxKp zS&&2twXsls{(~rtyHGd_{Ae!+7%b^WHLv^i7;0Q<87&K#Y;Vzf=qVx)fNw1EP|${l zg_TtVbOHoL7C=8mMKv`k!-C?bx4ERz8!~fvP6y8O-2n#D!#P#O%iI72Y(FIPsp?d~ zV!rKiz$zE)KoPaGqKG$!Lm)G(VSpFkf`P>8mQw^&-kBmuxpAP)Ol8~Ho;kP_R4x*4 z?!%Bti35IVIz%m8yQJ3CZM&&%?_&e1CMrj>Qe7K;|f54NRDjZfe zv|FAG>@RM5s3Er?QBJi3!+&kd9YH8#D`5(czbax=r2z&YX%aDOJ2Q1g2K?0~It)4` z|2qUF*;7jTYxTQ7N|fnzk{q^kvG&qZ&k+_%;QI9_CTt|x?uw&7Et^pl@bVWr(fkdl z;>{k^A>{ds7fz5hgPq#okX$xkfkX4B!uL{g=(HFAh&UzW4D?wno8qZlZk|P~ve5&| zxtEjz2x4I0&Ok6vS%~v5bH3lgNXcXqrf{b;F0Ud{B-Dc`HDUTEE%2wyi3(r09FC1C zeU~?%zU8f`n|O!<5swqrIv>9TZ6GZDD1)i1$M;a-VKcsrP>k*+U4Cv@~ zunH=lHJP*5ga|UTw5?Z|OTrx>z`+f+kupY>fEZY4Wcxfm_lBer(})!Ljcb8bftv0@ zK2OqHhaz%;8pS+p6BBwy|G)i>1qVvFP(x~s1Y8Zt?;1w*Ei>@{!@N>D$niqEQTy=J z($Gt(vxc)h+U5aZZOzUO>JN*$LdJ-dr3aw=JdE?cHDHYoY-)sQoR#5oc#ZxNFi4u9 zc5t)E9cR{K zFvU?=5?~3q{dQ#r9~RBhf-woQ|C{*AJBq-x){-yZ*6Jqp1-*1r*Hleo^FZ88LNZfG z#9w&3Yofq0&IY#S74pt|e(qN}Ew=E0Do+wX(UwTipHdu2vEvQkGC~l;?0TM2QU()! zuuHw$xO>B0jyDU0MC8s)6je3X<+Xog!jcR}GqP{iD`|)fFzT097?SR!1xJ7ws)C(H z0@)lcg25}`K*NbAfXlovf{*vw%6^9I=vQ$3rmsV38{*vnR$IrGuv_9Wo4R!1PaC+$ za}l3E5U~DGWWSkM=Egd1`Q}}4@Jn3*)xa%oLpQ3G0|9ovV&LH#q<+5DDFrZzjw=+Z zi>O&gnLZGXm9LMl$Ke&iS@}_j&xXi`BG~Qz<8mpGriI(yTlgjL!>2rwA#mNGS>99g zdufyiv~{l^JlpP--J(-he>=%Q5S@Lc;w;_a6%Pq5+<*Wrs^N3Wv(vIt8~98BB8DdUFZ>gHM^L6Og76 zpi!KQBgZ#e#Dr9>zh}|S6EwbbQ3&L1(m>+V{wU45^sNE=mz{>zr$-NQdW^dVRK-`~ zd@45i@Mj|MG+vfhq`6WSEwd%`-j=@It8Cebay?z%N@x2_!bgn|8UmL<<-{k1(RqQ) zU6Y5I`M(#Jk5pJ3S|Q>eF0Z^i50yhp80=-fCUuVU;HT+_hZ!`qq@6`n_7{hcyf@Q~ zl1B}SVV8e}d&`zeb#!Z$ggiwG-Gc?fw@bo9s@1i9`Lq;a46=POuU%X;n|6U;TbdUA z%m>Za^A9JDRaV0&Xdc@j7z)77e^c-)>VLI=BK9UH2@5o6YEGhNYPrHN*tUh}jMHcT z`YNsiKu6r?W)lNV;eug#^)xMvR8eHGq=@=>pOFF1l#sK4FAfy_UelM_K&7W&LM$eJ zWCA{H64qOJA&0#@6d(u3uSjBKf`KE2Dcy(V#A8W!q_KQ~C{-xUFBrAl{v)wiz;||b z5EnLbcz+^K9wUg>nO7r;8CGSCoWKMLKFY5&_$nPQUc#Zrn5`q9wsX2qqh5PhyLA1p zu)SHRbM(42=U&DG`uN0}f>e^Ts*hH$mpI*&oDfw=i zL`-dUro*R>MqxuDTU9H3^iDns2QMIq9|XYD*eG#AN9eA`Ou7A|?vQ(co%D8_n4wB< zfqL6u@h*PCn2=8dWJnZOMuf){t`bz(Ur$^M0|N1;5}v}^sBI1sAWPFCx=ls57n9+U9wbVsH@|E^Ct5ZL+!X5785 zFaWzCD)U!3^bL6Kq3w|hT=XUo zE7|jXsbi zUd%Vp*Tg17-E=cCcLp^IH%|-*iUtq4`Y%;QVb&nioMGREDJ5jz z@lxVt3rHmIi?_T1PBKh&giU(m#+Ed4xQH6?b^69`16k-M^bn&3`Qtw0LWjP$+x=s( z5q7x7uNg}9zGH{>5_bDdeuany&~M`$;gS#=e9&gc&@r}eE-CnSLXhnIMOhhyQMD>9 ztqx1QeWU=JnST12fzhmgHP9d3{HnBv8ol4x)5{PaJ`kHHOL3+kPgSAIg#2(irxV$f+>!6j6u zwlcrFvxhli5v;JjB<|eOKlKHdE5V1bxw8`l+<5no$-+ce(S@xY;_OG}CWTidI$Gso zP|65=^kw^}0fO*7I$zGkW zoaC|jMY&h5Y>9q~T`z?F-Wb%xWBPxYC<44(-XV78^x*W?3LG2jm!F(WH}Nj@IiBlT zaBfBU{#$DOB*!#VBUM?mCEUS^*mU$bomMnZfR8G%&yBD3i##)n8-(H&G-YEJU#1Vot`IN3*!>1XDt z4C;J#qoye)e@yX^grwupOQOS<{^^%rdFBk}$r8;k=(5xj>ETB_;RByyj@*N?TDQ8> zYPjM9%f>#38f&VMTyGA@>%y|Rdj$mOJ_eB+c3UOHn(yD5z!C@yB&^NA)Bk@dDRP>c zORG(e1#-WCrKGfg)@q>TG6}y^;eG{Zx97~m=l#H0u{2F(A=g+ECF@$ieXPI|HnY~6 zMzzSD+)AxXC-t*0`{~%(B;E<_hX-buMASe8%!T0@JatK#qE`=_Qojx1wtbSl2kKu< zgA)Vupfk_urXRIsRAV(V+cL5rv-3Xu=0u}=bD3+7ZLTT$UuTddsRV+Rdl|l+5Y(PxhN z8Ee|7JSyE8q~Ma+90>AOK&W=h`8VOGi=OD{Xt3`@EDEBy!A8e_AZbtwb8YY|)#VMD z(b~2omEuwLr2x;Fz~%Mt%d4f)6}cpwDF4~N_Kx-hBK#+_P1!=htgjwpDi-!22|QaG zAf} zk#P>i7lPXEnVzQQ;w$Gl_Lw_->H!4|AI|4wd0Vu&{McqlKuAqar_@I8@T{|AFS8Rr;BRQ7G> zy}$ksz-p8q)j)IBjvNv9dh;<-2V(as$A8AlLxc!hgsLf@pLae8u$g~izXdOR$o2SH zpg$TbYel*~*uVkN^mSUyP|#2wwCcSF{a(qvF2ukZJLui3zCg;Y+kU^7BF}@2l({h& z1|O5t<1OCiwDu5w&Y_ulM!5HQU8>)4#C<-i$dAhR=~7IOEK=7(*Q4K=0peN1PP_gk ztMurIK+rSj4BV|c!S1g)C-seq1p3GEkQ1vfCQ{b%Dl{InhD_I+3$ny0KabyGPnD|h zn`|u6+1?3CRv%HSq^qm?)P1JHjnZdpMEMBUXyA!;K$ z_-n{Q$k2y?=-3tZGoOFVpbn4kgl)-sqIP(2N4}%BtE0UPDLL|Hi#MMN%#9Q+-Ybhc zJM=4yiMq=)&j?my8VCt3LoI-mejz$9&gD=#99!>6{6Z^hl^Zp8A1YwJVM07ckt6-c z^m{B@`qN(5YJCv88OA`BBTmr{HJc2`rTG7GT68S!yTGQNTA7xK&>nurous+>p)6~g zih{z$%j3E2O8qI=Eoyi<1PNJ!?thKl-S5GGz-QK?!3#@d)gQO)cKYOP2Lt`4{k4j( zsYTnA9pJsxO*q?gV3Ed~_yX8*K5JPD(8)FnunW;!W$Qt3(9 zLV9%4%#iT6pB+HRF<$`BMPcvPE|DpNJNOU{9HOxRJ57;u>|MRB{9RBZCPECf`xSa(2{pyp0ZQRY`vjgE5=9HtLmC%TP5uq0! z2*x(NCZ@--FhBsR^_I$SnN&5^`jU{BevKdNJDjsVF7JptOK|dK+}Y51-2^N0zHI-= zuZ~P_icQqiaw(hFV@cL@M|r(NM0@ruw$8Fq-w(vwfaS`wINN@XL zBTDdw>2HJ}d0zrZT6NI=o7rn0C;)hGcHg_;3D1xb-w%e!zSM8a1d zZ*wx-v!PvG{IUnx3`1v1H9QF~A99T@Mex}C)?P(A8pV}{&lhv*_&6|Y1t2t)a6PcL@8+fQ&#zsnhi(I{UPm&T zp2XydcT3a7r!Uu2Z6Iq-x_1q$ckPFD1VUe~snR(P9QgW*tXsHN*$c zCZ@qfju)2hVT=t;^K?wsrspB7{yWlZ|IPb}OKRIu`sP5+zhtCmvQK;vbpT`5a@KIX z-1qZupIe-VC_URJr(<&fgO#wrA#*#>V{@eD2))cVY2Qt)e#tt5^l*h881=mo{x8jO zgIxkreAfNhU|L}D`W*JwBT^}}mNPd`tO%~s?h6C7XCqbF)k*o&d%pKhZgCas1`l4I zueWS#utqW8w`-ehP)vMew@V75P;pmO?!MZXYN`I#VRE9oikP0xU^I7dFj+7VfuKB_bTODqsg_7%7X{YVF_|8&NdWVWRO?cs z89Bq9-jGZga@_{Q4c|k~8Uup8p*k)2SCfRGm&P)MeWwN8How*4H%^w$h_df{!umc!jTyr=co;Y-r5z$cWpC-0zOsbGc z;Dbef$mSmif5b~C-N5-_z@91RtL>RQ6PC!om(Ph3EQL>?cQX*08wf9Hbo3$fD7Mm2)(fuA02tc{h_Elbk z$=Jc6ckqvsi$At_X-}qm)E5T>lWuR1{lMgG{`j!x)dIJoZcG9iFn&Zq7TkflBj9y= zCY*~EA%oYuCe2x5@MrDrNkbc>@u_f80M|5h8VL1e|(EskR} zL0$Ow)11?2hSqA?NqqoLd{Eu?436!!>G4G6U&BXaG%`3WBHnxv_My3zrlR8A#YC(8 z*Q`HIsC7zYZNp?!{L0dhPn`z?^wma0U2Q1;`<9;FFGlVOcM8#6m8qq6uZenu zH>}QoL_X9?ZG$QhX%!_d(Zj+iHN2fup#`XQu1+0~m-avjncU5_OFs6DF{kg%9vKjp zF6ZoWJa;~4(8=l>s{iu0eBFLYnk8{3f$?M~Y+*d_*RRe@5GeHHV}3NVI|x>`eYr{d ztx9(?8<^7_^k_NvaGDZ1J#2B*I|xR+9PNk*H)*xTU2)!xGM^8Z@9zx%Z<^98AeEH} zp7bczCg)EmtiZ&q%Cc-;%Dy1x{-3dpy7lKfH|YXyrp0f4R0%Kh4UPxL;mOld(&~@z zCMy3CKkuEl0Hb;wV^a}66AnMb0x85{hgS>C3Uy9ODi+dAxt`x)hmt*xJp(s3d}}(= z1=binY^+a4L1{`Zb(t;;5Hic6XH|Lq3H`nOOa^OP-2RW=lO~fQ_M0u?%M6G`Cs$3f zzq}ST)>f&_IAkO9^>IRzHlF?pYw6{!S*#_#3IYbZS2d@aW4XAd@jGN44A@}_t#%^u zac~G6U?!k)h4q;yRd&K@j&$U>6#u%JM|81fw%Ilbn~u&e(ysBkt#_CmHzU->1&u7^%h+1OQyzzWKCvSj&mmxp1O$CcJs!nvV0EA@3^o-+! z{9=Z}!;%hvnSfjxnsA~M>_x3<~inYpL8t;6<6o0jlly+3i0aO;j*iQcOLhDU75uPwa>|I z{;zV0=7$)y#l7a6G;&hJ3s4P3R`b-Y%_ASA`;)|I{JS7em>&LYz(yT1Df;c)xa03G zB4Fiiy%L3|%@{v8Dq)&GSHF*!EghK4LL!NDe^8fJd-EG4X9m?ds-XY$+j?N$xY*jA z`3TLq8kc00a=&*W{13 zRCTb6zc+k%+I|02=IxR8!PJRfpnz9=u%KfDWfMHo++pO*sOcC)Q-?&qX?%TcaNW26 zVDk#wDN-|0dtTyVPFWOPijVc~@fX+QS#xz@^s_@5KK?=i<8d8h0Mh%cx8`|D%eQTs z85`u=E2rv3vvM4}S3dVSX6YRJ_arr5dwdh_Vqxfy zPk;5|3bUsbV)g6X=z-LZnF#7?$c-giwR5o?_4xx?ru&cas5I_WY39ns-*GfQBlu{Ft@o8z-hF}C_ zBqKjfeEkLFVx~(Ljn2Ib?$dTL8;!$d%qsb3QV{u-`ujMGQ;OU0hT^2@06JeYHtz;m+5e8-r}TR@V8)}cuxxI@%z7ldzy6Dji!%Sq;Go>vAIiW$^UQ|) z2_aDYca0+hu=;eRr{|F-W&{V(Z|_WGy?B-tM#J-7I*$c5$Cvi0NU|t;vTd~mehy^@ zc6_~VBB3g_Al@`G+7s~!stZy>4sQEbwNYGfJ3`bFTSdBgaqp>*__fjdQ1(+yWa`sy zj15QgVu-n3WAd3uXgl#mx`bZ@8B6jJN_H_fYt5k9tuBzXdstjNm-=YII8qYezh!Eb zUYO~3i|{M~jxxM0%z9tgG?n2@Wc`)90wKl6v?IKl8fj~=xr9p4^24;ccAGI6lPyFK zf3N8jRabzIlDn2Uw5&C!lC&}9eZEfZE-a0@QORLLBZQ7u-7z8R-CRoNU+o%Zu(w4U zEiN-^Zb?1i0FE_}+gdJc)jBw_r(Nf=>Tqit%LBo-uEX*sor_Bdc}DZh%_{GKeza^{M~EwN?A<&F)v9H7pm!4 zF_-n%vxTRT78{t(QfnJde)*(l$1WP0PidYhZ+?G(QiO=$XIQOE2s0%AyyA{TfcoCt z`F_DRsn_5(%hXkW9%d-tzae&qFXL!w1W>9Ca0kdFzfCeGQx3ihB1v#@|fUJ{{BD ze>+;sA)USNK87KIoZc6s)SKAW{D_rw8Njw+1V8p->)MPlt_e2vujfb+3%xh; zv7}ZHDfWx2{v|9Z5|8`qQc1`aEt9+JNn2w~NUl#8TCXgx7un>wts&{Iwpvii?D^cwA1ls`SA3){ z-9$>TQ_4b}qNG$SIJt3HJaO8q;giyw7D5q{IlB|u!1}exlZ!<}J*Mm58OOnk+bzU{ zs)cMOjsQKw2m9|HN1FUvlVNy$KE2tt59!_I)EpZ)G^6vly)uD;?Z1&s0&jqEN5qt6 zqA)h@Sv4>~Td`1sla>h+@ztN&_MRGoWoRmE;bdjMFJpWhLuYX00YjjsW8?WrG4A&F zkp<)VDqFIAK~U>`>(!+9<(C>={7?y^nW4W$E2*kN4-Aupp@H`!u+PDI*G)vXSw9z2 z;eTtzLMhI?BgyTbpTK;tZ|0L1`<|m^5$;Pm$IP&r9O{hs#L@^Q&l3phdf4p|NC|bg z`zR(qU+EX#p6{{Pts;Sa)>JYO&ukT;@BhAJFo!x78f@xEDZOp z1ou-dZg0nZZRvuCAH|LEbv@Z+6CoEST$S_qkUB=rwHz15hW41jlq7-P!OFz3>-yFe zd`_^dc2#H9^`qS9#S_OVEHGH{Yf1pom@X3AdH3SHx~gBF8KtKSORJ|XFUc!Ha17>$!S=sxtck5~CMWcD-A`uR zr<{eYBs)6*Fgz@(c4KL@_f*cE3 z^UR|wf`q|WQ^6_i7 zD`_(Z;Fy2ooN++0JY13C=3ueHj1YUX|2+5bCF4hn6gHKy@%)<&tQWRn7ny|(a<@No znHhMrl;(;`3j8Zx?)G|zrKhn4rQ|EEpS%5y+VV+Zp<`xy*F+ZYrhz~5qONLcRXJ`*gPsM#J+zv>;+vBBRAB=O6)f#@$MPrC9QOFO<(; z7@jvOx6_wNSD8vvBLqGaVG~=E+zGm@Kzx5dlX#0Ce`$7v-1L18`K-(L07Q-G-#pUn zo4;8nP(h7CW3IWa!1?3*-BC zJo3|wx35JPD?~DHv5Uf*O>K3(5lNrVwD{RM6>mPNm26#RJFssU=Lehkycv<%Mrw~( zP)Lj+wY1=y>K>MuP7A>BH*z6sro+T!iBz*p;19hqVPG!S;P(3Jq9t~2sM{t#Zmzcr zuNmmr;ueP&H+GTE>y5**bfMfsLjziSEwZ0QB{r-lInN7YdlPJGFWh6OcJE%y%inQu z3-&E4xo(`|%EjoBz(5%rHb{hU-~b$*(}ZzC`ZsO#q44f6pO9~b2k2%s-bG2#Y8Mu3 z7g{8hfd3b#loY<_YS1oC(v8=M&d^8#|6YZ8j=km8oVOsrH_6>Bsr-)-{4O(-w6a~V z{b|rb?*TGwI9>s*GR-ZTZf(EJ{yb@B*twotwUPJSX6187w@sgTdZ-Osk{9m7m*2>V zPv@}}xV6VitIBujHo{N-AL`yRs;a097v2I&DI$s}4HDAQCEcYo(n_aZ%lXGnX-wv@mlUFZejPSJtoPzOZtW zgx8fxlh<0)^_C{DCSiy~R%tHBL&6YI%F<&GoYWrt?J*CpS85WkCE(!-4@p<^*Ag3; zEkiHZ1SH zn`IsT=vmsCS?s#~t+e3cBjtd()bu*nrUm&phEk%xjPz>2gjc!cUUv)?1@hJ{zQpUF zlCRH;3hT3W&2%!UnaiUeDUWVrpb(#GyIk;nWHuHu!Sp-Q(mJEy<}V`WrV-+17OHk* z6x&^H?{HRC-^l!8k)1vzradAoBIAY^hAV#2XFhmGn(XXwrx*QY;!rx82!Fu_f} znc!?Y>$AlrQQQnx2Ca26-z|b$qHzJ41HO5u>N+~tk!Z~t#x4`)FZLTQGbVRkNgCJokE$dGmQhNwqIB%91PMTeJ?f7`jGMx>FwxFIP;|m8omw(}?POtZC zE1b7u_&Om=`dk>-0W0uXb}!vM!oc+3FD=@C<&_%^85?mL8HGeeEv(>?dX79{j%`{p z6K);|L!Q`ZHJQ(CNTm3(MZAd(8`V(PVRiB7iAGOwb?aiGOM6U@;uAdiULdWD`1<6aDA(8>ZnQ6RV8vHhyo>yh@m5L#McCDR;eGh& z0A6{Q)y;#mQ%jXCto*sw?gB$@c@&?IxzG7@6~qZ2Srpi|qM1__92H_S&-{*ja=E>z zCQ2C|vt`G=k*}frq7fFDU-nhYC}-I@A$|IFIcE6`9$k-hzK(OtW=3*;&OZ9b={;*P z4WIt-zGv*n3p*onLH!cb6(RF?WBFR|6Q6ZiJKd1I*j_k`u_=gIj^j8UrW~Alg%=@9 zh4(^Ie`V91Lf~4IPP7H3uMJ6FE8lOW55yZZ%#@UH`D2X~<39^_FMn z!rc*gC3;Ef=`pgzi+p*?QyE$5wM$QdVQ_hNH?MSseq5F^1g8@HuYzb#s*tmz<4|88 z#6F<%b)r}L`7=4R9K7M*S86B)du$TwLP-TI%*@)2*fusc^qahxhRw2WCCf~^42h{L z(a=y`3~EiAj2ON$tvJZ#kC%6|Wu5O&L+(hv2>j!P+?*Ujqzu-RF49@T88*d$k7SnbCB;WYUy} z&jx;DC*_jdwZWrjVX3aF5_H=$Lp6?wjMUZ9xq(Cc;NipLKQ>KW$^6{pGk*vcKqC$c z6d++jeCN(9YwL~q`KZVN!U7N3+az}jIR)je&76o_e&V-D(0vXI0D(2xZDi?i%H5V# z+-PS=m@+&&v|Q-xq=JG3^SGWOUulKy)sw_$fNFdnmv4v>B^AC9vGompP_`QBiwPHe*hj z3UZ9xQemXJ&LiWMmgnc^85tRYiJ%lGAt7;_^eKWs5|vcIjhNRS4M9Wkh3>bImU=26 zU^&!mQa-kBqXB_{?B3qq_{lO)?w5dz^J_?o5c>VKQLI#=;4@=<oig&VS%9rC&?G(uim)OUbuQ~yyijT z9^~6-3Me=Ee_cd(BTM*deq!f@e;C{6RB)Lz)t){%tr4eN@%41Pe$VgXE^$3`@u#Z9 zf=?Wu&N$P0dljXm+Ex{4X>;I5WX6_fc6N5CuHC2%F40zl3HFdFpOFbPkTreK#==C~ zK47Z%#74P>{GJr3d_z|L@9%qsjKe5`kw*8Xm5GtBH&e&8$;mH{_EUR(4%4v@FO`&| zjtzH@TnA2++A~elFxg|0J@JTXvklLm3jXv;-u=V->IUJQ)tj?0^S_E zz6#vXbX!jyU%&ZtX{Wl5q+O1smwiOn)#8o`xhhKsZQ7SFj0y@}tI!On3leLPK&-ES zDwwKo3HuAxCkdgjTjNX!YF`TPIIN}jnI{$(DsO#GxF36Qy7!|???<9ICDSCQ-S$^f zkCc~7>E$-5t#7%yEsWUAPXhGX4xe$esJQPz|3L!fZY7p0vstVcLT$(bVsoFX6`};n>P0^G+6Mwb1oS5BZ3}#AaP)FxGyUNUf+`-Dbw`1?C z#r+|C&0Fn5H*gmJ9%kra_XRdGF&w(d->T=pn(ie1Pp19bH;N}uO5Aq)GNf>Da1h~~ zfsOU`d}mBFzvgD)*`m~#xr&R|DTc^QbNyW3x6-bnV9A^!ey)PUk|G^0o3*4!mb0mM z%&l&~s-3xS?Mbksm&8@X1^m8V(6hyhr>Lq!G3;NZyMVuLC@8`nlY)tJDozne6I#LV z>|%2GI>ezzG-y5$fZ{k(T{Usp* z<2+ayphZebOUIhLFPnW))l^lX1>{Jfc5F(@1#A&UgzfF^W0`eh7&Y1457ud)r<|Sq zXK&N9XU`DZgnyyLA~OGed)wz+9~akH}8&x zg}A2XWHP>S^oQDFJF1Y>f#d23zy28F;I=t39Y?#k&9Yauov%|}ha>V6m{$$Q*B1oO zB{x^N?Zejg9%;O8$}@PQz0|Axp>u8;`)r2m(q`7XGb)f)Y{~-<1Fg_@xumV{QHVg$ z3bVG*f|>F4I%+k$(Iif>DxQeeI>)%w#1#GK@5*l$Vg@vDDhVpx|@(7e;AcJZP*&oZD zNhbnZ&Q`kLA9;w(eBeoCpwMT>x+bitWHKJ0ml5oEcYrCk@@f6Q)!u|ol*Z2^z07N& zUFqxzLU_JCOP7KhJ)apU5UgMw!-xtgyC@WjmhGV)|`QI$!?%hK@XO(FvPAc$QX0z5%qg%gRb! z8%i$6uVMZafu!0YeVj<#eAGxqqWdJobxzA%&+wh!p85=###C&ZG()ZB?Ju?MOPIBz ziB^1^8hSO+jgNSArW)GFiYD9=Q`FE92f`NfmrJbOTqGeJTC_gHu_>A^lb4h5jsW%s z`gZn7$-@V0Rt%2@WNH0$aJFEGd`I+9ef|`SnSOCHpG{nvSY&AYQxqXc-m$BP4Mu( zS9Cpg=(OOLgM@jso|M8?`L5%~pKPpe8jd`^eJJ_a$vyp($_R^$m3xSgchF5yXxE9| z-uK5sgUf!$<<9ALF3b0@WD)cs%tsqR7X}?xB0{5K5X+91&d3jTqOk?mJ1qU2RdKH_ z`A&p>9_D(4G#5)P)iT@TiM(Al^@GzpmoAp@=^0pcXEWJK>i_;Uia4>fnCg%U`7TweOmNxd9#-6!~_T5QK&UA5Q!(Qp0l#_sdBpd6s{;w`1*U;G_C zDfhy^A1&naZ>Rgmh@w)&!`?quiu!LDuyxsLZv7UO#1*$P7~bs-08lVgsHhQ5 zBsluZ)s}#S3G>UB-S1nIz;wZidP~blk;wa*|Jk#rd=<+!W+%7F1Q z^0=j9Jh{&NfZOzRzZ|N$mdy=Ef3zy9X%_8gSiFEfB|n1);pS1;2x6l{ul8igm7z(O zpPz~ZY9GqZdxZAPU7<85MqK2}sl&gsPF)$b#z4m@A(F4&Q+7yPNx$P%%8J5CmLKX} zMG}ZMmCFSSE;k!?4-y!pQ$Zb6M6_UKh^K%3$#{Zm&9=&Mvhqf2qxo)f{J1 z;ev?7 zUNcO-|2@IVnR2a37H)%YpNyrJs?NFxzE4DWHXR2EeL(fODB^0`bc$3nGi%l>pkt)> zCfZ*RvpPAAEAGg1t(_%R+YtO-ZwbiLUT> z2SZmkQ%5&bR|ms!f@WMqLaK(MdO=B1Ohi_Em9B>W=HyMzL9OutYCK}D!}X%N>Sx!l z`FPP5?zfpfbin&ovpyvBI#p*48!?QnW1P73M`dIEk3*Kp`e%RDc)h*Dyw!AnDzDie z`x!18tBY3Cl{c*4k|4*O;Mp03jE>;*&v`jzi`zHl?3f?--pn#q>$7`U`Yv8Z-(DzZ z-oyysbIVhKBJ$q6=0AJ+8_BX6O3M!PA+i*aGEYfU+X%LgQAqU_^}3mvOk<-pFr}7< zwHrEz7kP}_pq+W_JWJg{GxKG#UWjtisyiJAi-FdCjyGrM} z58YZ@_r&7CkDQjcfGg`A&!LU=bME0`oWXXh8MppgkxspPqWa;3^s(nVVC1gF%M2Cr=uMk%>{LYUN}g(FP=$ zo*Va7?NF}ligev2O7So{AIc0{L3-cVE@joxUnPCOXkIh1sIY>_ zfGNV_PJR$LiFXwv>Es2r{+&h7w;~=go>-)2q0+pyavayVEkr!IZKG#$2iYSWH=d2L zOK{6i&nM=TQ1V(COLivHbG?rIlV!uM4khBruFE~SefLoWSLm65PzJQ+at*$$J<%`~ z&NT)Cnp(*@StCmQb!x?Bm%lU;x61iC=uljViBMIuyU}I)TUX@sekf>>GGjgwLZTwT`e2~%pDP|dIgPive!u_L&Pp%Hkfe5Zm%Fm=pM{a6nR7Aek;YFFDUtn_kGnFHc#-3J&SnnoGWHR|n z0|eS?_xi|Dh~s=#;dVv;JkY$g?doPWJFSD$(=O}XS;#pqnUJ0zPyW`_nX-H1pi{OB z9T8CJ(o8982-2!dOEb3q4grR#^W^anA0{$?Pjk~!@@DF=RKRXuG(qfE!hva=HyR?Z z!)bp|M0f8_O4&<1QAbFc$o@V1(i+g}9(JDbr0#{DrqhN{=eq8?_zT|Pt_J6eg)Fga z)PW1gOB2H}D^$QyYHrr3LtUS7qQ1;KrYuxYPk_ok3tX@=Pdsr+$V6&R!bUA7hZ zgtiU||D1!nuNDxPg#vKLvQ~R6oDRHG)o!5XLVp})0-pUz2Tfg{HdL;<6cmSATi(uz zsCC^rXWAfI)aIk;B7hQ?!;S|{D9uY^YH9+Uy=K#r!(1;u*Ju8l&IsE~_4r-%7saP0 zr14Mjvtds@Kya59xEP zJ*A)w7naP=D8si)DPFcuYDlKv8@TY z2du1u0wOP(dn4VGj+yy}&)>fWGU)wm#>QyE8{S@C(+4R6+C6&6-_;?T>qUBnP0eHF z(^yBxL;5rA;WpP(1mTqwfoZIIFI{inuEZw%x1mMV$h6@?HA+Xv{z!?-PBjWI?>>R8 zv(2(Mrq2VRi>AvCH*6mMOAWZX6cp4OXBxr^g()bLb(b2=&7V_HVqz}wODewP`1pSF zzFzBGoa2*_AWZH8T#(nVzQ?t%1+E(zT@-v9tGS3#ClYGBK!H;gQH@fs=ib!x_DxE% z;bhd)@%Ejcx4EufnBOGquvd+e$UVZxEQ%%~?ebnW(4}!b27s|MIJP8qbyd@%vmGjt*$b&j+W9@f4m5e&p;q*{;fFoe$2{9D9h&e>e)(&o&~kwP}_2eTBDAcBC%7{eGmjU`~7eTK$LGcCfrrPX-Xs&8=geua^96u@T%rv z;CCtcy48@BQ@N%)TpT-$Z>4a5`m;X|E!@syEHL=Rc7NT`IezP?{Ji?n3P7gwoF{c= zm-Tb-$=908s>gn*eAw%9Y;pejW$?_WGwoWeKK^1923a4QBFU5f*E0|J!x@`sy2_My zQztRKy$+LYzjGs>RH7d8WS=T>pN8u0{dAs~C_eUP7NqldSGUKh@9Fd|H@i|I*Yycz z+GQ{~#$^-PWy4A8uQGbVWIpSGfOiE_%H{^d&EMz#O+P(;;J{D0K8rs4={3^3mANo8 zSPAq?w(kCTSD1qzdB31>u)up9*KI*&N{J(KX!(_HnCExy&R1HYD4k4!0GmFh{f!^3l3G7u|FI+8@X!-BjkyVr>ksR>w zEvvh@C^CkfZqU~zR4D^PRlCo*w)&F3c#tMowUmLEb+*F>MJPz%Brg2lhQWh(;$@qL zd@nN#f0Ps%)UK+iSm>Pi9=B!q&mqm}v3cP7f|6TY8UqyvUg3%EL&l(VYuAv$Ll*m& zG*!gz)3z~w8iw5WR$jkvMB!`HyW-s?+`j0FjLUy-Gl$4fDN7aLfIrjRUmXPr66FH% zeyiw(^{>u!WKfguvQM|E``#9MjVi9(vqV=prO`N%Ei z;I=5^-($Q(jysA^uZi}fM&epXzjEqhy-hY7kpP8C?6#EgC{-ZigXVWBs0qmz zuJhmPBz2=WPh!I@`%sh=q;SQzyGCf$Q#vmqun~cvKW9!>DM5{oVI#1#0~kT8gutoG z-UxdKnew&f!C|vLUrqIMMlIf;voC*hV===iFzsgP%u_G)MJXd?YFi0glO01C9UMY9 z96|;wLk3%FM;U^tdKcOo)agdT$(9SCmYb(OZR>vW!yfvtG z{A)Nit|FterxE)MK~~-Ju`lBKy#37XYe`5~z`4-O?jAXZ3G9tI)YM;bS2g2Zlbl1% z%4{R}zuq(8r7Ii$h@AVbBG{Ixal5EMMomshPG3z;MM*+M>FQZbL{C%wSvYk;b40Xh zM?1T@1AU-u(P@J`uDIIuoU$+Z>0k2eEAs0z%N|!(JSnbtl9TzQnuDp`xa`>#13DllxZGd@PEOorXV5%|nMO>$~3`p~2zhaMA8uET7jX z#Lnq?qaY7mhnJ0iNHLLQr>jj{B}!*nWRdBrY^)^G+)SE~l81y!gn3?KmgK|dX^MI1&c0DdbpFe-dp1SmQbkGS3>WPVEm^@@* zVbRy0j--8_keG;$h6c)&G*nbSTU#Z+Ug=zgkqKSgXU5lSefL2%w5& z+uiliy0!4&AD_npZzh%Gf}m1PSdw(4)RG1#k;vnGXmaj$pvDaH`Ojx&h>7#=MPp+lGPAMa3FFk>-cCb`Q#Y3>ZlZh; z0=*P^uB%0M-#QrApV?=Qq4NW3WN^04Wd>`3V3 zM=BCR(R7NbyVy9vcS%VbUr+MQ(!|R0ccrmAbNXJqW??g=e?Fn4POF1D34?C5LeJ>aZQ=quJIpoP^BUw5>2O` zVo&?{@h0>R{PYPI9UXo45$Kt^9;|D=c=4jkKqXuL-TU_-0T%P_oy^OZGr39`5NR_gZ_XH|m6a73(SQFgZHP-iXETOL+d|OKR8$!_ z2l1yDwp)X98qQPpyiXDGaA_|8x|<38#anSHW$(*EhPNYUN@`|rXON!Xz2~-Mz5n!Y zl~`@4&itTd0Eynd$VP-JRT^x(10lr82KQKT%J{fA9zMPl-Z$CMTT9&<5~DY6+&Del zN@X{F*41X2j0xugx%+1@IeIQ{c{*HZ?pNL-^f%cu;5W0MCjDVeC5V}qY0EqDwv8<1 zoCwc;P2u=*(e25m#S=5xCf~?Yv*kP)uBQP%W$P#HEG#VUVNvs+Hm%TbA&4{o+TKRF+&YNzYq>v`jl zvJ@8|bv|#f9Vy46Y&hU=69AqsgWa6Vzi>U-dPCRBJ0d;>`_2358{&<(-gZN>Uc8V`;<1B1 za+OZe(a|ewYwqsumypw$cIU&9Hxt9~lXkmY=xCWS)esBlyoK>lbLG#?va*Y;ay4&k zSL0Haqu~Vl&H@9myOgPtO`Z>;AEczO2hZ!fa^z{Lf>t^742MTd!;inn^4fvefLgD<8qV5SYFinjtDMYU*4;WJFgBY4MhJI&^kSelu34T zsCctJo|PIX!J?uW$W>EDpYuNQK{)X-72lbis+F1OehVq`q>^)WbFgs9mIyoe8P6!; zdD2g>KV6wJksxErZ9N_p9X(X2U5$R5)Xc&HMHuevK1*YMKGY2qXJ%4C>orr;rQM|- zY<6741AOMc`Hth`W7r$&d3xZvzp94%5TjCw3a_L6S2H}i-pI>%t<*K&4u77J;U}2g zV)`?Xx;2m*1&NnutKwSkZ=0Bys>ld=h0acrcRmc#LZ@=CzyIlBO~YhO+exL22>ihs zFu1Q;hf`AVrlN{y9Dj*h6eDLtq@RJ7iRJ9o;OP=;-#0tW4qi@Y))x*LMK@@MgHG<( zx|#5i{C42j8={JcK|>J{F?r=?Fgz0QG4oJA;F4bUV!DKo+A)y%oY9J;Zk$hRCC+Si zJsm^s2UWm$Q2pLn7|R@hOuT7o&rtb1deaelVZ+{v5KcHA$KD`35ACa}IYvcu+*7NF zx;Hql9hV9pqWQ}8)iXQzsHqV@NbJL5;Q4pv`p4&*-}l`u()%CZNZx03cPv}CHd*PF z`SarL-P@x3-{B)keT6^m(5(&B&G&@UnPWa&!Hi#d7tdK&Zvj-IEFm#)idq z^=vOs=r5V3WCkcmk~&hxgH*qnVA~btn!ci%o|=-nnkGE7H1%|plC+hhwELS4oT1-a zr?l9J>Yv>5l+wyHI}J~PH@ft0l)E`XNC(9fR% z9Y$K(+CnbdGr=jLxT3iscOhJDbDj17@hIQcp|t40zM55o?)Z{p~So>2#T-p^XE2WWyYYY%h?Gk z<5r_3uR0>Azjr}%)>7CNsXt94*pM9&fd?%Yfm*qK{W@zE7Dd3P$BHdl{J}pkZ{OCh zew}O^DNn=C#|Pp8!}P5tr*_dvEwEP9YF<)O_?$;ADyT=ONC$R8W zS&b?0-VqQGxKoWr5zy;AKR=&aP{6%a0~J{c4$Hl1unNW}CPqqA-Mt$L${fkC3a&iA zI>+GP;O(vSbV^iI|G`03SQK~A{y=s1RV`3|fB(2c6J?cXennVNMVPv2cKh`ueIAG<2-2sIb6Sfr3oOHFY&LHRw+n8X5}P`K6_H1F79FVOf*x zl7f=&KYMFh3L+wDBphhk6l&vAV&hT_pBp$b$2{%GH~Z`y_$Ir%nV&pS{7Q$5fr5%k zLQK5M^xKHd(b3WM>D2z(h*SvSe#Ubt42r?Uw+;N=KYsj}gw_3UQ^5V;smu0DPzwO* z4&-I)$A=)(52ZmUJ|!h3a4ldnSvfhdv|*$9fe;JFnFGv{4W#AIAMG#b%l%m&A|m=j zN%#*oC$XWymCh4(c2pm+U>v2qK`7inZC>h0)hN=b0hbOd&-mDwZoNzC3E{|L%9LW{ z<0w#j4wQ|4->J*gCrId5_=$cagJL5CzgLg2|GWCzb3vGiqRZ~Kn>_Fx&tC>??$b}8 zK`|((SmWR&3>o=EdC{q$aoH83A|e!k?~k12HjD2UND_UY zwGF!YFg-2J4ivKi4Y24pKBl9qeEl)RvI76g)@^ydH|_5378VxL%E$G(?Qkk&6n=Ht zNzchyif1=(TTtm!PX*yFrKm51Q*^|sqKupXSD3jY4gdnLsseF#B0Auy)U6fQ+2l;%@ zKV?_=iBocFN&Y3YZih3)!omX02r~{sEKsRI%kSpRk6~e3(@ow5fg=tI=Iu}i0}goccl^MwQchhJEf6C$dHM2lP7b%l zU@k;nRrUc2gJxndL~}DUB}N^1Q1HgATMMS4!ZTN=YJQS~iabjd+*n+sVPN>f2gk@L zT%N3Rc5(S?Te$!VvoLuvo7%DzGHxADX>s*mY0JZ}Q=h!@1HTy((gl~k#&n;MaCLe4 zMZ?PcysGm;vKy{-FUVi8Zzb11Z{ZF&FxJxrTCReJw#Jf0^GYi(n> z*&OrGmjN6?O-&7&$k)2MFhWjQyl}2ex zipoGTzq7i{$>}MoFu36#(bXMPsw%HurTO`N&r``+-Tb?IeAVb;s^L$ab8&k5UkDhq z1!~C@ZN$J`Lv*+`Sw}k&)eV1y$|A*ybG6j{U04{hP~!Y?NN8YTk)M;(Hn$UyczUog z(BE&dznqZY7i$Q<1u7B?A1bqZ6yt-%4Gj*0?8-dEMbL92EhncM9Qr%)QSoU@>1WTn zA*6%4-9XWm!MuULEg$0Lv&AXTNC`t0XJ!-|YOKb}^cviTn1<`A2Gxr()l`&~L97|h zGj(;7GO`0ib;i9^El!a{|NzQ_08+YW#=GcbJkF(@SzSS zS8%<7=Rd_e1eo~|l5i{ISe^=|~+dmc2l-KpfvM6}X(HFRl(2&ikleECwb zI?mr;Z2uQOvc24wK~q@&D1D$(z0!W+*XPflVZ{e|96mn2{Jgw{`FY6SgYiR%`6?dF zN)S2_K#0Q1$_leBOF0k9_M*%N_swL*EF!u$zh+k$KqwCGF;&PL=k{&qH*XBt;>m=( z{`(#%uY}$PQ1nMgMz*!Il#`ZL>Urw)PEuEUU|JPsMly$aM8J0|aTP7-I$#1zuv{!N z=nn~a9QFSEX#_@&7g9?KuB1StxJbY00&W8=r?&|?fGx=_DN#&U8aX)Gx1^7*g|+49 z&!5-?%}_3j>23$h86V0Jpn1)({0F1E2u~1x5YKi@r)r4OovBI%A7<>(t?FhktUbLC0`g z+wC90x2Xxt#S;3lfT6;BH@~nDost4UDl{{Ji@|{*3d`om%+LST*~vghCj%2`Z0z{# zc(>naR}(G+M7e5UK0t6u`0ydgQx{v9E#GzHD+7J z$U_ifnyZn-UA0}dCPDu5qbNq&ecxl!|NiVKAGdX7vG69vwt)XrFY8|y6B8p0ahh+x zllBi*b-;K1W*o4-CM6LgUme%(EBJi;C=Y~}``+^G<|Zi~UPNjtOYQFO-|`7BVDk0z zefsRXA8!Zo7*La@@(0k?a6gfd{0C zl*#A=PW@Ul1S8)Gl64G?3PLGB4zv9e1*}7WXByo06S!@r0P#>w>+EF+L;M7l)zGsE z&>|B-6*&!Vtg)Skj=hqXuO42xo<6jT%@+UP#G7VKkVV-QEf ztbqt16v#6*HGGfZ&Q5IP$ioXZBRDx7fOCfBiUb#T`}}Yk{l<-7?d@+jZTmB2h;gJU z>ZiVE$8+20iHirMrOg6(8MAT%3COHUQ`y(Ai#~jilaYA`{WTziko;_GxG-^0TLkJV zl~_%?lZ0TS5K>W5!N|k}aSawW_7%j0vAadYmGsor{_JRnX^;=VGmqWh^V36ErK~M2 z86G_{G&dg;wXVb#I^R=KRKyLDEU&5>?(YY{Gv4Iw4Nw!Pc)~h{)eLf4T3QN-p|+JFQq1njS#x z51R>+lXbzVnaR@Zy>YR#+W{mB3kTV~dr=7qCrhc`?=M>G!LecT$0lS~RdLbNzwa^; za{VW+q@+ZD3fLn{u>v@2Z-%_S(!0F3_BXg$<@Xq}<%xt9gJ# z0r10ntClr3puZ4+t+ll^I8;E#*=1AEw{PEs&bIxls+>AG&#$|k9$4GjK8fu37!pFl zX>pIvW9M%RV5-Ct?r&j!Kp6o22qA#Gt1Fm^?6zt(PF~aJyEO6-Kx-5LafQ=cTu~;h zttIhg%f02kM*xK&W|xVife=+%2Ii-?Vd)fA{% zxqqNT4RsX>!u#VTuf%k8lFG{LJv{1PmZ2knVt@R2#LC(?K3=uh=dkz{5hNUzU*4C@9OHxgX767DC9g#9{()>nCkN2j}7uEJbVW> z7jV3>QNR|iWr6cn2D@si(no_JonX-&!_yH03`0vxZAHZ=0M{YB1-~!bxG`F4I5|0a z?IpmM{t$Xz-m$i}w&rG^76W*{D_kyo4Bi*vjJ}&UZzAM?7YRwIcw}?T(a?W=uw8-nk`S##rY|A4CJ9~u*D#+pa9UB zSyuw5C`$;{23G)8gUxhfVP0Oi?cEMY^?X8~zo{};2GI~OH17MW)Bt{tB;Aj;XF>aQ ze}BIt#}{y_y!^-I*O2=#?MlchEbKBVhZw8TVkjT(Tc5?PkZE{-8uZ8u55JSx1vj@m zK7P!3+A}sfT7rurHfts)q!&GKnJN5mYdRGIsnAfIhe20@i_o?($giWlJq{SGn3($? zTG+U_Am{*ss8ZZi1?^!C^0cH0S5xRxHL3IEJuoD z>`MUK12kL*$_Qp|db$C)92j4!#ev&Ux6>?z;dxy;+X2R6dD)CB@fHGx@7cguD4c&=7F{da3mu z$7N}r|4H6}8UN&Faw&m3zyI$a8<128J3D*-Pl!!B%7GsQFn-+!+}5A5F@?A%zDa68 z9l)}-QwSAOCOs*)5TMB%0JrY#5p!8RNPdRy1FgZZh9;`4iN+ro_ZVU|iwGca#rC(_936 zDu6f`|Ni~=#WI==Zk%IApyLYDm6Mwr9l7Cew>=~B&4TK~>1;3=MCo8WoW{TIfg7;D z0ccky8MbqQF+nts^bQVYGUvem1yi3(7GaU1#CB5uz<~ME_VMA|%8EH`AT=o`V0?if zdU|@Iv`IR@;o6d(y!s9y>b-mSkY0UUJ}dVO@bJil3ifnU{(xK<5B> zBuHXG%s9`T2fhPya~A>wV7idcg@qfiGjV;Lk(L(P-aTO(SKR*nw(+xvpf`A@%xKts zDWCFmY-lKYo<4INX1RorbuK|d{q+F7L%46@BnMm5-VgvlOhFr5@3f%>iKjR1agU}X;&A`lC9cX7G-;E9ho z5gs0;TM2kJ)edOw)ZS|cRt6iRFz?dbBz+p!Vh}>ay;+`vlUDrj$~WV;>%S%-Ao#~{ z0i;;JVpq?i`=CZO%$D#7lSOw393E9`!AS17JXJmdt_B|;9~rH-AybRw*c-bSY9`t! z_35GkNLh^g|6Jw}v&lAndWeft>;=wO*k{~3y_LEQzmI=M+M9!w;SL_*%qWY$QV} zjG2z^4j&rkZUYP-CQ|FPLElKY04Y%f_QDqH)QIAf^4KB>v|vmT@_vS|TB5C;K0iY<=wB>3UQ4WF8nm4o^HzOk=q-Ee-A+nPZ^P4_R74-aNP&#S_d+BoW zzQY9kr@+U^_yyB$bF>r{0lF2a6^aL@qN3k{O(y(P^ngL5h>F5`v_vH0B%QFfy8{!= z2aw0^bwMNGOQp`O#B~}y;w3YHa-VGUOr-ZX*`sqMn5cF9Ku^qJhKqn*)s&S*T+zkh z9*gD2q{lVBT_)f*l}q-a$EzYsY20(7K94Op9i#UnLKjE=^pHBGh|iyqkn_9dqgJ2} zi$wT$kn;{VIt5&dXZ`F`oX2xXNg6&rt;f>T)LHM}W3lG=efsss8?vy-%-R}5#V%L_ z(!AAl$?ReRiPGz9XZs`i;1IyG!D@le_u`v#Zebx40zEacUu)~=FeVsL2B5ua4DQwN z^`Ic9k&h$KUNqfpfJ~~g?@2zDSGFTq*-j}8!!?AFkul&GB!RII-~w}G$Dd3;Iu5F- zakaKCe8~%jJdkr6dFp;3FVD~=^A4D9Y-HN=kVK8mw3`?K?{+Vr_w@u%ni!yM6dzcA zv4-{z4+;2eJ8pkUdI6w0Z7}Kqr$yAecbF@!cjjQDcOiF4&__}MLIjvw8dX83^%qDS zzcaI%=)c@|cWJSPAVft&z7@|!EV&!`4Z}X-Q&Ksr`+7maPCF{C5eed zbeV!iunaz`2&NDVLWCixR^+WIa0TQ&-vsF&1SlTzK_Ozu9m+IH@dbAjmj4Zt`0f$5 z_xnR*0)zs{OB)-OdmjS>ukZi4FEVupSP_D|c=}e2v?rV7k0P%>w--B3QJuN~n2&tU z%oI1C@emXe64IBH3~DieDfv#Qg3SBu4g&4!s2xiDwt6AlKy8Ky{O1-H1r=J`7R4U^ zLtc9-L|j6`db}d9gMW6%W!`uBEGd#k;U69a2Y&Elwi{t5V~L`TqFLG5;3v6wwajZ= zb|?|~1P&Rq*SGnSpLMV5d!JKB2LT}h89MbM9bV`LU~~1g1&|h1SXLHGEjX$4A-f5N zHG>4&Q-e1M>g6oXbf+wng$91;j^!R zZ^ORN2;5_JdHG#J5unB>DxRWhz88bU$6m#!Yw3d$(#%#;Qc`JZMy(-4hhwgqS7F@I zjv)*NGie_A4u^v$yb{~FfE5!4h;Mnfykmqmi+7|R?iJuPX!goTN0(Oi8sPz>1Rn$4 zR{>=*zNpE~T?SZ#fq`*lsK=k{JWsjKw$PJvp|AqA8P?;uzc3)Hg6=vP6euHx!pjUm zw!p%E5}OIMGCV5~2=GA94eJuh0u_g$-+k8~H~l5}x)EdOu6*;x70nJQ+oz;q6Lq7H zf%>Do-QN4T7;R+;AZO+c3`|x|PEhUy2nQKw@GQW^!hGQ7-~d~7;5&!P8Q462cCu&{ zmEKB99{(!6qdg!592tzTs4j=Hh)K7ZvFb>**&&_8wC0oSfWNAf~WC$(!Vr()`Y zl$7+teWqHk^AmtZbq*{4fOWniq*qr%AF>DK?{3eE!9BgFVlA7*b_3 zEy#B8Ts{fh*{FBj z9WK)CoZA5oeRO{nklJgms-gm6UBQ@B8YeB2as`_e2c))8OVpaojE2}RV8FNr22vL&L=0sjm(Z!_m zH0KIAl?1aWkTuJ_6gy+su1ex8hDU>s=x^|5!Po(5-oN_ykxd79xyZiP_v}3*_DM7Q z6|uvI|LE)Kc|mCrR3Y8O#@4R1z_0Ni>Fku-9-=CjXVR*8OinIrtKE0I)-62xY5REt z*t1k9u_knP2it)VnMhXsjwp{8&>ekAyl-$wpGxNpT=~-Mn%G{*jdj?vr3npniCox6 z2Bx8f8~?3!-nyWkcLz7Ny^<)4%_$P0{Vm=Rff8QG3+Uw1#IMdl>@B+B*J;gJWx_!G znH(x1;6SL&fLMqUwsL@&VErGgy?0#C?H@n-sYtX?M2m(>G-#JfMM_(gb`sJ?X%9q% ziW2Q94GrzIGm7@sP*K`@XsYx4aDRX2JkCGopW_er=o9J`zW3}%^g^o8kXN?5~dCiS-%CnQQ zR_#X#6qJ;y>FHc{`(rOXUG!|kB0eiS`n2+DcG;ib-8cuc&c!$YqTJR#lA^UsJ6F%H zEH4KhXaYN}#HC1=QBdFvNvJvLdu(y74?ipP!pk+WxYJnu>}(a{EmwlNUbpO4?1-_d}u6G;3%}G*HcU2>g63&yEwIm?8e4igHHGAQA`h1AU5$3Pdax z6>ka*Z2@qhMhLAWAygO70CdMDc$2~+adQyGD@wOkhj>2R7JG=0i9!H8IBz8c0uSps zbFS7gf+4}>lf zNG>E7cX!^`ETot1dq8`@*39fVkUIdG414zI>Fe)!y25$D0S6i>BLS?8B|`JhVHd7E z+wW%|n4H7#ALXhTP0~j@cQ2e?@AuhhNr%>wiu^-&_ZrZ@p__#u8Fsmctn<_i&qG(x zhk%9JqN_`P|NhYO@^WA+9d1^getV9b8qOhj<1lC+8S`rfpL%=Z6?$Z-A29g{xaH>h z`Z^+NM_U`VPc5!em#BILSb$IZs0CUwz$78=vIzQUg82FQ@paK?BNDEzuA)qV2FmmI z#Qv8xi@$$|405ld2yc~oK89#|8wf~drt|X5CG0n7pZ3tx@7}!|m3i6bhFh%E31Dyc z?%g9JCFN3&5I3*h3GHcXYb)Z(QKR<@xVM7tZE}2kHp(m%U(0K22XGXD1S2B>Y%t0) zf265)oy8Q=Oe7OT;cHe1pU8IgQPOMJmKZbyCKV(qwmWhXCJv#1AOqvgRc?>81AInP zGq9xO4-qD`fxrrz^b z0$XHe#{PI;KmHid;WWfkz_{pGAWvy;X}JYZ?5WN7zCPJQhpqrRMC%F|S?t)c!+d;) z@=xMb1-aj|yIRzpXH!#GC+##95gu-Ub%JW7&ir_^v|GsY=Wz)M3pD~|AhE9iKT_oi z8obO`)z;<+z8tC>kfNyZ!%;W_oJ4>^-#IrwPh49|&Tl9;Y^<%ZuF%o4;ILs80H`4< zX{f19qP+WQ5DH`h1t4Ji$*HMcoKGR4Y^)$L`zIuz#t8B`rKtG1u8t497DUTHTaIeW zg}BqV<=gc^7h4Br78(qMAp<;Jc2-uknJXIXJU?eN6xvwwUnq5&-vk?ef z2M}8TYJeJk4GleiBw4mH#B|KdY^Qv|2CKZu)?=xr$N&))rsZ#bh5IDtL9vYI`2OB8 z9MC<$hY%u{;@hyn&je*gCk0w#fLSPx5Ypn`zO}Zpa>J`~WwLBtb)$}Lci8=h^R3e# z={TH5JQ!X*k zDVzEp4y-gK#UEhE>_8QDq#rn2R1@g>&&bK40cYB`@7uR;>nMTHbg4ZIlKc(z;B`w& za4Hbz;fy$A+2pOll$+D{fg-tqv1zTXkUE0hfb@)d#|~Z|9w_{95;%WsM;^%Dw!I_N zdZbnxp&p~iiove}s0QB-0U#cC;@dk8ZtgRg`kbA*@I5)dCCaQ3p!?Z(&Zyw>Qj_Xh3!?%tKx(+jn@ z4+?H8<=%ZvOxYKYvam!Vynvhco6=j5giLa2b{6%s1`2Hu^r(=7g3u5IH<~@5U}F>Z zOr>f&Nn{Yg5Vn4`U;qDsH*BrwFc_Y7#y4!06#Czfeg??~(0Xujk|j~~#WYdV*!p9m zqq&as|NA3%p>aeB%&y;CF<%0dl;kA%BCrFkPW1z`fN5LX+Q#b=cCFs*&-Lq~EY{I- zyVJpId1mJ338mCLeTJ{-Z`Exln5SV@#7SgR%Pm_|J(nGP2x%|M=Jp^1Y3Xjlr4O`#)!$ z0ZO2t5tqHT_R0MCekw%;A$!lO2FYh|A0Cl_9miI~sW`&VZ##an)X-ffx@rIwk_ex{ zNfQc;0>iI_gw}5zyHKzHeIdrr%r!tz0MeKbb)8*V$HnMeL63&tM6zd?V#6bMUb*rb zBv!m=)qh_)SH+P3B}`r^DK;!MFDd6s{9^$PgUNsjL_y(Rg{e|0TkogGf4@)Hq2pII zjEzgv$mEhlczAg5iayg^`1HS@boraj{nFiPMXksB6#l)VSpV(+eKVg@e(Z0wP{>ve zk{;j|ZCGe5<^IPtx1NK>S3bUJV`cb23Zk$1On-&7D6wcH7Cri1+^9v6Y$4-7tAXG5 z_5|eTi>Yl1ud~%Z?@Pn7`s<}h&-d>iDl0?yjd=AdK7W27Ecd1b7z&EjtMw5sh$@P? zS;$go-i0lLfELlx(xN+pOlorSdy@kdHjWxJU^^!G z-*P62!1f>^E`GvueYrMN2z|g^jl!a$RFFVbIHpzpENesIc9@B{v9V^CLKE~Q;@IT} z=h?qNg`=ah*W`?{vT|l&wAY3U$V$W<=oWg4U9!(t?nFAZX)dh#VXvR`D1*AU;nBa{ z_xOl_fRlrRJ2*SU0}NsOsEajOMX!P)hS81k&@Tv0k%l{3S}tdIBDMhv{x!cs2n-Dc zdrrLF?&l}Un^i;5(r|XN-K#)zat6B@T%q2%bMiYt+MKX#<-tXM;N9?j@J>=n!C~X( zD`Z49eWV!@Z~URR7vIGJy#(2m#NFrC$8QbQ0>#HQfuDMNqj-T|(!V8gtw~8d@A;w|P(2hO-=L(ctF7fXDP=~? z4G&)f@(8jGwU7fc4>VSTx9gC4m7VE<7=Q{OLN11e%*uK=W}u+H_w>9{y^0$a5l@{@ z^n!aNImpRrj^2Qo<{A-~jY&@4PC$hylpr;NXP#c#ca{N$>v8 zE53pP3xQ7Y)Tsg#3kAx6tqBLEr6YM)mS^L!u}oPg=e9Ed8cuiyp;503>t1$azH zhZ7na)D%ne^Fol1f@_1w0upb!DVjZgW4I0ts{6rr(b3W9fq}s*m5N~-p+3g;*`C*o zk_L59)9B{+%i>rzqB9BF?Kjb$me!m~^8X#vSem;HzFl29mMV(moMp2!DCfXg+Rwdc zU?=;AS|Dk+XgC5k-$h@>Ic`oat_KySM~#bL@#^JS>*3Nhbdh z&dqhS#sD;BVg*+cj%+jsGr?X4hFjvyV0(#918z=ERxldG2%B^-Deb;mxPEfliz9M6 zI?Z2ko{d0@;fc_M5cP?j3B|?C1gL#ay+98OhDbTD4swyErd>TDJvpH-UL3mq@%iaJ zKs>J2h2d`lVA6E_IOukQ)ea>kHer2rb^p!61Wm}VL$%nB*_ZD9FDU3>=R&;+A{rA? zL7^V%9E2`|(1^{wmnQATmiV(88pKU=>Cz9ZEOSzKBwlWY%ZOT}uO zkPXDg=m+px19>ri!geJ6Jm;QoWxjvUx+Dc7wfPl;Q4=~H>V49#3y2b-At6JM_v-8O zCJv#LqGc8rgyRBLwb+jn;!;w#3VR@8Ja>ok`QB_ z>y%YXMgTNG9Moq|2iO*EZ^dqagl*frA3l7DV9Mp|!+GbwGi>w3o#gX{s#07$AhC_ zP1Q;JT3b7TJ{p?~hZC3&lp2RpSDyfsOifMA z$go5C1}+c@2qz^c)yKw0t*1>X)) zMiv$|ox#+!G>_GV>k!8faEhU>*T6N92mh-W^e?DUb8;(OVxwnJP~MK;^!8VOy^Cvk zlJA5uCZ*ghm9ZDMVd1gd4@tjy=MC6z5wFgPdu_NA;35S?3ltw2FHF>iQ6&7379{eJ zEX9_fbbL7Eh87i=0g?gKq$i+jxO1lh>s9*x{VJ9|X$O7^Xm)Jd!w_HO<*|xbwgR`3h1vnx8?6=%NPN6$qAbRg zh(Xd&QgQ?UBgQY17|2auO^fVT%RG}ifPU}7xpTlClAR8Hy^5*_UOcd~t-IMNJVIym zPfu<&PE9JY=*s;%tYFK3!kwZaT0yPu8n4hkQ_CF+54_WDv*jnhp+Z5@L^+>ie4Nv- zVHmCYu~5~fCWj=C>mzp=qUTIE|JI_KH9v3uXyRBNKH$8$QMUWSg^{j3!NDi>_6NU^ z)7q7i5|g>p&kw)#mianO_m65juhK6pm{#u`X`|ftL{ysGM{})}Ts8)3=$gjHz`Con z`;QM|H^l9!kB|@o5f7jO#ObYDw~mYL`Y}1FM%O>nWW^u)a|At8-#XdOmL@yW3yC2sd#>`{G1=<}qUAG#B|UvOVwB=xgrI~jM7 z#>c@Yb}sFEnG?!{D>WgLz*8VO!!KaX(1>B#?mD7HD28YQF&Z%!c8H3qsxv6n!XCFb zH9ZSkIWrP#Cn+g-iS%3dhY!B?n=+7e=@2!eMb1Yz3q36@A2aYh3Sn;gN@%(#L}c)SX+Ypt?1&9rP*x}|)V6v@JN zT^3S;W|Ugl06D>(k%ivv-upu)-*@Cp+t}7}B933#k=%&9kN>!ziK*|sBTFGZVlnrKFr4lY;;N zraGDEfcXdU0?fptT5h$6gfKHUl6%1UC^frWThWDLbW%?^a-_Ls=EyM)wTXRM+sD{hL^8g zn4jfvU+1YyG&1_}nYulQ`#87yjI4XoRCm65n46s)_#u}Q#=sqozUz9hejJ!zG2~|; z*h@e7jll0;HGqO2IwXn^NR}`T{=&R8(k%JC*{CqTef_9b7HK}mw~V60CnG?90{#UL zOGz`vffY$fgmfu{D|q@3_y>qXI0BGL(IcXXG_d$1&G(}|lzAfHtNFmYivwcSH!b)-_uKpE$~MeXOT{2M;5&L0 z!hRV09e%Nbg6SJQqPf@auR-NtP<_mp&z zD2G>=?pQFOjeM_s%skdAH=Ra3`oT+qJL=oS#76qcu1K9TH1t;YU0b@|)O0ew!kdJz ztLx=s^*7oz4!Mp;P57ZIs;7;5{oCJgEY9oDr_Cno$v%0cuc2SRMC|*^L8AKl__(hx zKdWt9sT1oP85_gvBRdK06wyHS^eK`zDm37^h>|-9DBX$RAbb!QO^vSelpS0vrn}^)g;&~dwbwer3ec#Ids5>keMg8ZlcUo`H ztJ5H$B6l8FE>CU9M9N=kJ42;zWaYH=O2 z{dO5*oMTbxCD+g)CGafW_hgcDdK;|!l4&nFmrDPrW%biLIUX}yq_z3pvqxi;vuRiA zS)6}UjX1oL-1A;Jn@)?Fk(!z1j^e$t%?BeEn&(I_59nAjvbFj*O8!124OuW?Ef8FM z!kz*khZPjarlsUf#Qz~BV;xC(%;^E7L8nc{jowSV%3Lp+X<+B^BqcOjZC%)WEg?l$ ztP?HkTdhPO=;~%>1}Y{!tr-5WG9UPgVs1{*j+N&~{%wK{yac=)93QHymDZPEXD~-M zWZ*3w4|SHk=GM`;RY2xfg=`YBxVJRg>Lpjn+&>SIk9dC|K~cy+w3CcLeZ+o!8@V;v zRx&|7_Oz0#*FJP+(1wwcUp@Up>T&1Ea~U}nm=ct-(P{hX=(4Rk_+x`J@UN#C@+qjPf7y#ehy=<3Z430a zJGO5xwEuB8DvC83@(<71R9`wYayV$&@7}FgUo(YnJLfY+Yxf99!Gx^&kbD0e1p3C; zd3$c$Yc`Lmsf^JSjB0BqA;}c>PTP8@;m6#;eK$xQ7{vyb+EU-HyNAWGtA>;BcF(oF z@%gi<6{VQ%NmVL~>v#Os4Yv7gybKCz!D%NkMKy+s5Zr+j@B~ zZ6@DaL6USDeA&R3twlv9r?At;K9tY0CDGjPGAo!Q9rfkxTj&&0QV)r3Sqb7+pj6%7 zaY{$W)Qr^8(SD3xcyzBs>siI8j9Up%0}#j1)cvr>N5EHb| zFhRf#3##$8=#-iiyg-o{K1zm%IIu9{D5XE?CaP57LSzK*;!;VIKXu^HD3u{g1c8PUi}kvD8sd( zL4kqx=upq$FHgfY0Gf!Xm_C1gqB~z;`vz{Uhthyx3OUAIZgj8~P`Uv4`UXhh>z6N+ z--{SFoYq+(vi~tYjuW1el(dY9Oc7M<-V%v!V?b7nwMy7CGM z1u4ecAOWKp0aJB!uT^7=98h+utH>VX}phnoHHY#O+6)*N;_4``fnT-kM}s zbCQ#=Ot0ssr`JQk-`so?8+DLI1ET@}1A>MDIw1~21CVZTNLa0e=_4@q@bFYaP6$^R znq8Qa(R5xta77AAAVjP6BvNAM`wzfnSH<43r%o8v!&dkcfN>Wi! zKttaNV<;T65M20D?U!%U%dvn$_iLDl6$o$zd3gXL>QJC2Wgq*0f>p-C%dnRslfjo# zN02q1Xj<6{3@IwdB9xNZFF0d9N|y=u_|i!m?;Pg7 zeqRyo;bG`8Q&Ri_0R+xsiI+Xkc+I}sL5rAIKG$H!kjb?PJj z4ZT0cEx;nQ8x8omV5ldFdbnOil=K-H8F_iXVXgtQs^pQiuN(FhIM8mO=S7|srk@9U z39&PzS*QYc5c=HbpJG(f$&=-HWyzA*+ZZyy<~B6zEOmPV=65aF9@lGehPKK4DwoIG zfTA5dN{y-DmKw}9u)K057cN7nCt?ea!O{!(Vxs@x)NgAL^+Z!7eNB1!LHv@G?5e9% zbB{1%e2o(~4ZSjup@e7{FUoTB@&Gt4q6a79SYu$cx!_kieR?YaEfC;k1|}vIBPu=; z*hi2!HEXKH$qy-SO1JOB?TT(&o{|rRoA#>n&QDJzY-ZT&$4BkRkJu=yl=$GvYsl0&_z;E^l)fl{6IDZ@ zLISM-X0}tqi<+v2*KI~o8DrVR+_Z8Z^4g% zEaO~zV=vB3;5l-H&f~0}-U^WB*0iYSg2#{Vj-DVX$D$-{(zD4CHHm6R=7nv4ep_ z^#1tql>KKVuAt7>Dhy*~h!#lYs6gf2sv8=%5uU3#PWMLgA_l*i+s2mA^28xVL+AR{og7nGs zk~(@l19CBzlgVOKy#nGP8R<0j5hVN!s;Z{t1dG8O`n0p^G!c<(?4(n@TeY<{b?wHz z_4@`_LoOt2=bQJ6L5snVFc}pf>_O!~)|@xLxV42$Ivm5r%Yj1vV5f zYhFyzgnNBvr2I!4DPL$;E+9Duc06ajE8Pxu?_afx^|R}Hurw_v zN7B>NRdH-_ikgcn@Hy#l!-uzelLt)?U-ql~ zWI&Yx-V9U(UaO;TK=dm+>spq;lZ}q*%K%VAD6NJyvYC>TlIR&2v_-5eEs0R#re~fO zd;`GB=A2LP-hpWLfkuYDLB;G}c>8&jQ%8TVDnZ7(=e=OfRzVvU4gyg{lQuB@lE zYkiS{Q2y;*V{u!P{`RNj{QTu+a<@fu*4?L-!nib|YJc5?#o^$^i_mb*?F96VlYpus za*Q4|+jR?FGIA=Mo~}}lB2yX#8>PLgbna(&-m3ucSqrj0$&Cf(KQDmDXnRkO^2rnJ zf6(PpLEyD8;`*R|@18wc0dQ3ULmbQw^6E30v?kB9mG1D+4B1X4J05i<5JaNqmne>-$y z*XQh*Au>+SZ2?{cy*;I~#jp1D-;8y08tKeVyBzc?j{RF_#iz&ilZ*>vTNkMV`pL6rU&c>-sfxZVfkIrQkXq9PbV6g&SILZoYmNq}*?9%%>_8b*;HulRHf+g?Yf9l9V$bJP_-qB#`W z_XKx@y$lY{y!citUh$E?v$YZ&ln`|Sz{Lm#B14E5VtKP(;?|J++GIY2-H5whbA!rI zGxit$v5rTDKpZ}SL4EiX^fw$F91s0QF{AT$tZ3hPP?DM`UYg%2ADSL`r>iRX; zH19EXrPcjYUg1VD;ZakS=68d%rD`s1qw(R^=$|ww@Lowk{xO!ToRMTe z+MU)0|EFm_H{p~x<6Mlnfmrkkwmb@tJO5$XEOJI$X9^Ftu&q8{b}x`+Xr>LhxtLd` zp3D4YRe11?v{9;_p8c|5<7lQSiE!igR)1hOfbXGRf7dzD(6OQaKjOYK;+WltO5@)) zd8Ju4fk@RXyheFk|E4YV)f@{kxiM0c-yh1n_Gfm;FYb6vb5`2G_1$D-g2zZ$r^{Y& z?vyuS`o}x8o(Kr3uwig!{MLR$$wcm1ZN>05N-H->iHbLiq1^|hq+*)-f2ma0+m37Q zlux7i7k@<*##o(m=`aAq%fOfYio1;A`zFSK9EHz?1aHYOAq(2>?@zd}V()e|Vd_EacN-R6 z?Qh=*LEG(m%Tsl2Sa!%KIl_)YY<#(rdA-Fo`aABFa=%Kq9=Aw%Qgh#`gFraSCwF?Q zcN)o`y95F&-~Gz6ZqYn0&GSC73M42&$XGMd;^ioE+5dZL=M((vA}qYOPQK%&>g=lz zIUHCXe`aR7to%p$%#Ub4SN^Rf%H^r|#c7jxEo%D1J~r1J?scQhD~>+!?IaElEGBqU1eyQ&Z~>3E9Td_Wh?bCCR8e_E;qUoqT2=g0U8u#0u~NOsaopLgt3?7!3L##R z8Z2g>{hd*RHYR=}R4Oqy{ z&T1M_hlMr5@gef$>YR1P%Z1)f)-!xz;rH&61_zhV5C45T7a*V~Zo@~fC+}agV!JKa zdLhS=hc7M%!bXBjnwGIFBek&2hTHoR$JsB{>tb5h3=NAOv#_<&|KpIAjvx9mW3iub zGJ|0HHQ!N~@8@ruq*O98vXOSRyIpMu4%V|AuQWJuG?`JD;^I-1T*1M4G+ULGEiK0& z$pDuKFDN*XfWK-Hv`|bbb`};RkZ`!pI%-BsKSe2JEh>c>R?kaNh8+v79p-DC_y4yg zIm^@TlqHhn@6MU1Fu!4NriFb6>lyc@$tM8ngPlElqEK1A$+n&Rx0VQ6Wfj_Zc^18pMu5}p?xc{0$*0cbdTQG$!> zDo`iB{r>cC(anIu;iyjPY#9Asln+ZjW;L~bDF62YcRTOevdKlNvgZLSiGJ1khW(o8 zj5DBw)z#-VjUNu2_m#If%vpQgB($Y5w%ok3J3sJ6TYIcK3px)N_WFSB7ruWF!N)XO zBq(HHxr!_+^O|=u*3)xAhQeB{t*q3&Iu?(LOXylXDi~on?>FkpE}~>csIwa9`FNOz z2P*3|G#`ih2GM~$_45Op{nD0`WqzKKh=?>VOkZ~1MMV(gp&xYYk__9cb$+3bo+~eJ zx1GYZ%1n-OQw8Ir2?wm-H6{dnxI?_Ca;n#6T(guE00?}v7@nbo=>YIELKlchZp)DF zaveGp8g}-QL=db#1Wg^C#IvvrhSw$LepvC*r;cuTsWWV;Q2F5lat;cv!SHXLov5ZT z+(}t%_rJ5fAkiR3T1Kbj@WuHGR!mqoRO?|91LCf<;WDltAf{m1)c zm@R~rG%(9AkLGoJch(gZFuVx;d`EIoM5FR()!J0iw1sdO+(iV6r+r`|!bNR>I0XG4=tk2AB$-Oc z(I&`a-dzOd(Ov8!6i~&XapmgOW{VuKT3|H-e8emoW1#q@u#Jkq)P*^7$fSU_LHvLw zR!ak8gKEP>RN!*>WEL70#wzKcR2jroY6No@aWpGolI|SDZZMX^zu#${hc*J^bbxRj zabSd@owzNzx$^-;L$~v70~bkxnL@>bTlLn7c@7nWE&!6CpzO@dhZvS5=t&SqLPs(e zXZANG$PfGhe~w>Co6tuB{z2YUpVQ&22%efE27y)*YD%(Ctc~%PX}Zb0pYL{_gWLLR z$}Cg((K{1Dn#&BFwdCDLCa*jr-?L|=Wm}Z=y#n!>kxadH1~y5__dqA``3%~SSxP`r zjam&_A`K-a)M^kBT!BUQ0vjJ+-S_Vv$m=+5Aid{)|IW+I6ciDO6u%Ldl{JTg3Z{`U z_513wX;bzvBg zJSbf_@BtJ9EkkvJiLtqus7yHFvDyk}yrSY&^rjem2GS2|Xo!fnctgNS%OV-97!N8N zY9aWKuH#FhHo*ISHq$E73fSTQMum7ULY}h(ObwJiBofe=z@vK2%*+g4x$S!hm{X95 zrx+gxlxYa|{9j2^>b9gl-qLUaMnfngwG-F#vqn()KyZ|(5pArk4S6-RngN*1R8Uah zE;c5!$cXWKw`3ssv*|c!rRcPWp%Wnp!ta@4{>g6-!G7Q~^_)rbJtqjT=lW16?R}i< zzH)P}kGQzYQ0yhuLEc40L`f5}5SX&Fg&YfU@^%v-PpjclSNq)luO`d0kZcF?GW~tjxcnjg?H{CAr6ogG`Gj9Q-omM`UIDkRn`vLnjCfh^PyFpe<^-m)UdR&E%nQC8uV(aBUf}|n4%A-X6zimW#KoD#|LWA zQQ^G#M2&T1MEkrGNikv#fM@mwhULWGtT-PsmJ#pl>PmFw;SD3aNjQ!LV}{MZ<~ygp zS*_re1Ld;WMWfOQ^76c~K_^L*9JZgPmy5q36HJ0ZyN(;DoqAo)u-LgMqrOsj+;+XCTVi-Vy_ECd!5ERWoZaKn?Ck9C16gP* z&p$1{^Dv4{(r>HHcfVCvADV*M1v1IA<~XYUM`!th5Vz`=<< zcVIYikTjY%Tl;!LmK@J4sj(qey+-<+#N%c6_|zC-Y%J692!V>xJnHO>%4sYTqau$Gha{*;YohgXfb`IhA2*i1J2C9tD=Hg>sXrJ^O9oho%6n-1Qt9%~ z#{~Usn!!UL%A_PDN;X!<)ub=iF_8*F3Ipt76C0zB7DtKk>1P$=69}@9FM^$@t@~po zv^$rr#8~!Hr4JryA;MDgJKxM#7iZ@riEw`mxNkB){%5W4+Mf;~#;0`+g)ta_L?j)4 zeSLw_y>8pBu|-$q=kWZjHXx%5lrG1;m<76my|)4T#w~xiEeiAUbUfVq%kMzRcgyvt z)5NzX_`%_7)e&uFoalp{JuZ8H>g=!~VPsCwT|iK%%65H)+tPC9PH&;_yt=ht=#(>l zX!qMrDfpO!FR))5=TgEp^i+-$k-eR zkOh;QI`tVQTCXY=r{a~NaO8i52UMNVe-=%bV$AFEt-J?CC!nMA+Fa{cxNYLIMa0Iz#nWd+kzkDjsdyW^^F# zx}XbL>UEojW)B6S^vyvf940Ir;FD5}BUW1*HEIMCc)(@w*%?-sk9~b*E_Q<`mNtJr z7628s+HPRS$IGh^Ew8mT^iXaFq4x0lZmti@HgxL6=Hx7NS!I+==5@p0W8$%R0i*b# zxG9_c%!CgW@J9WFBkYJO>E-;cLh*LDQ>RWjWW_aL|L|%jZoMQMs_Rfq0x2GX#-Y2qyl@%`acqY5z8)$HlFV-;$04e+? z<^zK`DVeFH#FCuXa0Xn4>*#gU^cPo#qahusg~}fGr6J2dqi>>b-@ffRo|fM_Hck{d z_ud+rn%aPaNM^oP2!*M~bjcFr0w9GjtfuuVe`D39Nr zI1lX|ZZHV0$!^RBWR$L20@|v(jCo@?kquwI5R1`2tBXZ=8~9Q}xxFfCYSNg#vLeKq z5on%X7}cI!T-<|cJRtib4E9E`)!aml1Uq1TMBkx@wE;`KojZC{+kdvwScl)An&0Ue zgx8bfBp|a!6&2+?!nUt#nQ}&@C$-IG`Mr>8Tfr*Xsqa@qazcK$8&o$`&HQ+oJ5Vf+ z$_V;V{9H)0;<7IaoYs1x7++y3IGqyUpzQSBu>)*o>r)aEnCvi1(*ZJe1}Om0v(Gs_ zU;|;0`e7#KUUP`HEOz&jT!!E#BV) zKAgWcm1=ORuaqz|936P2N$cUnCuCV7Mh)k0dxSeC@z_BD5V7KWwPH4cxceUT5F+Ua zQpWM8UxYuV<2DsMc=*e4Y6suckm=(zZc?aA8WxDO=#{n?=3mOJ|Q z-W+W?rE<3NfEQRiZjCr2six}>C)D9`3cTG}2B-F^lXcsfmuU%{NACo^84(W2y+TR9 zHBypIuyO9`q!**fX|_$NntX@X>+3t2C<#TkANk9l8v5W${A6$GO`mtWCs)~;Mcadl ztwlt>l`s*~OZ9_(kEvWr`Bd*~n$nR_awLvsv?tp)HE(Ap?cXCyGu=vKo=)oh@#UoF z>ySt(Et7zL(^IFfHybx>wWpRpE$LqxtL&!B$xmZzo0N3&YT^jbDRZvd8zPbTOny17 z%mKNRa)UM$jaTKv1-a<*Y`1!+rZ-!1IB?r77;Yh~F~pXt25|{QS9nKBlL+6wv-=r~ zX$hWm@Y`3~AFVVa-=Afka-e@K<-GIPubBnwx0b@YZ;2Hb#Y}P1@V95S)g;i2s;Vfc zJtclD&D$k>D08@m*b`|#k^_~}s`#7QQcJ79bIV!B`5N~J&M*@aN_D^~1pAw*LpJ$OIoa4q z`gtQy{l2@%x@*_7c*~?yvj^f7EQT9oNn#AdoGr`xd^ltKnD)7CVX9F$iDEB#Kp@>ex#<@rgTqqcHc5Bre|K(vq#P z@Imo?KYql;2V38XJE$2xxyi3BPfBy(bCfgy70KT;uRdsNNJDXnd5UYuXJ|&&k@vcB zvrth{Q70249879zPqVY<4>hdg)1ld;BVQjm-no%v9H_VJVeBquHD9c-5RMj`}nyASk@gxHi{4UU6{6DW!UEAbY6#@ zL&1UG?FNF0TBPJ6KEycJvQ2?j8b+x_G?-Cd`mjju5lv_rH8e7Ed})wa^!~lRLW$F_ z^mUHwVi%`T)=5OoIWT+B5nN@t-xHeUuX3qJ-hKQyuUpVi)AyaA^N$67=C$(A;js@D|!?y@3*!jj~bjK_NnrU8)vXc8r~ZPBDCA?s)vZuo^A#mUi;nuewn$qzlm z_l29MwW2&%M^U_CXxF6=4_L(A4!6w@PeTl|_?gKLvyhf%W=7glJ79Nyn^$Drd7Pkj zS**-F|Q7UMMcC&lSRN4 z<(q+BNgJ*UK;;3@@CD~#)Cn#{;F)gSzO5r01puV@SBQb+?THcSEm&DM;AQUkHXy_K z@3=MKs>3H1vg8#Cr_VIq?J9g3=&keQMz&xF!Qqb-VZwtnOUofFB(_0 z$RJfj2l)GA60A9;haQT7d7xLwCkrTjict#SOc7mitz6)&Nc#T>)q71s#6(Wbm;;YZ z6|39CBkm~pt{EjAz*1jJJ4Td~VQSq`xchKj02Ikg79vzSMGI9QKAG2jn zpd|voD(wy3gUn*9Hesr8m{p`3tqKY8atEwG6xSvg_94`8LR(+obuzcZwmUCvMZ~V~ zR|r_iYf&y&;Xy$Y9n3izq#<+Nvywa7{W!`pjDR8#vrBq<6eh5t{gA}U=$d#CtIxCs zJ0bca^zY;`$lbdc#6neZd6QtMYDj_jv;DKihYTv*E^xeAI-Gjwib$|_(Wx^{^4F8+ z27|s<-amWeU1z$>=_N~#(7CePUoCmg=!WqHUO8%#e$+6@x{qJ7>J!Y)%qN^P6B893 z0z-=D>!k=7{Gw}U=njJmCL0w1a|Cw@@uFW`&y6Y;0;&%$;m9&vjzNGx%2smj1Fftu z%VA#Lo40S5qE)z}rxP71>m}nYHC3SSXBcxxNKmyJYthFy?L*|)wTpNkgM(+wJ;aaA zb$voPQg&Mv#2!w!Z=-|O+;jmWjY<+=t(cbyygzCT?#n-X7hOHz(cCIa1N3W)ru)$5 z54?0jG0xhU?D*d~n;2ylvvCW}Iic5OI5P2NO;!(TEC4tnA{ZRbvS*J7u>7Hp=;K$; z&MTsT8bj}v=#}#6l6E|x;5rSctlo7U__ltR!CfHEaN>bo;ozlBVuZh!EJ3nFL$S%U z&TPi!BfIGncTkd%1R*miqPWS1l`!G9J5jRfx_%su*Y`3L2b!Wlj5vl{k(E^j;4bh0 z6s*NKl4=e0VIrxcvw&zk+}*J`wQee!nc?D$H~Q6phSN(+JyAERaR?r89f?z!0Qd|U z%Xr1M1DMrdBl+#CG&$zGqOB4}n}InZi%OtD((-#(v5*kIh(+GUnHM&)hrEs}Xf$Fr zhz}#!i1W%<0i+j#lE4fe1}PU5sz5dKdtJxjs%)cGL9_(j>9sZ~rng}wI^nVOy<`0X zIOi@{H$R8EBw;)&@W}mQ={JhBFgABl4%8(kPl$9F#`ApTFY0z}W=*_|dQFST$G`lW zgK)6Ps%rN&VY6ZNll`Jp46WBin>T3N3dL8+C1npv)}3~o_K)^bRHxzP?f-R1QZ2lA zncdjEDN8LO;ozayi*E!B@{aQJ#I4QbE?J2ZF2IIc)Er+?Gk9zEIjJD0K(&qf(N$s%*3h6I(h&?0MN%{&-__7yRMvi z+T@;csiv~BGK?V_vN`;pl5bz|(+RCpjkl0TL_D^j>JF22tl`T?>Vz!oD#on%#l3~x zDbhbl2E#Us5RI^hQe3X)X4FPy_M-2+dBRn9#OSndV`Z!YOkMe6^&80-gzquA@|Tys z>EF#Gc~-^UV;8Ic~3S7h4F;6bU3S+V`p+#zMU)x1yl~^_?Ac%U+U`6 zFkEYUgYAMzAF#}F{csCa&pk7QQ|8tVeBm5 zqet!ej|>;6PN`*Yq!gW@WtMvIXU!(9cmB6xcGL3^%gW>Ej}aoofIrrH@)2O)o^?}w{V?@6l=Dm0QLGq71hb6z>cX4GuzFSWZQ!&Z5`Kb@=!+6x2=vs;TP@HOfGq{t$;+a5{ zh>~JGzw8g6px_Kzdp%sf0DMaj_iZ7Zdtjgh34`7f%%0+dRRM7x5JaSm2S!{IuOxxq zat2TbsnY)&O<0L|2~4Mj_#*Jg$fY)d`+(Fv1^k?7Gb~?VJO>a(qjnPR&s0IUZ;GmAi1b3{>akR!HWaLQ=GI%14S3^whh!2nn0~Ur5 zE3&8;X$RA1+4>xjZ6ba*6kVW}5=owlK`siA+zUAgyr~CtLc?Ww2qCDECYs`_0JSh+ z!qTo??{KDJA~g8P7ySVic8ncs8(#$G))#zO+w;$&E&)sNz1Zc}xpU0`QA82z!2V&z zz=`!4>*KP&|EC4`@UplIcVz&(N4bgnv|5TEVKk^D8=IVm6F3l8y#J%iAs?UV%f4>j z`{LzG40b{U(~IlV3;Bg0hH;gVZFSoZN>WZ=$l6n^%a>%z;<=wBlG3);yXgL~h@P*< z+RW&inc0eav|(OzQJqs4Iv?5<#j>+(S81HQA@o`(d(85v(GI=Of0jOU=};wOhBQXj z`1##*%)L|bE{?~~Oc;6;g(FU82U8v2F_r#$?%SvN=;6bO$T-tJcEZDw4mm&Ri2b#l zMfrl#T%X*Oq+Rf`nz&M8NcM$(<0QPIpdcuo%;RgZx>b~``>8X9oRK8bZ%ZC$s4(oK;yEmbzKG{kt0L)G39Ob-aAEHf2mZoTFdRM8 zc`X`Icx83f)!CVold~8TThufT`(+{41BVt9%g6053kwd^_vm)*>P)ce=8Gbks zPf9dzqRP`pCGRLUH)~$lDj@Lj(7c@8@s8sWC|PJO+gQxNupH>7 z$5ERT;Y|h;_t;s3gY4{C``_F)Ymn74V3+hwY^{iBFFjWy5jS;mE`x%RQ?lx`m&FjC$Duz&(<5z1H zQGaW$7jmVuXPP|g=n+4&M@Q&F8UCG`y0;D){L_?MpEv*7C0=`Gu|YPL=bS^%&w_s&FcM+ zhLxW!a~O=YndQ44FmG+E1rNItul=KI4%3w1AG$di?ypK6G8HTzP^+PnPX z7KU&`jECL(sOeQ*4i}YW}V2CYsprotk#mT&A{jLS+SzrNmII~RF4h6 zsNxLU;YQS-5Nt#{fgB-|R7Y()CW-?V$2Vn@V#`b`@SnHiM+> zLk~&^->B1rY3;`?vO;aY+YeIE90*A-(QybCl2=eTqzuQ_UY3up$s7bnNtW?T;fWpN z@c&>!;jN9~cfSNq>C^5}QdTY;@RtHJf(C1;Sw#R#ZlbMAt^y`~kXlSH;n?1xg_#}H!#}`UEJy7?pl#h_y>gCmRoj`cbdH?Uogm;wV zX6Aat&Ie`4a;k9m6~TR|Uw>Vg(C=_VUx9}+&NRg-m&4#~TG{oO^s?vS;oT0DxcsOt zN?J-lprNiV4JgC`_n8W0zScMB*x!LCahoc9lau2BhywEm6l%V|L=2=+_8r-uRI7N> zt4TR0+wOoWm(PQr@Xz1-!MJaWnyPzXIZX4L+kT>fp~<2#U!ZalXA$4i}}j+_-Aem`}Ct_zT`l+_$c*7{>I59S$@( zw?94ONJ@Y3lEKXE)R|)$L0)Dp^yjZWs=txWZ$vmK#UvsU7r(RV_1|_Ui@_y2evT*N z&(2%Jt} zqRG4qB<$ztBNe4yybyP#C+wcEyS$PfKsfoiJ4u#L@@t`ZLQu8NzfYn(&17#WwUGWW z9JO)c?}ld^noXe7^ZLY%W_&9oIppq{f%8LpX3+*FShy;Cs^>|VfB$7BG>Q1qromMYV zQ9XLhbVnaOiz0rD2-x{fCVWq1Hp0Wn-#e1Qi_D>3&A*rjc|%UVgxyp>Y=l^mEM->5 zP14ZF{x>3=_O8aeMFEr(Y4}d4G^8%vjXpN5w{Nyn%z57s3mF=;-XkOX_=$o~*wQm_ zIZ}1KS>Cwkd|aig#1EcgM_h8chMxOx-y+{$L~L#XTr4YuJTh86s$8TsT^huXehrk- zx9Dq_stKKJ=y=X?8RC9~*quu$Mm>FyX$X0h$G(3M9G>x}zkc87^6nk~e4~ua1jmme$dBjnE6X`o{^7bc-2I3`vv?ihxnAs#;fBaMl*Jb8~ys=Q{6&)HS_0VyH)PU z^M_mHWoUTDhh*AhsVh`ePAjZpA#pVl7ZCDOJ|$XCv5k2Lv@zQP7~c~Js$c&*-iAPUrzwhmsT#ZHz89@kNb zZn3I;(I9meIHyl4BJC93c#SY97z=%tZkC`yic-O9%aRq+W2bVQ@H9w_7#d9j3KPQq zq`D88`-?L_F^IW2hgkW z`Fubea7J2PePwzx8d8skKA|JbVoEoFEYX*l;rRc1S9qe#ToD!+ z5Lkx799(mA9~_(77kAYwTSkcACWxFCF0#KdG{S-m8mr|8>EKJ4%#QK>@CN*9thK{T zUHv}wvI_KNaRKiJGngjJXLj=4$_SC;Qg~2Cc6vR$Mr>{&6gG3uxdEd4>adthD*V)m z2y5`IsQaEvnVbbT_qvyY8^!6Xew>U%h6Pf1K^BK(C`*$rqG`teviSlL{ z+B-xkM3U|y;f9hDVn{2%XT=PlK^}yySGp ziQA`q+cp2hy*(l`UkNOLm>(wM;mYffUXto#YUNG%^n&M$_1Hf78`X$Yxo^JBqmqH;Bld62|gk`bH@| zW@CNSn@}|NzJy?Ek&`Eto^UCC%Cop{)YXA&cm7F~KBUFCj1+ohEWqXijW@ z=kAxE=p`vFE%_WYwyryvp1m(c?@kr;9SdP#U}t~VSx_~Zgw8(*aXzgsrKIwDcs}19 z>Fju3)w?rw!RGMwg(Og6ZyzFZ?_&Nxl)SHA#G;u`0Zi-_%)}0HozXm6Xl6l>#z3+m zG2^&=jb1m_miWRIUqhKg8d!?)x4s?U&R<}&)P=?PhZ|5i`M%N3S@xT+ntbRbQSv1Y z_Io(eU$uFEhKBcRY|PK61Nu#YJh%NnslTb$;6;+SM=Y{q=cTyo);9l~R+mEDBn>sFb#>#xxgtR z5tTUq@cbM^siM;*12EPzv(;;QD^>o;mpEVNHCl*P>BO5m@vmNGzez^t-!Z+($qtT2 z`KSn%{tFq%O*&qB@MK8jDAZ4MjL{CU{T&w2r>XZBXTf@k0t);57%JuNWy}#jVsQMD z;0_W%kp4qrpPs^yfRLB3)5k(Juz^|A&__ohx(7K`Eaq+ts`awrF#P-sxk8aYRfh8#fz}*y@&n^=a zzkZE?8;h9&GZUOQ6fe>G{Hm2(AbFp6>E+AbB@zZ6u@IHecZ6)VkDkAGjrqlx+$_&b zi}`I!q}z4R5_I$QDiK#VupI-0^a@%5QAwmC53C|{I6T5V^~r-|cBf4uBZ=NT)v(6^@!ksp8E%tvSwRD&ZjV0#M~ z+~X7KPXmuVd^v(>sm|y1eMg5Yja~0|NllxNdsY91CbUfwAle)6{=BVD%KX7zfer39 z{By_TGMMad$|5f_XSv`Nkx{-|4pr6Z_o;vx7p6u9W(0X-wh{ZG-DQR->GLu9yr6PQ zi}+3~x~0UmxygGCX7x_V9v0Y-$Tu0tyodYXA8K>n#EzOhHy{_sTS(3rwzZhW0ukWc zdR+Uh#6?NwMXrPWz>)S~Dk$Xlte?voV^;@MSo(I@Zw{M*KgZl(q#J4S+Mh`ToXOg( z7k7u-dmrGQp?ohbU&lR-K%tM z;m+=loUl>yMq@(8Cc)qD&bf-D#smc^C z1!nxVw!Azr%upL&T=7w>aMCncybB2HPHAN0V-nZt4UU<$>CoPY{s{1Q){c4 z;EDmqtqgM<6q0LVI!+i6tzZ)6d`kIfMX?dVNYgk`+-j_(T&90?6d%d2GTpokcX5^| zW;@Lo*ArJ0dDXWSWix&Ip7MYKCC9`F9$Brao$TP+mxNPe(m^*Ke)13`OzjQK)G`NU z2%P?<6DN-bWMD`+2TV_NG)mr{B;y!F0y{F_VC^n^(UZ?;$NmV_a0*u@c-Mw z`$h!ba*#G$XTSd%fPBnA48gW#TQSw~k<4x6iX_vTxcH4*gplk0f2xn0Ef5%i(g2hvK)k1b8Fs){w=<;e zhkFH-$>Ha|s;Z3_nrfZ>9MbQF26o_of4+P@e8q*yJOLcHJZ;N9ujmejVuUW+vZaL2D4e6;Y6x z1y(#@>ncCc%)Qp@44&Ij6`K&zcPm9dvxAEU;T*B^OJn~qBz)#UavjO->t6Lt!vyAc zZV{@g=H)lPymLYtl?^Yf2mU9Zg-`(xMtTB-1fe@?19Z1`{0^Puc7SRRJp({Vd<$xa zx=Nw`b#xor(B1F24wNe!mfN)_0nB?JSHaAcj{P|PR>*yAA z!2^8kR@ZYcexF-iAsHGo-%x+r+}~RH&yE-L_X)E|<6qBKP_^^f8%xfB28Zw2K`a9M z*K%#;fqQv6ZF{3!d*`U_1u{}Bxv0`oicC_mBAPt>q(y?Sm}8EDG|;u%mA_v6DJlmNtoh`$stAwX`K7`V{8yFvp= z`=PhGqM0w^;%?m`))bvAFy^G4*XudHXPW<{Zsu6*jq?}lAz>?@z`()W2r^ReeY@sA z@3=o+=A{;8C>K9TAQS)ZXsGsuyjJ2P^=W#FEYI2Sjv?EpHCZ_gB?SFtlfYAf9@S70 z1so#@gfmkdfOyH?e;gqto(6nXAXY2a>_1wE916%-0x>n!aU9Z>ZEe{Hq$#SV=||ep z%w4+49buSh400E=yo%s(3z&1I`SJGcbO)&d86<2=chpL)rwU5=qy9z3{)-x1kP~@n zG485NNW^eYHC(_r=qr~v_gDjFX}c{>G}ROpUjpBB5>o1r>w&~3$mUo8x{rXG3=oc& z*hvNo_%4u9G^!n-7}yw%iQT;mU9o+jvPGW3(+O&mptupxN8rSVV%pBeezo-ljBe{K z!`)3*1u>KgfOI}efRI-DVJyds}Li5MLd2MJ-p_VL?p86SD=R!4Mh(47t+ixjXDi%Kjv!=;e*LZ%!8mKZMninb zC!Q+o9<6we=PZgy{)-zI=-r5V6E1+xSt30&7}5Xh56luM%*t$YfXt7kUbpV0>-d>B z*6W}xp@qfomC!1YKJ`n|+fJ(|R7ygb+X#VRquzyTjmB$WrC{3+#vo8s@XLVInsy)f%-v`BI|SK)F*>ch!PzR^@=L* zXxyPr3(QbjDd+p?7V&UD=++yI^E#h0>fbNfD|%z=33%d99{cOoB0$xnPkqtD⋙! z`)g40ho@`w*p+7it>_WXJ}7P21>PZXL%*By31Wm0LYY zX=dvh_mAi(J$I?!eV`mEz+ya9MZZEnVr>iyUZD`ZDByH=n*7;c857nJuYuALa7fYE zj5@|gxpixUb1*Hy{hCZPI`#^u%lmM*)&)(drKq{)CyvZTnC85*2-=~K!aaY9#!=tm z9;=%aeu|zGg-U|*ue$4qqUr$mkJ`fJ3kSc>9_Z(odn1*p+hS=w2hH z!^XnR!xGFN#dsu?ne6*(&uP7`e7y;u>N0mJBy@V_RTgufdY&MX6^VwL%*Stm$9dlf z10>yUqlwxR-R&k%kwpL$1#+iF8JUq+Lqo7dVD_TVKTP?LID+IhKH6y(c$@NOTxW5o zY8n21-i~s)$noX>Vwi-@hH{E|JUm6=p;zY*-IKlOAcaM1GbSn5bhv{64sl%>J-xzH zX};fI3@LJuXEa<%^Wdw5o_n0vt1S)k174V3&;buSr?fOO2FDM}4-a;#5dLQW8+CjMV&M}w?@zQ|DHgM1by0Ez92lM^^=0hd>BYPyKgTd zZiLy%rOtI1afu(%g2n3@odd6^>vj;4G~jrR%y@_O77rKn&QAZ@eOzN(4UM5f=4KRW zbg7^Q-8S~^2ZvimAYT(qi;amA9J@}htsORV-g6>Sp_2$|mZ_@xooERFJ?G$y>aU@M zA0F;2-H%EN{iOljCriDFw%z5y&~XjMJ?j$ipbHJjM9)`Ti2)8m$5U{8{6b(lCySw+ zCO9*tB$)m4{Ov!cIo$mn-*}vzhpQugGlo?)Gx-Go!Z>~q3E7@cEC*M)Lk8oLcYGYI z&o^49NRbtHc2-ci=+opky?j&bN&;lKJqE6ZkTwlB*M7#mG8e`d@PAwY^aT53SmYfZ zs%tV!^Z-iTh7+}BH6HX$Y5yn_GBN5MIy$3FP67zyhD;SdmD<1ae=G(VqcYDiFsTGi zEXGw<%;}FB$Srxvj|ii_Sg+?q&3B_bLhPSz$31K6IoMeD&wrmaN6WYvm)4SZLG4bH zv5b?z%nW?ZKMQY39c*=NAM!h91B~eN@W0j+qU>3Wg zDYKn|h&;Pu5ej{S?8ZzD z6Vp>vxWuvR137nLb@;^B+tK@lND%nyF3ES_l$Y<%Qz5R2Q9v4HAab5?pTvglncYB6 zd56O4Xd5h1@-H;i-l>h^;vM4F%83VV5SF|-KIYHQhccoDPe3n2w?ck?{Dnh8iiHjo zH8JO;#;}b>J;8Tb!u4KAc!qzs^6D=vgz)$m$!oNJ8SnYD{anyyVHLC8b#FVXEe9#` zx&}ezfV1=dGAD4Ji|s3}j#TFx?N@L%sQHxK^BY1xPzxPKXYj4|gq>DH_Px&@YoXf7$h&z~Ar0*Sze%AG&!QuppROkz!i# z$bZ{(hzF4&`Ly?ie+u~X2oLwGkcwWwZ2qV3CFt6c7?((1)R7-K~!zttEvf6l^uPU zoBO=z6;iu~1OEJT49c;1d2#y^ov%$q$ae$H`FV|6%8*x+^`tbMVps4q7E}57~_)9VI@eE{XVw+_= zP6R;%ISjlU^A74kif0Q`n=2ysD>HXD<`*&>CSh(z&O>GET=tHA9$-9ih=pVi4jJ}P z15=+BS2hqPYH0RvSI609lfYY}LB%|E^-NtIU7yXwQM(an4?%q_WzxUD9y|oY5EvfR zZu~5;U#9Tz06lQ0<0UokhI-c;($5|x6vNeAzJwLq!(>0_h4h1>j^ zUvtxDI!HxCrz^&K)BP5ujs2Ze!F+t$k5u*cc6|w!$g4qajH%QSvyVnQ+8Ba)47ODl zw;?4MlkvNY$Nn$lwwrR|;ICR4CoGE}E~mqJT%|fU&cE;rqZk74QR`^tKK$+v4fJW= z;j)462d3k+Nnk6HX!1|d!<^`)q<2tSv+`H;Am3H76MM2tmeaiq%w9Z z20ux7c38i!7m-5L5@7IKT3p*RK!8->!aALLN@yJqiD;Y5n>& z&|SGA;x+E@hGc|)7tMq$SN)@e2ud{wosa5#T_#{PH7UaVy#?one8y8AZ4XXkm5f}Y zvxn>&f%&wq8piGSoT(aQ10z#<4zf}4n9PVer@*8471yHa)dx`W=1E)78OE1R{DCGu zLX3`#+Y=+qVb*0SDnLwc6F|!3~~$*#z;mj0Bg`eAf14H^QK~1Mz1R zK~s~RqpZpm)nw^FqBt|(j@0r(G+WCR2%TIM{;>a)ekS{TX4o#W_DtyuGHQ=Z2<}#f zu*a+nRYmacpRBR*EcDfdmeYYocJ1#Z{|1$f8$VE#X%7eRa%2QPV)Uc+jviDlIS=a! zLlg&<8H>Ntp@N8L=0`QVg4|hU@1|{`Xng}c1ZG@UL`BWa_E!K{U|`rkXqsY3O*M61 zRQ%6K9`vSXr*?Moisf}D^u2{8c@sbtC{PtIg$Ng?u6}y$3Pal0JJZu2Hx*=4)#GfK z_{ai@Z?NIv;A+%xAl(Nl+&1zHiVlG`3f=IMdV71tH_!zO8)1(EAE7CE1*2qh-WRK} z^isHAt}hMzs<=|?l3r1<8I;SGkx5DiMb*B1rG$zz{fWjVVS;(0M8((c>u66n zOR@z*ScU%1Nob$v0$3WFA`hL{&~kriFaIO}_YX*P;WWbEpZ$IWIrLKbk%IqOb8Qh$ zHazcR-y8Dp*%7@(bcfq_t!}+~)vf<-b3wOM3_$jc$}hPz_f8Fhy8>T-X}jp`%+8L; zr6es^OlmZ0ZEKSRN-Z#>fU8b-+px99c?ERSegT0RV2fj5K*t3EZGt&0L%^n%%5kAh z^~1+jFpw!PKv4```)9EHs5`+A3x|ZZTTjG+utCz`BdYUxEL~~qyt5dP2N0s7aa9sg zlC|AaB-Dff(5un|7{GumKqp#g~rfG^G}qYJ;B|h+la{OZ!%nY4}(fSb2+_4);i1G zkTKSrgsMppN&ueJRXI>CnF3-GFkhkj^}xVD&($aZrQdbGKwzBFw13^3v#v+h9(#1l z%f0D1>(zKh?MOyx>3hfm5>GaSaXsD$lAup$t-0OiVunz4H^9RDjzD&wo}Nb2anUsq zP;m~_EvS-(1~O2~%*@4Q4aGcE?rYHf0Gb{``v7Rd)ClTy|I}Ool!0oXxdrr3JgCkd z)5@t+-qIkUre6N@CoVa;J3kr-<_b2_yMd4e&pa@YYpSq@@j({%=~EqV$@Ln7bfHgI z#G_c8tLV9X^SHhQGu*O2=zSm}o|%K|?~k7C2@CD|;ojcAo9zrheU|{S0BGk581WB@ zf88)MFgAX`ZxH~fp^J!hUrdw(ACf@N0AM1J#f6mtj4`J|`FuPnl72YFma0jPv_ z96ViH2WmSTQ;h(k7T51mBQ)b+G$2EK6ybe5Ysi(T%nHI8!+P!@$7>#v0mQOXsBS+3 zGB-BVFWnLmafPy90O1;bLGxBL(G$QfsJqra6Vg`vKgzO=oWeQHai#Go=gm*guWW5G zDqg#d{Zzl_r5n+=!;QzcmG)+9Q+q|H{~$$<5>K{hgpq<*b!!d#nLq1~rEa>EyK}`$ zSRZ|avP9rff+Era(7Nk2O7NaRoix-aFED^e@D!A|I5^DODmshlIyh{#xnVyB*cY_@ zPESt}AcqbT!-;z9uwxs&&*JpK+!=ENees_P#J@dP9_G#@T57D4ru0dl?%S1#rVq~yHci&4myICwrIheVcspZ+`gn0RM6+ieNXmvS7mUAZDz> zjRzFr0Rl{gw8DWJRJyPFQ|WbdcUx)KP;zOO&Or&lw8RF@G187eO)Oo z7NoYH9CviM^~9-Ii%YHqMO;-`X=zhrFkDnKSx?jLW$)fL_7mNitL(2;($StOv_Nah zRl0xQkz3GPh>=mcc$i8^`^g8Wq-18Ed&R~BFeaQPP_tV3SrG4rk_0U)-tBIr86ebv zZ7$T=fqE01qGhx$>)*eBp<0rlXDWu7gO@k*?BzMt)BuX&`fO_wt=fLiPk7$54{xt= zwsU?f_Tq_6^+mV(gU0m8o{|jrpO;fcndm%l*XiC$otf@h?k)Sruw`#Kyx83+r?-6y zw7w~gvE_P7;M`YNRh4;!WAsK1LAwq_rm#BD`4KV5rTqKh0kwjs{{V}I`~yfbso-U1 zWPpYj2+01VF0QNdfR9q5aAgThCdV0_8zSdUMixqazfK3SC zpR3233*_=x6QriOE)vP(eO=HU$ra6;667^FXFtOgZChF4vN5?Xzt7H*E>CP}8G0dy za>pGsG@N+`46l8K8v|XqJc$?(xYFXf)yc-Ay^L1E;O6#PEold%07Cyzb9{5}kP|L# zQ<{OPll2!nJ3D7P`e)9&A3>%A4WI8%?lnN&;YoS1XJK94F-U$uq4MJb`Ze%Ws_W{! zXFi%=V%T5)RzOXosJ3ul|G&>{{e}T=25U$5$io{9Up7)vpwgt~<|1PxJyAn%xzu0c7mRUMjVVS6im9`e6DSNCQ0g47;?7AKD>MsBT|2m z`Az>L$G)Bxb>+mpNE5X?3O?|^ECL@phs}R@W@khcb@H*W-iB^v=(g3hg>mZ0KZ_1m zTze`dxDN6EG*sfE#S9_&2ogNG{s#~xh>;99?H)L28mv{!h|kO(^v4gb2AAnQx{N=- zuG7_LLg+m>I=ZmloGZVN;x2H$(+Zj?E9ta=q|x~XZ>F70ji#Lx23@jgOzA2_u_EIm z-H81yMGr5xc)d25x6YodFBubc4Cw!_<^{;!C_L-e)dhFtN1^_Y)01Co<8GW2H3wpE zg3gxR`R!w_Z`0|#8KNX2%28wR>9W4SitLR(a)*RTfC0K@6ifj8drz1E;SF)|u^KBF zgPya~Sk6{TplldVPb$^h*trz}q!$RK$`DF4wPrU%7 zjiH&~9s^nw21*A3BZXReXGlDPbQrw?oT8b#SFhgES55mAF)KrCNSr%W*r3WxCf)2F zErR!Zv0#YOr8qC^$Q{N~BW2}&3Og! z=R3>XsJFcl(dO{JNQ}bolE6p@Jn7x8Ai~xd>P$dGL$>QlsH^m{46mKwGp*{UpXsN`&4Y(do`E!Z zD-@8`gBt}xcxZpAKT8pK1naV(1zA5{`4hfPtnLjB$4w;imFO_#^>Q{(*hTN1>AtG4 zCDb&JMm##)Y2jt($}a7PDf7*7K3i_stKWdeF6bWGK$C~Bg@my~~Ax8Uf^{XB7NC7z1Fa*xjd_k^yR9{oo8ujPNbh6h*gbxexclA8(enKn>+o+ zS&XQha2bON!rxxrpi~2$GfdOw(Yx-G4tE?+`x3Kcih*qMM~#3b?+&rggjJ_Y2U0=Xy}QK zo}OlAe(*rrhFdmJ>%ae)d&`QZIJvlVK^z|Py2=A}fAbC{VQM;d*KUX>y=VOMqn(#= zK~QJMiAJSTy&;^nAOD)re;d!I)I<(TAD_@i#-i?GiHa`op}31+*JsFuq8AIw6QO9b z0CXho-nFilL?1~{BD{@8V!Iwepesv%w?urXsb-tuTK6jcEt~%@Xw_7)bIw@mRHOE9 zu+D!g)D<8?7tU};3K}u-5)xm80`1M$5mGbV*A0ylL^eNH<`g3L7`Bh1d5nUcZmM%I zD`(nq$;aOwPgFEm*BuTG{ZRDhvvs=MoMWMOF|?1~O|&dh{|r{@bbi~s!V2r1VCav9 zoY$?qzgJ#=J>-s8Scs`1VcbZ2@-sAuQHs8dAgzO?Z2fc+!WRdpMjaIDIK+Hw(!EM2 zD>o+fbVU1b^}klO!^u|zcl+bHZY3lutCLn&6ZT0ZBB{(KPU_KjD3qpxQ$()>ag1Sg zw{q#{lCcEAmCuz9`ldfc98TA}G>|C|A6zisBc-)AP~3}Eoror>&KsJTg0>Csz^R2B zvSI6OF;vsBiX9$%7ocx2=MlKUMhnt?e->b|svvh)yL&Qu9vVBY4Kp!C`PC zIJp=$3WSXFm}@oe=&vmJ5Q+wWfB%?t5bZoAHye{AO;f7&n+O%H_YYAvyk*uG9RsmF zS09H1DP?y8CHlSyXD~hUBJ|Vz{9QBbGp}Ew#H-r=z32J?*avmsdkJW@bAClH$y-3x+_=7m;!O z1+blWwSL}h%^j!Nq&wm-`npTC((k`Maa#rI-t?7W7Hp()yXI?7cE_M<#v2Rbd61A= z-vfc(-Asm)jwL6w=J8<|T-=3DzoBLZAdc-NeThgnVQ##W!k5Mhs8Mcv?sWUXt9BMw z>lex!_5LGcVVRrrsOZTFLKN0F?iJ{tECYpM|8Tfb@5z&05H3mcyu-v~0GAzrN8vv= zVMAyYmP8TXx$sUPm|M5O_2ZsS&aK?BOZszUQI5Z46;5x0{f`^GuZp{UDXrr`Yj~p` z_5n~b+^7AiK=bd%L>QLB{rey@|L%Me43AvCeOv7J4<`4dlS3u;ozWkTE1bD=as2Um zy)maqOLTuZ_(BluD~LnUf$(BF6h}it01Z+_6e?@Y!a}2w{@G}mW`)72|i9noeEQE%>2@cxGp7>E>GS~3^*TSW68@22r z-QeK#j90VmJo~-!S)VO-yjCF4Xa$v-g`OlTQc{D;F|&rF5=v1Cri{+*Bo? zQbDCVh;9FnEVG+#W;ok#2M6=`;D@&tOm}uxmMd#6%uL(bXd4Kqp+KqfVtf9-JW08| zO|7_xS(%|}-+FQ{g;;rK$5Oa#{P|U~`;-j-0+&{rBd|BQ<5$3k?Rwdhs_o`>sDE}i z3_VTI71>YPVM@$ZWpP%9uyh=+q^DESN*#OGd9$P)M^qXGD_C9+VCkV>SZ!Xg)A&!V zwXr;JY7CqvfKplY=KKa&!8xRcmN!6n`bYrLgTu?Q3Uy6IWx}UA_D#1wreI= zs!>@g$}uxskIGjjb%u+aRsy=@^im&}ppG>{59>iy2=4KQgWI$1oJ#dY|HlQ0_|e^6 zh6J2aAykAGeR)_@-=&gzAK6GNe|x%KA$fMk4B5{rPPN&D;`9Fboo^j4Od$K=Ysy`; z6AXRNdLn`&B6xUsD$oCh)r6AD6-hT19bh zB37jJ@QN5R#*BSozj5s0S5NPaL5}6+kDV+tjaqP-1qC??BneI1^?qiP4b)q;+vR)) zp*pu#ly0jx+EKdL;q^h%q{az4!YId#>sUGj?-$3Z+8?awp8-%l^c)v-xiq8DdU0F% z`TP4uKIQ}5B|l{haHY?V>JyYuw|c#qj^h5?CVd+iME~m#9|uQltljE0oH0FFW|Fe9 zDJT!Gv6446dvOC?q>wi>=4S6-*m75>ksyYPGJkuL<-8P(3o6q`F}U?i&ndy~@8-AW zj!EujOIswBii+EDZ!fC@G}{TpjjX1K?AFTTC*>!ev)NZr$p!~G_pdL^DTNFfCB~o1 zdtF~=(Y|~+?*kLEx!Dfsl_Phe2W-(?N3dXJz48pxPSMHZWy~!H)cKzR4GDH#ZjqKK z&Cur5tNnN`)mL5jKNo^6kV*CyA=`{;nI3dQ-;e44PwIr?+2Qv6Dj`^ z+-c>cA1-Q3gGP$|ogb!P?>DMHYMrb{3~-kd-9J^bP$Q$3PfMzMcONCecyx7gy~~$v zOy>*uOH>aZn>=PEJp-r$T)nR~&hJ?L@M7M%29s(w;w^d;?~?HRAtNQev@WAdI>Iw+ zVW#aHbjfY^g340tca;;cY5Rc>b3xanrE0sUKA%>#5ZAhvjf}+Y2ivXG8tkp7Wz_*k zlxc^OOWl|q;|-7}Smc>mp4-SH7T%?obh?M`x8ouBl6*brjul?_>kl=|HQd)u&%v=q zwGz+G+s|DRq5;iK!`B5-tMOR<4eRw9$QgBWeH_16#Ca0^71)Z3*Kk=_9zD@YQf{@) zgU^o&|1OYZv;Kx&#cGuWcjVQ(io~XfUegAu%-|q4IhGg^8pb1HYfci%q3x=TzRaO) zvQ19(>#{OIVmz64)upI9XT*Nu9`7N?S{XOlgZ>6AyX~vVJJy`X000h zN+l;lS&)+kpZS;ZYltizeH%RSFK3j33Ic&q@cxw@cOD_S;^b&MgKBQ!k>p;H^EutK$fk_)dF&pN+!%F2 z_U5Ox$k@px0L8iE+p1AwQkW6lT^p4%=ZK2Zc{!hr_n1D%jw|5J>E278gdkVVAC|#N znd#BVjg`}@ttc7U4~5z9zib&J=~60>>OuNQ3Zmm%x2&39<3k)*Yxe~tR?zBdpyAWP zn+hf3j>JH69TaJQf7h?>triMZ2fiIhkg=+TcN0vI&x){$CppHf3N%< zIXQk(I-;P2E!oVL68-e3epuhz6I2Qz0vUlw6;dC7-)cU3GKx$#u^bmJ>bfN_8F%ajH3qbbPKK}|rO1Z-y!2lQP0l#-j6^4e z4w#$Yj3WBse)2!6JqQ5xZTnkSfWnB?NNM(Cxo}$1XlPQKn0WZM*n1%Xw^!`ohZ0xwN2}4_`y-?8mfFUq(a4eyj z;GkpTKKTiR1ZN;KcV{mJ1l?$C)Gi9RJ!T)%QMf7ET4-~kw)~M6-eB4z^}s{Z*UE8tHbsibjj#}amN?bjJoXG4RvgkZAA0}1^M4DMs;K@p;f*~hgs#Ej;z!{i;rI6e?7)|n^}noyh;^p|3|xz< zg8TtrZrtCWeULj47i*lAOA}zfWH0LdRa1UAs-j9!Kv=c)AuQ4l5jxs4;h&;}Ck6%I zS0+<_X?*(@Hrsxk_lxYb7`twfZ{fkl$ES@e08+UvWyhm2cTl3lqj!a7b8Y}Re@S^U zSq(xKd+&gk4!Tv4r7mb_kOBoWa4Jo0XCy(S8%sla=+nw(1q(cUmTq#H_Q0Lh#KDTEo+i zE+|Q{9z_rysTZiKC>kuNhSTpn;EM|H7+Wcq*#GTE^?ll@($NM)5Od7+w#NbeWJpCj zk`0f~ujO2Qo5iRFtpCUG;aj&r2#H;aY&Gea0-G>`K?-?WosFt%O@j0;Ef>tLa%2#CH3Yg_7mo-ae~V1vi47 z9%1g?JwWH~g}s-L2vu7;)2WQosr2RGtcz4ai4~O<8~tL}x!>mdBqcuavfVa&ysMW2 zbMO9u*9ugiMTXPOE~>A(jNRd=b_pnX3@Z_}@CHTr$|F|YiVhKYM` z!mWqCRY~>5?0k+rWMtk+95~2!?Ul}}#<2}NSbAfO>~9*89dk*gpN>(L!^}b0z{vL8 zWNR==*TvSqg$J>nsA5-^>lYj}mB;z#FF~Oj^^b{-`MKXtZZ~5U+S3=%o`)%PpDT;a zV`o*Z8}B`Ia5%+=eVF=#1?koN^NYBwT{5d1i6l?$3)7fX$>5;(IRVGVIn^mhEag4) z)55ewL&bRS#NI|m!q*&Le)F@Hki{#%JtjD)@zceDjVERkUkL;H%9L_*oRm!8qrEQ= zqXE|Zf~ConzDyqB!Fj7g6Pw?%*8XF0Q*`uD>-X}K;g%?W)C`Q&0A_}zUSjp*IR zsXcMXRI8W&ss5@q`uOS(d2-T5GXB@Em)>!gdQEM`02nmC@bKxv2OT8cYc%$?>Fc~= zW(JDHxK}Ki7QeOpl2NFQc&`w_1`o!Zs`z}2w-eKHy{Ak#Q9J7p6*F6{fuwtdd9Y%} z&}IEX)p|{w$`9JQAew*Ij)MXngM+-6CDVeWL_#{6ZS;fXa&{G{QO1;lIV^o87V%z4 z{%mYmGWkC0SVv*_iJ-f*#6r3gO@v z_AwP}1A_KtQmG|E%)sMCXg_M=@R~pe7A}#yW4u8M1*;mZ?wKOT-dwcn>wDq!ZSz~t z*h!}_-jrUcIr-zqtzY@PJi1gxwrQl%58Q84!R|Pe{7z|IFkCB~o<2C_upDdZ7`z{e znaO~V%Mf){ogPwJeIj~9oAn!qkOrq=Y1#})#tyI(>JDvg=gUHt7VC?8_{2tv$X)9~dGJ8P zFk`$mU^VJzFsIx+eP>RYL0e^7z>=K^n8|`qK9+^09O>~8?O))SE#~->yERb#Tp(nwxJ|G}R@*1luvrt90>2>*3 z;qH6QL4-*cL~M)ug9*Ld%ZU>Q_8(?3-hv)Qa(teRh_!YXw}Hj&lU4h zf1_!6sF1u+0{2@2YBzI(3z6_c&*kHxB>wq*pp?^DyV3tk!Q!TDV8x&AtT7#ap+`Aq zgtB*%P_0Nm2HXzMH;FMl#L9}09xaRQ|Ic=gY?Jy#8DxVw=_J4x|Fs5GH-oZ2$}R8P zTMyRDBcYCNA1yUDpUR4CY0hR7Co z{mdrb7;5fzGa<-HOOmxLYh?Db{Jw*Onbo!xlGGM+c8A#6f6qo>LHHrbAC7caUFx%S(_dqp}na zy^RR6oy6N{lCHl^44F_h=U`#c1H-6^31sUh-6KY|+;$9`Uq4Ar*ukT|8BDLdQBAMN zikzXOR9n_X;H8;Ae`Ln4sQ6yngG?HItQ2Z##aba*Z`GX^QTX`IV{pFo5MbYTHNan{ zDZ9kzeerEz;`MC#edaHV3k86Eq_i}NZyuhzSjZyC3Ib*8zt%iekR1E&v#YG8L` zthYtPbn6T9e}hQUhMOob-XYjE7HwI~Yr_a{at6OKSsoNhVdx7az0*W*VSSS{DwO7! zS9*QQ{A2ZC^iP%n^SewFggn~xg4=6r4f92|vrynA*&Cf(1bk0K@I;UmQLObU|fi4Z%w zr2pAn7%&V*eLT?XYAmzA(bk5Nvp?A>yi@JU-$wJvpM=8PlaDkiF0Yu8`A>#?bTlNa z^FtoyDkyI|+#(HKLhrgVEdwSRAw+koimU6&k30JU(%C3sA5&UtTkMDQ zw_P8QeE9JGu^0;@1{4^w7kjzFm8^<;#jqoCC`~`AGq@59SJKK^fHaEo(wgc4w?%l& z(P(x6pjG(SFpKIeWcz23qq!wPn7GC4ZE{$!Vn)lTKQ2d*;aA~hwwBtyBbh(qc6kw;pu!a& zb@!>@wV2%6ePt%zkNl0E=3cJ>qL-yTG=P*(SB^KR8%zwJ4bMQ@$nEKuTxWa*T)Jm;d z=vkcG60%{w)9A@B8d3K}+)wnBArzdlGR;Sq&GlR8T|Ug>;9=8>Iem~nMjiX0r=U74 zhAnAmE}1`YaZ%{4otVhJfNA(|_7c8?pdc0) zbdp<|l57nV!|2A!6m+%UaT6WWKI?sPDWr@W8i6MxkPrk^ zq&pNPrKG#0OS;b7{OAAAz2}~D?j7UqG2A-7Z|}X{wbop7tu^N}pNGHfraI2>Q^$ar z7Z^SRU(M+0|HxIn-PD}>G(W>dK`T@%mme;AS z@P@Q$kt<2G>4f&VL~i}uDqs`Y$~+}*NTpd_t)o@=Fo`s(pT~to+FwwO<|Iz`tqt$D z-ZEzW=&l_nFVSXt-GW4r+ycM-(se2hIMVyB<-hrKFN2Z9k^(uTyXbkpBFNM<-@FEj z#SJz!Lp$wzaLas%_d}??+*2a!#<8E!gseDM@DhYWoSuriVLSNn`rR$iWb+p8O8R6wn#|L|nbt?}?|ua}vbIqc<2#djRW5VxZs7y(Ev zWDDa{Q*9`JIQI$1KE~~8?{jm1!_SWl zm$6=4{Nl*agwOjsSH8AWGT*tCxa6eFZWAtVU(q>zu&eBM)YE+hg>TlT#b1wz^d(pP zP+m8@HFQOkYYI#OiiRWRDNt+yp^-Z08t_pGt zDaH;+Gm$Z`8V$iPQmf1*+#*SrH7Q%$g)gR3=H{+8pZtY>z8on>$F@wdhUlTE z{~w}j_eF)dx&PIb8`wNb2`jO0(Lg#6oRPsq7emp6Gs@#jZ432r{jQ`oWns_}b~Y9#rx$7{c~ z;YD9I0C+7SvkCIBJ~M%sz^DQyi!}kd7(fc^7W)yf??8AC(MOP=1&SJwI0V?((Af%{ zjdTRvpsvJCkat=^9OMm^C^YKY=$f1=xKXDvEPJ1FE%>Rl0Kz3>{hB0NTkgWFm z2hOj)z1GZ_t_9i~sP~`)zE+4>1HE;zPI*WDg`9!G)MyD(MifM9+#3C^;%7_m0l@kR zR4?8m7rwfjoK`)R(GR@2`QiePvuPOL0$lK5l2=V0;QD&1Z`{^@@Ej)nLTuP-IsTG;ZP|p-;zG5>8+E*5XS4R-MrZxuiGVKd zf5*d~lthNRuv0$*=2v6mds;@4WteKuRSlJ7?gdk5t13x+2$oG%JjCX+9-W57lXqqR zeEY{wHk(3mG06Q>{DCSSExI)v% zN$meNa2>WYm4jb>LmnLBda|{5Si%j7bE^hX>TbB`I-;QE?x%GGWXO+ z!5HvR;NV1v+~Zux>3kl`V(Zs%*r!W!@l#v>JZCod=Cz_A-nm9{(ROCz)#GsaOE{N{ zH>r@-F!Xx$)om_KT!VbP0_C38V~;9HNjTKx>1zAuNG<}(?(@$EG|BYyXTv4`Hlr<9 z$unGBkUI#fp(4J0Jvvm90?obJw}zl=%BcV9e`QBNkTHFQewi+H3ImTCkZzTocGVK*x7B&rO$`r=QPr^(n7ZzbU z*VO2f^5EXh*aXplz-uEm6Fywc&E#aoznJ$l5eyk^V3wtq^&>!1(DutcCkMiN zK%;7yf4%xDY!UdWF4cV+9fD|W5^JlQ`VnPst7QN6wR$7(sQ;MGZwE|9a_Yk|^7P>N z(Hj|O#ayo>Wv?QDXNU1>l7ot9K*GPe_S(=$sR{hCfQMiy^z%baG_sF=MEay-{4@%i4L4GCM*nI|EK*#cn<4^q?m zEt4CR?l^I-9-;-_z5Sn90GNu`o!@os`;ZrF({`^JTuO}QKH35{`Z>ZN`WrjXOxmw| zf6o*{Ls!*PP>m~n_DT;Kn2AGtb7gCfC86qw=G8d~nS50_x<`p`@u`S~elFuF#Y1Q6 zoj0v5AkGM<8iA`AOJH8rJ05F*@%s-GR{ez4SmrZ5>UCHhUhmFBU5^yR}cmS=bmvr-wZy*pabI z#!QEmEJ<nlCK?7a%8S{jypD+v!5h5YxRcL3Xy2Hd5K^D4cD7{*=6E6WWT_@!$P z`S$dlpK)*BmI$?E8D5L>B-j0%n=2`CHW8jdM0&%Z-c@a#+M?%m%G#O`z2OJs13tDH zYeQa199!|<_AHcD5_U zVqZZ?`eQCET~xJ>G(0~u!_xaoTrR`xhGE3~VaS8#rH0D(u|iJ)i@f}>=5~+Kqp7?S zWr>A{Hf~a)i6Ttsd~Q)4a)!&q$5#P7(IuDNrIac?Jld|$#u}Q_m(HsZEYrF8-~)8B zb$R3CWw4H2dhKjGZ{2)}{B_X^M<9!mknk{KT7GXsAdJazk~9`9Ch_6r(w(zI-uNGb z<`>=E0FFabfhnA8jEFq`%MdVH_A2UI%}LMJOkw`AD`U@>ns2b0R>uUfs~-OI&fo1h z5{SgQ>gh9fiq0h7jS{=d7!>ch}+U+r62n=6oZw|Q8#t46VxS{#jX|k+mm!Uz4AsadPgz9Rq z<4`zEF*rFjG)3RM91!!MZ>23qKGDn?zxifg&8S;WmfJkNp#`xjvJdtOZxY!)mgXCZ zmQ=M|Gt6A$SbF~OdG6aqQew+%DU*DodzwmIe1%STj<-$(VqDyiR(RGmRZqhoGzl;! zTJH*WzKD^&^t<=zuODGV-K;8KA6JjwiK&q?w213b0xJp^{a9i?#2Rq-+26j_)m8Kx zW{p7~ZFAs0cjtCs*G#)#it~%%mE(pU`m{9UB=~=|BIDsxU$dH^>>=jDWu+;6A$3Zc9k_J&G{cY=sz)^Z(YqoK9>oa zm>4P9``nC%A96~NiZ$TzmSN>87rq(%88 ztpCnmGleDJg^RS*VV^V^fxF1d)WvOv;0T-=SJN@>BKZ`iak{3(%;kN?Njq0p;y5L% zb*&!mgDI60(*R`(Rl}tVoJWmEp~D$N=4K246UyA2#EMn8jYB`tk@&l z>*?g6+aWW!4BsSx@Cn7vr6jU>3qj zz=}cIq_S+UZ7@0AJ?Phg{Y-z1&zw4PUIo5o(?7C9d&d>F?a=EJO-oXBLN{_hgPE1S ze^gR}!-J#gM`1qpiqvR6X~_<>rFYeq9`b(4mxf0JU;qtGcLBaP&s|lK7fDW2gxh+o zJ>}l@;ga0pePpj9uX<$-`9eB?>hU`ZeSY0>!R%o{8FtaT3Z7`UI)N03zxhTq9dWUr zLD_)7P2{lOR8uEIhRA&dkY@d0y!GPp`{J#8&8y&6cKHtr?>F_NWz?%Dw*ETwNsMNp{Z`aiy8~WLPX!NLmnd!v$7jlkw(Q~AX%N)=6Bqdc&?rss74%iMZ zoC+kl;9Lzv_PWi%=64Q|I<|RxshM^xFXv9wAMMy{-3kV(92o%-abPdYTEj94?N|B5 zJlzIPK@k;jKCq+bX9Xs*p)e`j;_O>pC40ZFjmoja-{P&U54eB!7U5^6hjy#08wy7x z6-G*R-8=rr0!e6B@RFN7(sZgCQZC#BdD{A8iwpDK4*Y+4QW69|mB7`HA}LkDM`(Y4 zeGFYcjB_Cj;r-UA#s^wWy&BWpf^fwYgn2I$_u%d>ldl~kcg#-Xu!0gXaVck1p03Y$ zg>f>63ukacXSp@!zws)MwO`pNYc-b$Fdn@#G< zTgM;RfhG~@7Eej)l|^%5LsI?VeC0#E@$u{S2%3&|Xh$6Ex1M$!5>d4uiM~*Tv6)_- z&e)s;dxK5yzdjCYM@KG+T_MBHb!ASG#s|mfY^$6oH9Wlc2FCo4=F#XI5<&_{#}-RQ z!E0N^YY{Ul*4r^k#U(|W|5NzBZqCwK_k@-m7C_Dwp)kDkELWCD9(sazK)wq*n&{6oMi@-I|LIpkx*}@P3la3CVp>bX$j%w(h)5_Dy(lnh#pjHN%KBb0B-P)(=f*bLGGJwe8ADA5OCp};^GcYk6)u~dn#xVE zxwDnQ7jggUld=kochHj}i*=EWUwxGBg^k&wT!7;|sL}WLqg#($qBVsiald&634Q13 zx$!T-V`H88WR`45OAwj)h<~`MRJKUKvEom6-f;DxU$ibSpeV(#mpS7|AOejY`N1g- zy{;e8h%yTja&vwCf$wiipL)mt6^ruisR0i$M;zMR_6h;Ch^9HE12O@~v(%hA@&?M6 z_936k0}eum=MVBVObIRe*U%(&bijIqOh!0NObQA?ZVPM;k&E0Yi`+IDd55{EH(eWp zUTgh0kFjI88jy68O6SEy1QNFcdurfSoa!)@f8g8f)V~#%4J+6Ew$TZPcZ0Q`N?`bC zxy|v6jS~`Hzh7BnxgL)6haSC!>VrdZ?|vTb{2_DYQSq%?aed*wwhC-2ydj|v?P!{$ z=~l=yw2;?|@TC9BIM}a*de@TgP08#|mzQKiIo6Q6Ch_%_kI!gC*5Riee12~s$rb=n zVQg$n!lW<)#XyqnbpSI5zE&JuTxx*p)^7P-$ajHKmu;#k)ag&j!H&sJfVp|uRZqQD55rlLMM=A136K1 zRn1yt5Ntodh<`DvjI3$DQ#pxDObQJV3kxEYhCIxZy<2p{HcoY2U z{!fNjJX)cne9`k25Uuq)9iL7YrUGf6J+8?b*F8HQSP-D#Eu3OJB@`5VpLLaGHV2*0 z`mg6rhK$bz1pv(qwcB|W=21RfbX76m4h1#I4HeywAV39G5{rbKWm&5W-4;q^D=`{iGVP`+^Y`yOcrmm{ zwViyqbTTU40~!I$=fXLwLulUGAiSB-Zm?{Awj&6fe1{T;n+(r=gj5R?!fF7%MmN&aH4 zD53H8i>tNm<%N>G)hg8H0v^$FsQ{3QP{J{?anRDzQnp1(PL2$3)&Os;fg9dyVC98a z3)B_voz(w_l+;fo#O^DY8UV@q`ug6U^N7qlRpYgWM@9~a(yq+76rV&`!jaL~SV}H} z-_o(uJd>z{x?c9nMvs0{&!h#BC!0Bw5X#tq&n4^thTF$gKwpJ@^i zTfSPg(kKO}d*X-|8|$B>GC%fH{~w!lS`Y=25Xk=dGw-DU*F)5$6`P$q_M(mMz&Aop zK_PlDVv3Fq2c~G9a;rpd%eO#ATNb?n<6sEZgRE!}J)0%O#G~AXVsl^v#)Ilo?}K&i z3L9-GGdD4r+aET(9LTu%SEuU5VNoF&fb!d!A=-l zb7BR^qtCB}y(xJ*hArEAZ$O-ETlIe%C!0!2>o&XyGIp5u{kJ)}>6G`YqBQPYI*9)L zm%x!ea*6fV{}KCSO|P&df%uXO_vN1G#$=Uxl68}H!(yMizC@b|0VbOUB8tu)LSr;O z$?KvfBk%sjBJ2(zUG@o^B>Yv@*Z8YL%^C8rMI8Cu>x1 zLQ)b6)cytqy?caj)QVwc?VBcbh72hXvn?)g`;rU#i`>4gp@tXHL@RX?jOX(+!UB2eEQh1SZ2bo|*rWT% z4fYS8Uuv-~$`WAIKlzqh;c9scZz*T{WRO9wtnI-KsR7Jz??b@qln#XZBez$Rz#mdm ze$)eIgDn01W12+`LFHuy0&*&hS&n}e0El*(@b2gK>^qQhC;mNN@G2j9)cMjhR-P)N zn8e-H+m-bsdt%aHZ{vhe?Vlk*sMI(mL&Jwe_oTxtaQ;=WuzHP8G@G{|0cXfaYbobW(GVlbMYe>UA4VRUFWIQUZ^ z-<7w^TSCHJqEuQh^*JMCh20(KpYa^@N{L;!p>f>mb-=c*y#6Y@AcdL>qojm|t+m0| zDM@@1AKBW?(RxtYZ2E=$hIxAQmBJ7Q>67PS*tIj{QzGAiC_r81BOrhfA3kJ$R@t;F z&@~1=d#l5zD?w+95&ZU1JM@{ zO?|@K+zB6HL|VfyR}K3AN^ z3!ImzWfrYJ@)Ywq)aRRM^kTxqueGCW=+OZka?Vegsw%(^l2oe5a{@D3xsEJ0faU_c zH^sK5Yz1DzK+`r2>8q@A7&H6ieX|aPXG^oOxkpk-BM`!-xd1I)L$>sXSQ6-)R;~W6 z1Ut@;x!^qEkI%dP0EJah;fUBkbwiIH+A2k|N8!n~9BgpBM}AT0>Wia|bfcrcUu@3= ztFY?&*S%<(dc`6W)PZt%f!DjUVTk-<`Q2wm7GXiCG<>(*?+z|rJ*T)^#p2snmIE_$ z{dvz=Y-Ub5xb5Ek%%unqFSu`G%jwFBSf7qP^QkV%Dv9=t4KK(oEc|Rs&4`_qg@tW- zzEi$-2faSjGQYY2`K9XtP<|c?MrzwGhq-SlNVxrlFzTVyiV$+Lo!) ztOs9&hP=L6yMnouVWH+Jy;KUD(4!Gx{I4&`=ur8c;^Uyx`VdhmvJp1a-Sp0Roe^$0 zy%|0RkA~^w(6sOi@j4--MI8BP5%6e#4|aDyTT>t=+zr_%j9xRQYQH=$GcFA3RSRL? zdWQ-o%8Y|8_81W*)%M-7M9GQ1JrX@1y- zbyVaOGSX+KOA|qK$wfe~KBC?mX%vje5nqzIJ~!`pE|8kWX+eON^<8>Z{x$c_Wf4p? zJl&Vu!l` z(~XLho?$DNjes)7Vj{}$Z3jen8i6Iq=R;1y6kWT{gU&OP#ruO_q%<&VW7Q(7a z#EH;vlw7D^9D-{NEiLfS`S?t(ib@zE7n7VephW{&=o!&k!z$M)Wm{GVw@-QB=Cfxx z-27vVEHu|18JWon%X~UJ!T;d{a=G6@F865ADSD3E(K$OCxH6#oh;l$BW=a{ABey<>Ih3RlWOHIP7T$tR@ z(|Pgw`MZRm*Y24rZgTJ8o0Y_r;n*aInbR%D#fYx&uj`NvBAQ-E*xa+52#Ca`^+fA1 z|EjCbexN8l=gTpK2oT3Uj7x)xEMnEjD7x6D$CS}Ps7*#zS5&ub0<##zVlw_nuLdm| zV{f_jPsK{!sO}dwN=^4HZj#{`SA$nbbGeQ6PMEshE9;wDc;vw9z7vJSL-3~A=}Pgi zBzjT zeC@6HYp_7}T}}^Xj~ua3VIiKM@bs~GQ@atge7_9LY?^5_eTtKc>24ke4`4g96neau z^;CAb2V2nXar^>%xWG;1_g}Qf+`fwqEc&gPVv5}HjH%~%L!J(J5`!oq4Vcg6-x>j; zH{LKq#A7DV>ZQ1xa(lY4ljf7O7+57qT{Lb#%8;S;oeBs+ET>RKN ziRFnYXS@6dSo#JNpF|C8SISSzvvdF06^EIZ-^87#w~0@UthE1o4wlqaGR-tHz`2 zihP%M`lkaf1Q18U5m|JP#|M4V;E5++-2w^>FJWMS)T5CgHa2z|mbe**MigyhwTb5l#G*41bzTQ+=Mp+9?+m17c7W7Kbyw3i~h?xZ+n^XA>YzQ~2k5 zu92^~Up`|#UJKlvHl7c8?M}QcM0&Ol{nU^l0+b3V4vlccO~G3c(cM~78Xl9{9bh9TA`iu+4ajC9%olAMEhn;`p$VEAKxtYN@mvF@kX4!`@8bkHaDMq2 zDmoFTTaBIv55JOwi!oc2AQn9f7*s=4Ez?f$3TVolB9{NOs^KHj4_hi?>&T$Ht|DTO z)kweTFfz^kzD-JDdSEj$@>8F@oEP~7<`~y1>?F;Z&`<`LH3>B91Ghvg8HEq~D0j*0 zn0HPUpz-%;D2Ef*EG*jE=l@wIyfwM-85#Wr-)AcU#%PVAZ={C)(On7!YVQOoTBWVx zDlzk{s$!e#YaRU``effYfbNIk68s=hew^RB*m<-oPfGSnpQxM-m`~$eYdnZ`D`f2Q z7OLxq1te_$uGtf^aGa4m4q2A?0g?;ZI(~j0t9N})@7ql@Q5ZtX3l063K1n$V^3fl~ zhveK1U4OE(r!TsiBZ!JP>1&EaSeV_Wr?*P26-@V|`ts#xkCe?lsaPpB(geBc&TK*C zBx^_-IxS8p8{!p?63wRJK7RTl@| z(vXL$wYUuDNnigG}FfZsWpZNr-=v7Cd-T#%$@qAapl-}ZDqYJ^>VI__x}=^f$# zmRHjjzH}MHjc!0*B_+h{?kb`2{X4p{@XHW1$kC86J8aUJcNs|=RwCE)WQ1&N9hzQ* zWY42_tSB->>>88a42@bjJ1GKWw{KG^)ytYC5}4EJ!Ox@pVxh7&d?FyNA?tXOvS*516P&b&1t{L&m0ocPuh(KCvm{lxU%tIHfJ3#=?B|A*4YVKV2e$n z^gTUn&*Ab^=8xmib@fPmn)Qk9!0IkpN9;2Z^C^Z^EU=9W&-Ka31X2)!bY6yQ92RbH zP~}Tk5?C37FK={!Ehf#+2+&+JL=Bi4Fq$^p65%;sH9hTTK!_E6AC$!+T#oRPnEVy? zi>^fEYt7=u9odfiy|%0RIWH#M%u{-$MZ~TBi0{Q{op~*+-M3dBG#wqeB{0_Cr>Pcl zQxGbu;aHrJF_EZ>%dthQI{fTHu;eVDNHFdaS3(#uA;Y^Ye2pfiCVf1K@$Wtn8s5!_ zS0v4~`{6Zdb-Q&%&o##nQ@hbx@~mD=qlSOdoo;~MfN$|VeVq~+P0jg&XtR-yo!v=O zsvEYiY<4E&dpK*|6&BNUA_KFhubTtr+v8HBcAZcjZ%si3dcAk21{3il_5<$+beI`$ zEA1Qnd%MP`YSquZ4Gs+M+bc*Q66B(2qhAx9?czRt=6J&Wkc*f+^o!~HlNxqdPVuoX zn#xUo%1i9XMon7Xi2Jy9P3)C{X`i=%PhP8IW-|+oXiP9D_MsqpdfsuMWM$Db$qq)> z(;j4TJAbrdqHSHA3aC8W(2Ign+xXbb_1&{>Z5DiAzWrq%cxN zV+YkfG9lMkEU zUy-=V+E4I>gzlCm7cfWMxJi;hOy`MRO7r8B0?VCuXl;aTg`9lr)?UvC*_M@L5*>6UwD7i2%=n{GqwEK`}zk9qth$5vb-7p02!s|Xx5HSUII&w`Vw-YINs zTii`_9aSz4Exy0LzWT`9yECTPwl}4}kd@HNf~6ecuu8{w-dj^SSh8J5Xh5*e3 zEX(Il0J}OHZaf--ot=`G;P!0=;B_3_h_{--(ctFvfP)H#g>!1C%DvJ zSg4WO{sRMs^5eafr`Ru1gH$SIuS{i^NUs^ff$mx{g_mTDFP;!{(;d8^I~Q`-ad7Tk zs!dcG^FO=1z#?pK3KV|8NTPZTcpOe|kq3x>^6r*G3vk@>4_k>O`t?(qF?Onc=Wh-O zBgQd6C#tJK&8^lQ#K>;n-aasQ&q#fDSRfe3n2eCWf97|xqVP zaPW40d0nrPpI@xl&eS$djQcV7UUa4A$9wf=`*hucRElB# zMIY3}KZa;{pT5n0@hfm&@V0gB9Yv;uM7UiiJ>V7k-P3dZY<2mug$2J;<_n2Y{)97) z%Eafl*L~3%P!T%HYK!73O`KTlt>EZNT4%3gPN__DGxazU|#74s5#Qq)2kdB)T+TO z)wA?SDBe(<3@AUPQuIz>qf+rBUR=)H4_Z?}u<%FgXT7#N_N(U}_&QG+a{6ZWI*xj) zlY{e&W)_u+>8If;aNagJ@HQc zJ51w0c3!^o8$+upPHCRgzkca#I@G@OVM1Ve(3V)EG*vucWJsuR zzzG^4;=>OeFybQ&EiPSD!y)sEMls@^`+-kNHao^cN|uEb(8O;y_Vk=BsfEt^_w0=N=aWUgb9KCaDo39dl*+Odxc^TiwRj%I@u_t+1O0JS_~K89sQ`&;_8ff9 za&Jx@jisfG{Ivjs`roB=XJ<3Zn3$N=o#j$NgI%`DlZKX-AK$!r1`NJAIi|H4dZgcj zf>1%+3_Z+wkU_Sf@GIUk8={TEq7dy8@sWDPDygV19IpI{5WiB<@)*!1Ab8u0Eh4gg z5Sn&V6sJOFFHSo2q8>>}-AX9h)!B)Qj}Jry%0R^EX`KS;o_oL<1bjg#C@5Qvmlr@1 z-CZgl{|^GzzB}J3Ku-+_3?XWci-q-fViz0n&r3~BOXN?|TOHbNL0Acwx;Ew(n6L~u z!jU?;j6yG(2J6XZ+LGZntH}e?N)`LcEsH2{pkVt!6iuO{To zCn51R7s-4735M)}EX~rI?wWQ_*VLYigqzgV)FdQje&;7}Ivy(0l$MsZFgN$|@EEjr z{`))YcyGB>uiEM4-%83O+hiW=Kd(rbL-B5)LLNlq2mt68=Ue`#r>75K7zG62Qv+jf zyW+*}Gei`WNU0|-esK%^g`xZGP2S+wvfvz3{clB+v+wF5CWM#Eq28>5VR{$O-^R^v zn-UWd`jE!EVbk>qwpB^9O3(!^rxgQ2hCb#DJ79I`vU2O7dfeEjJS;3n-1x!9d!wf{ zf5{AnwhI&LIu)j#GfkT?Hxjwa(@n~@GGkz4pyQ!N$rYe=>g;7>A#h$kccR*h(Xf6$ zGgxP8Pl$=hC(zQ2LO`&dbtl`6$L-#qlJABWP6PMSSjiNaKIwPDK3oIrs%Yr9S+HQf zJB3%OtE;@oBqa+9#oZo#En6E)S$5>`ui*Ay<(S4bo#GqN%@ObxvVcpghsO~N5+Xc% z1OyoYOYaEa{rz#F-JcA=8z$(k<3$2QyJY0#6@KSlvhhAXJ_b-;4@8;xk6|U|=Pv_M zhcHNA=3P|L@})l`HGbIq;+qgv^jk92vj*< zHug_r6dQcI z4p(OOZ}ya`%bNJ*#0>HHmp&biPmPKdl|tUnanQ|sf3TIh_>F)Uo|NIO*Tcuqs|{@t z@6=EWnVTDT;V&3+9W6aL{X5ovqTIc9-@T|YcF84cC)KN7gono!1Q?g{abD81vaUiJ z5IOztySr9 zSS;Axs4LpTGeYrwoWeo3e3EBhv&j1M$06bM9DhdvKboFizb&{QdD>z zzv2%WulZdzMspYF7b;oyIH9T?e0B^O!)BEp;cKznro;b6dGcU{?~m=0UcTEGZXz`K zZR^LRs@lK%Grn00uQl=!yDG-Tg-3mxxV!lmD@|!LD7@gw$VgM?T3)qf7uWlgd}rPV zje50-iOog<2C-|yj^|$Tmsl@buAix~cE%ikaie*b6B`pl$y3PSHy6|Y(X+Im;HTL` z&p#<)Qv(BB3=BD9Wsp|Gum$4puF{l@sS^!f;IxI;(m9agAizVJ)V5`&yvo+n(J9m@ z(mj1HYeK)fD{vNEc1vc-(cOy2#>U9>TKU*lLx1UIekJZ)jEzrLB zX+4PHZ?GS~}druBsZ?A=jDUw9i}L;I{I)9~kKF6m+1eql1(A z(KzJ~?=wfQx`Y#Jp?w;wG?P zrKYCZ`PM(%O9!s}rysjYD?6Nk&vE#^e7J|FC(qcAvv(O8TN@ktry9T;65I+|QXN4W zHPY`uy-{0TjeV1Ys2CtakXeRY=}kxHTdIO{VASZP>Z|O?9<+20t;)u$X=p4Bw0YH~ zB_9r2?Ss*hkdQzkAN?`u_qMh+3ImTUu`&=4WoBYRGCrPh14AR!>mon|w!W_JItfYl zjnZ%5{y_n7ujr*ua4Qd0v{cSV-&K%%a1nM$d_3fGER(qeInU2p!Pi&wKzZ7AFwKiF94ZPVl7Sfk7B**heARV z&CSiNtw^*BFnT&^O1O9fRgP#k?)Fc8EYJzInC@>8` zavkQ#RbUc05BGtg*=Z~${gr3weG^ktQxg+VP$?#1RtgCXm6DdGASL~&PpZlQiU*ZY zp#tELkPx)sW)92#4{#Ezj-)?Y;A1(&UV@X6XFk) zkL(ZyppYC42VoX}z^_>U`2QLYKt5dTG|HlZYo4J3$%Io zox)J>tJ$jwS7M(0&!2xocc&YCfyNUg(z1UfCM6L9D>P8dAmn^|HV7+ zYDl{10@4AYr?0=r9#S9+$RIEoux5m4O| z6BR}C&@6nSoQMbJqd^d8Ibm2Apk;oj0n!4|UIm3NYWq4z(Dr~TA=zS$2U?#WL%fel z=c}2lrKP2jQRdT+-0u}SlOFg3-~9r6gjrLa^dQ4Moo|2Pzy~Eo3AIGoKNc4j>dtmM zp|DJ+SYuNsJeeV4E}WPF^rBIW;4B0b**cAW!h5u?Vkx}#7a$hRYdgm6u{{Hfr^qGV z-X1n=Mc7t1Y_++$DVO^YG(!#&&(3^c+qxl7Z#9Mcpzbs9M1!RE;mUwC{61Aua^*z)>zn`O1)Q*ekBcQy&eNKquy=gi`*)^TxpHt&5P-UvOob&BJQPvBXU4aScU~_V9 zYwLkKzl35kpW|F<7Vx|HCOwA$1i0XHWDW9xl!mnTSHZzA7Q}gUHvPSCFzm zzJ3b)kKcfJ+|_Fh8F`fuPPl~y^p#8JQBhG)VP;uA_WAQ?B{rZl^efUVZLoz5y@YLE zd@TZ;b4)o@=cFgQIFPKtsgI84mdye=#K-S;Zjx$jN}DV{|KA!cI82bG&Lp^M2VDxSBCUfjlN z0q!aMTg=QBn-kS=)dQ&?K*ZGneO0HjH%JwMc9fTw*Vy=YSXkKBXj%S2F_g%`g#C39 z@b|w2+Nz2RRbZ97$!nLYQFN30g$mH8omVEangbCQXrJpe_*BQn_BI7x8$U<_G0Q*5 z%z3z14X7P~?n5IG5?5DOgB(wCvr%|VjGKc4u&q6Ia{5|de-3qb`(D1dy&47vB0$Uv zh7Q{`P_XsB<3!3Loc)1WcXo2}J6=pGhI%~x+KSA~rn4HB2=J?_MMH4)Ly8VfUmR49 zmGKxVn3$LVt(&-bOHZ2M_|_KeIiE1wov#zCDlacC=05$nzOm8GAOzMxtxDQ>wkt12 zgg{c{jgIo)y$h~h_C7yw+QF;9^AaGIK$SHP?g>`=>%_!;(3}BG8@G@UO_QdfFBvJR znOy}83QTo||HWu~J7yEG|K};ZH}PY8^r+&!3CKM)KockZDX9@SrbW-TpMW9sz4%mE`0#KGN=Bt}pW@SrOibM4;P?%)D0Tio z*4E&An%qho0N$YT^ShZDqfoFvD+~zB6Za{0basXj(oM}=)BqW8`Sv#4M(*FfJ&UA_ zh0YWYtk8P>&3YS)Zfncw=H_NA!UcAMc4ghXHy+t&+1Px7>4zW!HG#5{k^z7=*GJ1x z5|WaJl}fKuQoi7(f@L3paBmI zq;sMte{-@~l647a_#A)?8+qlAV~~ae2Ov`|L4n2(Sf#BXpap(QMp;?ZVWw&N^5U?9 z46@sU2;^vJH-7l=A!{G0z}C%OQC>dT=-*gcx&>fYu!w; zjAT=DbOe*{0t6}WW{2TZYm9rq1}q{X0w;Li4k;#(w%)D!`_uuC5MB1^|)I zFlg}c9FIWevL3%?l-;Dd@)3|R{o?=s<}Sb+{NGMN|G#|C)sJ0>-WvLAx;CBn3jr@# zNhOIAaibs=`Db(;fsf$J%1As#AW)(Z2vh{tHTW-izC}{-m${09nk4*N=idR!@$76 z#>NIFA}A;bPb4od4@RS_s|zPCYiny~XJ>D3@8IBIFd(pvl$4a5oE!jxmX#qdMxfLM zqFb%$xP?F_7d*z+ z^}|f&3$J%i#*bXDcfYuNFpcM=nCeyLefYdt$wnUU76Bejhr@9Gsp-UIR}l6O7m}#| z?b`|yB}vr(>1{xfgNgG0^pJ?_R-r(v>!9=;`pyOY=SC8#^=zKOc zeID>MV+S|5KRRh9tS%>Qa`a-ppFz!Nl-WI>T; zkFaNsFF);#*%_f7m_F0ZG5@xMKZS!Bk4;tH*-R%!SYlofBpo4Itsh4!i=GEvFiI?F3X;C+cF^OD;1{$4oqnM#G_lx7Heb~Q+uhFC5uKNg`_4MhiZ4^J3H9sx*AyUcFdi*SNpRkj0Yws>|*F4_#=4(B| z8>BkQH3yk9Iz7Ute;9-`Blq{3UWlsmW|@ZD-a{V=oe23$h`(JhPO0Z`_W}Fem(^3J z&GQExVa7H32KWCkEJA$k?ZBzVG zTb)7ZFAKG`-grxSlI_21V;PYFu9SdCBF*Pk*caz_{?7`$6lGGEI5{O~T@ zy}fKlT*|LR+#!tXbT40id>;KNUV=<|NF_7%i^PoO$5QzRwNGaRJ3CyHy(}~NefG_t ztCIe<`o@~_eK}CoWew%utAnrM^sH(cvG|TJO$=%een*J4GCi@MaJLBhqT~7gdBP93 zVc#P9&U5A? zJgPT^?!^`g1MYsr2v?=uVAKIl{KjZyXnzSR!fUCZ)?k`f*YE+({4I6e#M;*#`f_LN95uCDx>D+W=am!V%A@TBfvs+c zz9~Jfj$W6M?AzAoc3y^uroy_`Y)jgc;tIRD$$ev3ltRTHR|XmF(K{lmF^v_ytCShq z{IHfE-mo1XnNeImBx>QsdSi;}R=y=kvG_jOF-Enop@#M#ZS{h|@T$qC#GR^I@dFvH z!=g>4)lA9Rh_;@|@u7rE{;um{#_N*zgdNA~&AUhRjlWZBe>AXWUa3y*tI;RdnRzzC z?w2i!o|yQgdy@Lo4V5WRPHy%)V=-8UYAV(DXmAM>C-3K__y(B2z(-&({%xT4q>hTD zoQ>;?8e*4Gr(Ml$v%kjRJH4qg?yD6~!ix34M2{i*HSMoy0;$I7F}$DU3$L6*NvY7; zi|iRgKM&@jRt$=a2UPm*Q+0o0cM$Upo@n}eBj8H`K3;W1Q`zS%7gSUWp2P!vbTk*k z+A?dmHurh-n??&6!k?Ijyl?oA^H?O?`(o?w{X?W5C_Uv4Umu2+zFZh<)iWWaR1ejy zI=#8#?xcUBk=!fxl}n?0x@Q?cJl9JktNlB{!H`-}pg7S5#ps>IkeaTSf#Wzy0I_%d z0|qZd&SWrQa0Nb3pi}DM%#CKgq*pRErubvzzvc2utqn~zIoGMp+=ov)Kh>kct`$1%DD)N-W4H5 zywq^w(bMuswXv?54dvfEd5*@CmzYV(_bz+7aI0CpMyC?1!xoXlL|HfefHc1bAwnQD@t z!u2MF)?*4SQJB^dDTIGizvIB?-&33csU^zI%kA7}G%o+8t55my&1+>X=x?>-pS%@K z|A39_9P+l8B%>kgNf0hdN!OOjeWcnJZB0Uu+pNn|QZ+uQJdo6wGZpQEk6O*Q*c@-Y zBIz_#1W)!3Xa+yS0~Uw=6!3t*N&HcUpr5q^e@te{qU2zKUqjV{N`(tIM@QdQG~axNw@}5}7M#3XxQ8@pj(ztN z;vguH=YP1Gd}4DyHIEzmj&s5h{d#$9E5T0sghG0{E<$&IEBSec1KQ5qfgPzv_0F3r zepQ;;SYJ&V&ItNG%V+rpHmcu|7)E;Yq%f5{ao_K7G{Gm^|8k1WmdI`phR91M0-fPn z@u>yb_&GxR@(Fljeq>i(7cu564tG@8#V-83FQ_UiuHXLl_| zIIz`2Wlx>ccdYCJ3pjCrsP{?9rca9j>nLj7c%_T*w>H`0_05@i{P{%^4Z>cPDp%d@n4VPK>$p zv)aB6Ns>75@IbaqFvMg7^@aYb8eh^oXfG(7L}s)*{H3PmO+xxB)5_lX7mbkHP70!4 zs#4~bFxPgYdw6L)BV`S35nPqC!@!*3MVz`3{72e>&mXsDd5PNDRC3*cx&I~>gcNVm z+bKNBqN`$m24x-X;AgAygPB_^=(wQ-^eu^?T7+w;KO3ndHP`s% zXZj2GexRqWrr)v!Qjj1WA)nyC)XsW{YVlv|g%e_;K3KFBN`CP1lELw^i#nxI#L}8e zdee_VU;e-GEj7ICch5mQJf7~dXP7{8{h;O6AJ*DfAEg|od-;#wVSrzS+yJ}T*Vp5v z&x?)p2L3a*qljBZZ`Ydb%t@(<)S0#}*0A2*J4G85`$+nvej#NwAEN0a3!*Z=chM~M z{S{9#{=IZQsBWK{8;y}_me>6vzod0gKzF;*z_oC|}HhIf5`#3kf!Z|-_gK`d>i zZ(ntrSC>UOGr!g3yVkDdh#7A@&H*HLRc^UXY+Jkr5{c{eFsGZ`4U~VL zkxaOHHdtD@oRUAG?dW65MxDE=RiFXB^{Be|r^&r%xat7TZGy=Efm)}p*&E7`{7iViJy!pL2H)n`2zI8USoN7&89S$lB zSz9090(Yjq<>vt*OI7e*#I2o0@wmrH4lcQW85fRx?dm|XF=CpU$EJ;SLR4`*Xg>;n z`5M6|$zY0boEnPQU-S)p0V)G(#+ZE5_+!%WCOrtv8eU44aS==uo6K@hMpU@TV%{_ zq+oc1Z9=<*oDS9&kg*v>3XpO5`vB5$CNjIkTY$4po3HphaRde(<=zCP<&``C&uCW% z_UO6x==)bn+0?_}8UT7L05plJx`u-E$L~nf{63Ln@=f{?BHtG9A8ZzmjNBYUK``7W zESwJS&UsJgj#gfH75yy(KaJr#(iUF%k)%a5wZ^Owy_dQd!Fd}2N ziP_tg*hESz?YQ2k3=O(+L;ilJ!nvG0ly(mL+W3rbctIjMqr)d=f}3txuE4}!Qi&Rx zAolzntwewcdzMx$%KZd`amp-u2t2YY$HRuxOOJLAk%w!BPa({gs}X0+fm5Ws@{;Y$ z$WFec6#F;NUn!sduK`nTCtE$UU?rIduSqrl!32K4bV8%rTr0>AM1V9muCP{n%)d;H z+)XK5?@*90i3-dIZGzJH#2ZM0?;X|pZL@0UR>qlvNO;I8+z+mQmE!q3a-_7>XJFMX zWAgP^6~<_*rt*UdMr7pGy|?p>WWjI5rVG**GhRhQqr<=1s$IYyXkA?c2nuSirkDC{ z`6uxVf~Tz?D)Ku@S%}i%zN7viYTNkZ*+7xWJ0drAhS2dts6kb?@(XJA)ZTZ9(GPd1 zuu^gljcMM9&i0P_ueV)SbLTL3HPA34_R-{+1QAGDgs@J%}J;MRZVKzmDh2dr!W zGQPi$@a4}p%TN%juSUZ}kxkyJC?)#s-NIB$(d|j@BFQ?EP2a?XvJ%?|_J#cnUmBWz zEQC*f=Wl-{r3ywiu*E3Q$Sl;+k=^uqqi0j)li%{rAZ=>vIOX!t(597zI}|0i5Qm7^ zM0N)}aAI}kgCwb8eotMc?x^B6aQpK$r^Nnkd0?gEU&+Cqx2p5I$n$fvPOs-%!Za#T zm%!@E`0aAO+RU|3vD$Z`riSMqq8C- z*-oMC|6{qChomHhLEW@!b9Em-XsJ4w!f4s5Bs*;2w&4zb>59j|HYh@@-W5T`XNfv$ zc+7Q;bTfo2^4Yodu_(<~rs{4=uf$qzG%sfH zCm9$UI8{$9mS^e3_1lYQ3K(!LE9KcT zU1Va(@-H9oq|6@i3_-{t)6g)tm5%3H$)tCO88WPLNHglC%HtHsQ1qu518*#!VRpC5 z51yI83#skU*=(v-Sb9SRBnX+n7hfr~{%LY+Wx0~PhxYZiGmgpDk-5tr7w}(ns7uda z)C0pI*{E9R(%Lhxq|GJ^rLN1v{mI1WP7|CIXy{>X9I${t+_j?!X?x}h4H`0zQhY9? zt|(yiU4+S>@RGZ5_7|oV6vVG$UbxeK+YbM$-)-&2Apwm4Yc5w^ENcha%AyN}AThvH zclE=_j$G=ZMRUnf$i~^@+F}~(;*;suJuKO3dr^tc3{!MT_mPo%QkJ34mzEIeW@^jQ zE|)IN5j(55$!e(7HzgiF*O)w#xpYc%aJ|KHGC&K}#`tOkngXsAV6D8_QKgD69Z$n|Tvdg^CMla}Tu6b9=6|JX9jI zfP8d*NGsS03!wl*?<1cQ`SO8b%ti8`-sYU(%HZCE>S$loasH7GzFcy;Q%!;fPHdXr zVC))X^OUnTIa_A76|n}J*Cb2&aNA~q4ao?UVua$)dXoW&2PpS9e%~!Jp>Z z-A|*z$R9uGb*Lb|c0Xy^YAH_8TC6{*7E=eR)2l_TqhQQ;XhUwX`^%0ONdFONI#p2^ z)(v-z^~B!tI#c)eQEo1UG;NPHH4p@VMZNyv92;dVM!hR@@s0WmYgL|Q-N*k7lm`xU z?BOcCk5vb}*28wo&i&CV{fuX$y?Fa(u|LJNT-UPTw8ubwQigNfl9cwysRdT%aX75< zXgM~asaZwpDuMDeC2XKfTGb}9yK0fTx8`I-W2c}tU`jt_xYAz!*&yKK?i?%rEk^1b zuQ|`1K)wZpDGDv_PW?b=hLz*=3ZqbH7w26~7N^3h4X&>f&%zNBRizooQ|DX{O#8(AvmX85il0S<8=3kt}~lNm&@TRLr^(Qbp!N zr+Q)ta*4z3MlRz2yPEWS6-&UgSMSvIpbu#wE5g_bNErzLuazb9S#V|QN2=}p0%E9$ zJcflvH?`zwRxM;kt3tv1BTbw7e2+Zkkv81r7X;TKU>U@JjC%8N!bclpL;}g=(a5Qm ziVa|Qsl7h>pybC&(x$n`2~lrP$r?73t5mw8tG1$se>4m`1 zzAXpmUf02BD^XnkuqL|XSYaU^MvD+@3XkvmFl3`C-cEG#FM6(ofj8eG5(@ACt z@xsIh>`DFTH!lV37lw$%kb%LtOS5ZW*efolW+sCnrBSB}{8S9fcBS7a!9T!>w$J2( z>H*W)_$!x9N5=*DF)Kn{4Wq0rM1`Pkkq#C+h0SsRjS592&kP1H->h!aR&K!sfrUGC z>JF`}EUv zwVqy}bI=l)=?C=4DJs%<5MKPV+x+#tSuF05z8&k!d!a9Yyi(`rrpeoCsma)L>u-?; zXXTp*8%fspfcnS-(dl0y(!z1PR69qJLk4hukKcEmJc|*)<>0C55HT@}q8dC5cI^%#;PFw@ zB+rO~9`(V$T_O4IO_N=t;b-rOh@Z)~5(#POkp?K#Kh>AH;I2}9^{4n7mWf(5QD88%PdEUCTZ={qKZv~ zMq!dH`-GlMK`BaQqw*apo~{G35ZWJ=z$`bVXo^UT7|}c|vd;zS00P!T8HG-3 zR90$y?3F!ip}e6xx_bW(ZFw+eBVkr)3x-}%6sp8h4b51+7`^W=1M+JgG4IFFFD4md zqJ-s7+$!xL9z1UUxty`vo40aY{M*k7xv8)A3|r+_oAJLdZx|+gS5EwOJ2D0ALkd6B zSz#ji33Yn>Ew}6)Nda1h@^9chsL@Z~`8OYmfVNuqD==x=L&=QxI{i_4ELqIEY&+>rauEF;Tj1c%XZZolzGlSeYMTFXJs1 z;@S(}2w%tD!GF=c)@R9Zy2o=m7f2#*4jqZn+c1NxJX>o)RQJ%p? z)eEn@0}9Mn2KUfo;q4rR?iskidoMxBUyms7qS+7AM^EgeA~65+ROm|B$~eeXyc<51@_~_dAedUT#J|Y)$%jkCE;Iz)8h#lj99~`w;6ND zCNBX+n;Q5n`@Q4a($2BhYeOzTzpUSN6#ER}fRo>RLa=erjy6xABW)KLk`s35;u8=_ zu<^k1FV)l9JU9irwu|>zF0!FV5{hK|x@@s%w`k!bF$+?|;GK|dL~baMh^z91?3CJt%*|{YnvKj3CX)U zr1aF{M|j*7XiT~mg}O}1=qN#_mpO~bFYwt^AST>6gwnxqQ~DLTDgLTVB&_kcu{m^v zqfY#q;>F?$zH>1sf|oqM2z9M&qPwm%9NBS}>PoA4M~v*|t5f30I*7#C)omng$h*&R z1k4GKq6`bJr3=o07q44TjN*y>R2M`*Vb5T&_!eyXVD%0AMgeXsk&0@YJ-W=S|{X~+LoP2 zYOpo;aQpiTQn6u8l50sTu&~#~b!ZWSAL*x7Xr})f$%bwFQMOe7itu4rC#@LD`420w zEabPg6t4jZ;?4b^I04F zE1z*n$naCX`t>jGw)X3z+{JTBlq4qR17S~iX_^74pSpJ4H`Bz|y5rRK1{tM;>g3G$ zG*G$GN_#Ibjj{y$F4O&<1VtOUZ|)+5Rh$ES*{jfn!)UG zY`^(3p_}%}O0WYiQeN0aJYgsk*uO=D8K@R7W>cX^a97ifGO!1eGeH&NdgGZ&w#19e zIgPUM$O(0mJC-E^Y?Mun?uj+UEBf9MVGt62r_&tFLq>GS7MoYXo&Ra#&^_uMdqC}{ z?_ICpK0%`MZ6ET5hgrcVI)vaUHU#4i)1DNNNx)WA17u5SuX!g~H7HA*7d%!QCZI@y zqudsB@fCZb#a=Z-5;JoN+ARLA3rmr2qTl#Jm8XiL-0VSC$ol}Ec3~297$)h$b z+D4vny)nYWN@z@Z1IfL!OC<+FXg`r7?D%sI2+epNb^RK!{b0$$X>48NyHA)q7xx%k z+~ESG*qrbWnQj1wlKt$euPdLR?b=TCNH1NO*GU93;Xi{Gh)+~7;?B_xq~>{$5osZx ze_Lu?gwakc;Hp~6(MXcM2@@pu-t8axI9#S2kAtl~3BP+|`7yW?Z;h|No&YQ5eaBB8 zzoIg9pYJwJJ zv+q|8%Zx2wF9W+vrMQ`u)LR(GCu@|QYJjAuvw@f7%FV#*!ak6GQm5FaP-MEymmkFk zysxdwTwGo#a(tb$Fje;dxuE?{8Bt z(#6iF8+r)=Rx56_A4)ReEe0g(24kE`3JZ~O+Lp}y)jYT{MhNgcNABY2 z82A>5tWd$?go;}*niftVnI!?AQA%qkA6aE%Q0gqX$4ImF5}Oy~9|NB%vh>j72qXYU zGOaI(oTx7UUGNvJK~oL}zh{E*4$JebojgUFbU2L@kVrnK)Ko|{Q^3I&R3r6sC8c^e zZY)PLwa2=#br>l@h#4RE5|xyXl-a{8^O*WKQ=L`aBgJ~{f4Y}Md$2>B!s%Sb_ zH~&VpA`@z^_(+Isc;hrwruL91S|&}dCPpTLP&miT=z2S~#z6^hoIwNA7;B(w|H5>v zsWB95zbAzMxxu2j2)C8(Lbii#gSG&n#58SK2=}PZIC&rSI>M@#zQhB}uq=lHx-WOJ zF99)UZlQ%C-Vx-uuylmyCID&a(9o;QtHVWXAF30nd#wlueNg?Vf#_*igY1y}i_Vfse^z|7BNLAKt7hzM z9g6~N4(GgU5;**h2BK%O#Vc!AVtoJvQvZ};tM(6GW^bu%=9XTVFghxsJ=O`<6_L@i z`v49}ZUIwNja&#}G6u48@yp75B;9RTDtX3~a$Ks03l{z5cF6X63?Nm5OLd)CLgV~3 z?ahIfbVi)78LSwvJ$u3rTq)gYsuMUk^DsS^ zs51T2Xo1G$y;^CKMCkIi^Ar!pwn7$Hu8%n2)M$tn@FSx&)xo~ykH$e9cneUE>Z;~z zk(j`(_ixJhI{8&B9cS?mYe$o#`CZFnW=%bZW1P`euSB~jp~52rFbKWrGT(I=>GJTCE`hDt-$O)yRoZtNkz8s94r*=;hG;Hx)8H#qS-leTq z5Sfi}hEAfpXzs~-U*P`jr4D|EnLm73!0bj2&{i+1x-RQ}2WNW6MQ}lPnR)W(9GBV zEg4BT9p1qq3R8D0ynDrcG!1>@P7hk2SFesXPHu|D^LZ*dMI3h?B_;PKdV>=cVdg!i z#(kq&T1Ld$-n~_*MNRM?6!RV!CF9)<*m)sNnnNQ8Ja+n5oRW_|r>}Y@RO|OBxQXN3 z2d?YGQv|BKNrJwJs${b+|I}QrQoyj!k-#ApSXNp@dHl8y3>@g`4+6EwbkT96AmxZ0 z*)19wp`5JC)vuXlB3SVVK{-*$eCatJ>Y?s2p`#xuO46$NHLH_tJtC<$*QpTT>kQca8+#a;=*@dV z3Io7WWoqeGAYXp4lv(SKNELG-3XwW4NHuWj9U;T>bwYT|Ee3x!EG+y}DL<6^jV96v z@l@ZCXa=#s6B&X>#)H60c8PzK4vZgFv{aw-Z46l@*GQOrYsb*1b1Z!(_(S%f?g~4g z4S1xsQ4?}A$o-;HJt({JZBq7FOlrSjBa!7RjCX)!#{tlV(unvx2-;k7$<+Fc)rL^; z?^87v!6El(@m?@12nyY}h4jdmKAwQ#YHRqUT&PG3{#J3a(^XdZ`5sgO#K|(z5Np=q zHJ>`9#VSn7iF<`fu~#x!>+ z8t?)NO;ae{%X9cweh8v%NbU$$c_vgtKA2b5%TcvnUHlpWTytVECwPfg*qr1X<1|@! zwaDXT|06`yRQ11Yp0eWxPUv0&kq~I`t~lfx6$j6Sx;58>I})xQonPmB&v*+SNH8&1Z7POsNSo2Wf>EQA zG)sbFBw%4r;j)6s7|RnYJ`&Otl>Fbz(P?*vszjcqWIysR-Uww$y^vjW40@=9UKt>BXF ze+4K5uL@&E9m~A#pmzXKXXagIOkN_!(!tR|526_tCvh z!@to+IqZfY-jmroVo;W=VTFeIr9A;cQ@LubL+U0>6w<@yvij%SI~UwaG)Q;W z2P(yCY)gGg$vGR<7UJ6fWnR^i={C7fQ^Ydc)`QB~39OB*MC{m8=j{xEYMGy#`Mt4Z z^jF+utfi^kJ;q*cU~Xjc@OicKI4i&7K|0;eGp-wd((?6}_D;UMyu!L6+u%`bqlx&A z#0|5NJz}W%n5$;wYQOHJ112YWqwaEbx{-Hx0d!X{@4#o)yJ{f6=)W$Nbj%(_k}Fx-RQIbLhtJE$7ieGP|Gh*?jFp! zQf`PrxQ~peaF>X@QRDI+pT8otEO*VGu2cmIJC=JQ-eE`nCF0F0;XchSR&QsKz+m8C zt2sg|wzkRt^}vwYq3s#MxWPG(mNQB*r;Z;t?TX$jnzzA7f)y!qPcL$+PBAKtq5_&x zaMb-Xh=x}jApwN;7Vj~PP?GiuL3B<_Wtyh8Ti7&pCJ=k;=Ue4v`Rx(v@Yu;I};zLf2<@ra4C6VP1aPwq57 z(^)U6oB!mkqqp-vz{&q8xjmWe@7Htz-j_APV#e>dP*{AA?`Pf39v{l8x>a75{>Xr5 z$88~_p10U-5cmkKs4?BFdGP{OOM4J*9Wj+Bu=1?4)~?FKV*Mo-8<8RE+X3G6(f@FKajk!G>pE9EWmDz%g2CRIp@(=+ zeOgqxSM8C_(4VExnp_MR>s4K!}sn*0W-DuZfEhsR-f73 zkZvu3w^V}J4(U2!rC5@UgERlQt>VncG*zde6pvFvQJP_!O^PBEI-j9w?MIY$@|!{j z$BmK(gD(^DulwH(bBeW{3TxOC9*fyztNC!~*9!8PG3{zI{ZT?&u*|w4gvd@%r8b$a z0M7hPGjK;a3fBI~^LCJ5^sZjU;wdB@f_0Vyl`>iS{<=v<*H=5Sd=CPcE1=xVkEsp7 z$aED*(-o=bvkNK`jQ*Xj zC?b|T?J1jOzmxl8AKLX$ue83_q@8b@>`r$29;Co6?ry;WAdj7-pqb!^f(^#fkF3l+ zBuEXOXvc%P5~5-r2(SL-3_SC zh_ToFp5sM_R`GV2UR@A#n8hOGY}2=j2UCH^U>~}GOphi~H~_oa>>}$R86YdRh%X_u z&4wUuUbyA?um$}YYjluQNTZ9@oc%^hLQXRi0-5`ZQTiDyN>4F`$3>75a|2QCdc zYn$KpD&7{o;vqz;Yo!;NiN1M;otwdwo4iwYgCuZX9qVAI$xrjtzhXWTI>~T>rlV@T zIaA+1aw5VoybgvR@R3){xEjIxn$$@rTK&l2l1qGzZ*RkAa6TKlS*s`!s-9_+ z3d?1KJ&k>MFN=m{W+~AwpOz$4a)5M6)ZT|;*(sh7o zV5nfO&*aG`T)el%_4fPU9+Ps+?;KI1>a6gZyP1g{uAvRWdQI&I+de@MGtIEeLYMz| zHiHqr_dbV_o5LT-ecGf}u*;i5zsOPrE3ZJ;2uj(9idtZ} zh?+#r{-H)a3|a7@1c`d?6Mz4{HGqud7%bYYnvNps5Ip9)lanF)hH#9Jm~6CQJ6=dG z_BUlf!pSCB33N;;vm6KWw|P+vcJVwoZt0Hf%~v-IzTOPhlLf+3d5O)$1P(aqzZHv7 zjw`sjGIH>XEH+Es8{VzZ;KsuIL-tMJD`(;|-?xQEwV(XOifpH-rii=00QfDH)ek|+ zq*?@(?gmClJ|71MBkx`8oCwMLo!}m;*qPZo37@}1KMMD*Ta_8^ z%5Zs(l}bzHN26|)3#o_~H}b{39d6ULlRsa4__56)8dts9jgtRw;P5{;{D0uWf7)#N zd2OCS2zU`_ybqVC;FN!IG=h|8hxIBhKGI?OS=ts~C5EHPTP>`d{-K*_p6Tbr+TH&b z*!Yz||9LQ+8roT9g_hPF`D2gUj`BgN%=f8=+x}NJUpa`G?QpAcVEkX+i4Fb7GuR&#)+oJ5SjI%rp7HaG}kTRw+n zsH=o|ePrZW2T*|@GWDaP?PpPf2Isgzp@~ofUbzD9KiJK9aTnCOcQ8C5kEOy691w3E zJ+`Fs0p+-+55C{mV>#bnj`=3rlevFG**9_BVW_^_ITt3iRT{tV>2n&NKMb`Ry+U($ zFk3av!+#?@BL_am@9P}lUpTJQKzX?|x%l)jTjREOA|WFqrllFX%?~+D(jrs`A0QQdw#XEkoWIum|DLKzdQA>L=4Q1Ha zyWnHhWs7sfo}Hi*r;t=m;18n~l0bGLma~tIw9`b*=@P}bSGM6vw}>~?-P=Ws)C@p3 zCQLNU&+S14<4o9kcC$D`VWL_hFcTkMd!6WwrUrZmV#3R$_1rp~1|IH?Oi69M-&US- zDbSbIPrW*Mb=y&wBqu*3EF$F#C}fMM3s!eR2jRxFU+9R*sY7Kx0d>+yIVdA`i-V?S z_7}NW5;&yyp6Lg)kwcHOLgZqE_^4|+5*u$!N|oTPXwY5}Whs#ZPl){aMHybN&NkF$ z&v!90L=_S*WJ^24yFIQ%xioiVM<(Up;iU~00Bbe#&f8W_&>Q+T!T@y4olW-knQolb z;?7K%r0O4@bNSR-t*zoA1f3MTQ<4ks6x-5o-VBBnW%q>(7@}cjrh1WhuU=W$5oSGd94BYU;?26Q%GL{FX<$L*B*Cf9AI^)K4^E(i?pWm1CyA+DU;MGi~fW_00Vd7LJKo?d768I;3`^YnhgbL!ugDHUJam3ltpP63jVbgyp z8M?8V#77sRV;c8!smcTi&j1u`66!a$$m|QcfI{Q)vINQlU`{;qO!(iFTN_QtV#ZxP*>RXOC|riA|n5H9bB} zHetat6{+QGZAeJ-H6!cia2?)h=yIk4cp;20+&s#lOyCZ`C$FE(d@eWqEkVUA7#@Jj z-m8*i7)(0Ct6zTfb0K5|7SZeK1nU)goYIqy)u)|2i{G6&Cu&R&gHAK9Cn>M01tcM$ zIm_O@lx$^+q#M1uZ?kZier}(Tw|D@#)3=8G#31p#ElRg>`dRR$rhooL#z$HZb+f{k z5m_aTJ^pjV(w$%O&EoFKDzIDzGUADTr@KI*C15<{M~~(iDujf9-^G4bT9v)Z&A|EV z*1z7km)C&U<()_W_d}K-UHiceQPW|on|+4CiAS|@*6Y_>z{};tpEi=4Tz%dig(=^_ z^%>GLg;!`B#cwl4eSbGz{^%6gUFw|2_h?#&f+j*k0%lDop1Ew+Q3eV)>gzhuI^A8D zZR6PzP}Bm1?7UO!0dS&@Rf8*Xtq_D@A09VGBom|ZNu!DOHpG4{)W#kgz97%5KkG-o zn!a~gMep#T|67^mnr+xHLY{03W_A~-k6|n}*)kTr@K{tPoy91EjZI9&$yp`v-Kt`o zg4v7J50(^>kDApxpplqav!Y9!OaP_UQ=$ma7nZHHO#E{dIY6wVj}3#Z5*d2j`qBy* zUXWb7^|D)$|7eS()p{Rck(=4Zj7g~%B`O85v&FV4s2tc8qa{tG1Q45)U%yhXb(3;arVOsltzL(S zM{e^IGLm%TytonNhL0Z6=>fhQgtp%PS`{t9_i_boAngIa!-s|VA#+208;CAs{8%m{ zzi2{|w(Pl$SKHdaqRUt)pV9I>`GL3n?20GmJ*TC$P~XEH7|(wp11Tjl_0#ngIo&@? ztB4Ank=S29M@Zhdn!YT6S4}k&?<9sT1)jhNm3@;;sGS6+7sIUW;9rKHhIt~_>yfA_ z`-I&5vZ)c@h#L{JT~$e~7oXvEIw$Q^oM{D76V+Ar*N zT77Af{d#+VUops``>XL^4y_K$`v9HKCD%5=y%X=D$lov80R`)Wf-Uua&4~XheODxD zsH^Gu@w(;nD2ngRJt_RVC&Ds_rwNyRv#DdNqX@Xi0zBCCX}%SbezEDk5#ML}V?%V? z`DxJP#a;`*zIWU^+xm|9f4m$1?|AAQ5{#pCJcbw+lOO#d#y)vh0KRJvFP{C3hK+ zJ>BtA@YpIW;H1s+>A{hpPt_9APiT7I7%0@&n{ILYXMYn50#tGWYadLDOard_ibD`?s&RqN42nEAXUM@3@o-|gmMu_u;td#8MOW7(82LVo4%jG>L7VJE_ zQ7TMEa2%{+h(fG7nA@;xX_*m6F+isgW-2HZ=WFFFNsH!W(^-NG4^_3d08b(n@UBvI zAw7NrgY6B=^?Ky`R)`QRd)$76C(m&)&k-{>EHnLv2oC|rLzGsV@70Gpt_he&_Nwru z-$7JXDw@qJ?(m?FLb$A1jv*)7?>nbmQnt3IDXBinRPkm)3KHV!2D;_=&#ODJ-HVWF^xdOxae3!V*o&XW7a z41{Ui1TzwN3T>=1EDk(kLnTy=eTduLx}TD)?epi*I0$EmWg{@c4jPQ4u{kE%sY#{# zQ+P7@Zl->x_hkdx^rMe0K}>#Ng=SWe?}l4=Ir9DcH*#&nG)Uyrh2*|{R#gWhHU@;V zYP!hDR<%mBx@fkirGX51EsR%OZQXw&h7s?1SbF5wA0&{~b<662s|s-j%wzLQU}cMq zie5W(lN%Jjm)5o+Z>dJj*=0nb(U46EU=CbS-EtzJaS3jWBAe{b*c)Th^Ig`Fp@ZzT zirLn|t6VN+pUW>P? z+g$n$sn{0HAOr$a=2T&IPjbZ!6&u+Tj2sLR)?QXOj9=KT6+l8xcS;2A>f$|UGzx(C z=&d*Wa`i8s6a+sRS9sZ#Do7x&5`;Q_W=2? zC{0GaI48sg{%~7-$8#xmtWuFG(q(o+>sN?S{Yz4O9CF`%sYGrq{95VHWrngi2rfvk zrB)bA(YYTU2roppOL%UNSEn^%8H0dT8SHWB!~h>lDfvs1p)QO7V%`maV&m@!bIr*E zai}e%g!n4w(j|rqHfm#tgWOW)JKI{NS!{-Ct_arGhHjQ7hoxqb4y2*WMuBJ`fViR{ zDEiiB_0Fi{L{-r%Q_#>qNHqEDRK{vo@P^d633KzaXlw4%+oU~`**#2L4Cxk`lKZ}+i7)nQ zwf0J2BhBe*O8w^ug66Mi>~~6R<}T4vGDGgnt4>HvBCjG2er87^+>|tJi`-%~;=B>o6eXBvR(NvOHhZ?BOKx;#9jw7z!91o z%qD>v{@S=+RlMB5oW1upNBo0{ z`BXb*9ezx5GN>^bQK*UF%h7$d^5Jkt?f0-V>#9VP;YN0yb+gafd zSh)(vB-*VOzSo9C(|qLWaq*4N-82WVn)|WPIDn(urhItoaO#^>!_^onAV~>rF>NI6 z$G_Fh6@!Prpvs96P{1ekliZ~*;T{uKI4e`lC%Fu$XafJ_R;!?JlW_9mQw#5Cwdkmi z3iLdCWM2FFD&6)WWk*74c?mk&{!onq-7J6P$G)`*n+sR;XgK;J5!_S|sRd|&)BUf? zt^=xxZEJ^K3`p-qI#Oe#3rLqPf`Bw3LI{x#p((wH(oyNs6(oot9h43M=^dnFq=pXC z!58npd{_N__pP_H&RXZp%>J_X>@)k!qbGQp6_%=K5}ei{^R1|Dz{qZ+XnxA zpD^b>>~ka!SH@GF?e%uwdYh9@=aVi2HEQPy3B>E;#)dKVqaq5QMGE9Yzgm##CYj9K z9Q^dw4QExc?h8|{mb|xHn&DPw7ZbLv;z!3;FUi}<#@=+yb;up?`{3$+wqbt-IhQzt zUzhyW*97vKBzjlTY01jKKK?_M#Eg+0`8;EQ{9HUTM~};km+ibPQf*l)k8*7}CPH4{ zi<>FG3~>9Uu}$!7>DFVICErOTgEg(zzF)!<$GXA&g|7RS7mh;gd(5@33HqL=FJxI4 zMTCz8m2RtU-4m{26NP*~FtXt~ z`hI$_=RuXC$ES&z4<4Ouxn{-jnXkU-uj|w4#Z6@=)*c`9rZCGsFdngX7clAQVw6ho2nrUi5z=|^Jfl*) zRu@1sDEX$>&J5Q32Ka_AQ0-O}lxeSG4R*SvK3TwbY{0&f={`_2p(!wKVDojA+QL^<19>5H8jmlT14)U zuX5j|!Vx|zf3g7_94HVh9S-{97)LU2U=?=D@zjPatg29|LPTx|6~;l8V})E&n%%(n zCVfNG*+XZ|cbBe;{+0@@2a(A;d$h9?#};5t;EXjFQ!N=Suq=mqSU*-bWey3~%wa0N zO7vVf0#qeJRj*H36jiA=kX3g<=4dMR`A!VIhdpj?N@a7WLS&X=ZdToyrpFz4q=XVw zkgZ;MENPi`IYfNTPQQIAmvkB7L0GVcqo^^*+m&O}Z4wwFamv5Pf@np76$c-x!Qk_3 zopMh6CwcBP)`Dh3K8DFUfwvs{BtM9|R^A-y3K8uF-hd*{YN)*xOsq+UUYT@1hUcZ; zLuR)!2~)dP)$o8{OD#$Gs&C4W;Fk_xx0hATaW2>SUk=iv z8p(*f4ZVr;@}hdjGTn>n_O{I;;~y)sPxZl_(h5L?+x1800KZtVng(S)Bx>UNMR z-?EaQTibrRN-VIQYaxENX-XsN9@x%2Sp^)(-@x#V>iH+?JM8TEy8{c4uIEp%*)7*I z*u7XI=v1;+?6J7Tw`!7gjVA48m-xXQ1u+3?FO5Ds?!l{!!bBcWi988E=H0v5OlRR4 zW5n*XvKq+_thKH*DtSY&tx_Q8#V>W#v_xCT;EImKQ{Ul*^P+^&j@Mt!(?65fUYpY^ z=PGaKgchK;U+yN>)3D`D#p&b9P9W!ll}8CIFL$@T@sX)!7u2P$R_^>taQJe7%$x55 z9z5pj+&no=g{Z8*z@B17d8ssxiE~Dfk?dh7Gp!-vtb>!8vO)ETkaiWWw(aMb9HmIn zm6HC`)F+n&HMt(wr{$W6T(!TcJxqEmJgZaS8KAxyEZ}A5q>@)xJ3WANTCz8i+r+0Q z=2bUu8LyqgYo-Ti@Zzhe5=bMC)<>ls?9XiPJQ&)ryVReqTC)P4seKbOoiZI_6@uO< zymlb@K7neJ5OK)Vt#+YW^X}y$l|%(iSOv^-eUZ?ja^s`It{?)3{&oZX##g)&+o_0+ zzC}g!RH68BO0xn^qr#{#A(NFTab1@=;udQ+;Mh#JiVDzcx*DkBp-KoeOMV)60TTG; zxW+qF7Q`}44@u_w82u<9Jz|(3tK0*6-*}WfEVQRTIDV@i?#H9v=_4g>Gdq2s`AU;@ zBP#VWXFoS7qC0(~CL!}+AvU_zwm(VmNM^GCC7J3r9SNaordsDZq~D~LtX#UQ0J1b`rl+Qn!NPOp-rX8TO> z3GU0*o)Umz_=oqq4PoS;e0jN%&9(-C>!ebxa^X>JLsH~wR2@V$q7+hDD?r6=AWo;# z#%HoxvYR7O+5Tywoa>9To5zN|-Z7ylFCVK@2TIhz`jwl==0i(jv>z3#^Z3&l_3L+s zh7P?QB61kRK##vJ)N|vDETnS6E_<9fiKX z6T6<e&fE2u?{u)313v)FG)KM8g3JpKB1;-BD7}L^BdvX5F;gy zUK>H%CE+-@bD+~oU^Xf81O)Pn-2rf#%L3R1dm6f594$$uf$n zEg!EFV-#GKoXn+TD_Z?pX!r)s-q4D{wx-*{9x>$vPxO7l>ZK&Our!YWcWKx(@xyY~ z)N`Yv@KN%YV)mPM(|Pzq3VzuIl5G5Fn2f6JUeAM@#laIi&7`wumK}1l?^(ijb;v}FhPG(Zrp^N5okm)7& zdG4O%PTm4@&x0LpNV!ngKzV}D)#E*gY*z6Jl!SSge{Foe*TSa1AYD;BX3(b;{H*TF zlgQG2;LK|o!3UWOH%v_8)KRYi(u>2WSv{c{c~-|oe$-uoi2S8 zZr9?;fQIr%O3#48E*Nhl;dXzZg!96T)(peRmY_NQW`a$xt8Pekr$SFH@)55by0f zRk+s820)$}IbEGnn(n7hVjN=lz$q462_wyYwgxa`2+?ijEQL%E5-@FGKb4eU9D2;y z+9Kzda2*3Wh7)K_efo^KbA$XUgviqTSKE}1YYe3|&5JR?OB<-8=cHCBS33Kaq0qjy;)|4E;nQ7F1 zr#7X{n+9gWR-@+Bg;cR64nd8;dUqvytKCdFq|*v`;>nmx`CTUtjondR{2T2D{LBGW zBqf_?D-}#PXUY!EhU!ahSxl)H8!WK~NwdiMLx9*10gnGzN2Pnj7-V z^A$hqBh7tFOb4bnF>-)q+?6$*;ccPn5-ZFR=ZfwQ>%%`|W=dLgyh~ZD5)FN^aZ)R*&1kuj$(WytX z-XhMZlexEbm}3pdi}`w{7DJx~UD}~&k_VCUi6s6Z6Un+D8vK^~NiBFYbaoc^+H3o~ zTLP*o{DsjY``0f=mBKAqiqtaRrH?UUqWLs@fcoBSc439)r1{Z9MEp5JQ0>u86O0uG;14(V!sM2_3lfDW;&qJn z`sr@TF0X%MjcbdDxm%11;DiYoEZ0QuS=Uk;@9nH`iC9j5E)J|OH2em^_qRv_i9pQ9 zc%rlz#ym*SR45ON=IT(_|J$tNLV~Wv?ryGrtHqE6dW)e#@kC*2LtTH`{QtH71oj72 z%i8mcJPu<~6sL(fShnWhD5!~viT|RY{=Vmj&|*6}s<#z|HFVWP9U)F|Tc|ri#M{xK z==rQuFo*`V=|?&^8D_-bUPc*R>r;2(0Km#pq5;?VhAlfv%iCF+td1+`C>_3e;Kz44 za-@K&iL!iNGmpR7fF`i}b}uv~r}#|7SGjP(=GK*u7eI-gX^jDVJztYK^LY%rU6gqW z8}-s|8HRKlE(*jYp0DQ%uRK^~^j4#XXU`3y5Zd47hzA=yF}A za)yvoS=J#z$a@7LXn$|#(xlWAKg60;?=fl194dn#S#6oT@}qL<&ZSQqtfM~L3T(4q z#ggX@CT&0GJ|yZ=qZhX-YOqD$Jbnfng@d?L_cNqsD(&~=V?E1a$8@OBrior1AMWwQ z<;mm9m^7T4j<=>AVT3eBG1~(tA%*ok=w^yZNA_1j9S!VLJ4AX~M8sb*>G&*g003qJ z06>t3Pzia(`7|YKCfDU$~?CfLJ zCqv(DY46Vx0RXX*zZi**o+K){_~zqt6L0DzVKXrs>%0PwvD|6-_(2sRVItq~sB z=_`5#^pk+W%72Zns7PN?lTejZ5(9s)5%9y6AJ8>$Z79hhmZcxteud`8#rY4=Vv6E_ zL4%dRO45=NVq%Jle}ewKY{B1#`yS)`$07zl4Ezz^pL5>#mFI8yb{qH4>yVxn0pa(< QsIjl_sWQ_D8!N!S0Ou!*NB{r; literal 0 HcmV?d00001 diff --git a/fall-2024/math/mat-206/00010/MAT-206:00010 - Thanawin Pattanaphol.pdf b/fall-2024/math/mat-206/00010/MAT-206:00010 - Thanawin Pattanaphol.pdf new file mode 100644 index 0000000000000000000000000000000000000000..13cbbdc35446d86b2108feed97c86546cef71a3f GIT binary patch literal 194468 zcmd431z43!*D$;hK|n%U8l*wGyHmPb>F#cnlI||)2I&S7q`MpG?(T1c9zC9Op7;2? z-}hhFfA8%*v*up2)|#0$D~5YZD8(;GK|{#|Mc9(jQr}Y9k^)7GOO0!;Wdy~}P9>&m zrf*|_O9yO`p%OGSvC*}n5;W1Y(dF0GHrLVRp#DRGAG~u7q(hVF`{4M8W*NJ7uW-$8%ojSv*yG8=S=~CZAry`~8A_hKbq^4th z-7@dhv);Ov?yYtl>?U{9;MXaPO^jJIs-7i=AeHJKL^d0D-NUOm?k34hsA=eH+je`{ zw^!Z6bxj<%=LZ)DCrkbP3HE#LSG!SMS4YE3zS%LoZu6M^adbEJ*VQbXCIj)NYY6}| z440$*R7ZPn@Dj)Kh3O;^&#SL?ZM$p}X!`Yr;?!Zchm!hJH(WT4Q)<|Z^F7s2-+`-B{rR9@C@rF`A8qtsc|U81*$C(0B9bIwxv9zTz$It zDURI1z;GqFy5bpbDfB=yNU+5_Iu7-(weIJnCCIal?yfGk`{##m<*rUPsMgxH&#Eq8 zv7KlduNq?y3{Vnd-d*lx$4KI&q&NkCu-x8`UN$$as{j@1#)JnqYhuKu`#_r8bXQL^ zJ#d{od2=I)k%oK3n353O7~L+}d!^~##LjsZ{(%Vcd7XgXZYNI}iRP9v3eByKIb6uR ztJ5WD{BVDNv1EVo-6o4_k~M*HBu6~x3uV7;aRrSp^M=<~4OortH#-NzEyL~__T$|r zMu8#A?gT?_EfF1=l{@c>oC)#yU%V+DV0W2A(h(63FSbbFE!02^w(FQXyvwZ^WpNJw zn5O{c;SgfvX~v2#0kUm$^FlguVc=6#+Q!FV*O4lZj3_AkFyssC8fuDe< zbHt_?D0|F2uqMsZWRN0J7Lw`tc^!}LXoeP+yEh3X6$QdV2?OE-k#vA51;RQtv&^OW z#<->u#?uda!upBH?I=;HS^Vwo^+f^0M(R1810Xaq;%$Z?_%(wnggF;Iwt7#`>b&Bc z)ld)d@|p1jr&j{iVJ&f zKeG*IRLRDRk}v7*K;hQbZ+u8(&%bAj1L}=(SN%;Q=gFycw2V1dc7MZ7V&+V@HE$S} zZh53Q8=cJ2(WAnrx>Gk-f z!y`V54}K0rHr#h$Z$PPQ?H%xPdMx~KnNxSkgE}8w^WVKCc`ov7g}o!+En82j9CL2Y z5<3YZz+iC7sxzuPXL6KR2vYY8ZN7bamWqu}L!WG$>6Pt(3nViy!>9_c5ZP6tPB6h3 z>SI!TnO825?$1Fe2Q5+hv}ZN1SQM!HnTdm9);!|+M3ycS75Gc&@k2hz@l8c|J8!b* z$qK2;WDjx|`X)M=h;-Dfo9BPR_f5=fnY9^+Fv53km-nexh}NPXWTQG%;8b-M4$xTj`o z!K2^b&?&MZ+$1gGnGbU{wwDn`Gb_hnn)?;Z(7w^qt8-fUR2}eM;S1@+i?e)8`C893 z-YyUFD|n{{Zeq_mRo)YRe6|C$55f*Aq^TM>p(baqa!?c;U$?sb8RJar))tj#)cp_ zFC+W7xeaDSH2t}bm{H3e7=U84G*&?oxH_1*f9KW~R`{jw31$AcEFUXIeJS>h6Un$X zSJmrxNO(4Z6POEXq-AQtos>c3;`!`PRtvD<~C|F6fAvZBPzebzH-;} zQCng3!Sha768FImEI2QNykvhm@FsEH&kS5Lbk8csOh=6o1fTiM1je%n@+P(T6Z$~W z4SNqB$b{&1+YiSgx4NyHo1t^8I`eUO3UB4n&2%Z=U+2;jeQg7yO&1qDMl>8fjAtOF zd+ai}CZed8hw)BVW4Gu7|DIMrz`7Q|i?t7Vge#ZPNxUR_8Ew9`s0enKLU5N>qO58C zT|HXF>| z4j($JON|bVD4!+C*}#>v&Fmuhed{gHH2R4OI-ejT7Kiv zYB4)F2WJDyi3WK-nrRO1LH64IT_Y*II`S8K&r!CS@KH^(+#yRl;faAEd>rM zPLi|iABWFwIkO)~HoYjEpGE09tAFb;k+s19PXBQSVX;!36yI+?It7G>X8rslbO`w4eS zK{pzbqE$r)kk3ZH5(L(HQ;#JuE(e4uO_m(M$8B9ku&x&?OX)suAWAeNHuUy!%&Fs>!+ctlr zDR5Ng=~>DeFY$NrdCjVQkZ)Qh_MYY{acs}-_SRCaZ%lM=MaIjJ**77IoQ$`p6^l5j z5ayzL51^?JEna%%>6ApPWdatMcVXVI4KP(!Xp3{6QV=0a6)vWrV%5ymF0*d-RGCLP zrR0@tl9$hI%^hTwjc$p3qOA^hbHH&WjM?q3UMJirICharqnZsC8GlmjtZ%0qBaqAA z{xqvm(o%c;vuxU&bZ~grVDHRwb(?tFoa*lR?VZBYIysaGd?`Z18W`(d#q2dX6z%!B z#r!W38bp2oD*5xj|Fxv{qb2J!+ zR5yYkF|9flH%hfEm>$;g$>6p$eT;9~F!5TbJG+~9rdn)X*OBkl$;hnt4rVhlYRXN1 z@da4yh%=I>mATOnofvV?Hc{hVd2{?w*hC3*`$vyPIPtG%yXqVLimFQ&DInlSjHtOYqia6MYTvUs#m(9I)|+= z1KV)Dc@tFLbx%taW-XK7SU#Op^nC&zpfq$RzZo zTN;$Cb6#eY*_h3B_!_Q_iK7)t*G%VoAPubD$KFu)A@_ZSmYIq9{_#U24IR_pVsjcg z=HH0U3l*fzr?{cr`iraAI37>OsO@HuAUsa9mC2MB*la0(qG0ePV+dJV{OYXC6>@;v zfI%GIVkU`eI)w`ZSKx>ZEvTyQq-D`fpJ?3nQ0o&n)N&A?7~k70hy&|7(Ou3saoQ!- zCkdsPy?56tL5-By;|X8PZt6t@tBSeoO3xfCl!_`vxn59(gpfm4hOC5A;ss}6Ci!$!#}1-);(ALM*Bg<5ZL})`J5%MMvk!n^ zd?dgAii8Y96kLbodCOxXPPps%N@qF^rt5XeM&!m zk(-L<%_ka(k8PyIdJ}R-Deww44YL%C-CyiFM>NJ2WkKa_yI%LuQ^~AfnLto3E#M~i z79y>{B$qB3g7-ag*rLw%IkK#8DflEO!Ca+smKAzn=mG6lHd22v!>9eUG3uap!CYbT z#00B=OUXLyd0b(AZ=JOO{2ok-BL+2BWqC~zbJ2Rh&T}E-31I>`ixXk|Wzj<{`#3ao zJt9veNgZ37eQQlztB+4=9bOMTT5J`z+nzv3_bBo!jN~`k_WBUDOE5JB-cS*Umpsa~ zl;0Elbcl-QI7H$p_cN}L+KrdwcCpA-xjSWP>>jOTjyXzc=WiVkt{|r0sjY@SO(b`B z!S~dp;hu5#Y^wp+j5Z&bzOL!rVx&c>_+XQUg0Vm|R=|h4Y|q@~!@?_iE%mQk*a}_cxx<&bjGcda{6bEin^W0vY3s7Ca;;bG?)AT_ zqk7vB$MHO@#$8lUQ8G3xjx%9>yX_k6rtaDGKkUA5o9cegF|qt<`_ca?HI{R<(4|t6 z)H2f5wxN=>)v~#VMNBpIb*U5$b%04T4Gl93E|svZp}v6)E+Y#yE)}n#jkT1n6`#4O zg}IronGG&8E)}1-iMf@mg{HPH6~C^Xp|-A!5bqzEHb0--w>>J^<*WNB3Xg^%(dCg8&12{1^=C$rEr0Xeemtr%+Fy z!oVUtgMo#Iefsnn$}@OGBxGb{XgJj8C`iu{kdTq?iGY9t`#c7N1OtOaf_Vyq^j}|h zp8@a?k4hhBf`YsNJc0)Sg$KE71z_Hb`t1UIzd*sk9zS^m0s(xA4jcw3@aZ3qfaN35 z#~@(fcT)gpP!PbQXQ0mj0FXO?oX4L~fYs-84i}QKmscwqh}-4~H<-6&O`f9Xs56q< zPX-u5j`l`-Rl^qP1Lv2AnO!{fF6P-U(+Tl)x}5tK4qG-&aO%gZCq38U;w&Z0s+ncC zptI|DIo-=R3M30gYg`|N_`4R+xs!4pHy?|u67tDhq}YsqR6g1&P|O%(p0r*kz23g$ zqowZ;G8gCbYi6QU^cpPD;9G~*h&}sN%3mOm!#hBZRlo0gV}3N7`x;!;2DJSUr|mKR zGQ~|G)1dAkr#|^6v=7%V<}lOrx-ImaT|>(nmiQgOch8c8 z*A*6hF8oeeRaMw>*VVI0BG;VzU`hKdV01VcuMXC$=ff^^>#A){Exj-FCR=uK40dH!OufYEKgAvU=k80pPSw zu!iB$Rj2j`I6R%`nf%!sp>iV9g#1wme|S)eQ$@-%CF`;}Cd?uqW1dlYy~qbfB$wCisW&+7$L=^2Q7&uiYX>(t z{i{M6n6=4g$L`NAE{^S~^4u|-lsEJko*djPV6}1p3vBkWbXwz2z~OWlAA;9IDhO}` z>));@9l1ZM0Dx%e_o-cRyK%5_b0w;M;6-{xE>_vf+PVzH4=UYtcVTxu`64)YbBgLll^aP`fW?es@DN#=0U)zfQ)1UiT0 z4KKQA-#}fsdtBZDxYlO)c9O9L-(0>9Vd-N+OJdX+_W;_#(D7v$hd-+#$e(reUKQ^p zeSE%lT$7|`?=uAeSZuF(Dt=YdB)aOe5vb|Du$v6N?n*Vh(#Bu3VZ{7L>`&3I@Yy=EEmcbnxgl zx%|JKLgwUtK^RnwBM$&{mS;>U$3d`6K^}{`h8f$XWdD{r2rz|FP?Rsl3+8^1$)!!% zwLiB}$$rxfrzVE~iq;TqpXSD;4tFGph4iC5h2+fpKq+z;j6!U`E&sj7{Meh& zK25m4zkj(BtyvT2qF=S>0+p`p4v<9DaofgnzhNLIvCkXo`;wjct2cTjqddzEK#g|ehJ+zGny=rOFX z@3q{64!`I0IRC|m`w{@qVYmR*0G8l&;W}mg}M)FRSP9;`WZwmhNc=WO*3^^6E(@aY)Un(CH zd?CCE+Ypnc;s1h&^p`^B^(1!W-kdz|4tF)4q7kAWB36tTYcVJ5#TpWX&eWH9Rg{+no%;krS6Rh<)fn5}VOf%0cRX zk9kkxTcN|?h_3}4`0vaMNb80hwZSRO#V5cM{NjjV>~^W_R9KJ4`D7jd(1@{B?WQb7 zDR5QU=#j1WI-x+KKaKx`F95cDQ?4Jn_6rUWcpwFw=AMn^YK9>Iz^aKo$gabO1pq)O z$OEnmS1RlUhf8n+icg+(L;oJAnvExc2e99d_53yrV9UdL|FX0{aDY$0EoZ=VTf2MR zm|+g_Gl1SDws_da6?77;4R9~q8&S}R!E83z;LzEm=#iC*b{Se=r2Qvld0+st!Xd%+ z=C>yA+Tjk6ydC3~c*~V7m>Me?Z>N23#9V({tbv6l#9QR?heKSoxkfWP%N9qbi)VR_ zvr-n%`7Rmw@P}{u=Bn5m3qX!$iz76gvR77(IE z)W7bcdX1U3*yG~$+lwg8~2yVN|Nu3LMzK7?j1+QkC?v?7AS>gW6bTYl_CV4cXq=^93%sm74 z7QJLOJHM%M73_K!?D3P<@3}wd6fHLGiTz_1H_j0KH2G0spoRK&{fJASc#dDKX*Y%C z_87Xl%%=hu^e>tN#Qz_|@mqJR80&)~;E`}h@8n^5S837q*Y8aJFib#j$<94)`{twHR(ciQafSDplE11T-J$aVslK|xkgZB^X_T2)7>u3JWKFM5TgZi@*~#;PJZ~< zQN6SFY?QA5_Y;I~9vz7IA1w`ZzfgZE2bCB*r$R`->dB1-{m3t?_-Dlgl8JBXow>dP z(AE~^k$m$r|H=Zi^Rj1Sr8aEy!l}OD(I)Q%P@F%h$*&ARzAhOttEA6bupJ-YA9w(- ze~IrN*Ps>dS|4Iv)pZP>AiulhzVGu>&zY-L=x$^$4njP&j+$nu!lxC0S@R7H8=$yNRE?TI^1FNaTAZ~t)&_v@=QY~N&;y^>G2OHH*)+1M>Cn?>sJ z`!xt_gA*wX>T?&=$5rv}r~w(0v*7*}DfRDs8bZ-exs4}5igm!77*+(gr-l2sR;PFp z48ct^&_d=F=k)#nDntKPeF9vS+p3H4loJ&=!H}z_l_OL9k{-9q#v{fd=xJd(Q{3Ki z&ws8m)vOT50LS(24nXJ90ppGlo1hs$r2;w-ulceo5#RTr(R(LuJ? z=zwwKS!D76z`C>X0x1K)-H-e@KmIYB0B~!e07myYA+;YZI1yo!=TvhZKN^_TL!wNA zxPQQC^NOAQ)jvRB1*C7?;|GkXG2s2_2Lz!8ZZTNxkiPk{e|xaHzD4CCW&83KVkRr@ zJqoOQ-52RPccCR)XT>R7a=B==7iH7US~VuJ$Pi_Ql~nkWAs-Oa`lZaqxX}4T zS);$uNCgOqRKysi?qvJS^es9p_+jO>zzwPi1|yjVE|njbh^ds6D3y{KwpNk^c&dOt z!`4PzsJh)HWw(D^=KDGaCU&t*6xp#xO&%GdPT5CNI|Rsp%m`UV8`9p=xI;^6B3qg{ zn$d#yHoes4R25N>C&_CVO;A|dK#@2w(wMd*)}KW%kS38np@v0>;=n7I*4N*za}z<_ z{k(W&{)z9_4XZ46vOg6a*>(H<6iZ@V$8K+Q)c!4kv)>LaA5m!`N*DaQdPsJDduk|zRZmA82dn_^?G z_4pH&N{;?uH;guJ^)R>d64)8N`upYh6E!dI)#52S`6A4IVAuKk^Y$-z)af+^6co=V zVyAJO;}@TVT9?u)sb;S_C{DXv-Ry19yO#|^-lpUsG@T)W*|@yJPoL8iBtbo1J3c?* zgudavmCf2HzRXxImpowtckli(q*2{Q3xD+_C95#P{M|_GIi0td%agY>U9^EpJ$HZ^ zEOZ5|U6e#he6KseV#X4N7>#`RQ+h>kek$~7P@W161=50PoQ>mWqz1g*3+o$G{LLkv zf}9lP>PUphVoh1qHj#WV?ToaRrr}}HEi@6nejXw3(%byF3?+w6*hD!#!y`bpYgSLh zP+6GJ2TYvXSqjI1aEDj;=^3=eqQeBd6R4CBnc)-KZ7sluY}Nkg!Y&)9MvO?m0HG(Y zEfr)o#(r+aBJB6Pa;WoFGj)X@$2l6G7w`fPy{bx&A8NVCPDS*As~ z+SDMm$(vzm+C1Jj5Rb?{!vv~k2O+o(Ch*77t5B5rJvr#jL@xm%7wLYiS6dvccH+b` zIQI!NMf?;hTpiOQU6zLc6K+OmQ6M+9qd7?%Y>Yk|>0;yTkR<~TLkOc(IU32Xs!Ncp zNfI-JFri0laZqi=ibt}3dLWjuziiW8RS+6(BnI{<-dLd05_b!fr@?A8?`6UrU^5YZ z`dT239UZ?pjUCC`QDr>@{QbVc|J4m7RYNBJp56n||C`(Y?*u|8?<<7=I*1MP`!_Qo z6B<;*s_4rYH%)kw7duu(#y>6y|)IU8~|d93nSWWnDW28tE`vHh=zQnKj& zEQfQ$<`gHC*A@IL4q(1z`H^Z{sd;x%o27 z;d~LHvh*Wej7}}pus(f^di@vq8J&i;qq5OA{ zJ1w#c*!MTFf0BmEr28#Kpw%yI)NkOq8j7oUMF{&JL<2+0l6Xzfiw@t@Vb+;1Q!rcS zkCt{|tNSA2*zE5To4-CiLJMrurity*qXSmlx4u_?wA@!PCz&lw4)n()Xh;=yEG|tA z_F$tf!O)T6nB8n@xf-U^XeSqReWWivph$+h3JS;aj<`iSuS-@~c)}aT+N0 zYR<;BxV5zOVlEjY9<)IWAs8e>+VWazZ$F*2@i z3G1Jhg%d(yP=I*3k8uI(QdK_P?fMF63TnLPJvJs)22omh8{Xdmc4=W%hGz(J6^JL# zPB%D#f?ZKCU{AK^DV0(H{|+7vHxOxfg6|b22hW>(Vs``106mwE>+L>3>l7Fu>yFnS zeVX8Co@>97TSZ-W)?@T6mmtBr4$(Naa2i)3hqTOY)Szi{OQyjXYP}EbX8I2Bt|^D6 zBmYJ)2xr7#5LiHChYKWLRXpd>?BT)^W6cXm5ifkdBJU@lOpy5o#ToIP=&FK|0;8)^ z4^cFMn^L((cYDDXLpA<_Mna{dYAuo00yk)4*EwlCz;RHK@y^!tJ%gmq>Pv_kf)*=O zy$QO4?613DtT=gm7Y01cfO_Voxd@1?2z-8931V;4g)?T;wv1rd(}7K%MrV{mxLLx3 z_8=^F56j#V0lgh{%@8YWo~w)m%@Y+7nwBA&Ol|n>mBa zl!H6Cu?y{mYt$o7J<5L-u0GR9MyQgO)Q(79KA(ufp!0*QCa!fQFv~Hl9JOdph-WiC zHNVAby50}E_T^NaGF@rRoR7|$`Mfum+qWuI_Ike0iL@$Rk%%p%oNEWu73hV1M-TD@ z#R#Diwbi5+whpzC3t3u&888`Z!8|DO9ZrT>l(m<@hj-GJ;uaYKH=^k+R?6e@gvT7B zTAn+qi5{Oj#ClJYL{~?tc4{-}ds|Z(>ADD>c)l;Dy-fIvw$+~Wmz#yC7qwI&8BD=9 zNNKNU%>{2JI3bO&xRt&x55Ho%1Aw_prbjDY+M;u1OQ!>i=d=XYOkR0~)b*C>xG(Uc z$lx7bPh<-YeJl-=f}0j-$0zrdBiA3CD41~K4V2NuCnYlwYJv_G?*6C^ae~P8*6zfR z#J6n!AoLjTg_iLFI}RMd#K~u>o-U4e>x-{*?>DMjwfC0KikIEmykrNfzst>agg0WC zU`YwBDS;)&=Kyb1D5zBHYH5qK1%U^M5=o8ZH$Yy0RB~Y7-^Bh&n#{ZJKQVgEGkh=3 zFC-B*k*5>9?i)!`t$<>EXv6Co8kYGXqMw}TAt%j&2K5h-VYVdxWbn0VQZ85TE&neD zUylx)fn=dM$3*!gHeeK9A8I8pTq=an5YH#drq&P{DSr62;1B1&mns0 zC%>rkjLpoh+NoaRXt^`dh~6-et++&5+w)_|Exapb4HzzBm|qOi>8Q;6%;&OKW?grH z#>7j~s==*@3a&BJrs^QQrCElrvWFHk7v_J8luYf3()+sdq>;Wx6so!+O|Rz(s51tO zE~kjMqFxdF9p9*;D~K#2d1PZVjh_&acu>4ClRqfwM*K>R=Tr9bLd`GX((vb50fKdZ z*XX8(_{-d?F@Xj(MnYp5SKpLpm*egeC?iM_7 zM)6_132pvw47%H~N6Tn2gPdt!H-uf0R!ttB7(|gLafYQ-h3^gjb*#EVSdwfE#o~B| zis1Li{Oft9auS)B95?0tZYdEyz%5c1F8WadU7*DmA)MBdIILA-s@JFD4v^3B-I0{2 z43rzmg=q9_wx!DCW&K)M=DdEJdEi^A79=r0b&DXR~(1haih(u z^gUWQS-D@JA(r1xq$)|Jlw5aGX@D+D7sWj!ZIU)A@EahKSj~Td{ev`*ET!GAjNnw| z^*TTBcm9=cY6;Y>)}KX@O4IH7Gc5gL?1-xwU< zyMgMmKY8nqDrk-pJ^B4wT{I~rx@WRxEw=r8oPqAxr23(X=Qltw#4H71-`~XkL7H1`Bk4OMHU^B! zH-jQJU4FuCD6)j5-cO9YxqSy`vt<&)<2QUw%Ki5Fq^ql4M~3v!pDE3L#VwJ zj}^d`|05T67mz0-E#vO@e<#O-O`Bj(5K6lfpfb`JHeVI>oojmQ`#NFa0v3WRn9QTg!9A1o{9`_a8%`;-CY@3AHZ^3!vu00&VRc(CZRxE8C6Kdiav7+I-ul-VG%=v;prSekcX-){-+i`0!` z_eaV`sl1|G9-uD>qlQJOutHkp+J$80=`=KRE#C_WQmRV1t8uDTF4{Ui>W zj!Vd8b_Xc?)k$>4Sy^R`mY`L+$jh09+X!&VBv{~N*`ily1grKkoxuktI%g&M|7!U~ zeaZO!@RDDmWA@=#jZD82B1+$Bg}V|tC4JE1AD)m_uppo`+KYURbFfzV2xZ zx8rZR85U)VBq%8rX3}RF>G_2Q$?1n?FNrjs!Yoc)5rAf{kJddR5&U$2*yVH49FL;W zINSb>ms?qWHWrun+zal=ZOfAB%nl`AB)Ja$to_&&{J>yZW(t^OAv8=K%docJEG#l% zqJIbV34;uQlaUB(#}a;sMOv{HbH~?mM#uk#lV#ZFNJiy<>+#u7UWPIWo8i5cz2(JE zWKs0hf0NQ;i7Wbt`XX=SzueDEg~DPcmy_c6lO4F9%lD;VWrO?b^#-j1cOXw`r69OFyEc4hwqsqjzG){kTOwR_nLc7__wUaV-NG}R$ZLU zEFUW9c#`zw8NQN#l6+tvp^$IuMWUW%T(gnM5p&NHU0@&GZx-HUCT0H-)z6+RxiIuJ zN6#Xy(oZl;dQKnho=e-e;{P$TzsgLgf_22)p5@XH91W?g+P{tpQ~$6(uY+iXU`geL z-;xT+_5rlK9maQm>NuT7XZ~#D)`#J#K!W_{P5AwZstp5d>niVd)w1;6n_!w8-l8BKkXO8@<@d*?T@iS(EMhBiziQ8H zC+f-@FIA|D7rTfi@x87Gxf1bq-S@|Yf)vmSJ_UT=Le(E(`gFEPDKAG}aEv9coP?f8 z&RXp~?QWNjkm)ZC9Jhat=!auS%LPh_qb%b4)XDgTO-c$4uMIz2EmH;{Y9qD=|sr4R8R65Ake{!>Z(za;R7Pgftt#%6;W+>FMfy^zd|fN- z@_+FaTdV=o+EB~$p$^ac!2|qDseE>KhVTEouNU8njk*-ilP+K#Gg2sc7ltVQVSm zFh)n=<=m<=(ZY>$;MAS=;Yh!w981ff5ULWBet`sU{HBbuQ{43H*c{A%eFHy_vK{^3 zbOg&(s}^}lJ4q}T@5obFk3QX8SPw@-wuA7$A@+BZ zZKCGM)j|l;N05>M&ZzY>@S||o2kzf*pJsOF7pd}BAw-yj;69p#SKD#e_kY}WiAX6h zDp|Acj7 zFDi-xSt2s`qX{1Y;aJD)%#b&US0SM^N%&R99XXNLUVanaG~~uK4%vB}T!<$mMK4W8 z(@|}mLhbjSh8l?~Q?(=B9V2{tMb{RXixe$NN;=l)D9*u# zC8aW%mi#R4Yh$tWTYBi$FGoiHy1UJ>=&1}}vYAN=ONlYFFF+!E=7tnT^Bi=&@fk&@ z*=?V|@CcroU5eb!Us0e=CUyc#VjtgU!!#}+bhv5JePSPtf?30KbS|dNgVoQDSxT}< z_D5MiX6B#mjpB8A7c0=C!BUWtA72iP=M5nZi5)!W!FWckw0yorqix8_aiQUh}&t9c_C zQ%p#mh4i@~pA+*1-SU#OV1`t~)X*Y2l6K;TM5;myiuohb`AZ$tdKQI6A}-kyT7e?N z>r(Rue|yUyo!dGjrdTsLj7UK{vv8(z#1R_2H^zG|P zVTQW0lwJiMCwf%$NNo*ss7j@Z&ac8a0_OEy-bB6aw#jUCY&{gjn?bA0IT3H3g@oL0 z_ti>s4zYQW!fG7w#?&Ak=Y&y#$*6^?Sva+{0%7gyRgOPc3Z)ENOUPIo@ zI&Ya(jm=j4EWMP=#>@g3oq7j!V5Tf3bKNhzjaMc(uF`s^TBp?Gw_jA?g_1*EQO>5c z@+w5lMKBwFFmzYNWHY~#1j!peX^kWDMH?5IHa$`608CVnDQXgvz252m z;>{~A8&}{zP`0)>B3?@&aWi$1@Tir9)kb^+%9ptMzGEo$iC~{mysE>!-)IHbhV^*sAOI2~$R}A>(1*zHk9$ zYlp!n%Wtwzc6TGRZ|uDTye~SNY&rm~5<@^B(h80mDOm4fzJ%RoE)VoCG&*9wvbR`5 za!fOo50${+RR0`UiIh@#2jJVtPRZLG7Gl}k$L|ji5+*Mw0Nc+*Mo4eXkT(>`i0EzC zJZ<+0kB*KiQPL`q$+^~LtRATs;wIX;H2H)@N%v}Z?a+VGRj|}XwCkC>xmI)} zYEkZ88*uXvM+uL5qZJ5z9fMbp^(#dh58N*jXP6c6%~CAzSQ zDpg(i6$C*}&uv(QoL@wLt$Lb%clW!HDCGui;2+<_=_0FkSxA9z3xzNXV2%2BiVq$a zojQa#Tq@d{!%JrsTl9Z)zTyie9cFM#A|#^-f6MT+Z30}&qHB9b^n|aY%u;wXbL``k z=%|N3ExdqPi6lvW2UAB1E%ml{bvE>v{s76S3R!yK_!%1TH&sZ1c}2$9icW_1yrJ;& zGSYPD%Zb4M_=*E^s?+kR#B;2a{wJ&&~IYqJc#+6 zTPCXjY;DbiJ#&bZ#jp_4%t(;Gw}NM;9AQ)#i#O= zQ`abv?LZ-f$PQE@daKP+gk3`~$x_1o@jpii$W@-J3H7S*%n2~!W8TirSzJXS;_Ap- zOdp;b))730o+S!i@qUSl9GYLhR(r1U)QE(o+}g#TBABJ&R)6x7e;=!YuAJtkD_gB> zp|31{x#@Erl@!ye5dt}?DN0s`=pAG?(C4<@@)9@}S;E2%iY8;u^$V3lL!btqY--oj zBb4G^26-$rE|kNdpAjU0%vUMeCzA3&k|{iT4#roE+w!xklngOcS<5H9NgQaYl7{X*gz-f<*9VhhqfM#fqWh zN9>GK=;CruYi+T($?`rjxlBG4;q{kK;4cm}>%R`>oXf(t6wk&LS83GqiF>7!&suVk z&rKC=!jh=w3YYcX0DRb_ad&td?`)J7qe~-qt5361#v2umdFe>utzkEVB%_049i811 z80g_Q0YWV4%U*0ER!Pn*_-bWtgPV5q5QZ>48QLGFRD?^d;i%#k+D4}G@_C9vhm9bm z>ldJ29ZHerSW8@-fwGuJlGe$1H$=+%q<++#4>9Lc?cfPdopQp!1!2C7z6AyJ-Fo;6 zs4|&jwD(F?LJ8Q+CAnSJLLdjGwV%N~|9I2V_7dD4{0?AHYRr}p^3lKC@|OS1O{)U) zO}O(N0NyOD*TnoRBu~Q-c3}rRdLJ>-UCyo0C~qJBhG*zw__#~N^{1>{5rRSUX(~c^ zlu>_2H0TQldwIG8uc^EWLt@1Xha;_KqC)+ClTfMy>5#0{6@`MDEhYzEENG%kEIiP% zzz@Qqv;j;`y`NvsZZScW*%!>b=$$LG2w-CUd(%H){n8Y{Z#xRAVyUyITrH5$ptpcx zW}D!pTsLM0ulKX*Rvl@L&iuh~$imh$@-x4OS9-?&!S^@n z!MT8M)XyGYFDJy2`g}Gk@)(W=uh#1-`K(7_k0F|5bA$O2UqquxPD!Rm#b|*}_I#Y0du0H+%`;{%<-2U@vW6ElyQW)Pi>5`ESoA>q3gK!ec68bi1hM?BQRi z%ghv6Cb4+Yk6dp`9s1~aMNw$fyZekclGTg=eEhSNS625uOP@^O$rJEwTrX$UjRfV(STnT>4Q5-^LIU0sh{z|3lqZ z$Hkd!3pVc7I3c)o<1WFS#+wF$CJ?L%5Hvu5;O@{k!QFy|03if-2_7s7t|55vER%V; zZ)Wby?w$MI{`M_@6jfdIojT`~9;qrear3FCmiyZV*`7sH(f~VXszM$UCkbWG+9D@- zEBC&NXgCQkz0Djkmco|aqTAXSLm>ldOU1U{0V#weiLSgkUtE-1P$=2dp579T6(#td zR}iFeVE~X`B`?~igXrEMXU0WN=%GsW?MZp=aVpzIBud}O`J1bvMs=+7$iW1VbDT)E)IDi8h^@Uk`a0g$~ z1DAv&3yss=JD3ZLWk0$|lTBtUc17(cTeFPMcj>brlFD9m5c9KKuuw|D2@AE#0_q7D z%NDB#v7D?==sA*@0e68Fk2mX!?(6oZrx?C3(+k3MSWswWAz=<0FU(4kRv{@RCE>MJ z(~wLP9N|rY=o?y59(C4Tak3%o^+{I3*+yrxTXBFc{=I&06QQtRqHS!-CEOA9kgWS9 zc1)G9FFBD0MMa6c)(sQv=ATJM_&0(j-^d#RM4E>zYNfT7H1+M!wQZOo&?;oY@}TQ& zC~aM~$*fRn>3y?qZgwx+xzg=}NDe`p1uM&7u{7EC@{Y8mXPN0wrGLw%cy!P3APF`g z%vjNzH)PVDWUP$@uiL7Mbh!T@s1h4THdrUs{C!Z)Vfuu^coG3h7He9X^Rf zS-1-Y9S>5}Z40))5^;rCJC{FC0ftO#c(Z2+M=?04FVr{hC}>6D33e^?rE6j!9P5uF zP*F=BeOkgwPI-ZLvYBfG<#vZzN0KSL<{B6hI?PlU8=$iq#ZFFrfpok@j|tuTwum0L zFjVJ1O-%~vd3Tip|HinY#>&OlKz)F-9aT$+cj>Lo z3Qe~%WRX;X+IPSk{UtJM=Nmz#e%kK<{qF!ag_pbb&v_3c1Gq-jrgfznaxFc@oE_dT zks)?>#w~T=3hNdf31G=7TqBykuN~&Sr;4pa*tHxRmaCD@OB*bvPuTLaQNv!PJ@ahZ z@L=Gp5_oTCigCYm1Sve~)kpFUlckiJcMo1I(Sp7Ml&;Bfyl$OvTa~^8?Cz;$qkMkE z_^q`6pu#(>*+7++-(x7i@NFVF_p_RCMqz%7dgda+Lu$*{$n6*al^NogQhHU}QH2gS zU2VG6kD9^tg_K4+xmC@0&m*5}Sgg*7Yx8pHUgwNz33bAqCUZ5w+sHBTwqh=w;zMvQYj9sq3vlZ@G~Dp>1mG8*|0Nv0hZ!pFOrW*q~OfPEVbVufDA(2~kB4kqI&F&(~^> zS3Va`gf$xuh{}mzS%cgYpJfR|a#=k!AAAy^#@trw%E``XXsb~}3+DR{Xjr@R#)~?M zUuTLI?7_K^Jv6;XUOMn?nv)}Xdq0%hq-R|}X)pXaPU2^Mbd9~}MXimhe%d4Rj#KNE zHASP-n>$&}2HZ7Ev|NqcyR=q&F*+>Hh=cH_weZH>JVcE;gG_~ieEQXt#KGb1!Kg@n zV1%J;q@I}}d&wH;+FV_Qgv($Mr>Ge$sT1ujb&HLpwxh!AR{B8k=_JQXRt@zzYKDau zFP^ED+53B@@f1Y(dBS+DEyjVyDu%J}(pW^T2O4Xra&i631jQ2uT}(Ls@D!G)J$2cL zbJYqEe~zr{&CZg2a;gK2?qe0bZiV-Y?*JFx{q9`BM`|i+yaES4JuL00+$LmF6};lf z9ugM;i;rdT@O`h6cQaQ!4crCdq3l`BIRlMz#wnmiBRxlXUb-erux{`gm5k4b%*map zpq4b$%C66*hA)Z^c$!3~YsYsAS4|mFOtdfA-(4GhN=H^i5fJVyOgMNVqYHw1g^gm{ zDjM)@X_u8|mR$6Ym>qyWDobu>yCBr{oJ5yyC0-btyp}Q>emmdS^+*Zz8U^JCz}3cl z=hNht8=l<@qk{Poyvo5|5elmyuBX~ujZyuMz$5~qENUQMdsHEJdV=mpH3^Q3C$-xU zvh?wsZq$gj(-dC;Rr+(DR$RY%NNY|(fo%)kBW_l3^4)$5+XUCg#`jJ-iay25e$q?B zrsMt!u<bQIwRFQqG4i4sxB^haQ$2`9P2wBG9r2eFL8n#q}xJ7tm%gU3R6 z=7*J|@*ypeBb+j-2WYCn_Y3vy~`CTOokolZ)Wh5A{Fb2v0EPr{N(4>yo+(^jn@r#@;nh9`||{tY4PlER37S@HP^d-PFD9va(nY+W z8R)Q^94zPyTIhR;0IguAB`08dzC|{MR((Tuku}XksK&DLxPjU9#&G1Ln(yNX>VhF} z`h)4=x62ha42=7L%$E19W2wTOR|RTnkeWE-_Huu0VU;g$f_~F5oqR(qE1XR9Sd})Y zs-q%{TcwT#4R3lA@I`Z>M|KQmN#?;3oi4a4fFsZMg^h)ad!<1VqHK3Pk^S59f^}+h zI%E1FMJ5i+Y`PtAnGhSk+MysG2trFm_i+pljY1Zp6x<3htU~$rSlPaR)~-A{f*EcY zm%E(6puRskG9ValsbDLtGaKVeL7)M_pg~TPFUf^{RUx#vpCZQ>%*@izJ^1pVNS}GJeBw!vKyAbov@)4B#_nt<YTh(z@oc79O~n&+^OaQ(2NxA&K-sFTy++|{4+;%ZXcrQ=8hMvM(aqZOY` zGjC)%98WevjZ9YhF{t0~?DYk#l(nqQkj3Ti06HjA>^W-v<#Un!d>37y!*e=7wK|SL ze-7q4XrZVHQ}!a!#B|6Cjj`)VZewrCT?rcp-nI7cfY-%Gz9_%{wO7;dPL!w9KNtTW zkuh=kKNq)uV(_mVbM*bPb@i$3C)fW+u<rK53yRSJ@r@3*KI=iNnY8PtfKY-oix#+a3Pk2?bO*n|1l#vMQfTZ$snh@wn+TCtU z4T*{I=G0d|8QDOlQSb_o`a#&^kyMIMHz+8b+mbBgeSW{XVjM3cNJ1b(7V27x>D@rs zFpXvdPYuK-2J#Q9GP{!s6}8$}7dll+xCR?+#igaC0CPvvAdjD&CcELz3zQvT9YzejkymSMx9#nTy^7>{qsmL8#xiE!)m?5+)FJ56`7xh&%N`Y7#e_Mh8I zLfAM}S|U(fo1g7Ffb2={3n%i3C#K|yVX^ZYz8SQyZ*O`Pl6vyu#_sv2dsiP+Jr&+) z)-RQY`=P1W!%&(zc4RdSrgH6sJ9l?lnkTjhrM&7NM`~C)^Y7L1b+xLi4RGE!t*ZDC z)=+6(Xq=3%;-~_5yQbH0fnvZ#6jIpMQY04!DB*=5C=LMZ2iN&Td}yb`vEuFLmI)^l z)3H|XXVKmRUfwQSSb56LQeL7{WFxwTub+>(!CTW!HSAWV$Z$8%(^4%HZgc|qim`1Y za2bYORn#B`hwM57&Tw*)(Epq91no?@bJ+D9=Fe2Gugr0C-?&4M`!4aA&F zgLnct`8kS=bYns6_~qdwD~n^_!aA|>82FQ#d$MfB3*@hsJ;Y)x;i;BK@R zqiNsFzZVIcqB>Q48~-b~ezuZ{MizXto%j=x zF57^eqHU!zZb^N1P-(#ydn?-nlGM^DiBnwbvBEj9*zgiM`0|Pu;qW$?$y((vsK3>~ zUOl^z+={&SVg0#~M|&~$dua7CwcVJqR$Ew^RT1nki=g@7e#;gzLeHMcmavLQLTI-( z#d{!$l{Ffk|17JlGk0ri1a~j9OfPOO)QY@x1%MofjQ*!7K1{UE z(+Ed3avJ6neZeaX;Bnn+peE>*HDN`7$V>xwif9)Dhcj(eWY`R< zaMF7-+XeU~RxD}@giGT0r6xTqbis1eMov;GYQA8Zvwgjm*)OVH<@X(M-_2ey#SO%a zXZpr_n>75MM891|>>$`o@!Ek9%5`zjJAOQrj>#NfW$-?Dp$I<2YgXx}Oo~zg-H_A`eAC;v*Vk}DNS#q9sXWKwjREs=4 zZ_iAsP_B`aSLz2ZdUh{rKaqeFCm~z~`df9{#~cX@PW44^wHz}S9jzD)&!3Jz3DyYj zHCp4iYJ-#@itB_|$mXjC1YR2gM}_kE3#|@V7wDmdwhpFG)^I8$p>Ws(J==>uWEKkx zbcptj;1f}<#C}LX3F&r~PyFHYDH}FJBb+pyOxB8&!4S)bdxj-)qa zpYU9rE1Y+$sCjQkD^pi=Rx9>oZM_AXjNoiTOEe*c%Pu971ABvb#2flDZ( zbe*zM$_QFA#TeLNTQoITRX5-3lysdNYZfs7uAa|9^rof%w%u1i*rbqP%n-}Mu|%_i zAbP<{R5dap$JQ;+q17qt2hDuT8rv_|xI#&Yyc*UVE^}_znoyd;@$xRyyAdd=JxuBL zk(K@6OXP!9>Psh)j&+ly^R@AF$mHz_UJn$x6}(ZAu_g8K82WC8dO_0M(G_A~L^5P; zom!`gUOv4fJ+XmSt^Vy$b$$eNvXK2sewre_@20GKD4m;nMqMYngKVx_tHw1JCL}`X zgtysnG$P`ELkeUtG_#-DvRzFwp^Bh&WiSI~iv&MV*dQq=G|6Rpue3!trZ(FRcamlo z5N|bIcoLg91NSC3i@I(;NgCn&dS3LaK2>6r zATKwk+i4ka$q6DLvCi^B6%Cw@jqkVJq3flZXz0;ZN1*!A;l6ePSwSgfX`1vjS{8Fc znsiP}x(ap9W5bmwUV(buQ{;rXG8Z)HJHKPbpX*gdy-$qMidWc=t=snHMT9LjB40W_ zJQ#tyBgmTe)Z-c`X`j7qMvSG~jXQ8dk7Og9;C3*ZNty1xo^=zN_RF009Dnz?PV@Gh z+v^0yP%wxt3?{x>zp#J+>HJG3&wS2aHqcxnwKgr7^WdpIeRpC_fcQ)_yt zgv(dyrbWF0InCUa)^>xCGQDs-NwQXte%GN+4KB{tD2W5KI@bu znk%#o+~Gu9(|0BIs&(d<>9^brRyYw1r`}yiL3~#emZcG;;4*A>In_yt#@@m3WKyT~G`Ni}yDViS z(A>e3pJTLwZ?(~aNeC8@19h6JlGM^@vT1Jegl`~LCO+@2-?%doMF*)qi$CQ={sM-Mg@WOY83 zR979~W(jWXYCb~oB**i`{Cul9*ZVB`7(rzK(c|pbKDHYz$)EB-i?2^rTIBt6=>afq zj3nIZ__zSTk2Lg7$faRsSnygize_el@2yW9N`HR%@TZ-Xz(5`I>=o+vA9EEBlCoAV zhOwi;9k`luG2b0$W08j5hq}ImX8g%Md8MKWeP&Z4?_I^vQKJ@K8XFvLrs;0M+r?JO z)nSK6({Gb1?kKTGy+rR{ya7+wSj}dFTkv`^2Ud^wz^A0c#5zEsgaV_?VoVzWQXPn? z$|cK-11nX2v7%y*i&d-fm<1V4vq)L!(+Og9c)~a=%`xb;mdkk4!IvpA2;YncN}rdK zMmVUroFdI6!`4yMGX-bRQVoNxE?lL`_N;Sa`u6fkB)8)N$)vg@*)9J<1zh^3@IZn6 zan}NtR^;28L8cvUlI(|Gh*)iPj?`CeO6(CX+}O z1x$S8V1gXowYk=>q(hRpl0=9uUw;Q|ksjHAp3I{==nzJ!&<9wW8~MJEXJyr@3OU(Tgt5NR>L+XM4oV`>5dk;tdD&(D^i-J zxiyG{9Sibc^%wI^Y=2p)$lo$L?{W`=F9l4Pir%*W&gNeUSkISLRMj^0D~?PmAp~cm z#a+)#E$7g3CUp!wj-agQQ$FvSJvP45_D1u_bDxhsSn2fyYQwQFgRtBpwKM$^|g zRCnmw;hddJNl4|C;Co#X7hhpD;$wPd?l#Y>Zomzq=VxB>Mx$a@pbBxSVkum;n;I2n z)gat-WeG`Yjz5jQm%o|}eZWynqXl;#aJJe$x;U~r2=})(@a8iJ#bNi+4Ef6T$W=!| zoM9>n*!N7kB?QsUry|@WZ8B;)3eynlil~jOUrd(6bS~U@nRz0jFM1+BRB#-NoC%L1 zL|{0FJJA&CG;nP7+9j#Z9!1D`+Ep`y_00N{Xb-cx(ZJR)qQU#}5t*-KWz=QI%dEcx3RIi!F^K4Ft3r3{uMZCxnugI9odh}W zF}AbJJ{&5<@?uLN+Sa}2qZMiLR0ATNivx!Bf`k0jL4Ku@&GJcE^9H(-!OgEsF9cX0 zR2BH+?(eV%_BU@n=3+sfOi%|xyu{5v-5LzoZ>%Z*YAqQBd1M0bsj-683i&6}oYo%t z-^YG1-r`*TRWh4si(lc*pmdQ#A2wzCXis9sC0La7Y^nEl1>|{^QdE|2JV?7mt0{cd zeiMIuCNorUrMZfjVD@uuqJOg)HXb`PNTJM6 z&;)5lb|!FD_-Y5KL-?)s&vjd0r+IQ0lFLTh5&bUDbq{`^SltF;(Pe%^hw_9@j?lO2*l1jS;dc1Ks`e|8D+#eu^8xZCyl(TIt{zU9Y)z~Vi6u|R`wVCIazmW0kH{w$Y+qx3_ zgRg@jF5mtW&~0y*@S(ivj}!}eS2}cMcaVz zvI_4dw12P9J9?d*6F+DEC+<}mu7^s{q=~cYhx5D-?5t z$0ylVOx)#!`6ak|?FnD`t1ncI<2q87zC7=!#p3t2lih1>S$Om`wr0@#i4*y!8F3|( z2fiYOnLu{(1(wT@?*Mm!i3hU-#cVHI9GA~x*ulf`;O18THh94U%^-pOOE^YJ)?VqK zZe)(4su#hYs#UqeAlo5CM5^(?O@gKVm7tTi5=pN4p+<@BdmYC`kXYjc@Ya&v*(iNk zjGyP#T==JZ>=8!^i^S?Jl_GQ&MOQt*WOQvdW0q8#S7d!Ai+~QBFnG% zcvBp?JB^WfB&5H&ss7N~{Bga`;HuDWn2>*VUTk_jmeG1gwl(fB<)g<(#+XYSZQbWi zq`S+_W0!CS%Blpk&ZS9$ze1^)dYAIeQuT5~irVTCwARwA($j!!tK0D@i|B0 zMJ8I3uf~5ufm^L51gooyQ#=9X@dH)%(OE4vP`tsqDrK{%^l+^b0g=bESU%oF{km%O zh-ySRST;#UK`&_rBHvY8#9VND_uiu0xe^(vc6KreP~3;?_kD<8CkSj=tD$eOp2+oS ze2ASzs)D|LGe^tmN{Q!nfS>Gy0>J}P4OaCe42&T9_JCj|$$yXsw`N8J4MSRJZxM4L zl-XyY%``|};@4yZ`@x_g2_X3w*4Jh_vHZ+@1EeYsOM{D@s%DakDIP>n1d{R}vc?FHz9~W;tjB+Q z)$@C-%zuX`VR>M378H)D?Xblta!b-JW`y-55o}OkFw+A|g;ySbO%tIfBjz7#{Sz)I zypYkHywzX+aU`UH>4Nyu2@J%?rzPVKwWK2MJpN*yKj#@sG}PJ|QoqLdCQ`honC;N_ z<$pHuA0+4@&dyT>vsd?u6f_0UIUv@OuZ|=c(^R(|4#wVo5UC~D)-}+Np+5hs`HCl8 zH}6JE|4q74>PrQbS6T@6d!dNBxhm@}7k0bPxyqRMmVDj`9x)&>d&1BAK_Wc&u{UD> zYCwjv$oUU;Y{SdbxmGyAHnGbOo(L|B7Q--x8rc`B7~&kYa{cD&XSMClTzcP>8GP*J zKd2j?lkDX@c-!^B*ZAPBo6nUypX?DLr$Fe#C1aX=X4AFh)ztOm4o`^DnDTmyl7O*Y zT+#5=+!DJ6HtDh^Z)qEi=E+|obhc#=&by!0A#%5#uGCG%*mx z?HynnVe8`;WhC!1PMpZXM z>rAiT%P~>R)3phEX3AKUe#5ll+uGYRw7ej`v+K`MV`DL2G1m<0Xed|mH>6T%g{@kB zKRTO78ab=qN@#~E=%33&Rk}B{H@uaE8cwz)8`UpJCnO};W!hy!fWh#3RqM_d5{u9u zdfjZ*Is)*HI$fo0p$$53N-c-N>{r`Y544l@Js_TtgK&`OZ0_R$NfO*1#pPKob(ihj z4l0n%kmO}5*NWL`2m!89&U%* z5#sXAd|y#}(LwZuiB6YGBA(Xj)KR!pEYK%fHNXGnH_Ww?uP+$faSF9Les{{UXL;*$ z*PI)1l~uo}r{;W4UGZTBxcvTYC*B$dNI$|hPx@sEAp^u*m(sdm9pxN6e%1_C@Jb?f z*;8JGtqkWgCaD|3LE~cKl`fd?ge`_dnK?GL`|W$Gh_AQHn!jONeT{^NtH|&y77obG zO2-XEAmeRs6xps<2s6Q2(v9#w$_|jGK8;%DWSQ3)&_qqqAC-KKpEx(E_IRG^wC8Pg zh0~X4uScdIW*P+ly~wg)&)b@pcE5uAcOo4%z5iJ^wTl$f(+<8uSrw}CLR3 zlwT12*C8KJt^5@^LCq11kl?F}yjS;rkj!K{sxXygeQWXh%L*{4e=Yj2apza7kPlb$ zVt#w-=QX6-K4I#c!`7-k`JvuHMS~R6$jC(7?KgFuqMq$GqL6(=4ig78Kkf&o%HLbQ zxshaJ6r>=E?_j6}CdxyA?T?I^AgwYDb9y+$!D4u@c)XanXdp1K16Xsr+=~31B_z|f ztcIyQgBuceKn2QW?`u;yL00{%fjS^m&IxIVVvYRevU>5n4m)|Py+^?VVa0(zR?Kk! z(P>H(+sV^Z97|S7^H)AqFPBB9-XO3B-Wz|BOlokv4+8Vwd_HcOFJpt-fS>_Y z?{!|oz#2-&wTkMRg+t|G_HCG`#gg9Z%xV#f&aeQjVg%$sWG4FeQow~#oaR_;ruW4w zOo!5Zj^e~m)8a}JJe?6>sIDi|&DL?hL}{CW{_$^U6lNoJY#o?;JFBgnsFTgQk$n6r z%c5ieJf7kyK<|NiXs)Mwh_h9e;tnWeD~a{}BcURP`^xk9YVVHsyjQZfFm;N`_1P;t zVmx0hki*K$^sS4*FNE}{36r8oz@l~kAak}st)gRfXgk@&=dD14zmEH~EnStO^E0Tc z%@9^F^-WC`GfNggvH;Pf`BA0WXXTG%683PYIxn1*YlRf)-{$Umsa_X8dD5Rts8)y0D;4!e=S71{uxx_;%9XpZyNlB)+L0%81=h z%BfU%pYf`twnE%v`ga>eZ;^u$#jr0t+#8hFKr| zx#UN6@M#RSp3^r_07_xKKvc`wmUxd`<@L0BgMJ^lypNElOIcmWu*Z zv2Qk^6GgXXeoVPQH0&6gpCX0Fw0(ZO+bNY?MI)t*VdAqb^v%&zpZ#@1-P7S*f#VJt zr7>1P?o(oAH*Yd`rc#SR47L0e?oiSyM3J{+?4{UHn$^q_NSvFlfK?R%*$2HbeqT>N zRh`E#vIu^W6ILI$x-wz=Ibr>>9k3;lkq}R1B`^d})n{AzH8R0l^hm8IEt>ydNsfzz z{jKu8lfbTFQaQfYa>;iNc$c|S!gc@Ga`{^_?r;Xvd)316K*daE?`jU3%x*FS?)p*${8L=3J^`b7Sw z`BT_7j{SW$g|>CATQ%6rF_F<(H~Q5ZjP#%5;`jFF$n@^;=W?cX6&;sL{c$ZtI@q>% zpLE@-h8fq5HQ6U$$_I^&I*++RzXO;HvTI}I zJN=cIVx+0UZ`IMIU=wMir-z`;)FhF?X6e1Dp+A@L3k){JqlNo+cl`i4R5=yc73<1h zcpgJ`irsIw!OCi!Ov$ziA0QI}!H>?YZVjK|QpbORPQPao^dh;eEOxL z8|uZ73Cm%BOX1VhAA584&^hwtL^rutJS$3Q1z~pV>hCi2LwSC#g}<}xO`~P@7rM08 zoa)SC$)ZgbXc5TK#ilB8WKC@TfTca_uD(Gf^1__u!zGvBt$6dFU@X9vgRiIDupp4h z{B0D`AT?EyyOthoa^n?ZuuFz=6?-{BcsS*Xf0=pgN4(9lP3?AOSfP*ZvEgsT2-AJ? z7y8WgPg8}5Hx`65AHa_}Cr;&A!Fk05Y%}_~KUgE*2*l=gzRZKTJ`7&az9Al>`KgPc z>d#8oa!|+gEEKCG;natl4ighh>5F);e1#Mg9FC<$xXPv#` za2bC&TG22ps@n2pwc?pykuQvcr(Wnp6znAIw_g&etll~}vaj-7hXa9a>ZPq6rP$YH zcN^$A#afsPDKh?-1EMnCJB&oNe>0$~RE0qK6P2&&_AKyKF&Xvkejo!1T4a;;w2BX# zrHGEJSfTk9*B=P~7Xn7u-=tJFu8btJS3s?=m{-;Y=?;AgcJQ{g!K<)8;2_#__Xnnb zBOr70-T$LCda4mfFeLoqgdhZf>}Pun>V7CFi$E;03rG8~|6*t=E3&=O_?-9FoRzt? zv^8-rje-NR!*&SOD&1Y5;)oyq0&jLR`+YZvKlS|SguDGvcp%kv!CtZv zZ~E}S@Qr3+(^GXCmj`<>ANhW92-^Olo)0l`ldRwI``n9skAUP)c~MHrHpVD=OGSJC zm>Db7%LnZA3>4J3Eo&^19!mLR9J29HzgXJ*oy1?+>ZUu<*^`AqOO13 zM-J*m$IK8;>37^1u(&?2mz?LZ^GoAY@LdEOq*9W5ok*kbP|N)(h`eGAmjIo)hm{LQ z_!)b&53CDRVV?{&VoFqP#;DzX@dTTuwl<)Qts*S+0ej-mc8P@kTugd&UWz1VXt;4& z`AI)DS^s47xnatKmO`zpC{1m=+M$bHx;H+NBJJdhW3?c@Q*sZC^Elshy7z3eN4-#fzvsb^fn}-YUWDce7><^jH@^u zVq=qVGNMKEmg4nS<7?&%1%3A8l&?|I;#}ROcB+Od@XtY|&_M`EFrt`GqvfXR!vNp7 z>Y5;4b9vs|p!YXKaLNWs%a2&x{g%r$s-urVM1J!Wcr||W*h9QuqR>CI+5cAqbHN@I zyN5#m$ACd00wcR?MnP&x@Ud!Tpb99 z6rBp*q^C6jX$@koMkcV?4H^dPCaJSxM4F!+#E>+B+=hL<4arY0IDaF#`aBWw1Q9m% z`(JdPZ(Wv7N}wi6(_=#e3jIoyFO|}NEVZ_cs<%3#j*V*{)}Oukw<`bqT#QnS}ZvFK9KoSDMCDr^3l=W7W+5ic}&Y1 z`J!Judg}1TMyE8K(ZPO*2&D3iABflsMat$lKTw{|`T!Y!!YrH9{-@yXJxj^dvtaxd z1)7OIFLr5sxrOEc-VB*6%nW8v>?ocgp$rxIF@MdX!tQFfP5bJ(+`|@o7xEAB__v!i z(QdJ=JbB0ST!rksC*LqGdQ`Bu#h-UP6mKq-L(Rkx{{d(@-KFi6=7VwOG(5RS>LdQg zKe5TU*t$)bNCyq8<5aTVSA_v?UGUni>Sm0l`}$kG@-sB}&m#mhc@ZaGlkoM=dU z_Go+c)4Rh?O_71Z=^E&G&8-KG+r;7~XNzBbFH2qRi|jeZ>qqOErPGOF+hl(*gN-B<~Qr+;)di`vNTzS6@UKp)vyr3M?eZ0SAl#Iw37t&rN6!<-`f zu30c55L38(rrt%_Q)%O!oecfG%sv`IU>q>M#KpeMRA%-tUpBdQv{|xB{qj42!^b$| z+s*xpCgHDFH9wg5D{FeE`rrAk#g->N{|*?W)n~cBeKm&k_GaL^-=zOOg#W%T%q?-M zKczs%T$|S*IuG{Scy9Fx*6aHH)CJR_Hxz$D&g?&t^WTTeU$gA**MTw$;Zkv9WLlRD zTgUWYl8g|A;yufDW{!c!~>4vO;ayyw5XoFpBY{b6C~sV&sM6c}1I^3Yci zhB;&%q8jn>Ew5&P;p+7QMqo`g{9(nc#)e8a*Mj=(PHuffWH}NhO&%!2Wb<5GQ1DVd z8Sc*h!jBRMThq!}jhClL?`RECQ6GVH+`)ct(;xyMDz#*yI> zTw^3cRs%mQ){M+)H!1vG}#B|9uEv3zYEHU8~VNkK;=w=^l318}?n7 z>HkotqF7cM@f|P}6!c-D)ZMVGTWVcq@cz*Vo;2kxXy=L@`EQO+H+C=sp?uj?`X2E< zj>-AJX8(6Vl{op8qTiJ|-Y{J#!av=&1p3;Eu};0##_%iJ7Qhiy_`pNjYWzY2{U zytA^59+N;JA4YFqvQpH)&VHqrKEqU8xOdx1F@D*f9u39#|1tD?Z6|unREb%+&I|RU zoqHPp+ur#xcZd0QsV zcff>Gy6>Ox@wc1}ho^ANhO-zXd)5|D&Xz(miXvk7vUtrcTk@?Xct+>&OYH0Ur9&H~ znQg&b&kqDk4`Rrgp1t+pIGl1Vd6<{}KHJ!Go%w5%H0hug4hl{i6?<>An8muG&kS|z zzWw|1vS#9?G{!2SuB&;z6T`a@V^_L_Bs2n#otJcCw;Pdi4nycUBu~~B!&%8#lfb9x zDN5LVofuS{el4vLA9LW!W7X&qU9d`tgtOU}L4y@bB;3BMep442Qkrq4bhBK4CgFTV zIhf*9IYG;E>n6Fn)o%PY;bwcY(6?Kok$En~)^;LIp-ZUd)JxCTQIDA!C3qoF#o>HL zX1X8wU^kNf{0*Od)68I#0z0cT8yoT9nC8U`A18!kJJYxY_MBrbSoq~(sh1G>V_+RV zYH-P2B>A$S$j*1PG_S>9178UxlfjaY!`_t7(6ZLTBB3u+iRo`nIs~l8lz$ ztT;IzRt%O7?dYfnCApuptu6#rO!%4Lcp@q$>cp9gj8xU>wArL{?mFRv>Px%yw);lX zS2P-l1UV)LWJ(C=*zl@>@zVSNvE_y2M01nwEl^R1%I!Lsvd%J#r4v2w?_rKgj(BZE zsW_o03u#h?xP9v`?eLJVd|@4Rm0U%mZd;+7tt5p%?>BOOaJ#f;8`l~haTre%Jj9~##;F)slx=uy42k_f z6=XErybN8;bzahNPN&0NX;IXDYMI0)%e7|F-um)P0sTWlR=j*&6PXEIIn_;hoUJ2V z>J9LSnD5l<*ruV>Iukl)uV3HGihyt5J+P=UfsPCh@HDv-E=Oq9mrAb-4Ce{Tabs9! z)>FQCW`m+N*O^q(kxy%EXv_;Odu9%ADw>cjItM8?=T=x1zndZ+|I%lW?D8^*$BbdRN z$afn;HM2RPihc|nR#c1!xuWen{0#S=J&GQN?suonu$?&xG$5PgU`7!<^Yh2wraI{W z>|-{<)v@Fa*w7Y~`>H+c{F%pZR(K#@e(ppXXIIJePJkPHYuW{ZjgYoFgi zc@!oRc>985jY2h6Ybl~j0fK)*czjFj8eNTljIGMRC;L^gU_TW0;Pt^%E}n;qa8tqwr1(&C zR~FVKTtxyPBD5l0$4&A>>KkHMBE3Fc^#~1!l(&1t8yJ!+9rZbT7vsLw`&{m;N6R=V zA4~EaD2U249RR6>uts$@LhAlRMyoD8u~f4|zs|P4XJ)DyUz2RBUp3x;PMRqA&g#U6 z`F6kZx&tIxXkE^5j;rE<3<@Wp_R(gr;-9t5-NfZ(l~Bf&=L>#_!9o!Eu)g+)o7`eM zL-^uO*W<3aVRTx86j}P_Ilevyi}c1&I?TQg?Sg86uMgw(LKEtG{PtOcD*cZs&m{ah zLzu_}u^;M{;VYZ#0mpJKa_^+J(KxjU5~9oKM3D$`x9|y?acDbkqCGv;Zm7cE zB?T%Q6?U*<`0r~J1Y+@qqy1XipZabmzbtJB4N`C+9_D|PV!@Ev$N#m|y;LuM3mYu9 zVI=7=`9NH2S#)1qOJ?opY+>zh{LOGL0cjd)g4=)LN z6h|i+(7GNuEJ7nX2gJ@FL}e25+l5Zj^=*H`EVxL@s)!6iVv=S^jXUVRgN#ok{^(d7 z?HfCKmjyHKT{3hQty@3zyU0w6lzy(demX?y&8xENCH1oEOoR$iyKG`Tbj!YH4TSs5 zTBypD{t;$<>&QbU3faq2T0Bn`CaSLau@&ORaFBrL4 zwlin0L`23;c6Et_g($NT0Z;`|K0Dy?JfvSp!Z7ydiRT{01gY5n@|#m z1qjhT`xi-wIua7v7cD{zH>_t%bT&c8E$hXGto&5;p5{9*A_CB0@4leEBxFu-JLKa` zlWWsnx<73{ri$5^E2E6OddB3bC@n{U$+Xp`0d~uC;mspY=1MbrbG**rU3`}wOPtq{ zkQ$kU#E(leKnd|h-$ITLOH%uuOf_yhMexFr(Wfgd1zd_~?V=nsa@x}HFef5hgz@tt z7Nj9Hel3geC_^Ii6C50;#J70b=S(s-JT&A%lY*$qx!SFELG@}Z=BQ56)d$GJUQr*F zeVd08K8KkQ%9G%t1O{r;)-AW?ppXHGoV0u9tz@MmNYOlk=qP&}T+%zDVg%FreP0EH zG2a^s?-uF(>MZ@dyMv?fiy8QySa(?v1~0F9Um2J3`Daw7ZmeP+Bi2r~P2(~gHECCf zozs1`0G*b;Or1LCMPqqPfMZ}tnYaiMfmBFe8&W+rCi45Ah-3EmnMW}BqivIr@~zwo zahxS+WGX=KLNC#ybx_t5T7!+zY)S9)qd)%3_@Ie0I{nYT|5|uRNBpB?-JgG%EnJ<2 zkzM&u5dWi^R1Ow^1nWOlr-jXtfO@WRzWY(jEx|6<$WvxorB(tf9yNfTqe*Wk$>Gm~ zO_6Xqtk=fnZUg^vpmY1W3R;FR;;uyo=Ycu3ZX7^hLNEZ1~#&^n#Y+Bqsr!y7_J7>)osSE0&p85_rzddNS_TW1p z$@fN&kK>X&T#EM)#L5Ws|Vv|k4kg|b_+JE0A~E$rnj{$9IbcV=8;y7-nT5YH~v z=a?yj=$HF0&+aeNIwqnL%KK|xV|IxQhXdu=wW5k-nLpEGL}flvqvE$3)0%+^PT{$M z&YRHWO#UPBZ$u_=?~T}oH0M^8JT9Z!{`Vp}N6y%P=gS?2nyw&m4MMTN99hF>eG=}U zb9^s;)NU5)IZS0Ll4(OM6TlcJwokH#BUs}(X&&1d>!PQ|>13npFIUT}j`V}{f1=iv zL1%Yr#_yLsCQ%NU@Q%d8j~jOlUphxw^T3uM?ANee?}CdJUfYXdYB z2}qMWhkRf`qLXNN!Y0-)q*U3GvqgpSX0;f5iIUpy6iHD;l*__G>zR4Aqy!+^p8`W+ zX|^Ul?evAm({73Iij(%Mvr5soZPfAdLnsvzC_ITIFanD_A3N%OCKP}Ghw>YWoN7R# z27i7K@2V)iS`7X6oi^AiN;^T)`)bE2p5b^KWI~x9ES{hj*97tX0N}!BY~;dD!o3{o z_GwWh>@f6l0v(JXQxDI?>TR-a_5(7O9)jI^D={3Qf8e|MIWNq|--2JxOuh8$p4d{> z{TFe7`vy%>V`&Gwtk3gl2yrQ-y#lN6@d$HAOr*)EbSL)fG4=+V9`;p>|hZxwGe0XU&V{?dVZmVj{cAy>y(vNQIW6j#>}8DuV}Y#@x8Wl{pZnd zjE|SKZ#sEUYUuo&EG1l)zUV+yVL>;>;lrUG*VImlDl-LAfQNx ziqatxOLuolH%cmqN{W<(gp|@!qNLLPi&*!*_uluu-|rshJoC(xbEeNQhhmYJna?qN z(?hbI^n3^+IEp7Jg(Q@$WsvDSTQB%HdvSv{CwO53+=TB$+DU}b0KNDrg3+3qxiyHC zrT4-#)5;$kgF(XcZPA$cDE7)dIz_+Z@VOlYv{4XcnZwtPzS$h-xbi}YxAtydde+yf zIwPP(Opy`M8Kg?KP#>wo#v2DL~L$Lm@N8bi3U5)Jrr&h#A2W^MPZ!v z0yu}D<0%0M4xgFvUnU}1HL>y+f)qHbx|-msMr46g=DY1k+maXr-bzpz3B;KB`^MrL z2;z=kx=HOD=WFhF{;BGR9>55YoXfp#9@EhtRTKmGe2d1)l>>UO7eI*fv|Kr*vr(Kk z?o!-J6|XL${Spl?ia%VS+i-)FIU4{wc7;AAFHd;3UV6O439#bCA`)X9A|cDrfcxH)yxZDN2rx_QWOic{^u~2l@#sSz+JjU7*kp&z{ZCSoFJl>E{af5{CjfahG!il@ZzE-AbmZiDz+F-Lh zD8My#T#_{<;}f$Vs9h3tzU;js63D2j(Oko%xVA9()FNw%LMnkW0wEeK#jaR02SB#O zKsBoHj>F*xmyIU z$`Q<{$yV|=f$=o)X~)>m0cDA^{U!T|SYR@Y;k@zT^kkJt$k>lu}SO2JWemYo%%F$4}rpz zrFX`|gRnCC&?>eIFonFCzVT|yYRUd3$QM-~O?ym~L z;cDgbv*KBY$IxI76i!W;`T_(=+lKFn4> zZ{RXM4Mj@xD-rhPSC4~u`J(u3V00aj`6?2qeG8OTqH9JA+p_~V{tD91bV^4&T$E&k zHUVCV0B*DAn7{kf5)O)u!n?S_>IjGVX4pLkWC2Ow_ix?_onVM)4vOrlV!$Io1T_0` zV?Nf>2V<%Ou>w4XBB(=XEQ0wY=NVY<2C+*7=!S_TiG)H>aB)(NCIKa$*{Yf^h5~el za7X=CT1(J1;LM^j8HFSW=tm9^v0+uj+{X3u#b}sd!xJMX%AIMok%-ttKD>{O&CG`g zP$uvV_sx(m%e=O_bmjA$uhSVM+Az}hz~#S0%!fJt4cXF_AJPsT5P!*_YBk88^+#=# zAcxJnQtcgRt3*?F@zAyuLsvprO(_7e04>5(V^4)<+q}5s$FvtJzTSfI`G;r)dHP*e ztJE~B8>xlA-%{cQR9^`Q_745sO#&c5AZ-#6`-Me3prlg)5JL#}m&OLhHz8hhxxEs| zyblPG#YPcP31YHB-dUMq&MBmk4({;+Q3wK*MEuz-<@O>@x8`g$A)r5jQDKgJ?Ab}n z)FHa^nn0ncTnjs2UTj!E8Ns@5t?&&zL)?D!qAMhoTmtjg z+{7~nPDpVa?J zcQYiw-<1@Rp^Y)uYuv0cZJW-tp3Tchr!b}Jn8Ry^II&k}%K0;wlT1FY6zqbd5Q5=O zdnT{o$)UwKz0Le9V)!|(h2UBgCUj;dqIV+y*jY;L@Pzg^Q%x9HP@(5HWcy->+Fvvi zRD#nmdl8*PXssXN%^}E_u#a6YzwB_XH2JjESZ(>2$6I(zb`wP~5(Efbs{G*Z1g0mu zd*bJlwIZZ2C7zC*Bhii#<5fV^I@aL77o<63??F_EeqT-aTWiN38@dhewqnaN`(B8@Nv7na;F&dBp$$Yv z+EvA!`ZpF!M~M9wZ&YD%^kTnCV$ga2*(w~3kU<|O(#IRVV!+GoN5r<#ZM1oiS9Ej| z4JOiV!P85BDiAYC4PvnnYzhLYuyX@}N%tY>$JC|?@30d1yhsvzM@ni4y|p6P>eV8S z0c+>(;{oESH7D8wY0?2?+rI2I#i)?9*@daa?&WY=U00}PTKXJfZ0?`b?m7L(N_lTeFoHFT z^L+O3{KjVloh4q!?WsA97p$E}s@T{hysA{}6JWaD80Le+|KRMVs1IU-`!wNOv#lsH z_Y1`Q?e#Y{Yy~|?4@aFSAZ%u?(56myBKNM!wDhM z8%h^p;W1%iEb8(i0AF*=4tydgvElx(z@)ssEL#0LQUPj;#DeY*6w=0vt*I(XVp zfFVeaQ)`P}6TLL2|0ly!EX_;*y#T3 z9I-lx#Cos%=aStzKEO>1a>y)}1~cxlq4iM8Iwyu?har%TY zQx|LpItgoh^>+T07(&@ccJV7s9`|_pG8;>_ppo#aWK0+{vfdAv@u%C?& zUG|231PGI98gaQqBq|eK8y}$T51F@%L5?)f9HIU-JJa6`yS7Ia3|GvF!n67KC7XeX ztd9e(g&BdAovDvVpR4&f1B%1o?1(S87*$C#rNO$IWvmI%H(0= zI{zxM<24%G2${~Dn-L;FgsS^*8MYEhj3I=fOLIllT7%U3`b88!t!z5ewk#ClZo2B= zd&J|)9#J2Vvv-27wACJYS3v=laAQoe;-za35dvVt7)y`-7iY?L~J+j>7#ZyG;Sk)hlvW4+O1%a*^LkmJ-X1ZRWcX2nff$IN1&x8d%6yOFJ}m zJ}T;5oWOZhgn1jYy=*%bKxOKCUf&|Mc!jz+DB*J?hK)!fdQ2-)o}T>_+qu*K$(A3u!7AZ@Q>_O zdFF8QAAr}0>al2OEET)Sf;7%K3SD8cbQCg9AIIa2t!|+H{|qb-dJq3UMSQn`D_2^; z^ffQcPfD?0a|VFjbuBWnbNv4t#9tV-{&(ClHUa@Q!Bl83oW{5E6)gHu8>zP43$_pB z|1&7gOtkqc{6FA2qoOZve_x?37iH`e@A}|Jyt1uHQ#4cpgcG~)l&Zxp^D+`8$q56A z-uE8!D{A+8U-(0B%cN9ZJI9;^vI7eCAZSp{E{?X*(kqn_+7kSS!P#w!N5;RE(2>MO zQVVFLmGXO?JYU9bfFpX$O?xe!X&@|6BmEN0GOJQvfz&pC|EX~Z$U%LbKKS>cdUl+M zJb*EVL-XCzN+{C9|McYyjFy*&Aq)=0hUZFo;1i!5N&T)38bj7n`6U6+!ix)t0`by^ zGQ+7c;4@;U3(~oykQW@`G9lO@ZTz>UXX$_A8*bOM)_^y*wK)+jTuLo*P{h}k7@HBRXA`Fb;F zg(qi?@6K$P7;cv0g113b+iNa{W&shb68j*!roo`Qf zb^7<>#h$)3N!J`QUsc1^UtErp{`&aY_lFb>5^s=l+Ia($c5hfVVydHlmokK6K zA*~Qnq0yLS6TeTQW$FFmm_e+w^eJNfC50wZ9t=LO5#TtPw`bOgJai;8DQw!S?vF?X zfgNBUexEpnjQa|Qh=pObAc!$Wo@aEJxPCbsL1~h54JO@Q2+{|lDDFxAHv7pTSs$iD z!c^W{u6l^3z7%dj??j0=_BxwZVPB@Tgdj(xc^Feto9aTKze-ew=JsitlWlTf~loG)9kQb9GUZ0exkk0r78OtIsTL9 zQv~}z2>I_x=;k2te>4BP(+MzzdCbbqMgHW+siEJz$Z^}1`}Y|VOO4__2Ch&7q2Q#jJk(1>7)`YL- z6mdCL-Cp~xHcCnO2?h2KV8bz$L>MYPsM)hHsxeGbfWa@$%I;-Hz=4C|!))TMo!?3= zeQG4gcS(Lz=v;|Rvp_0P<{p)e7{d%DO3~BpTTL0sKuE7b{Z!!;fxj!`TC&=1!Ck?Q zhi6OM(5itTtOFnT5dZ)j(6(^)MyVXv&rF*^eDi#Jee%-r?_Ktmu<$+`gD!6U%QqjT zpObj?;i6(Nt{2l^JS+I9Qf!7SC>vwGIs{f}jaBNG6Z(g{b6o2$U{%`ZsatT9F< zH)yEmm$MxY38*<2>J|6Pf>OzQdf(f%7c@);f(0v)ngUGCExB(|%joy8ZiM~x=*7Fy zW8u}5Ms+cGW9(U>>7+4=ArS#B3Dfu59<- z01Ol@BXu+LQRIq{4>$)%0anseUe9c4Db!EqeQxU6x*xcW|DL?}LW=$%&ZRc2Z=mrX zQ~n}qCDsgwJAxrP`hEEAq7lW4B2JX#-?%zxU=&N&e;520?7yi!OYI5kfI`f0iiW%o zY4df|?!GnIw)frg71((WO|x|u!5PY{7Orkj!IS_jT{5d_R#v71-(jaG-X>VgWnfAz zGPtqnzdCmTWZSt^T4v9T)7u+>0CJZgI!AaV(Yx@`UsEeE)ToJY(Ci=Dn?0m|pAxIy zor)rI!L=ZD@Y*?fxFd4%fTKV%3QuFj?MPMqadfkX-6`AI&#zHb*WnftoL6E@7@_zm zPmHHUIlmQg?j}47kxfw*Y5t^2Ro(j}KY|pSk<7DMJlB-#IRHsFbwP-{z_YAZ?mpzb z(*3$@Voda5!2jlVWW@2>E5kf2$P0a<{(t|Sx1mH(210N0I(=qpK%%$oBJQD&SVDj7 z(4(wa0b+7@&F8<%_?_Y?qxv52JBmztw;xzAQbdHbW7(hIShE5abpO`9WasKGIbw;x z6CM^C5V?_#tpP&nOg^*)4z#0Y#8Bcd}TPXGb}^i4f74^nFACuH&K zYzYwug_E|cia-FJ8ucn$?tWYt(w|0wL~2ew=nq$+Fv+oHT_VsQ&Zc1#YLzKJn7`h_ z=V!N3PG}Ok8@xy86buaTX>D5Iu_~+Je0ax{Wz%CfxQs6j(=NbaDhbAJ@)DMYbFkWb z7r+d8Me^)bkh=lQ%8{iR*IM7r1ar4-b$IlySM_U@%hyenHi7H}yU6 zWg`qObH0R$03SO5qv>c8{dr#q1`q%OV4yeYK)3tF|8NnC&-V##_lj>v^9~V-Z}*9B zs|vQg5+CXp8Tu3DAES(FygKcIgG%i2y`;Vn@p)zO*nVbnIe*Wui4Z{Bu*~WF2db)`S-R+$IJGFBw`j4jmN$hD|N z=NDtmFD@Fi%u}(S1_y?Wr_r!Kgx4PcZ-wwmWAYQBli1G){wC!83h0**?!SQM%=_f& zyPtRaW!)B9e$?ic2KyjB*I>W+29fxNJoHBfqw|>b zTTXuq@J>T2^nVB-TLb_!0m%I3)v2z3@(_-;r)XMy<10Y?vCr?>aGIb0)&=zkXnxCz z(*Wxygg&tX08~T)0AK)s9RR=vqJv+h^uIj9hiLb|c%CZiao$GTe5(4}^<8OI7e}?H6uOa%|Lb_%A^q0VXiR}x&WNt-sG5u{lWFI;ceirs*9sU;0 z>tp`gLfYs0n>z9BUiaVRuy6PLZ5c%u>OU|>djE=|A7Kku4Z6AfVZ(RFPownciu)a} z@eO$Kbo)mh{?ijonEEO03~2iFL(W-^|La;P>HbsQ55UdtC*$8&!cL;^kM9T9c0cIq zPx$Z4Xw@Gp&o@)Yep-I&U=-IjI{Yr`N8#xUSo~H_&hSHLscq=y?K|b)711rC%panD z$`s#Tdin$TcMghfJv{nB^NVrg;Sc!l99)yq`EL0S%5Tx8rti_edxAY5pZ=#hH0EcP zq8+U468}|B&K&P~x`~#r@l%)J4F30T}p@TBe$(f69l5<;|(uK(&|*&Z38UU?2t%Cs zlE2nGJeWK-Gl5!6_{jQx`>sg5ovFXiO)kdz1k5-I3uY{p=eA-Gt~*%UeC8sN#viyC z(4goC6r+GO97)6vPpGk59eZ11&x%dxk7A2x4NW?FJWvw4!(vBBf0Qpzf7RN$3K6-Z z<_oQCSIQ#~ozPzcBRLf_9);fL-sGO2^!&I>YEi<(dc>T#`CR>^!oTTy79hz@-n{BT z#66?zQ9tevDD5fx_^5^0(sYkB@+KoZsH_TC>Oo7(dcSoov9#tzfa<#Aevr~`htOI8 zb%1GjA=t@1i#4`{^MgK1-VLvTe9LYMikX_vpVp#I8rWf79T<_f}6DJLsgmaVdl4Zb{2cz}3wdcx6ZbXB#DU z#e{sihp~bFuek0Su;gFdzAp$gpOKeQh=FX4Z?D*9UI%e8g;3ll{z4SUV-VWIuhzhN zhD)RPY7w#>l(rG(|f^ThHPC-GUjR`B}>_a zL$`e{Mx7Ma@(-{u^Jev=MC|Q#`p>lvJfg4pi1�N#-l=xi@ZDSucm1D3P7fBWe>M zl~)}vLk#jG_XBG<(p;lx2;vH|oWk25@7s`qAaB^E;VWu>O zN5UR#cWq^9`PPirWJ$TeX2vfHo~#UACd&cm#sFUJIx{7U5f3eL^lYI&*Zj1a;{AoO zXF`h*nu;(+fHjY0=4X_Dg*-|lJZOBn1H;pHwsc68iO9ov$h1fKS{d^ah>%c}!ip3gpEITwkJ=hc7ms6{ z%vayw)4Za2YuquzJUUoxd{)Z0D39wsz2#Rxl#R5dK0d|(lvXmmQiD`Sm)!F;wJ__C-{Tzka-2|5(}ritwX;W--Y-kr|Mo!o_#TFQB$c4eVBXn{VyBy;OLqN|U2^FD#4mK7 z{5w@uN@{8Hb;)9(oASDB%1I+*1O0pE=w^`XtQiDhqZ>i=eD=3y(7_k38H;WMp$OiV zK@-&M=C^hbbk+{$IYVm;iSDF!R)%Lro`B6`EL_f1f= zkm`~#*FsEVS1>muVT7+)&=7v!>JD$Ff?z|3V)ybTw}Hm&`-6c|hfk{qgnJTQCKcjH z8s>@2vARxS295Ee=L8fuBU`qlDE+D|(+g8buAQ$q^1Z%O9y`D56_o6&W zck%>=Mz=)p0UO6sAyrS;r)v9TabdEQ=d!jPPu|G6wgfp}cbV^-1qtV|5}0Gh#ox#^ zBfuwb{511qIttrp8i^1_Z;}Er@Ihp86Wli3P^&$42ja{rY7Wb|zS}XDMIK=t?cwaK zGzJM5B_YMdMLu)*bPab6SuJ3~Gy@meLj!Vd3Cp@9?vsY#I*8mut}FM!f*;@SFALb5WM%$0ZWiu~qQuM_4drmI$*j zIL*Sr#sP+3NO(i9o45H6`REMVb)tevl@>5W%;d%!T!!xVpGPdeY~Xq4MK|0?;ES4= ztG!8>MG?yQU`(viE#FEvxojo{9t*MreW~=jg1YU~?VsojlPJ8W9arBr*-yqZl<3z7 z4qz1^UYu61@Maa==aKGrhPur9vEOmr4x9ZC~L$ z9H7a3GqM}CI#d{sBR%vsxhc$;(*H#ZVf8yBf+lf4!d4BZk)_xezaC!(A!mDkAA-$7 zBE$|`&C5#&%bKF+?zu3^UVbGDI!Y-rVfHoiG4&HSB1E>O^h-~jFi4Ks6?w;GNoozY zO5_CXxf9$&><){|Z6T(SccwRcfa@ji8cZ^4cg2?_buh7F5k`Vsy_>Vwg$`of#3kFE;~hG3mgO<~S?GA6v=@-|4OO zZz2p)$Pi{4e9l{gd(WO7jGbg2EnLO&Gq5JuWr8RfKo`b#O)C7-J!uiUhTQm5k3E?h z7GAmbVxa~Ih#F3KFPMq(4cd#U$w{*|m`HwkpwD*Wae5sTZwJ?AnleD18o>wyU|&<3 zTiU@;;UPBFr1leMl%g%$Z8&b+Z=~_0&f$5WU#%L*QGF81&(ny(5M-2d+w#ccr0e9q zTRP?k{EDD^%Xe}NGwYlyh44cK@rzc>xeBTs9WCAm67z>FXa{lg>qd5nj_s+R*g`)D z2L{SweaxK`Dw0DGzcuOUIj|9<2#3VqC`tJERI4H2f|^&!*l<>Kn()id1fs=+wWgTi z@{h2?$*p*!hv8XBY#P>;hDYU^Bp6p7J-m8TNc5-z6qi+rQQbA4sVYIXV%?o4 zwOX%|)A`Olwv^B<^Y_d91ZipK20kSUu){|#XkzTXMk2b~C~&8-s|ct*thltjeUH=V z>oUgw6_8$eOU4`v!~EFsV+Fo}hrnH8h-~vE({SNq=cr^DKfCO5!WaXuBZnLFbWd|R zX{3=`UnbS#W%ekuB-Ys=ZU(&P*uIV^mM0x$jfd<=3qm;{H+1b1?RrW=v>lIF$Mp1L z92c@XgXEfoJ-qMu(gmCsj*C0lZKk|2 znjOOuP7_v^LFGN06MxP8T9?>WK`ln*n`-rp=l$B?likg!_&#o`Pl^OfdsM;sSg9r< z`B)3@Tgnbw=dZtEd&~y4TSOQNJA+m?$a4{Xz8#-9-I8*~Lixv8wHT8S0-*Ms;x`hb zx>rlzUTu2%Y-X{2_G54zp=R;DyXqKnGZw4f81fm$RqUfIV``HvzPB}bcFKF8n9Bo0 zrTbWAMFTHCi&F2)-b|_TQkZ({?|zxF4Q@Fc(Tle%cvIE!c@VCCLe7(hE$X90)A|MU zu~DY4a~6e@mJUn>6}pm`t=@Voj5THli`(KWIL!oY4EstKxEQ@X$&#=5RR3{0FR#Hd z7V9`()`gay30U3C^Ee#yk>kv0AfAv#dI=^AX*!a;WSda%ngKQSa#GpOf{q0F%ne_a zOOh%B3q3n?C=8-yaqRAUGZy+<>T{na)HZD zf;XR-+$)=Vev{t+P%mURxmTi;#=}_R-A=ujE&ZaB_fr{GR#S&UCs}_me?*+AY-|wr zNga_XltJu~;!+)4M=?RvA8b#flm^f?92{|1&ydM9dw^8KY>b255-3jug<2`#rT}7J zQ`8QUJjJHJTErVnTG}(KaK7m);8yC+T*G~J&hNL(Kg9l+_A3^o$L-EE@D(rt2=x+q zU_BJJbas3HuWluv$ZScX-dY|`C7v%{LD4Zl3HkUV^!jA9hk4+^RMFEX0$%~DKHpAC zK`)F0F+f<~k4iyLv`$Y-(b`0AAWVI8TF?ijIK*mJ%?|#4QVM!NsJlt0c6^=Qsgc zdY|a-^Xil`bJZfPHlm&nULY{BNgyN3j$RH{Z>$*5O!3eq$k7Rk8NIcz{Xs|2mf*tG zRK%LPzurwBlhQy$!h@vRKx>|u1mz$cPO1?%^!#m+%0NYPO z-Z|^|{7w}&KonEEm$ooIv&!WPCquoRJhu&g;rXusqWL0C%H}n~TRg9pF$pcHFEhz^ zU$|jk$dW5_t{jUFlLys_9U!o9P3}QB)&#jUCryE6LR6%<04` z((!TN8_Q5KJc|(Hjs@1eW=HJ5AI5CxvJ_6|)X$0)jn^JnXztdJq~6IA1Po=!gVvU5 zNu;ZrRk%XTh^WhJ?~K4yR=f>BGkPyt>5G&;y}oY<7*Htgp2O|#W#DBkrfB2}zMc5) ziW%4tXc##*J8yG*zJ`Oleo{a+Qc>Y@&IK0iNtUX`W(ubuDo`z_FJ+EyKyKV+EDy+4 zgbI@b=`lIDi!ocz6)^*|xDj$Ow{rNP(qN4YTX<`JOV>a)O z{pv_A6(uq?b@$`&+J=e_p?#|krSwMx%_}@se$@cc7KEuyiwC1A#gY~;LJv+#D5R(q zw>W!Awi=9;Oj}l+D*Gwkprrj3w93H{xMqLO21A8U305c=ZID$|{xrW*HB`yfXRpr< zmx3I6u_V7qH`G9frA>6}6pwf2zh!l+2*O(#2qC1!H)H%RydYjI^SfJa5;2mU@Y$?A?=r_bJ5` zFLWW}NTWIs_o(sF#puzK0^=tNdUVe;65GbcdS2}guMy9zZtBwWlRtn%qHs9^v4>AE z-P!>uW7Yc0wECO=fev-m$-Ja zS3npyUxWTJ2T>+KPsrf%?Xj_d8wA`%&j34_FFl)1GUT6&KIx;=JmA`MzVM+x{#<+y z1sU%mr{UX%0*1F%La2sYMC_8zK>cw`t;gnOyckN2`CB%R_(pVOMq5gjMN6M3cP&QX zQ=q@%cW3H#)h7WG#I?HMgucCDvS&(te)ztrm^h>7XSuk#0keVuiOL4i<}ehl!wdR0 z{*>%R7IuO1*L5CP57tetjkzSKi}7`nEE+dhs0=x(Z6-wGs}|omQ4Q?Ry?(b?VddrH zwQ?LhFr9HhNvJ{{fKKkl+7eXQB02lY)noL?V8ijLooJo@2@5U32iuM=@|X3vC_?4c z9gG}y!3jemZY;Ra7?v33Y!GMqLljgD4a2_s%8X~zX_y(bg-FpOhRd~lch>Vu$? z9WmX!u34|q0vs#;`ikUITtH_6&o=sy{Y?)q(L?AfF%0F`@7tX6lt=aU)ASysAX|a* zEMpK6+lnLvG?I}*=EjZbR8Jhi5BQ}H=vRQt>LV~_lvXkif&Pa*>b~sQ+}22Hl?(+@ zB@^xfj)~D*cV*Q);6Q!c`<8LqNGla`r5yYKmu9(J+tS>|qD`p+Msao(0N9MAU?K3EkcD~jLfNZf;E7d43Ab-!FGj|?_I9@Hc|HL( z1{c-b!~wAy{dfq&^?_o)Dq}edYlp;JK{mBKIUm}apWDR47=Po}3S6>8x zS=h080m{K2^C<_T1*H8ZMvaGss6lBMvA3Cbqc`~L z^2a8le-dLYFa8P-|CT-;9!oBmg4>|Xgp$v<1Om?$ktcI}67lilfdh)YJrr@gZZ&z; zs@k}K{B?U$z;e9Oh1cP02z=#TgMx($sAe%%u5*dB`oqfu*JZNvmwRR+-_5)Ap5wq` zo8+!3=uCA;V)2{73y3F!YnNONIa+*F*{-~9kX@{;SS+uENnEN$hCY4cb;szqYJCsa z#qLNI?C^Y}iRz~Pg9jVc47L=V-ER?NWRr(#FP<0n(2;X^E|%fIZzj_eah8uNQP#cY zXe`o7vX)PEa{xSPe<2t+$lpV5@!^GO@a0E$0DSh?@sf4aW!Lr|1YNTtR1T@cgX*{& zmj03I{FzJ4N^O;W%W&(U@LLPi^^rUsMr>UgiD%;7CspDc#GS9V!Ki^*FHe_o0 zOh^7j(l>gyUBNO7^lrY0zagmKxgtBdDHFKl`@krTaGBG-hll{NJ-%;pWz-~O| zM2zeer-!IS&Ph+piAQ_Ww>Oh-PR`Dlu3Q!hRHu^B=k;Bi_BIV1k43yyOjbo*g!kwY zVA(6Yt9s9W9X#Ny1x}BG@l%Ov6e*D${3e7SOR0Gnw2yKdUQ`- zHA?5YsGAj&3m*p583HC>1pd*=-4UI=^_b#)X?~B&2V)3guzs3Ud{5F+WK1Jn^yH;J z?+1P^**p)T;h{dO%m{2<4l3V@}{HH^ObGAJw@pn1t^Jl=~j)k{>@pHI3Y%>e=$O{r^6;OQI00^ksj zlvkAst2?QfLNC_2n~cz!`FB=QZ6=zhDuuQH<3>Mb!qF9&Cy@}E-MJ2(ZSTuYZ!f&i zf|c;7ToJWD2!JrDY8#DiRo{*TabSwRFXpNQR%x%>i&zc=2j5kxHQ&L*!fS@v=9<#8 zACO)SVw#{5VkF33rw^TwBB}L;yY>@^Da^S>xBtMf*&L}4?q%j}{@>6c_m4vN|9=FW z+4UzY2*+oO{?B$@t6MyOCoo@<1s70~Sdm(IOD`}mDAVqGTz-?;N?EwX3>jqVD`5W2 zUyT#lqa1^$V?4eF*8`4~46KIYt-k``?)T~rSv)Gg0&a6YkMMub_wKf)Fo$u>+L9j^ z%jK4fqOJG({wdQ)rNbcY! z@9F*~MGjKLalo7tRM)gBIrsQ|#smT@41p=fX#RHh%Ue(xc1fc)g=-5wCM5?TG*m-R zBq%p8SiBA5N03bl93Xmh<6x(mi*Q6sY z*04U0(7F(;iY_^t%HI%#zpWD}*|AtFK=~N+RFT!K90OMA(upSaGwS7*Z7n?Z>!lxU zM-C2BlQ=aa*o^=M@LHb8_mY=s$jOE=Q@iB|3=ig457e;|Z`lhB8hn6FWcl!Ab5Byg zy7lppn}nuOFX^OcCyT5Yk6cDC=3U%+ib@I9ir7#>kE3&_o*Kl$i^VZK)F?}8jrix~scMYDWS1X)Yo_MC9=E(0 zsK%ea`}|!@{iBwIx0j5k-^!@BEe-X)A>1w>drc(klC(%sEC2K>faw(g1wyeC)rX`x zw?45YGTj>xZ_bo+DOpHd(pyuza;$N(Rlho7M5oh}_k5I7zHaxe?zwi3IcTh^Wk4;9 z;iS!zaG8PP+k6r)uE!=q=P$w702FsZuR3CvmrK7V45LPr31p zeJ1Nc>d9(N5D#I>(~NBe;&E8HBacUQ1VN~auGOMC8LerbJ5)F;h6yVdP;#Qq>C)2J zd`oUO6T;8msW?ZHD1{VuRff2b04o5^1QBI)F<%C>rSD!)vqi#teCKM?9w%Q5xfOG+ zfgp{}`9t@mJM)WU09%%#EI|s?l$^`WTcq8QzQwifx^>Pd8U;H&fM4~whkp1RKTF9> z0jr5~LEu}5Xep7}mG0ZuN*8yJun63=d8B8+AMX5tn*OdPAxCYsx4A}b z_m{dmI4Ph{rBYegUP($ySgBk_tfA7k^^#Eh$*#s3MOso8;uy%J%{M9V2StF#dM5UZ z?B!S<`1+-pX7iMrw}TaJTaX6CpTY{VX@Q2wN$D93W3n_-<(pURPNbB%gJ!XPfwYXc zN)cdQgVN-w;lnFs>M9k|y@igW*;T|ZI;U3Jm4a$-Zw6_KlF#Hj zUM}+79zM-I0tN|N;mg&n&!2*TEljnR+K+9Bg{j?x(!yEO7Wk0GtAN6=M@L`-?PrfW zjLPgHKTl(rO|5IGg|P@bz>v@G=I+jxS5ZTVURCIc>rUcf711#5>Zu zr_=w-73Cp~hA)}&H*AbFUTg2*t%{M+>E@s zqE(goaK_tqbLPs6J%|9|)K5F{Fo0}YS4S}*! zEd(AXVH@h(LC9qU#j~kYv`MXQvOAek58{Q_%^6>Ua%r#u*#+e}&9iYhBLJ$r;0rt< zj?}njrkGu;8;8h*Y>US{%d*qhRsodGAP)2aDY68p8oK!GH(e?f02`)Z6Xw5Qt5xR8PzqLZm8ZwjJ z2`|eCJ$y*yWr~3aZ&-1-Ykud+Xt0IzfonxgzCKly%+9cxti7+M_g)R5nO3fN}T&b+}2cVQWIoSX=mpQR7AE`BR6ismU8tF_qt8cE$dO0wVm~=-bw8~9QJK4*WWpG1I=6{ z*C@d68$`&<3m?1Btm#&2-oeeMl7a764PZ*?lraVyqN*%6N z43iHR7p?rw@3dBJ7ar(?hW=&C24q>zwICxY0;k7AdPK{$9zAx@ar@w#1Mg0rmD#=F z7q``XUK==_WGX{0Fa2`=iw9O@s$HzhF})u^76%@HBiCe=DT*w`O{vJn>TB(dl-zK~w-_@d3u39oZuZ4!nILV7#64k0F?Z!|rjf`bmP%0E zxXcyCfUkgz{=63dkkr6x=kw3SQRn>Y?kxe^%*X(gg|6>Z1#cBQCi)r2BiBFaWu)BH zHfMTN5U$CsTA?xwU5=o;LTdK0=KR&@Wd>Hpz{q6PegchE9_&~>)EFo11qTyS)?gd> zk<}y|FZ=at7cxN~-SYQHQ_X_ltMt7e6h!5N z7_`dL9zG|5u%rnK%4KwEGFCe$s8MB&)6I~#wol|h^rWc)cx1!(nyk1)04r`XciXH9 zGK8q@c6x&Ps6}jNYyR!+%GSs6Z@l*Z{x){IX^7{qwNNoxwIpIYX666c0_-8|z^c3F z=*%zy{s;lIb?1&6AE9-ckEKpX#|FTfahs3Hb$(dg@luo^&3n{;Bq4X6p7_+YZ{~%_ z&|=fc9Et~jzDx9Bi++4Ts;1M&I_9LG;W+CDn#(k2^zT#uhG~m_?1Og&?4^+lf!83+ ze&ba4LQ1+7@)Y=CsLpkIM} zd!CtA6>h;0hY$-jab)OOoP8|8R{38dLI`-cPG$TrJin=tzTw>cw`w_6-xQzAdmG4? zjF0|qna5w41jp!qC3+&K@xk)UdhBGfGgIV+D}W=ydNQuRTNWaH`Qz(w&oH8i?qA*+ zZNEKt$N!2L#(P(s-Va2nWAp-*lGY}kea-uszS}?0DZL^&qsGDse@pN;d}uUZvQ2)+ zXc?Bb>#xQ%>B$qqZ@ojN(Bc)M$LD0gLN6ME_oQCl z??xW4v#s9B(R~YiGxYJvfT8coHd4a!nvUDn+4E$}+1)oSE-MT(9791*O|?-Y)gyRcte0E=x4(!y$U9{nuj0 zk^NO|20^bIa*K<5ncCeGJoJ}kE>#-ij8|3j1x{{w^JmXrK!%Q3F*3yE)v=EjVv3^W!^vdq7Hu4r=a=BF0Cyn22y zMVk;q*4cZisndagPL2+v=F1a3a-r(V( z-t_Y(&4brE*BzqUo)zG|(XsAXZ4I(G+zu_v|6ZfG-#l#7~&LWNsoKgbr$EEO1h)+ zFA<%QceqYv{4YGesgb|s-2G>@G4i#+083MPJ<{A6FhjKAUl@a61*ers#roG0nF+_r z?a%$L|35A2tilM84lhjE{VD1HvGx{VbtK!u=*HdModkDxcXxMp4G`ReI|O%kcXxO9 zK=2SWNFZ+~nK?6a?z{J%|9@|XFWp^TwQAL>WhK2zFOqN#DPK{Kc4ZdH{O^VThT3lm zj7Ix<{HN`Uc>P>^wjnNNsVSwpMD=6=)6&u01`FbYOf5EKOqW{)Pn+^6OZS%9dNIwm z>;p82pp0U(4dLZlBqTcS((L*#+Yqzy!u;<>=TCF;-J#|XIaq`^2<*CJsa!L{EDqFglrbNOEddj zn2=M(Nz$!y!3-m&n{L#hTAMfMt9w;Xh`EYvol0nP{^t5i8`KNBe&wsL?@Z5w)nDVy zJ~eU9J9Q-WSWVT)Al$%~!XAOa+fNO*m)xlbF~Co6o9w=`mB|dy%MUC}1ILrkz@^u< zJKFa<3N!zvFCS<^1lvC(S;=ZB1JDh>bHWIv?8mQg$%Sezl-rHjEZ5ofzyX2L+VLr0 zEX*#PP{WJLRHCMH8>|KKC8Ksn@I{V+y}sK28+KH5((TBY=SZ?U`|6(6Ej>{-)5A6U z7dn0zH?g~QQW~Cg2DNmB8M!`b8LQi41+#=X8UIu%m(@r%0LP+pniCotSfVDc@~2ni zyWKa1tV3Z{rfDL5Zp$|^HqYOIgYW$|fk~ux-1+tED7A`f8UD$IC#jsJoSCVAYv{Mp zXSrdbGmIBs!b)NHV@T`y?VLtjH2Tt4TI#d1<=Bz+=2tReSS4fOb(>R&gVQ4gh6dP| zY~`7*+wWWdv{!ELs_p%oUQynb<3x*>>YA?q0D#@WM~9{veDOXuZ^F*#Y1VqFU+;+p z67Jo|g&Cfu(QrlHJ&{0(a7}(l@yd7qdp`z?oq;0mEbhwT+-L|_h_KW6E&>FVQKZyQ z|KgOFB{D$;DG^DGs$0V=cx^!Ls}RHdN$BCkY^c|k%3a25qHYhVUouZ=kBXpPQ%~(D zfnmh&8>*(OK^X>5G^rfJ1KbteLqw@SEL=H{sD~;}5_)7n8$rg4Vria2+~q!FHK1*> zw9Xy(&@^1`&6mx6FgZnlo>i}k=2rEe zq${Sg(J}M&GK7Q|O{@n8i$SXpKaR}iA21@$&gH4nF<5?|o_owHxIt_7v|1NnY4o-D zGlfUuvwQ611<}XAGZw&I8}c1zfb{tDzd*xcCRsjrdK^Crr{Ua`mwvTi?H7B z9Q^Mz8wY+VEqC*OiK6C+*Up`Q`o~GuVshfa8{Im6qZM}T9Y{?E$u)kK)Nl|g$fNzg zgr~NXY<$vgbo2s<@ho+N&2ky{hUL~%er$F;H{2b&Vd65WEadVaa(vbV!} zcHX=;W|m_RB)9i0XXsx`Zcpp7o4s^q=JyaMpp)!nUFn6hMAf%uFV#NY0@fRk28IyJ zTYNHirM(8M>MSM*R(CT37HK(kk32w;p*pIVBU2JqERg9Ge2mdtOmxKXD+rdy?Z23k z$;*5A%jMS2DWg*opIQ00@&oOQLCe8U)TlV z#~3v~Av1QiVEb&y26g-Z_;wc?4+{+XyvaCG1i$wq`l$<1!^LKUjBiun4SWozRn*%- zjMD-#M~la~VMTIR{?@PbRrE!;&+{v@ zNNU{tV$K7Elb0tyfn2mhrZ2H>#J(&))m(7;EIkAQcf)%crmEPQvC(;a%=s&~zerOL zkI-+d_PpES<^zxzTpecjG$Pd)x1mbmW`QRJ zL=44zFTz8oJ4ZlRK&Kcv9Hj?kbU#v&jM3CFkbRF1pESI>bEFNRRFej_OfehpAws*P zXQ}Hm|Hl+G^^Iy{9b!lEI7J9X^XH~B&E|d;&)B#|LPLgoewrq`uV6{UAP$60OE*tQ zS~d4b`C%zLoj^MT9P$iN7;#Spnvb<(s=@O2Ly3an(&{yri|eF2c`B&M5ZgwUlnL_* zRws>iL|#Ww)CWE3D>mktLPJPNwh@#G4a-EO;xLeHCvuKCC48dz^+?aGYuft1Ka%6G zB)8!ICprHOEO~4*Ze3jwD<85~Ukg5sWZ!3PJ~NPyj9lpHOS=C*<3MV4n>nyigYklbBDK2yFO2TUuA+{hv@FIab=_4(jL+U1dBz4Tnhb;svGEhD+Li zxe-g8DnqJFS{_X$=0*$v4HCQpdO7|QWt!FNa|a72uwG*DpvRV%x09U#HLunBIgx+& zoVcH&4!wBJ1xl1rZNyk18`UVkt60Oir*!Kx0C|Ajn?iU9!6wnZW&vYh7Qy_H#FzeW zo?GOk2;))3xmFI(361XYX_Eq*+Kn+?Rh{B{XLY8`@sDKJu&)o@OD(2Vg+@4>~D*W>ZtW&ZA_CC??W&t))o-dCLwYGkI2W`e8Dw6U(E32eu?;qls zl!g2_fNi#QjbmZ0uUpQe9h2VWo0Nc2>Sr9UCrkc&)DHd13K4!PyTMAu3FAJ0R%}h0 zT?j3p)ZvM|hHZyJ>j(9>nSw#0c;#H&3YvtDUe8l5A>qlpIsr+Yw`UA6B5p1W z*RfK+-G98~CgOJ`IHoTG)>`CQnkUVTram84W#4mr)mV4YKeE@cK>D4-s zL4Qqy)q9*z*I;(Ab`$#!ofP5+!2bM82Z)&O>+ibzwKZN0hG@*#x(q>QWZ#&z)_cAJ z2{J@soX^Rk(AOS`=`Z>id7K%p4VvntLWtp+YHy-tP6meB2#b-FouX7&N!^l|<{i6* zEeUD6#|k-5ieBVN>#TWDci^(}h9X7=KZWbpRU%6aAoW%rKx<@3;#~>-FMij%%*7#Q&(;f8dD2ao+KtU<*HD<%ycc1&KHX zfmuKj-fu;R$9~vS3B=;h(%fk~mx%uX30&dMPR<0ff3M$u9ndvZ{4%vApJ{OMiO)wKE7-8{?oMPF;R z0h5@umuK+RDSM@@E47Hfip?rS8z|D* zD9&O$+g#a`W46@&{ofT2Y6G;TSot|>P^p`05dr24gK~G9|AgDDXBE^JUQQS@%eHn1 z{>$H6rKYV*W=Z|9&&#W#Zjxv)G3PqL12M^hpLza1B?!%2UM`2{MdziS-+Ny-8v!%%> zsaCXQa;o_bB(K8WJZmgM53X#o%FrMXd7~>h6k(^PetE&8MQ9nx#5a7fxv0IVeTQ8%Os* zz|52M&~#F4ry@aIRU>^qpA|@-T>eJ{5*X;IOiFScLCEE>U-Hfy<8|;ik@$zC{rAdY zSnipA^?xdc2|>N}Eq?+@drF8;aeHf}Oh>~lGlk~;MK5XQEibHvj5%<#zwSSk51|B~ z^H0_EFZuk>kfD4@wf#RTM(2Z!gUQXn9`b^Fz-enaEn=DpM8u7$XZycz@Lx*r7;9x? zp8t{-L>f})AdXSBev1Rkjki4N=UR~T#+E~336!>$D@djv0MNR8((4Wa zgSRvNhwGzN))n_8JILH1xkQP-HCp3lfgJ>?8!EoimT_~*)Ju)`-{rO^E^>#@i}J6`jPQqR`LphEb(8bjlU0q|7hlH?ZMe+t)=`1?TBna`0x*)jJ!N zv3E#c|5z62iJ9>|&GtX-0@HkSnA1F2qE(uojw2Fp1Q~VRda;{VoN3^Id;HzbX!vss zTEj0D-}c*_gAj&ls$9mm|? zQdNF?8-y#%C{tVOfIBV;q6!O>pAsga=d9-;VD~j{12%8Xvt2;XHwcA7jyV#b<C&QzUYZjq_a#}wexjLZ3#17aBq+D%eNGDt@g})%rbVr z{5~DNrQlY%?cRgqQoX&}6YpEmKBB9W8~=Sn@Ee-F7tyzm^+>!g!&~0_>@_vDdoG4v zdtGzmN;F0Hx%UW#WT7>J6_qVyPL$9xYIN3W^pYK^b}zbyo!aR6Urwr~gCW!-`UA5< zRmc6S^-PTD2F#5Mb$AGa_D+T5lM-zqk%m8`3&Y_;IOPEk@K|dwpUNNzg$CJMoVT)v59eWZYly(n>ePWHd$NU1!jf(l~B~-Jafc0Ms z|Ab*O4_lh2)$XUq51gK;#n5o?@v=EK3M%0YGEq88O{#~e2)Sk`&m+M06R{D~H}a*lz(>>4J}Bw1hLQ z*bWl%C7md<7OIy*ee6BDBVW@zeCLV?p=6=H`rKb^wAgP$SFP$Ad36<~l&I}>X6|6@#a^)33}D?xD#<2khYkbt^-yN%}R9Czz>?)=g*L6u>h ze**pMi2={V78o)?bs5uO<0tf?2IaJb>r+#GYn74(aU#(lfCeL6gXcMTYW+$U1-MSp zE`QIwJEDRR8vQ73b*YZ-44-8n%C=auK?YX1{tG(Ki96TpPOz}ODddJtSb}0!n!w3c z%~k+dfY3d5?{0BOcYR?1W&k||y5X~w(CauHXQUgJ0rsRCi9dPN*F{u36Kz_#8Jz5j zhE0SIr9w?B!|W?4TkK#d8^m#1bv!bdg6U-Xj6^bhc4lE3I*2)Yex_k5p0hRF{_lEM zt_JuSmE2SnYpX=P5W+Y44mz4^h?}EauN>lxAmAZ}+RdRHmy9Q3$}oqJFmI~R;bCq4 zE5NDE=(h6giYuhiyXp5OVJ5tY#oC3Hn;Xi&6r(a!zVka<2xA6!=x!KbzYCT(L;&$r zE2)4rfanqOXNSEC^b#HfD4#;0_IB}Fy z7Bs-a%2#7s%92FF^398RW%r5c%&eo!l=hHOhZ&b33;`e8xCV_sV@36|wwoKnt1t&E zDi@(z+;_rM^#T2|DzHJG;8%^8SJ}KzjpZT>Y*c4h=LE6(!!N86*NGqW-RN8+95YD$fMq zoEXG{4}nf&?*w!<8h)(7n%SGWxH_8|+5Nn8Ft&z;WnyI|W+eW3%gf6kYi4iZYDvt* z$_7kRW)Qcsbv1Kl5VtjQH4`;6aWFOG=ZF2HyhmnJvXadPBl5@&@KeA}sG~3BTBz6} z_&SwA{n7|N*zZTvSxskMVW>=YeBUY0vue%Xn_=_pS9Uz_T*@ORmHJ{8T$y)xr)@i^ zz2~D^hDA>j)K?2Pb1c;z?aAXJGI+_w(@!mr54u851dHNcJ7i}-OOec0M*U!Qy5wKUvy#&}cE zfXX7rD;h}KM5R*8qpesH=MP1&K*gx%i7?fAe1;13fU5J8Hq7a$QV$cGh>j>fb$N;5pz zB4O;W#3Me+zaKwA(OY-#DfZcHsasp;{F}|W)b(8;0r%L@*91sA3ZA1oobqPl!^+SQ zJo2@QH(@XH{1N$aIy7F}AR?)Kn(vrZkDBmR5+d%k6UOd1RMcs$=m*I zGA)EvJi{A>*>G8Yd1HzlcX3 zu{TMHYiK7Z91#Y~Un-Mb_jV!->q3g;u@a?!{ITRoPwANCv1t|RVmS=8v7o7gmYEwq zF?3_z4Q0d>1f8FsbFkvX5z}A;%4mn^I6Ky z$ij?4!^#vW32bca#0-*VRu-17#H<`F#0fQX8WfQW(!2ZxM_jDm)a zfq?;!goTZXj*W_rf&LQ+2pF&oI0Os?1PnR?90L0P@$W}J00kOk4U`rPgcJaZ0s@8t z0{pg_0QfC4C@>fl5Z^z4kWfGzK|rBlfUj|Y>A<&tzWR9u0R_JPGh8S#7&0*BMfr~m zP+{e-uIBs-g|Mb}ZF;~^iTF3U0O%QyRbXhuN8&#+f$cs!@$tw*iEjT)fIbfw-E;2B z&rH?AktXxno~8DSERYN{Y4iv&voJqP)^3DVf7gS=hrt@^`1Y~$K+s|i#^aC5|LX+>##>nb zza-^H)J|W^?ljp9L9M zf`c)PAAn}ZN_EG|_w%nHn`2rga`_b&O*N{@{y(#VO|vS6=>~$G$a#r-7Ev`aw`X>ZWken*(d^3uW6VLpj zMk~E|>7QVo$+*?M0w~{9`66m0lHgKAR9bv~`1vASW*_w{0B{Y*9rNk8bc?(W@kJ-*!eho6VX-ma*kdZRp|9DbEaLKP<1cxr7P|8C9;T@T~#~FS`1VP}B~0 z(Z-H&RrxjNMpHa)sFLO|X~)-sKP%?`0U&3n>nSweKJfxPv6jVAajZZF*V$4`h)Z5kFS3+i@$}xbM0l4o2tK%o~pSKk&D>qL=c+cs}}GlkziO4{vcAXD4Qqq$!!r7)8{jh6#EtU zw~RQi#6<5^9F#3u1%0x^QN4np#-5ZO!F@S3EnP==AS{HNn%!KRXPV@ykW1}OfgiX_ zJJqS^@I3BG1E7X^(;mKHPunYKvmGB@T@61c2M;9yQ3XH;catyxK-AXMKDV!a9UF8> ztQS-LvdY)VBLWM}R^S)Em0)EM+kgjb7sz;smK;r9kAalgCXP-rQk@Z=z618^(8S8* z>1cUOwT-Sx+)t3eA5zf8-~-Pz{UcuLAjK{~?cU7D>Z~U2Ll;=ASqLA)QTTyI>gHV1 znd0!L%o+)N7QVJ-w!&vop0T)n_lNJK)}fPR26=eIE<>LZm#ZqRV(YTX*XTWX7F#MN zkUnqQhly7=nhXEJABfgbe(_o(gkKjkMpGiNceq|)m+#kV9Y2RsFXXM1co!;U9lCYU zuV-<2(R75m^aglapDK@F$%(brW%+68q{?S73gaNw7tKo#HdQ5 zIRl$hv0VpkIGGl+GX?e&?C^9Y+x*PUvepX0Hk90{T&~J0X1D0AnJc>)Vhj18MkN%F z$(z(_rBhSmaqp8$%SW$EBo$)hwIuG%L=^ol%ffD)rZ>o32M)1|F`9Q>@hkn6w(Dc; zjuVW(oB1cZsbl&WRHyh)aIeeZB+PgxK=ApWeVz&B5GiKdaFz}6>Ydx}y>Xi%jO(K9 zNfTJe#t*i=%4WyCpxdA{4<<2w7Hj~>9YXF<%LH2a`tA93I3npJ-lY|E(j86e)1szG(XFgrliDL z?Y;!cfTz=6;RHW?@>{f*yV_QmMk`AhV~u&F^ELN(ekG<6)Ms|jYoC2ODl(&Ks}@}! zEgp^I8@N-AC(Pw<_sw<3(+1*Bd~7$uO~1Pb05!7`^8Siqo2qTI!?gN5?WfVgL5Q4Kad<9q2$4hts$h@yhVy zsRJEifX-zY(N zJ1vTOg)B2D5>K+t`Q@8v_^;Ptq#ErK8P}jcbLx{4N;;w-He2Cf$_xrIpn!L?O0>Ut zA3*?bJ4I0+9&ygbxF8esNnt#~DV|Jm2M$kAIkNo$plIyK*cZJ3kfL^~iw;e3(_R4j z;IJ(*%Ps&~zVpG?;{_1_(igPe55)@rs9F#YfWdVjKwmi?mRR0WE;4WMYPX+iSp#<*CF7pxTjD8HItt$GSD-aPW(O6Cj>5mgZ zZK!(;ps@AGZym_;2A_7Pu8Nnf8=5)<$Ht5xeE{i<;u8`z9sg!gG+cm1$b+Ul+O~oy z1d$6kOCg5f8)EPu(>9^eof-#w$e4eh4B`K#$*y^R!oFX5$5m!Gcsyrsi;vTt}=cjl|)r+LA#z;<}Tuz1yJ)%L{DBp1`CV0ui3e? z1H;6Rl8M+UEDRr)g^_F*N9hT9l}tZeeQ94#nL`w=mvE@x3y4vgg|9#-byhv-Rj|uu zfuFSuKcF|TQs-}@$bNGq>ljiz(LU-lMLFv4L-ZtDGT|-Zi7ZK)-~4EvN`oT#8nR4@ z_JPiO0=w1On4SnF15pR+J=^xwy9SYojlTHWWaH#POtQ)P;$X5e?I`DKGFl=us_Pw4 z%BajLq>Kx(OT^vp$$1QYLlauC-3}YRpC3Nn#H`ahOo+xWsx(YR2d`=$glRcfCUt3r z_N1j?!!J=@S}b1=wc@bH6EY-5Q|`P)OgQ+m0v|+4S10cBGN!v@+LCcff9)P^>qK7r zDTe9ziZ}S%yxcbbS{TQJT7reuezT5=+Z7pmLVAt&kbjh9yzxUa!xfO)UzwKfE0hXw zF;bF>1k1qo`_jsDk1hzUdFlIW&`J7Y`^;kK9IA!a*h3~wV&2;qE$;sS;B3#tnr1Fv z*il}_M!GH5&(2_kgz{;3JK#}WZ@0fPj*{cy8Ja%E_XdH^d8juw2Or!tWciZ8yF3iR zz|3y?fA=kOR?65KAsczSzv)0yVeL?I>EQ1Tj)FvMSFO3BTi2Y|d`2?mH)5Qobba*c z`fM=05N_ANjkd`o9$zV_cWG3nR}7uZ(3oB2u*>bc==blnY!woUSdg?~$`ttoA61o% zV3C9`2{5+ux~ZsiolTiP>iUsF+z?@&S^3nxg#66|F&h9Qnk~ve zeKG#Y4OyNt6G>1({%W;XP)}6}6=Yrg6fhc9%KfE1MWrQHuhZ+|(-O^Pfw}ry z{ie=A{INc`)rU2Olsg5!Adx5}vVp6j`cj! z{LRn+t7`Q%{?vnkL=GV`QOmQ@R1|@bulH@u0&c4l)g4tux94OlMuZ*Echc|6;%k!A z(=JTNcr$#cob+@)T{-8_osJ)LE#Q$gLpy$?PsORSvIDPgOVkg&+}H7VxScF&Ue|I6 z9n!2atkT?nf$0wtrQ*)gFRef>r!T7qM1vR;$t3yjA^mtok(Vt znNn}K+$ySy7W>W=efVr-EW=2&$U4`0)j!e0O7`O`ei+k81mSCTWdeR(U>LAT&r)XE zj9p7|*@=iz)BfS&XsR8%wSBBl%vSjUb;$H;yEEw>g9#ib=M+M)Sj>c1|3h^Q1x^p> z>q?GSCy*q3xfAc+?M1ATF59bJkquK2n(8v=o0jgwVT(9f59^d@)>Alo*rrHT@ZstN{u&4L4bY?q%(&=!+Yk?3R6f^nvn#!?0xf9TylsJErOomXqeWT54#3UYFV} zv(*nHI$6@KMfur7&yJx5qe`SBD1@2GCoH39xG5#FbJ(fBrIb${2m;L;c>MGx+Kawk z@QADCbUMz&igDk0yp!HH_ifg?4OUCjRxXd)XJ3thG`a0cj+4v9Ib{!@tTCM{1~s5% z5ENipM}nvMEEdh2+^%P?cA=r1gTQG@u}M0#x86x#@gZi)fpjTB=Z($}Kt5TFg_&jc zM43`#h{ic!~n!rt2JcAiWpSiu|rzr8+S1|9i6jE+2a%2S{a-`Bf z<@JI_n+XudkbRFT$$!ryncLGC8LWBQim=CVmQ#ZH=>K)%Xya3!P!p04&htj_izxSf z2%GINRA^A&X?+ge@wmo~?0amZDW(_RC;S>DOvSn_Ghqj0S_a>qpq@gLg&%-u2GIm% z8j1QYhRC&2P5L1}_|(&x-IvJbBHklpdd=~4MVnm(9<%3l6osl7em2H{f zf%4#3lbfSe`VKt^o!ec~OCFIo!l0}Y0s0+HGdyVL*hgw|+>pvYh$YV(JnGn2U((Kak(avIEWyVngY z8k(J^ksy04M_aeGP_~K9l(DEFzA*Yu6PAn}@T+R=WLMoTLinSS#OED}(_Q4KBp}ulv z4PdbbOuRG(Zm`t4vw5N6Ot)X#oI^=xkmbANtYk|0xl3h6)o~n=p@)&s)rAOE4!a?_ zZDr9-rJ!pI6(oEyb4;$<>ck}|ikvKBpvUFc_U)jOtLRUG9zkKkF5(#TYDrIGgG;VP zOfw-k3U=)ll~&h&Br@5_b3Hs0snTpf6H%vr2hdjpBLE$WV7&qXOAjI;czCkS)G%J} zi=j}03qIydYgNZwLBz$q9w|86Nf@c#Az!gbn5Y(>%t8vM4SgnSrtxSW9h8wo!HJu) zYpmbm@)ZF?At3;Gt;_8o=>gS=o*%YO?TD_qZYikLXlf`*JV<;(qyX}Rmgz(i$~MHe zicq$LT7wHv#M#MYOB9%RfMfn=SUKYJI_>%5(bSkWbJ4EJ#%a_o7v5+u&rhSNKRhZG zK|9wQQ5-8IPLE~;9Hl)#_`!7$O76p^OB!JG&p=i9RD@&349{wsq7%NpKanf`oHVD5#(^Rv{S3BN#D7w{LMkKdL51MaUJjp)Gr zzW)_C9?R_5zrg^aBUj{ArY6wEU7$@)A)N^`+$l+p9h7PkFT^Sf6-El`{A8B0N~(P; ze#bhe5(a*c1|`>qtc*M4Uv3QkkTx_w)?04PJ4b*}6BxIh7!zXX&k~S~I0}#}HEZ^0 z7a9#TW119IvV?~+7m&IP(pIoSkEo?Z}SGB88ayE{Z)m`3t47P}B z)H=N+Z4xUxi|Bpu6C}o5ZUZz|U<>ii?-BJi*o2!;G))P(202Dy#pmD(VhKc4!Ny4$ z4m10u51_Fn*9^YO)IG+ym$^k?`Caz_XH&RPfD4Kc;7|}y;J?o_04~A-z)(<0z>!Ir z(3pW|yf_7*1CMy=gCJuRR<4`F$lLqM;&_$tYeMDcNiQHj0KgLfO%w+D0P=F=Y>|ct z%sq~Z9 zijpM}mp(DuF=cEOcQPLguZb4XFUaHE7}*9!G)mP#Vg?b5ekfk`*=Q!G_rdip-Kqdj zXT1s0Y590GS27;Gfk7HiYBNADYq#*0Mm*i|xy1%qaqcIitzzcBb*lk>Te>*qNJpf{s7GP(4`LbW{}RYQzgpXs(P0l zxmQ74ZO+osNaNyblbiPr@491>A{eDJ5E}*G;eC`!`Uc*i12rVZR1e#M)<;Jv=0%_7 zgQu!1i;FVTEdo}%$${Ab{yesT|0ZvH0M%$WRSs-p_$>{Du+yq>F_}y#r+P6&7PDNVOeU_L+Li{+VrEWmaz&F zAb{E53@1tpy^eR_hO(oy-0il5#bqR5^@C|U4NLcod*92>md6PLP5k!sHumwh#kbbW z_OXItLLW-}d)@LvBETi*CTIuhm9nWy{@KFv!J$iyR~6HQ#Zk>h_uY0p>x>DvXQAxM z8yC%p;RJ=kN9G2H#9lHAy|4z}0j)&6MK$h)vE=0CK#^AXDc&_=a%p-{Rs`@8_FgTi zl-pfzl{<~uC%vZ1dXp^0e!ovtp?P1SHym^7`N-5=ANw5d%yjQ7+&Q1{hS7&_H4rY} z-mM+oztTUZ538~!6mu%PnAsYYdV_UY>V0`;9$Stu8i$QV*v`<>(tV0__jtm)5&HrR z12Ep@&XseSwZo!Ca!Fch#OLt~NiZ->&A^W=_Yec>rX${ltzNH_*8O=og;i^*0s|yQ z`@*3c38m&kYg257Ap}v9l1che4ys*?-#0m$B0184e6c@V*)GHnzC_&6hLF53HH6;l zs_Mi0Wpp#gxeZZ*VWh?}!KLe_Kc3nxM)m?^U04KjtkSUW1U3|H1<2t`AJRs8bI*CS z(29qz7z;;hu;~fAWvk9bHL>ew2`SYWJ#_bcjvl{sdZU`jskLQwP_a~(bHFb7M`|6i z3^Db4IoYY+e6fO}g~-Lr!JIEU*fL=>4{(_q z$hrsxUR`b?sfTeF^n`hSJkXB~-GW%u&Pq2=fuPvBWta*^b-YZq1NB(jxW` z3WZ0CMy)e_k!#EAzRTA%^RT5E2)_MoP1n)gscWI|HK_{+yfU1!_|;;3ftr2uO(EXE*}4K%jt;Afqy&kunQ` z3j)=Y78DkxbuyR1&R|pZuxhryG=Y-!!XZ<`f2IMs`OoF2E3xOo)8AJkS#DkH! z#hzBigX+S$mbUBLx~Y`||7nYFpYwC9u73cwb3xc)ai{Df$6C7ab@Ed>K5&I}KbT}W zHY=PzP9xIC80@jf*n5$ZIw!g{G)f5vxZhSKvxiSg&#eWf4qDK#No5`i5eKS^V}I12 zVb(s;;lK7Lbtq>QvTaP-)!yA(0uw2Z1v}0>shtB>gr}gBbcAJd%@TI?Si;%_s%=W$ zFX&?D=Wb*!!1Y{%0M_g$LrmF+*3jTKVv!ovKiOBHzIgpaSJ7igyL-Bn9J9xmIltv- zvp*vG`B0u1b2Ou*h3Xsiv%Et{3eTZm)enHfY4Fgi3CFv+XQ5pm=4|G6?jT4DK&A_-5;(Gj)@`pnvu7qCnK!H*o|G$! zYRBr*@nCDj z0s?W!+kWqL3^|EF2e9@a{%@fepVqx!^Hh%Z{AWL@zL$`)L+hVQdwAK&cDp+tRrSr7vqYI`L5ptMXOX=#DyM<8(VwTw#XqfAo^zr zi%;GUwGoMqfV5wrrE41&w~A|6X3lTEX|k`N0uzlyI_N^xtJxtX&lQzj z!et$Z4fTNo^zu>x(vXL;p;)wn^<&%y{Jm?i6=H z=JKNLwSNy8M>%qK3FrhUx0#1#85DI3wSjiL84Qjya4b`mhCGE$+huewmm1$h zob6>F#`k~0pKVQs3d6Uz~lLliAkA(?pr(t895^h zo3L_HUc&;UpoogGvuj=79IHuSe*K=Pn4+OeLcv!G)u6(DcDKZN$ARCcSAhT^1wdcF zP>or^Jg%vxTPUBa0apnW1cN!F6ze?fQC*?!ohsg%UsB;vPeu;aJ1L>}2jPm$DBsIL zxNb-$X0|0x~*kE45z3LtKScS&u0m&VWwkO>nTrztH{}>HDJ+;OK=Dds6jH> z7SG{KIQJz@G^^X^QHwc5*l|CS?Iya&w_eLm4tVNpzCn(wWjX}qM_!XOb>|^o=-1s3 zPV{R00eBk;vy3ewFTg@sq8dNKB~;9hs?9Rab%Qj?9##{lDb1Pd^SvoHpdQ+ch4}_G zK*ne!Qp&Zca26G0U5<-v58GMqBNZ05l(kyPL>}yQnIe@gX`izy75!w@a51K;)cdAn zH9b-~s|>l$Q?s@eY)S1{D`Ag39>(F$I_uiQ%%Q@?QY$(RCf4FW5IF|`s%!eEG59+E z+>#Ay47i@Y8gLDLY_SgZXHN^QMtRA%yMd^QitMk78A4?^zGLmuLxp8aP{&eO(5qNsK=SZBnIo|m8 z9%pb!KuYLgD8xJSC9kIN#Bcr^&G}eaGgsC|%6xK|{ zp?t7K4qOo2v48T|RW=*Ut5LL+2grer@v z0>H$0lH}NyptiIvoG2oFh8*|kUXF2LTQ#!>iJh+6tHSU=x-LDD*=uZshB^(Ur5}R$ z`Y9q2(CR?<)=5e@mRcw;7&x1NL4w1mm>+|b(MMX4Kpt*HHTfMN4}z^XH-&~q(!Kcv zW=~y$Ory{_*q9>GRy2-2&p-$xRc_?MFc#9;&DEKUHBBP|KgvU!JYJ8QGAp&K*QD>Fq&MZ6@?N};vC*dV!L0$n?(wMU9TowJI%9jtx{6ja)Nfg^CgXBxRi(y#QLnHWoGTMtxgvqGJS|jm3&S&GS z)*jSF0@#RC6J`W3Z9X*0F!BQ;;U7q`rCkI7X#V0@t}ddxDRPeq;{#Sz)a6E~=aW(p zm8|~NtJRFfWcUc;@c;x+Oxf@~>bs58T(&B~Y69f%>nKuT{mT2NPB2ycH*gJ0w8>Ic zVq#6GPLx-CPMOjZ2Rp4g;}~V4L2_)I$H-TvwI?q1d5H)%(&gw4a!AtuMC$siE;vG@~k`1G5q-a z{}A_%*@Qp%*-r{EN0wd*47p?T5Pe!%*@PSOP1u(Ip4i+=Dv4g z=I2E8pN{T|s_v|;tX!Fu%c8DL`WJ3NtK1)tARFoi-CEZmf~&{%ZoCKSN9vb`H`({< zAhn<>L~CsJ*ihQky{%;>8Na=8?+x1)MyfDUB}%$SbR^kP5>~o{Oiu?;40d4fJW#um zQMc^ko-d7ES2yWQJ$shtlv7E7uC&2&O{tCS&uWO+YJt`79vjdknmQsI<+{FDJR_@a!(qf^0-l?UZs|%NI+&EW@)9TUIt&-Q5BhoS#*jTXo`gH zbqsM>h*}@)8pbjA*|E@2PK^d|UH#Umy$;$-%gnU>*0LBjgjg7!7f(@lg}O%JNLzPf zso)}nv^H|i?j`(i2!0nOZ0&1B9iy!JJ>mgZA$)tdK;EL~_PElrA@sc~9E#$c7;_%a zTxq{aIj4q;&W6r()syA5WZV{kVFG~ZaiUVhPkJO#JuzzvF%k<0$%V9*+@xt*dbpBV zptp*SZJEO2aH3j4oXg49U)Ol%Oz|rO6pWMUF~(ysN_TcmDq95hjDpS7>;Ks;wWfE% zl~XuJX`o)|if#l$GMCpI?$Uu&Eqs})xakE}Y3`)`>Ix;afmQgK+|?ADb_zY6_S zNR<|UiYX8J$r`if^*RyL44>4-0OwnD~iY;N04>L{3Z1w$UFL((L{!$)MDdZcEn# zwa0pLoH!G-WPD6q_!m&!J0<*aeqJ{ymt#QeT#pI~5I;LC}vIRJ-gB!JMW8#o5k z(W83io8UXb$fr5~v)p)bCLG@cHm^hq%p#7|T&qPZ}vrat?*6{QA zb=hp| z=6jDRb`59cc#~2zma>D+i`^>;D^)*^jh)Q=^exF>0KA$nPqCB1rq1gQrxSOc?1>_n zDUaBYuLzlK&(PMaLJv{&x@cncxw7(d)Wb+yz$bt4!TFeox+MVrc_jMMSnAznJp*I& zA>2TxIFdAy$n46X0+IWxh}r@gaxFoVRcYLrCKDCDr;VHjkA}+5ZX-b!u=xnr*OHNy z0mz|dpjtQ=;_ER$iZq?YA@4O}k!2~zq%Dhp&k391Th0v%aqOpcfXdCNVlx~ zAS0;tRX(@#bqKGJ>H|6WZFNbJm)+qKY;xiL9j<-?SC5l^{83$nG1Gp7xrc(P67ej1 z!z@)Lc+2$~Kbd}fcCW@WbG)Xq&F-_XP0MdK%i-&Jqw2Nw?rnEp zHa`f5+#dZ*4jl8Le0ZgS)qLvE7aPFeZ}#5El|<9k;V^-UOXvX&kL3znn7o!1y|k^@ z;H}_tcg_nhXCr8>x2sHZ?uq-}v@xUhS)}9V{DkG4t@&{sCH00ZzMI-ZdKubOH28Gd zB6RLbuaod8-AW6d$_$62GhJ;u`ojL$VMQ9Jq9rtpj2vwmmaYtQHcf8lLwY40Yu1Tt z_142{+k+CuSjka=ql~$Y2F}jr%^>bMQ2(BN#yS$ zg^Q%OfR`;M@^B6Gwb=?$?2sC|6pO4ov-Bo!jqnIw=+{U`Wm}v0H4_n-f};7Qj@(mu zzl=}=7yaH7UNt}xak4Dh^lS@b5Jl?r@I>XKih5{`Q*&)ZzO;hUy-iP}#!d}?D=5=O0r$TE zhs@jQw?^|3;iu6sO8YSe07i#enS-z~R6upzZ(oV+x3z(DTSsmt3e^lX8MyACZ$^4r zjPyoE^9r3G#BQsuG-{YGXb{Wso{kZQYHW6TpJI?|mF_fLKBFULNh4%Y8X6wZa&Xi( zK%gV&=wg?z%Ns(^d*F$q)B9r;+(_1I87%j~4faz}<{~wA!=p^EQwDVKPqd`bb*3_f zRIGlSX3_6*At(`7ODP|1Tq(q_%F6cOnDfj;QZi0zcqrB|+25#KA!Vpv)3fD6OO6~& z(blq3-8s_hvtfxwaLZ-DEl`4WKX>3CzQpG_aI`hh*D8a_ESF1VXssb-mUc#lku*!_ zc~vXY$c1I8@Hzmmn@UyMG6GV33l-WanGSx=++{-r1e~M>quzXz$u~81Dq7eubf#n= zEAhlhvy3jq%gmL0%FEPTASLpx+pHBrRvP4$Gn`o>w3*yuzJ~3WsMP53 zwP~`lRC7>%j%%tHW0bcQAdTzFNcp+uRrPl7EC&=*gLKaNQr%`MJql+2-jL8VW|Bet6l`W6qf(^B^div@{VP4KpT=a zbGbwH!pYt~2Y1Kd!y2y3!rq*k;SrJ8IJOA&2Dmbxt7r?_K%YKCSA8L8L6abyi}f#`;~7+CwZ1z|=IFXj_{^zU8dC*28ecy<(J*4?Xy$n=nE3dS zjzi74OWQq!EH;ffgSuS8efOjC%lD`&d7{rYT+?YY;KggUW;DW~AkHFdGfWBvp#Ct{rt)F`Qw?9BVYhUFd&4jF0*w|y!wj{0m4mPW`R9!Yl())*yyphO;nN4fD^VSZv$Y7LJ zA5c{;ANwemm}>bxV#Sgak&6jT?z^(i07D(9IzMFMC{SMv=Vv)#m}!h_y$9dS;DWY0 zbgE3c{c~8e5-bkYTFZts(B)*O9BL~^0D@m{5oB4I_s3shB(iIX>IG_BuXAX~jApZLa8xsp{ziTA%vK^&OIRy3J$5ufdsk^!hFF`yK127>Tp=p=U4h&$hp!M%W9ZC&c8)NX`>y=sr%Gz31Fq>^hhph>jZM=z*PYE5M_Y$f zgotHJ=Iyv>4F30fl>(!&_X+$0SIe4_8mj3@GcRzZ_igfApjM!ut3IEnV`5fNMB)e4 zg<>d8Q_*a!-Dz-1c4%SzwM7gXCPLJR^Dk%D5v(--F$|%Vn=0rgqlam#TL7*e8Oq6mijsQ7|Q%*cI!th@1mwT`db>XJ9l{Q+q%nr5Ouf=R=6@7bPxP% z57#t5f(8DXmLEiOP4_MEV~&+LYTzH!vK_-MbLGFSVoAI6hK<48{!mj?bA@yQmTM5e zMz7Oa<4W@z20H4*uQnf~C3{V%i;lTCZw=rix!i{OvQOm-BaSQ92o}i^>=XAh9Jkbj zp-(FWa{aSjHl8jFU+8D05LGkWD~ zzDPDu-lJF2zElo6F*X(1(y~&ex#rM2JkY#4{v$OW9GduHO6aWiF!ou!cT~~fO?T?uyi1v5mWd7zQjX*8y#@kj4HpfhccnREimseq zm21c`pS#+kgU7!B9(X+1@{RV?f30iVi>ck9TE^B#fqAA!c&F*Md-ZGbf zU}3HXbU~LBCIMh@pj5U0NLE|h7hVyOzFORO9o$uh6<=ZOau`-?IsVPABMF#BD{b-_ z9WFE7g>SBzM*QCn*4Fw*O?=i@{uf8pbRhanvpz+6r zj7Kf0OpRT(HHHkh)sJ9zN)RWpl@^8whWIjiGR>z&KNo1oefL>*%6E;pxZ`T9>!84{ zBP-~1Z^Taiup=0ERetq#Wmd~?it8V{QO}^8-{2f>PO6KClJA~KT$6ICewUaYX3{Xr z=s(lZ1!EN_B0SPQf5qSBzU>@(?E6pn6sx8pSKKjGt1}*E>?x0jWVGGkOeYJ>jFo65 z8b}WBeJo6mofeXnoo~N-L9OD4c1eh7*(8Xiv}x7ph}P*iQhK)gd~2P2I>XX9;v(Zs zd0#_*tOwwUT_tWzlQ+tGG)8OGeOPilNs5@*8vqp0*vUJEk)Q=tNprmfBxYyp5Ukgh z*~vts|CGKa9B<+NN~{;O5YhXz{TE<$S=}o%=WFaey!tQvMCwtWsL6hg;G+Z_$9dG- z3D9*J<2>R`qe*?3KjpPiBJk;MS^NC-Y^%Iqy~(5arbi%qzhmy%wx<>SWw1c&Y??wg zaQT*SYGgxkVwpL}&{-|%^tqFV`qz28j^lNK=ZLV+yD|Phws;-lQknD!SySq=h4Ehf z3U$Im9G%9LZPf5;Dep5HH$%Apz7wci+t(iSSfQ=6^$@=XjI;W`Vv-EM?A9c@NZM})k=@}&b_8a`Xm>5x6^^OP@!?-$H`8n zX|(S*jxlG|h4aBHUGyMM4m97iu59V)`V7AMtqPXZ4r~0T!(`4fy7VD$eW@wbZNZO1 zQ7kVTk5^NKc8Yy-wqMxqZD7yvvks?@CmOZS4~=Wc<~~eucCM?eu!IRWu`LmrrHv`U zq48gUX>00`n3(i`3FIkIFHJ3*Qdq}K(2Ro0UX!ut>-iVtYA2nheEB}NSb^VV%V^a- zYuTRMm1(y7grkEAZ0bPbrZ{;8WS|4R*JR$E*d6_m)}KfFN5ac}D7*ct#qKO)pt`5P zF>Hpp9ty-F-F6`>$q@Jb%QBy;Jm0hK>z&)2Dj7uhm(h! zy78j={ll?K79+EgrI^#5)9)^61*!hN8ePM~$-1&`e@*S`E>`o|e=vCe`YIxDJE*Mn zHX6xOPUzB}l{iF8*t+e0!1J6JdQjZWlGq@_qDu=Z*HGM`it+ z-CqFXzFH`*EYjN35br_!^0pE)(P!DUreex<8dY$?I$N_+$5=vEs*i0JKL13pQ%Cs zsoUanGNCo2l$2|r)_Ec|R>$q@v>xyHk}3$~hMfnZf_^0^{jT7ZG)z@OoBa+YCRxh}U&h#dD>! z5Qb3IQ~>A9W(^-g51M&G_y2*-1KkL4S3NBcmpH9hUG`rO~WAC54OcBGT)f(O4xd-Onf-sRaNZxht*7ftoeElld5SsO#{8}P|~wS#BFDw&l9`qBa-N3 z6DB50$`Bf>3rLB)c{kRl9d{jTsb|;mG@QRsn`w%MM7yf$x3^fbXMY|}YC=ng zL2{lj&;!cskt@m5s;RlEHN5>cQv{~ANf=tQ?vVZ#q<;GPE4)pGKy)q*w%bZ!Q~I^( zHwa{*Hk<0D{TPisyG&SV33f9Y@v2mjSyNEwL8_ay4+~J0l~tJS&Ci~H*BPIvQEw9F zx%xK29pkzP$(5`IszhhGlVga`)XLT#FW|XzYG-*FaO7g9mBMybDk)MzXpAdJb#~_6 z@LTsg%}~e}rKy8+GAc*8IJkzN%h%GpKe|ws9=3Bq0et{rKSeu==laY2NSN#_D=g4O z%F@x04J@}aZPSHZhr-Hg(e~}-&=V z5^`=BG_BZ+4Fl;_Q99}7cGlcp9t8>noDPf$Ds=WqE>W`RO?F(Yyhn|fR=hVGH5jH)|?nC@o_tc%|dppOxk;3bXAvHnbT~J}=PeO~_WcmBn4t6;hG~ zn*cT_vLR|YpWrnEQ+nS)E*~IViV2?@SXPdt)~HJxUXl4Rb@8?si9B5h6*7I@mbulX z5MY7&rPfrjB3$>N9z1utdviMLC4^{sn(b{Q_MRa8p`l96(XVOj2G1AaTa0UG2i<;n z{%h>;_JZkGX6aWx9s&4UJ@=$MkqbFS1~m=}<@@?0A-<&Avq||T8<`n=Ds|(oNE}^T z0inLp-wyI}XWD5Otd>ARsG!3DiaV!@jCG{u8d?o4wMUS3(0Elp_oLU)skdFxu%iyG zzQ%Uns>{RsJ6qdP>xsGBdLjHQ%plq_iaT(L`p8k zH+_~Ovg{#u;(}M7ASZe4RBpI;BB2#jNnaP!cO?5pi}C570Fkfh6XiVJT%Bsk2~MVB zlf{iARXEmCMVN0{I@^UN9RW6;Hg1apf0Qdd+kExj#2C-0Fc5)lStPw#8Z+pFCX+6R z@klQwBO8wjhg%!Nvt;dVf80LgTtTZ>Bw8w1Fi8$AM!G z3JrL+alx2iFHncfdN59XA0{^*2Ti9t*J4k_9@p!6)W$|E_6vXi;@>-$t_FsUeygO| z1y4RCYWF5AM*IRI%+SFsd}Ib%#l^Dqoo=RM!WOqHEUKKIJW?Yyr5ST-o9$+XUMkN| zRnF&$!)Onk6~15_HAL?WE6a7C0FEVkN_I{XFScu#@)5h1b$^F|#6fASN$>36iL)gz zmzAtuQ|4!s5-q!Go99mvZ;(nYQ&p(aVu9zA(9ntHHk`>hb2D zeV5B%tRg$+DMdNxE?=@`nWa@r9uOs8{=)O{6S0SGEhVM$QDSf$dE4@vHl|CAxC1+< z?=m79o84=X+dVojcQW{2gTc#peUa;MD)L6+^YjqQ`Pf=D#||2hBV_`V%z`v}$Iuqm zpQ$l&ei*0@6pE*w1~$g$R2mLMN-Izq=~>g82E+n zZ{)B+)q7Rn=Dx5gRh$BMgtv>vhD0^#I0R{pOm#QuKf^-E(k$?jW1zwy zjPUle$&<-I*js`po$A|Y;rHSaU~pawYv!1umypD7-Sd(faWlZ|G@|U*WJvfGsj4w8 ziTHd?ub(bRvUay0m6@46;P6&GRppiRRBDqh!%jaUwu7Mi*+1al2HblCIPX)2!54=W z+Khv^HmV7-I#Dc~^RXeWCXS6lw3G!>OT0^r3X8p9JS-(<6D4)ZC7*w}vLZ|h!MJvCk z%+GK$%3v9e>Mk+ru4KfuHd0st`fz0dOAsDqI5_%?nnG1Z; za_g3353%Z<696i5th^Cq`LEVIwuvFn{M|`Y^MUzjzYrLWx2knp!?F*l+;HW%{s6_! zIKlz07^~HT9i?u%AvKFc%R5e+9A&d(L)}TGjzIh9p)rHqpnW*noHVrOgO)*DOC!Q| zjEdd_f#iLB;Ti2~^I@)_!n&=IxDPscQRD7JoYjxxNneRro8F)Tp9IXUU*O*^e1@kV zF#oLF#uuE>|N2;1R-v!D&NU{|ePU_q!Vmtxn>757t_BCwzml*qv|hfB`fSl--1Les z|G#wiKimHIFr%THR-vqwv8u9|Lw~59?*_*Gk1_t|M*nf3vQyS`h{s>R>scw2Ycccv z|J}oXeEC0hVir*SB+6UWS9v7A>w?zt+Zg=+$JbC(v!BASdud!wjG8?{+3uQr(CbEP zsj~I3k2*l*XG(OYs9ni}Fq%tK)bdSnJF-54W>+#LhNWW?owx#2uA4+n!+LU;cMrYaVJKBGnYPWP8P4TaS;FHr(`bkS#baD& zsv`E~Xy8{g<+RKEFBZn`9JuJfD%qZ5cci!ON_vKlK`5BvT)zWK*s@cir8U+h1rAD+ zB2i>;aal;Dx77H~I34L+708LI(|M4pdh zWqVjNlII~;b1>`7ks6XHp<9{O{FPERc>@5?-bYdgp{fjS^M5zkw5F;$HnWZ6h-C{{ z?WC>HthBlZAFX!EH}fUrf1z`X(8+E}r2)4E?5)Dn3h)_n?wlO6T4U$P+y5kotbD>4 zP}%0Gq6%2l8_!jI=HS!7a0YZvo_tChNx{rlv;ePW!7>>$ZhG?Ewn!GHZ+kgSixm(KGy}%RLQxF(n3k5MaJsPMWRlBVduD8+Mnv6)Vi~2%a-kvE@pVPP@14y zRX9>IQz+jY-R6#;#OUnr?#Yxa?8?m!Mxtvjs2J*4PyEZ`mZx&yJFu3o!VoARLMKQZSk4 zGyZh(<)VQA-W^WE9aoN44jPTy%VE}cU`g>wmz|Gh>8ETY{8Oky0^0~{eb-<3bLqE` zFC!d!iMY#D3|?|<>P+SB(F7!zU~y>!{XL(}sWnj()ZOs$HuUCYZ3f*5;oY1JM}%WI z%=f1wTDVaveTJr5u!izRxs&4$;GsriPQK;7_oDI@Bbei2Z~|lxYl#a37;8nZQ{<7; z8bG^KWVCk-gQRGen+N>`3>ADNfis|dlr{SN`O`=K_kUH|gg^z5eq?`tWPYQNBp2PV zH1yqysLbw~{I4QN!lZuzljWEuoS^IwNGU86`Au3pQ4Lu%c_CN=$T|$fH5I4L4fwrw zGzOi_><8l+Cs9`3M39BEm(JEh;yqfG7HAD^lw@t! z<))d@@wh8x2O|C?3|o{{S^zpT_q#ynAarRbGX*KyMZ9E-$B%>bZ(mtGvHh~)cjT(B znsGBNe;l)(XxGOTBe$5W*W4;3ner<#szX`0BLr`f#)H+GJwQPn{NV?o28ESm{O59-^i?ttF9(x2n^FYwRgQBiwBJ&!I;vZ-zw>!iIo-?d8Z(6cA)pc>^DG`N=Cs9@)|f;)WN8fl|7ePx(2I0L|Td;w01x$D-5w95L0zv86q zGeGTg+Ct<*k&!Kv=wHpiKtK#}(8fIN^K#&2+8wXPqDF^sa2K)ELET|V$y=>ynXAmD zP>tQYk>yjP192eflZzu1y`!gH-^qcWH0MBOA*|4Bc=#GfF%`*C1XfarP_nMS2YZ|F zt4H*{3@6C}q$Q9pZTj=M{Vtb-{sIJydJ~Z-Cak?T4=7%8{q@>9%bGf9xL#~Mm# zJ~4$;c8h4k6SzZ|Qklzrj<(zDM{~E0WUNp}AOghdp~4XVraXx#mTTlFDBWX7W7VOe zk$?q^M0M+mUK7cCehayh<{+Slqz5>@!N0>j3$7_fj$(VzORv!sXw=}kzH4Hc?$XP3 z5yFhvAd8lS$fF_6f_z}_ga>sdtD+6$_I${Bt;9tTHAT2>ZHif00TduE`61c!!Jr7B4p z^Pke~60`IJ_pSwg&>48*J2^YoJ2vd31@3lZqACmH)@`34JMcehz7sNIs8lB?fgP zZ>v`m5KRtJQDlbg3NMhYi*XO{bnY}xCwbrQ5pFbg_$p`EOGU4C{#($)5785+)Tyzn zw;v}9;G}-_RF$8LZDF*(Rm1iJ26=Jdq(Ms;J@#w9j2J=BH#C!3y3@KZMFT25Jf;1! z25ErU#`)YC-Chf1bcR+WnzmaSZIVM|JFT%Fa095`k3aNT?*hXm z3g+26Ws4blHW@#F4PSpvtng9E^(J~@p?t-^H9o6&Tt_zoFJiuL8V;|-`~@VxFJ>Uo z2xgP5MmbJcg`Lwjlp1v74OFeu|1iy(n0bNp^^!T+sxgz&zY)o-4x-2tv~txiNX>Mu zK)u#2Lc_e{Oh&&{y9!6*B*T!P&{bBV?grRtp2Q$ow+K&dnK`t?ys`*ORz2W9ZSybp zkFN~VM;eLx92GMCa`cf*R)FTYkR^f>#%yjuFS5jZUR7GM$DFK9L|SqmGV^rE4u5Wb zb0ojfAWkMMH*%&KCYZ=FOh(n;$wd>=!#5Y8jV;d{&UCWCsvxYP6|p>gr+eDhq66$1 z?sr+s=}K(k zRG=)%g`Y<^oUPn+d44XkGDi`8pp&z-3;HAu1iTYK%-}{5j8uU&R;P2|hQ- z=`X*3SI)dzbSBg+8|(ECd7C$-u8;owZ1!twQEQOWqY_>Y94InN6#+*n6n-{q+> z^~>_;d&^x=jpNx3{eWy;V*3=ED<|qJuv9S~8FfgYXAhV`?(yAWl9FKwPZ@Ml^&gbd z4vX=t7)lOygIYaOa+uT}8F|zT{Q_Mpq^$@6%HtI(4n&6MruXgSr#q&;sv&G=3zCzb zkyjh-YH8%%&)%($GiR=XR8{3rziw>ZX!G4`Dkz6t}0d6v|qH7K}Rkx$}Q%TVxPJv~PgySIr$a zye~D4B>Po+&!Ocf@>-Ep-T@@W*b9uqtp0c-lg$ws| zquLtY*^^KpWjUKf;OBH!IrxqO8~*`r@@vI>dyZT5)2GA}wqObcA$EB=XC3q?<0g?! zoCk`)uzIC4`p2<1w_bz7kAi$@CI0ZCccI<#hD)sEEGWqpSyk6}c{0(h_rk-*vC)~3 zHR!HFnw{4mMa_wnA5Z>FKP4+qxb;kQ{aEyyM#_M^bEXLonTo-FA31B8!4%6|c5cOdk$B#rRewhf`_s1iin(rzy>S304Zv-=;RFczhL z`~MmffP@9pVmkq4zi?e(u?9mI$s(lRG7`gpn(Xt>I41IJ;?ELVY~hRpubQ_s+_l%9 zb&4lD7&w4nTJD8XB0aADG!`gSwOsO_b{ua4o!@>jX}60Jt|%4N9iBXgApu^ZTAB|x zEvjNB7~kpNwWvMI2AW1vh64|6xa6LPgmg^*0um!j$}jF&QHK<5CO-Yzd0301XBu(V zUlRry^FIrI(%W`f(Ry$`mH#YL>5+O%zZ`R}^gZyzxl9C^`~akS2m7Ygr9{*up15PN z^9d$&|5tMPev9dWU5)qBjgVE$DI6|CH}TNd??!3pi|ap5nmf>EgQOqqS8c}gMxK6w z^0jyvFm|g?!_n52EJXt?r!977r->v6UvB(!0!w(Sr|sq^7MfT;eIF$h+QkG-gvlvo&+R2pZO%MjU};@eqpvJ1GCYbW-BE<%6=454)nj&23Sm!#9W}vS@MCMO zS4UkrrQ*wc=j%mOj7gkCD~F1eu+BF7Bejb#iH+@D4xtki{V5Z>1+odHIkWvUUcTo( z&uwW_^*U%brDcZ8E^14POR+0mX3p})qbfAm+HzpLS%O%EZ8n8K>Z7_B`16DsXeOX4 za)sDBiAu9h=U9Hd zc(LEb!j&cnIhYHB9!?AlV0)hW3m9<=mg~@PP>~`T78kc0N<&>s+WKi&?r38Htz{FH zcShn8%&}*&#PqpF!QCq^PBvD^xO@jqIHn8O3+%i3l6^G;r)RK%)t0iyGre?O~v zxq}U6&AJgT^jQ~#JmZs&McZ(BvC^&ZmYpKPgMeJtOQ26|g<&WsY1X zwiSk*({%!WJ58hnc?$>*wK)?KHdCwe4!PXrNInY)7MaM@#byd6zv2Bs>8yp?g?KKm z92PbCN(9@3E_Et2#tIAjS(#7^kmb1E++BrAOI2fZ@w^sIVAMXMX*9u{YtHJX-z$Bs zE<`c$_&Xlcm(6we`p3(Ivb0}41K=v~T|fd^{P~?^c)mm;RHuF6MtirSLG`&<6VPB2 zcduYVu9E->3(7%%q=OfNZkP=jItqC1$Iv5=L%5FQ`GK1PTVS_qilHu zXsHW(?E^{IWW{gJ?Em+~9V_%<(>zjZq*=*;dJ!VTHQYbg5OXT&o@Pzo7k|D>a%)s? zW4v6R*e~(z5A?U3_-g4t0I_?XvgWDX6R;&fQD=Pn_UR83)Z*vM{b{Ye<9qF7S-s8W z{$B^o4AP*nuqG7mT7XZq0p%wcWqcUf7a=DUziWb7P(UU5z|FfZ_N;;O_Z}2B6Q<^$ zNiXd|BF1fcegXS?Wp3i7Z}B?iFqvKv^YQ-7`sh8P_0|=p)7hq^q>y?BTdv?diO3cIBUFjGZYrO=`6df2_)DoejPGZlYLqU(9Tpj?bu? z8%Z-sA2RUcA3z?7bBvQ}2#7TXuLuanG9~9~z4Olft4N-(==YKb+Ka#>(YH^(`CzzT z;nZKDdl07)8|FU|d+H?-e=>OT$2WYKs1Bg<)Etg6c)ZnfTMikYE#R2uE%k3&Y+aw( zA6i*0I*c)7%th|DE&G9ZJYrC@ftINIbW7i1oY7%G=d~05e7IW%(Td;s^M6}V#T3Fy zi%C*+LTu!K%?TnCM*r<9Om)A;&|jbLT3_ZeG&^_WiC_VK_~4t6657U0={olYp&jwg zY;UNod?u%i2z+}jS5k<_+AFgDDwQgX20WPz?Iw;ky+>YwOWmElV^kr^cnNiSr&WlS z)|`03KoK<`IQpdQTz9)sh*q11kAWJ+nl!T(ml5Z7YEz8lX9Ll?@*YB7VILD>ir5Dg za={F_x>U;BDJ4ZQRKPXWRhvCkl(9V=Bo4gZv zU#=(=9uS5V4t>ATwC*>5fJ1ZT6MJcXo zzKO}oUO;(pC*$=V9S|HQ#&-7(9sUXX^z{j+jN5W` z=uB9MO0o0HDH1TgKimuY^-c4WK1LBUyXpDty^v(mZV%*i#op6eyw?(R=TnVMD2{l0 zZ_&=fV+3bGgm8(`qn{%7#&mI`M~R^?!p`Ft!742mj(|vQg5On{)~DwQqXM%&<`iwIKkfD&q8HWed@O!dtb_G0ZNo_^@!Rzw$EMiw=abx}hQ9!R ze912oi6ZIAR$W;6@y~4!u?GTHC#2g%IjRt20*Sqin&1@~Zm6}G8_20Y+xub>_BXVy zH}XnseWS87deE2cWpBu&86!WRym`tx7=K;WrGrSsBnBRcPW|hCaF(u?Rv{0(&z#8& z2zbfUSKuuARsa6#v-&{JKCMtT*OWa%?{R&J$;V&yE-XW0v_mieEYd@j4`pa-_`n&l*7KzJtrgY~gF&byL3V`>6>gMgj#n=u-F+5=H06 zFmeX|_wJYL{`=iHv1QoQf~Q88q>JBpp6@bjfDdymO~-AUmYuv*oC7~;j%yFiWL9)Q z{n?fML3^AMS>58m$pd_hBE}`7D;c?alTmT`byb55{qk$q`#>MaVfTTyn`p7xND)K9uM!TY_xD8s`C;oDVl+Z9!F<=QLZGDd@fsq%oj@A;v2K<{NJmPWX=babNnhmEGI-Yly z#IEixNr@j6HjatF)I(6>CKJ}Ka3rxhvL(yOt3`?-0T6QtDreKAIal-}lh=2Sic3L|#|S2JOE z$l_066Znxe+zK-29fj zDB_&ly@O(wemK8VL7t_DZ2h9Saugzm zRO6PTu}h>bu$s!WFcq^B%O+lap*o{bW5J5$CuqA}5+;*NIF=KtN27$MkEgCeMbE4i z9SBWHl0h0)JxeG4nebqiU_ewz zq$6~i$TQBa8>rW$nYuEXm58P_%etB6+N%J80mmKm(2T zfKTA3;z9jX$y;xG=}hupLx8!cP0?;z{S&ceQxXLSRvx z!Y`PJF`{#YQ8DT9w%geaWR1lyObv?pIbKgLo^-|m?Z;m~wvSwNNI*g`I5w7bu|_Dl z%))K|(yiEw>a$4+Asu2Rbhz~0k7i|^tWg=sOlzT54K%zzI1xjqD-5ChloT6}FXw&1 z^5ivUr31yoo~$jD=>y$;ff-#|EGLW`w|i>$TdgXIQ^6xGUWL3~Vy(o^p4l1XbKTUh zQT7T*noNDq<(M!;cX?mrO-KZ+pi@sPdiNT)$HpHomZb0O&*=$~PpBDV75#$Z1Zv9& zG#(Xmewq`Rt8r_U@Yc#ru z>Im4>EN5T@uO^*g-xWJ%;(H54s%0T%aSVHY`$!o&RVMkIx$0#wcO=dp>TBK{B!yYb zH#n?kaZk@U6Ur!&&1h(biW%E)ErIn;_ReM{csh2}`p|xc8ItDK3IS{I==$xT8m1t#D96Ho;z?PbVr+R?bSW#5nba z()JGLf7oDKr+gckwy+J zOU2`H*vx{Yzw($b#_r3$V0_$2#S_c>?BhsPJO#l2>!DOay8k%uaOUxe>c=xY4iz4n z+o4SUq|Ab%f0{2%XL;ky6a445efK5^Mr1eyjwT_FQz**)R!2v&ZRX)k&}I=W4S%bKd0w! zh@`xzz-eq0tuX56tQe<|A#qFgAM_1lMXCqVnmzJ2SexBNSCkUjM$L-rG6)c}ZGM_H z{M22spo3TG+G?w{QZ>Sm8Oa6qg;FJxwK@)B|0Sl}#E=C_^Ek#g;N<#(L6a&aS|3ca zNzpk&`io?P|8oImv<@RgzXUEQ%H(hbM<*-)0cdD~ zQsmFLmNJs&C&17G2!}&i1e$|VA8qrHJqsOP72;iC+krUG&b6&2_t58H#tVQ zWLb(vkL-o7QZs&aJZ<734R6WzYJ=A-MKXtW>~$6Rj=Ubb9ziI-Zp1 z`WH~MoOm0jV@1aCK&$ve3`^^$pOKb!sGoZb~}Z3JC^lhs`_ub{d%(EZ{jZtw;{YYzX?7J_?sUerp7RC zy0ZT58iQk2pnl$hz0GXDokDaT^!+vPN&Kxc#j7&*=AQWv&A2(_?Pl-~&3QY4c9Z?3 zVT}Jaux4nA=6da+_#c%qIF`?kqrLXGUA${kFt?L$Kf?amnZFdT6$Ea)yt}5Dekpve z)+GNm(f+TaNj8Us*yS3l{IO44tL%SVJo9X&;JLPjbg8#a9;rE|? z`|HrqyMt--w1@iuZI6eFP%^j98(||Q#Tk>9~@IJ*x%bHfi^eATlcvQ z@!kyaUVpml=8FK z;S(KK7nR)j%#*!K>b&--)N=891=U0E%s$Aw;oUal2_HrHQ+c;O)tz6VYQbgr)Z|tR z{&OMJa(;i0N*i-p;^bnw+xcPR3QlEbQ!Xsj7F9ykUh-!3tJzP<3{ zxgizhB8yehOjguPO6y7C+j&{(J^Am2!&oRB4N{X6^zrIW-y>~ta8$@MZM9C@twc(y zJ9ls@TPBk!y&lBNe=pwG5G==wC0UJ4h9?l~=H~s3tskNCFE=WYZ@Wv6`WX+8P1ZVY zY`lq7#E`fyW1_^+J`9}>674558K6nSqIXxI{PC@1ZR~wJ_#&n%29_=w6=c3vmf*+lkF(OnR4rjur{a8Q&1=ap@h1J zNgJ(Vj=12YB*FAyFBfubnY(JrxQV=dQ5k!uE0=YBH_xM{F3_rlYogm8Bgg*Y(+v1t z=x%>VOP($@zuiCULnCP^1hyT51%IV>Sa&pXyVc_&wpo2jBN%OY-U4^t(6C>iJR7JD zbL!<_JB?FsJ(qJ+*Cx{8rTR>Ju1ZMtBs~di4SRa05!Ya0m(O?hhqA)u;>1*xIavu` zGHam9q*67JPyYrjqF(5}(0f0#Qa1UjqmO_9k3b;NJ=%<5e_t|iLD>5lE_yR!a$xcK z8IxHq0^i@g{>*lQ2>W$z^_Ma$qY)274ELHZLDI#G0*LW4|2jPuG?AX>ciHg1?=YI= zxhSsNl-)_i`jvzhxAjyUIs)1h1t}2W4nN70Ms^I(i_-9Jc_>Kr>hlq(+V->Z@3;9N zM|v4i3}Zs(k4qtbxm3bGaccT|e6C^iF462p@^BCZKWTKjd3{$;rc8Z9i=TJ6-Zxs8 z$nDm;rG_1sG}aMbcl}ZkmY~1XZRp`02g1uD+2({Ns4KR=l8G-*;KJ8w$Ds0kXsTym zz;mzk9nZ4|f3ACH=Bd(#vR%lk_qwrdsaCz3_2{hIU>vojcL#g2-CCz;q$7j6bZ#q5 zu&>!`2xHu`GnZfr&x>&_PWT1P!D2*zCxF&^{9M1jG0xi7qjTtYH#0m{JabaM)6crY zHCV||6%XP{C~{7WXeMD-WzPgnSk$cmwr1z|79EhW{n?r=`MUr!r#Czgrzzc+oKs## zZQ*_InDoX2pHeC9o1lfRseq%|siBbrxj@=JC}~-$ZYOD$D+b&v=fkB0yXTr)HqJ=h zio9=uZH8Xeq>Q$OmJO$;?TZ&|^xyrFR9-})={bzu8HGJzJ78QqpHMK-vlWsg9~x)_ z(QHVHzQRrTuZ3;qs3N#bllc{_uvzU?7XA1>l!Z^+vlo?c9_c)oL7%@h5%vLW}on(g;NKII3Ph97McPVK9jZMw^k+bb=11xTPzX>}rIGjrCe`tUUJ z`Wu6di%W$tR$qVJH-P$)lZJ*~*a%(-_UuIlwT5nmW#7HeQ{DPnnk5+V5KBzNc#|(d zl1C+zF%ois^DF6uuo#a=t;s9|Vrol~MSwN8s@@F4%yuim9HV}rLV-2Jqeg{eIzuOF zuhGMvP;01+*2CPlPE?QOGV3>-sIQ!Dv5QE zF@v9oNUbF0i(RmH5SZQ?ansvu$t;WwYo|+ch6+ihFe^^?G6aQ?*u!bRsD_4PNEwC_ zt9NrXS~;P>hCq{zF6+>@)74kRFE!)1&5bqanL-_ipvND~ABe(Rj;y7)Ue~PFb(;DU_C9dA-ly?pa%*RbnqEvq!|?NObXaHEt+Uq$J(wcC4jju_%Ms1(uk+6LCp zTF-QPG}l2GKVAEneK_A-(TcA?+3!>y%wIP6^t18LlZ75=_3W+x)s z$5M&8?cC|H$OOEDEf}E!lKyl@ecZF4SUB(Ur?Ci8|5S8^$mi=E3*eeyDv&g&eNqp@78o#}!49M@+M3rYX)9l^s#<&6aM?OknF&yg(ZK!Rw`v)}SbK|x7c+qnu*QhP~1?E8%o zja%^J;_e3rFlosqEl}lT=Zq6T-25wB=1j)+aKH^q^hS*z#>&(i51&XUMEtq=Y1R3E zs%v}btZt^1;0RF07j6$h)sBvhbS)Og4{x76a=S#p%BuM{uOB=vU47(u>V(xyWWQ*u zYdU|Jtmd_D0d+R!COn~Qt2yXfGDr=2Cgc4yB)6tq3tP22P{jyCy{jEbqTC;tYbNyC{!30&+f z%H1B~menPdFDgm_iSGL<@#8UQU>lKlN`|*|{6IJeuEp%+1ts>YeYxOMw|Gv=@miQ6 zg4SbS7nq{5$hG=-2`OnHWk`?(W0-jYmL*y(Ff4Nq_UbO%e%CjoT<}!_LRi=Ru;7e8 z*`L|+M}X1X5dntD(rubIji^KYY*sUWAv39etcRjtA3@A<>k6O5-W_wc2B&_KA@T@t z_Wg7wPrvtRo0&^_j1eFRtpUir3rDvDhluBnbg(IijmGcGav_4x475+=B8gSN7%Obn ztv677vZ4B!32%Kj?vM@DpF7X!uvqO4tm}DsvXy3_uhzGe@Z7Z zV3>F1IBlO17xxDo*L&DQaj3e>X5}id25oucL7*$ApP35IC}O1LL~aq}n06T7YGNdv znQ1J^c{W}z1YD$7PFg2;J9Z!|!XdYq)zITR7i$T7$;g;Li&KINjpfWxcb-Y#^ zo;r7RU*d>I(?g{HHZf0H^69O4E6C~AxNqz=-D{S7iebh2Bnlpmr9$s<91{rAGg{}db6pbU^g0@HC7XzD2H*Lp zsbfbdb-7f{OnXp^QlJ)V=ou|@RYWJZ*oIL|!6=hO=VwD|TkKpskpl#|baYO>Fnu#F zrD%LK8I1+i%A=3tFunta#EO2z;pZ+f*xlq(5=4SNA{U zr)YHVG%n0`C}HB3+2*r$7)l>9HqeH_V59#7@caWfH~1$d^zWR|PiWwOE3AVc69fKE z2}L3bU`ogpRIKf}GMw4@_woKI{MX|>Ce2Wd30^0~K|8No%mh=0*EgR8)QBn2`PhQc z9Z+7h4GRO2Yc97eVc_z1WI0A2eNufDahuDeWz^In;^uj61b#`Qf#HblQ*EYi(hzz| z?r(va!%w#3Fz49L2j*tqHaL)FT5a81DPU1(3WH>l2yCBC9jqErBTm50XW=B4MNww~ zL$P7h9(39PGp}{Y8EnO%4(%S4!vM0;;r^g>7ei0P4+9-0>x7ynE1$0htjOwG7EZ_Ln?yFonWGvAgWJYqRh+rG_T{Y3Z6Rd#9u>1W45u zn=+if_tLRKV3UXsHK16&MCAgk9L4m? z_+3T2feSI>#0^)L3aK>4AH)TX9z6uYL89eYHt_wuP!3q^``9C_7u6&2;JIjKb3|}m zg|a|V^Z{w}r*QN0;W;kZrE@c7qP>Bh={S))17kYTxbLnGR0X57C(oUFk|^LRx=|E&>{i_gYVi_ zo`hE+2HBHo66&7(yloXpmN^V7SFpK3#z02E-Ay*(>)pRN)UX2p5OWXM-^4Y59`s6F z!(AdbF?MRUaiK+f;WR!!Dra7UE?nD>>i88cA;d6#b(T>XapA*i)K8y}YPC@i&VrQS zZ}{DP`2(0<`U4OVCTFpp+#{nRBmq+4o$NoqYw{E_016>{9S)1w7{Jr0P3|g`AQ5P` zlV_}(C}>fL69mI!6>`H?BfHCE2LlD^n$?szp#r&$NdrUh_s=Qt_Tnf-ENBtIeq!{}40up%5>F<3EIyl9C%5Duh-wuc*n1EXJ4G9Vgh;|t9G%s2ytwETL) zT!RzG6bH>#&i_2^LBdHc&JM8*KzOO0j0^}@7?Ah?0L|yyz6%LnxF|zpV)QHk0|i!< zCfT@=U%c zgYS(A?rPBOdZ&;vtp+2T5Q6N-zjdI>6ro+twh4u2$Zo=}GX2De2}}8iwpG^lrQ<5+v+PJyr@D7g|3K@q2mB z2|L}uFN4K7$EojLofqyb_PFY}f*JPrabP3nuE^MUoZORTmj;|4Z~=I@4<$^|K2-JV zrfAj!!c0j0zo?6)VSJ;yl`B9i5NF4jwWM5PH(k;bk{pIh?~3F zgg=+usVkoTX6Xn75Y)2=py2VWz^-ZHhV5jkv?TQ6#4hrDN8-Pp238q(=Fo1uDCqJ0 z{6Mz&syGgkjmm8fsW!`i72f4O3Dxld5k3agRuVv^f(w`{A@?a5Z3{p) zH6s-Iz(e(wnmgmk48&LU_f`Q0&6E*W9NMQ`>@8R=Em42_KI?_krRojBIJ_P z#gwz4>U(B+drB0c9Jn-Gtjo&Es>^dsav;?7Vl2p6?U_d|(QK1kxnzT5o*dU;xLDEw z#6f5H#8C{R0P@|QV}0o90oL>SdvP?X&S+{?cHPfNMIKA zyj4h-U&nw3*WP$-l z#ZBnewYT=TO6g8?7+Yc@+prwOg=)n5yJD}ARdOL;uQ%HDy#`1zHgH=QaZiNRhVMOW z-Nike^NHomag^LAsdBh2_hIq981zQfr~V$C*RR|Aq z*)`<%IYY&NKSsq;5masTM~wsch`qhJg)>`JKyqNU_XY0;wT{hTD2mv`5W=faIl!7!uZMRCI?i zY2?5>9Wiee6K+@)Np~hQk`w4mDGlRXZN>CF35k6bGwz|_VDTndqg|lzTAS|kN#v;;)_+iK*>V3m<#OGo} zCB3O7Dliszb^XqLz%h1^m1eODM^K7F>8IQ{$yFX1j8+tBGK1DvSHG^p=7lEu)t?Dcp)_7rgj?iC^K(&xvpQ&tTfhSX zg?O#H-9BCz73wl{IV$9shZ122+HA?Pe+Bruq}dS7i(g@BY#~egb$Piz!DI(WP?TK= zWU1*a7qQvs4}sb-u=Y@9{=UM6jse9Eu9(3a>#=WoW2~zY9lZKY;e`dLN-4^9wRJy*|7+UA zG+HZ@6=>9}lxbT$TFO$z0=kG^gs#zgPb`@%_9(MSZ7yiOjYz-z0*>n9@&a>(bf3_u zekRx9u~M|RZ%*%J;xbLKnTw4Z+0EPr16ljv)L7a#vOV7kiGXYB)7O`uj=%2SjX!FG z3L({Hbk4e-_yKvd#LuU%xP7V7nG(20TGO;T27cDAtNo@3zp#Q#?O z`QQ_)l70jm=F|mFowMIJZ~)mHa1in`W5_+g6bpOcl`yxjCWgE(v7m{DlSkr2k=d(d z_j9eVD&DgQJu@h%*P?1W72>>q*0Mx@|Z#+wN0Vt71Tf^^bz?mPC0*`FnbWO zvziF56sFFIFk9?bprAkpVkQCXWOEnM0|YDUGr`tR$o!?VU<48I@MnC@8eC%U#U*Ko z&7NPfOu7~oz^3xI7wOcm-<|W_aTVfOcf4P~?}Azl!W2HhkHh&f&!IgImGwgr_Z9?b z7^1dk7FP_fKverCA7^%BFr*P76u6;xKmdk_x{XT1!5&ENv(6-{2hRhymuvdGQGQW* zE3m&XuXBIl7K!X_?i>V+6qn6&p8`lo6S(es=GCtSdVSfrV-b`j&R=|%J4q34CtXY= z`eUqf4>XntyD0^u?lNY70(dOPAz1A^jUMu9X!dGz;$a!kRpmj6Vxw6ql#g;!9g;1? z?GUl*=m66)L6SzxAQFIXFl4YtnPHwM&}^-Bc+XWf*sswVEDB_6)3+dcsMTZ3_O4O6 z)je;oxv7S@Re-ZRj`h@Hzxy}KnT_5qo)Zuxi7x$yg!t7Tl|0`E? zQiu>S@=Jz(NEK5p01FEr09`{JzPp>Gk{nK}rL;NeS)$%B5@mwG1*2_ z$fx_-iNRA+KSP<}tNfj8lhY?*`Mj^V+lGVEDgNMYh_b(o+an&#@s{f2j#e*7pGW;X zL79%J5Ld@hTx;8+*WU`DI@ z2t)1w!b&xGCn=PA>*cSY`t~~qK=0lAAYMeq_TtHewE)ZEkd$)|`;)hVZy+Z8!V$*#)5aaC%-sA4qt2WHXa>6eB{XZ z?>-X_XNx3$7tg#R*^P{q^g2!^{{c{(N(|+;d~p1PbVJNkel?=my!Y*)Kc^JI!i)^7 zpv!qhiJHhHZe8IoYzMqx0+-&uE&EKFJQY>|$EzF0)rOoY_h)oUGJ_D07Sc1pI}(!8 zNfuk~y{4}y-?OGo0cGcw#CRiZkT>t@gx9w*Y`W z3!!MW2jRM~r9)Vqi7((iPB5hcqKbRnm4{51}ZfuL(Wd+d3lK z{NsK*(}3Di(ZUzh>G9DXB4Kibr(9_>!;5zYA(Jxx6;by$sPbGYmb%iU3m5f4yP{F;Sw_{SXe)G^QZ}H#mt67D<2#nNe0s7X zYch7jqwflLb~6ycAesq}m|?R9@sAHofKpVft_}~Ie;+Pva$oVor-Wqc0D6}XwW}f> ze}Wh?iuf(zFaegKysFM`B}`fcc~22dW@(&EaqXz~7MD`5@()`xG-9NaHuy5f#9juj z6r%=ZY%-=_=J`qlTB;hkS zPn@ugHRQxo;h$sZ;>+3ET2l=3#~%!w;je>pr;0t`vBk7IYDe-;^w;HY6GrG)*=W@{d^aB;84Y~aTNo{S$rUBC zO<53ftd*QmpTtd;i0{78sV>9q>`vtgzMZzYmV7I`lDn^0-IL<)i?P3l9vt(K*!cjR>CIc|s=7}S zybQoP6h@|Z#^&O*+UI|WP+oRI6+@5W< z4HYkYk}zNYoxf@nLWD;`mF`s3oQ$y}vzZZp=fb=z)w#pJ8;dDg&veBUQo~eHt-)Br zmkRvmm&y84TAlXBuJ0o1pv>qqdlyyw_516k$VD!acpQJUI0uM#YbkT|U6J6koHjed zC$d|d?Duf12rzpV_>oqJtp3&f-OKW_0|2fxr}@u|93+4sJ0CkZTEO&yCP<3lSkWl( z<_vpQ{hkzHUEkXm*=3j4t&H%aIU$As&` zqERNE{J>*v-5%ErqR8XE7I5A-x)wfA+pY>g3FYb+Oe#*M8fAFMog2k-&49k1mvOQ) zrVbfuoMbd%bPC^7)P2==etwES@dDjEv4qGFL<9p7aSjM44fa@^dKDl!`d!|Ro&EhM zL$B4GpxLW05O`x_c1W8gWRPtI_VpqZJ~M2O8AeN|I;OEVhtIZ+8hbQ|3K!Yl)0&vYv0tIIpWoI(qvlj>}Lea31*VCPl)ocSn zP|hX9MdC}GVTy`0Hgd0idpmUXG(4=e(O31Yr_L7Sv-yJu2QI)A5_*X-1r=$t>UXOd zvk?cEuH1U}2#w}d+^Fe?`=s)H5R6f3?n}w953P7f!2Td%ERKHTL`~p8Ax-!KMd=sf zx98h!Uj!yE&x}dtD4qG^A#8 zd1nT~Gh8A*C_1IM*w2n|2KKA%bVOU9n+^fa>A8;w=#!G?J5mfR22VxRgHmmsG`o-) zE2Ao7DB1FYo{4@kbVc=ZA||%ULet}oubLNx{1&GtG8K%dw3Lf(NAXLynEbTb<;Q|^ zPL6K50>W>_T1aY=rj^QRR9dL)(FP5gvhrgg;X848lOS?-Wz9J!R_;1}031XY1@?5a z^TjLgFZAReQkE%#%ZTJHS-75=SXl0--*40XJtoG6}ov;#9?12-IVlQ_W&D*eHWFf zmsP&_w#ZjaLl0KVl?RZ*V+U;d=lmiA$FhT1?;t@daM>EofKfgmTooIkob2J$J0h?E z5saxHU^&WQU1> zx2KX^8v$2o#I8rg>9GR04!Ug>fu4YXLWlzb17O<+FN#l%Ubfb3)ix|95(;P?XrAR% za#6}J3FzZvlL(5w4b_|^0M~<^>Y$FYj7Cbg7%q~ho3o1b;+C(-)LwQ%Kv*5!i1P^- z8BI?V$)+qQtGO*gQ5Wti*pswC+DOru zRKh+#A!b&|Mj_#H{cc77J&+kM(h6eIt9o(Y5bt?zWDFv{esql4jLn8~YZi^hlxY>m z<`2L(Fb67)+w_NI<|uZ1#P%Zd`ivSaTX?re%lS!^O(k(J!sw=<6>#3wiwwq@;xoF@ z+Q<`}xVy^pJew=1q!G%(^=%P!j3sfn8e8pDpk5|K?2N5V-78%ajJSVs7!l%!%p!94 zfue~jRiEg_D0}x85iA3Gz!#T75A2!)QHRj@9D>0dmH<0{i6aB*a8eStJ_I)Op@k!7 zYCIX;;W|G-@nY2n_h(cYP~!gCR78lb=T+rguk`O=Cu}O4_jUs+%WSGTS0AR&@OXCN z8$Dwis71wgJOIgR2d`H6TzSY14R!H*7kFNI>e+P7%;bT znqLl#2xQk%4dfIDPy%}SQCZx~lvof&vC|n;1%+NyE9>aG?Kf>pDC#_zsn#oq9uG=h z3q*AEg=qB2O5IE;r)1H(61@i zfiPvOQvvL%uT<_D7GaVbr->VNyxopA*~^@6@*%s&en*#>#d$4O(573~{a8#P)@NR) zsHXE1XeN375&*mF?=T`Q)CE(j4BeIWDei$nCTE=o;UbPynVBp{qg@!!VI~qv=^VL7 zMhGw6zJ!d&Hc!#MfuwgBbTA%=0swBHEAk;zl1F}L=!b!nJ?YcjfO;3lRQrVQ;L$pk zmN0mb>zWKBePUS(jUtEVnN6yeoTiX47N*E&ogW(QLAW~sDf;MZ3XUAb#fy9F6BGfU z#J8^eJc&aao6&4I?B~S|y9nQluVSt$*OhJfTUqP|F?`wp0XVil0CAyOr5!fuTH&lc z+GaMRZ$uE?ScrcB?mrlG6da7mr7-0Bd?0m^XpM|hch3;Di1oS>C@NhY*9TK1u>7`_ zpZ?!R=j6h;v`9I?kO=_-GGma(pkLm@{Fr?>OAHzegc;W4SR#&q_uKVe9P7rIlZE_t zMRn(2&7n9?+tRm-_8(Aok3)Y;Y|d4S+}s}FU6TI(M`QVpZiza&`11|G$SiF7A6{m) ze%Surq{n*S*56i#yyQC&$EGrzo8$g58#{+9aX#BSsDsZ72FvTU{u%^JC0JwEW@UCz zr>0ye4e?tKN}Nps)Evq-b@ASScRM3FmBU4y`a1w6lxUk79|;zDnJZ9?M3&&Z$Z0_e zL=yq@c*g#hCKv>m3NiTH7x3*(aoZ<1aM${e*@EsAIH6OorZ86)>O&TPWW`xy^REM# zn&3Z{q%N;0f^C3k>F`JomEY@B9m)#H@Y&BnT}v!8LV9EaQCgWIIq;kc{ z(bq_{NNI4NK{XB`2QW;u?pClELjsK&GwpHea3#`e9HIr<6dM9{zG3zFq8)46)pbdp z)sppH|DA8lWfmzUx!}+$5}%3I^ZA023;u-8)&MWiqTyXSt~sc%FIdbH=;3M=isBv% z2mZ9xE+$Xs=&>R~y*g5oyKnU@R{lY3khNq8n)+e!m7i-LI3FSF)t9xj^OEA@mn|i9 zIm<#;6}9GP>+}W!K@1VCB^c$O<;^3l()6C<18RlKoFYJqFV0#h4HEo`jJ*W87xMst zVf)Rj%VFZw>IFgO!ak zB*6r>b4D~ojxfNAk-GDMW0kKqprL|~8VQSU2kCa!D>p0Tce~a29Yc$mvly4t!L*dyTtfL>2#*?W% zD9ELUuD1>SUSFRKracQvAJUj$mLuQ03)x;ZT~O#VEiAQKM6W3P%|}p2vf}sn`WZZE zu20wR$M054E5`n?TwcFw;28*Fbe zpxz_sqmqaJcErmU0tp*Fr)rbC-QwyT_Z9TBQkp;2Ui=VWeA5Xlg#Wz$z7l^h@ar!x zw&gD1tCk24Xf`iHRgK9XrSl`W*O!fj7d_AO>_OjMgh$GEaACYr1->vJtNxBY)Rz1+ ze*bzl|Jm~Q&f0F3cytKMwy23$3BHenO?-*kxVPO`rTGIVtI{TyYHtYHYiG1NGdt zPz7L8`!gU#Kqm$yrqsk@5kaexp*VHJoaMly7}CE*9B(t}LR2SsHiw#u(5{1HSO$nX z^kVKHweY^t=mMvZ8F|C!A5kIcf+%K@_@U2o>ED3KAT=mXbHL)&aE3FF~q4vfh{gwZJQ z5u{wb4Lh&7!uP`ceLKZ{l->SMTY^>9Ds7sCzCgUINXcH2W}Mv|ux#Wf3SLk~WK?QY zYhnm#C3Qq^90XXd5)Hc41W>Q#s31k7<*heM=y;`p@e0&E#apGE-k1+ADI z<+lD4;y0L&$n{gH;u@1i?)AXuGH{+|#o426&nJG*ODXRx3eQ9-oP^J0%O4}ZLy&i- zhM(6QAT|U1;_-ILHRh~6E6bkVzU+kcgko^VOOVD9|y?6eGkTvveA<6v4;Lh4e+STVtrNo{XE*CvJ=ye;aT~3uO zP&DZqNdih8DE%v18gWG!Lwt0Q7m=R!zc$rgBi*rguCZO%844;Twc z7-b9+voBVp*_2I*#V3wNNe+b$ZO2IVn1pEAXj7%eY6_Dd#t&$onb*{T=H8x$NL9iH z3VXL`Z{MNFQcQ`8znIcHtqMbo6p#4cpgSQxV|WC=g=Y{|C;r;co)@*xH7FW7_M6?i z3yx>lhjH!Q=w&r7deXV(i+S~aIY<3v(WhkO)lAkd;H~jAaD`0}!Z!Y7T{3XK8vD9) zWGLVb-Wkg82bC3KV6vIHKV|g|)#Qpm$%LIeUmU}jd`yx+yD7pYVZ$_VUHp<~lFKz9qEBu!Bq#%X@NZ&x=>*@IBe)zTe?^vid+}XV3k~W1JP3b_WkaqD>7k z3zS)=S*MbP651i&(dexf`+1Cp+kdee*Kd$>0AD7)fT7lPYQDgs`dE^s`mXA#jjp~` z^ikxg{T@l7tWsq)=VEO)>n-6ddz(m6p%?l*AHB+GP(QIDUWEjE;)_x=XZg6tM)Vf# zo5tI0N|_-D4`B$Ki9wKW@OtOFgV^hS(f}~V&(;rWTV}nY;?4JzmsRWl709E$g18Jb zz*xU?^z=`cY^jlMm-mKn&*UpP;=3bTnC=U|)`%X&SQbp&vELQvjQS9$N*Bytocl2n zbQk7AZ+-*oz{m#yxsCK~7-rrMKoIJ_6SW^slpw+M`=J;58@@cfB`ro)b?$;S>PBHz zKNLRkS)V}OSfAg3+8-|`{C2ALsFtpT`gq|dj5p-`4;y9a@!g74n6B=xY)t+f3%5 zmn7a|f6%kYG46JqPq%u7n$crnpyTP+B_3yLu1u5y8GER6p$mN>9*fzOBQxCmF)!kK z{jxeRxom@AN{D<+S?70Tfu_OkIfq-l9mB|-EZ%|(m34hnQm9h?ln#$9xtR7EV&hpt z<6#c?olx-m=BerU{@A=4vSdHeOxQD(E|f1c_;NfY@0(Ax?#-^GbQ|1_(f$DJcS?y9 zeD4NquH47(adi1Sntd}$#DG~wef2uu;H;%!o*WU!dwkj;d}^>sxk7cTLUbJXHo`21 zr*`Cwi8Olmu0X3Y$aIh1sSKjL7keP0U$DGk-G`cp7 zU(exA?@->b-D8=SXyYnKT(LTQpLle}sB-aEhsm-=;<}}Isn3EfwiV(-if!PlX1o%r zFr7&uW{nC@v4FClvvG?Kr3z#4nDCkB*(YP@DI;I$D?sCf6`=K|m_83<}aRvD_&!P(4f)(Q!&PVX|naP5Ub zL(kgW+}&3{e*Qt{HPEmU`t$-1+`1(-r=bVlkU4;~c^?6YlhFyfjv6(Xo>p3H32s6v)o zN!Zd-j(E`7foMP2W>(B5;M9w?+csRSlCGI%IxT2ch{+iu21m{JT%@j{CPZ?FMY8VJNfwr9#~bnjIh z8N~KcO!-Gy4;9(ojiqbJ~z}DcTmt_ky7H<=U3B zaFDI)&E*yJyx_%$MHdD09o;2l=8baPCxBr3q0p#l31&QS|1j-*ucsGY~W9>Nc%g$Q^A{Y zoA_6YrCsmss0tp!8K_PLjlxpE?+Tm}kMP9e`E)Cxvv6R_Q!*d{=b9RHM7!aXnub?8 z11SLVS)6GF{&xj`SL?vl;_2aSc`lAoA6Eqf?P&Bw^u%CfL4<=miuoj$>J@?HE}U0! z+@rt*QfD=@nR$yH3OwxmMRv;db?>9v(rsiHnYe0COcc2*Wh0WY5%(;j?& zJ6w?6n7jh(pf!lPY5|V2q_o=pbxD#E8%?1xH}77!)WFR*xj z5Ek9qm%04(G>P>q*-(@}01xgJp ztgQ6wYGb*E)Ogs8)Y*sBS8STL%+pq62nua}&lWYe& zL6zE7a-!Fi3h1K|qrhBwYxHRpX+&*QVdoXKO`I^Y=}UNT%#m|GLrCf{E6zQt+)qBd zweaj#?O63!xIaY$LR`I_E~nIDG4+-a?2TrnaP*@sH()W_%E29btP-?2k$z8L?&cSLUgTseF*qWpq#m88yn>A}R8v_$M&X~|mQ;%=` z>L#~Gsk^V>xWDk?EwkX^XI-9LQe?H}>lvu~+Jf^ssv5-3!&CN0zV@c$wX1WzVsuiT z%@k{o#QGzQm*Z#LnKS($4bDcaV67SEI(O&Tq{@9bmIVsyg(iCb1| zN0!{oQYR2m*qSOhEVsntyMj%iVWWN@@ zQ}mEwkBhQ2r9GxU{uH}aN`$3&c`qGLU}$V>U-;$R00PVXP)X3(SHl;IHQA03dh6B( zx{b2D64aqtKG6t=`T{JS`Vss^9X*r0VSc6YTcS1X?Ucr0^{DiW#Qlb91NBIeb^80R zzCqD-#}WpLwrqv2AJ26yetGKCF@bhSn@J>TdM8wT9?8h=BY#|kA?Md8Ry6i(A##>6 zmXoYoiQ|KQ_Y9RCH&4t%Z=Cks;noD-Y+nte?_z#pISEP$N?@v`gCY@#~3apHwk@GP+_|Xe#7vy2J5C=*m>zU*>oeBa+bMnf5L{FW}4Wn9- z(UXfP45J?J@89JYM4dxcX-vuY@$m8d+~VGH#wjbGTE5nG>$k#>Xtk~+rG_Xs zvBf+YoF8~5jSmJzCXIj=C)+H-`GzYURe9K4to4GU6)s z?{ZZO(xkkKbPrqQqlI8PR>qv-*h3a~9Co#SXL8)&zMI{r=d9C-CJe_nS1k^tsbL^P z8}2v8Wp84Kjrkt~nj^ju(%)fk-6Kh=yfMl>5>cqicom~L6gx-fMSqYjM>6GeLl{P- zY~$$`1!pBEBPXFIRt+U`k`ZzR=LX8*Bnza)BnTmr0M3=3O_?Rk`V`(e^E!!0$unXO zswyVKh4(NP4|V)BB*X^fpfsU@3auk&*b5Ra@h-9u4ca!Nl(h*7)f+of(h8WWS(PZx z<-Qo`mXM%ORgICJruyr1%R8n^Wm0nB&K%l`Y;TdMCQ{Ya#74#aM^w<^@pg;1>RixJ z@@4pk#Y=9x+3Ogbwi9eNJkM~Ls*YEtaieT*UzaDPog-m|VfIK1WRXYlC<`Q-z=N1D zH-8wiD~Y1`zk9yyNKv=N?E)$Tu}DD{)e{Cx>B@*LL8GU#_9tIZI-$g4{h`*ZAZ1e+ z7ojkmlalj)51$p|8aA1weeddchqD9})szbN)x{1H9S`Grg5}RR0ue2JPGBN`f{X<2xZf6{0&wp@rw;*W<({{s<^jboWu7F9Ty@{TJXggVZ$ zoNd;1gnd}O#6JrGi;J;# z+hutcfU|`xNuU{|*a^$eHZ0t=2{WvnI&^BQota5Hb zzOIQ9hIqv$`KN3?hZ#qXl;#hW9}r{R$<_%FwZlIgUdQQY3cofL84s*)@H9ds7F_Xk6e*DZ}&Ciw0<+#DIzwPelzkh7w)Z2wr z!|8Vt^)t?9e8a!&@W<)n`y=(tnNQxgA#x}{G0jsk zn(s#O*K~j2zgg{8;odiE>xLBHp66-4lqGtvb#&fnwl%_`Xt|!=eW#2mb#$u?QKGsB z)N&p11?Jq)qY8X~{$|AG1@Jtz-#W_%<^x~)R`aE9qI3lo9@O4{%n(&0N|h4M$bt)o>l={=8Hj4*!|X`->mH8%$Af~LlHWt1BR~K zJXO_0+>ZuFQ3IVHxu&ecLW&keQ3I)r8bwuuE@=}3jqzJ&j|4tnY#nxw10aGXp(cL7 zgQDdV2v6%DSC1wAD~=enz)>xQp{#>wNkW9POxscDsp>neOzLE>8ooVEDn(Tb z>PkY!iP8I#Ebyt6SYS2Ka>jujnh}KmYxYPgU>1_pS4%VfKca z;f?Pg4!H1pniWozY2!Wv1;cuFV``5AhwXT)td9ug1ozO6`7iA?Ca8$_ozL(dMvA%n z$o9xf{OCG(`3gP^-AlN^`8%YU2$a3`Iq>u{a^oB2X>&*gL_?hJw%Cn zWA$*D-aIjX#NIzK@=SyD7%F;0^l`?;4QXiHMSU2514cQrW*#Wrg#G1n1K8NDOkRR- zp`u=bF>z)L7-_BK^rFo5$wM8}eW9Ky8Qx0ep7eP&-Gli-(N6SepTD`I-q0Pqn>K3( zR#4NT@6$vaKMHU_M{Wxo;O^T{U?~_TXt6@BcWJvZB6gW5_{)$(`U0&1FM7Wve?9r- z#x5GzqUfu1+HX!WLfMT#4!(%Z#TaVF^ZqjII_X~?>@C0R`!%|__t&qR7w56h2FLtp zQ&jFMD~s%~2i!fD7$5TWEv^*(4e?5JHP*54-l53-GP3Qd<#iis?0~Z^J`mrYH0fM~ zBTAIdO4V+~z!pMu?SlOqOmBwl7@WS<@I~+u^ROo_5A5BWeNbd;6Is$a>GcIgl9bLE z$Mn6uyNWHW%a!<&0v}Vf3h0Uha`a?>K8%y`+Kpoi;`x$F=6VkUZ`GeEy%gMymJ(}v zPr}O!Ml|jF;~r6~E^r!L4w_yeCLf&>alPN1#7y4GTyzt6Gm!-XmU#LdP<%(^w7^~b zn?vmK2Bd|5L)1NP*X)byy$(Za+(SW1RU(bNZ zMHjrk{l1pdAC)NhLz-&z&Nz;21~Gaj4X7+(v8v-WUNpGe6~tzZKc@Hc!cC@;3|@vZV$Vdhx9ecAp4-$KLSFedec3iJM;^%rlP)O61N?TC3ECbHkULKyWGrS}Biu1RF2a~gbq-=0e zFL%Pc2J$H^4|M9t_?h@S#obvpaPI@2%G>Wx6&yRgxgKe`^V`pBJf$lG)^_?wQM0wT z?HI?mTN|UrFf-3QkxW6C0uDhVahls7=7g48qt5Y+qsNS?SL6;b(8*!3x5-T0wS$}M zIvJAqJC)E#$5mQhHZ;@!KxHqEeKv1xN9=8EOB?>rlC{0wQxNkbUdjlkBNN+;g-G*Zb}oJd$nGZs)L_fG&(`=#DlR zbcgfZw9714Kn$z?xxx*GFl~%gA8#Q2NoPJyEok|nD@*jmD~08H_`yO~uw=8vA<_x6 z<%kZ~ovoZn_E=~9z2O_+^%2J=eWg)nesSD;h#ipAJi*hH9c$Cq0(;BZ=0)DBzT6VL zAvgP-i_s5R{ zBFTAk0q%+?bsu12jeJe3Mk-p7qB+<#;UyPp2S}Mb@m`s+R8M^p-b{J3LC)3fOSp8T za;AOOqP`xVFFWd%!J}r)EFEgd-njKC&vYZ}U{6WZ++@rpeB|~tzC3AAOquTxLsrL& zyfn~0ZqRrOVXlJDtS9IkqM5HL>)}N8A+;NPH z43_>FaEhI5(d9k3?ekn$BqoG|50yOPbx`<;X9Wh*xmAc~?q$>mpaM<9jm}m`Y~2Ac z9jlW@yK^U)isqW?^#KTACkq$+Osjks&rQJ`FhO$sHn_M|=KgK%VJ2$GNp#wVdKQha zaWkAGO*~JFTPaNZZ2w~4(%>fPnS18}oFhg_=t@bq?peo;*0`@(?kDf%bDXUx7|!r+ zE^VT%l0E(Ku~VVaQ?a*gi_smfo}w)h)q#O#T}kxLzc+~ob9lr!&xBh~#Id_Sfgbo1 zJ)QahNO5$U>I$2e*r_gU&teCsmA@h<^59K34HI?%9fQ~qdDQPucDkLc%pC2|>Z5#T z*cjLFV%v!3&vC83W{9*c+wos}_GrO=vRF4UuZ#-`o<_gQyTayT)hK%YBpe65i-bIj zacmzsyrA7g5&~WX~L9 z^96e1Uz@Te=d$wu^y#Xronlh1UT$4IdV+Ob0q>kH3oKI$P0>mO(9b4r`h3@+Cqfhh zSkZOje?k)VDlueWj5toEZg`ckH|{h}0-`FT-ktts7=LLrSfsmK(|{RrFU{+oV!$t0 z<2o0DfZY}K%WDOujeiPW%~zYTI3A7Rp|KkgyuR68Ml-awz4r7oe6w(+NnF)4>h`Wo zFX;8H@b!S;UZWR*y@GB(oa-ylUAlZ zIsP5gkrGvBJz$}-&8E=L63$XjBfq?XbpuyF--El2E#x;8bhlC`IPbar1s7A#Pbxb% zAi(T373j(6pf|75<;1Vd0fbCh3p@N*D|}0^2Nz$Tc=G9X9#Kg|y_9!Tubpm#`_sQ2 zMRUw(>K2GzS2x+w{Oaod@{WcR$PQp&8E84AlITmQnp9p-$hN+8qTV316)A;l3>CH4 zgL-2SXO}!d{Z^<&P}>2Px;U?~(>}g-m4L-n)bg|(9qnAhX`bE)@;-T2Bpsa%TaC?0 zI%MYB;^ZP({g}{Ltf{fGs*pU);>9^kM_-UcJ(XoL| zZ+n`ArIC52#jbWBFrCFBO{b26rMz)yWi^v{mNh*yshw4U+TP^IEZiv#OUD~@m-SNH z(pcXdoG!nyzOWXv#og4`FXc$T@>(IjH!VtRH+DhbkEK_85Bo$XPOzNm#laeCz zTVBmqFw~Mil{2*w(%qS1e|QY^AI$5P}1tsdN+t33K( zYW-PzR-bS^D)*kq9^;<*9%L0cy-4Hl=LJ{Y)SmZ_hpm<3>mEAqXXk&NwURsD+HY6q z|Ie4ce=gtWBDsGT&n6jJxv&|%&(ZnZL+$$5F}}eoXw6)U7@`+v4OWJ#+Q+WLT@%Er z+F$JFve6Fb9st1ZPLz9MY2Ez|h(qZ_$PHO;c%0F{lP>m|CF?g{W;iEY&E4sH+=A$Y z8rdz-TU{Yr%+M-_lntuY=v2bs?4#RcwA>lt@CEMe`Fyqds=n2D6YG~5XX7Vdc%BPy z(HT~50TZ!n_V%?j1Elpg;QbK*^!)VE_noTxZ{dqCRfq2-=kkv$2!bp~*?v%+8M9Lq zKLN zK}^Dt{RCsT`Zno1)dVPDnTSJbhBWW6o zMP4+h`ioJd5u!W1!Hvix6`IhxEQ7YJ%od?*DO6Z?!`&9_IYqD{#=Oh!4^?4)opWJY z4`JwPwJVce86;vs1}okGsUS-96{WNW^c&Ws#;!EkAcchpd}L6MU-T*_I0X4aO1vQX z8CakcwQ>ICn;-j$Gh&FlG-y--VmHy)r5O{H6h8Nm7s&c(4?%VEdz(pwc*T$>r4RPQ zaHae&?-K0*Ie>6yHo_V(i?gn2J_^J{k%1*FuH;1l5qYUG?-| zOiTBXFyDKF9_q8MjLOQCz)E0B_E}B4ZjjFIk@r&dKpStstpIhOh%ISu1MtE42hK_V z+^>_i<+|XHwgOL|Av|xii`Cm?+n^%qyLH>J6gbvx1sEH$c7hxnBD3QMT7zXBlNj~M zlMJ|Mtl&{Iiwy_5Y4C$rN{I^6d}>2sActciYoRs>@#~O4eML|!z zlbOI+mN+pE17;xhGHC>Zdhg>_0qQc z=DPgz-9eh&KoZe{0PK!n_E5p8{q$WB@AaF}bzwBmL34qk>~YD8UP3QXH|7sPdl+vq zyQfQvh>TK=vY}D-IG2B|{8jnLxZ$hSD5$=HHRF2>2hiIn-%F*+qjpvE!_1tvN)Oct z_LOPBVjHu64uNEEn}VhA#UAVruRh;K6yj38 z!2O%y0OwS$NaucSdAD%GGzUK)NHa?qzhj@-CV zkHh+0WGJMp72q^|dY;`f5>I{lHOXfv&*AQh?vU<72;ZR| zh^?F^5kLa76kk?NgL9F zbd&^(1&JZr0NGXQO{y@He7Uj_Edbp1E{mY*&Xd$C-Dpiqc_>rit&pW$m_~)N$6ra(= z(+WvPV+A2Jl#v2x?tsXwG0tS+Ky`q+(}=pb?yg3UpGHq#vlkGh?rwwbpB@PP`hu2O z$F38^YxkIE?tR8n0mE*!caFopj%dN3+hYjj!mF#EW{W?_9JYa;ch+YO5&a=tUQ+Yw zGBv??kg39b*j;Sk=DzvY9|!v^W<}$WNXTa1l`bJexxK%50D5FYLr(dwPII1KuhgjH z7J>({#JCBP&*Gq{?y%6FfVW$L<2R^A(PZGw77A5gb3CUXQ zY%jfjYCiITfEOHL;cung1C=OB@Q_fKBBo*Uh`9&zAxlQ-Kf!z)5LQJ8WP@lx4AiMF zu6y9h&dK9e*B4VQ+pWfRSi{+u`O;^p^0Rg245s*s02*BH__?Zk_cUT+u_vkI^B~O@ zk9vo#$-kI*z5q~iCR|Fitz4Rp9d#$Zx>LNmQ=7)qnx@lbO($uz5i0QOFwP0y;+1&W z8_wx?l7BPe9Xpa8x#Au8k{z~U9X8^sl!TnG*g55#4(PSL6Xy;1NoP~V9S;gy@)13R zszDD3_E8EBpr=7&ayH5C8ezMz(=aTihKXnvE(VEM7B-_~q>J1U(pqJ&tc`$xvvCp~ zwJGKhDGPOM+=*_m(!xU#?1|6ctQB%s68FsMutys8?)1!QG1Hy-{V-PBkgzER_pFw9 zq~9QcC~I-waIikOYl$laq4lJ`K-k_08~@}SSq#4aq{!d}P$fhU5_Y{ZHeH7}$a6UO zQm}z%+J-tb*1e`|ZX!>x7~V(E=>f6o!ozNdOs@z8mezA%OkkRP!2N+caRgs=<3h8L z8UB}@Z!*%4Z$URSf^I=KXyRFRrf$`hU-37}i8`GmZOaJ3p}pj4PLEE;RvzY`KMt=q zX_Ea+YG_8fXN);5Wcqhb;56~^O6L2NuXWCdX6-AB)(AYW z0dII2y(-~p7*lVO=laKf-tfm?ts%Rj4BrGzJ)en|QSNNVDek2#{T!j;fI#o#!N9D+ zXKOJurkz}XG^7GPmKD=Zyd|6O66>_n3lh;zpAkXfxx;f>ZL_u^-l!4;^NtbTq%_;R zBd`8;%HVI(^zQb{V?t&l>IFBj){L$8)^yLwwvpU1@8wPT5otQ0r!WxD@{81KBgFR!ZZy}IApifgM}SF)~(&{o%V z^{-GZ*LHpiP93+=U66#|?x`uHe);3!T9*d2_i*Lhe{>;hiI+dQVL*TU;}5q?kYR!0(B7xD#2^Y_Y!c6e<$ztsm@uk`MI^Hx z_VV}~aEjsnW_Zt3h^ z_W)+Q&0+*~b)Hx>99&V3U!mY(EW}rahRZ%%D!oMbFTkDBa4S&Xr!3Eu|7! z7(A)5q9eH6>@01OU()#`(Vkr(AK#|op$O=-M1uXI>Tyyr&Zv>$p#pBlFSyw1H?x$M z3k{Y&;=0eaf=Xr1jL`ReQb}jh?xq4fQnc%)Gws?{HG=_@rMAL-NAFQ1V2q-_xmig) zHH+s!tZIAVAp%2yzCbe~nixmLQr!b#=(??4GSNk?S$2|TW@?k!YE!*?YFu1dU*myv zYNMI8f=mciz8dqz>pm4OhLiT%d@0^g11K+oB&B;rXh`a>|hRTyo zh7oe$O~#jmQI2w4%(av8OX$8dZjKr8!}e#*T&#=5|iDKPLO1s*Jw1F}(o) ze+RXaxwWyQjIpbNt+l?5oFc7&t(B3q64ZZYd{ajP=AXjP009A8H%(d=7Ip$!023Pl z69WSS0V4wot2Vv3lfIR?A-|2Ol`#PW6g|JAp|On<0XqjH6#ah>{jWmH#K;OoFQ{)P zW^8V1=Jek{7ASf}Cu3_B0`{LV|2^P`05E3y;Q{_*1Qeit{Qm!g4FLXUKK~asz{Cpp zKOh7DJ0zeTCv7uGfDrtg6=2*E))$k=nqW*RfifQXRb~V4r+-1PB&DI#)A8wrjzEQjD_xfNNETu$66U;M|EeE8i+JnnEj-JJ|-g!pd z^J-?G?!V(AD|q;zZVynM%y=8#S?#LM;dc78zTXq#f8{_0y-w8I&>4XQS6YT1KdC4=I2-?eTLttTjsIJg|5uTiJ2*NCn&~_I zxAs!{|5up0s#6-Z#%1QtL00>xql=FX||94&c|EGcf5$TT* z{!_666upwIvW@wFK*&$ie?s{G(+11`%;tX~C9MB-`#p)OF%uf%yG`NZ@8*3FCrx4>^AWOJr$4-; zbfhSj%491}{-gcW?2HG4B|sCethqQ#44uXxd@u~EvtMeVH5k1X(7DMK5wrJ@-dU%< z_Na*A7vl(s`-o`9ZmD%Q9$%{^AR$3qZ}if3T{){P_Qndr>q5ON(*g%-jj>hj0~Cqo zJFD8XV_9y0b8+YTbHBoNS9XBquKEJ!hw_HJXx3bGbX-GT333R)+xnZ@8?Gd8eSZd0 z>js{5B1)(}KiX_JUey(!44WY)oH>Ho>SKf z&=Davqw|1SDpYY|%Lv~710D}&J<2D5163gM@Eghy-(XJ4XprgQmj}3Z%-j6+yg7>C z^eNja#4B??uaWRtIDEg2NUID^s1ntpUr(USF031(M4&Hg;t(W-`}Gh+L;mW}czEmH zKg-i+c4m8sX|SF5F~0&c@;54`0_r(<@)<#CK{HYh9NkbpA)m!?n}dmV9^~_RW+#+S z9JWAP-gP=pO?MP)zt)~`Yd53)?r^?5boQtY!cy$HYPkbK=7FMBur(l(0*H>^w12b_ zJZU|^GwmR$rG>~%q_}_O#}@W7K_0WH06mK3ahQR=LA`PQIiPg{`-H8u2mQkG!Sdl7 z_D$%9b+#1IoM&NZ=>ePb#Ni2yIY81HSjE8pGa0gP203&o94qh|I#0P7wQ&pK6Yi~) zf?1o%Agf09#lYwvA&0$a$L9e#!5#{T1C!7Lxj>tlw2n`X(T1nhipCQuos-SS>ji52 zhW*4v@4s%HN=?s3o+Qgjd*N9O7UflnrW2l&r(X}L5!mt5@y6^9_zK`NOp3dMy;5Fd zX=p@t1-2qK16%9{RiF>(vJKS15*WPkgw`#WfF^r=0d@@`D6f;oq7QQZJvvSqKl#}Ji< zpsZsmb&nSYE!o}4-IR+9e?7`{@ju??oliZQz_);29LPESazb2s!*oRXM6U~C^T83G1hYN!9;kuNZAM)C zu7N&ad?0%xbVqxKbK~%l{dA+sjn2}*OvoBj+A)1x0i|iJY4B=noe^8(aDCT^PZ;lT zq3ki4amfR=Ef=h72Y2|C1`%r!$se(^u`#I8&9R>*IMH0A^w_(hx?t%0L-4XPC7TmxamfbhJ@kGn@+nK%feDVGe{ZIvqOVbC+ z9F$5D2dJBwg8(AU_0a}wY5zj^@|NVTf$==BJEn2WbPZ>$GH6b@)Mu`OuU^;DH`+Gj zI>4kJE@;uVCTUJ?jdk~bCV6JQOC2Y&j4zMl#dp)Vj!zy*9;%LAr{X9167bc=QEQ-5 zqpnbHD@onx=c(+3y5M(*9Tp$i?oKlSTv_h%qM*4p$Txyhe+?Z@8MuIWg1_T8u)NSv z@9XaKSiyJt>}Os`9ba3~>r8ZofmF$=4A$_s7D9e7-)kP@+=I^qpabytF`kt_X#P&J zGB`-6`i`i#VH@KU41EAEF>u{L+*5fHdmaqA%12)ye&k#r9+!$8$^gh7@S@JNr@U_# zWYh4DSrVem#>LtAccu0$TTpo}{l3A3RydKG1n1uR$y9k!Ftsrc%>re6T34 zFrEtJyC5I;JmZ3L2e0?_gKm*84&3kx{kO4cSCiY-@NLzJ^}eOnq%kzF0RKaD~3I5 zK|Y42M*gMI1}yQ(HTR7VyktA#E1;^6D6$L@VNY`GQUgh$NIti-vD=E}-1m3zROVHF zZB`Dtg>WeRAof?vHl)WT-7`61*#zOB+Q z`4UZ%%QG~|q-_p)^|c48dc1F_J+P-wRu7VSqWV^%zCk;#d0&5xXY+YB>HS=mr8jwR z9gTq8e*Y4n)<@$BtP%1BZksj{m0NoOKAszrYJoQ?d!8#sj+K3>gR0J4{gw3W{!k_W z)@1t2-8dHbYI~$wpGj_qy>8rRs`k*7lz1ix6k0OPb5R8m!agJV9AxFJW`NIq^u`cE?D0$T17ztmt_ST z*6;dQV7>7zW?ZF%i&6OYI@=Nb)VO*7ya`w}(p{l|+n1>~w>xfe_RQeKChQcnP!_Dq z*Hq3D3RSYWsp$WS|MY}A(DE2w0}roqlT)*5f%UddxXsR%`#^Ib_5#;r4h9%s1ay`3{NWhw8=}8mz)hbeYSg6 zGr0k_R^y@&LI`xk3b$UvVc2^Ek&cbM?jjxST<@82!9(P}*=U-|?zX$oQeN+4(Ap}9 z7bxXsa*~rScXRn`;8>U_X?SyUn>EZf1Xy?hZlOf$ydzMWr05>XUJf%0QLFVNLgp0X zB!|DruG4qyUs8;0mdFg5{p@~Ao^Ra@s@1iH6FyTR4|FTOi&(+Ie%k&aVSgORIbk;M z^}JcBM+f;qSu7cO&v9^~-EfgeKZhS&;64?i#R6Iot1@zBC)TC9GVJ(nE$*OZU}Zj^ z2Us#}wr3C)1p3%}U_%`O%JT;-|2McOUk`f`H9iqMw6EZhWStSxJVDPcz7z>qWCTP2 z1y-JDe$3y0j>7g18w>!93uGa?UtVRXdK*hRiD0|$pGBUw*eP=oZWuUiO|;K61<5sp zB*n;=fl}n*n3O|mDRF830#k?Q+5CM6#7ZjlFn96ezTJ8(EY+2mL(AWU9bD);T@Eih(ZK2>j9Q#bkOnS3>A+ug@|3y)+1ghmaPcXMdbG$H8U#6VvbO`$%#S z*>qfUvHeD)M>>!tJTkXb`@u{8k=awNi~(Ig1D$@SQPf#}Q;I;v^Jxku0`Tl~^$#lt zLk$xpcsJ+33VWlaw6?r)?sE{C+{O`hrmGtls~&FUmj%FVB%h$?aX}EN$9ev)Ey1%z4oD4Z^> zC!!%h*sy)k(D`j@91o$F0+&kXA9htP-zu~ve_eKX74Z?<8|(o+eYVh<$cr&|@ep1R zIE&wV;XAS)@=qvYb@Cqxi(R8((VmPZMJW;8FsvRJIK~muOC^=k&wy)2jUrp{U7m>|`3iR2Q9j zR3r?T{1`++AJianX)FfJ6w*x=SHa2&_h^&G4L1^g4n}-X2NY$@Fgq^-AFk;>8DM;1 z|JfASjl>TGi(fD0_wPHCUvugT@v0y(YAb9PkbZ(h@u#awT)G$_f9uQnZXqFmeZT+a zc5ZfV7N}<6?4VALyF}38AEB99ClnSS{52&f>MNLuqKJh%!d@e&ZU~)WspX%7?KzJ+ zVi^Swbnu14Yw>~j10!8R#$tlm4?Ggj!oM2F3B8sz!QsniF~gKV7>U%*m*u+G zj_dp@(1IdXB%mLvmlQ*8j5dUTHO+dtfhn@LpbA9|Ly!dcmTq%YXCJP$$l~h`yuZsh@@WSSa z;3h1!&Jm9BcQa|d43V}RdAigTQlw-&)V&2uBS{ruzJ3uUad#0bRywJ%O2Y3PU&kOP zBDWcFw1s$MW@~j7er;jo(@!JDRSMA z2}{M>{kxMoX!AG|gTpkY%JA|=tOXZS>EJx`B?ct5Y%GtR;s!JeUCvAP8j{uNAly?9BgR_Lr5k#%TXkw)A${7Tn3cc=9cg^g~~Hpk2s-kWT2AY>Aax5_f;(d~uX*H6(l)zE)cis+n^6+%z}6++Ow z$fBU4YWsdZw&54`OS>uZotc?oR{#daMsOh);fdeHAe&Ga?jGX)WE*x^B|}(~7pe
  • yNN4vB95scrCcPlzScyW@yP$8?T}w+VY_`x$#VT)!H*h(# zYuh!CES=eZ&A#O`&t0Ec7D@+a?3`U@v2ar8(+wmAMF(A08z$-d#d22NIEs9ks9IpRc?^UalDEoubV} z#bqc!UXWNdOC^lUxQJUQStwm3TjpHmlC70&lMJ8%-(lzXfc!m$elJl};#qi!ZLw=b zpwrgr+Ggu_?J?YG9Mlim9>d>c4g?P2m+<#x-?x7#KkfRXa2DI7%pAi~!)@N%gn_`B zfJ`so=O<4g0hD+0)G%@*LV~1uAMW%G_!#n(NuU?KdVPbw{rP82r+jC88s8fCdq7Hk z-x5;D+(cBkDN78o%8-Rds(e54s&T7&ubNS(cq%ip6ZN7&G=xUcDWo7C40>v_<3p?j5kvzxu!jmfz?%s_IJkKX0$0D_{Q%KtiycpF*2&%jbH;rT2kOF2&@D32cG zvw7wd7TrFamj{Rnyh0?LzZOIpOaN|nPU!6$zw!abhj)FuBr(mSR|NtyR!_g=Yr9v@ zuPnot9r-SnzV|lP?wuD-h0WW%o;fSO_RY`gliLxV{1g5jr)RXV{<)7KhK-0ygd7sQ zmYX#j7R}$!=RZNIdE~`{uiVG!KYN!8;O{jP3CIAIW9&UhU|uT7@lzm&L24o*i1eTY zPz?LKgG7)45v)<00+e)KhJjdOQ!1Qtg~IQHbSe`SC}c89^+lBVGe{Zg!(gdEEdt5s zMEv}J4#B0~J;Bqvq@u#GP`S)@shzb`k@4kz0?J+Ha+BTU2q^qYpI$HoZGv5JR4cN| zYD3mmZm)LCkvA(El#RAVd$VJ`{44SY6<>8cxUXn9Cv79+;R?dt>a%LcqGxd6EilW_B zrt@Ei$i7{#2x@P3OU&52Y5I+FbGBi5b;Rru&Zn%*ex1XC^4@L zD)%XmD&JH}lsgnoa?_O;rK$b$WAY!%S@{lyeXE0rVi%AC>Z>!9De_AnF^5abiSewu z94SVDc^|ebhOmY)4N#%=H0VY1|919bG;#!%r{ zksl*3T6g^~&K7eb_4*3S2ff~%J5xNO6fBxrIS|Otf~g3qh+wi)Kr<`J2BFfJl?y;L zgQDvXqNFW-y`Lj%>2v+OsJ+5TBiRhq;{&cp%>47Wta6pV49Ck%0oTNHv58}rs8?Ug z-V+K7f%Jrw(Nwv$3Y{tx;`E-TbAMtb6)9dJhuIPX0&^qG7BhZQOc~^yjoZiV)9lke z$&GNbeO9coZq<}jw4r6XHZ$wwtXiY)a&Cd{J?^AVmY*+C%vvq1j?qfgzy@C{!EKUG z;Dpm^X@d@L(cu-k9v!1gGfGrD-Ve+z(Q*>w^GC-D^a;<`nLXq|a!@RlNDeDKDo(4@ z1zFC-vK*^oI2~4Ntr}7a*9IJYTBDZoD*(Z!F{9Ky$IL)l#4$6(1dEgV$U~?$4NhxB zO|OR4I8xSHYpa#Ds*|d6#9+p5v3|{WVmE!C-#70pxw`O4NB_LD9jAf0BfHw zI_BvXfPh^)Ua{rR8uA9&G$oi5hMEdz)lQxi6~HI4Y0&7CMh#eWB5?&RS>4Fwua8=? zT+~FYZyz;fxn2XY4jwgRIh&bSKR9XztBzVPIA_j*6rnU&Upe+sA&h}apBek;xdwZg z>fGB*=fs;`HAW{Fm9l93Av}M5i_=sI%gtu?#)0#SW9+YHcdQ@A3#4q zRUV6X0Lg`%$i4Vk*MWsP!mAtqif2 zQfui*0oBLH;vd7WHg%$dKGZ&s@jZ$-a+~zbHKn)|8Kg)WxQ3LWGnq07m1U+x(Y)L7 zN^LEbL^GP(&Ku%e7A^Y@a!&pO*(c8+2T+4bJ}>b6X$7GYwefpnjIk_fSzU3XcYhtJonQ!CKKBe@iD|ov=?}guN>gIF+bPFbR96>`5XdolGy7R;N4qPLH4MAo7jJ z^McXmjh~L^Q0vsYGx-JbRPtBV{_Wk3^CDAlAHlKle}^b3rj%areFnn%SK^$6QZ;_s zTwLsX?}T0^_s4NjC~8yKCvK}aaLKf}m1$o#s`ShX)=fOC^VxZ822g3l9ci2>#s7>& z4GNV8P^rzQtv$Et=35&QMH!23M*BYIkT)4n^J>IQenwt&OYTG#6vRKx!S6wjgltms z1S%yaHL}sCH8%Cg?YI8CP)KfAE)M}d*5S+qD9@OZk-qSim3YD)tCqt3G zsJTc4L0$$%0m{RW1q)d~I+BK@^+cwDFU<1AJgiq@z4OiIUygAAF6{$@ zOfh$4s*h7RJx=z=6D?fr0;P*8gGxqJ;wu?lSCs3ks%p4Cx!J4(c-dXI`0QC+=c)Gs z+nwyb4yVTu)v)amWFjtm5|Xrq>ciNO0QB1D_+SoPa6|Aby~rF~-?n^|tr`;7RC_9i zsZ(szyr5%m6aDc;O|8=nCfs)W;P@#C3Hx|9XVOSgn3j+iXDfQ~pU$>99cp)w(1LDd z%A-Cn^jCJdGX+c<$Ya_;t!-Md8=a7I@uYoKT_2?xRb7uQBWKGNwTs=zZW%zaWS&0N zWMJ~_aJQN9g*04@p}no0lv{D;;BbN3CjgLkS3O0oy>QoT4!%NTjJrzXD_xUCcm7m> zJ=!kXD$&8ceuBCBIkrV-jYGk6_)Q`gk960#3$a6}3-2ZQN!}xw$s`v{B#q}0+b;Ag z_va6s)RFT0vWqJ6q@UlLk+c|!i(ky;=14SqTlLjtDs5{}?_EPWc>b~%-132*u<-P; zuMGjKPslS9_Cmc*?C0tQq17T^c!m8?`{+YVgwGHncm`G*5-}F_9#f-de=#h{JFxbi zkeTCMDdN=DDZzLmN1!Lqm=IWV$4lnj6UnYNM|<>Fpvx$Q=T??;Uxb~R?JXhx>Ms|6sBC06sjX?k6cL`<@UV`mM4L2$fV@Ril|6Q z3BrZ3DLt+86t5!DBE#m`VBSXcx)Ok19Ripz`I|%@cEF#mRP*yrqJFuJ$XN;S?S1AU zN`Qg7b~ExuBy^cknd0&zSIg5>)J`K3Y@|-}S!7E6`UDJ)gF1It$N%KSWxoXgVxp z&!B-39fg-Mx03CkhNfv)%~(3=!0SP|U$qfkhW14i_@dcAQpvcAs#9s?VPCOX9y!5V zzy7>|2anY9&F+1C&w`?;hFGnhSU_t|3%*4%|G3%shFYI%kHvWB3ViR`3PrEp%2~Q# zI`6wW1AN-E(tU#Qwmyb6B6H7@q=#p)XZ~X4iZU4>vV@AMaL8#^T=_cJ}W z4|&xC?^{%cQ4u5h8cR1DD%=iQs_j{~HyTN1M!}4i@f+-MXQS2Sr@RBAg;Q+uLUs4L zjNOI|`VGx%NS@CFNgr*_W0(%b0ztMRv^(*l@T*_ky>BrHSm?Mln0`d|VHjuj7{W7= zkP!+zQi>=8kt7d=Y#Vd&@tBC#*|YM*YThjhzIZY2Vlh5YzFtNfQbm^1?eX#PQYE)M zlq*j)?L|7ZG|C+%@>5+8^I%R&@wf6C;5#lQMGT18e<6uRpbr8t=XlipFinsuR#EK8P$%33EeXeiM>Z$^1p z*@<~;#gM<1$xZ14E0TjQm5-wMiuN;Ahb=>i{MJk)(qm*@24SW7%mQRj25MPYeZOm;-h z9><&J6o)k~)j~Ux>ep(N#!EOWIC$v}3F8~vbov!sk+C^Ny&5bX#h(ypjF&lBl(cf+ zBc%@zKF&>9u2EM#;lHO9F5CSffksSS0{eaedBkWA@}@32b(oNADw!wIQ^uSg&~s-3 zgS{fBZHK}pJ(*^%uxDCrlw9JZdO*yqXKAaSxUo9MQJT!ojL; ze{)nzY(w{k`$!pblx-9NStI<9)G*QR!$(NID}Ko7Q^+$}aPQpxE;KW7`wOPLbZ?-*93tj}0g+B+=@ z3^?6Q3gYwPTn56+2+c#aEWd#6NBcwzJtJ&CFZlXRQ%+tGuFJcp{I`U=h#75ASCKi@ zkKOg(RjsU~hu5%)XGvrYbw@nGU_~+lO*2b4gf=^qX#SzScxK9%Lp4pK@w0n3at;nA)5fXkd4ndGW}0 zeBbkxmR8b!+GfDjCH8GK09jNAtt)R3JI0y4-`x{m{UoqrMS0&pw=qyw>KWQ;qtf$E z-SQ$i`&NQauM{dCYgqZ?8_sFRVZ+2dwsat?|FG7KiZ!B+R1}#hK3M_0r3$hx#g_{4 zG3djaPzm)h=w+L1C4)C#oj>>4$W5ifk96a&BbudFXL|UooN+1Zb=GFOB{U*Keol_nPtpd7Uq-O)C82$ zC;e^O92*g4M}`6O_?dNIH*lhOiapL6(iN3MriRp47+!U9er>GjILcV)&f`9s*lA(S zyEq8n3Ch?ajE&4TBlM^vhso`VZ<`jkyMfH#@r((JkkpOxV@A#43gMoc;2}!W^W4!M;spgM#s zHrmYxdJ^&;a%k>Nm_6@}d9ZdSVa9q+y;lQM8f4)|@F3Dx`E}3Z7e=}oO1Xk^`Nb~z zFhcKe=r}%%CloAMW9+0P&8|Enm3k-P>;dyh*6Bj@zNVsrW{u*LC)!&VCBS*v?9zu% z1&IAs)qw?{+`k2f|_jEXj zb&CCP4XC1=ceZRwe0P#D6?ek*s65kX)s6bY0Z9D;9N}~9)+VF?TM2tYL1O)g<}s9q zF+hql28!9G8otuU4;>jPPOJx>2n`7tVmv`l*n@3Pv2}|2LPM89q;tnCtV~yghLG~y zz|NB)+9A!oR9JCaNz?9G-B9Z2Hu$25Xmw_1d5w{9O@P*l%E}s5)ypm0^}W4ghh|HM z35<)NO`aBIuES$ON|*cRz6%U3{RNgEL!M}Q-TlgVZvC~`DNMG8y@b7L*r|Toqu=PQ z8OawP8}kmb=kw_~?B*OH(I{-XubHXQZN~K(vxioMGz+8d-AE6`LDS8+-P#QEx>Mr* z38i{t+;~UF^F`JyA$galjp|91tz0DKRn1T*-f^kayzCu#xddC8Hjj1zW@Zgpy?0Ce z;qI{bV84Tfy~lvjOHpa6{F(>2xmFky@uv64dE4yx5au{vSg5{LrEL|to4ZY2n{|ZI z_JQ~dMT>}yKD9W@b3~v!>o{HkT|L9Qsxrq5R-jCEF!z_ySWtR_>@#H$&I~uc+QrF9 z0NZ_pf*B_y&uZ`;gOC9P_?@Bnd_oR8r|(6bW$!66aDLbWFL5cxpIjYHaPHY2Y-M_B zNJ_+Uj(aR9uHjb@Xx7c8aH74~3x3REIf13<)XRsJs~C%D0d}U;Ic;^p?OGy|+w~no z?}C>lybKOsMFx3O8c91o5iBAp8Q(_rpgwBv*b-!~eJvCC3@YVqYx2L?BDJYS!HR^QC< zK0R=7etElnTO)>8w-WYYi0jilUZu#^qDP)3HR?Kn!ud+b5y9cLvHYZBFFf*|-(?D9 zu*xbc2xdbYWPL2p?0qqTMVGgirV(t)fODuszT8rK)NJ##bz=z^c8p4;U4^!CVwbacH;c?_Ip7M1$2BYL=C2pi9!-0 zh0SHMzGMj-@aq}#GFzCPI4bc9R=m@NGkEoW7+kH8UMKfj8TR`MIz{YfV_YhWR$~dl z3U^WcU&}tYSL(;aMo!%}<3$m#({A<1{{@>KUVPMjCd&B(!_drEwB0uzESS!+;Lr^U zS5gPK^PTU*q$X8ay=-+WnirPy(DY}n9VbQUCFuEzopoNrY@8iTQ1>R=bf$JX1Wg}1 zAkTtS3)ID`JbBn^KR4{Jq`y_=dfwimTyDO?xziXPeb}Y4sE_Jupy^*4NA)UVyCHX%rTV1HFsZb_5Ij)_2B0HMSKW?2_HF~=TgH+q zfd;Bqf>a0IN83la+m0hiA9?3_6g-;UGZgm3UD7#0oC`4FP%E0Fnw9Dq3U?S7lT^8V zno>nJUscvh=XL}3p~&HR7y{*U(tDP+IhyMDxG)qy4aUPFl-~%hDaD0rr2KSyWv`?A zgY11w0~#gg`-JW{F-G@RUW?V0-Nt_1B}aLtl8n zw23utv!2&gDBec;ET-2q%_2?`Mu*3nI86i1r+)!nl5w}XFqD3dsB};ARe2Yp6iubJ zB_$xiXf_{fcLwTPKT>bjdtTT`f$L+^L7-*<)>616w8QB~#Sn zEnEG(7Or&bz2bH?(uERE&V^HPf<6iP9Rl60Mg)$F|kPy}krVL~MDzC#iFpkL9E zF)tfl(hy-+UEHQ`UuKm99xBsLzRX+-VoxYpIVtKi2w=yeqNY~P8CVUL$_{N?|NL&} zouqSX(QtU5o;$nObK#9C9m`#9nTG?nNAR?vUBS2KLW4SuqdGUG!EP(zx7?y^S-=dW z(T{HPSs;;jb`~=a6zan(rHXjmbgPtVU`X=5zOrI^Bal3oE+VoTp;3bJ4inCr`pAMG z!z1!GFQ-ucLW&muHeGLDn~xP0BXic&I_@xz zvTg{@j)-X!o^pHLioV3MJ4=f!d{<=wB@_D<0@=l+?Ck}ydCAFT4n z6sHUEw<*bSP&UD>pVgncpFd!&qx4Fg!KSn7uk~t_!iljCI)umMw&~RoB_DORn}uP} z;sa%y#%!R?1%+$3%@SndbaqLXV2!_+rFCSzgCp~mYxx#{=?#&3$mb@&V4%h44DEqgXcnF3PWr#p{0!gVg-!tPEp+1oaY`ZSb0 z{IN~ZTAQgglk@GUsFEh#jOgA*d1PNQJ6^B4{%ovwp^T)*TzVkd=J}>x!F%_B#0$AY zsda8gmiqEJe9O-RrjF%agwux*g@PN z&ZdO0__y(I6W>;vJ%}n6SK&6*Q-A-34)1{_hgB1XNN&Hjwl!9hc*nh#_Rw&+8~qac z!*K@5uDG2rV@Oe;^-WN8|3b*RBa~`#$VxNvlJQJ}AQbFv^n#b`HhM9DmT`AY5p;JL zSx)!HFNYH1I70@}DnX^3)rA%8lRIm362%XIXI`#$r}51z$eB`Vqs5?uj;Q=5Ac><| zkSn&)EhvR4e%D7tg5LaS%VrQ@(mdEGwr)PLA*@o%<0OVZ@&B9c3ED=*D9B}glXZosLHc4L?=TAkwt)&&>LZ0?#Lub*{C z`dq?1Mwh!C(kFQ`;ra-6!caJDHb8_=3cJFQcPcpncXU5rL~Q$HsqDlr)36|7MQD}o zuxcUUJ5_eiLj~Rcpz2BVp!!X4ht0X(#AmV34#>5ln$G9@hMTKLerUWeK3k=I*^6MB zv!v5tE6F}Pc=944Lv}e%na;^(-+p?_b#K8k>Cth0iA{^*p}VvGQX)wRIncVvez>e# zeQcB0x<7VB*>bwL)PcI1=YDR2lXG{KA8ltBr-gC7ZvSkGY1zfXi9M@~r;Bqxfob7L z{j6j6g&jSfow!2(X0_SD!g#JkS;#mVuY>uVo(6uMrg&Dp=-a3>a^(<(Wma8SCZzje zZ*3x9Jq;v&{17)%VW&z!^(N2y+QW=nRJh68Z5}xSn72x_nnd^} z39B52cGA*yT8F4Sp){$qRz~vGDw{dQuwcvX(m~m-a^y3(_G9_4R5>d%fQ#1lt}${U z@S6BJ@!)*ic6yIHj#BG|%?TC7Cc31>tLF`EY3D!lSKe`N$Dk<2dw^}y;KwP5`KYr<)qi~AG_#l#8k?r;X)5f>f79m?7N z*cxd5apXQsoG>&{Gn=Z};U@Fb3H9K-dqz0DaPK`GZg>ptwui;uz;s9Fbm`FsAK=Z%%%bE|F>V4LzTY{PuL{WWu0zGH*m^$X!7VPdt<^!&)Y ze%qT}YCE$}?zB}=hFCV0145gEj0Q~f3`@f&6-{&mp}N@$>5Soj}r)@_aP93zlA&z$i>Xzya5%X28jPFy@n3{ehD(?7Tsit}$ zJiE)MV!&K`?xsUxYz3je5 zI6X`}oxk;jLFUZ_ok@;?_@cXqUb^J7b|+`byMe+%q5d$Zkro0%A$V@Ni1gMbIHg7c+P)(KxB z)b(+jJHpz2>IOhEcx$zKs~%p}qHuSJR-5_Y*rImyllTp8MUgiV za9^}aF2eIE>h_nSDMYqV0>0#%nz(6gSU>5z@(S7=3rM8vKf3QyZSQQl)a{a6{(@`a(EdtbxMjxuOnnj|CYNh_8TN=T^cP4cw^Jccuc$5M|sBWA(B+W_Lh2i;f>nZW7G zHnQ%M>v^iVMO=9j6lm7L1Wk>wHvoP(k!7ks67^lWpoDzRj*6EgHj^X+FJ zNlI}lxAVDq9CgpmjSh`3FLsP-G9G9u$TNL;dKOJbz0DqfLYG8q%zlx+Q_EaIsmVkV zueRH}664L6EmFo@ve(|RaoFO1To{@AV6h0$ZyPfF5!-jc>=o#3rx~@pZlyneO@l$X z8jW-eu%UJDX1Zj7aE&D0<1u+)uMu_s=)o8+e%?9=80Q_4b>GH^lANFXIN3>7v`%TQ z$0+@|X`7?^Te-Hi7cO^&iI{QiE75L!6=9B`qzDuw_to@F*Gy#IeYk(t^nJ>o!QF&&pcB#_MX-Aidk;NRF`A6o>ou_F;7!Exogyu{Y$51i@@5JKX+4as z7MjNQUfS4N8KKtq+Ed%-U)?*pU(OkR>Ow2CB4y;%>C{Of1nc%FmJ9Hp9$oo()Kutg z98SE3S8LF-(7l9!bMWJ`GO(&*>)SSLgwE^EwKk(4pND88kD|WEMxZisdnG}!E5)3e z?x!M8;#be!N8|9Qj`!I00Cj+-la%|lZ4Av_-PUsVO+M+OVJrIEF_}H2oAo`nicIfM zi{7W9CqeV87DHwnM2+b=FYVgM9tq&+(?x`v zt*O#T&wB{^zc4zyov&D@8r1@MD%RxY$a&^HGMVb#U#YhkG5ngsZvI41L%(*|!Ya=p z(Mn^ptSW%Zqj2gp+v;gyZ#V4fQ`Uf-#=0*=q|L1fz3{q%h=Qp=XSG$Q)%s~8kvT+4GDBh}nu!+iBtz#4ZaIX5mgX~e4}d(Q3X=o9d%byeqj9l^UEAHG z@kG7sM(j68kI5XtcYR0nlE6E}I11CrGtlIl&kKU(G@^;h*pipoLtP@iN-RTv{r}BGCIZBe`|5WMxRM?egjFtvIJ~l zWwP0!70;IDReG7HOadT6`HQ_v=bojLbXTs<#a^TdE#yF|%WhYv7$5R~SM zP0p6fRmYz2@@=S^Ts$bDBjm^tae~C^ME)oNleZaqjXr7Gi)Ll)ApH$^jcDR|2xbQjn()Iag$8*M`i*t z(4vY#eOa)e_hktAf|J@^g4{;8vuKStSJQd+XI9}kd#m4ja=!@k4dp1o@PJkYKLD5H z47((zs;Xh#e`K6bOG?jVh816(x}h9j1CA%3`A|yMA|<{u^wgo%m3p3xuZ}x($)yBo zJ@@?-vd)?O0)l+0O#fIwrg|hL|5^_m`<{S0)Ta#}8!^J%9)Gt9_8C?9y8Cw21J=6= zabmoAnHwWVmTSfS2Yy}#KCa}x=+ks#w{glDqGe?2(xGWV)V>9&8{`Enp@)j0Wl1My zek!@f-H0<K+SloSsuYm{(Pt=sMC((K%pzeKQd6THmvsRwW zsgB^j8}fiIciP0Q+9CuqG-^XW15Vp*~hOct;l@FFKi~BS&sP`mi_)oIO55Rz;3BzIZzJk`c_bKlP2GR>A< z`Jpksw;ASCTv9vqM&#h}yP+jpmB?=DVHY15Ur%Faw2jVo`>_uEM4?ghWAFT;l)V}}g5b;gr`EjBr-iJw zhU?9Z3o@(eRtN8)uC=XIDlM$T#vLqLKg`}JqiXG35Y)x&IO7co^Y?he$IenHW)AFg zNle1Q(QAO+n4>e%N+9a>{P+(1Q_;s&W1)AIVK$;uNgk;--wcwdUOBS!CNf@AefAhZ zVqsT(o4teJ4a^T$f;L!le1L1j4T`S2K^axIYIh+&J+zXFR}Hgd^6YpY5Dk~z1m)J!)e|*uj{dzT>Zp@+2agFM{dw<7d zwK%dsAAT2~_~(~OBp96p2wfl7?A zTb1M)O3&5vmHVpZbuAKuoEgB2aCIK?&c>}sjHJrA zxvjA_TBt9GTHbn%BSuzHO*7#XW^z-CRwiymQxiAmAS?OMUcg9qecm1{f%DtXJ<%$1 z#+e@zWa!4}KWG1xRb&yr^`>#mt}co012suyE_^OKUhWcw5gtdCE>X1f3vOjSispUq3|5WXq zk^}Zc(WTW6zusc%8><|!uT!iH%gM|qsTDs-hFag{>x^BkhEwPs1U0}_YD_pv7#|(0 zR2~d2?7NKF<_|>Tzi?Sq6>16ceXyff=~Xtjn@*P=IwGbw*ozH__X&M~R9iWQlgy+n zvIfV}7Ae|%&{%aRS@no$QH(BH;Ar-%*oA3*sAl0CcY)PXtDJeyXxp7fDa;z-7})u1 z*o*sStE2B~%hj^BR<<@)w#MGo8OqCLjaNKYDe~B;qK)%|n~bYIEw?X}M!MU%z8QHo zsf?IkI~j)^#%x<%c4#(9YPSBQ+9R?kC)3fD_Yqm>dOseCWbh~7qGVIOEe;)r;S5FY zT%gxhe4>4v@2HxxT@pMvsa7>)IT5d3a{g(vv(b$b#NQpM5r=J8I9c^Jx4s83n1qbI^I5=d>O}F3 zJMF>SZs8|=ll3uoHycsqG!FCxbK^qs|KkCzT!cEzw!dQeB{0Z=By#Wq`u0PKk|eu`*Wj)|K=Ah8CJeB6?JwRw>*VZ+Wh#{b2^Jz$2ji z*i^A%#XHmLBCHc*WV|pIZuGv=C(9d~;G4)t(e}KcF7NlSQ0FRt=|E(?cW{_DRb}$L z$RomPuxdYdNFx-xV?R#Gd_r7ATOy>$ny=rg37VrGfQ%;pxJMPlDd}iigr>toN!$WExll~ z(xksRu>cv_Puy`K2MPV=#)fw)-*i;KazXg=13^@0Bx#DkUdRmcpq>tL=ay+A5==+Njjgc?Obb1FiBqbq0=|zh@AKZf z`J4W?hL=QUk>?PV^QYgvbke$^7|5j%HiqNFS^#g=5h=B^+MOarsY8ut-Ph=A1?pbi zH+?oL#hKZJuspDt2fz>bw4So(aLUou7`R#uIsu2MFq@)~g#yNRn+o7h#j3jNwKe|>bw z9qIsHUuf}WK1PgG?UD{TQHiq#PKhb#P*}cX%_rj^0?F)VO(}@`7G_7^MDTf16*23Y z0V@)+S{ycQzFH3@GvLk`b_t!ag^?LLsXcN7!6O8TIGj!kjT$j8T;$b7fC-LjoNv|f zhJeKGSAXB0iac}vxkf*MHRu#)&GCsvkuRo+TD*?dg1g{5$4QE@)?-D*7`zS%T}f5) zzVo^}r_!3F%}jI7=VWvyFK(2p-1)JqfRTwNbJF}MY|Id%xjiyA%PAXD z`f7U%K{BTl*dCdF!#YdDSy zwFV|Ql9=Dr*`KGv%}DZ5JmU=>0l+8%)aAgr6|%AA6XQkG*7huci)F(-!aw@X!~_ z;idADgYRg-$kTPl5gdL3y^!MWuS*@vyoMr|uM2jjlkS*a&#vHeTZ6qMrZ*SycxT@} z{^Li5UBPr?A?%i0scRo`{LT(io%G4;tui091iD)%;#0BMddKZrk*g!KK956nIY`9> z^4DF^MIR?yzPaO$N>R`xcw|bG%62lHd92GB=c)Yp=|tU3A?g?GQ^Q5I))zJFNh1sj zFpDEa0~-W7ygVPUolVy|){O_+Jf0oAtry+$o<&FF;TkdF-}iCHe5G&m>TDyWxmnH{ zw!z@1bF^K7VI#c4(O&*e-k|A7>oZe-Q zx$kPO@&@2{tG=7(`K_LsH|t?;tzm+y?o>JB9aG-)cj3fxdYFAdgsWJnBx@I6>djxY`m>p_I=HZ z+PK(h*nX(R;f86L#o_l-9q!JDP1@mK0(Q>Pe8!;{VVrk8zBu|g6S*6%g0?!V%ipRQ zSJ67#@>V;K%q^^Oq0@PZKh!GT~v^;&sRa=Cz@sqO~& zL5=}=2YqKf>72=Hj(pu4UWw!0YzS2a=u1`V@wx{b&uj@kRHDwR!`FrzunIcIwMn`3 zILku2m)ariF%5Vk>^+vH$i9$DM)MhyQD0Z=31P?@v^WU*oQ30Mwvm#jqI!C-`ev1? z{_wqb)e?t^j#RH;(HjO9r3eDYr39b!i7cd-!lqsTp;(Pb7K+<-65e&US1PstI@s8_FozB8n7>;Up_r zdue;G_JS3{Pai7BmB^1#6NI9QA4*_7?c>Mm&t6qT$x_iI&+2>lcrYW}3FPEC*|{#h zV*qPMr~t^~m%X>Qjr0X)q@6$Ct5*d|!0`O$}^fw}@U!g_HDgFc@zaN#!TN||e9FT;0g z)8`@NA>=!`ITC)GR04R%}^J0kSQ#y3E?88`>SGzZBNGu0V zDa#!-;dZEwUDL+`mKPr-a7 z1uRp^mL|LKS$9D7)OtOWPd4E%^-+Zqho-6%?m=Fja>L!87HxX=!j}ohuej%np?@w@ zzWwfvg@PNUXm^mEd0{?x_l&TQL#^_{o=~k$$A;7=ow)J?(sYdP`Yc8**#ojvWvRgr zahP8j!e5tDA&m8C^uvK+CG?9m1jgjzhg^Gth4KH44?@)aB5a;e|meM$f9 zu9Hng25NBN=h!FO!Dz!=(9OI7rke*mA-o^$befWG!OOU=bsW)HEIvD}-(A$QVsg3L z!K7UPx67dLR8ZT)wqnr*^8!EgoW#nL;CSKw`LHa$R5==}{6*nnzdMNSEvC4;6Wdz? zad!lAqwGU83hAd?lTCq>+7m4CBM8k?pV6~tu$ower#QGZpZnYjtVZ&~m5Zo6#xxY{ z!f%L=l$cq(gl)^p3)uGpni&}fsYjgi@v~Ufyf=}< z#JnsEP2OuHI4hrfjJKvu6Uk6SJ)5dNi`HE1bCp;kvUvu?1tcAu&*QEX=xpH!V%+0c zJ+q!+-#YXmb80JcWM&`@@WQ!Gc8h108zF%U)*8=kz?Jyz&}se+6nEwuDf9!UCPB4m z@KLTrx4d0PT-|4#RKx>2R%5^?2TF5fHNz115t@m&07JKk$fL6I^)<0ovl z(ePAd+f!o%Be$b4M(2G}a-7;jYc~2o@CaT6pqb2D-{lV}nZ8cx2C}$$55)`v(0f7E zV%pK2+;&>+jUYjp%JBg4Kv3W06eF`~iq+^lJxQYe{t>I-6>^c&cX~&6GYYMtwp)go zOJsxvJu+}oQ|{`98U=(V2?=_*JrjwOcmwtN1Ro#uYgz|nHdLAN**yk{^p&?DJBwaYjLZ_Zz*AkCCG4P01Pxe<8Urc&8 zck$`5W_6{Em*p3upyb{0eVXej1?@`$oT#)JT&tU^(P?G3*An9 z7D<`TuGm_ZQxntyu`&yDc*~~e=d52lkUT>?Gd&AElP|SNZYsqCC7>=_20!zyCh|EU&*Jqtp`b)m`xMpJQNH-T%$;fMUW=?dsU!%w z7uZs+O-h9xu{rgQolrE+HXMfG78Hip_65qu0RPSAS-G3qvNy-YU!TmS`U zD-b}$(!x#%WUFUmY-ML@1Nl>0#~cI@27sSg4l^qn53c#T)>FXQ;o zg%91}+S_ztCkMS~pG1AdmC&3|aoT~x9V1L*AP&YkKi$h8f0RaJMi85`D##*S#<>~d z&T7b;k-~n=UTf#hd3^fi_1&bzv(mNOdi`ali%#hmo%w_jH1mmxhojRk&p;~q;p>JK zj!Bt@C+~~{iZ8igxc!v%~UExQH)L5KYVNPRpC%MDR0Lup#U|&e)jaB-Zheb!OfUwmC833 zJ$7l+oM7Z(^i7(1?vXHLs}vf1t86n{t8{gR8MwLV8S*DdHoXO|sKIgb6 z&xg|LRp`%zZC3!Q5$AF@%k}`T-qgQ4X~#Z~I!8^6I!~4KeD0xog6slX0W7Dad%_V( zTp%R^4~Ps+RA{h$mZXIFD-5c_jG6{k6+mGgRAWy|n{c4ypm?Y9BaHIFC3_)aE%(wt8>F zdz!vz7WJ&rE6|pTFMLzq?{pHq9HRE+o;`ORuPZ?_n?0_C8|!(n>ljxCRdAJux?MBF zq{h~Thi9{nP}I2x36wv6B{BMUt-J9yvadlq_n zVkRagVju%OYv9cmves=k~Yq!v?a1-XsCIFF3b-C>1E3Fy+YW?km#EcLF;M2(3SnA1x?9>3VLLvYKkdvLp z&${%#puWB}90 z&Zq%U(9yL8$X`mLjlG`THzT%};UfqRHLyYO@s~&cq>Ai6i6SI0|NoyJEZ~2go*jbc zr}JMeFW)>DHUpW1Q2-=$&A{{#U)H8e9u0{h;E@0lVA#Kqcs1#MH6w4QW1+8Oqkn1Z zTR;C~i=P-=+GM~9=4@$i2aq+>(F2)-sR9U?S?ZZyQmJEO_sBy3vODPMn1GjE2R=VI z9)9%z+y&nX=#N7As|(+eFnkB_GnC5^{fQBV%P_mF#D6yQGZqG>tHk`Dz_2oY2g6Lv za>a*B!+-CCq=2Qq^Cg*of&=kij`)hft5JT1oktLBm$7`MpCPn@t$l-f)#{Hy%b%(G z!TGnLz)xK+p$5F--qkGl)xBRh|E?YX>%srVIqMY<{vi?mV*C$a7$7lym7B|k*L30E zGY-i%Fyj!QSFAGrq=^u@_?4(1jDM5IUl?cm6)#wvuXFEb#u{-FI&h#>QntF%KJUSsg@X@`__FzpbqS82aq6n@bDn;w8^XZ{uN z&m)OHWX&(M{}yWhk#_L3>Waug1})dH^cU@aK=f@WbCsZf(5%0w{kvd&8%ABR%5=Rl ze5d`}FzDAY0a&qqi8H3_^X6yT!Q;&TM$7lAolA1njEy6_M2`6J+& z{s4#RPc;?N@IP_>y{0ljkY3@O`Crvk@T})bgn~K0qBG3br_RruGyi`os$k^=OY$$Y zLrh=8(qFXy0TBejZ=wEQt15(9u(fYsuh0%23|uz?k-T=YU~Fp#kOcoHZEvm%vN5(W z1V~ysf^7KBtc-Mi%n%?9gU3f zf6|Y?=5*j|0N{!QE_L88`8A^dAppP4Qkfxy{K`I9Y=5!Da{Y+&XH?)zDOX7PKcV_- zatGG=UtRczxc`x!e}V&X|7vUC{tEaqJpSIlUpR-12Y>eRKXQI$KF#tEY4L;eKfz)7t_#0nx?btOO*H<*IfPbl z4?;Y;+LJ7oo%Huiea~L-b;92{zfuEOuFsfXIR7ne{v+pC1cc>ZYUZEdK-~Y0o$D3p z8qU89Cd8wwRw12q4d>usBnE#+a)t396#a`j^evCUJq}3~@D|d2SF#Owy(s+LUw`k+ z|LqDIc!UKmb>I>WuFl}H|4Vp7&T$PXKl0^Ig#=PKz$|}@eqv$>wBK0&2X*o!QSI!Ow zb4C1s|6U8gUkhF__ao5%6_~$j9ykVm1@kYp;7@QM?q7``NW*Ia6cRtc-_jO*;qki` zd_#IA3t6up9emec*53vOV9u|IAM5q;{c`}Z{#HW&Bj;DH@ImZeL(z{M{u3OC`&T)K zG`z;(-*OJ26>RMr(yN?bcG5Lgza=f}Zvz7`=j^`*8Th-X>n#1k`EP0S-#7=4oPLRO z)_*8be{uc?I1u-L(^1khic{{arf{omO62eJD5IR8GL{)Y5QoU>i82;Vtp`%MhMoL?zU zY}aSZFP#4tXaAA&E5(WJAHwnn=YN6&asMjkkcQWE;@@%(p%rWm;?ZwbuUCX0oc|^U zV9u}9Q1JKS|5jVrev7mJ$oZ8T3bA_)MSpSr2RIP-e`Dt##Om)k|6W7CA-xjk?AI&8 zch1>=69X{kS86Ex^%?VXoU{LyHvf_HD>W2i_g`@SCpZxIuW}A)c#Xlo)F2 z-8WvYL|fXO=)ucHz-yFKo}Klu4Q*}&^ejm>q;zJF8jJ%PSm%m7E# z_h9;t`-&qB^w$psz)Qf)KxB;cKbBlw>Hq`%|HcGA5dU!Q&lBr!i=3{A^EWepPp*Q{ zx06B2GbE<}>12;A%#1BS|F5{K?TzC$!r$*#+?OB;ik_DHMs5)la3l*TP{W0s0Br+* z5NtUy;!1{P0Y!g(p5c(va)w9l-kneb^6Ex=e3>^6$!Ev_Xxy4z-vTBaz`f0Ge4Nj7 zr)k~sLS zVuzSI7++376wl{4vM4s=_hJj}$vTe1e5eGa7?0K~)O`Y8?9+>|K9K5#hnyAKlj8-$ z)z&*v8GuyagwJRrS)iS1DmFrKAV$*zt%65kL>O^1o?Rxz91%3jmf|TP%r+4kD5OS? zYOT~LbmUNWl{L#SpaQoGQe%MRA{{A*0p0Wnx@HKz9QPh`m+~;+tY-`PK?G4FnU&!QK>SW;e8V3&El@IG>p z)+W3Vi^8S?wtPmt$U-$u1yz~l#SDwM%0|R`v8g~6Pr-|MU^ugph;uX!n<2Fh|xr>(4ON$j|e(65$Vp(ngWdo z!e%oiN<;=Tk3dPasDf9`yOIOls#vr$9voTV5=)K2y9L92%JNzqdPFR#;6+7hISrmc zZ&#VM44x}E+hEN{@nVk#XHmMQg8j_u#SFl+iWf2@_2vA3^un(gC>tR!RcKFEFZ{H9 zk=D*b4~+LhC(FazbLvGlB(2~>^LlYuNGgH5rh=|J1uyo59uanz%Em)o*XqS#zEeVv zjfdM7>OO(*+~Y5@0AJ$)iG}v$Y=i;G>up4aq!k?YDfD6=FZ_b5^cUVs7kF{p=pR!G zOiY9@aj(HdAR}7}js6jpZL(l*Ui>Jul%xjvVAE|~n0AJ+``yip4>*g1B55Rz`%@0K z({92xK-?6-7J-Gq`BOxOafee68nZ*NI}F1P8+~@zHG{V}O40VKIX=V*JU2WTO6Ge+ z?EWq#+hB~wUZH^51oHVdm@jdE?T@(~h9TQY)#zjv&dcu>3iaDyhQZ*fL_ZEGCY9$7 zVh2nP=Cv)b&^cLY1(uv0IvBg1bZW_thRhl;6$pE95sc|xR9hNqcDrH3VK$GOU9(wh z7O`w9=;ACdW}DYiBBgyl7*slJRkpH^<;A$`n|-{ZV|lD(bE*Bk&l$0zt7{DYIU|!aSHiO4vf#5|Y#y*l4 zC8f;H;46rdBb72@PE5q*q|B&*qw|6|FtC&p(F(vnc!wFbzvhb;D`mtc30{!TSgDkZ z5npehaw1xR@E^;If>LJD?Z$Jxz>DKNWz3B*5n?X{ae$|sA?<5wGM@!wc}CQ|$WwBn z!6LCQSIVrXtYimd4V1z2i&~fPLIPDPX#qhg59UQlDYKrklAUs-r;I>Flg&La6}*04 z5Qlk6nbu}3l~b@r9b%H^nwloti1 zjL22tFe*Ez$9YOGd5S5sDIcbiQ;`?M+9@_~P02(*Q%R->g5X4lMPg3{QJCmtQ!$Jq zpHVQ9Tzt(S*+38GMM){Mp0bj)bEKz?Nh>B|xKoR$q=S2<1k0ak zsi)m_4wJ&CrJi*%`4@OICqo;;`}MR2>56+9X2RS6k{FEi`)1Lb2~P6gU+?B|#=TP;mapqShtO zQBJrknK5CYIG7jh&KjFv5zFS)m`Z|HaE`OwtTmdzk|zg}O}}YzO6}@VicddXF9dFq>?rvKOM$6@?pI3gwd95I zH5J;!VdTL|=_evMJSv-U)K(IDa^3+autSm8uae5tb1tXQaW9CLvuqZLJrzVrDRUF< zwua@+D&=8IlQJv4^$6kT<3&j+b73TNz0jVclrm@#DP?Z|zpbUoWCd~9gd1DR$#B`$ zlBI%DK7*%>81J+_wH%ooFF4s}k;%-5Z<)5=*0QCJ5_*Pt| zQStoy@vSmfzO7`noT5&dsLky!^mBIVd&{RVt}vqPj18y)?80Nm9=q<$W{3lGPwW*l z2k;S_hS;hVW?!DcJnr$goClIL6UThApp=-)E8IN0YdJSgm6#neD+z>0&hA3zL^sNv zxVU@wK&SDe{Wv(&?*;p=gbZ7VgH#wndK`KJrU4Y*{lzcwmvWuVV!OUR|Uy8CqV>iRQfo(SK4_78t~fWLSEzlX&)Zf>d_zN}C&4ivrr zWz%ebLB2ZmjJ+8DAKYlj6^aiYbHf?%Az3KoSny*TvSz~3+3~@yBV-H22k*8Aw06M1 zC!e;AzsAiTzIg!^8vvp4;UmgzIEalOo8;3rfQ$mfC>%=2*qUt+9OF3R@okKW*aT>V zcyO!34rw@HD{M`Ljj6B*#HSK%!cj+IO*X8^hE<`kCg~R;uWuSQWvQJOe7fx-w0<4>xY*_dk6U1)#q7#6; zd3}cyL-2l(a?BiHY(D5g!Y0U;QNC9j6Xas0PH`T`f+A@cG4J@kh4i>(P))tuiw(7iA7GQDKx zWu9N-s;s+T;g3)@dc+#zKfc0cHfKNI-@JbKN{K0``Ss_U+ZXS?e!RQIoh9T^&i?tY ze{XLeK7Hc<8dS=cI7CPH zU0F$6X9L|iZWzNAVLx2Hyu56h!8VPBl*S3q9#7o!V_V#%g4=Q4KfJq%@Ac>W&WLyY z`*^R%_s22(;QM2TAJFki)8W4k<+U&Ibm57=`_K3rz0-m|;D`R+p_~Eb(bInq<@t9& zqvzWCduj`{?}C3U+BKprv7dHAA3ZA|f(zU+_T9x_prk!=KPMPR-?e{g?6*zx?e{Z2 z{`bqx2Mhu&jxs@$!ap20G60$NVav2}n8?QH-}W}p@H=TkO2frPk~TG#R*aMP>@d*U zMM4{=k?b|4jea0cY12SnG^LF#`O=g&^%SzEw9(RHhM@K2-vkXRp=dpg?&*8BA*Y|x zMoWG}&?Z{r7Br`LI@+Ex8`Afz4=)6*qs<3F^Orygno}|w?Lhumyk}{U6||9-Yf>7D zQ#3o#QjmO)#*UO`CmIA(nj6R$3mQyF(Ry94>j^LU(iOv)(M&;Xp^8>%4ADv zQ%7-)pfwak2^x${(L5+PdCvj^t-ouP%~%YLs(q8A%qmeHj7!pB@RBx8lhPMh0s(f? z^5CZ=|7-&zRPS|)SGE~w{1)Z)6k`b5M6r#a!H^VfqVZF{r)=LM{7~f$KBh>&i*Q}_ zcfhTVvJOBoRlU7cc7y?g(%D2EmeB5kHc{LnXpSb%DXpa&sf> zB2hu>m2a}`NRt)u-k@y8b{@bl-g6W>r!?HPDecm>ld>6Do9031@0=6m^)wFb@L*E@%Jx2f6yI%>4cdOxJm@>+uWUb1wu&gPS2lxN zkTeXJsviiYba__mz4O?gv|fj}Sk~cst*5S|#9i@SY?mt9pmoSiDh{*GX*-%aLP(@_ zOf4k{30g+x(@66{@g5Xa(7*!aHxQE(4n=%d$F{ENlnpuVEVFs@Hi@V zbd6Ph(!t%U@8YyL-8XH64%2Ma7NdPTG*^xLt{rF(A>oT_d)?o*Q{$U!{pw`;T}&9H zp1RHhX43astMuNrFjm=?PR})5>u6q{me--xiq@;~94fBm(TytZM2M;7(f3NnUEe7G z;<`!MmV>{ScJAQXReuM+=8^WT$8FiNZ#~^iD|kSYRY}9JuXGo)R9$bUc{;SpPdeli zDfwc?C}RN!Q&shjjpixTMYVbCv@B_+F8hW6Q1Qh!w1$-OZ=96>b0f4;zBf57UtIpH zcx5|UXG-g^dLH1c9`_w)?uu7X4#g`t9pw)&EU3P@R?UwbLQKW0sUbW^+Ga38^$h}6 z@`bsn{<<9hteV#%+E6jDoBS=uX`o3sTMsK&PuaiZ)8Xli~m_EwE~ zBTQB5+K4zz@*Zwn=^9i>jSCYFGL?EYVHs4(2=VExj;~*?KYqITLbngU`S?HD=@`#w z`vbq=n*Ll-uX`#SpELt<3U|rTsE~> O8`*sG&CA!9n?C?=`>SmL literal 0 HcmV?d00001 diff --git a/fall-2024/math/mat-206/00020/UnM49.csv b/fall-2024/math/mat-206/00020/UnM49.csv new file mode 100644 index 0000000..46a9d58 --- /dev/null +++ b/fall-2024/math/mat-206/00020/UnM49.csv @@ -0,0 +1,249 @@ +Global Code;Global Name;Region Code;Region Name;Sub-region Code;Sub-region Name;Intermediate Region Code;Intermediate Region Name;Country or Area;M49 Code;ISO-alpha2 Code;ISO-alpha3 Code;Least Developed Countries (LDC);Land Locked Developing Countries (LLDC);Small Island Developing States (SIDS) +001;World;002;Africa;015;Northern Africa;;;Algeria;012;DZ;DZA;;; +001;World;002;Africa;015;Northern Africa;;;Egypt;818;EG;EGY;;; +001;World;002;Africa;015;Northern Africa;;;Libya;434;LY;LBY;;; +001;World;002;Africa;015;Northern Africa;;;Morocco;504;MA;MAR;;; +001;World;002;Africa;015;Northern Africa;;;Sudan;729;SD;SDN;x;; +001;World;002;Africa;015;Northern Africa;;;Tunisia;788;TN;TUN;;; +001;World;002;Africa;015;Northern Africa;;;Western Sahara;732;EH;ESH;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;British Indian Ocean Territory;086;IO;IOT;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Burundi;108;BI;BDI;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Comoros;174;KM;COM;x;;x +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Djibouti;262;DJ;DJI;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Eritrea;232;ER;ERI;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Ethiopia;231;ET;ETH;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;French Southern Territories;260;TF;ATF;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Kenya;404;KE;KEN;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Madagascar;450;MG;MDG;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Malawi;454;MW;MWI;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Mauritius;480;MU;MUS;;;x +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Mayotte;175;YT;MYT;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Mozambique;508;MZ;MOZ;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Réunion;638;RE;REU;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Rwanda;646;RW;RWA;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Seychelles;690;SC;SYC;;;x +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Somalia;706;SO;SOM;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;South Sudan;728;SS;SSD;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Uganda;800;UG;UGA;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;United Republic of Tanzania;834;TZ;TZA;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Zambia;894;ZM;ZMB;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Zimbabwe;716;ZW;ZWE;;x; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Angola;024;AO;AGO;x;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Cameroon;120;CM;CMR;;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Central African Republic;140;CF;CAF;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Chad;148;TD;TCD;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Congo;178;CG;COG;;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Democratic Republic of the Congo;180;CD;COD;x;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Equatorial Guinea;226;GQ;GNQ;;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Gabon;266;GA;GAB;;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Sao Tome and Principe;678;ST;STP;x;;x +001;World;002;Africa;202;Sub-Saharan Africa;018;Southern Africa;Botswana;072;BW;BWA;;x; +001;World;002;Africa;202;Sub-Saharan Africa;018;Southern Africa;Eswatini;748;SZ;SWZ;;x; +001;World;002;Africa;202;Sub-Saharan Africa;018;Southern Africa;Lesotho;426;LS;LSO;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;018;Southern Africa;Namibia;516;NA;NAM;;; +001;World;002;Africa;202;Sub-Saharan Africa;018;Southern Africa;South Africa;710;ZA;ZAF;;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Benin;204;BJ;BEN;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Burkina Faso;854;BF;BFA;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Cabo Verde;132;CV;CPV;;;x +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Côte d’Ivoire;384;CI;CIV;;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Gambia;270;GM;GMB;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Ghana;288;GH;GHA;;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Guinea;324;GN;GIN;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Guinea-Bissau;624;GW;GNB;x;;x +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Liberia;430;LR;LBR;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Mali;466;ML;MLI;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Mauritania;478;MR;MRT;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Niger;562;NE;NER;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Nigeria;566;NG;NGA;;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Saint Helena;654;SH;SHN;;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Senegal;686;SN;SEN;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Sierra Leone;694;SL;SLE;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Togo;768;TG;TGO;x;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Anguilla;660;AI;AIA;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Antigua and Barbuda;028;AG;ATG;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Aruba;533;AW;ABW;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Bahamas;044;BS;BHS;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Barbados;052;BB;BRB;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Bonaire, Sint Eustatius and Saba;535;BQ;BES;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;British Virgin Islands;092;VG;VGB;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Cayman Islands;136;KY;CYM;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Cuba;192;CU;CUB;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Curaçao;531;CW;CUW;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Dominica;212;DM;DMA;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Dominican Republic;214;DO;DOM;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Grenada;308;GD;GRD;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Guadeloupe;312;GP;GLP;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Haiti;332;HT;HTI;x;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Jamaica;388;JM;JAM;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Martinique;474;MQ;MTQ;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Montserrat;500;MS;MSR;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Puerto Rico;630;PR;PRI;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Saint Barthélemy;652;BL;BLM;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Saint Kitts and Nevis;659;KN;KNA;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Saint Lucia;662;LC;LCA;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Saint Martin (French Part);663;MF;MAF;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Saint Vincent and the Grenadines;670;VC;VCT;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Sint Maarten (Dutch part);534;SX;SXM;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Trinidad and Tobago;780;TT;TTO;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Turks and Caicos Islands;796;TC;TCA;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;United States Virgin Islands;850;VI;VIR;;;x +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Belize;084;BZ;BLZ;;;x +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Costa Rica;188;CR;CRI;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;El Salvador;222;SV;SLV;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Guatemala;320;GT;GTM;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Honduras;340;HN;HND;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Mexico;484;MX;MEX;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Nicaragua;558;NI;NIC;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Panama;591;PA;PAN;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Argentina;032;AR;ARG;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Bolivia (Plurinational State of);068;BO;BOL;;x; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Bouvet Island;074;BV;BVT;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Brazil;076;BR;BRA;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Chile;152;CL;CHL;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Colombia;170;CO;COL;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Ecuador;218;EC;ECU;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Falkland Islands (Malvinas);238;FK;FLK;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;French Guiana;254;GF;GUF;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Guyana;328;GY;GUY;;;x +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Paraguay;600;PY;PRY;;x; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Peru;604;PE;PER;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;South Georgia and the South Sandwich Islands;239;GS;SGS;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Suriname;740;SR;SUR;;;x +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Uruguay;858;UY;URY;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Venezuela (Bolivarian Republic of);862;VE;VEN;;; +001;World;019;Americas;021;Northern America;;;Bermuda;060;BM;BMU;;; +001;World;019;Americas;021;Northern America;;;Canada;124;CA;CAN;;; +001;World;019;Americas;021;Northern America;;;Greenland;304;GL;GRL;;; +001;World;019;Americas;021;Northern America;;;Saint Pierre and Miquelon;666;PM;SPM;;; +001;World;019;Americas;021;Northern America;;;United States of America;840;US;USA;;; +001;World;;;;;;;Antarctica;010;AQ;ATA;;; +001;World;142;Asia;143;Central Asia;;;Kazakhstan;398;KZ;KAZ;;x; +001;World;142;Asia;143;Central Asia;;;Kyrgyzstan;417;KG;KGZ;;x; +001;World;142;Asia;143;Central Asia;;;Tajikistan;762;TJ;TJK;;x; +001;World;142;Asia;143;Central Asia;;;Turkmenistan;795;TM;TKM;;x; +001;World;142;Asia;143;Central Asia;;;Uzbekistan;860;UZ;UZB;;x; +001;World;142;Asia;030;Eastern Asia;;;China;156;CN;CHN;;; +001;World;142;Asia;030;Eastern Asia;;;China, Hong Kong Special Administrative Region;344;HK;HKG;;; +001;World;142;Asia;030;Eastern Asia;;;China, Macao Special Administrative Region;446;MO;MAC;;; +001;World;142;Asia;030;Eastern Asia;;;Democratic People's Republic of Korea;408;KP;PRK;;; +001;World;142;Asia;030;Eastern Asia;;;Japan;392;JP;JPN;;; +001;World;142;Asia;030;Eastern Asia;;;Mongolia;496;MN;MNG;;x; +001;World;142;Asia;030;Eastern Asia;;;Republic of Korea;410;KR;KOR;;; +001;World;142;Asia;035;South-eastern Asia;;;Brunei Darussalam;096;BN;BRN;;; +001;World;142;Asia;035;South-eastern Asia;;;Cambodia;116;KH;KHM;x;; +001;World;142;Asia;035;South-eastern Asia;;;Indonesia;360;ID;IDN;;; +001;World;142;Asia;035;South-eastern Asia;;;Lao People's Democratic Republic;418;LA;LAO;x;x; +001;World;142;Asia;035;South-eastern Asia;;;Malaysia;458;MY;MYS;;; +001;World;142;Asia;035;South-eastern Asia;;;Myanmar;104;MM;MMR;x;; +001;World;142;Asia;035;South-eastern Asia;;;Philippines;608;PH;PHL;;; +001;World;142;Asia;035;South-eastern Asia;;;Singapore;702;SG;SGP;;;x +001;World;142;Asia;035;South-eastern Asia;;;Thailand;764;TH;THA;;; +001;World;142;Asia;035;South-eastern Asia;;;Timor-Leste;626;TL;TLS;x;;x +001;World;142;Asia;035;South-eastern Asia;;;Viet Nam;704;VN;VNM;;; +001;World;142;Asia;034;Southern Asia;;;Afghanistan;004;AF;AFG;x;x; +001;World;142;Asia;034;Southern Asia;;;Bangladesh;050;BD;BGD;x;; +001;World;142;Asia;034;Southern Asia;;;Bhutan;064;BT;BTN;;x; +001;World;142;Asia;034;Southern Asia;;;India;356;IN;IND;;; +001;World;142;Asia;034;Southern Asia;;;Iran (Islamic Republic of);364;IR;IRN;;; +001;World;142;Asia;034;Southern Asia;;;Maldives;462;MV;MDV;;;x +001;World;142;Asia;034;Southern Asia;;;Nepal;524;NP;NPL;x;x; +001;World;142;Asia;034;Southern Asia;;;Pakistan;586;PK;PAK;;; +001;World;142;Asia;034;Southern Asia;;;Sri Lanka;144;LK;LKA;;; +001;World;142;Asia;145;Western Asia;;;Armenia;051;AM;ARM;;x; +001;World;142;Asia;145;Western Asia;;;Azerbaijan;031;AZ;AZE;;x; +001;World;142;Asia;145;Western Asia;;;Bahrain;048;BH;BHR;;; +001;World;142;Asia;145;Western Asia;;;Cyprus;196;CY;CYP;;; +001;World;142;Asia;145;Western Asia;;;Georgia;268;GE;GEO;;; +001;World;142;Asia;145;Western Asia;;;Iraq;368;IQ;IRQ;;; +001;World;142;Asia;145;Western Asia;;;Israel;376;IL;ISR;;; +001;World;142;Asia;145;Western Asia;;;Jordan;400;JO;JOR;;; +001;World;142;Asia;145;Western Asia;;;Kuwait;414;KW;KWT;;; +001;World;142;Asia;145;Western Asia;;;Lebanon;422;LB;LBN;;; +001;World;142;Asia;145;Western Asia;;;Oman;512;OM;OMN;;; +001;World;142;Asia;145;Western Asia;;;Qatar;634;QA;QAT;;; +001;World;142;Asia;145;Western Asia;;;Saudi Arabia;682;SA;SAU;;; +001;World;142;Asia;145;Western Asia;;;State of Palestine;275;PS;PSE;;; +001;World;142;Asia;145;Western Asia;;;Syrian Arab Republic;760;SY;SYR;;; +001;World;142;Asia;145;Western Asia;;;Türkiye;792;TR;TUR;;; +001;World;142;Asia;145;Western Asia;;;United Arab Emirates;784;AE;ARE;;; +001;World;142;Asia;145;Western Asia;;;Yemen;887;YE;YEM;x;; +001;World;150;Europe;151;Eastern Europe;;;Belarus;112;BY;BLR;;; +001;World;150;Europe;151;Eastern Europe;;;Bulgaria;100;BG;BGR;;; +001;World;150;Europe;151;Eastern Europe;;;Czechia;203;CZ;CZE;;; +001;World;150;Europe;151;Eastern Europe;;;Hungary;348;HU;HUN;;; +001;World;150;Europe;151;Eastern Europe;;;Poland;616;PL;POL;;; +001;World;150;Europe;151;Eastern Europe;;;Republic of Moldova;498;MD;MDA;;x; +001;World;150;Europe;151;Eastern Europe;;;Romania;642;RO;ROU;;; +001;World;150;Europe;151;Eastern Europe;;;Russian Federation;643;RU;RUS;;; +001;World;150;Europe;151;Eastern Europe;;;Slovakia;703;SK;SVK;;; +001;World;150;Europe;151;Eastern Europe;;;Ukraine;804;UA;UKR;;; +001;World;150;Europe;154;Northern Europe;;;Åland Islands;248;AX;ALA;;; +001;World;150;Europe;154;Northern Europe;;;Denmark;208;DK;DNK;;; +001;World;150;Europe;154;Northern Europe;;;Estonia;233;EE;EST;;; +001;World;150;Europe;154;Northern Europe;;;Faroe Islands;234;FO;FRO;;; +001;World;150;Europe;154;Northern Europe;;;Finland;246;FI;FIN;;; +001;World;150;Europe;154;Northern Europe;;;Guernsey;831;GG;GGY;;; +001;World;150;Europe;154;Northern Europe;;;Iceland;352;IS;ISL;;; +001;World;150;Europe;154;Northern Europe;;;Ireland;372;IE;IRL;;; +001;World;150;Europe;154;Northern Europe;;;Isle of Man;833;IM;IMN;;; +001;World;150;Europe;154;Northern Europe;;;Jersey;832;JE;JEY;;; +001;World;150;Europe;154;Northern Europe;;;Latvia;428;LV;LVA;;; +001;World;150;Europe;154;Northern Europe;;;Lithuania;440;LT;LTU;;; +001;World;150;Europe;154;Northern Europe;;;Norway;578;NO;NOR;;; +001;World;150;Europe;154;Northern Europe;;;Svalbard and Jan Mayen Islands;744;SJ;SJM;;; +001;World;150;Europe;154;Northern Europe;;;Sweden;752;SE;SWE;;; +001;World;150;Europe;154;Northern Europe;;;United Kingdom of Great Britain and Northern Ireland;826;GB;GBR;;; +001;World;150;Europe;039;Southern Europe;;;Albania;008;AL;ALB;;; +001;World;150;Europe;039;Southern Europe;;;Andorra;020;AD;AND;;; +001;World;150;Europe;039;Southern Europe;;;Bosnia and Herzegovina;070;BA;BIH;;; +001;World;150;Europe;039;Southern Europe;;;Croatia;191;HR;HRV;;; +001;World;150;Europe;039;Southern Europe;;;Gibraltar;292;GI;GIB;;; +001;World;150;Europe;039;Southern Europe;;;Greece;300;GR;GRC;;; +001;World;150;Europe;039;Southern Europe;;;Holy See;336;VA;VAT;;; +001;World;150;Europe;039;Southern Europe;;;Italy;380;IT;ITA;;; +001;World;150;Europe;039;Southern Europe;;;Malta;470;MT;MLT;;; +001;World;150;Europe;039;Southern Europe;;;Montenegro;499;ME;MNE;;; +001;World;150;Europe;039;Southern Europe;;;North Macedonia;807;MK;MKD;;x; +001;World;150;Europe;039;Southern Europe;;;Portugal;620;PT;PRT;;; +001;World;150;Europe;039;Southern Europe;;;San Marino;674;SM;SMR;;; +001;World;150;Europe;039;Southern Europe;;;Serbia;688;RS;SRB;;; +001;World;150;Europe;039;Southern Europe;;;Slovenia;705;SI;SVN;;; +001;World;150;Europe;039;Southern Europe;;;Spain;724;ES;ESP;;; +001;World;150;Europe;155;Western Europe;;;Austria;040;AT;AUT;;; +001;World;150;Europe;155;Western Europe;;;Belgium;056;BE;BEL;;; +001;World;150;Europe;155;Western Europe;;;France;250;FR;FRA;;; +001;World;150;Europe;155;Western Europe;;;Germany;276;DE;DEU;;; +001;World;150;Europe;155;Western Europe;;;Liechtenstein;438;LI;LIE;;; +001;World;150;Europe;155;Western Europe;;;Luxembourg;442;LU;LUX;;; +001;World;150;Europe;155;Western Europe;;;Monaco;492;MC;MCO;;; +001;World;150;Europe;155;Western Europe;;;Netherlands (Kingdom of the);528;NL;NLD;;; +001;World;150;Europe;155;Western Europe;;;Switzerland;756;CH;CHE;;; +001;World;009;Oceania;053;Australia and New Zealand;;;Australia;036;AU;AUS;;; +001;World;009;Oceania;053;Australia and New Zealand;;;Christmas Island;162;CX;CXR;;; +001;World;009;Oceania;053;Australia and New Zealand;;;Cocos (Keeling) Islands;166;CC;CCK;;; +001;World;009;Oceania;053;Australia and New Zealand;;;Heard Island and McDonald Islands;334;HM;HMD;;; +001;World;009;Oceania;053;Australia and New Zealand;;;New Zealand;554;NZ;NZL;;; +001;World;009;Oceania;053;Australia and New Zealand;;;Norfolk Island;574;NF;NFK;;; +001;World;009;Oceania;054;Melanesia;;;Fiji;242;FJ;FJI;;;x +001;World;009;Oceania;054;Melanesia;;;New Caledonia;540;NC;NCL;;;x +001;World;009;Oceania;054;Melanesia;;;Papua New Guinea;598;PG;PNG;;;x +001;World;009;Oceania;054;Melanesia;;;Solomon Islands;090;SB;SLB;x;;x +001;World;009;Oceania;054;Melanesia;;;Vanuatu;548;VU;VUT;;;x +001;World;009;Oceania;057;Micronesia;;;Guam;316;GU;GUM;;;x +001;World;009;Oceania;057;Micronesia;;;Kiribati;296;KI;KIR;x;;x +001;World;009;Oceania;057;Micronesia;;;Marshall Islands;584;MH;MHL;;;x +001;World;009;Oceania;057;Micronesia;;;Micronesia (Federated States of);583;FM;FSM;;;x +001;World;009;Oceania;057;Micronesia;;;Nauru;520;NR;NRU;;;x +001;World;009;Oceania;057;Micronesia;;;Northern Mariana Islands;580;MP;MNP;;;x +001;World;009;Oceania;057;Micronesia;;;Palau;585;PW;PLW;;;x +001;World;009;Oceania;057;Micronesia;;;United States Minor Outlying Islands;581;UM;UMI;;; +001;World;009;Oceania;061;Polynesia;;;American Samoa;016;AS;ASM;;;x +001;World;009;Oceania;061;Polynesia;;;Cook Islands;184;CK;COK;;;x +001;World;009;Oceania;061;Polynesia;;;French Polynesia;258;PF;PYF;;;x +001;World;009;Oceania;061;Polynesia;;;Niue;570;NU;NIU;;;x +001;World;009;Oceania;061;Polynesia;;;Pitcairn;612;PN;PCN;;; +001;World;009;Oceania;061;Polynesia;;;Samoa;882;WS;WSM;;;x +001;World;009;Oceania;061;Polynesia;;;Tokelau;772;TK;TKL;;; +001;World;009;Oceania;061;Polynesia;;;Tonga;776;TO;TON;;;x +001;World;009;Oceania;061;Polynesia;;;Tuvalu;798;TV;TUV;x;;x +001;World;009;Oceania;061;Polynesia;;;Wallis and Futuna Islands;876;WF;WLF;;; \ No newline at end of file diff --git a/fall-2024/math/mat-206/00030/DataWhr2024.csv b/fall-2024/math/mat-206/00030/DataWhr2024.csv new file mode 100644 index 0000000..f8d857c --- /dev/null +++ b/fall-2024/math/mat-206/00030/DataWhr2024.csv @@ -0,0 +1,2364 @@ +Country name,year,Life Ladder,Log GDP per capita,Social support,Healthy life expectancy at birth,Freedom to make life choices,Generosity,Perceptions of corruption,Positive affect,Negative affect +Afghanistan,2008,3.724,7.350,0.451,50.500,0.718,0.164,0.882,0.414,0.258 +Afghanistan,2009,4.402,7.509,0.552,50.800,0.679,0.187,0.850,0.481,0.237 +Afghanistan,2010,4.758,7.614,0.539,51.100,0.600,0.118,0.707,0.517,0.275 +Afghanistan,2011,3.832,7.581,0.521,51.400,0.496,0.160,0.731,0.480,0.267 +Afghanistan,2012,3.783,7.661,0.521,51.700,0.531,0.234,0.776,0.614,0.268 +Afghanistan,2013,3.572,7.680,0.484,52.000,0.578,0.059,0.823,0.547,0.273 +Afghanistan,2014,3.131,7.671,0.526,52.300,0.509,0.102,0.871,0.492,0.375 +Afghanistan,2015,3.983,7.654,0.529,52.600,0.389,0.078,0.881,0.491,0.339 +Afghanistan,2016,4.220,7.650,0.559,52.925,0.523,0.040,0.793,0.501,0.348 +Afghanistan,2017,2.662,7.648,0.491,53.250,0.427,-0.123,0.954,0.435,0.371 +Afghanistan,2018,2.694,7.631,0.508,53.575,0.374,-0.095,0.928,0.385,0.405 +Afghanistan,2019,2.375,7.640,0.420,53.900,0.394,-0.109,0.924,0.324,0.502 +Afghanistan,2021,2.436,7.325,0.454,54.550,0.394,-0.085,0.946,0.179,0.607 +Afghanistan,2022,1.281,,0.228,54.875,0.368,,0.733,0.206,0.576 +Afghanistan,2023,1.446,,0.368,55.200,0.228,,0.738,0.261,0.460 +Albania,2007,4.634,9.122,0.821,66.760,0.529,-0.013,0.875,0.489,0.246 +Albania,2009,5.485,9.241,0.833,67.320,0.525,-0.162,0.864,0.564,0.279 +Albania,2010,5.269,9.283,0.733,67.600,0.569,-0.176,0.726,0.576,0.300 +Albania,2011,5.867,9.310,0.759,67.880,0.487,-0.209,0.877,0.566,0.257 +Albania,2012,5.510,9.326,0.785,68.160,0.602,-0.173,0.848,0.553,0.271 +Albania,2013,4.551,9.338,0.759,68.440,0.632,-0.131,0.863,0.541,0.338 +Albania,2014,4.814,9.358,0.626,68.720,0.735,-0.029,0.883,0.573,0.335 +Albania,2015,4.607,9.382,0.639,69.000,0.704,-0.085,0.885,0.579,0.350 +Albania,2016,4.511,9.417,0.638,69.025,0.730,-0.021,0.901,0.567,0.322 +Albania,2017,4.640,9.455,0.638,69.050,0.750,-0.033,0.876,0.547,0.334 +Albania,2018,5.004,9.497,0.684,69.075,0.824,0.005,0.899,0.592,0.319 +Albania,2019,4.995,9.522,0.686,69.100,0.777,-0.103,0.914,0.548,0.274 +Albania,2020,5.365,9.494,0.710,69.125,0.754,0.002,0.891,0.563,0.265 +Albania,2021,5.255,9.588,0.702,69.150,0.827,0.039,0.896,0.554,0.254 +Albania,2022,5.212,9.649,0.724,69.175,0.802,-0.070,0.846,0.547,0.255 +Albania,2023,5.445,9.689,0.691,69.200,0.872,0.068,0.855,0.597,0.314 +Algeria,2010,5.464,9.306,,65.500,0.593,-0.212,0.618,, +Algeria,2011,5.317,9.316,0.810,65.600,0.530,-0.188,0.638,0.503,0.255 +Algeria,2012,5.605,9.330,0.839,65.700,0.587,-0.179,0.690,0.540,0.230 +Algeria,2014,6.355,9.355,0.818,65.900,,,,0.558,0.177 +Algeria,2016,5.341,9.383,0.749,66.100,,,,0.565,0.377 +Algeria,2017,5.249,9.377,0.807,66.200,0.437,-0.174,0.700,0.555,0.289 +Algeria,2018,5.043,9.370,0.799,66.300,0.583,-0.153,0.759,0.534,0.293 +Algeria,2019,4.745,9.361,0.803,66.400,0.385,-0.002,0.741,0.544,0.215 +Algeria,2020,5.438,9.291,0.868,66.500,0.574,-0.124,0.724,0.524,0.311 +Algeria,2021,5.217,9.308,0.841,66.600,0.558,-0.116,0.712,0.498,0.258 +Algeria,2022,5.538,9.323,0.783,66.700,0.440,-0.045,0.611,0.583,0.259 +Angola,2011,5.589,8.944,0.723,51.220,0.584,0.050,0.911,0.667,0.361 +Angola,2012,4.360,8.989,0.753,51.840,0.456,-0.141,0.906,0.591,0.305 +Angola,2013,3.937,9.000,0.722,52.460,0.410,-0.109,0.816,0.650,0.371 +Angola,2014,3.795,9.010,0.755,53.080,0.375,-0.173,0.834,0.595,0.368 +Argentina,2006,6.313,9.937,0.938,65.820,0.733,-0.162,0.852,0.748,0.328 +Argentina,2007,6.073,10.013,0.862,65.940,0.653,-0.146,0.881,0.750,0.279 +Argentina,2008,5.961,10.043,0.892,66.060,0.678,-0.137,0.865,0.720,0.318 +Argentina,2009,6.424,9.972,0.919,66.180,0.637,-0.135,0.885,0.762,0.237 +Argentina,2010,6.441,10.066,0.927,66.300,0.730,-0.132,0.855,0.765,0.211 +Argentina,2011,6.776,10.112,0.889,66.420,0.816,-0.180,0.755,0.769,0.232 +Argentina,2012,6.468,10.091,0.902,66.540,0.747,-0.153,0.817,0.744,0.272 +Argentina,2013,6.582,10.103,0.910,66.660,0.737,-0.136,0.823,0.766,0.254 +Argentina,2014,6.671,10.067,0.918,66.780,0.745,-0.170,0.854,0.769,0.238 +Argentina,2015,6.697,10.083,0.926,66.900,0.881,-0.180,0.851,0.768,0.305 +Argentina,2016,6.427,10.051,0.883,66.950,0.848,-0.198,0.851,0.732,0.312 +Argentina,2017,6.039,10.069,0.907,67.000,0.832,-0.192,0.841,0.715,0.292 +Argentina,2018,5.793,10.032,0.900,67.050,0.846,-0.216,0.855,0.732,0.321 +Argentina,2019,6.086,10.002,0.896,67.100,0.817,-0.217,0.830,0.735,0.319 +Argentina,2020,5.901,9.888,0.897,67.150,0.823,-0.131,0.816,0.679,0.342 +Argentina,2021,5.908,9.977,0.882,67.200,0.819,-0.014,0.816,0.685,0.345 +Argentina,2022,6.261,10.019,0.893,67.250,0.825,-0.130,0.810,0.724,0.284 +Argentina,2023,6.393,9.994,0.892,67.300,0.832,-0.129,0.846,0.720,0.301 +Armenia,2006,4.289,9.021,0.682,63.840,0.520,-0.235,0.850,0.453,0.469 +Armenia,2007,4.882,9.157,0.760,64.080,0.605,-0.255,0.817,0.454,0.412 +Armenia,2008,4.652,9.230,0.709,64.320,0.462,-0.219,0.876,0.486,0.385 +Armenia,2009,4.178,9.085,0.680,64.560,0.441,-0.218,0.882,0.479,0.411 +Armenia,2010,4.368,9.113,0.660,64.800,0.459,-0.180,0.891,0.437,0.426 +Armenia,2011,4.260,9.164,0.705,65.040,0.465,-0.230,0.875,0.411,0.459 +Armenia,2012,4.320,9.239,0.676,65.280,0.502,-0.220,0.893,0.470,0.464 +Armenia,2013,4.277,9.276,0.723,65.520,0.504,-0.201,0.900,0.503,0.450 +Armenia,2014,4.453,9.315,0.739,65.760,0.506,-0.225,0.920,0.510,0.404 +Armenia,2015,4.348,9.351,0.723,66.000,0.551,-0.209,0.901,0.527,0.438 +Armenia,2016,4.325,9.357,0.709,66.275,0.611,-0.178,0.921,0.516,0.437 +Armenia,2017,4.288,9.434,0.698,66.550,0.614,-0.155,0.865,0.552,0.437 +Armenia,2018,5.062,9.490,0.814,66.825,0.808,-0.171,0.677,0.535,0.455 +Armenia,2019,5.488,9.569,0.782,67.100,0.844,-0.181,0.583,0.537,0.430 +Armenia,2021,5.301,9.561,0.762,67.650,0.795,-0.159,0.705,0.566,0.478 +Armenia,2022,5.382,9.683,0.811,67.925,0.790,-0.158,0.705,0.531,0.549 +Armenia,2023,5.679,9.730,0.819,68.200,0.819,-0.179,0.681,0.575,0.423 +Australia,2005,7.341,10.662,0.968,69.800,0.935,,0.390,0.770,0.238 +Australia,2007,7.285,10.694,0.965,69.960,0.891,0.342,0.513,0.762,0.215 +Australia,2008,7.254,10.709,0.947,70.040,0.916,0.300,0.431,0.729,0.218 +Australia,2010,7.450,10.714,0.955,70.200,0.932,0.311,0.366,0.762,0.220 +Australia,2011,7.406,10.723,0.967,70.280,0.945,0.364,0.382,0.724,0.195 +Australia,2012,7.196,10.744,0.945,70.360,0.935,0.268,0.368,0.728,0.214 +Australia,2013,7.364,10.752,0.928,70.440,0.933,0.263,0.432,0.770,0.177 +Australia,2014,7.289,10.763,0.924,70.520,0.923,0.313,0.442,0.740,0.245 +Australia,2015,7.309,10.770,0.952,70.600,0.922,0.327,0.357,0.750,0.210 +Australia,2016,7.250,10.781,0.942,70.675,0.922,0.233,0.399,0.736,0.236 +Australia,2017,7.257,10.787,0.950,70.750,0.911,0.312,0.411,0.728,0.225 +Australia,2018,7.177,10.801,0.940,70.825,0.916,0.141,0.405,0.706,0.187 +Australia,2019,7.234,10.807,0.943,70.900,0.918,0.115,0.430,0.727,0.202 +Australia,2020,7.137,10.794,0.937,70.975,0.905,0.202,0.491,0.726,0.205 +Australia,2021,7.112,10.815,0.920,71.050,0.912,0.234,0.454,0.740,0.235 +Australia,2022,7.035,10.840,0.942,71.125,0.854,0.153,0.545,0.711,0.244 +Australia,2023,7.025,10.846,0.896,71.200,0.876,0.187,0.482,0.731,0.248 +Austria,2006,7.122,10.836,0.936,69.500,0.941,0.297,0.490,0.746,0.174 +Austria,2008,7.181,10.881,0.935,69.700,0.879,0.286,0.614,0.716,0.173 +Austria,2010,7.303,10.856,0.914,69.900,0.896,0.125,0.546,0.710,0.156 +Austria,2011,7.471,10.881,0.944,70.000,0.939,0.126,0.703,0.672,0.145 +Austria,2012,7.401,10.884,0.945,70.100,0.920,0.112,0.771,0.712,0.157 +Austria,2013,7.499,10.878,0.950,70.200,0.922,0.163,0.679,0.725,0.163 +Austria,2014,6.950,10.877,0.899,70.300,0.885,0.112,0.567,0.721,0.170 +Austria,2015,7.076,10.876,0.928,70.400,0.900,0.093,0.557,0.748,0.164 +Austria,2016,7.048,10.885,0.926,70.525,0.889,0.074,0.524,0.713,0.197 +Austria,2017,7.294,10.900,0.906,70.650,0.890,0.128,0.518,0.699,0.180 +Austria,2018,7.396,10.919,0.912,70.775,0.904,0.048,0.523,0.695,0.226 +Austria,2019,7.195,10.930,0.964,70.900,0.903,0.054,0.457,0.727,0.205 +Austria,2020,7.213,10.859,0.925,71.025,0.912,0.004,0.464,0.716,0.206 +Austria,2021,7.080,10.899,0.863,71.150,0.795,0.158,0.501,0.722,0.259 +Austria,2022,6.999,10.938,0.876,71.275,0.856,0.137,0.524,0.718,0.226 +Austria,2023,6.636,10.930,0.874,71.400,0.874,0.209,0.529,0.712,0.240 +Azerbaijan,2006,4.728,9.154,0.854,60.580,0.772,-0.239,0.774,0.469,0.276 +Azerbaijan,2007,4.568,9.366,0.753,60.860,0.522,-0.211,0.871,0.474,0.284 +Azerbaijan,2008,4.817,9.447,0.684,61.140,0.601,-0.034,0.715,0.561,0.227 +Azerbaijan,2009,4.574,9.515,0.736,61.420,0.498,-0.091,0.754,0.522,0.234 +Azerbaijan,2010,4.219,9.553,0.687,61.700,0.501,-0.128,0.858,0.516,0.272 +Azerbaijan,2011,4.680,9.541,0.725,61.980,0.537,-0.110,0.795,0.522,0.258 +Azerbaijan,2012,4.911,9.549,0.762,62.260,0.599,-0.146,0.763,0.523,0.266 +Azerbaijan,2013,5.481,9.592,0.770,62.540,0.672,-0.173,0.699,0.516,0.242 +Azerbaijan,2014,5.252,9.607,0.799,62.820,0.733,-0.214,0.654,0.502,0.220 +Azerbaijan,2015,5.147,9.606,0.786,63.100,0.764,-0.203,0.616,0.520,0.206 +Azerbaijan,2016,5.304,9.563,0.777,63.225,0.713,-0.210,0.607,0.509,0.191 +Azerbaijan,2017,5.152,9.555,0.787,63.350,0.731,-0.231,0.653,0.512,0.198 +Azerbaijan,2018,5.168,9.562,0.781,63.475,0.772,-0.237,0.561,0.527,0.191 +Azerbaijan,2019,5.173,9.578,0.887,63.600,0.854,-0.220,0.457,0.577,0.164 +Azerbaijan,2022,4.576,9.619,0.665,63.975,0.800,0.075,0.696,0.533,0.401 +Azerbaijan,2023,5.214,9.637,0.713,64.100,0.829,-0.160,0.627,0.509,0.221 +Bahrain,2009,5.701,10.714,0.904,64.760,0.896,0.031,0.506,0.707,0.422 +Bahrain,2010,5.937,10.728,0.877,65.000,0.862,-0.008,0.715,0.641,0.423 +Bahrain,2011,4.824,10.749,0.908,65.240,0.870,-0.061,0.583,0.506,0.514 +Bahrain,2012,5.027,10.775,0.911,65.480,0.682,,0.438,0.559,0.381 +Bahrain,2013,6.690,10.798,0.884,65.720,0.809,,0.525,0.711,0.306 +Bahrain,2014,6.165,10.802,,65.960,,,,, +Bahrain,2015,6.007,10.788,0.853,66.200,0.850,0.106,,0.653,0.303 +Bahrain,2016,6.170,10.789,0.863,66.125,0.889,0.082,,0.736,0.283 +Bahrain,2017,6.227,10.798,0.876,66.050,0.906,0.128,,0.754,0.290 +Bahrain,2019,7.098,10.815,0.878,65.900,0.907,0.035,,0.711,0.317 +Bahrain,2020,6.173,10.779,0.848,65.825,0.945,0.115,,0.730,0.297 +Bahrain,2023,5.959,10.877,0.817,65.600,0.869,0.155,,0.671,0.336 +Bangladesh,2006,4.319,7.940,0.672,59.120,0.612,0.052,0.786,0.459,0.321 +Bangladesh,2007,4.607,7.997,0.514,59.640,0.605,0.024,0.806,0.484,0.313 +Bangladesh,2008,5.052,8.047,0.467,60.160,0.606,-0.060,0.802,0.545,0.232 +Bangladesh,2009,5.083,8.087,0.528,60.680,0.631,-0.091,0.776,0.506,0.223 +Bangladesh,2010,4.858,8.130,0.549,61.200,0.659,-0.033,0.774,0.496,0.292 +Bangladesh,2011,4.986,8.181,0.606,61.720,0.838,-0.086,0.757,0.501,0.235 +Bangladesh,2012,4.724,8.231,0.582,62.240,0.668,-0.051,0.765,0.537,0.183 +Bangladesh,2013,4.660,8.277,0.530,62.760,0.742,-0.032,0.743,0.492,0.246 +Bangladesh,2014,4.636,8.323,0.577,63.280,0.736,-0.115,0.789,,0.231 +Bangladesh,2015,4.633,8.375,0.601,63.800,0.815,-0.085,0.721,0.543,0.226 +Bangladesh,2016,4.556,8.431,0.649,63.925,0.875,-0.105,0.688,0.437,0.235 +Bangladesh,2017,4.310,8.483,0.713,64.050,0.896,-0.004,0.635,0.436,0.214 +Bangladesh,2018,4.499,8.542,0.706,64.175,0.901,-0.059,0.701,0.433,0.361 +Bangladesh,2019,5.114,8.607,0.673,64.300,0.902,-0.067,0.656,0.433,0.369 +Bangladesh,2020,5.280,8.629,0.739,64.425,0.777,-0.025,0.742,0.485,0.332 +Bangladesh,2021,4.123,8.685,0.485,64.550,0.893,0.089,0.746,0.504,0.448 +Bangladesh,2022,3.408,8.742,0.404,64.675,0.865,-0.058,0.617,0.394,0.448 +Bangladesh,2023,4.114,8.783,0.450,64.800,0.919,0.019,0.756,0.435,0.435 +Belarus,2006,5.658,9.489,0.918,60.060,0.707,-0.252,0.708,0.535,0.269 +Belarus,2007,5.617,9.576,0.858,60.620,0.667,-0.230,0.695,0.502,0.235 +Belarus,2008,5.463,9.677,0.904,61.180,0.640,-0.226,0.696,,0.246 +Belarus,2009,5.564,9.681,0.908,61.740,0.679,-0.209,0.676,0.544,0.223 +Belarus,2010,5.526,9.759,0.918,62.300,0.700,-0.168,0.706,0.532,0.208 +Belarus,2011,5.225,9.813,0.910,62.860,0.656,-0.174,0.672,0.493,0.249 +Belarus,2012,5.749,9.832,0.902,63.420,0.645,-0.223,0.657,0.515,0.181 +Belarus,2013,5.876,9.842,0.923,63.980,0.723,-0.183,0.653,0.545,0.206 +Belarus,2014,5.812,9.858,0.880,64.540,0.647,-0.054,0.682,0.575,0.209 +Belarus,2015,5.719,9.818,0.924,65.100,0.623,-0.097,0.669,0.546,0.184 +Belarus,2016,5.178,9.792,0.927,65.325,0.658,-0.131,0.664,0.503,0.182 +Belarus,2017,5.553,9.818,0.900,65.550,0.621,-0.128,0.654,0.502,0.233 +Belarus,2018,5.234,9.851,0.905,65.775,0.644,-0.181,0.718,0.409,0.236 +Belarus,2019,5.821,9.867,0.917,66.000,0.657,-0.192,0.546,0.559,0.190 +Belgium,2005,7.262,10.744,0.935,68.400,0.924,,0.598,0.677,0.260 +Belgium,2007,7.219,10.791,0.922,68.720,0.901,0.064,0.721,0.744,0.218 +Belgium,2008,7.117,10.788,0.923,68.880,0.887,0.001,0.652,0.709,0.242 +Belgium,2010,6.854,10.778,0.931,69.200,0.807,0.016,0.697,0.793,0.240 +Belgium,2011,7.111,10.782,0.937,69.360,0.880,-0.020,0.711,0.752,0.225 +Belgium,2012,6.935,10.783,0.927,69.520,0.855,-0.056,0.758,0.718,0.238 +Belgium,2013,7.104,10.783,0.909,69.680,0.891,0.011,0.574,0.738,0.217 +Belgium,2014,6.855,10.794,0.944,69.840,0.861,-0.005,0.512,0.744,0.252 +Belgium,2015,6.904,10.809,0.885,70.000,0.869,0.056,0.469,0.747,0.240 +Belgium,2016,6.949,10.816,0.929,70.150,0.866,-0.062,0.497,0.701,0.260 +Belgium,2017,6.928,10.829,0.922,70.300,0.857,0.049,0.543,0.713,0.234 +Belgium,2018,6.892,10.842,0.930,70.450,0.808,-0.130,0.630,0.682,0.250 +Belgium,2019,6.772,10.859,0.884,70.600,0.776,-0.178,0.672,0.699,0.244 +Belgium,2020,6.839,10.799,0.904,70.750,0.767,-0.172,0.634,0.619,0.260 +Belgium,2021,6.882,10.856,0.915,70.900,0.823,0.077,0.523,0.687,0.260 +Belgium,2022,6.857,10.881,0.923,71.050,0.890,0.095,0.483,0.718,0.235 +Belgium,2023,6.944,10.883,0.896,71.200,0.870,0.065,0.522,0.725,0.245 +Belize,2007,6.451,9.192,0.872,64.300,0.705,0.006,0.769,0.732,0.251 +Belize,2014,5.956,9.135,0.757,65.000,0.874,-0.002,0.782,0.735,0.282 +Benin,2006,3.330,7.844,0.445,51.960,0.580,-0.015,0.790,0.521,0.309 +Benin,2008,3.667,7.891,0.382,52.480,0.709,-0.008,0.825,0.574,0.303 +Benin,2011,3.870,7.876,0.477,53.260,0.773,-0.145,0.849,0.574,0.219 +Benin,2012,3.193,7.894,0.523,53.520,0.769,-0.114,0.806,0.563,0.231 +Benin,2013,3.479,7.935,0.577,53.780,0.783,-0.088,0.856,0.646,0.216 +Benin,2014,3.347,7.967,0.506,54.040,0.776,-0.099,0.855,0.558,0.273 +Benin,2015,3.625,7.955,0.434,54.300,0.733,-0.029,0.850,0.555,0.373 +Benin,2016,4.007,7.958,0.493,54.600,0.780,-0.068,0.838,0.578,0.456 +Benin,2017,4.853,7.984,0.436,54.900,0.727,-0.068,0.767,0.598,0.458 +Benin,2018,5.820,8.020,0.504,55.200,0.713,0.000,0.747,0.625,0.468 +Benin,2019,4.976,8.057,0.442,55.500,0.770,-0.018,0.698,0.638,0.441 +Benin,2020,4.408,8.067,0.507,55.800,0.783,-0.086,0.532,0.557,0.305 +Benin,2021,4.493,8.108,0.436,56.100,0.724,-0.016,0.613,0.597,0.435 +Benin,2022,4.217,8.142,0.366,56.400,0.714,-0.033,0.580,0.571,0.444 +Benin,2023,4.420,8.174,0.398,56.700,0.786,-0.073,0.575,0.573,0.428 +Bhutan,2013,5.569,9.097,0.819,62.240,0.810,0.349,0.802,0.664,0.217 +Bhutan,2014,4.939,9.143,0.880,62.420,0.834,0.264,0.650,0.775,0.324 +Bhutan,2015,5.082,9.198,0.848,62.600,0.830,0.273,0.634,0.723,0.312 +Bolivia,2006,5.374,8.671,0.834,60.900,0.770,-0.048,0.794,0.708,0.432 +Bolivia,2007,5.628,8.698,0.796,61.100,0.780,-0.004,0.817,0.746,0.388 +Bolivia,2008,5.298,8.740,0.785,61.300,0.726,-0.096,0.801,0.723,0.392 +Bolivia,2009,6.086,8.756,0.831,61.500,0.779,-0.040,0.763,0.742,0.372 +Bolivia,2010,5.781,8.780,0.807,61.700,0.703,-0.073,0.781,0.720,0.350 +Bolivia,2011,5.779,8.813,0.817,61.900,0.782,-0.043,0.825,0.689,0.361 +Bolivia,2012,6.019,8.847,0.781,62.100,0.862,-0.019,0.840,0.699,0.409 +Bolivia,2013,5.767,8.896,0.803,62.300,0.846,-0.071,0.812,0.721,0.410 +Bolivia,2014,5.865,8.933,0.821,62.500,0.881,0.014,0.832,0.769,0.398 +Bolivia,2015,5.834,8.965,0.829,62.700,0.884,-0.034,0.862,0.749,0.393 +Bolivia,2016,5.770,8.991,0.796,62.850,0.882,-0.051,0.853,0.736,0.376 +Bolivia,2017,5.651,9.017,0.779,63.000,0.884,-0.124,0.819,0.655,0.434 +Bolivia,2018,5.916,9.044,0.827,63.150,0.863,-0.097,0.786,0.705,0.387 +Bolivia,2019,5.674,9.051,0.784,63.300,0.881,-0.090,0.857,0.701,0.419 +Bolivia,2020,5.559,8.946,0.805,63.450,0.877,-0.056,0.868,0.729,0.382 +Bolivia,2021,5.569,8.994,0.798,63.600,0.862,-0.058,0.812,0.721,0.403 +Bolivia,2022,5.929,9.012,0.824,63.750,0.865,-0.083,0.840,0.738,0.426 +Bolivia,2023,5.860,9.025,0.786,63.900,0.832,-0.059,0.877,0.753,0.401 +Bosnia and Herzegovina,2007,4.900,9.191,0.766,67.000,0.342,0.006,0.926,0.570,0.296 +Bosnia and Herzegovina,2009,4.963,9.246,0.735,67.000,0.258,-0.027,0.959,0.507,0.390 +Bosnia and Herzegovina,2010,4.669,9.272,0.773,67.000,0.365,-0.131,0.933,0.465,0.409 +Bosnia and Herzegovina,2011,4.995,9.300,0.725,67.000,0.333,-0.038,0.925,0.551,0.326 +Bosnia and Herzegovina,2012,4.773,9.310,0.779,67.000,0.420,-0.016,0.953,0.469,0.338 +Bosnia and Herzegovina,2013,5.124,9.349,0.767,67.000,0.390,0.039,0.970,0.489,0.315 +Bosnia and Herzegovina,2014,5.249,9.373,0.788,67.000,0.412,0.229,0.976,0.491,0.262 +Bosnia and Herzegovina,2015,5.117,9.428,0.656,67.000,0.631,-0.058,0.960,0.486,0.286 +Bosnia and Herzegovina,2016,5.181,9.473,0.808,67.050,0.633,0.130,0.957,0.566,0.304 +Bosnia and Herzegovina,2017,5.090,9.517,0.775,67.100,0.564,0.087,0.923,0.527,0.271 +Bosnia and Herzegovina,2018,5.887,9.566,0.836,67.150,0.659,0.118,0.913,0.568,0.277 +Bosnia and Herzegovina,2019,6.016,9.606,0.873,67.200,0.722,0.074,0.963,0.545,0.238 +Bosnia and Herzegovina,2020,5.516,9.588,0.899,67.250,0.740,0.132,0.916,0.602,0.325 +Bosnia and Herzegovina,2021,5.749,9.674,0.860,67.300,0.759,0.274,0.921,0.604,0.305 +Bosnia and Herzegovina,2022,5.872,9.723,0.856,67.350,0.743,0.191,0.933,0.543,0.285 +Bosnia and Herzegovina,2023,6.009,9.759,0.879,67.400,0.847,0.241,0.948,0.579,0.249 +Botswana,2006,4.739,9.495,0.883,48.840,0.824,-0.201,0.723,0.643,0.226 +Botswana,2008,5.451,9.543,0.832,49.720,0.858,-0.167,0.806,0.677,0.218 +Botswana,2010,3.553,9.446,0.866,50.600,0.826,-0.141,0.814,0.617,0.172 +Botswana,2011,3.520,9.492,0.860,51.040,0.813,-0.248,0.816,0.647,0.160 +Botswana,2012,4.836,9.471,0.837,51.480,0.799,-0.197,0.814,0.695,0.171 +Botswana,2013,4.128,9.557,0.856,51.920,0.767,-0.148,0.749,0.671,0.244 +Botswana,2014,4.031,9.593,0.859,52.360,0.791,-0.099,0.743,0.626,0.245 +Botswana,2015,3.762,9.524,0.816,52.800,0.857,-0.108,0.860,0.676,0.261 +Botswana,2016,3.499,9.573,0.768,53.075,0.852,-0.246,0.729,0.657,0.252 +Botswana,2017,3.505,9.593,0.768,53.350,0.817,-0.242,0.731,0.612,0.276 +Botswana,2018,3.461,9.613,0.795,53.625,0.818,-0.248,0.807,0.688,0.267 +Botswana,2019,3.471,9.624,0.774,53.900,0.833,-0.233,0.792,0.665,0.273 +Botswana,2022,3.435,9.650,0.750,54.725,0.739,-0.218,0.831,0.623,0.287 +Botswana,2023,3.332,9.673,0.701,55.000,0.741,-0.264,0.814,0.657,0.247 +Brazil,2005,6.637,9.435,0.883,63.100,0.882,,0.745,0.770,0.302 +Brazil,2007,6.321,9.512,0.886,63.420,0.777,-0.022,0.728,0.775,0.299 +Brazil,2008,6.691,9.552,0.878,63.580,0.782,-0.083,0.688,0.718,0.265 +Brazil,2009,7.001,9.541,0.913,63.740,0.767,-0.061,0.723,0.744,0.274 +Brazil,2010,6.837,9.604,0.906,63.900,0.806,-0.059,0.656,0.726,0.250 +Brazil,2011,7.038,9.634,0.916,64.060,0.834,-0.078,0.662,0.698,0.268 +Brazil,2012,6.660,9.644,0.890,64.220,0.849,,0.623,0.685,0.350 +Brazil,2013,7.140,9.665,0.910,64.380,0.785,-0.100,0.707,0.725,0.276 +Brazil,2014,6.981,9.661,0.898,64.540,0.714,-0.121,0.710,0.718,0.274 +Brazil,2015,6.547,9.617,0.907,64.700,0.799,-0.021,0.771,0.687,0.325 +Brazil,2016,6.375,9.575,0.912,64.875,0.807,-0.106,0.781,0.711,0.302 +Brazil,2017,6.333,9.580,0.905,65.050,0.765,-0.181,0.794,0.669,0.308 +Brazil,2018,6.191,9.590,0.882,65.225,0.751,-0.123,0.763,0.677,0.350 +Brazil,2019,6.451,9.595,0.899,65.400,0.830,-0.068,0.762,0.701,0.337 +Brazil,2020,6.110,9.555,0.831,65.575,0.786,-0.061,0.729,0.653,0.389 +Brazil,2021,6.010,9.598,0.814,65.750,0.792,0.086,0.739,0.662,0.407 +Brazil,2022,6.257,9.622,0.866,65.925,0.830,-0.064,0.742,0.681,0.341 +Brazil,2023,6.553,9.635,0.856,66.100,0.870,-0.036,0.733,0.694,0.313 +Bulgaria,2007,3.844,9.746,0.832,64.780,0.566,-0.146,0.976,0.500,0.226 +Bulgaria,2010,3.912,9.807,0.843,65.200,0.545,-0.153,0.941,0.513,0.238 +Bulgaria,2011,3.875,9.834,0.860,65.340,0.664,-0.236,0.948,0.490,0.271 +Bulgaria,2012,4.222,9.848,0.838,65.480,0.641,-0.181,0.938,0.510,0.237 +Bulgaria,2013,3.993,9.848,0.829,65.620,0.603,-0.199,0.962,0.537,0.278 +Bulgaria,2014,4.438,9.863,0.886,65.760,0.576,-0.062,0.955,0.542,0.236 +Bulgaria,2015,4.865,9.903,0.908,65.900,0.637,-0.207,0.941,0.556,0.214 +Bulgaria,2016,4.838,9.940,0.926,66.000,0.700,-0.177,0.936,0.545,0.172 +Bulgaria,2017,5.097,9.974,0.942,66.100,0.689,-0.160,0.911,0.542,0.189 +Bulgaria,2018,5.099,10.008,0.924,66.200,0.724,-0.182,0.952,0.554,0.189 +Bulgaria,2019,5.108,10.055,0.948,66.300,0.822,-0.115,0.943,0.577,0.200 +Bulgaria,2020,5.598,10.020,0.916,66.400,0.818,-0.012,0.901,0.642,0.221 +Bulgaria,2021,5.422,10.102,0.884,66.500,0.841,-0.018,0.891,0.647,0.253 +Bulgaria,2022,5.378,10.197,0.953,66.600,0.741,-0.152,0.942,0.582,0.165 +Bulgaria,2023,5.590,10.273,0.935,66.700,0.754,-0.131,0.948,0.539,0.192 +Burkina Faso,2006,3.801,7.327,0.796,49.440,0.588,0.026,0.798,0.678,0.266 +Burkina Faso,2007,4.017,7.337,0.771,49.880,0.582,-0.062,0.833,0.609,0.281 +Burkina Faso,2008,3.846,7.364,0.727,50.320,0.612,-0.103,0.887,0.538,0.304 +Burkina Faso,2010,4.036,7.416,0.773,51.200,0.587,-0.038,0.767,0.565,0.217 +Burkina Faso,2011,4.785,7.450,0.710,51.640,0.725,-0.107,0.707,0.578,0.205 +Burkina Faso,2012,3.955,7.482,0.744,52.080,0.622,-0.072,0.726,0.487,0.300 +Burkina Faso,2013,3.326,7.509,0.745,52.520,0.741,-0.018,0.765,0.592,0.287 +Burkina Faso,2014,3.481,7.521,0.742,52.960,0.710,-0.006,0.801,0.604,0.256 +Burkina Faso,2015,4.419,7.530,0.705,53.400,0.659,0.001,0.693,0.555,0.359 +Burkina Faso,2016,4.206,7.558,0.764,53.775,0.645,-0.003,0.721,0.590,0.337 +Burkina Faso,2017,4.647,7.590,0.785,54.150,0.614,-0.066,0.727,0.580,0.354 +Burkina Faso,2018,4.927,7.626,0.665,54.525,0.721,-0.016,0.757,0.656,0.343 +Burkina Faso,2019,4.741,7.654,0.683,54.900,0.678,-0.007,0.729,0.656,0.365 +Burkina Faso,2020,4.640,7.647,0.668,55.275,0.750,0.120,0.809,0.605,0.388 +Burkina Faso,2021,4.636,7.687,0.658,55.650,0.644,0.064,0.736,0.620,0.363 +Burkina Faso,2023,4.462,7.693,0.580,56.400,0.715,0.105,0.650,0.639,0.346 +Burundi,2008,3.563,6.700,0.291,49.660,0.260,-0.022,0.860,0.415,0.253 +Burundi,2009,3.792,6.687,0.326,50.280,0.427,-0.021,0.718,0.607,0.164 +Burundi,2011,3.706,6.694,0.422,51.520,0.490,-0.063,0.677,0.572,0.190 +Burundi,2014,2.905,6.723,0.565,53.380,0.431,-0.059,0.808,0.622,0.251 +Burundi,2018,3.775,6.607,0.485,55.200,0.646,-0.027,0.599,0.636,0.363 +Cambodia,2006,3.569,7.746,0.793,57.640,,0.250,0.829,,0.341 +Cambodia,2007,4.156,7.826,0.675,57.980,0.819,0.111,0.879,,0.320 +Cambodia,2008,4.462,7.874,0.619,58.320,0.914,0.041,0.888,0.600,0.335 +Cambodia,2009,4.111,7.860,0.818,58.660,0.937,0.148,0.965,0.691,0.188 +Cambodia,2010,4.141,7.904,0.697,59.000,0.940,0.345,0.896,0.662,0.422 +Cambodia,2011,4.161,7.957,0.716,59.340,0.927,0.413,0.775,0.637,0.308 +Cambodia,2012,3.899,8.013,0.606,59.680,0.956,0.242,0.890,0.713,0.352 +Cambodia,2013,3.674,8.070,0.651,60.020,0.941,0.159,0.812,0.670,0.440 +Cambodia,2014,3.883,8.125,0.693,60.360,0.938,0.234,0.843,0.682,0.482 +Cambodia,2015,4.162,8.179,0.729,60.700,0.956,0.204,0.825,0.731,0.399 +Cambodia,2016,4.461,8.233,0.746,60.900,0.958,0.070,0.840,0.713,0.398 +Cambodia,2017,4.586,8.287,0.765,61.100,0.964,0.082,0.821,0.669,0.408 +Cambodia,2018,5.122,8.347,0.795,61.300,0.958,0.029,,0.723,0.414 +Cambodia,2019,4.998,8.404,0.759,61.500,0.957,0.007,0.828,0.704,0.390 +Cambodia,2020,4.377,8.361,0.724,61.700,0.963,0.047,0.863,0.771,0.390 +Cambodia,2021,4.555,8.379,0.713,61.900,0.965,0.012,0.844,0.759,0.391 +Cambodia,2022,4.250,8.419,0.784,62.100,0.946,0.151,0.860,0.756,0.388 +Cambodia,2023,4.221,8.462,0.738,62.300,0.961,0.070,0.799,0.683,0.394 +Cameroon,2006,3.851,8.090,0.690,47.840,0.653,-0.020,0.907,0.588,0.271 +Cameroon,2007,4.350,8.104,0.717,48.280,0.644,-0.042,0.910,0.630,0.249 +Cameroon,2008,4.292,8.104,0.697,48.720,0.580,-0.079,0.945,0.613,0.312 +Cameroon,2009,4.741,8.101,0.729,49.160,0.698,-0.027,0.925,0.592,0.250 +Cameroon,2010,4.554,8.101,0.759,49.600,0.792,-0.008,0.875,0.594,0.274 +Cameroon,2011,4.434,8.106,0.738,50.040,0.817,-0.038,0.870,0.608,0.272 +Cameroon,2012,4.245,8.123,0.743,50.480,0.766,-0.041,0.898,0.617,0.284 +Cameroon,2013,4.271,8.144,0.760,50.920,0.794,-0.039,0.867,0.640,0.268 +Cameroon,2014,4.240,8.169,0.778,51.360,0.795,-0.080,0.856,0.604,0.216 +Cameroon,2015,5.038,8.193,0.646,51.800,0.791,0.041,0.868,0.624,0.346 +Cameroon,2016,4.816,8.207,0.659,52.475,0.713,-0.012,0.879,0.635,0.367 +Cameroon,2017,5.074,8.214,0.695,53.150,0.767,-0.036,0.844,0.632,0.377 +Cameroon,2018,5.251,8.225,0.677,53.825,0.816,0.028,0.884,0.630,0.356 +Cameroon,2019,4.937,8.231,0.711,54.500,0.712,-0.015,0.817,0.606,0.326 +Cameroon,2020,5.241,8.207,0.720,55.175,0.675,0.042,0.837,0.626,0.386 +Cameroon,2021,4.963,8.216,0.695,55.850,0.715,-0.029,0.849,0.612,0.347 +Cameroon,2022,4.712,8.225,0.629,56.525,0.675,0.022,0.849,0.586,0.362 +Cameroon,2023,4.946,8.238,0.716,57.200,0.739,-0.028,0.855,0.588,0.356 +Canada,2005,7.418,10.707,0.962,70.500,0.957,0.246,0.503,0.783,0.233 +Canada,2007,7.482,10.734,,70.620,0.930,0.244,0.406,0.812,0.257 +Canada,2008,7.486,10.733,0.939,70.680,0.926,0.256,0.370,0.802,0.202 +Canada,2009,7.488,10.692,0.943,70.740,0.915,0.241,0.413,0.793,0.248 +Canada,2010,7.650,10.711,0.954,70.800,0.934,0.225,0.413,0.791,0.233 +Canada,2011,7.426,10.733,0.922,70.860,0.951,0.247,0.433,0.803,0.248 +Canada,2012,7.415,10.739,0.948,70.920,0.918,0.284,0.466,0.776,0.229 +Canada,2013,7.594,10.752,0.936,70.980,0.916,0.310,0.406,0.801,0.263 +Canada,2014,7.304,10.770,0.918,71.040,0.939,0.264,0.442,0.791,0.259 +Canada,2015,7.413,10.769,0.939,71.100,0.931,0.247,0.427,0.792,0.286 +Canada,2016,7.245,10.768,0.924,71.150,0.912,0.205,0.385,0.768,0.237 +Canada,2017,7.415,10.786,0.934,71.200,0.945,0.157,0.362,0.799,0.218 +Canada,2018,7.175,10.799,0.923,71.250,0.946,0.100,0.372,0.773,0.259 +Canada,2019,7.109,10.803,0.925,71.300,0.912,0.105,0.436,0.781,0.285 +Canada,2020,7.025,10.740,0.931,71.350,0.887,0.043,0.434,0.738,0.307 +Canada,2021,6.939,10.783,0.926,71.400,0.898,0.189,0.384,0.763,0.276 +Canada,2022,6.918,10.799,0.929,71.450,0.838,0.220,0.442,0.719,0.287 +Canada,2023,6.841,10.794,0.902,71.500,0.847,0.196,0.468,0.726,0.304 +Central African Republic,2007,4.160,6.946,0.532,41.480,0.663,0.079,0.782,0.567,0.330 +Central African Republic,2010,3.568,7.031,0.483,42.500,0.690,-0.037,0.845,0.478,0.257 +Central African Republic,2011,3.678,7.057,0.387,42.840,0.780,-0.016,0.834,0.502,0.277 +Central African Republic,2016,2.693,6.707,0.290,44.750,0.624,0.033,0.859,0.551,0.494 +Central African Republic,2017,3.476,6.733,0.320,45.300,0.645,0.074,0.890,0.602,0.599 +Chad,2006,3.435,7.369,0.724,47.080,0.306,0.022,0.961,0.571,0.263 +Chad,2007,4.141,7.368,0.479,47.460,0.295,-0.017,0.874,0.598,0.245 +Chad,2008,4.632,7.363,0.571,47.840,0.527,0.057,0.944,0.569,0.225 +Chad,2009,3.639,7.369,0.646,48.220,0.401,0.016,0.931,0.601,0.221 +Chad,2010,3.743,7.462,0.734,48.600,0.505,0.020,0.858,0.560,0.287 +Chad,2011,4.393,7.428,0.819,48.980,0.540,0.025,0.876,0.579,0.289 +Chad,2012,4.033,7.478,0.673,49.360,0.563,-0.039,0.884,0.498,0.316 +Chad,2013,3.508,7.498,0.714,49.740,0.488,-0.051,0.882,0.437,0.314 +Chad,2014,3.460,7.529,0.733,50.120,0.567,-0.075,0.881,0.524,0.329 +Chad,2015,4.323,7.525,0.751,50.500,0.474,-0.034,0.889,0.593,0.358 +Chad,2016,4.029,7.429,0.616,50.875,0.525,0.047,0.820,0.564,0.468 +Chad,2017,4.559,7.365,0.661,51.250,0.615,0.003,0.792,0.584,0.538 +Chad,2018,4.486,7.355,0.577,51.625,0.650,0.020,0.763,0.532,0.544 +Chad,2019,4.251,7.354,0.640,52.000,0.537,0.051,0.832,0.556,0.460 +Chad,2022,4.397,7.253,0.720,53.125,0.679,0.218,0.805,0.588,0.499 +Chad,2023,4.544,7.254,0.609,53.500,0.586,0.138,0.755,0.541,0.467 +Chile,2006,6.063,9.870,0.836,67.780,0.744,0.161,0.634,0.752,0.348 +Chile,2007,5.698,9.910,0.815,67.960,0.662,0.236,0.723,0.708,0.342 +Chile,2008,5.789,9.938,0.804,68.140,0.640,0.076,0.741,0.706,0.330 +Chile,2009,6.494,9.916,0.832,68.320,0.747,0.141,0.734,0.756,0.300 +Chile,2010,6.636,9.963,0.857,68.500,0.786,0.100,0.702,0.760,0.300 +Chile,2011,6.526,10.013,0.819,68.680,0.701,0.104,0.753,0.758,0.317 +Chile,2012,6.599,10.063,0.855,68.860,0.734,0.186,0.782,0.736,0.288 +Chile,2013,6.740,10.086,0.862,69.040,0.737,0.077,0.741,0.791,0.285 +Chile,2014,6.844,10.094,0.862,69.220,0.733,0.209,0.758,0.800,0.276 +Chile,2015,6.533,10.105,0.827,69.400,0.769,0.032,0.812,0.752,0.333 +Chile,2016,6.579,10.110,0.841,69.550,0.652,0.094,0.858,0.792,0.283 +Chile,2017,6.320,10.108,0.880,69.700,0.790,-0.028,0.836,0.765,0.291 +Chile,2018,6.436,10.130,0.890,69.850,0.789,-0.068,0.816,0.755,0.276 +Chile,2019,5.942,10.119,0.869,70.000,0.659,-0.110,0.860,0.741,0.337 +Chile,2020,6.151,10.042,0.888,70.150,0.781,0.026,0.812,0.753,0.336 +Chile,2021,6.436,10.143,0.891,70.300,0.803,-0.052,0.859,0.735,0.221 +Chile,2022,6.415,10.161,0.887,70.450,0.793,-0.014,0.796,0.775,0.253 +Chile,2023,6.230,10.155,0.874,70.600,0.815,-0.027,0.836,0.779,0.263 +China,2006,4.560,8.696,0.747,65.660,,,,0.658,0.170 +China,2007,4.863,8.824,0.811,65.920,,-0.182,,0.664,0.159 +China,2008,4.846,8.911,0.748,66.180,0.853,-0.098,,0.705,0.147 +China,2009,4.454,8.996,0.798,66.440,0.771,-0.166,,0.670,0.162 +China,2010,4.653,9.092,0.768,66.700,0.805,-0.139,,0.658,0.158 +China,2011,5.037,9.178,0.787,66.960,0.824,-0.192,,0.710,0.134 +China,2012,5.095,9.247,0.788,67.220,0.808,-0.190,,0.689,0.159 +China,2013,5.241,9.315,0.778,67.480,0.805,-0.163,,0.717,0.142 +China,2014,5.196,9.380,0.820,67.740,,-0.222,,0.710,0.112 +China,2015,5.304,9.442,0.794,68.000,,-0.250,,0.667,0.171 +China,2016,5.325,9.503,0.742,68.125,,-0.233,,0.683,0.146 +China,2017,5.099,9.564,0.772,68.250,0.878,-0.180,,0.682,0.214 +China,2018,5.131,9.625,0.788,68.375,0.895,-0.164,,0.722,0.190 +China,2019,5.144,9.679,0.822,68.500,0.927,-0.178,,0.760,0.147 +China,2020,5.771,9.699,0.808,68.625,0.891,-0.109,,0.663,0.245 +China,2021,5.863,9.779,0.856,68.750,0.875,0.020,,0.698,0.240 +China,2023,6.145,9.861,0.797,69.000,0.793,-0.032,,0.708,0.210 +Colombia,2006,6.025,9.277,0.910,66.320,0.805,-0.021,0.808,0.776,0.326 +Colombia,2007,6.138,9.330,0.894,66.540,0.786,-0.046,0.860,0.774,0.287 +Colombia,2008,6.168,9.351,0.880,66.760,0.795,-0.047,0.763,0.768,0.307 +Colombia,2009,6.272,9.351,0.886,66.980,0.757,-0.060,0.837,0.786,0.273 +Colombia,2010,6.408,9.383,0.893,67.200,0.816,-0.055,0.815,0.792,0.265 +Colombia,2011,6.464,9.440,0.904,67.420,0.811,-0.079,0.847,0.785,0.286 +Colombia,2012,6.375,9.468,0.914,67.640,0.828,-0.015,0.868,0.829,0.294 +Colombia,2013,6.607,9.508,0.901,67.860,0.841,-0.076,0.898,0.815,0.278 +Colombia,2014,6.449,9.542,0.907,68.080,0.801,-0.096,0.887,0.825,0.278 +Colombia,2015,6.388,9.562,0.890,68.300,0.791,-0.106,0.843,0.803,0.292 +Colombia,2016,6.234,9.572,0.882,68.475,0.835,-0.106,0.898,0.770,0.294 +Colombia,2017,6.157,9.570,0.909,68.650,0.838,-0.163,0.875,0.790,0.299 +Colombia,2018,5.984,9.577,0.871,68.825,0.851,-0.154,0.855,0.775,0.301 +Colombia,2019,6.350,9.590,0.873,69.000,0.822,-0.177,0.854,0.791,0.322 +Colombia,2020,5.709,9.500,0.797,69.175,0.840,-0.091,0.808,0.759,0.340 +Colombia,2021,5.290,9.593,0.793,69.350,0.775,-0.065,0.831,0.752,0.348 +Colombia,2022,5.892,9.658,0.877,69.525,0.799,-0.164,0.863,0.762,0.306 +Colombia,2023,5.904,9.667,0.833,69.700,0.823,-0.142,0.870,0.754,0.285 +Comoros,2009,3.476,7.999,0.629,56.760,0.508,-0.082,0.838,0.626,0.167 +Comoros,2010,3.812,8.015,0.721,57.000,0.529,-0.003,0.741,0.664,0.178 +Comoros,2011,3.838,8.034,0.722,57.240,0.500,-0.084,0.732,0.622,0.173 +Comoros,2012,3.956,8.044,0.719,57.480,0.534,-0.130,0.651,0.616,0.212 +Comoros,2018,3.973,8.100,0.621,58.725,0.560,0.075,0.794,0.688,0.337 +Comoros,2019,4.609,8.099,0.632,58.900,0.538,0.067,0.762,0.665,0.336 +Comoros,2022,3.545,8.085,0.472,59.425,0.481,-0.018,0.732,0.603,0.352 +Comoros,2023,3.588,8.095,0.483,59.600,0.452,0.004,0.704,0.535,0.405 +Congo (Brazzaville),2008,3.820,8.390,0.555,52.240,0.526,-0.125,,0.603,0.298 +Congo (Brazzaville),2011,4.510,8.502,0.637,53.380,0.745,-0.137,0.833,0.601,0.288 +Congo (Brazzaville),2012,3.919,8.569,0.622,53.760,0.773,-0.144,0.800,0.547,0.323 +Congo (Brazzaville),2013,3.955,8.538,0.680,54.140,0.726,-0.107,0.752,0.599,0.291 +Congo (Brazzaville),2014,4.056,8.579,0.686,54.520,0.662,-0.140,0.808,0.558,0.400 +Congo (Brazzaville),2015,4.691,8.519,0.642,54.900,0.850,-0.129,0.841,0.555,0.261 +Congo (Brazzaville),2016,4.119,8.381,0.615,55.225,0.786,-0.091,0.790,0.586,0.304 +Congo (Brazzaville),2017,4.884,8.312,0.655,55.550,0.778,-0.148,0.763,0.574,0.382 +Congo (Brazzaville),2018,5.490,8.239,0.621,55.875,0.699,-0.105,0.738,0.571,0.448 +Congo (Brazzaville),2019,5.213,8.215,0.625,56.200,0.686,-0.059,0.741,0.594,0.405 +Congo (Brazzaville),2020,5.079,8.127,0.597,56.525,0.761,-0.024,0.728,0.572,0.435 +Congo (Brazzaville),2021,4.921,8.082,0.568,56.850,0.738,-0.023,0.733,0.568,0.420 +Congo (Brazzaville),2022,5.805,8.074,0.646,57.175,0.698,0.025,0.760,0.583,0.477 +Congo (Brazzaville),2023,4.954,8.086,0.561,57.500,0.702,-0.051,0.745,0.585,0.409 +Congo (Kinshasa),2009,3.984,6.699,0.733,49.400,0.556,-0.025,0.824,0.487,0.283 +Congo (Kinshasa),2011,4.517,6.769,0.744,50.400,0.631,-0.028,0.856,0.565,0.208 +Congo (Kinshasa),2012,4.639,6.803,0.770,50.900,0.557,-0.037,0.807,0.626,0.230 +Congo (Kinshasa),2013,4.497,6.851,0.830,51.400,0.480,0.009,0.913,0.556,0.187 +Congo (Kinshasa),2014,4.414,6.907,0.822,51.900,0.556,0.006,0.814,0.519,0.305 +Congo (Kinshasa),2015,3.903,6.940,0.767,52.400,0.574,-0.050,0.866,0.538,0.301 +Congo (Kinshasa),2016,4.522,6.929,0.864,52.825,0.637,-0.027,0.875,0.610,0.222 +Congo (Kinshasa),2017,4.311,6.931,0.670,53.250,0.704,0.066,0.809,0.541,0.404 +Congo (Kinshasa),2022,3.207,7.032,0.654,55.375,0.664,0.080,0.836,0.563,0.461 +Congo (Kinshasa),2023,3.383,7.076,0.572,55.800,0.687,0.152,0.837,0.546,0.497 +Costa Rica,2006,7.082,9.607,0.937,68.560,0.882,0.052,0.798,0.815,0.236 +Costa Rica,2007,7.432,9.672,0.918,68.720,0.923,0.089,0.820,0.826,0.240 +Costa Rica,2008,6.851,9.704,0.916,68.880,0.912,0.087,0.816,0.838,0.233 +Costa Rica,2009,7.615,9.682,0.900,69.040,0.886,0.057,0.787,0.840,0.217 +Costa Rica,2010,7.271,9.721,0.915,69.200,0.881,0.038,0.763,0.827,0.221 +Costa Rica,2011,7.229,9.752,0.892,69.360,0.926,-0.042,0.837,0.794,0.269 +Costa Rica,2012,7.272,9.788,0.902,69.520,0.929,0.037,0.794,0.837,0.263 +Costa Rica,2013,7.158,9.801,0.902,69.680,0.898,0.009,0.813,0.809,0.278 +Costa Rica,2014,7.247,9.824,0.914,69.840,0.927,0.000,0.788,0.797,0.290 +Costa Rica,2015,6.854,9.850,0.878,70.000,0.907,-0.068,0.761,0.811,0.286 +Costa Rica,2016,7.136,9.881,0.901,70.000,0.873,-0.042,0.781,0.830,0.281 +Costa Rica,2017,7.225,9.912,0.922,70.000,0.936,-0.086,0.742,0.791,0.275 +Costa Rica,2018,7.141,9.928,0.876,70.000,0.942,-0.117,0.781,0.802,0.326 +Costa Rica,2019,6.998,9.944,0.906,70.000,0.927,-0.156,0.836,0.791,0.303 +Costa Rica,2020,6.338,9.892,0.834,70.000,0.889,-0.139,0.772,0.759,0.350 +Costa Rica,2021,6.408,9.961,0.876,70.000,0.887,-0.029,0.782,0.774,0.318 +Costa Rica,2022,7.077,9.998,0.902,70.000,0.910,-0.049,0.751,0.793,0.272 +Costa Rica,2023,7.384,10.021,0.875,70.000,0.933,-0.067,0.767,0.806,0.282 +Croatia,2007,5.821,10.174,0.910,66.940,0.662,-0.099,0.934,0.550,0.337 +Croatia,2009,5.433,10.120,0.861,67.180,0.549,-0.278,0.958,0.557,0.272 +Croatia,2010,5.596,10.110,0.796,67.300,0.564,-0.244,0.973,0.554,0.259 +Croatia,2011,5.385,10.113,0.790,67.420,0.517,-0.205,0.977,0.552,0.273 +Croatia,2012,6.028,10.092,0.776,67.540,0.542,-0.250,0.924,0.572,0.271 +Croatia,2013,5.885,10.091,0.751,67.660,0.627,-0.211,0.936,0.554,0.285 +Croatia,2014,5.381,10.091,0.646,67.780,0.519,0.125,0.918,0.545,0.286 +Croatia,2015,5.205,10.124,0.768,67.900,0.694,-0.104,0.849,0.570,0.294 +Croatia,2016,5.417,10.166,0.798,68.075,0.672,-0.072,0.884,0.569,0.337 +Croatia,2017,5.343,10.211,0.770,68.250,0.716,-0.112,0.892,0.618,0.316 +Croatia,2018,5.536,10.248,0.910,68.425,0.691,-0.158,0.925,0.512,0.290 +Croatia,2019,5.626,10.287,0.936,68.600,0.739,-0.145,0.932,0.504,0.269 +Croatia,2020,6.508,10.202,0.923,68.775,0.837,-0.071,0.961,0.681,0.286 +Croatia,2021,6.287,10.367,0.918,68.950,0.842,0.001,0.934,0.640,0.274 +Croatia,2022,5.579,10.435,0.910,69.125,0.593,-0.213,0.875,0.573,0.267 +Croatia,2023,5.958,10.462,0.909,69.300,0.573,-0.205,0.810,0.610,0.230 +Cuba,2006,5.418,,0.970,68.000,0.281,,,0.596,0.277 +Cyprus,2006,6.238,10.567,0.878,70.160,0.836,0.012,0.712,0.704,0.253 +Cyprus,2009,6.833,10.559,0.812,70.640,0.775,0.048,0.801,0.668,0.329 +Cyprus,2010,6.387,10.556,0.822,70.800,0.755,0.066,0.833,0.699,0.296 +Cyprus,2011,6.690,10.534,0.844,70.960,0.745,0.173,0.841,0.682,0.272 +Cyprus,2012,6.181,10.484,0.767,71.120,0.725,0.092,0.871,0.687,0.369 +Cyprus,2013,5.439,10.418,0.744,71.280,0.656,0.096,0.867,0.657,0.420 +Cyprus,2014,5.627,10.411,0.770,71.440,0.715,0.054,0.868,0.661,0.397 +Cyprus,2015,5.439,10.451,0.770,71.600,0.628,0.107,0.893,0.660,0.383 +Cyprus,2016,5.795,10.510,0.786,71.800,0.756,-0.036,0.898,0.631,0.336 +Cyprus,2017,6.062,10.556,0.819,72.000,0.812,0.036,0.851,0.670,0.301 +Cyprus,2018,6.276,10.599,0.826,72.200,0.794,-0.031,0.848,0.663,0.298 +Cyprus,2019,6.137,10.639,0.776,72.400,0.740,-0.018,0.865,0.663,0.290 +Cyprus,2020,6.260,10.583,0.806,72.600,0.763,-0.086,0.816,0.671,0.284 +Cyprus,2021,6.269,10.638,0.855,72.800,0.718,-0.038,0.876,0.641,0.275 +Cyprus,2022,5.865,10.683,0.820,73.000,0.698,0.008,0.887,0.659,0.297 +Cyprus,2023,6.071,,0.803,73.200,0.730,,0.840,0.682,0.297 +Czechia,2005,6.439,10.322,0.919,67.100,0.865,,0.901,0.639,0.258 +Czechia,2007,6.500,10.433,0.900,67.340,0.799,-0.069,0.928,0.660,0.277 +Czechia,2010,6.250,10.419,0.934,67.700,0.779,-0.048,0.926,0.648,0.244 +Czechia,2011,6.331,10.434,0.914,67.820,0.787,-0.112,0.950,0.623,0.253 +Czechia,2012,6.334,10.425,0.912,67.940,0.740,-0.160,0.957,0.635,0.257 +Czechia,2013,6.698,10.424,0.888,68.060,0.726,-0.162,0.916,0.656,0.253 +Czechia,2014,6.484,10.445,0.878,68.180,0.800,-0.174,0.897,0.638,0.235 +Czechia,2015,6.608,10.496,0.911,68.300,0.808,-0.152,0.886,0.689,0.206 +Czechia,2016,6.736,10.519,0.931,68.425,0.850,-0.204,0.900,0.710,0.201 +Czechia,2017,6.790,10.567,0.901,68.550,0.832,-0.183,0.867,0.672,0.227 +Czechia,2018,7.034,10.595,0.929,68.675,0.790,-0.299,0.851,0.674,0.178 +Czechia,2020,6.897,10.562,0.964,68.925,0.906,-0.135,0.884,0.748,0.290 +Czechia,2021,6.942,10.615,0.950,69.050,0.891,0.157,0.863,0.716,0.240 +Czechia,2022,6.695,10.637,0.944,69.175,0.908,0.093,0.831,0.743,0.246 +Czechia,2023,6.827,10.639,0.927,69.300,0.906,0.025,0.832,0.750,0.254 +Denmark,2005,8.019,10.849,0.972,68.300,0.971,,0.237,0.777,0.154 +Denmark,2007,7.834,10.889,0.954,68.740,0.932,0.234,0.206,0.778,0.194 +Denmark,2008,7.971,10.878,0.954,68.960,0.970,0.266,0.248,0.759,0.163 +Denmark,2009,7.683,10.822,0.939,69.180,0.949,0.258,0.206,0.782,0.234 +Denmark,2010,7.771,10.836,0.975,69.400,0.944,0.237,0.175,0.796,0.155 +Denmark,2011,7.788,10.845,0.962,69.620,0.935,0.292,0.220,0.778,0.175 +Denmark,2012,7.520,10.844,0.951,69.840,0.933,0.133,0.187,0.783,0.209 +Denmark,2013,7.589,10.849,0.965,70.060,0.920,0.209,0.170,0.826,0.195 +Denmark,2014,7.508,10.860,0.956,70.280,0.942,0.112,0.237,0.780,0.233 +Denmark,2015,7.514,10.876,0.960,70.500,0.941,0.216,0.191,0.801,0.218 +Denmark,2016,7.558,10.900,0.954,70.625,0.948,0.132,0.210,0.786,0.208 +Denmark,2017,7.594,10.922,0.952,70.750,0.955,0.149,0.181,0.779,0.206 +Denmark,2018,7.649,10.936,0.958,70.875,0.935,0.012,0.151,0.773,0.206 +Denmark,2019,7.693,10.948,0.958,71.000,0.963,0.015,0.174,0.797,0.181 +Denmark,2020,7.515,10.924,0.947,71.125,0.938,0.045,0.214,0.753,0.227 +Denmark,2021,7.699,10.968,0.945,71.250,0.933,0.130,0.173,0.792,0.206 +Denmark,2022,7.545,10.997,0.970,71.375,0.930,0.222,0.203,0.787,0.205 +Denmark,2023,7.504,10.996,0.916,71.500,0.923,0.089,0.184,0.757,0.229 +Djibouti,2008,5.009,8.115,0.690,53.640,0.773,0.123,0.576,0.740,0.120 +Djibouti,2009,4.906,8.014,0.901,54.120,0.649,-0.007,0.634,0.630,0.232 +Djibouti,2010,5.006,7.934,,54.600,0.764,-0.072,0.597,, +Djibouti,2011,4.369,8.150,0.633,55.080,0.746,-0.082,0.519,0.543,0.181 +Dominican Republic,2006,5.088,9.306,0.919,65.360,0.858,0.033,0.755,0.733,0.274 +Dominican Republic,2007,5.081,9.365,0.848,65.120,0.886,-0.013,0.772,0.723,0.260 +Dominican Republic,2008,4.842,9.384,0.850,64.880,0.848,-0.050,0.728,0.654,0.329 +Dominican Republic,2009,5.432,9.381,0.878,64.640,0.863,-0.058,0.806,0.709,0.280 +Dominican Republic,2010,4.735,9.448,0.860,64.400,0.824,-0.080,0.780,0.707,0.282 +Dominican Republic,2011,5.397,9.465,0.872,64.160,0.848,0.009,0.788,0.738,0.300 +Dominican Republic,2012,4.753,9.479,0.879,63.920,0.840,-0.067,0.727,0.725,0.297 +Dominican Republic,2013,5.016,9.515,0.878,63.680,0.889,0.016,0.752,0.766,0.295 +Dominican Republic,2014,5.387,9.570,0.891,63.440,0.905,-0.025,0.760,0.772,0.300 +Dominican Republic,2015,5.062,9.625,0.893,63.200,0.856,-0.070,0.755,0.695,0.295 +Dominican Republic,2016,5.239,9.678,0.895,63.400,0.873,-0.085,0.737,0.725,0.278 +Dominican Republic,2017,5.605,9.713,0.894,63.600,0.855,-0.126,0.760,0.710,0.275 +Dominican Republic,2018,5.433,9.769,0.862,63.800,0.867,-0.155,0.762,0.719,0.291 +Dominican Republic,2019,6.004,9.808,0.884,64.000,0.877,-0.127,0.746,0.747,0.264 +Dominican Republic,2020,5.168,9.727,0.806,64.200,0.835,-0.128,0.636,0.724,0.314 +Dominican Republic,2021,6.031,9.832,0.857,64.400,0.859,-0.088,0.677,0.734,0.275 +Dominican Republic,2022,5.518,9.870,0.820,64.600,0.853,-0.086,0.656,0.723,0.306 +Dominican Republic,2023,5.921,9.900,0.860,64.800,0.867,-0.107,0.667,0.730,0.256 +Ecuador,2006,5.024,9.189,0.910,64.440,0.671,-0.097,0.901,0.785,0.357 +Ecuador,2007,4.996,9.194,0.839,64.780,0.670,-0.069,0.830,0.803,0.286 +Ecuador,2008,5.297,9.238,0.829,65.120,0.640,-0.100,0.801,0.811,0.283 +Ecuador,2009,6.022,9.227,0.779,65.460,0.737,-0.114,0.774,0.796,0.256 +Ecuador,2010,5.838,9.245,0.839,65.800,0.723,-0.069,0.806,0.771,0.220 +Ecuador,2011,5.795,9.305,0.818,66.140,0.788,-0.161,0.702,0.806,0.271 +Ecuador,2012,5.961,9.343,0.785,66.480,0.825,-0.089,0.730,0.767,0.333 +Ecuador,2013,6.019,9.376,0.801,66.820,0.787,-0.196,0.646,0.824,0.267 +Ecuador,2014,5.946,9.399,0.831,67.160,0.719,-0.173,0.661,0.841,0.306 +Ecuador,2015,5.964,9.385,0.856,67.500,0.801,-0.120,0.666,0.816,0.323 +Ecuador,2016,6.115,9.358,0.842,67.750,0.846,-0.021,0.774,0.807,0.365 +Ecuador,2017,5.840,9.366,0.849,68.000,0.879,-0.173,0.734,0.793,0.314 +Ecuador,2018,6.128,9.359,0.851,68.250,0.869,-0.105,0.831,0.817,0.328 +Ecuador,2019,5.809,9.341,0.808,68.500,0.830,-0.121,0.839,0.750,0.374 +Ecuador,2020,5.354,9.245,0.804,68.750,0.829,-0.163,0.855,0.755,0.416 +Ecuador,2021,5.435,9.275,0.786,69.000,0.821,-0.086,0.775,0.742,0.403 +Ecuador,2022,5.887,9.293,0.825,69.250,0.759,-0.083,0.866,0.777,0.356 +Ecuador,2023,5.852,9.307,0.782,69.500,0.731,-0.106,0.840,0.763,0.359 +Egypt,2005,5.168,9.042,0.848,61.400,0.817,,,0.689,0.346 +Egypt,2007,5.541,9.138,0.686,61.520,0.609,-0.126,,0.600,0.355 +Egypt,2008,4.632,9.187,0.738,61.580,,-0.093,0.914,0.627,0.301 +Egypt,2009,5.066,9.213,0.744,61.640,0.611,-0.105,0.801,0.549,0.339 +Egypt,2010,4.669,9.243,0.769,61.700,0.486,-0.081,0.826,0.491,0.276 +Egypt,2011,4.174,9.239,0.753,61.760,0.590,-0.157,0.859,0.456,0.353 +Egypt,2012,4.204,9.238,0.737,61.820,0.452,-0.143,0.880,0.458,0.398 +Egypt,2013,3.559,9.236,0.675,61.880,0.474,-0.147,0.913,0.487,0.483 +Egypt,2014,4.885,9.242,0.619,61.940,0.578,-0.132,0.749,0.477,0.327 +Egypt,2015,4.763,9.262,0.730,62.000,0.659,-0.094,0.684,0.554,0.344 +Egypt,2016,4.557,9.284,0.809,62.250,0.656,-0.147,0.818,0.538,0.370 +Egypt,2017,3.929,9.305,0.638,62.500,0.593,-0.158,,0.458,0.414 +Egypt,2018,4.005,9.338,0.759,62.750,0.682,-0.221,,0.407,0.285 +Egypt,2019,4.328,9.374,0.772,63.000,0.774,-0.204,,0.420,0.313 +Egypt,2020,4.472,9.392,0.673,63.250,0.770,-0.119,,0.543,0.442 +Egypt,2021,4.026,9.408,0.717,63.500,0.704,-0.233,0.580,0.387,0.325 +Egypt,2022,4.024,9.456,0.769,63.750,0.733,-0.214,,0.486,0.307 +Egypt,2023,3.881,9.480,0.730,64.000,0.625,-0.210,,0.436,0.352 +El Salvador,2006,5.701,8.885,0.878,65.120,0.683,-0.062,0.807,0.813,0.233 +El Salvador,2007,5.296,8.902,0.717,64.940,0.639,-0.021,0.785,0.833,0.220 +El Salvador,2008,5.191,8.919,0.747,64.760,0.636,-0.084,0.735,0.827,0.232 +El Salvador,2009,6.839,8.894,0.734,64.580,0.671,-0.110,0.648,0.841,0.243 +El Salvador,2010,6.740,8.911,0.757,64.400,0.669,-0.070,0.694,0.823,0.302 +El Salvador,2011,4.741,8.945,0.731,64.220,0.747,-0.133,0.707,0.830,0.336 +El Salvador,2012,5.934,8.968,0.806,64.040,0.683,-0.161,0.786,0.784,0.365 +El Salvador,2013,6.325,8.987,0.827,63.860,0.716,-0.156,0.772,0.801,0.317 +El Salvador,2014,5.857,9.000,0.798,63.680,0.778,-0.201,0.781,0.801,0.330 +El Salvador,2015,6.018,9.020,0.791,63.500,0.733,-0.163,0.805,0.816,0.333 +El Salvador,2016,6.140,9.042,0.794,63.850,0.800,-0.192,0.797,0.742,0.346 +El Salvador,2017,6.339,9.062,0.829,64.200,0.758,-0.179,0.778,0.800,0.268 +El Salvador,2018,6.241,9.084,0.820,64.550,0.863,-0.102,0.801,0.817,0.270 +El Salvador,2019,6.455,9.108,0.764,64.900,0.877,-0.116,0.682,0.826,0.271 +El Salvador,2020,5.462,9.023,0.696,65.250,0.924,-0.132,0.583,0.811,0.329 +El Salvador,2021,6.431,9.126,0.796,65.600,0.915,-0.085,0.663,0.826,0.290 +El Salvador,2022,6.492,9.148,0.772,65.950,0.914,-0.116,0.621,0.823,0.296 +El Salvador,2023,6.482,9.167,0.744,66.300,0.942,-0.104,0.496,0.812,0.318 +Estonia,2006,5.371,10.269,0.910,65.780,0.749,-0.270,0.797,0.589,0.215 +Estonia,2007,5.332,10.346,0.896,66.060,0.712,-0.252,0.743,0.589,0.176 +Estonia,2008,5.452,10.296,0.904,66.340,0.642,-0.223,0.663,0.595,0.218 +Estonia,2009,5.138,10.140,0.874,66.620,0.611,-0.235,0.793,0.591,0.243 +Estonia,2011,5.487,10.240,0.909,67.180,0.735,-0.173,0.687,0.641,0.205 +Estonia,2012,5.364,10.275,0.889,67.460,0.697,-0.197,0.793,0.627,0.199 +Estonia,2013,5.367,10.293,0.901,67.740,0.754,-0.206,0.726,0.651,0.199 +Estonia,2014,5.556,10.325,0.917,68.020,0.773,-0.158,0.652,0.620,0.203 +Estonia,2015,5.629,10.343,0.918,68.300,0.815,-0.169,0.569,0.649,0.183 +Estonia,2016,5.650,10.374,0.938,68.525,0.843,-0.155,0.639,0.657,0.177 +Estonia,2017,5.938,10.429,0.936,68.750,0.862,-0.107,0.668,0.740,0.160 +Estonia,2018,6.091,10.463,0.933,68.975,0.886,-0.147,0.621,0.730,0.163 +Estonia,2019,6.035,10.496,0.934,69.200,0.887,-0.101,0.576,0.738,0.156 +Estonia,2020,6.453,10.488,0.958,69.425,0.954,-0.090,0.398,0.762,0.188 +Estonia,2021,6.554,10.564,0.946,69.650,0.926,0.046,0.441,0.761,0.176 +Estonia,2022,6.357,10.541,0.933,69.875,0.904,0.136,0.390,0.767,0.187 +Estonia,2023,6.430,10.517,0.958,70.100,0.915,0.032,0.334,0.765,0.182 +Eswatini,2011,4.867,8.902,0.837,42.500,0.607,-0.069,0.917,0.756,0.251 +Eswatini,2018,4.212,9.029,0.779,49.300,0.710,-0.182,0.692,0.739,0.252 +Eswatini,2019,4.396,9.048,0.759,50.100,0.597,-0.195,0.724,0.726,0.280 +Eswatini,2022,3.502,9.119,0.712,52.500,0.539,-0.149,0.774,0.661,0.394 +Ethiopia,2012,4.561,7.252,0.659,56.320,0.776,-0.047,,0.556,0.137 +Ethiopia,2013,4.445,7.325,0.602,56.980,0.707,-0.011,0.750,0.570,0.213 +Ethiopia,2014,4.507,7.396,0.640,57.640,0.694,0.076,0.702,0.644,0.303 +Ethiopia,2015,4.573,7.468,0.626,58.300,0.803,0.109,0.567,0.623,0.237 +Ethiopia,2016,4.298,7.531,0.719,58.700,0.744,0.035,0.703,0.627,0.254 +Ethiopia,2017,4.180,7.595,0.734,59.100,0.717,-0.002,0.757,0.514,0.304 +Ethiopia,2018,4.379,7.634,0.740,59.500,0.740,0.036,0.799,0.562,0.272 +Ethiopia,2019,4.100,7.688,0.748,59.900,0.754,0.049,0.732,0.519,0.283 +Ethiopia,2020,4.549,7.720,0.823,60.300,0.769,0.183,0.784,0.615,0.252 +Ethiopia,2022,3.628,7.775,0.740,61.100,0.674,0.357,0.793,0.560,0.335 +Ethiopia,2023,4.093,7.809,0.670,61.500,0.631,0.212,0.800,0.538,0.299 +Finland,2006,7.672,10.745,0.965,68.720,0.969,-0.011,0.132,0.683,0.172 +Finland,2008,7.671,10.796,0.951,69.160,0.934,0.022,0.217,0.691,0.144 +Finland,2010,7.393,10.734,0.935,69.600,0.916,0.085,0.413,0.758,0.202 +Finland,2011,7.354,10.754,0.938,69.820,0.936,0.095,0.320,0.709,0.205 +Finland,2012,7.420,10.735,0.928,70.040,0.921,-0.007,0.361,0.742,0.202 +Finland,2013,7.445,10.722,0.941,70.260,0.919,0.034,0.306,0.752,0.195 +Finland,2014,7.385,10.714,0.952,70.480,0.933,-0.007,0.265,0.766,0.199 +Finland,2015,7.448,10.716,0.948,70.700,0.930,0.105,0.223,0.736,0.191 +Finland,2016,7.660,10.741,0.954,70.775,0.948,-0.033,0.250,0.769,0.182 +Finland,2017,7.788,10.770,0.964,70.850,0.962,-0.008,0.192,0.756,0.176 +Finland,2018,7.858,10.780,0.962,70.925,0.938,-0.133,0.199,0.749,0.182 +Finland,2019,7.780,10.791,0.937,71.000,0.948,-0.058,0.195,0.732,0.181 +Finland,2020,7.889,10.766,0.962,71.075,0.962,-0.123,0.164,0.748,0.193 +Finland,2021,7.794,10.794,0.970,71.150,0.963,-0.039,0.192,0.752,0.175 +Finland,2022,7.729,10.811,0.974,71.225,0.959,0.101,0.190,0.741,0.191 +Finland,2023,7.699,10.808,0.947,71.300,0.943,-0.001,0.185,0.717,0.173 +France,2005,7.093,10.637,0.940,70.700,0.895,,0.688,0.681,0.225 +France,2006,6.583,10.654,0.944,70.800,0.789,0.120,0.699,0.694,0.289 +France,2008,7.008,10.669,0.935,71.000,0.833,-0.037,0.669,0.702,0.281 +France,2009,6.283,10.635,0.918,71.100,0.798,-0.088,0.654,0.691,0.303 +France,2010,6.798,10.649,0.943,71.200,0.850,-0.109,0.623,0.729,0.261 +France,2011,6.959,10.666,0.921,71.300,0.903,-0.108,0.627,0.718,0.281 +France,2012,6.649,10.664,0.937,71.400,0.841,-0.155,0.608,0.705,0.253 +France,2013,6.667,10.665,0.908,71.500,0.878,-0.130,0.699,0.741,0.205 +France,2014,6.467,10.669,0.878,71.600,0.803,-0.124,0.656,0.759,0.216 +France,2015,6.358,10.677,0.896,71.700,0.817,-0.145,0.641,0.740,0.215 +France,2016,6.475,10.685,0.885,71.800,0.787,-0.097,0.623,0.715,0.270 +France,2017,6.635,10.705,0.931,71.900,0.834,-0.129,0.601,0.716,0.242 +France,2018,6.666,10.720,0.921,72.000,0.816,-0.143,0.582,0.705,0.282 +France,2019,6.690,10.735,0.958,72.100,0.827,-0.139,0.568,0.693,0.250 +France,2020,6.714,10.651,0.947,72.200,0.823,-0.176,0.565,0.690,0.231 +France,2021,6.656,10.714,0.915,72.300,0.837,-0.104,0.561,0.685,0.268 +France,2022,6.614,10.737,0.866,72.400,0.798,-0.027,0.533,0.688,0.249 +France,2023,6.557,10.742,0.850,72.500,0.776,0.010,0.558,0.676,0.228 +Gabon,2011,4.255,9.557,0.653,54.460,0.772,-0.213,0.851,0.564,0.264 +Gabon,2012,3.972,9.573,0.736,54.920,0.566,-0.197,0.810,0.504,0.266 +Gabon,2013,3.800,9.593,0.733,55.380,0.682,-0.148,0.780,0.519,0.287 +Gabon,2014,3.918,9.601,0.829,55.840,0.607,-0.201,0.782,0.533,0.293 +Gabon,2015,4.661,9.609,0.756,56.300,0.671,-0.196,0.867,0.600,0.372 +Gabon,2016,4.832,9.601,0.780,56.625,0.699,-0.207,0.817,0.625,0.432 +Gabon,2017,4.782,9.580,0.807,56.950,0.652,-0.231,0.868,0.638,0.446 +Gabon,2018,4.783,9.565,0.785,57.275,0.719,-0.200,0.823,0.614,0.418 +Gabon,2019,4.914,9.580,0.763,57.600,0.736,-0.206,0.846,0.638,0.413 +Gabon,2020,4.887,9.540,0.701,57.925,0.528,-0.194,0.789,0.568,0.416 +Gabon,2021,5.075,9.533,0.754,58.250,0.699,-0.207,0.766,0.620,0.362 +Gabon,2022,5.140,9.543,0.775,58.575,0.699,-0.167,0.803,0.661,0.414 +Gabon,2023,5.104,9.554,0.735,58.900,0.722,-0.160,0.822,0.620,0.424 +Gambia,2017,4.118,7.564,0.697,56.400,0.812,0.111,0.572,0.770,0.277 +Gambia,2018,4.922,7.607,0.685,56.700,0.719,0.440,0.691,0.759,0.379 +Gambia,2019,5.164,7.642,0.694,57.000,0.677,0.409,0.798,0.718,0.401 +Gambia,2022,4.279,7.662,0.588,57.900,0.599,0.360,0.884,0.722,0.438 +Gambia,2023,4.691,7.686,0.651,58.200,0.727,0.430,0.852,0.719,0.291 +Georgia,2006,3.675,8.993,0.647,63.300,0.553,-0.273,0.752,0.353,0.269 +Georgia,2007,3.707,9.117,0.548,63.400,0.464,-0.272,0.697,0.351,0.236 +Georgia,2008,4.156,9.144,0.608,63.500,0.614,-0.230,0.498,0.371,0.262 +Georgia,2009,3.801,9.116,0.544,63.600,0.495,-0.238,0.535,0.391,0.242 +Georgia,2010,4.102,9.184,0.540,63.700,0.558,-0.253,0.460,0.402,0.243 +Georgia,2011,4.203,9.263,0.503,63.800,0.632,-0.260,0.353,0.421,0.247 +Georgia,2012,4.254,9.332,0.533,63.900,0.659,-0.275,0.321,0.443,0.250 +Georgia,2013,4.349,9.371,0.559,64.000,0.722,-0.260,0.349,0.467,0.200 +Georgia,2014,4.288,9.414,0.558,64.100,0.720,-0.239,0.416,0.458,0.204 +Georgia,2015,4.122,9.442,0.517,64.200,0.640,-0.210,0.502,0.448,0.233 +Georgia,2016,4.448,9.470,0.533,64.325,0.606,-0.255,0.561,0.475,0.223 +Georgia,2017,4.451,9.517,0.590,64.450,0.821,-0.250,0.590,0.496,0.210 +Georgia,2018,4.659,9.565,0.617,64.575,0.775,-0.238,0.755,0.479,0.244 +Georgia,2019,4.892,9.615,0.675,64.700,0.811,-0.265,0.647,0.503,0.244 +Georgia,2020,5.123,9.544,0.718,64.825,0.764,-0.225,0.583,0.573,0.295 +Georgia,2021,4.911,9.648,0.671,64.950,0.777,-0.290,0.723,0.510,0.240 +Georgia,2022,5.293,9.743,0.754,65.075,0.821,-0.255,0.655,0.503,0.233 +Georgia,2023,5.351,9.785,0.779,65.200,0.877,-0.268,0.706,0.542,0.231 +Germany,2005,6.620,10.691,0.963,69.900,0.847,,0.781,0.685,0.197 +Germany,2007,6.417,10.760,0.926,69.940,0.801,0.161,0.792,0.647,0.231 +Germany,2008,6.522,10.771,0.923,69.960,0.766,,0.758,0.672,0.220 +Germany,2009,6.641,10.715,0.935,69.980,0.844,0.121,0.690,0.684,0.206 +Germany,2010,6.725,10.758,0.939,70.000,0.843,0.089,0.688,0.698,0.182 +Germany,2011,6.621,10.815,0.947,70.020,0.906,0.027,0.677,0.686,0.165 +Germany,2012,6.702,10.817,0.926,70.040,0.904,0.065,0.679,0.699,0.170 +Germany,2013,6.965,10.819,0.931,70.060,0.894,0.018,0.566,0.693,0.205 +Germany,2014,6.984,10.837,0.938,70.080,0.899,0.082,0.474,0.739,0.188 +Germany,2015,7.037,10.843,0.926,70.100,0.889,0.172,0.412,0.722,0.203 +Germany,2016,6.874,10.857,0.906,70.300,0.871,0.142,0.446,0.709,0.187 +Germany,2017,7.074,10.879,0.892,70.500,0.841,0.139,0.414,0.707,0.196 +Germany,2018,7.118,10.886,0.920,70.700,0.877,0.028,0.496,0.740,0.243 +Germany,2019,7.035,10.894,0.886,70.900,0.885,0.051,0.462,0.712,0.226 +Germany,2020,7.312,10.856,0.905,71.100,0.864,-0.068,0.424,0.698,0.206 +Germany,2021,6.755,10.881,0.868,71.300,0.778,0.074,0.418,0.703,0.251 +Germany,2022,6.608,10.889,0.916,71.500,0.895,0.080,0.417,0.668,0.201 +Germany,2023,6.792,10.878,0.895,71.700,0.845,0.106,0.460,0.706,0.231 +Ghana,2006,4.535,8.067,0.728,52.540,0.849,0.208,0.814,0.637,0.198 +Ghana,2007,5.220,8.084,0.730,52.980,0.891,0.133,0.771,0.658,0.217 +Ghana,2008,4.965,8.145,0.622,53.420,0.838,0.115,0.863,0.674,0.172 +Ghana,2009,4.198,8.167,0.633,53.860,0.757,0.000,0.890,0.714,0.198 +Ghana,2010,4.606,8.219,0.739,54.300,0.891,0.069,0.875,0.693,0.184 +Ghana,2011,5.608,8.326,0.724,54.740,0.852,0.006,0.790,0.658,0.209 +Ghana,2012,5.057,8.390,0.685,55.180,0.679,0.035,0.898,0.709,0.152 +Ghana,2013,4.965,8.436,0.676,55.620,0.794,-0.070,0.880,0.660,0.211 +Ghana,2014,3.860,8.440,0.651,56.060,0.677,-0.004,0.913,0.682,0.280 +Ghana,2015,3.986,8.437,0.687,56.500,0.852,-0.043,0.945,0.675,0.265 +Ghana,2016,4.514,8.447,0.647,56.875,0.751,0.085,0.894,0.659,0.305 +Ghana,2017,5.481,8.503,0.669,57.250,0.783,0.074,0.839,0.715,0.248 +Ghana,2018,5.004,8.542,0.761,57.625,0.817,0.058,0.846,0.716,0.250 +Ghana,2019,4.967,8.584,0.746,58.000,0.787,0.111,0.857,0.645,0.270 +Ghana,2020,5.319,8.569,0.643,58.375,0.824,0.196,0.847,0.675,0.253 +Ghana,2021,4.378,8.601,0.633,58.750,0.730,0.105,0.888,0.588,0.295 +Ghana,2022,4.191,8.613,0.628,59.125,0.786,0.114,0.909,0.620,0.292 +Ghana,2023,4.298,8.610,0.661,59.500,0.834,0.093,0.892,0.638,0.254 +Greece,2005,6.006,10.454,0.837,69.600,0.734,,0.861,0.598,0.264 +Greece,2007,6.647,10.535,0.808,69.760,0.575,-0.196,0.845,0.629,0.222 +Greece,2009,6.039,10.483,0.793,69.920,0.443,-0.298,0.959,0.614,0.254 +Greece,2010,5.840,10.425,0.868,70.000,0.484,-0.308,0.954,0.581,0.292 +Greece,2011,5.372,10.320,0.852,70.080,0.528,-0.321,0.941,0.552,0.323 +Greece,2012,5.096,10.251,0.812,70.160,0.373,-0.310,0.959,0.544,0.352 +Greece,2013,4.720,10.233,0.687,70.240,0.426,-0.277,0.941,0.571,0.482 +Greece,2014,4.756,10.245,0.832,70.320,0.369,-0.293,0.930,0.597,0.385 +Greece,2015,5.623,10.249,0.835,70.400,0.532,-0.277,0.824,0.637,0.277 +Greece,2016,5.303,10.248,0.803,70.525,0.482,-0.265,0.898,0.594,0.336 +Greece,2017,5.148,10.261,0.753,70.650,0.438,-0.295,0.872,0.516,0.333 +Greece,2018,5.409,10.280,0.794,70.775,0.564,-0.340,0.860,0.564,0.255 +Greece,2019,5.952,10.300,0.891,70.900,0.614,-0.293,0.848,0.560,0.236 +Greece,2020,5.788,10.207,0.779,71.025,0.565,-0.246,0.764,0.629,0.322 +Greece,2021,6.104,10.294,0.850,71.150,0.574,-0.161,0.752,0.624,0.311 +Greece,2022,5.900,10.358,0.875,71.275,0.563,-0.318,0.874,0.589,0.183 +Greece,2023,5.796,10.387,0.818,71.400,0.589,-0.223,0.805,0.608,0.311 +Guatemala,2006,5.901,8.850,0.830,58.980,0.663,0.167,0.706,0.789,0.287 +Guatemala,2007,6.330,8.891,0.866,59.260,0.628,0.130,0.810,0.790,0.224 +Guatemala,2008,6.414,8.905,0.866,59.540,0.630,0.200,0.796,0.800,0.234 +Guatemala,2009,6.452,8.890,0.834,59.820,0.643,0.191,0.755,0.814,0.240 +Guatemala,2010,6.290,8.901,0.859,60.100,0.696,0.161,0.795,0.805,0.236 +Guatemala,2011,5.743,8.923,0.768,60.380,0.763,0.003,0.863,0.792,0.289 +Guatemala,2012,5.856,8.935,0.802,60.660,0.865,0.015,0.821,0.808,0.349 +Guatemala,2013,5.985,8.953,0.830,60.940,0.884,0.039,0.817,0.822,0.333 +Guatemala,2014,6.536,8.980,0.834,61.220,0.843,0.102,0.804,0.816,0.305 +Guatemala,2015,6.465,9.003,0.823,61.500,0.869,0.046,0.822,0.826,0.311 +Guatemala,2016,6.359,9.013,0.811,61.700,0.863,0.006,0.812,0.815,0.321 +Guatemala,2017,6.325,9.027,0.826,61.900,0.915,-0.064,0.800,0.819,0.308 +Guatemala,2018,6.627,9.044,0.841,62.100,0.910,-0.016,0.765,0.827,0.262 +Guatemala,2019,6.262,9.068,0.774,62.300,0.901,-0.068,0.773,0.820,0.311 +Guatemala,2022,6.150,9.123,0.806,62.900,0.856,-0.060,0.835,0.835,0.263 +Guatemala,2023,6.421,9.140,0.796,63.100,0.873,-0.049,0.812,0.843,0.303 +Guinea,2011,4.045,7.556,0.598,51.020,0.797,0.036,0.743,0.670,0.260 +Guinea,2012,3.652,7.589,0.542,51.140,0.646,-0.003,0.794,0.657,0.285 +Guinea,2013,3.902,7.604,0.567,51.260,0.693,0.087,0.815,0.606,0.348 +Guinea,2014,3.412,7.615,0.638,51.380,0.684,0.002,0.705,0.643,0.351 +Guinea,2015,3.505,7.627,0.579,51.500,0.666,0.003,0.762,0.658,0.268 +Guinea,2016,3.603,7.704,0.675,51.950,0.726,-0.060,0.803,0.676,0.374 +Guinea,2017,4.874,7.776,0.634,52.400,0.738,0.034,0.750,0.702,0.422 +Guinea,2018,5.252,7.813,0.630,52.850,0.731,0.088,0.778,0.727,0.440 +Guinea,2019,4.768,7.842,0.655,53.300,0.691,0.092,0.756,0.670,0.473 +Guinea,2020,4.972,7.865,0.732,53.750,0.598,0.075,0.790,0.706,0.346 +Guinea,2021,4.945,7.879,0.627,54.200,0.676,0.157,0.784,0.672,0.450 +Guinea,2022,5.317,7.901,0.582,54.650,0.729,0.136,0.770,0.699,0.492 +Guinea,2023,4.827,7.932,0.577,55.100,0.743,0.187,0.791,0.652,0.516 +Guyana,2007,5.993,9.089,0.849,56.240,0.694,0.082,0.836,0.761,0.296 +Haiti,2006,3.754,7.976,0.694,6.720,0.449,0.355,0.854,0.583,0.332 +Haiti,2008,3.846,8.016,0.679,17.360,0.465,0.213,0.812,0.573,0.256 +Haiti,2010,3.766,7.987,0.554,28.000,0.373,0.167,0.848,0.495,0.293 +Haiti,2011,4.845,8.026,0.567,33.320,0.413,0.194,0.682,0.550,0.245 +Haiti,2012,4.413,8.015,0.749,38.640,0.482,0.243,0.717,0.557,0.284 +Haiti,2013,4.622,8.043,0.648,43.960,0.610,0.243,0.669,0.528,0.327 +Haiti,2014,3.889,8.057,0.554,49.280,0.509,0.238,0.708,0.573,0.327 +Haiti,2015,3.570,8.056,0.564,54.600,0.398,0.259,0.777,0.598,0.333 +Haiti,2016,3.352,8.060,0.584,54.900,0.304,0.244,0.839,0.532,0.367 +Haiti,2017,3.824,8.071,0.647,55.200,0.484,0.333,0.647,0.570,0.322 +Haiti,2018,3.615,8.074,0.538,55.500,0.591,0.374,0.720,0.581,0.359 +Honduras,2006,5.397,8.448,0.933,63.100,0.650,0.085,0.844,0.837,0.155 +Honduras,2007,5.097,8.485,0.819,62.900,0.676,0.226,0.826,0.712,0.199 +Honduras,2008,5.420,8.504,0.828,62.700,0.687,0.219,0.863,0.719,0.206 +Honduras,2009,6.033,8.458,0.824,62.500,0.661,0.114,0.857,0.745,0.261 +Honduras,2010,5.866,8.474,0.803,62.300,0.646,0.101,0.820,0.745,0.260 +Honduras,2011,4.961,8.492,0.766,62.100,0.783,0.091,0.884,0.757,0.307 +Honduras,2012,4.602,8.513,0.779,61.900,0.700,-0.007,0.871,0.796,0.294 +Honduras,2013,4.713,8.521,0.792,61.700,0.698,-0.031,0.868,0.795,0.283 +Honduras,2014,5.056,8.533,0.790,61.500,0.696,0.011,0.834,0.794,0.299 +Honduras,2015,4.845,8.553,0.772,61.300,0.534,-0.101,0.848,0.829,0.311 +Honduras,2016,5.648,8.573,0.774,61.725,0.850,0.076,0.793,0.790,0.297 +Honduras,2017,6.020,8.603,0.843,62.150,0.898,0.068,0.783,0.796,0.248 +Honduras,2018,5.908,8.624,0.827,62.575,0.872,0.095,0.804,0.822,0.287 +Honduras,2019,5.930,8.633,0.797,63.000,0.846,0.059,0.815,0.789,0.279 +Honduras,2021,6.114,8.626,0.806,63.850,0.835,0.111,0.847,0.808,0.269 +Honduras,2022,5.932,8.650,0.729,64.275,0.851,0.078,0.834,0.775,0.289 +Honduras,2023,5.861,8.670,0.731,64.700,0.878,0.079,0.784,0.767,0.285 +Hong Kong S.A.R. of China,2006,5.511,10.746,0.812,,0.910,0.150,0.356,0.591,0.236 +Hong Kong S.A.R. of China,2008,5.137,10.816,0.840,,0.922,0.290,0.274,0.575,0.237 +Hong Kong S.A.R. of China,2009,5.397,10.788,0.835,,0.918,0.302,0.272,0.606,0.210 +Hong Kong S.A.R. of China,2010,5.643,10.847,0.857,,0.890,0.326,0.256,0.601,0.183 +Hong Kong S.A.R. of China,2011,5.474,10.887,0.846,,0.894,0.228,0.245,0.582,0.196 +Hong Kong S.A.R. of China,2012,5.484,10.893,0.826,,0.880,0.216,0.380,0.580,0.183 +Hong Kong S.A.R. of China,2014,5.458,10.939,0.834,,0.843,0.218,0.423,0.602,0.243 +Hong Kong S.A.R. of China,2016,5.498,10.970,0.832,,0.800,0.094,0.403,0.569,0.213 +Hong Kong S.A.R. of China,2017,5.362,10.999,0.831,,0.831,0.134,0.416,0.536,0.201 +Hong Kong S.A.R. of China,2019,5.659,10.995,0.856,,0.727,0.062,0.432,0.519,0.358 +Hong Kong S.A.R. of China,2020,5.295,10.931,0.813,,0.705,-0.076,0.380,0.522,0.210 +Hong Kong S.A.R. of China,2021,5.322,11.003,0.821,,0.669,0.021,0.390,0.534,0.224 +Hong Kong S.A.R. of China,2022,5.311,10.976,0.803,,0.697,0.040,0.383,0.549,0.204 +Hungary,2005,5.194,10.103,0.930,65.000,0.697,,0.903,0.578,0.290 +Hungary,2007,4.954,10.147,0.931,65.320,0.538,-0.166,0.895,0.600,0.230 +Hungary,2009,4.895,10.092,0.901,65.640,0.464,-0.131,0.915,0.575,0.228 +Hungary,2010,4.725,10.105,0.896,65.800,0.514,-0.151,0.983,0.574,0.235 +Hungary,2011,4.918,10.127,0.894,65.960,0.631,-0.095,0.940,0.586,0.305 +Hungary,2012,4.683,10.119,0.906,66.120,0.569,-0.142,0.930,0.582,0.315 +Hungary,2013,4.914,10.140,0.877,66.280,0.674,-0.119,0.912,0.647,0.307 +Hungary,2014,5.181,10.184,0.845,66.440,0.494,-0.156,0.855,0.578,0.238 +Hungary,2015,5.344,10.223,0.859,66.600,0.558,-0.204,0.908,0.650,0.245 +Hungary,2016,5.449,10.248,0.900,66.750,0.554,-0.193,0.924,0.590,0.243 +Hungary,2017,6.065,10.292,0.877,66.900,0.661,-0.145,0.886,0.644,0.181 +Hungary,2018,5.936,10.346,0.941,67.050,0.693,-0.249,0.911,0.595,0.201 +Hungary,2019,6.000,10.393,0.947,67.200,0.798,-0.201,0.884,0.653,0.180 +Hungary,2020,6.038,10.349,0.943,67.350,0.771,-0.127,0.836,0.662,0.240 +Hungary,2021,6.227,10.423,0.948,67.500,0.727,-0.046,0.832,0.668,0.192 +Hungary,2022,5.861,10.470,0.937,67.650,0.776,-0.009,0.848,0.628,0.250 +Hungary,2023,5.965,10.473,0.954,67.800,0.755,-0.002,0.847,0.673,0.189 +Iceland,2008,6.888,10.878,0.977,71.200,0.885,0.265,0.708,0.851,0.153 +Iceland,2012,7.591,10.788,0.979,71.600,0.905,0.235,0.759,0.817,0.157 +Iceland,2013,7.501,10.823,0.967,71.700,0.923,0.299,0.713,0.802,0.156 +Iceland,2015,7.498,10.862,0.980,71.900,0.940,0.294,0.639,0.794,0.180 +Iceland,2016,7.510,10.909,0.985,71.925,0.952,0.274,0.719,0.808,0.158 +Iceland,2017,7.476,10.927,0.967,71.950,0.939,0.240,0.727,0.823,0.148 +Iceland,2019,7.533,10.943,0.982,72.000,0.959,,0.699,0.787,0.178 +Iceland,2020,7.575,10.852,0.983,72.025,0.949,0.152,0.644,0.808,0.172 +Iceland,2021,7.565,10.878,0.980,72.050,0.923,0.257,0.664,0.806,0.159 +Iceland,2022,7.449,10.916,0.985,72.075,0.936,0.222,0.692,0.768,0.178 +Iceland,2023,7.562,10.934,0.979,72.100,0.918,0.299,0.697,0.793,0.185 +India,2006,5.348,8.141,0.707,55.860,0.774,,0.855,0.576,0.199 +India,2007,5.027,8.200,0.569,56.220,0.729,-0.056,0.862,0.541,0.253 +India,2008,5.146,8.216,0.684,56.580,0.756,-0.077,0.891,0.573,0.259 +India,2009,4.522,8.278,0.653,56.940,0.679,-0.031,0.895,0.639,0.301 +India,2010,4.989,8.346,0.605,57.300,0.783,0.053,0.863,0.579,0.267 +India,2011,4.635,8.383,0.553,57.660,0.838,-0.043,0.908,0.480,0.232 +India,2012,4.720,8.423,0.511,58.020,0.609,0.062,0.830,0.544,0.295 +India,2013,4.428,8.472,0.553,58.380,0.740,0.079,0.832,0.608,0.330 +India,2014,4.424,8.531,0.621,58.740,0.809,-0.031,0.832,0.651,0.285 +India,2015,4.342,8.596,0.610,59.100,0.777,-0.010,0.776,0.657,0.322 +India,2016,4.179,8.664,0.614,59.400,0.820,0.041,0.765,0.646,0.346 +India,2017,4.046,8.718,0.607,59.700,0.886,-0.046,0.781,0.579,0.318 +India,2018,3.818,8.770,0.638,60.000,0.890,0.080,0.805,0.591,0.357 +India,2019,3.249,8.797,0.561,60.300,0.876,0.108,0.752,0.560,0.466 +India,2020,4.224,8.728,0.616,60.600,0.906,0.068,0.780,0.686,0.383 +India,2021,3.558,8.806,0.570,60.900,0.866,0.052,0.757,0.547,0.429 +India,2022,3.930,8.867,0.608,61.200,0.893,0.085,0.771,0.596,0.432 +India,2023,4.676,8.919,0.633,61.500,0.900,0.121,0.770,0.699,0.389 +Indonesia,2006,4.947,8.839,0.771,60.320,0.713,0.343,0.915,0.715,0.266 +Indonesia,2007,5.101,8.888,0.704,60.540,0.603,0.307,0.960,0.696,0.242 +Indonesia,2008,4.815,8.933,0.675,60.760,0.596,0.160,0.968,0.675,0.239 +Indonesia,2009,5.472,8.966,0.779,60.980,0.784,0.186,0.911,0.768,0.193 +Indonesia,2010,5.457,9.013,0.816,61.200,0.700,0.443,0.954,0.717,0.218 +Indonesia,2011,5.173,9.061,0.825,61.420,0.878,0.433,0.962,0.748,0.273 +Indonesia,2012,5.368,9.107,0.834,61.640,0.770,0.349,0.962,0.764,0.229 +Indonesia,2013,5.292,9.149,0.794,61.860,0.781,0.371,0.973,0.777,0.249 +Indonesia,2014,5.597,9.186,0.905,62.080,0.719,0.403,0.970,0.757,0.242 +Indonesia,2015,5.043,9.222,0.809,62.300,0.779,0.466,0.946,0.796,0.274 +Indonesia,2016,5.136,9.261,0.792,62.425,0.830,0.494,0.890,0.748,0.342 +Indonesia,2017,5.098,9.300,0.796,62.550,0.865,0.482,0.900,0.781,0.319 +Indonesia,2018,5.340,9.341,0.809,62.675,0.879,0.506,0.868,0.796,0.296 +Indonesia,2019,5.347,9.381,0.802,62.800,0.866,0.549,0.861,0.800,0.302 +Indonesia,2020,4.828,9.351,0.751,62.925,0.853,0.529,0.914,0.742,0.351 +Indonesia,2021,5.433,9.381,0.817,63.050,0.885,0.540,0.845,0.799,0.273 +Indonesia,2022,5.585,9.426,0.834,63.175,0.903,0.516,0.862,0.818,0.269 +Indonesia,2023,5.695,9.466,0.781,63.300,0.900,0.590,0.866,0.814,0.289 +Iran,2005,5.308,9.498,0.766,64.300,0.651,,0.636,0.515,0.456 +Iran,2007,5.336,9.595,0.718,64.580,0.533,0.043,0.872,0.553,0.361 +Iran,2008,5.129,9.584,0.633,64.720,0.601,0.040,0.868,0.541,0.345 +Iran,2011,4.768,9.636,0.582,65.140,0.798,0.188,0.665,0.513,0.359 +Iran,2012,4.609,9.585,0.600,65.280,0.764,,0.678,0.529,0.525 +Iran,2013,5.140,9.555,0.664,65.420,0.730,0.202,0.685,0.575,0.552 +Iran,2014,4.682,9.585,0.644,65.560,0.767,0.227,0.640,0.550,0.512 +Iran,2015,4.750,9.548,0.572,65.700,0.780,0.164,0.699,0.548,0.520 +Iran,2016,4.653,9.614,0.566,65.850,0.773,0.176,0.713,0.592,0.526 +Iran,2017,4.717,9.627,0.714,66.000,0.731,0.210,0.715,0.590,0.439 +Iran,2018,4.278,9.591,0.674,66.150,0.603,0.073,0.703,0.482,0.493 +Iran,2019,5.006,9.553,0.698,66.300,0.623,0.128,0.728,0.525,0.449 +Iran,2020,4.865,9.577,0.757,66.450,0.600,0.130,0.710,0.505,0.470 +Iran,2021,4.788,9.616,0.771,66.600,0.609,0.172,0.761,0.518,0.427 +Iran,2022,4.977,9.636,0.800,66.750,0.570,0.209,0.766,0.521,0.466 +Iran,2023,5.004,9.651,0.809,66.900,0.615,0.254,0.764,0.533,0.425 +Iraq,2008,4.590,8.982,0.744,60.940,0.386,-0.061,0.910,0.532,0.448 +Iraq,2009,4.775,8.979,0.862,60.920,0.431,-0.198,0.854,0.504,0.404 +Iraq,2010,5.065,9.009,0.854,60.900,0.419,-0.123,0.859,0.497,0.431 +Iraq,2011,4.725,9.047,0.751,60.880,0.347,-0.068,0.780,0.473,0.557 +Iraq,2012,4.660,9.133,0.730,60.860,0.315,-0.018,0.789,0.410,0.449 +Iraq,2013,4.725,9.159,0.728,60.840,,-0.047,0.710,,0.554 +Iraq,2014,4.542,9.126,0.725,60.820,0.646,0.002,0.726,0.539,0.564 +Iraq,2015,4.493,9.145,0.684,60.800,0.599,0.021,0.762,0.478,0.581 +Iraq,2016,4.413,9.250,0.719,61.275,0.666,-0.050,0.799,0.471,0.570 +Iraq,2017,4.462,9.208,0.695,61.750,0.628,0.001,0.757,0.487,0.591 +Iraq,2018,4.886,9.210,0.764,62.225,0.598,-0.069,0.887,0.552,0.482 +Iraq,2020,4.785,9.088,0.708,63.175,0.700,-0.021,0.849,0.585,0.532 +Iraq,2021,5.094,9.081,0.730,63.650,0.594,0.006,0.901,0.577,0.474 +Iraq,2022,4.928,9.127,0.753,64.125,0.661,0.068,0.855,0.565,0.499 +Iraq,2023,5.475,9.093,0.734,64.600,0.658,-0.017,0.851,0.587,0.469 +Ireland,2006,7.144,10.985,0.967,69.620,0.943,0.235,0.473,0.815,0.209 +Ireland,2008,7.568,10.941,0.983,69.860,0.894,0.315,0.487,0.745,0.148 +Ireland,2009,7.046,10.879,0.959,69.980,0.835,0.308,0.580,0.745,0.233 +Ireland,2010,7.257,10.890,0.973,70.100,0.856,0.341,0.618,0.763,0.201 +Ireland,2011,7.007,10.894,0.977,70.220,0.952,0.376,0.590,0.786,0.190 +Ireland,2012,6.965,10.890,0.962,70.340,0.902,0.295,0.573,0.721,0.237 +Ireland,2013,6.760,10.896,0.955,70.460,0.884,0.325,0.558,0.744,0.245 +Ireland,2014,7.018,10.971,0.968,70.580,0.922,0.257,0.406,0.736,0.229 +Ireland,2015,6.830,11.180,0.953,70.700,0.892,0.226,0.409,0.748,0.225 +Ireland,2016,7.041,11.189,0.958,70.800,0.875,0.169,0.399,0.744,0.211 +Ireland,2017,7.060,11.264,0.943,70.900,0.905,0.210,0.337,0.771,0.213 +Ireland,2018,6.962,11.334,0.938,71.000,0.861,0.138,0.362,0.754,0.213 +Ireland,2019,7.255,11.373,0.944,71.100,0.892,0.067,0.373,0.758,0.223 +Ireland,2020,7.035,11.423,0.960,71.200,0.882,0.000,0.356,0.753,0.246 +Ireland,2021,6.828,11.540,0.850,71.300,0.846,0.131,0.360,0.733,0.245 +Ireland,2022,6.870,11.643,0.906,71.400,0.895,0.138,0.358,0.738,0.234 +Ireland,2023,6.817,11.676,0.921,71.500,0.903,0.182,0.373,0.742,0.245 +Israel,2006,7.173,10.368,0.927,71.080,0.817,,0.905,0.639,0.308 +Israel,2007,6.841,10.408,0.868,71.160,0.683,0.215,0.868,0.642,0.320 +Israel,2008,7.261,10.423,0.859,71.240,0.663,0.134,0.898,0.635,0.349 +Israel,2009,7.353,10.408,0.937,71.320,0.593,0.167,0.923,0.620,0.327 +Israel,2010,7.359,10.444,0.882,71.400,0.561,0.145,0.902,0.628,0.362 +Israel,2011,7.433,10.480,0.893,71.480,0.722,0.136,0.891,0.654,0.384 +Israel,2012,7.111,10.487,0.903,71.560,0.681,0.147,0.862,0.611,0.319 +Israel,2013,7.321,10.512,0.909,71.640,0.739,0.145,0.849,0.649,0.409 +Israel,2014,7.401,10.531,0.889,71.720,0.707,0.088,0.818,0.567,0.271 +Israel,2015,7.079,10.536,0.864,71.800,0.753,0.103,0.789,0.652,0.256 +Israel,2016,7.159,10.560,0.890,71.950,0.772,0.147,0.804,0.602,0.263 +Israel,2017,7.331,10.583,0.916,72.100,0.768,0.138,0.793,0.621,0.276 +Israel,2018,6.927,10.603,0.910,72.250,0.725,0.048,0.770,0.612,0.282 +Israel,2019,7.332,10.625,0.946,72.400,0.834,0.078,0.743,0.598,0.266 +Israel,2020,7.195,10.589,0.959,72.550,0.831,-0.059,0.748,0.564,0.243 +Israel,2021,7.578,10.655,0.917,72.700,0.820,-0.008,0.726,0.558,0.217 +Israel,2022,7.662,10.698,0.954,72.850,0.775,-0.007,0.655,0.583,0.183 +Israel,2023,6.783,10.707,0.952,73.000,0.797,0.146,0.636,0.484,0.516 +Italy,2005,6.854,10.698,0.928,70.600,0.802,,0.944,0.606,0.295 +Italy,2007,6.574,10.722,0.912,70.800,0.684,0.108,0.922,0.650,0.303 +Italy,2008,6.780,10.706,0.880,70.900,0.543,0.044,0.946,0.588,0.268 +Italy,2009,6.334,10.647,0.880,71.000,0.701,0.235,0.890,0.715,0.279 +Italy,2010,6.354,10.661,0.872,71.100,0.738,-0.065,0.921,0.535,0.236 +Italy,2011,6.057,10.666,0.913,71.200,0.568,-0.023,0.933,0.610,0.266 +Italy,2012,5.839,10.633,0.869,71.300,0.570,0.107,0.908,0.651,0.388 +Italy,2013,6.009,10.603,0.916,71.400,0.499,-0.108,0.943,0.702,0.357 +Italy,2014,6.027,10.594,0.898,71.500,0.624,-0.071,0.920,0.659,0.356 +Italy,2015,5.848,10.603,0.909,71.600,0.575,-0.070,0.913,0.646,0.329 +Italy,2016,5.955,10.617,0.927,71.675,0.624,-0.086,0.903,0.632,0.339 +Italy,2017,6.199,10.635,0.920,71.750,0.633,-0.041,0.867,0.613,0.323 +Italy,2018,6.517,10.647,0.913,71.825,0.650,-0.027,0.888,0.598,0.403 +Italy,2019,6.445,10.663,0.838,71.900,0.709,-0.088,0.866,0.569,0.328 +Italy,2020,6.488,10.574,0.890,71.975,0.718,-0.157,0.844,0.614,0.311 +Italy,2021,6.467,10.647,0.886,72.050,0.703,-0.096,0.862,0.634,0.318 +Italy,2022,6.258,10.687,0.869,72.125,0.711,0.026,0.819,0.624,0.298 +Italy,2023,6.245,10.703,0.851,72.200,0.699,-0.053,0.819,0.636,0.293 +Ivory Coast,2009,4.197,8.181,0.667,48.900,0.760,-0.157,0.902,0.555,0.186 +Ivory Coast,2013,3.739,8.285,0.709,51.300,0.739,-0.037,0.691,0.661,0.306 +Ivory Coast,2014,3.570,8.351,0.711,51.900,0.781,-0.087,0.671,0.603,0.291 +Ivory Coast,2015,4.445,8.395,0.704,52.500,0.800,-0.059,0.744,0.614,0.347 +Ivory Coast,2016,4.543,8.438,0.617,53.075,0.769,-0.048,0.757,0.693,0.378 +Ivory Coast,2017,5.038,8.484,0.661,53.650,0.732,-0.116,0.771,0.662,0.357 +Ivory Coast,2018,5.268,8.505,0.621,54.225,0.713,-0.054,0.791,0.659,0.386 +Ivory Coast,2019,5.392,8.543,0.679,54.800,0.736,-0.021,0.799,0.663,0.425 +Ivory Coast,2020,5.257,8.535,0.613,55.375,0.770,0.012,0.777,0.655,0.340 +Ivory Coast,2021,5.056,8.579,0.554,55.950,0.717,-0.004,0.716,0.626,0.345 +Ivory Coast,2022,4.849,8.619,0.536,56.525,0.713,-0.009,0.743,0.629,0.399 +Ivory Coast,2023,5.337,8.656,0.623,57.100,0.753,-0.057,0.676,0.670,0.307 +Jamaica,2006,6.208,9.249,0.909,66.600,0.738,-0.011,0.946,0.753,0.201 +Jamaica,2011,5.374,9.193,0.855,66.600,0.796,-0.071,0.909,0.764,0.237 +Jamaica,2013,5.709,9.182,0.865,66.600,0.793,-0.029,0.931,0.694,0.312 +Jamaica,2014,5.311,9.185,0.874,66.600,0.809,-0.008,0.861,0.708,0.310 +Jamaica,2017,5.890,9.209,0.913,66.600,0.861,-0.138,0.883,0.700,0.243 +Jamaica,2019,6.309,9.234,0.878,66.600,0.891,-0.146,0.885,0.722,0.195 +Jamaica,2020,5.425,9.128,0.870,66.600,0.865,-0.152,0.836,0.712,0.266 +Jamaica,2021,5.814,9.170,0.857,66.600,0.731,-0.084,0.883,0.689,0.308 +Jamaica,2022,5.870,9.212,0.868,66.600,0.874,-0.091,0.910,0.718,0.269 +Japan,2005,6.516,10.552,0.928,72.400,0.868,,0.699,0.686,0.153 +Japan,2007,6.238,10.578,0.938,72.640,0.796,-0.097,0.809,0.683,0.207 +Japan,2008,5.911,10.566,0.887,72.760,0.772,-0.142,0.816,0.705,0.191 +Japan,2009,5.845,10.507,0.888,72.880,0.730,-0.217,0.740,0.713,0.169 +Japan,2010,6.057,10.547,0.902,73.000,0.772,-0.147,0.770,0.779,0.188 +Japan,2011,6.263,10.549,0.917,73.120,0.814,-0.059,0.734,0.714,0.181 +Japan,2012,5.968,10.565,0.905,73.240,0.753,,0.692,0.708,0.171 +Japan,2013,5.959,10.586,0.924,73.360,0.821,-0.154,0.650,0.719,0.175 +Japan,2014,5.923,10.590,0.900,73.480,0.838,-0.146,0.617,0.687,0.189 +Japan,2015,5.880,10.607,0.923,73.600,0.832,-0.162,0.654,0.702,0.176 +Japan,2016,5.955,10.615,0.900,73.725,0.836,-0.069,0.698,0.690,0.192 +Japan,2017,5.911,10.632,0.882,73.850,0.849,-0.213,0.659,0.692,0.176 +Japan,2018,5.794,10.640,0.886,73.975,0.773,-0.268,0.687,0.649,0.185 +Japan,2019,5.908,10.637,0.878,74.100,0.806,-0.261,0.617,0.693,0.194 +Japan,2020,6.118,10.596,0.887,74.225,0.806,-0.266,0.609,0.681,0.186 +Japan,2021,6.091,10.622,0.896,74.350,0.801,-0.213,0.670,0.674,0.189 +Japan,2022,6.178,10.637,0.899,74.475,0.789,-0.237,0.643,0.670,0.165 +Japan,2023,5.910,10.654,0.842,74.600,0.777,-0.222,0.594,0.638,0.178 +Jordan,2005,6.295,9.283,0.920,65.800,,,0.670,0.630,0.240 +Jordan,2007,5.598,9.308,0.841,66.160,0.646,-0.117,0.664,,0.240 +Jordan,2008,4.930,9.354,0.766,66.340,,-0.134,0.709,0.656,0.331 +Jordan,2009,6.000,9.381,0.899,66.520,0.771,-0.083,0.739,0.587,0.265 +Jordan,2010,5.570,9.382,0.918,66.700,0.788,-0.057,,0.564,0.343 +Jordan,2011,5.539,9.383,0.878,66.880,0.760,-0.155,,0.551,0.260 +Jordan,2012,5.132,9.393,0.829,67.060,0.693,-0.175,,0.469,0.345 +Jordan,2013,5.172,9.354,0.840,67.240,0.692,-0.131,,0.597,0.286 +Jordan,2014,5.333,9.269,0.816,67.420,0.729,-0.113,,0.602,0.313 +Jordan,2015,5.405,9.202,0.830,67.600,0.767,-0.051,,0.617,0.305 +Jordan,2016,5.271,9.173,0.820,67.600,0.771,-0.042,,0.598,0.312 +Jordan,2017,4.808,9.173,0.815,67.600,0.766,-0.156,,0.554,0.392 +Jordan,2018,4.639,9.168,0.800,67.600,0.762,-0.189,,, +Jordan,2019,4.453,9.163,0.793,67.600,0.726,-0.168,,, +Jordan,2020,4.094,9.125,0.709,67.600,0.779,-0.154,,, +Jordan,2021,3.909,9.127,0.703,67.600,0.773,-0.148,0.656,0.480,0.429 +Jordan,2022,4.356,9.140,0.774,67.600,0.759,-0.156,0.715,0.521,0.435 +Jordan,2023,4.292,9.151,0.721,67.600,0.754,-0.143,0.651,0.518,0.442 +Kazakhstan,2006,5.476,9.804,0.872,58.000,0.731,-0.280,0.865,0.602,0.185 +Kazakhstan,2007,5.719,9.878,0.861,58.600,0.806,-0.251,0.865,0.557,0.179 +Kazakhstan,2008,5.886,9.892,0.839,59.200,0.727,-0.226,0.899,0.613,0.160 +Kazakhstan,2009,5.383,9.884,0.893,59.800,0.856,-0.255,0.845,0.595,0.129 +Kazakhstan,2010,5.514,9.940,0.904,60.400,0.785,-0.221,0.823,0.655,0.149 +Kazakhstan,2011,5.736,9.997,0.905,61.000,0.878,-0.241,0.802,0.622,0.154 +Kazakhstan,2012,5.759,10.030,0.892,61.600,0.840,-0.177,0.877,0.667,0.184 +Kazakhstan,2013,5.835,10.074,0.889,62.200,0.782,-0.235,0.820,0.629,0.164 +Kazakhstan,2014,5.970,10.101,0.795,62.800,0.799,-0.002,0.805,0.671,0.169 +Kazakhstan,2015,5.950,10.098,0.931,63.400,0.740,-0.043,0.714,0.682,0.174 +Kazakhstan,2016,5.534,10.095,0.928,63.800,0.783,-0.042,0.702,0.641,0.155 +Kazakhstan,2017,5.882,10.121,0.914,64.200,0.745,-0.041,0.755,0.698,0.171 +Kazakhstan,2018,6.008,10.148,0.937,64.600,0.840,-0.104,0.824,0.611,0.162 +Kazakhstan,2019,6.272,10.179,0.951,65.000,0.852,-0.061,0.708,0.711,0.139 +Kazakhstan,2020,6.168,10.141,0.966,65.400,0.872,-0.062,0.661,0.620,0.150 +Kazakhstan,2021,6.260,10.170,0.906,65.800,0.807,0.034,0.782,0.663,0.122 +Kazakhstan,2022,6.006,10.169,0.923,66.200,0.883,0.022,0.720,0.652,0.132 +Kazakhstan,2023,6.299,10.172,0.929,66.600,0.901,0.050,0.812,0.626,0.114 +Kenya,2006,4.223,8.164,0.909,51.420,0.616,-0.034,0.860,0.657,0.198 +Kenya,2007,4.576,8.201,0.841,51.940,0.750,0.040,0.799,0.698,0.162 +Kenya,2008,4.015,8.173,0.827,52.460,0.620,-0.026,0.909,0.733,0.149 +Kenya,2009,4.270,8.176,0.789,52.980,0.584,0.086,0.913,0.679,0.183 +Kenya,2010,4.256,8.226,0.805,53.500,0.635,0.005,0.918,0.758,0.123 +Kenya,2011,4.405,8.249,0.846,54.020,0.709,0.009,0.923,0.706,0.228 +Kenya,2012,4.547,8.269,0.831,54.540,0.628,0.053,0.911,0.667,0.194 +Kenya,2013,3.795,8.282,0.825,55.060,0.708,0.201,0.861,0.729,0.161 +Kenya,2014,4.905,8.308,0.765,55.580,0.819,0.161,0.849,0.779,0.221 +Kenya,2015,4.358,8.334,0.777,56.100,0.793,0.209,0.853,0.673,0.172 +Kenya,2016,4.396,8.353,0.706,56.500,0.749,0.288,0.828,0.730,0.226 +Kenya,2017,4.476,8.369,0.715,56.900,0.853,0.225,0.854,0.754,0.230 +Kenya,2018,4.656,8.404,0.707,57.300,0.821,0.282,0.844,0.747,0.237 +Kenya,2019,4.619,8.434,0.676,57.700,0.818,0.300,0.794,0.728,0.251 +Kenya,2020,4.547,8.411,0.674,58.100,0.702,0.251,0.837,0.738,0.297 +Kenya,2021,4.465,8.465,0.702,58.500,0.678,0.313,0.841,0.745,0.253 +Kenya,2022,4.448,8.493,0.691,58.900,0.706,0.292,0.878,0.725,0.281 +Kenya,2023,4.496,8.523,0.703,59.300,0.736,0.316,0.800,0.756,0.245 +Kosovo,2007,5.104,,0.848,,0.381,,0.894,0.614,0.237 +Kosovo,2008,5.522,8.858,0.884,,,0.094,0.849,0.500,0.318 +Kosovo,2009,5.891,8.899,0.830,,0.506,0.203,0.968,0.528,0.169 +Kosovo,2010,5.177,8.940,0.708,,0.451,0.171,0.967,0.673,0.118 +Kosovo,2011,4.860,8.992,0.759,,0.589,0.004,0.919,0.604,0.124 +Kosovo,2012,5.640,9.000,0.757,,0.636,0.028,0.950,0.562,0.100 +Kosovo,2013,6.126,9.046,0.721,,0.568,0.114,0.935,0.650,0.203 +Kosovo,2014,5.000,9.082,0.706,,0.441,0.010,0.775,0.552,0.206 +Kosovo,2015,5.077,9.153,0.805,,0.561,0.177,0.851,0.685,0.180 +Kosovo,2016,5.759,9.213,0.824,,0.827,0.120,0.941,0.588,0.150 +Kosovo,2017,6.149,9.253,0.792,,0.858,0.112,0.925,0.617,0.186 +Kosovo,2018,6.392,9.283,0.822,,0.890,0.264,0.922,0.642,0.170 +Kosovo,2019,6.425,9.334,0.843,,0.841,0.242,0.920,0.612,0.141 +Kosovo,2020,6.294,9.279,0.792,,0.880,0.302,0.910,0.593,0.201 +Kosovo,2021,6.648,9.383,0.849,,0.840,0.258,0.842,0.578,0.116 +Kosovo,2022,6.160,9.431,0.888,,0.865,0.208,0.846,0.549,0.142 +Kosovo,2023,6.878,9.480,0.807,,0.900,0.285,0.811,0.682,0.140 +Kuwait,2006,6.076,11.233,0.919,68.400,0.769,-0.242,0.328,0.788,0.182 +Kuwait,2009,6.585,11.074,0.926,69.000,0.819,0.000,0.675,0.694,0.252 +Kuwait,2010,6.798,10.998,0.893,69.200,0.703,-0.039,0.486,0.687,0.203 +Kuwait,2011,6.378,11.024,0.882,69.400,0.769,,0.560,0.726,0.177 +Kuwait,2012,6.221,11.012,0.889,69.600,0.934,,,0.794,0.095 +Kuwait,2013,6.480,10.952,0.862,69.800,0.751,,,0.686,0.283 +Kuwait,2014,6.180,10.926,,70.000,,,,, +Kuwait,2015,6.146,10.893,0.823,70.200,0.822,0.077,,0.678,0.324 +Kuwait,2016,5.947,10.887,0.845,70.175,0.841,-0.080,,0.643,0.315 +Kuwait,2017,6.094,10.820,0.853,70.150,0.884,-0.010,,0.649,0.307 +Kuwait,2019,6.106,10.765,0.842,70.100,0.867,-0.106,,0.643,0.303 +Kuwait,2022,6.758,10.803,0.874,70.025,0.969,0.142,,0.738,0.156 +Kuwait,2023,7.130,10.812,0.890,70.000,0.898,0.136,,0.729,0.207 +Kyrgyzstan,2006,4.641,8.185,0.844,59.920,0.678,-0.145,0.879,0.555,0.159 +Kyrgyzstan,2007,4.698,8.258,0.833,60.340,0.684,-0.097,0.929,0.590,0.130 +Kyrgyzstan,2008,4.737,8.329,0.792,60.760,0.719,-0.105,0.923,0.594,0.147 +Kyrgyzstan,2009,5.069,8.345,0.855,61.180,0.699,-0.145,0.896,0.554,0.165 +Kyrgyzstan,2010,4.996,8.329,0.885,61.600,0.720,-0.077,0.926,0.516,0.123 +Kyrgyzstan,2011,4.921,8.374,0.891,62.020,0.748,-0.160,0.932,0.579,0.151 +Kyrgyzstan,2012,5.208,8.357,0.856,62.440,0.703,-0.084,0.892,0.580,0.182 +Kyrgyzstan,2013,5.402,8.441,0.851,62.860,0.755,-0.090,0.900,0.595,0.135 +Kyrgyzstan,2014,5.252,8.460,0.898,63.280,0.736,0.350,0.897,0.617,0.185 +Kyrgyzstan,2015,4.905,8.477,0.857,63.700,0.813,0.194,0.858,0.658,0.173 +Kyrgyzstan,2016,4.857,8.500,0.914,64.225,0.814,0.051,0.917,0.668,0.126 +Kyrgyzstan,2017,5.630,8.526,0.883,64.750,0.859,0.138,0.874,0.640,0.160 +Kyrgyzstan,2018,5.297,8.543,0.898,65.275,0.945,0.262,0.907,0.617,0.203 +Kyrgyzstan,2019,5.685,8.568,0.877,65.800,0.920,-0.008,0.885,0.625,0.207 +Kyrgyzstan,2020,6.250,8.461,0.902,66.325,0.935,0.101,0.931,0.672,0.258 +Kyrgyzstan,2021,5.564,8.504,0.904,66.850,0.918,0.199,0.903,0.660,0.226 +Kyrgyzstan,2022,5.668,8.555,0.927,67.375,0.948,0.230,0.876,0.646,0.204 +Kyrgyzstan,2023,5.910,8.573,0.946,67.900,0.943,0.145,0.899,0.681,0.165 +Laos,2006,5.076,8.234,0.807,55.880,0.925,0.435,0.688,0.790,0.163 +Laos,2007,5.364,8.291,0.790,56.260,0.867,0.474,0.580,0.752,0.136 +Laos,2008,5.044,8.351,0.807,56.640,0.886,0.412,0.637,0.728,0.202 +Laos,2011,4.704,8.538,0.691,57.780,0.882,0.454,0.587,0.746,0.225 +Laos,2012,4.876,8.601,0.693,58.160,,0.227,,0.741,0.387 +Laos,2017,4.623,8.883,0.707,59.900,0.891,0.068,0.592,0.712,0.344 +Laos,2018,4.859,8.929,0.705,60.200,0.907,0.136,0.634,0.711,0.332 +Laos,2019,5.197,8.967,0.729,60.500,0.906,0.055,0.620,0.718,0.306 +Laos,2020,5.284,8.957,0.660,60.800,0.915,0.136,0.748,0.714,0.358 +Laos,2021,4.927,8.968,0.650,61.100,0.927,0.037,0.668,0.702,0.292 +Laos,2022,4.962,8.981,0.659,61.400,0.891,0.091,0.706,0.675,0.334 +Laos,2023,5.486,9.005,0.678,61.700,0.904,0.099,0.724,0.679,0.335 +Latvia,2006,4.710,10.042,0.884,63.100,0.641,-0.236,0.937,0.590,0.234 +Latvia,2007,4.667,10.145,0.836,63.400,0.700,-0.173,0.924,0.594,0.247 +Latvia,2008,5.145,10.123,0.855,63.700,0.630,-0.210,0.926,0.633,0.215 +Latvia,2009,4.669,9.985,0.807,64.000,0.437,-0.187,0.942,0.537,0.242 +Latvia,2011,4.967,10.004,0.836,64.600,0.564,-0.006,0.934,0.563,0.222 +Latvia,2012,5.125,10.085,0.851,64.900,0.564,-0.044,0.895,0.588,0.232 +Latvia,2013,5.070,10.115,0.834,65.200,0.631,-0.079,0.837,0.605,0.227 +Latvia,2014,5.729,10.143,0.881,65.500,0.671,-0.049,0.804,0.605,0.226 +Latvia,2015,5.881,10.190,0.879,65.800,0.656,-0.084,0.808,0.559,0.228 +Latvia,2016,5.940,10.222,0.917,65.900,0.685,-0.163,0.868,0.583,0.231 +Latvia,2017,5.978,10.264,0.895,66.000,0.700,-0.161,0.798,0.565,0.232 +Latvia,2018,5.901,10.311,0.913,66.100,0.608,-0.218,0.799,0.521,0.192 +Latvia,2019,5.970,10.343,0.936,66.200,0.698,-0.200,0.789,0.537,0.212 +Latvia,2020,6.229,10.328,0.928,66.300,0.820,-0.086,0.809,0.674,0.202 +Latvia,2021,6.353,10.376,0.954,66.400,0.815,-0.104,0.840,0.716,0.186 +Latvia,2022,6.055,10.396,0.928,66.500,0.817,0.018,0.844,0.632,0.161 +Latvia,2023,6.296,10.408,0.932,66.600,0.816,0.059,0.800,0.671,0.257 +Lebanon,2005,5.491,9.571,0.796,65.100,0.703,,0.945,0.558,0.292 +Lebanon,2006,4.653,9.570,0.853,65.160,0.670,0.064,0.902,0.501,0.320 +Lebanon,2008,4.595,9.711,0.717,65.280,0.524,0.031,0.927,0.475,0.365 +Lebanon,2009,5.206,9.796,0.736,65.340,0.665,0.067,0.937,0.472,0.401 +Lebanon,2010,5.032,9.864,0.721,65.400,0.678,0.068,0.949,0.457,0.341 +Lebanon,2011,5.188,9.862,0.733,65.460,0.657,-0.002,0.911,0.506,0.320 +Lebanon,2012,4.573,9.862,0.713,65.520,0.621,-0.016,0.856,0.442,0.339 +Lebanon,2013,4.983,9.807,0.708,65.580,0.655,-0.012,0.921,0.446,0.409 +Lebanon,2014,5.233,9.732,0.759,65.640,0.657,-0.017,0.939,0.525,0.267 +Lebanon,2015,5.172,9.717,0.742,65.700,0.597,0.066,0.889,0.524,0.243 +Lebanon,2016,5.271,9.754,0.828,65.775,0.657,0.021,0.853,0.513,0.263 +Lebanon,2017,5.154,9.787,0.777,65.850,0.605,-0.088,0.911,0.469,0.244 +Lebanon,2018,5.167,9.795,0.829,65.925,0.607,-0.081,0.907,0.415,0.271 +Lebanon,2019,4.024,9.752,0.866,66.000,0.447,-0.098,0.890,0.308,0.494 +Lebanon,2020,2.634,9.532,0.547,66.075,0.552,-0.139,0.884,0.352,0.482 +Lebanon,2021,2.179,9.472,0.507,66.150,0.423,-0.164,0.905,0.263,0.569 +Lebanon,2022,2.352,9.458,0.535,66.225,0.450,-0.130,0.883,0.298,0.430 +Lebanon,2023,3.588,9.471,0.686,66.300,0.499,-0.102,0.895,0.373,0.385 +Lesotho,2011,4.898,7.785,0.824,41.520,0.618,-0.093,0.768,0.754,0.170 +Lesotho,2016,3.808,7.897,0.798,42.250,0.729,-0.100,0.743,0.685,0.270 +Lesotho,2017,3.795,7.852,0.769,42.900,0.757,-0.144,0.797,0.706,0.255 +Lesotho,2019,3.512,7.805,0.790,44.200,0.716,-0.127,0.915,0.707,0.273 +Lesotho,2022,3.186,7.733,0.680,46.150,0.709,-0.102,0.815,0.709,0.288 +Liberia,2007,3.701,7.179,0.594,51.860,0.790,0.111,0.776,0.600,0.435 +Liberia,2008,4.221,7.207,0.619,51.940,0.724,-0.038,0.840,0.629,0.261 +Liberia,2010,4.196,7.257,0.827,52.100,0.819,-0.043,0.818,0.549,0.217 +Liberia,2014,4.571,7.386,0.708,52.420,0.590,-0.035,0.869,0.565,0.443 +Liberia,2015,2.702,7.366,0.638,52.500,0.671,-0.067,0.903,0.519,0.388 +Liberia,2016,3.355,7.330,0.643,53.100,0.763,0.028,0.901,0.625,0.509 +Liberia,2017,4.424,7.335,0.685,53.700,0.733,-0.018,0.867,0.674,0.391 +Liberia,2018,4.135,7.328,0.727,54.300,0.766,0.044,0.868,0.664,0.436 +Liberia,2019,5.121,7.283,0.712,54.900,0.706,0.044,0.828,0.645,0.389 +Liberia,2022,4.042,7.287,0.597,56.700,0.732,0.150,0.828,0.637,0.439 +Liberia,2023,4.494,7.309,0.630,57.300,0.720,0.039,0.834,0.608,0.428 +Libya,2012,5.754,10.380,0.855,65.140,0.712,-0.076,0.791,0.633,0.316 +Libya,2015,5.615,9.858,0.868,64.300,0.775,-0.089,,0.652,0.369 +Libya,2016,5.434,9.828,0.876,64.525,0.822,-0.135,,0.645,0.383 +Libya,2017,5.647,10.095,0.823,64.750,0.779,-0.068,0.673,0.643,0.379 +Libya,2018,5.494,10.156,0.824,64.975,0.781,-0.146,0.646,0.635,0.399 +Libya,2019,5.330,10.023,0.827,65.200,0.762,-0.107,0.686,0.629,0.401 +Libya,2022,5.760,9.893,0.813,65.875,0.761,-0.043,0.668,0.627,0.399 +Libya,2023,5.970,,0.748,66.100,0.762,,0.644,0.585,0.372 +Lithuania,2006,5.954,10.042,0.930,63.500,0.567,-0.301,0.967,0.567,0.254 +Lithuania,2007,5.808,10.160,0.941,63.700,0.590,-0.287,0.966,0.523,0.279 +Lithuania,2008,5.554,10.196,0.914,63.900,0.621,-0.265,0.961,0.501,0.276 +Lithuania,2009,5.467,10.046,0.933,64.100,0.496,-0.309,0.979,0.525,0.271 +Lithuania,2010,5.066,10.083,0.882,64.300,0.519,-0.281,0.962,0.463,0.272 +Lithuania,2011,5.432,10.165,0.911,64.500,0.566,-0.154,0.964,0.556,0.275 +Lithuania,2012,5.771,10.216,0.919,64.700,0.503,-0.279,0.957,0.557,0.277 +Lithuania,2013,5.596,10.261,0.913,64.900,0.556,-0.242,0.936,0.540,0.294 +Lithuania,2014,6.126,10.304,0.908,65.100,0.508,-0.269,0.956,0.565,0.287 +Lithuania,2015,5.711,10.334,0.929,65.300,0.641,-0.259,0.924,0.534,0.276 +Lithuania,2016,5.866,10.371,0.938,65.650,0.614,-0.272,0.949,0.553,0.250 +Lithuania,2017,6.273,10.427,0.926,66.000,0.749,-0.179,0.790,0.590,0.195 +Lithuania,2018,6.309,10.476,0.929,66.350,0.699,-0.243,0.852,0.518,0.214 +Lithuania,2019,6.064,10.524,0.918,66.700,0.780,-0.258,0.783,0.568,0.276 +Lithuania,2020,6.391,10.523,0.953,67.050,0.824,-0.129,0.829,0.626,0.202 +Lithuania,2021,6.865,10.579,0.928,67.400,0.707,-0.121,0.878,0.667,0.191 +Lithuania,2022,7.038,10.586,0.937,67.750,0.710,-0.192,0.685,0.471,0.132 +Lithuania,2023,6.553,10.575,0.881,68.100,0.734,-0.232,0.751,0.493,0.201 +Luxembourg,2009,6.958,11.628,0.939,70.300,0.939,0.116,0.432,0.713,0.238 +Luxembourg,2010,7.097,11.647,0.952,70.500,0.908,0.086,0.423,0.718,0.216 +Luxembourg,2011,7.101,11.635,0.934,70.700,0.962,0.097,0.388,0.744,0.200 +Luxembourg,2012,6.964,11.627,0.914,70.900,0.917,0.048,0.403,0.726,0.227 +Luxembourg,2013,7.131,11.636,0.917,71.100,0.790,-0.065,0.301,0.601,0.185 +Luxembourg,2014,6.891,11.638,0.875,71.300,0.938,0.097,0.366,0.760,0.170 +Luxembourg,2015,6.702,11.637,0.934,71.500,0.932,0.044,0.375,0.728,0.193 +Luxembourg,2016,6.967,11.664,0.941,71.525,0.882,0.011,0.356,0.706,0.192 +Luxembourg,2017,7.061,11.653,0.905,71.550,0.903,0.036,0.330,0.726,0.184 +Luxembourg,2018,7.243,11.645,0.902,71.575,0.884,-0.028,0.385,0.715,0.202 +Luxembourg,2019,7.404,11.649,0.912,71.600,0.930,-0.051,0.390,0.742,0.212 +Luxembourg,2022,7.228,11.657,0.878,71.675,0.915,0.023,0.345,0.718,0.218 +Luxembourg,2023,7.016,11.649,0.879,71.700,0.911,0.033,0.343,0.751,0.194 +Madagascar,2006,3.980,7.351,0.711,54.140,,-0.042,,0.563,0.161 +Madagascar,2008,4.640,7.413,0.776,54.620,0.332,-0.103,0.773,0.583,0.215 +Madagascar,2011,4.381,7.309,0.818,55.340,0.546,-0.065,0.897,0.516,0.235 +Madagascar,2012,3.551,7.311,0.673,55.580,0.487,-0.058,0.854,0.588,0.194 +Madagascar,2013,3.816,7.307,0.673,55.820,0.480,-0.022,0.868,0.600,0.241 +Madagascar,2014,3.676,7.314,0.655,56.060,0.529,-0.026,0.791,0.641,0.192 +Madagascar,2015,3.593,7.319,0.647,56.300,0.545,-0.044,0.861,0.674,0.226 +Madagascar,2016,3.663,7.332,0.746,56.550,0.570,-0.072,0.864,0.670,0.204 +Madagascar,2017,4.079,7.345,0.626,56.800,0.570,-0.037,0.847,0.701,0.375 +Madagascar,2018,4.071,7.351,0.666,57.050,0.551,0.000,0.889,0.723,0.362 +Madagascar,2019,4.339,7.369,0.701,57.300,0.550,-0.015,0.720,0.699,0.304 +Madagascar,2022,4.019,7.315,0.642,58.050,0.523,0.070,0.740,0.687,0.345 +Madagascar,2023,4.433,7.333,0.692,58.300,0.504,0.096,0.784,0.718,0.389 +Malawi,2006,3.830,7.015,0.554,45.360,0.767,0.171,0.676,0.609,0.222 +Malawi,2007,4.891,7.078,0.600,46.420,0.910,0.173,0.691,0.691,0.176 +Malawi,2009,5.148,7.174,0.718,48.540,0.879,0.147,0.689,0.694,0.130 +Malawi,2011,3.946,7.231,0.613,50.660,0.733,0.070,0.853,0.620,0.268 +Malawi,2012,4.279,7.221,0.604,51.720,0.637,0.140,0.886,0.717,0.200 +Malawi,2013,4.035,7.246,0.563,52.780,0.752,0.049,0.857,0.699,0.248 +Malawi,2014,4.563,7.273,0.512,53.840,0.786,0.032,0.824,0.653,0.263 +Malawi,2015,3.868,7.273,0.494,54.900,0.801,0.029,0.835,0.602,0.260 +Malawi,2016,3.476,7.270,0.524,55.450,0.810,0.037,0.824,0.584,0.325 +Malawi,2017,3.417,7.283,0.555,56.000,0.848,-0.004,0.735,0.592,0.312 +Malawi,2018,3.335,7.299,0.528,56.550,0.799,0.043,0.766,0.548,0.365 +Malawi,2019,3.869,7.325,0.549,57.100,0.765,-0.027,0.680,0.517,0.348 +Malawi,2021,3.635,7.307,0.558,58.200,0.757,-0.014,0.740,0.551,0.326 +Malawi,2022,3.356,7.291,0.503,58.750,0.744,0.017,0.755,0.536,0.329 +Malawi,2023,3.272,7.279,0.470,59.300,0.738,0.014,0.745,0.520,0.338 +Malaysia,2006,6.012,9.827,0.866,65.080,0.837,0.196,0.740,0.687,0.243 +Malaysia,2007,6.239,9.867,0.871,65.160,0.844,0.085,0.799,0.719,0.162 +Malaysia,2008,5.807,9.893,0.803,65.240,0.780,0.040,0.884,0.728,0.186 +Malaysia,2009,5.385,9.858,0.792,65.320,0.874,-0.013,0.858,0.740,0.164 +Malaysia,2010,5.580,9.912,0.839,65.400,0.769,0.028,0.844,0.752,0.192 +Malaysia,2011,5.786,9.948,0.770,65.480,0.840,-0.021,0.842,0.785,0.155 +Malaysia,2012,5.914,9.985,0.841,65.560,0.848,0.013,0.847,0.744,0.177 +Malaysia,2013,5.770,10.015,0.831,65.640,0.791,0.260,0.755,0.664,0.317 +Malaysia,2014,5.963,10.057,0.863,65.720,0.808,0.235,0.845,0.711,0.261 +Malaysia,2015,6.322,10.092,0.818,65.800,0.675,0.218,0.838,0.733,0.314 +Malaysia,2018,5.339,10.197,0.789,65.725,0.875,0.123,0.894,0.716,0.200 +Malaysia,2019,5.428,10.228,0.842,65.700,0.916,0.119,0.782,0.735,0.176 +Malaysia,2020,6.014,10.159,0.797,65.675,0.878,0.096,0.747,0.721,0.288 +Malaysia,2021,6.010,10.179,0.794,65.650,0.878,0.218,0.769,0.728,0.183 +Malaysia,2022,6.048,10.251,0.815,65.625,0.957,0.208,0.789,0.767,0.191 +Malaysia,2023,5.868,10.283,0.779,65.600,0.965,0.154,0.754,0.761,0.195 +Maldives,2018,5.198,9.893,0.913,69.775,0.855,0.013,,, +Mali,2006,4.014,7.561,0.761,49.940,0.555,-0.075,0.761,0.748,0.209 +Mali,2008,4.115,7.576,0.747,50.620,0.495,-0.015,0.918,0.717,0.164 +Mali,2009,3.977,7.591,0.733,50.960,0.634,0.005,0.819,0.729,0.150 +Mali,2010,3.762,7.610,0.751,51.300,0.749,-0.031,0.811,0.764,0.162 +Mali,2011,4.667,7.609,0.796,51.640,0.823,-0.103,0.726,0.752,0.132 +Mali,2012,4.313,7.572,0.823,51.980,0.704,-0.091,0.787,0.647,0.109 +Mali,2013,3.676,7.565,0.820,52.320,0.665,-0.056,0.755,0.717,0.193 +Mali,2014,3.975,7.602,0.843,52.660,0.652,-0.040,0.658,0.722,0.186 +Mali,2015,4.582,7.631,0.830,53.000,0.634,-0.070,0.800,0.696,0.243 +Mali,2016,4.016,7.655,0.836,53.400,0.696,-0.072,0.862,0.738,0.305 +Mali,2017,4.742,7.675,0.741,53.800,0.753,-0.072,0.863,0.665,0.393 +Mali,2018,4.416,7.690,0.692,54.200,0.737,-0.036,0.793,0.689,0.370 +Mali,2019,4.988,7.705,0.755,54.600,0.670,-0.040,0.846,0.646,0.358 +Mali,2020,4.269,7.661,0.568,55.000,0.645,-0.069,0.895,0.648,0.440 +Mali,2021,4.113,7.659,0.573,55.400,0.673,-0.004,0.902,0.640,0.438 +Mali,2022,4.211,7.665,0.642,55.800,0.818,-0.024,0.746,0.655,0.408 +Mali,2023,4.370,7.673,0.641,56.200,0.776,-0.043,0.790,0.660,0.324 +Malta,2009,6.328,10.353,0.916,70.220,0.803,0.456,,0.626,0.358 +Malta,2010,5.774,10.402,0.908,70.400,0.802,0.278,,0.624,0.375 +Malta,2011,6.155,10.402,0.923,70.580,0.882,0.288,,0.638,0.340 +Malta,2012,5.963,10.433,0.922,70.760,0.861,0.343,,0.639,0.391 +Malta,2013,6.380,10.473,0.942,70.940,0.909,0.400,,0.629,0.370 +Malta,2014,6.452,10.526,0.941,71.120,0.904,0.395,0.670,0.606,0.352 +Malta,2015,6.613,10.594,0.919,71.300,0.912,0.339,0.664,0.641,0.355 +Malta,2016,6.591,10.604,0.930,71.350,0.916,0.339,0.696,0.645,0.355 +Malta,2017,6.676,10.681,0.937,71.400,0.924,0.244,0.690,0.666,0.302 +Malta,2018,6.910,10.705,0.932,71.450,0.927,0.170,0.595,0.666,0.296 +Malta,2019,6.733,10.734,0.922,71.500,0.924,0.077,0.689,0.642,0.356 +Malta,2020,6.157,10.622,0.938,71.550,0.931,-0.005,0.675,0.576,0.411 +Malta,2021,6.444,10.727,0.897,71.600,0.889,0.239,0.753,0.635,0.375 +Malta,2022,6.299,10.784,0.932,71.650,0.838,0.246,0.758,0.671,0.370 +Malta,2023,6.295,,0.912,71.700,0.851,,0.780,0.644,0.361 +Mauritania,2007,4.149,8.528,0.682,56.500,0.573,-0.077,0.586,0.732,0.174 +Mauritania,2008,4.248,8.500,0.670,56.800,0.593,-0.023,0.841,0.747,0.176 +Mauritania,2009,4.500,8.474,0.819,57.100,0.735,0.034,0.848,0.717,0.170 +Mauritania,2010,4.772,8.471,0.857,57.400,0.669,0.050,0.727,0.737,0.129 +Mauritania,2011,4.785,8.482,0.750,57.700,0.567,0.047,0.747,0.729,0.175 +Mauritania,2012,4.673,8.494,0.763,58.000,0.487,-0.026,0.707,0.749,0.164 +Mauritania,2013,4.199,8.506,0.741,58.300,0.603,-0.084,0.676,0.743,0.196 +Mauritania,2014,4.483,8.521,0.853,58.600,0.468,-0.060,0.589,0.743,0.163 +Mauritania,2015,3.923,8.547,0.875,58.900,0.447,0.050,0.715,0.798,0.194 +Mauritania,2016,4.472,8.533,0.785,59.125,0.467,-0.181,0.842,0.710,0.222 +Mauritania,2017,4.678,8.568,0.779,59.350,0.527,-0.161,0.777,0.631,0.272 +Mauritania,2018,4.314,8.588,0.802,59.575,0.467,-0.121,0.711,0.665,0.276 +Mauritania,2019,4.153,8.614,0.798,59.800,0.628,-0.111,0.743,0.686,0.260 +Mauritania,2022,4.724,8.602,0.648,60.475,0.624,-0.016,0.657,0.631,0.389 +Mauritania,2023,4.292,8.620,0.606,60.700,0.540,0.018,0.669,0.708,0.329 +Mauritius,2011,5.477,9.797,0.800,63.520,0.848,0.184,0.847,0.653,0.253 +Mauritius,2014,5.648,9.895,0.785,63.880,0.824,0.168,0.879,0.741,0.222 +Mauritius,2016,5.610,9.968,0.836,63.975,0.819,0.131,0.891,0.706,0.246 +Mauritius,2017,6.174,10.005,0.910,63.950,0.912,0.079,0.818,0.682,0.169 +Mauritius,2018,5.882,10.044,0.909,63.925,0.867,-0.081,0.785,0.710,0.158 +Mauritius,2019,6.241,10.072,0.913,63.900,0.893,-0.061,0.810,0.735,0.149 +Mauritius,2020,6.015,9.914,0.893,63.875,0.843,-0.038,0.772,0.700,0.138 +Mauritius,2021,5.949,9.948,0.887,63.850,0.802,-0.013,0.784,0.666,0.136 +Mauritius,2022,5.741,10.034,0.887,63.825,0.798,-0.042,0.769,0.725,0.168 +Mauritius,2023,5.759,10.083,0.868,63.800,0.797,-0.002,0.769,0.664,0.160 +Mexico,2005,6.581,9.792,0.903,64.400,0.814,,0.764,0.763,0.219 +Mexico,2007,6.525,9.831,0.879,64.680,0.670,-0.101,0.747,0.754,0.248 +Mexico,2008,6.829,9.830,0.876,64.820,0.677,-0.134,0.785,0.774,0.201 +Mexico,2009,6.963,9.764,0.868,64.960,0.682,-0.082,0.764,0.763,0.196 +Mexico,2010,6.802,9.800,0.876,65.100,0.778,-0.055,0.693,0.745,0.215 +Mexico,2011,6.910,9.822,0.824,65.240,0.831,-0.106,0.698,0.700,0.228 +Mexico,2012,7.320,9.844,0.767,65.380,0.788,-0.099,0.633,0.722,0.278 +Mexico,2013,7.443,9.844,0.759,65.520,0.739,-0.171,0.615,0.750,0.223 +Mexico,2014,6.680,9.860,0.782,65.660,0.779,-0.101,0.630,0.760,0.229 +Mexico,2015,6.236,9.880,0.761,65.800,0.719,-0.158,0.708,0.706,0.237 +Mexico,2016,6.824,9.895,0.893,65.800,0.752,-0.160,0.809,0.802,0.220 +Mexico,2017,6.410,9.905,0.800,65.800,0.861,-0.208,0.801,0.775,0.231 +Mexico,2018,6.550,9.917,0.858,65.800,0.816,-0.186,0.809,0.815,0.213 +Mexico,2019,6.432,9.907,0.852,65.800,0.903,-0.148,0.809,0.803,0.252 +Mexico,2020,5.964,9.816,0.779,65.800,0.873,-0.128,0.778,0.745,0.292 +Mexico,2021,5.991,9.857,0.779,65.800,0.837,-0.037,0.745,0.750,0.305 +Mexico,2022,7.038,9.881,0.858,65.800,0.861,-0.123,0.780,0.818,0.205 +Mexico,2023,7.006,9.900,0.868,65.800,0.870,-0.124,0.756,0.809,0.233 +Moldova,2006,5.102,8.922,0.812,59.480,0.554,-0.169,0.926,0.553,0.255 +Moldova,2007,4.775,8.954,0.804,59.860,0.696,-0.190,0.930,0.519,0.306 +Moldova,2008,5.503,9.031,0.872,60.240,0.641,-0.060,0.926,0.565,0.284 +Moldova,2009,5.554,8.970,0.856,60.620,0.551,-0.103,0.925,0.539,0.306 +Moldova,2010,5.590,9.040,0.847,61.000,0.598,-0.093,0.929,0.564,0.278 +Moldova,2011,5.792,9.097,0.869,61.380,0.628,-0.086,0.957,0.553,0.285 +Moldova,2012,5.996,9.091,0.826,61.760,0.602,-0.054,0.955,0.564,0.314 +Moldova,2013,5.756,9.178,0.803,62.140,0.658,-0.073,0.941,0.548,0.261 +Moldova,2014,5.917,9.227,0.805,62.520,0.623,-0.118,0.925,0.547,0.260 +Moldova,2015,6.017,9.232,0.840,62.900,0.595,-0.094,0.943,0.556,0.281 +Moldova,2016,5.578,9.289,0.837,63.300,0.557,-0.052,0.969,0.586,0.275 +Moldova,2017,5.326,9.347,0.831,63.700,0.553,-0.057,0.926,0.563,0.259 +Moldova,2018,5.682,9.404,0.892,64.100,0.824,-0.089,0.929,0.584,0.270 +Moldova,2019,5.803,9.455,0.809,64.500,0.784,-0.097,0.884,0.600,0.262 +Moldova,2020,5.812,9.380,0.874,64.900,0.859,-0.058,0.941,0.698,0.268 +Moldova,2021,5.959,9.518,0.880,65.300,0.833,-0.096,0.875,0.630,0.270 +Moldova,2022,5.687,9.465,0.817,65.700,0.829,-0.084,0.885,0.552,0.276 +Moldova,2023,5.801,9.492,0.842,66.100,0.844,-0.157,0.860,0.578,0.251 +Mongolia,2007,4.609,8.827,0.881,56.540,0.781,0.059,0.918,0.483,0.203 +Mongolia,2008,4.493,8.902,0.920,56.960,0.484,0.062,0.962,0.514,0.173 +Mongolia,2010,4.586,8.925,0.904,57.800,0.631,0.093,0.928,0.559,0.150 +Mongolia,2011,5.031,9.069,0.948,58.220,0.700,0.145,0.931,0.561,0.153 +Mongolia,2012,4.885,9.168,0.919,58.640,0.688,0.100,0.932,0.524,0.181 +Mongolia,2013,4.913,9.260,0.935,59.060,0.748,0.130,0.928,0.549,0.179 +Mongolia,2014,4.825,9.315,0.943,59.480,0.752,0.140,0.909,0.512,0.170 +Mongolia,2015,4.983,9.318,0.906,59.900,0.686,0.167,0.900,0.533,0.208 +Mongolia,2016,5.057,9.311,0.947,60.000,0.760,0.083,0.900,0.555,0.171 +Mongolia,2017,5.334,9.344,0.924,60.100,0.675,0.112,0.865,0.552,0.214 +Mongolia,2018,5.465,9.397,0.942,60.200,0.696,0.048,0.849,0.525,0.192 +Mongolia,2019,5.563,9.430,0.946,60.300,0.711,0.142,0.873,0.562,0.167 +Mongolia,2020,6.011,9.365,0.918,60.400,0.718,0.138,0.843,0.575,0.260 +Mongolia,2021,5.721,9.365,0.927,60.500,0.667,0.215,0.851,0.560,0.202 +Mongolia,2022,5.788,9.397,0.951,60.600,0.717,0.211,0.847,0.550,0.209 +Mongolia,2023,5.580,9.433,0.938,60.700,0.699,0.220,0.871,0.545,0.197 +Montenegro,2007,5.196,9.696,0.832,65.960,0.512,-0.139,0.815,0.536,0.340 +Montenegro,2009,4.801,9.702,0.816,66.120,0.556,-0.107,0.838,0.533,0.423 +Montenegro,2010,5.455,9.727,0.805,66.200,0.552,-0.212,0.757,0.510,0.410 +Montenegro,2011,5.223,9.758,0.818,66.280,0.546,-0.232,0.762,0.510,0.378 +Montenegro,2012,5.219,9.729,0.704,66.360,0.462,-0.198,0.755,0.468,0.379 +Montenegro,2013,5.074,9.763,0.736,66.440,0.502,-0.182,0.693,0.493,0.331 +Montenegro,2014,5.283,9.780,0.863,66.520,0.503,0.091,0.768,0.545,0.368 +Montenegro,2015,5.125,9.813,0.740,66.600,0.583,-0.150,0.781,0.534,0.337 +Montenegro,2016,5.304,9.842,0.866,66.700,0.569,-0.093,0.849,0.547,0.337 +Montenegro,2017,5.615,9.887,0.881,66.800,0.626,-0.089,0.756,0.493,0.350 +Montenegro,2018,5.650,9.937,0.856,66.900,0.626,-0.057,0.769,0.527,0.355 +Montenegro,2019,5.386,9.977,0.832,67.000,0.694,-0.111,0.820,0.547,0.366 +Montenegro,2020,5.722,9.812,0.887,67.100,0.802,0.061,0.845,0.560,0.411 +Montenegro,2022,5.600,10.002,0.875,67.300,0.778,-0.022,0.802,0.485,0.317 +Montenegro,2023,5.813,10.041,0.853,67.400,0.799,-0.066,0.706,0.481,0.318 +Morocco,2010,4.383,8.821,,62.500,0.663,-0.173,0.900,, +Morocco,2011,5.085,8.861,0.833,62.660,0.579,-0.229,0.875,0.687,0.187 +Morocco,2012,4.970,8.877,0.676,62.820,0.757,-0.198,0.845,0.641,0.281 +Morocco,2013,5.142,8.904,0.597,62.980,0.572,-0.221,0.771,0.707,0.239 +Morocco,2015,5.163,8.947,0.606,63.300,0.713,-0.239,0.842,0.596,0.262 +Morocco,2016,5.386,8.940,0.655,63.400,0.817,-0.248,0.717,0.658,0.205 +Morocco,2017,5.312,8.977,0.641,63.500,0.814,-0.227,0.841,0.501,0.323 +Morocco,2018,4.897,8.996,0.554,63.600,0.773,-0.246,0.843,0.575,0.416 +Morocco,2019,5.057,9.014,0.535,63.700,0.757,-0.256,0.757,0.535,0.410 +Morocco,2020,4.803,8.929,0.553,63.800,0.819,-0.238,0.803,0.548,0.256 +Morocco,2021,5.326,8.994,0.505,63.900,0.762,-0.204,0.817,0.554,0.341 +Morocco,2022,4.596,8.995,0.564,64.000,0.795,-0.257,0.802,0.573,0.414 +Morocco,2023,4.487,9.009,0.500,64.100,0.821,-0.094,0.831,0.549,0.415 +Mozambique,2006,4.595,6.792,0.879,44.820,0.684,0.035,0.758,0.602,0.327 +Mozambique,2007,4.833,6.840,0.748,45.240,0.643,0.068,0.854,0.627,0.240 +Mozambique,2008,4.654,6.885,0.756,45.660,0.514,0.000,0.864,0.611,0.280 +Mozambique,2011,4.971,6.996,0.818,46.920,0.639,-0.030,0.719,0.565,0.243 +Mozambique,2015,4.550,7.148,0.666,48.600,0.813,0.083,0.632,0.560,0.340 +Mozambique,2017,4.280,7.160,0.678,49.500,0.823,-0.035,0.682,0.642,0.353 +Mozambique,2018,4.654,7.165,0.738,49.950,0.897,0.043,0.691,0.620,0.397 +Mozambique,2019,4.932,7.159,0.742,50.400,0.870,0.068,0.682,0.588,0.384 +Mozambique,2021,5.178,7.112,0.664,51.300,0.838,0.042,0.627,0.576,0.383 +Mozambique,2022,4.740,7.125,0.711,51.750,0.884,0.043,0.688,0.629,0.351 +Mozambique,2023,5.704,7.147,0.701,52.200,0.867,0.071,0.678,0.625,0.335 +Myanmar,2012,4.439,8.067,0.612,58.160,0.691,0.646,0.695,0.574,0.205 +Myanmar,2013,4.176,8.134,0.757,58.640,0.775,0.691,0.638,0.675,0.217 +Myanmar,2014,4.786,8.205,0.774,59.120,0.870,0.700,0.592,0.713,0.112 +Myanmar,2015,4.224,8.229,0.752,59.600,0.808,0.692,0.633,0.729,0.272 +Myanmar,2016,4.623,8.321,0.793,59.925,0.877,0.680,0.607,0.671,0.302 +Myanmar,2017,4.154,8.369,0.795,60.250,0.886,0.651,0.619,0.617,0.282 +Myanmar,2018,4.411,8.424,0.774,60.575,0.906,0.492,0.647,0.640,0.300 +Myanmar,2019,4.434,8.483,0.763,60.900,0.899,0.560,0.682,0.638,0.286 +Myanmar,2020,4.431,8.507,0.796,61.225,0.825,0.468,0.647,0.700,0.289 +Myanmar,2021,4.314,8.302,0.780,61.550,0.631,0.508,0.671,0.636,0.268 +Myanmar,2022,4.359,8.325,0.746,61.875,0.646,0.600,0.729,0.669,0.353 +Myanmar,2023,4.391,8.347,0.685,62.200,0.695,0.548,0.686,0.634,0.358 +Namibia,2007,4.886,9.073,0.828,51.880,0.781,-0.107,0.839,0.769,0.160 +Namibia,2014,4.574,9.264,0.763,54.260,0.849,-0.191,0.790,0.723,0.239 +Namibia,2017,4.441,9.243,0.828,55.350,0.810,-0.198,0.831,0.697,0.277 +Namibia,2018,4.834,9.237,0.864,55.725,0.754,-0.177,0.846,0.696,0.240 +Namibia,2019,4.436,9.211,0.845,56.100,0.739,-0.182,0.879,0.644,0.256 +Namibia,2020,4.451,9.110,0.741,56.475,0.666,-0.110,0.810,0.652,0.248 +Namibia,2021,4.491,9.128,0.808,56.850,0.659,-0.153,0.829,0.644,0.230 +Namibia,2022,4.949,9.158,0.808,57.225,0.683,-0.124,0.849,0.676,0.261 +Namibia,2023,5.055,9.167,0.852,57.600,0.674,-0.113,0.873,0.635,0.208 +Nepal,2006,4.567,7.734,0.874,59.660,0.689,,0.897,0.583,0.171 +Nepal,2007,4.748,7.761,0.787,59.720,0.413,0.303,0.891,0.502,0.152 +Nepal,2008,4.441,7.814,0.818,59.780,0.618,0.276,0.900,0.589,0.153 +Nepal,2009,4.917,7.853,0.813,59.840,0.616,0.029,0.950,0.484,0.215 +Nepal,2010,4.350,7.895,0.779,59.900,0.519,0.077,0.911,0.538,0.226 +Nepal,2011,3.809,7.924,0.741,59.960,0.525,-0.024,0.935,0.530,0.207 +Nepal,2012,4.233,7.968,0.734,60.020,0.638,0.056,0.883,0.538,0.231 +Nepal,2013,4.605,8.000,0.740,60.080,0.722,0.137,0.877,0.496,0.279 +Nepal,2014,4.975,8.056,0.786,60.140,0.712,0.108,0.841,0.492,0.287 +Nepal,2015,4.812,8.089,0.748,60.200,0.763,0.214,0.824,0.444,0.358 +Nepal,2016,5.100,8.085,0.837,60.475,0.839,0.155,0.817,0.523,0.370 +Nepal,2017,4.737,8.159,0.816,60.750,0.845,0.120,0.770,0.463,0.376 +Nepal,2018,4.910,8.221,0.768,61.025,0.770,0.107,0.742,0.457,0.387 +Nepal,2019,5.449,8.274,0.772,61.300,0.790,0.152,0.712,0.444,0.357 +Nepal,2020,5.982,8.233,0.787,61.575,0.772,0.135,0.812,0.480,0.337 +Nepal,2021,4.622,8.257,0.699,61.850,0.818,0.144,0.770,0.414,0.354 +Nepal,2022,5.474,8.294,0.753,62.125,0.844,0.149,0.760,0.473,0.342 +Nepal,2023,5.389,8.318,0.749,62.400,0.765,0.184,0.792,0.461,0.350 +Netherlands,2005,7.464,10.809,0.947,70.700,0.901,,0.571,0.701,0.233 +Netherlands,2007,7.452,10.876,0.944,70.780,0.896,0.339,0.445,0.718,0.213 +Netherlands,2008,7.631,10.894,0.944,70.820,0.883,0.359,0.419,0.679,0.182 +Netherlands,2010,7.502,10.860,0.957,70.900,0.921,0.344,0.399,0.745,0.206 +Netherlands,2011,7.564,10.870,0.938,70.940,0.925,0.330,0.359,0.770,0.181 +Netherlands,2012,7.471,10.856,0.939,70.980,0.877,0.282,0.434,0.753,0.226 +Netherlands,2013,7.407,10.852,0.925,71.020,0.919,0.299,0.505,0.765,0.235 +Netherlands,2014,7.321,10.863,0.909,71.060,0.910,0.326,0.457,0.776,0.221 +Netherlands,2015,7.324,10.878,0.879,71.100,0.904,0.256,0.412,0.742,0.202 +Netherlands,2016,7.541,10.894,0.926,71.175,0.907,0.233,0.433,0.737,0.215 +Netherlands,2017,7.459,10.917,0.937,71.250,0.920,0.245,0.363,0.729,0.185 +Netherlands,2018,7.463,10.934,0.939,71.325,0.920,0.156,0.371,0.748,0.205 +Netherlands,2019,7.425,10.947,0.941,71.400,0.886,0.207,0.360,0.728,0.231 +Netherlands,2020,7.504,10.902,0.944,71.475,0.935,0.145,0.281,0.691,0.247 +Netherlands,2021,7.314,10.944,0.919,71.550,0.856,0.266,0.397,0.714,0.201 +Netherlands,2022,7.390,10.978,0.929,71.625,0.868,0.223,0.459,0.711,0.198 +Netherlands,2023,7.255,10.977,0.915,71.700,0.847,0.223,0.424,0.693,0.202 +New Zealand,2006,7.305,10.541,0.946,69.720,0.932,0.304,0.224,0.825,0.219 +New Zealand,2007,7.604,10.562,0.967,69.740,0.878,0.272,0.295,0.803,0.238 +New Zealand,2008,7.381,10.541,0.944,69.760,0.893,0.291,0.334,0.784,0.232 +New Zealand,2010,7.224,10.534,0.976,69.800,0.918,0.247,0.321,0.783,0.235 +New Zealand,2011,7.191,10.548,0.954,69.820,0.935,0.278,0.269,0.784,0.210 +New Zealand,2012,7.250,10.565,0.930,69.840,0.902,0.280,0.289,0.786,0.207 +New Zealand,2013,7.280,10.585,0.958,69.860,0.944,0.230,0.312,0.778,0.151 +New Zealand,2014,7.306,10.605,0.942,69.880,0.932,0.341,0.273,0.807,0.199 +New Zealand,2015,7.418,10.622,0.987,69.900,0.942,0.322,0.186,0.795,0.160 +New Zealand,2016,7.226,10.637,0.937,69.975,0.927,0.259,0.278,0.777,0.207 +New Zealand,2017,7.327,10.650,0.955,70.050,0.942,0.287,0.222,0.763,0.172 +New Zealand,2018,7.370,10.667,0.954,70.125,0.949,0.113,0.207,0.785,0.168 +New Zealand,2019,7.205,10.675,0.939,70.200,0.912,0.150,0.234,0.765,0.191 +New Zealand,2020,7.257,10.647,0.952,70.275,0.918,0.116,0.283,0.796,0.209 +New Zealand,2021,7.137,10.693,0.950,70.350,0.910,0.216,0.252,0.747,0.206 +New Zealand,2022,6.975,10.712,0.956,70.425,0.831,0.183,0.281,0.706,0.210 +New Zealand,2023,6.976,10.720,0.933,70.500,0.877,0.181,0.304,0.738,0.229 +Nicaragua,2006,4.460,8.395,0.877,64.300,0.745,0.005,0.844,0.780,0.294 +Nicaragua,2007,4.944,8.431,0.866,64.400,0.836,0.135,0.826,0.787,0.287 +Nicaragua,2008,5.104,8.450,0.857,64.500,0.791,0.070,0.819,0.770,0.289 +Nicaragua,2009,5.353,8.402,0.835,64.600,0.746,0.065,0.794,0.740,0.299 +Nicaragua,2010,5.687,8.431,0.863,64.700,0.792,0.013,0.802,0.749,0.268 +Nicaragua,2011,5.386,8.478,0.800,64.800,0.779,-0.024,0.760,0.747,0.309 +Nicaragua,2012,5.448,8.526,0.894,64.900,0.850,0.012,0.644,0.762,0.255 +Nicaragua,2013,5.772,8.559,0.868,65.000,0.859,0.034,0.636,0.800,0.271 +Nicaragua,2014,6.275,8.591,0.839,65.100,0.817,0.099,0.699,0.782,0.334 +Nicaragua,2015,5.924,8.624,0.827,65.200,0.809,0.073,0.728,0.771,0.346 +Nicaragua,2016,6.013,8.654,0.853,65.275,0.717,0.035,0.731,0.787,0.380 +Nicaragua,2017,6.476,8.685,0.838,65.350,0.922,0.006,0.673,0.793,0.308 +Nicaragua,2018,5.819,8.637,0.854,65.425,0.797,0.004,0.713,0.743,0.408 +Nicaragua,2019,6.113,8.594,0.874,65.500,0.883,0.024,0.622,0.790,0.337 +Nicaragua,2020,6.287,8.562,0.856,65.575,0.818,0.037,0.631,0.775,0.316 +Nicaragua,2021,6.095,8.647,0.848,65.650,0.905,0.020,0.675,0.799,0.293 +Nicaragua,2022,6.392,8.669,0.844,65.725,0.914,-0.004,0.570,0.787,0.339 +Nicaragua,2023,6.362,8.685,0.836,65.800,0.906,-0.008,0.532,0.772,0.340 +Niger,2006,3.737,6.872,0.677,50.140,0.750,0.073,0.755,0.746,0.179 +Niger,2007,4.277,6.867,0.726,50.580,0.584,-0.060,0.748,0.723,0.158 +Niger,2008,4.236,6.905,0.607,51.020,0.649,-0.059,0.749,0.689,0.194 +Niger,2009,4.267,6.887,0.771,51.460,0.880,-0.013,0.483,0.714,0.115 +Niger,2010,4.101,6.932,0.655,51.900,0.817,-0.027,0.529,0.715,0.126 +Niger,2011,4.556,6.918,0.818,52.340,0.780,-0.060,0.549,0.710,0.166 +Niger,2012,3.798,6.980,0.700,52.780,0.734,-0.068,0.777,0.582,0.142 +Niger,2013,3.716,6.994,0.696,53.220,0.825,-0.082,0.711,0.639,0.208 +Niger,2014,4.181,7.020,0.753,53.660,0.688,-0.051,0.605,0.629,0.205 +Niger,2015,3.671,7.025,0.713,54.100,0.728,-0.037,0.703,0.665,0.218 +Niger,2016,4.235,7.042,0.683,54.450,0.702,-0.020,0.814,0.646,0.325 +Niger,2017,4.616,7.053,0.582,54.800,0.684,-0.035,0.778,0.699,0.427 +Niger,2018,5.164,7.084,0.612,55.150,0.791,0.004,0.637,0.759,0.503 +Niger,2019,5.004,7.105,0.677,55.500,0.831,0.021,0.729,0.794,0.304 +Niger,2022,4.501,7.151,0.587,56.550,0.793,0.024,0.740,0.787,0.366 +Niger,2023,4.609,7.181,0.638,56.900,0.767,0.029,,0.747,0.417 +Nigeria,2006,4.710,8.314,0.735,50.220,0.649,0.080,0.871,0.772,0.178 +Nigeria,2007,4.890,8.350,0.718,50.540,0.635,0.132,0.918,0.815,0.141 +Nigeria,2008,4.939,8.389,0.780,50.860,0.584,0.115,0.892,0.755,0.244 +Nigeria,2009,4.980,8.439,0.722,51.180,0.537,0.063,0.913,0.730,0.225 +Nigeria,2010,4.760,8.488,0.824,51.500,0.565,0.062,0.911,0.759,0.190 +Nigeria,2012,5.493,8.526,0.818,52.140,0.652,0.062,0.900,0.782,0.209 +Nigeria,2013,4.818,8.564,0.663,52.460,0.622,0.046,0.905,0.652,0.286 +Nigeria,2015,4.933,8.600,0.812,53.100,0.680,-0.040,0.926,0.715,0.251 +Nigeria,2016,5.220,8.558,0.805,53.425,0.798,0.039,0.905,0.745,0.252 +Nigeria,2017,5.322,8.541,0.733,53.750,0.826,0.120,0.835,0.682,0.236 +Nigeria,2018,5.252,8.535,0.741,54.075,0.790,-0.015,0.866,0.762,0.256 +Nigeria,2019,4.266,8.532,0.735,54.400,0.746,0.019,0.873,0.698,0.229 +Nigeria,2020,5.503,8.490,0.739,54.725,0.713,0.094,0.913,0.737,0.316 +Nigeria,2021,4.479,8.502,0.742,55.050,0.726,0.047,0.912,0.666,0.188 +Nigeria,2022,5.294,8.510,0.785,55.375,0.776,0.172,0.935,0.760,0.253 +Nigeria,2023,4.869,8.514,0.781,55.700,0.720,0.209,0.877,0.721,0.266 +North Macedonia,2007,4.494,9.434,0.811,64.660,0.439,0.073,0.870,0.558,0.251 +North Macedonia,2009,4.428,9.481,0.734,64.820,0.552,-0.049,0.844,0.488,0.370 +North Macedonia,2010,4.180,9.512,0.687,64.900,0.513,-0.065,0.856,0.473,0.314 +North Macedonia,2011,4.898,9.533,0.784,64.980,0.607,-0.094,0.865,0.503,0.363 +North Macedonia,2012,4.640,9.527,0.798,65.060,0.613,-0.091,0.920,0.551,0.422 +North Macedonia,2013,5.186,9.555,0.832,65.140,0.641,0.018,0.861,0.521,0.331 +North Macedonia,2014,5.204,9.589,0.793,65.220,0.645,0.028,0.861,0.583,0.307 +North Macedonia,2015,4.976,9.625,0.766,65.300,0.660,-0.053,0.824,0.551,0.299 +North Macedonia,2016,5.346,9.652,0.871,65.500,0.706,0.073,0.870,0.587,0.292 +North Macedonia,2017,5.234,9.662,0.800,65.700,0.752,-0.065,0.856,0.447,0.299 +North Macedonia,2018,5.240,9.689,0.849,65.900,0.745,-0.048,0.910,0.512,0.298 +North Macedonia,2019,5.015,9.728,0.815,66.100,0.725,0.018,0.923,0.515,0.304 +North Macedonia,2020,5.054,9.666,0.750,66.300,0.787,0.127,0.877,0.542,0.365 +North Macedonia,2021,5.535,9.724,0.809,66.500,0.793,0.188,0.884,0.563,0.303 +North Macedonia,2022,5.167,9.749,0.850,66.700,0.723,0.068,0.937,0.555,0.277 +North Macedonia,2023,5.403,9.776,0.883,66.900,0.738,0.123,0.917,0.517,0.272 +Norway,2006,7.416,11.056,0.959,69.400,0.960,0.101,0.397,0.767,0.197 +Norway,2008,7.632,11.066,0.936,69.800,0.947,0.010,0.503,0.763,0.155 +Norway,2012,7.678,11.041,0.948,70.600,0.947,0.139,0.368,0.798,0.213 +Norway,2014,7.444,11.048,0.941,71.000,0.956,0.173,0.405,0.802,0.194 +Norway,2015,7.603,11.057,0.947,71.200,0.948,0.249,0.299,0.796,0.209 +Norway,2016,7.596,11.060,0.960,71.250,0.954,0.125,0.410,0.809,0.209 +Norway,2017,7.579,11.076,0.950,71.300,0.953,0.228,0.250,0.800,0.203 +Norway,2018,7.444,11.077,0.966,71.350,0.960,0.086,0.268,0.786,0.212 +Norway,2019,7.442,11.082,0.942,71.400,0.954,0.103,0.271,0.782,0.195 +Norway,2020,7.290,11.063,0.956,71.450,0.965,0.068,0.271,0.777,0.216 +Norway,2021,7.362,11.096,0.948,71.500,0.936,0.166,0.263,0.769,0.207 +Norway,2022,7.295,11.119,0.927,71.550,0.939,0.182,0.314,0.759,0.211 +Norway,2023,7.249,11.125,0.952,71.600,0.938,0.219,0.245,0.756,0.228 +Oman,2011,6.853,10.539,,62.340,0.916,0.008,,,0.295 +Pakistan,2005,5.225,8.252,0.591,53.200,0.630,,0.844,,0.237 +Pakistan,2007,5.671,8.314,0.479,53.720,0.396,0.081,0.794,0.583,0.310 +Pakistan,2008,4.414,8.309,0.373,53.980,0.335,0.092,0.848,0.533,0.321 +Pakistan,2009,5.208,8.315,0.522,54.240,0.388,0.069,0.874,0.516,0.349 +Pakistan,2010,5.786,8.308,0.571,54.500,0.364,0.292,0.852,0.527,0.372 +Pakistan,2011,5.267,8.314,0.510,54.760,0.376,0.022,0.857,0.473,0.358 +Pakistan,2012,5.132,8.331,0.542,55.020,0.367,0.157,0.842,0.510,0.332 +Pakistan,2013,5.138,8.359,0.607,55.280,0.448,0.091,0.792,0.474,0.274 +Pakistan,2014,5.436,8.390,0.552,55.540,0.543,0.131,0.677,0.475,0.295 +Pakistan,2015,4.823,8.423,0.562,55.800,0.587,0.076,0.717,0.469,0.329 +Pakistan,2016,5.549,8.465,0.627,56.075,0.634,0.084,0.793,0.503,0.332 +Pakistan,2017,5.831,8.495,0.690,56.350,0.713,0.035,0.714,0.489,0.308 +Pakistan,2018,5.472,8.540,0.685,56.625,0.773,0.058,0.799,0.470,0.377 +Pakistan,2019,4.443,8.548,0.617,56.900,0.685,0.112,0.776,0.489,0.424 +Pakistan,2020,4.624,8.518,0.594,57.175,0.767,0.003,0.833,0.470,0.376 +Pakistan,2021,4.487,8.563,0.608,57.450,0.764,0.007,0.743,0.518,0.307 +Pakistan,2022,4.931,8.604,0.590,57.725,0.745,0.000,0.865,0.469,0.368 +Pakistan,2023,4.549,8.588,0.553,58.000,0.661,0.070,0.889,0.504,0.417 +Panama,2006,6.128,9.806,0.951,66.860,0.882,-0.056,0.912,0.826,0.232 +Panama,2007,6.894,9.901,0.937,67.020,0.640,0.074,0.915,0.789,0.149 +Panama,2008,6.931,9.977,0.922,67.180,0.707,0.051,0.881,0.776,0.150 +Panama,2009,7.034,9.971,0.905,67.340,0.721,0.006,0.889,0.839,0.144 +Panama,2010,7.321,10.010,0.928,67.500,0.755,-0.017,0.880,0.841,0.146 +Panama,2011,7.248,10.099,0.876,67.660,0.829,0.000,0.840,0.853,0.180 +Panama,2012,6.860,10.174,0.897,67.820,0.783,-0.011,0.796,0.838,0.207 +Panama,2013,6.866,10.224,0.896,67.980,0.811,0.010,0.814,0.860,0.226 +Panama,2014,6.631,10.256,0.873,68.140,0.894,-0.007,0.847,0.799,0.254 +Panama,2015,6.606,10.294,0.883,68.300,0.847,-0.016,0.810,0.777,0.264 +Panama,2016,6.118,10.325,0.882,68.400,0.884,-0.111,0.837,0.813,0.244 +Panama,2017,6.568,10.362,0.912,68.500,0.900,-0.178,0.841,0.795,0.242 +Panama,2018,6.281,10.382,0.904,68.600,0.861,-0.139,0.837,0.841,0.223 +Panama,2019,6.086,10.398,0.886,68.700,0.883,-0.208,0.869,0.841,0.244 +Panama,2021,6.553,10.323,0.899,68.900,0.811,-0.152,0.861,0.834,0.218 +Panama,2022,5.979,10.412,0.891,69.000,0.899,-0.128,0.887,0.821,0.259 +Panama,2023,6.543,10.455,0.887,69.100,0.852,-0.147,0.871,0.829,0.257 +Paraguay,2006,4.730,9.154,0.895,64.880,0.691,0.056,0.841,0.752,0.303 +Paraguay,2007,5.272,9.197,0.863,64.960,0.699,0.121,0.930,0.812,0.219 +Paraguay,2008,5.570,9.250,0.889,65.040,0.649,0.046,0.891,0.798,0.259 +Paraguay,2009,5.576,9.237,0.900,65.120,0.718,0.016,0.857,0.803,0.186 +Paraguay,2010,5.841,9.331,0.889,65.200,0.726,0.065,0.780,0.826,0.176 +Paraguay,2011,5.677,9.360,0.869,65.280,0.666,0.179,0.756,0.823,0.190 +Paraguay,2012,5.820,9.339,0.931,65.360,0.748,0.188,0.774,0.849,0.213 +Paraguay,2013,5.936,9.405,0.939,65.440,0.909,0.034,0.903,0.874,0.224 +Paraguay,2014,5.119,9.443,0.959,65.520,0.759,-0.013,0.762,0.876,0.216 +Paraguay,2015,5.560,9.458,0.914,65.600,0.806,-0.019,0.863,0.832,0.219 +Paraguay,2016,5.801,9.485,0.940,65.650,0.854,-0.082,0.756,0.833,0.197 +Paraguay,2017,5.713,9.518,0.902,65.700,0.891,-0.008,0.810,0.820,0.232 +Paraguay,2019,5.653,9.519,0.892,65.800,0.876,0.017,0.882,0.790,0.275 +Paraguay,2020,5.501,9.497,0.907,65.850,0.865,0.054,0.829,0.767,0.269 +Paraguay,2021,5.576,9.523,0.908,65.900,0.888,0.015,0.857,0.806,0.248 +Paraguay,2022,6.138,9.513,0.899,65.950,0.922,-0.014,0.839,0.821,0.238 +Paraguay,2023,6.214,9.549,0.889,66.000,0.902,-0.004,0.835,0.833,0.240 +Peru,2006,4.811,8.979,0.875,66.460,0.668,-0.076,0.895,0.675,0.420 +Peru,2007,5.214,9.054,0.756,66.720,0.638,-0.082,0.931,0.730,0.361 +Peru,2008,5.129,9.134,0.777,66.980,0.638,-0.072,0.896,0.701,0.354 +Peru,2009,5.519,9.138,0.799,67.240,0.638,-0.084,0.880,0.758,0.320 +Peru,2010,5.613,9.210,0.812,67.500,0.757,-0.066,0.881,0.744,0.330 +Peru,2011,5.892,9.263,0.756,67.760,0.773,-0.128,0.824,0.742,0.331 +Peru,2012,5.825,9.313,0.764,68.020,0.703,-0.084,0.867,0.705,0.398 +Peru,2013,5.783,9.361,0.797,68.280,0.703,-0.071,0.870,0.741,0.390 +Peru,2014,5.866,9.374,0.819,68.540,0.722,-0.141,0.878,0.743,0.319 +Peru,2015,5.577,9.394,0.798,68.800,0.802,-0.095,0.884,0.744,0.378 +Peru,2016,5.701,9.419,0.803,68.975,0.830,-0.139,0.866,0.791,0.338 +Peru,2017,5.711,9.429,0.830,69.150,0.827,-0.160,0.895,0.768,0.394 +Peru,2018,5.680,9.449,0.845,69.325,0.830,-0.184,0.906,0.783,0.380 +Peru,2019,5.999,9.452,0.809,69.500,0.815,-0.135,0.874,0.794,0.375 +Peru,2020,4.994,9.323,0.749,69.675,0.806,-0.094,0.912,0.736,0.481 +Peru,2021,5.694,9.436,0.819,69.850,0.812,-0.090,0.880,0.784,0.369 +Peru,2022,5.892,9.453,0.823,70.025,0.764,-0.180,0.884,0.755,0.378 +Peru,2023,5.936,9.459,0.787,70.200,0.757,-0.061,0.919,0.765,0.370 +Philippines,2006,4.670,8.562,0.795,61.360,0.828,0.058,0.841,0.756, +Philippines,2007,5.074,8.606,0.801,61.420,0.852,-0.027,0.880,0.736,0.378 +Philippines,2008,4.589,8.630,0.798,61.480,0.861,0.078,0.817,0.774,0.384 +Philippines,2009,4.880,8.626,0.775,61.540,0.874,-0.001,0.805,0.791,0.311 +Philippines,2010,4.942,8.679,0.805,61.600,0.893,0.028,0.812,0.829,0.294 +Philippines,2011,4.994,8.699,0.789,61.660,0.883,0.068,0.783,0.808,0.358 +Philippines,2012,5.002,8.748,0.813,61.720,0.914,0.048,0.771,0.811,0.351 +Philippines,2013,4.977,8.796,0.846,61.780,0.907,0.016,0.756,0.796,0.332 +Philippines,2014,5.313,8.842,0.813,61.840,0.902,-0.020,0.787,0.787,0.334 +Philippines,2015,5.547,8.887,0.854,61.900,0.912,-0.056,0.755,0.796,0.351 +Philippines,2016,5.431,8.938,0.821,61.925,0.908,-0.076,0.792,0.807,0.290 +Philippines,2017,5.594,8.987,0.851,61.950,0.926,-0.146,0.711,0.753,0.341 +Philippines,2018,5.869,9.032,0.846,61.975,0.918,-0.112,0.726,0.756,0.393 +Philippines,2019,6.268,9.075,0.845,62.000,0.910,-0.087,0.748,0.765,0.341 +Philippines,2020,5.080,8.958,0.781,62.025,0.932,-0.114,0.744,0.793,0.327 +Philippines,2021,5.965,8.999,0.778,62.050,0.905,-0.012,0.721,0.790,0.323 +Philippines,2022,5.995,9.057,0.819,62.075,0.952,-0.155,0.757,0.833,0.301 +Philippines,2023,6.184,9.102,0.796,62.100,0.932,-0.038,0.768,0.800,0.324 +Poland,2005,5.587,9.844,0.922,66.200,0.782,,0.983,0.611,0.282 +Poland,2007,5.886,9.973,0.913,66.560,0.772,-0.053,0.925,0.665,0.238 +Poland,2009,5.772,10.041,0.917,66.920,0.821,0.068,0.898,0.649,0.246 +Poland,2010,5.887,10.073,0.955,67.100,0.795,-0.003,0.905,0.686,0.234 +Poland,2011,5.646,10.122,0.905,67.280,0.868,-0.072,0.908,0.659,0.224 +Poland,2012,5.876,10.137,0.936,67.460,0.811,-0.032,0.888,0.711,0.267 +Poland,2013,5.746,10.146,0.912,67.640,0.776,-0.142,0.916,0.675,0.242 +Poland,2014,5.750,10.184,0.924,67.820,0.875,-0.069,0.898,0.681,0.223 +Poland,2015,6.007,10.228,0.893,68.000,0.793,-0.098,0.810,0.631,0.240 +Poland,2016,6.162,10.258,0.917,68.175,0.871,-0.096,0.848,0.666,0.224 +Poland,2017,6.201,10.308,0.882,68.350,0.831,-0.127,0.639,0.566,0.203 +Poland,2018,6.111,10.365,0.863,68.525,0.870,-0.260,0.720,0.622,0.176 +Poland,2019,6.242,10.409,0.878,68.700,0.883,-0.237,0.696,0.613,0.168 +Poland,2020,6.139,10.390,0.953,68.875,0.767,-0.014,0.787,0.677,0.329 +Poland,2021,5.978,10.461,0.936,69.050,0.732,0.122,0.744,0.700,0.277 +Poland,2022,6.666,10.513,0.886,69.225,0.800,-0.209,0.667,0.594,0.140 +Poland,2023,6.685,10.527,0.890,69.400,0.775,-0.232,0.662,0.556,0.155 +Portugal,2006,5.405,10.359,0.905,68.340,0.882,-0.184,0.880,0.647,0.333 +Portugal,2008,5.717,10.383,0.886,68.820,0.646,-0.223,0.933,0.667,0.309 +Portugal,2010,5.095,10.367,0.864,69.300,0.721,-0.112,0.948,0.681,0.265 +Portugal,2011,5.220,10.352,0.856,69.540,0.875,-0.179,0.962,0.671,0.279 +Portugal,2012,4.994,10.314,0.866,69.780,0.774,-0.103,0.959,0.631,0.370 +Portugal,2013,5.158,10.310,0.867,70.020,0.788,-0.124,0.946,0.665,0.348 +Portugal,2014,5.127,10.324,0.862,70.260,0.847,-0.132,0.941,0.663,0.358 +Portugal,2015,5.081,10.346,0.866,70.500,0.800,-0.169,0.941,0.629,0.371 +Portugal,2016,5.447,10.369,0.905,70.625,0.838,-0.231,0.922,0.659,0.326 +Portugal,2017,5.711,10.406,0.900,70.750,0.905,-0.182,0.881,0.608,0.294 +Portugal,2018,5.920,10.435,0.887,70.875,0.877,-0.267,0.880,0.646,0.318 +Portugal,2019,6.095,10.462,0.876,71.000,0.882,-0.240,0.915,0.675,0.300 +Portugal,2020,5.768,10.374,0.875,71.125,0.913,-0.244,0.867,0.614,0.383 +Portugal,2021,6.183,10.425,0.895,71.250,0.892,-0.211,0.872,0.629,0.284 +Portugal,2022,5.953,10.484,0.862,71.375,0.903,-0.139,0.893,0.638,0.316 +Portugal,2023,5.954,10.504,0.895,71.500,0.847,-0.176,0.889,0.661,0.309 +Qatar,2009,6.418,11.434,0.894,64.360,0.865,0.230,0.184,0.673,0.258 +Qatar,2010,6.850,11.551,,64.700,,0.095,,, +Qatar,2011,6.592,11.625,0.857,65.040,0.905,0.000,,0.661,0.328 +Qatar,2012,6.611,11.617,0.838,65.380,0.924,0.149,,0.683,0.322 +Qatar,2015,6.375,11.532,,66.400,,,,, +Romania,2005,5.049,9.733,0.838,64.500,0.800,,0.957,0.576,0.346 +Romania,2007,5.394,9.901,0.736,64.860,0.686,-0.194,0.949,0.575,0.277 +Romania,2009,5.368,9.958,0.812,65.220,0.606,-0.203,0.967,0.545,0.270 +Romania,2010,4.909,9.924,0.689,65.400,0.566,-0.091,0.974,0.539,0.344 +Romania,2011,5.023,9.973,0.753,65.580,0.650,-0.148,0.964,0.501,0.294 +Romania,2012,5.167,9.997,0.740,65.760,0.645,-0.120,0.959,0.520,0.343 +Romania,2013,5.082,10.003,0.778,65.940,0.655,-0.135,0.952,0.541,0.329 +Romania,2014,5.727,10.047,0.753,66.120,0.754,-0.107,0.958,0.565,0.331 +Romania,2015,5.777,10.083,0.787,66.300,0.796,-0.147,0.962,0.627,0.312 +Romania,2016,5.969,10.117,0.809,66.425,0.822,-0.120,0.949,0.607,0.258 +Romania,2017,6.090,10.201,0.811,66.550,0.839,-0.165,0.926,0.632,0.231 +Romania,2018,6.151,10.266,0.818,66.675,0.845,-0.224,0.921,0.649,0.298 +Romania,2019,6.130,10.309,0.842,66.800,0.848,-0.228,0.954,0.605,0.244 +Romania,2020,6.785,10.277,0.869,66.925,0.863,-0.161,0.918,0.668,0.256 +Romania,2021,6.549,10.341,0.835,67.050,0.871,-0.187,0.928,0.674,0.264 +Romania,2022,6.437,10.396,0.830,67.175,0.836,-0.173,0.941,0.615,0.258 +Romania,2023,6.489,10.431,0.826,67.300,0.849,-0.202,0.905,0.628,0.271 +Russia,2006,4.964,9.988,0.895,58.740,0.643,-0.312,0.935,0.534,0.232 +Russia,2007,5.223,10.071,0.885,59.180,0.593,-0.289,0.933,0.546,0.193 +Russia,2008,5.619,10.122,0.882,59.620,0.643,-0.311,0.924,0.570,0.166 +Russia,2009,5.158,10.041,0.908,60.060,0.617,-0.289,0.954,0.540,0.169 +Russia,2010,5.385,10.084,0.909,60.500,0.613,-0.302,0.937,0.567,0.171 +Russia,2011,5.389,10.126,0.883,60.940,0.626,-0.284,0.935,0.564,0.165 +Russia,2012,5.621,10.163,0.901,61.380,0.609,-0.298,0.938,0.563,0.174 +Russia,2013,5.537,10.179,0.881,61.820,0.661,-0.295,0.934,0.592,0.180 +Russia,2014,6.037,10.168,0.932,62.260,0.744,-0.270,0.869,0.617,0.151 +Russia,2015,5.996,10.146,0.924,62.700,0.685,-0.177,0.913,0.609,0.130 +Russia,2016,5.855,10.146,0.911,63.075,0.714,-0.187,0.925,0.587,0.142 +Russia,2017,5.579,10.163,0.896,63.450,0.731,-0.151,0.862,0.651,0.195 +Russia,2018,5.514,10.191,0.909,63.825,0.729,-0.153,0.865,0.615,0.199 +Russia,2019,5.441,10.213,0.910,64.200,0.715,-0.122,0.848,0.632,0.200 +Russia,2020,5.495,10.188,0.887,64.575,0.714,-0.078,0.823,0.621,0.190 +Russia,2021,5.448,10.247,0.862,64.950,0.671,0.053,0.808,0.590,0.190 +Russia,2022,6.044,10.225,0.920,65.325,0.776,-0.074,0.767,0.614,0.211 +Russia,2023,5.865,10.209,0.854,65.700,0.750,0.056,0.733,0.616,0.190 +Rwanda,2006,4.215,7.087,0.718,53.500,0.915,,0.299,0.701,0.189 +Rwanda,2008,4.363,7.213,0.486,54.700,0.752,0.014,0.286,0.633,0.221 +Rwanda,2009,4.030,7.247,0.559,55.300,0.766,-0.004,0.410,0.658,0.112 +Rwanda,2011,4.097,7.343,0.570,56.500,0.829,-0.042,0.161,0.608,0.154 +Rwanda,2012,3.333,7.401,0.637,57.100,0.835,-0.015,0.081,0.624,0.132 +Rwanda,2013,3.466,7.423,0.750,57.700,0.904,-0.031,0.117,0.728,0.167 +Rwanda,2014,3.596,7.459,0.748,58.300,0.894,-0.026,0.078,0.748,0.134 +Rwanda,2015,3.483,7.520,0.678,58.900,0.908,0.022,0.095,0.692,0.206 +Rwanda,2016,3.333,7.554,0.665,59.225,0.911,0.022,0.159,0.715,0.285 +Rwanda,2017,3.108,7.568,0.517,59.550,0.908,0.048,0.214,0.724,0.358 +Rwanda,2018,3.561,7.625,0.616,59.875,0.924,0.053,0.164,0.765,0.308 +Rwanda,2019,3.268,7.692,0.489,60.200,0.869,0.060,0.168,0.717,0.418 +Saudi Arabia,2005,7.080,10.679,0.868,61.200,,,0.505,0.681,0.243 +Saudi Arabia,2007,7.267,10.646,0.892,61.600,0.622,0.002,,0.718,0.232 +Saudi Arabia,2008,6.811,10.668,0.823,61.800,0.532,-0.024,0.508,0.607,0.202 +Saudi Arabia,2009,6.148,10.610,0.921,62.000,0.639,-0.111,0.445,0.683,0.319 +Saudi Arabia,2010,6.307,10.627,0.880,62.200,0.678,-0.034,,0.645,0.297 +Saudi Arabia,2011,6.700,10.706,0.830,62.400,0.603,-0.144,,0.699,0.240 +Saudi Arabia,2012,6.396,10.737,0.867,62.600,0.560,-0.123,,0.692,0.225 +Saudi Arabia,2013,6.495,10.744,0.827,62.800,0.661,-0.085,,0.691,0.276 +Saudi Arabia,2014,6.278,10.763,0.818,63.000,0.762,-0.077,,0.663,0.313 +Saudi Arabia,2015,6.345,10.790,0.820,63.200,0.820,-0.050,,0.668,0.327 +Saudi Arabia,2016,6.474,10.793,0.890,63.400,0.774,-0.138,,0.725,0.266 +Saudi Arabia,2017,6.294,10.770,0.840,63.600,0.814,-0.138,,0.703,0.306 +Saudi Arabia,2018,6.356,10.773,0.868,63.800,0.855,-0.198,,0.696,0.288 +Saudi Arabia,2019,6.561,10.758,0.912,64.000,0.891,-0.153,,0.674,0.238 +Saudi Arabia,2020,6.560,10.709,0.890,64.200,0.884,-0.117,,0.702,0.251 +Saudi Arabia,2021,6.445,10.749,0.859,64.400,0.902,-0.108,,0.728,0.228 +Saudi Arabia,2022,6.382,10.820,0.900,64.600,,-0.032,,0.677,0.205 +Saudi Arabia,2023,6.953,10.829,0.884,64.800,,0.028,,0.737,0.240 +Senegal,2006,4.417,7.930,0.760,55.500,0.736,-0.059,0.805,0.687,0.225 +Senegal,2007,4.680,7.931,0.718,55.800,0.698,-0.009,0.827,0.718,0.199 +Senegal,2008,4.683,7.941,0.756,56.100,0.612,-0.037,0.879,0.669,0.252 +Senegal,2009,4.335,7.942,0.810,56.400,0.557,-0.044,0.918,0.708,0.228 +Senegal,2010,4.372,7.948,0.760,56.700,0.777,-0.085,0.851,0.670,0.143 +Senegal,2011,3.834,7.934,0.602,57.000,0.641,-0.168,0.870,0.696,0.180 +Senegal,2012,3.669,7.946,0.711,57.300,0.668,-0.042,0.852,0.722,0.214 +Senegal,2013,3.647,7.943,0.823,57.600,0.636,-0.058,0.837,0.694,0.165 +Senegal,2014,4.395,7.976,0.856,57.900,0.692,-0.052,0.700,0.696,0.157 +Senegal,2015,4.617,8.010,0.702,58.200,0.720,-0.117,0.765,0.710,0.208 +Senegal,2016,4.595,8.045,0.839,58.500,0.744,-0.092,0.794,0.781,0.245 +Senegal,2017,4.683,8.089,0.744,58.800,0.687,-0.050,0.825,0.751,0.291 +Senegal,2018,4.769,8.122,0.739,59.100,0.629,-0.080,0.805,0.724,0.247 +Senegal,2019,5.489,8.140,0.688,59.400,0.759,-0.025,0.796,0.768,0.332 +Senegal,2020,4.757,8.127,0.621,59.700,0.797,-0.052,0.855,0.816,0.268 +Senegal,2021,4.903,8.164,0.645,60.000,0.759,0.026,0.821,0.812,0.265 +Senegal,2022,4.907,8.179,0.609,60.300,0.758,0.049,0.854,0.813,0.287 +Senegal,2023,5.093,8.200,0.668,60.600,0.798,0.048,0.836,0.825,0.258 +Serbia,2007,4.750,9.536,0.844,65.280,0.453,-0.171,0.905,0.528,0.334 +Serbia,2009,4.380,9.571,0.770,65.560,0.373,-0.184,0.961,0.466,0.435 +Serbia,2010,4.461,9.583,0.726,65.700,0.463,-0.176,0.965,0.446,0.415 +Serbia,2011,4.815,9.611,0.773,65.840,0.440,-0.191,0.977,0.458,0.410 +Serbia,2012,5.155,9.609,0.819,65.980,0.461,-0.136,0.952,0.447,0.371 +Serbia,2013,5.102,9.642,0.828,66.120,0.533,-0.106,0.908,0.505,0.403 +Serbia,2014,5.113,9.631,0.783,66.260,0.532,0.066,0.912,0.473,0.326 +Serbia,2015,5.318,9.654,0.816,66.400,0.546,-0.068,0.859,0.472,0.303 +Serbia,2016,5.753,9.692,0.895,66.525,0.614,-0.074,0.890,0.492,0.298 +Serbia,2017,5.122,9.718,0.884,66.650,0.685,-0.084,0.851,0.485,0.326 +Serbia,2018,5.936,9.767,0.853,66.775,0.740,-0.106,0.864,0.527,0.296 +Serbia,2019,6.241,9.815,0.903,66.900,0.753,-0.046,0.813,0.474,0.242 +Serbia,2020,6.042,9.813,0.852,67.025,0.843,0.142,0.824,0.579,0.358 +Serbia,2021,6.245,9.895,0.890,67.150,0.850,0.261,0.806,0.568,0.311 +Serbia,2022,6.546,9.928,0.896,67.275,0.782,0.074,0.801,0.514,0.275 +Serbia,2023,6.441,9.961,0.895,67.400,0.807,0.085,0.782,0.526,0.206 +Sierra Leone,2006,3.628,7.122,0.561,46.280,0.679,0.097,0.836,0.535,0.381 +Sierra Leone,2007,3.585,7.177,0.686,46.660,0.720,0.243,0.830,0.635,0.290 +Sierra Leone,2008,2.997,7.205,0.591,47.040,0.716,0.144,0.925,0.588,0.370 +Sierra Leone,2010,4.134,7.245,0.812,47.800,0.726,0.008,0.910,0.497,0.290 +Sierra Leone,2011,4.502,7.277,0.782,48.180,0.770,0.001,0.855,0.495,0.300 +Sierra Leone,2013,4.514,7.557,0.708,48.940,0.720,-0.075,0.856,0.540,0.423 +Sierra Leone,2014,4.500,7.577,0.869,49.320,0.681,0.030,0.786,0.622,0.334 +Sierra Leone,2015,4.909,7.324,0.611,49.700,0.624,0.047,0.825,0.626,0.414 +Sierra Leone,2016,4.733,7.361,0.657,50.500,0.681,0.103,0.863,0.616,0.456 +Sierra Leone,2017,4.090,7.374,0.652,51.300,0.711,0.076,0.848,0.607,0.495 +Sierra Leone,2018,4.306,7.384,0.650,52.100,0.716,0.093,0.856,0.533,0.466 +Sierra Leone,2019,3.447,7.412,0.611,52.900,0.718,0.072,0.874,0.521,0.438 +Sierra Leone,2021,3.714,7.387,0.609,54.500,0.659,0.106,0.851,0.538,0.448 +Sierra Leone,2022,2.560,7.400,0.502,55.300,0.660,0.097,0.862,0.494,0.505 +Sierra Leone,2023,3.467,7.412,0.601,56.100,0.694,0.101,0.866,0.504,0.430 +Singapore,2006,6.463,11.168,0.904,71.580,0.757,0.132,,0.689,0.267 +Singapore,2007,6.834,11.213,0.921,71.760,0.867,0.287,0.064,0.588,0.114 +Singapore,2008,6.642,11.178,0.845,71.940,0.661,0.040,0.066,0.627,0.256 +Singapore,2009,6.145,11.149,0.866,72.120,0.776,-0.081,0.035,0.450,0.208 +Singapore,2010,6.531,11.267,0.864,72.300,0.846,-0.024,0.060,0.527,0.131 +Singapore,2011,6.561,11.306,0.904,72.480,0.822,-0.155,0.099,0.404,0.144 +Singapore,2013,6.533,11.356,0.808,72.840,0.827,0.109,0.242,0.663,0.148 +Singapore,2014,7.062,11.382,0.822,73.020,0.835,0.148,0.133,0.774,0.180 +Singapore,2015,6.620,11.399,0.866,73.200,0.887,0.144,0.099,0.736,0.142 +Singapore,2016,6.033,11.422,0.925,73.300,0.904,0.137,0.047,0.745,0.111 +Singapore,2017,6.378,11.465,0.897,73.400,0.926,0.129,0.162,0.750,0.179 +Singapore,2018,6.375,11.496,0.903,73.500,0.916,-0.073,0.097,0.731,0.107 +Singapore,2019,6.378,11.497,0.925,73.600,0.938,0.020,0.070,0.674,0.138 +Singapore,2021,6.587,11.587,0.876,73.800,0.879,0.060,0.145,0.697,0.160 +Singapore,2022,6.333,11.590,0.852,73.900,0.873,0.088,,0.688,0.209 +Singapore,2023,6.654,,0.916,74.000,0.861,,0.153,0.667,0.190 +Slovakia,2006,5.265,9.989,0.954,65.620,0.542,-0.054,0.946,0.586,0.308 +Slovakia,2010,6.052,10.152,0.920,66.500,0.636,-0.106,0.907,0.603,0.277 +Slovakia,2011,5.945,10.177,0.917,66.720,0.727,0.006,0.907,0.588,0.287 +Slovakia,2012,5.911,10.188,0.926,66.940,0.620,-0.032,0.907,0.585,0.302 +Slovakia,2013,5.937,10.193,0.909,67.160,0.598,-0.055,0.915,0.612,0.277 +Slovakia,2014,6.139,10.219,0.924,67.380,0.635,-0.130,0.914,0.619,0.267 +Slovakia,2015,6.162,10.268,0.943,67.600,0.587,-0.132,0.928,0.632,0.269 +Slovakia,2016,5.993,10.286,0.945,67.825,0.700,-0.065,0.917,0.688,0.232 +Slovakia,2017,6.366,10.314,0.913,68.050,0.714,-0.059,0.920,0.709,0.213 +Slovakia,2018,6.235,10.352,0.922,68.275,0.758,-0.172,0.910,0.670,0.253 +Slovakia,2019,6.243,10.375,0.933,68.500,0.771,-0.133,0.926,0.676,0.252 +Slovakia,2020,6.519,10.340,0.954,68.725,0.762,-0.081,0.901,0.695,0.274 +Slovakia,2021,6.419,10.390,0.951,68.950,0.742,0.042,0.896,0.692,0.241 +Slovakia,2022,6.091,10.409,0.961,69.175,0.732,-0.129,0.841,0.665,0.263 +Slovakia,2023,6.261,10.425,0.941,69.400,0.753,-0.136,0.825,0.647,0.235 +Slovenia,2006,5.811,10.399,0.936,68.560,0.936,0.037,0.708,0.608,0.307 +Slovenia,2009,5.830,10.406,0.919,69.040,0.896,-0.025,0.804,0.583,0.303 +Slovenia,2010,6.083,10.415,0.917,69.200,0.896,0.024,0.845,0.592,0.295 +Slovenia,2011,6.036,10.421,0.931,69.360,0.907,-0.031,0.893,0.587,0.285 +Slovenia,2012,6.063,10.392,0.925,69.520,0.904,-0.025,0.891,0.598,0.284 +Slovenia,2013,5.975,10.381,0.932,69.680,0.890,0.030,0.918,0.625,0.274 +Slovenia,2014,5.678,10.407,0.908,69.840,0.888,0.047,0.909,0.594,0.291 +Slovenia,2015,5.741,10.428,0.901,70.000,0.896,0.002,0.892,0.644,0.261 +Slovenia,2016,5.937,10.459,0.934,70.175,0.904,-0.060,0.838,0.597,0.272 +Slovenia,2017,6.167,10.505,0.928,70.350,0.921,-0.031,0.829,0.582,0.286 +Slovenia,2018,6.249,10.545,0.941,70.525,0.942,-0.125,0.839,0.601,0.275 +Slovenia,2019,6.665,10.572,0.949,70.700,0.945,-0.108,0.785,0.622,0.228 +Slovenia,2020,6.462,10.521,0.953,70.875,0.958,-0.090,0.797,0.575,0.314 +Slovenia,2021,6.761,10.598,0.955,71.050,0.851,0.026,0.754,0.643,0.261 +Slovenia,2022,6.723,10.650,0.942,71.225,0.930,0.099,0.762,0.625,0.242 +Slovenia,2023,6.746,10.664,0.911,71.400,0.931,0.031,0.750,0.615,0.256 +Somalia,2014,5.528,6.830,0.611,47.660,0.874,0.020,0.456,0.689,0.207 +Somalia,2015,5.354,6.937,0.599,48.100,0.968,0.016,0.410,0.764,0.187 +Somalia,2016,4.668,6.981,0.594,48.500,0.917,0.069,0.441,0.773,0.193 +Somaliland region,2009,4.991,,0.880,,0.746,,0.513,0.708,0.112 +Somaliland region,2010,4.657,,0.829,,0.820,,0.471,0.632,0.083 +Somaliland region,2011,4.931,,0.788,,0.858,,0.357,0.691,0.122 +Somaliland region,2012,5.057,,0.786,,0.758,,0.334,0.687,0.152 +South Africa,2006,5.084,9.455,0.913,46.000,0.649,-0.094,,0.724,0.223 +South Africa,2007,5.204,9.497,0.788,46.900,0.690,-0.169,0.859,0.658,0.210 +South Africa,2008,5.346,9.518,0.810,47.800,0.749,-0.106,0.866,0.712,0.206 +South Africa,2009,5.218,9.490,0.877,48.700,0.739,-0.165,0.904,0.656,0.231 +South Africa,2010,4.652,9.508,0.917,49.600,0.739,-0.213,0.791,0.698,0.124 +South Africa,2011,4.931,9.527,0.858,50.500,0.835,-0.166,0.819,0.720,0.230 +South Africa,2012,5.134,9.537,0.907,51.400,0.590,-0.175,0.838,0.711,0.178 +South Africa,2013,3.661,9.548,0.839,52.300,0.714,-0.089,0.800,0.740,0.167 +South Africa,2014,4.828,9.546,0.881,53.200,0.794,-0.128,0.820,0.730,0.243 +South Africa,2015,4.887,9.539,0.898,54.100,0.862,-0.138,0.853,0.717,0.161 +South Africa,2016,4.770,9.536,0.875,54.625,0.774,-0.082,0.813,0.743,0.301 +South Africa,2017,4.514,9.543,0.870,55.150,0.787,-0.141,0.865,0.709,0.268 +South Africa,2018,4.884,9.546,0.841,55.675,0.753,-0.063,0.841,0.736,0.283 +South Africa,2019,5.035,9.536,0.848,56.200,0.738,-0.147,0.820,0.727,0.268 +South Africa,2020,4.947,9.458,0.891,56.725,0.757,-0.030,0.912,0.761,0.294 +South Africa,2021,5.599,9.496,0.922,57.250,0.704,-0.148,0.892,0.784,0.173 +South Africa,2022,5.581,9.508,0.887,57.775,0.713,-0.071,0.908,0.744,0.239 +South Africa,2023,5.076,9.503,0.839,58.300,0.748,-0.109,0.861,0.708,0.255 +South Korea,2006,5.332,10.309,0.775,70.020,0.715,-0.058,0.799,0.545,0.338 +South Korea,2007,5.767,10.360,0.827,70.240,0.656,-0.065,0.803,0.612,0.226 +South Korea,2008,5.390,10.382,0.754,70.460,0.524,-0.108,0.771,0.554,0.239 +South Korea,2009,5.648,10.385,0.811,70.680,0.600,-0.102,0.787,0.596,0.209 +South Korea,2010,6.116,10.446,0.816,70.900,0.677,-0.039,0.752,0.626,0.130 +South Korea,2011,6.947,10.474,0.809,71.120,0.682,-0.054,0.827,0.587,0.168 +South Korea,2012,6.003,10.493,0.775,71.340,0.618,,0.844,0.610,0.206 +South Korea,2013,5.959,10.519,0.797,71.560,0.642,-0.056,0.832,0.589,0.189 +South Korea,2014,5.801,10.544,0.738,71.780,0.623,-0.049,0.834,0.575,0.283 +South Korea,2015,5.780,10.567,0.768,72.000,0.616,-0.041,0.841,0.561,0.244 +South Korea,2016,5.971,10.592,0.811,72.275,0.591,0.020,0.862,0.583,0.233 +South Korea,2017,5.874,10.620,0.807,72.550,0.538,0.008,0.851,0.546,0.235 +South Korea,2018,5.840,10.645,0.798,72.825,0.600,-0.095,0.797,0.579,0.217 +South Korea,2019,5.903,10.663,0.783,73.100,0.706,-0.061,0.718,0.593,0.236 +South Korea,2020,5.793,10.655,0.808,73.375,0.711,-0.112,0.665,0.550,0.247 +South Korea,2021,6.113,10.697,0.811,73.650,0.717,-0.033,0.685,0.566,0.221 +South Korea,2022,5.950,10.725,0.810,73.925,0.723,0.002,0.747,0.585,0.233 +South Korea,2023,6.112,10.742,0.799,74.200,0.762,-0.004,0.714,0.603,0.245 +South Sudan,2014,3.832,,0.545,52.880,0.567,,0.742,0.578,0.428 +South Sudan,2015,4.071,,0.585,53.000,0.512,,0.710,0.553,0.450 +South Sudan,2016,2.888,,0.532,53.175,0.440,,0.785,0.594,0.549 +South Sudan,2017,2.817,,0.557,53.350,0.456,,0.761,0.565,0.517 +Spain,2005,7.153,10.544,0.961,70.400,0.916,,0.777,0.694,0.241 +Spain,2007,6.995,10.585,0.957,70.640,0.782,-0.099,0.784,0.717,0.264 +Spain,2008,7.294,10.577,0.948,70.760,0.834,-0.155,0.683,0.649,0.260 +Spain,2009,6.199,10.530,0.929,70.880,0.749,-0.133,0.798,0.645,0.336 +Spain,2010,6.188,10.527,0.950,71.000,0.796,-0.144,0.840,0.645,0.322 +Spain,2011,6.518,10.516,0.944,71.120,0.819,-0.128,0.846,0.667,0.356 +Spain,2012,6.291,10.485,0.937,71.240,0.755,-0.065,0.844,0.644,0.366 +Spain,2013,6.150,10.474,0.929,71.360,0.759,-0.107,0.916,0.663,0.372 +Spain,2014,6.456,10.491,0.948,71.480,0.738,-0.034,0.854,0.683,0.335 +Spain,2015,6.381,10.529,0.956,71.600,0.732,-0.078,0.822,0.705,0.285 +Spain,2016,6.319,10.558,0.942,71.725,0.768,-0.054,0.819,0.630,0.301 +Spain,2017,6.230,10.585,0.903,71.850,0.756,-0.038,0.791,0.601,0.302 +Spain,2018,6.513,10.604,0.910,71.975,0.722,-0.081,0.777,0.636,0.357 +Spain,2019,6.457,10.616,0.949,72.100,0.778,-0.054,0.730,0.636,0.316 +Spain,2020,6.502,10.491,0.935,72.225,0.783,-0.127,0.730,0.671,0.317 +Spain,2021,6.470,10.544,0.926,72.350,0.782,-0.076,0.729,0.639,0.324 +Spain,2022,6.337,10.592,0.934,72.475,0.781,-0.001,0.673,0.636,0.320 +Spain,2023,6.456,10.609,0.912,72.600,0.779,-0.004,0.675,0.655,0.325 +Sri Lanka,2006,4.345,8.937,0.864,62.280,0.724,0.055,0.838,0.639,0.216 +Sri Lanka,2007,4.415,8.992,0.838,62.760,0.736,0.103,0.847,0.590,0.220 +Sri Lanka,2008,4.431,9.040,0.816,63.240,0.834,0.156,0.861,0.656,0.153 +Sri Lanka,2009,4.212,9.065,0.830,63.720,0.799,0.299,0.690,0.661,0.172 +Sri Lanka,2010,3.977,9.133,0.814,64.200,0.738,0.252,0.769,0.704,0.163 +Sri Lanka,2011,4.181,9.207,0.842,64.680,0.823,0.138,0.760,0.730,0.175 +Sri Lanka,2012,4.225,9.282,0.824,65.160,0.800,0.155,0.823,0.761,0.197 +Sri Lanka,2013,4.365,9.316,0.809,65.640,0.834,0.262,0.842,0.776,0.208 +Sri Lanka,2014,4.268,9.373,0.805,66.120,0.868,0.291,0.791,0.785,0.187 +Sri Lanka,2015,4.612,9.410,0.863,66.600,0.902,0.312,0.859,0.789,0.235 +Sri Lanka,2017,4.331,9.514,0.823,66.800,0.827,0.083,0.844,0.729,0.270 +Sri Lanka,2018,4.435,9.529,0.833,66.900,0.859,0.096,0.856,0.773,0.302 +Sri Lanka,2019,4.213,9.521,0.815,67.000,0.824,0.043,0.863,0.753,0.315 +Sri Lanka,2020,4.778,9.468,0.842,67.100,0.803,-0.050,0.768,0.758,0.285 +Sri Lanka,2021,4.103,9.492,0.812,67.200,0.771,-0.013,0.849,0.733,0.312 +Sri Lanka,2022,3.985,9.409,0.825,67.300,0.740,0.038,0.900,0.715,0.321 +Sri Lanka,2023,3.602,9.364,0.790,67.400,0.754,0.050,0.922,0.709,0.353 +State of Palestine,2006,4.716,8.201,0.818,,0.547,,0.858,0.492,0.431 +State of Palestine,2007,4.151,8.181,0.712,,0.365,-0.083,0.844,0.515,0.412 +State of Palestine,2008,4.386,8.275,0.666,,0.358,-0.075,0.753,0.513,0.403 +State of Palestine,2009,4.470,8.337,0.738,,0.468,-0.091,0.797,0.474,0.466 +State of Palestine,2010,4.703,8.363,0.822,,0.504,-0.121,0.752,0.553,0.381 +State of Palestine,2011,4.751,8.452,0.751,,0.522,-0.131,0.750,0.499,0.388 +State of Palestine,2012,4.647,8.598,0.782,,0.542,-0.163,0.730,0.560,0.379 +State of Palestine,2013,4.844,8.595,0.761,,0.454,-0.163,0.780,0.537,0.365 +State of Palestine,2014,4.722,8.618,0.775,,0.657,-0.163,0.804,0.505,0.380 +State of Palestine,2015,4.695,8.683,0.766,,0.556,-0.173,0.774,0.536,0.369 +State of Palestine,2016,4.907,8.738,0.818,,0.608,-0.151,0.812,0.544,0.378 +State of Palestine,2017,4.628,8.734,0.824,,0.632,-0.186,0.831,0.534,0.416 +State of Palestine,2018,4.554,8.718,0.819,,0.655,-0.163,0.814,0.528,0.419 +State of Palestine,2019,4.483,8.716,0.833,,0.653,-0.135,0.829,0.538,0.400 +State of Palestine,2022,4.908,,0.860,,0.695,,0.836,0.584,0.362 +State of Palestine,2023,4.851,,0.831,,0.708,,0.808,0.580,0.378 +Sudan,2009,4.455,8.457,0.911,57.460,0.710,0.046,0.701,0.688,0.245 +Sudan,2010,4.435,8.465,0.855,57.700,0.648,-0.073,0.737,0.589,0.221 +Sudan,2011,4.314,8.527,0.818,57.940,0.583,-0.053,0.663,0.532,0.249 +Sudan,2012,4.550,8.458,0.813,58.180,0.412,-0.072,0.734,0.511,0.242 +Sudan,2014,4.139,8.471,0.811,58.660,0.390,-0.080,0.794,0.461,0.303 +Suriname,2012,6.269,9.874,0.797,62.840,0.885,-0.088,0.751,0.730,0.250 +Sweden,2005,7.376,10.724,0.951,71.000,0.964,,,0.742,0.151 +Sweden,2007,7.241,10.791,0.917,71.080,0.910,0.141,0.289,0.735,0.177 +Sweden,2008,7.516,10.778,0.923,71.120,0.912,0.120,0.314,0.763,0.134 +Sweden,2009,7.266,10.725,0.903,71.160,0.864,0.216,0.292,0.761,0.151 +Sweden,2010,7.496,10.775,0.970,71.200,0.905,0.136,0.253,0.788,0.200 +Sweden,2011,7.382,10.799,0.921,71.240,0.941,0.156,0.269,0.762,0.179 +Sweden,2012,7.560,10.785,0.929,71.280,0.944,0.127,0.254,0.796,0.170 +Sweden,2013,7.434,10.789,0.916,71.320,0.936,0.154,0.324,0.782,0.184 +Sweden,2014,7.239,10.805,0.933,71.360,0.945,0.197,0.250,0.793,0.208 +Sweden,2015,7.289,10.838,0.929,71.400,0.935,0.206,0.232,0.766,0.191 +Sweden,2016,7.369,10.846,0.912,71.525,0.918,0.141,0.246,0.752,0.201 +Sweden,2017,7.287,10.858,0.914,71.650,0.935,0.165,0.239,0.756,0.175 +Sweden,2018,7.375,10.866,0.931,71.775,0.942,0.072,0.263,0.747,0.161 +Sweden,2019,7.398,10.875,0.934,71.900,0.942,0.085,0.250,0.775,0.202 +Sweden,2020,7.314,10.846,0.936,72.025,0.951,0.084,0.203,0.717,0.222 +Sweden,2021,7.439,10.893,0.932,72.150,0.953,0.172,0.191,0.763,0.190 +Sweden,2022,7.431,10.912,0.949,72.275,0.939,0.232,0.213,0.750,0.163 +Sweden,2023,7.161,10.902,0.927,72.400,0.926,0.147,0.253,0.739,0.194 +Switzerland,2006,7.473,11.056,0.951,71.160,0.919,0.284,0.408,0.742,0.212 +Switzerland,2009,7.525,11.065,0.938,71.340,0.891,0.118,0.342,0.741,0.202 +Switzerland,2012,7.776,11.094,0.947,71.520,0.945,0.131,0.323,0.793,0.176 +Switzerland,2014,7.493,11.111,0.959,71.640,0.949,0.053,0.283,0.788,0.189 +Switzerland,2015,7.572,11.116,0.938,71.700,0.928,0.102,0.210,0.794,0.166 +Switzerland,2016,7.459,11.126,0.928,71.900,0.934,0.081,0.302,0.758,0.206 +Switzerland,2017,7.474,11.130,0.950,72.100,0.925,0.173,0.316,0.734,0.196 +Switzerland,2018,7.509,11.151,0.930,72.300,0.926,0.094,0.301,0.756,0.192 +Switzerland,2019,7.694,11.155,0.949,72.500,0.913,0.029,0.294,0.743,0.171 +Switzerland,2020,7.508,11.124,0.946,72.700,0.917,-0.073,0.280,0.730,0.193 +Switzerland,2021,7.328,11.158,0.934,72.900,0.908,0.024,0.287,0.747,0.183 +Switzerland,2022,6.884,11.170,0.881,73.100,0.848,0.128,0.235,0.710,0.180 +Switzerland,2023,6.969,11.169,0.904,73.300,0.891,0.104,0.247,0.745,0.185 +Syria,2008,5.323,8.658,0.712,68.620,0.661,0.116,0.680,0.562,0.338 +Syria,2009,4.979,8.656,0.842,66.860,0.748,0.076,0.688,0.491,0.292 +Syria,2010,4.465,8.733,0.934,65.100,0.647,0.002,0.743,0.489,0.225 +Syria,2011,4.038,8.735,0.576,63.340,0.530,0.125,0.741,0.521,0.496 +Syria,2012,3.164,8.578,0.588,61.580,0.467,0.310,0.673,0.451,0.705 +Syria,2013,2.688,8.419,0.585,59.820,0.455,0.219,0.663,0.354,0.622 +Syria,2015,3.462,8.492,0.464,56.300,0.448,0.036,0.685,0.363,0.643 +Taiwan Province of China,2006,6.189,10.602,0.882,68.680,0.630,-0.035,0.846,0.683,0.094 +Taiwan Province of China,2008,5.548,10.600,0.830,69.140,0.642,-0.022,0.785,0.682,0.169 +Taiwan Province of China,2010,6.229,10.681,0.831,69.600,0.677,-0.001,0.821,0.738,0.136 +Taiwan Province of China,2011,6.309,10.693,0.863,,0.761,0.030,0.755,0.727,0.112 +Taiwan Province of China,2012,6.126,10.718,0.825,,0.698,0.016,0.803,0.702,0.140 +Taiwan Province of China,2013,6.340,10.724,0.817,,0.690,-0.003,0.841,0.754,0.124 +Taiwan Province of China,2014,6.363,10.749,0.870,,0.693,0.089,0.866,0.767,0.108 +Taiwan Province of China,2015,6.450,10.779,0.885,,0.701,0.017,0.857,0.750,0.129 +Taiwan Province of China,2016,6.513,10.768,0.895,,0.719,-0.049,0.811,0.743,0.108 +Taiwan Province of China,2017,6.359,10.774,0.891,,0.760,-0.070,0.743,0.715,0.114 +Taiwan Province of China,2018,6.467,10.781,0.896,,0.741,-0.179,0.736,0.746,0.093 +Taiwan Province of China,2019,6.537,10.797,0.893,,0.814,-0.131,0.718,0.762,0.093 +Taiwan Province of China,2020,6.751,,0.901,,0.799,,0.711,0.743,0.083 +Taiwan Province of China,2021,6.247,,0.866,,0.818,,0.675,0.667,0.123 +Taiwan Province of China,2022,6.607,,0.883,,0.800,,0.658,0.717,0.095 +Taiwan Province of China,2023,6.655,,0.872,,0.795,,0.641,0.748,0.111 +Tajikistan,2006,4.613,7.591,0.724,60.500,0.702,-0.096,0.768,0.494,0.195 +Tajikistan,2007,4.432,7.648,0.727,60.600,0.818,-0.007,0.659,0.619,0.133 +Tajikistan,2008,5.064,7.705,0.701,60.700,0.816,0.010,0.723,0.488,0.160 +Tajikistan,2009,4.575,7.724,0.676,60.800,0.744,-0.007,0.792,0.475,0.203 +Tajikistan,2010,4.381,7.766,0.759,60.900,0.784,0.054,0.679,0.483,0.192 +Tajikistan,2011,4.263,7.817,0.751,61.000,0.776,-0.127,0.672,0.573,0.166 +Tajikistan,2012,4.497,7.867,0.729,61.100,0.749,-0.081,0.717,0.583,0.198 +Tajikistan,2013,4.967,7.916,0.701,61.200,0.693,0.055,0.764,0.578,0.170 +Tajikistan,2014,4.896,7.958,0.810,61.300,0.853,-0.007,0.698,0.587,0.196 +Tajikistan,2015,5.124,7.993,0.844,61.400,0.847,0.013,0.742,0.633,0.196 +Tajikistan,2016,5.104,8.036,0.857,61.550,0.703,0.001,0.632,0.587,0.220 +Tajikistan,2017,5.829,8.082,0.663,61.700,0.832,0.116,0.718,0.581,0.278 +Tajikistan,2018,5.497,8.133,0.875,61.850,,-0.074,0.578,0.632,0.220 +Tajikistan,2019,5.464,8.182,0.880,62.000,,-0.054,0.490,0.663,0.178 +Tajikistan,2020,5.373,8.203,0.790,62.150,,-0.054,0.550,0.652,0.344 +Tajikistan,2021,5.287,8.271,0.883,62.300,,-0.071,0.499,0.655,0.240 +Tajikistan,2022,5.176,8.328,0.865,62.450,,-0.003,0.397,0.710,0.220 +Tajikistan,2023,5.379,8.371,0.871,62.600,,-0.054,0.482,0.638,0.231 +Tanzania,2006,3.922,7.459,0.783,50.760,0.787,-0.030,0.649,0.725,0.209 +Tanzania,2007,4.318,7.497,0.708,51.420,0.716,-0.016,0.707,0.702,0.220 +Tanzania,2008,4.385,7.525,0.774,52.080,0.562,0.253,0.930,0.740,0.178 +Tanzania,2009,3.408,7.551,0.837,52.740,0.607,0.305,0.903,0.733,0.161 +Tanzania,2010,3.229,7.587,0.813,53.400,0.597,0.135,0.866,0.667,0.146 +Tanzania,2011,4.074,7.632,0.883,54.060,0.736,-0.050,0.816,0.720,0.145 +Tanzania,2012,4.007,7.647,0.832,54.720,0.577,0.209,0.887,0.641,0.195 +Tanzania,2013,3.852,7.683,0.803,55.380,0.654,0.051,0.859,0.707,0.191 +Tanzania,2014,3.483,7.717,0.789,56.040,0.654,0.107,0.878,0.693,0.241 +Tanzania,2015,3.661,7.743,0.790,56.700,0.759,0.145,0.906,0.607,0.192 +Tanzania,2016,2.903,7.775,0.638,57.150,0.775,0.175,0.739,0.649,0.246 +Tanzania,2017,3.347,7.807,0.705,57.600,0.800,0.112,0.654,0.662,0.255 +Tanzania,2018,3.445,7.828,0.675,58.050,0.807,0.150,0.612,0.702,0.221 +Tanzania,2019,3.640,7.855,0.687,58.500,0.850,0.097,0.589,0.679,0.243 +Tanzania,2020,3.786,7.844,0.740,58.950,0.830,0.293,0.521,0.667,0.271 +Tanzania,2021,3.681,7.857,0.619,59.400,0.822,0.110,0.546,0.648,0.246 +Tanzania,2022,3.616,7.872,0.600,59.850,0.856,0.133,0.584,0.707,0.195 +Tanzania,2023,4.042,7.893,0.663,60.300,0.862,0.122,0.609,0.702,0.210 +Thailand,2006,5.885,9.452,0.894,66.380,0.863,0.326,0.935,0.750,0.164 +Thailand,2007,5.784,9.498,0.889,66.560,0.870,0.386,0.898,0.784,0.180 +Thailand,2008,5.636,9.507,0.832,66.740,0.868,0.421,0.933,0.777,0.145 +Thailand,2009,5.476,9.493,0.893,66.920,0.868,0.520,0.904,0.808,0.166 +Thailand,2010,6.217,9.559,0.898,67.100,0.860,0.532,0.917,0.821,0.182 +Thailand,2011,6.664,9.561,0.884,67.280,0.927,0.396,0.923,0.834,0.117 +Thailand,2012,6.300,9.624,0.906,67.460,0.847,0.376,0.909,0.733,0.138 +Thailand,2013,6.231,9.645,0.926,67.640,0.781,0.452,0.925,0.782,0.141 +Thailand,2014,6.985,9.649,0.933,67.820,0.900,0.548,0.920,0.768,0.169 +Thailand,2015,6.202,9.675,0.866,68.000,0.885,0.312,0.914,0.884,0.174 +Thailand,2016,6.074,9.705,0.908,68.075,0.924,0.352,0.878,0.811,0.218 +Thailand,2017,5.939,9.741,0.877,68.150,0.923,0.208,0.884,0.776,0.232 +Thailand,2018,6.012,9.780,0.873,68.225,0.905,0.255,0.907,0.783,0.198 +Thailand,2019,6.022,9.798,0.903,68.300,0.898,0.305,0.877,0.792,0.208 +Thailand,2020,5.885,9.733,0.867,68.375,0.840,0.270,0.918,0.770,0.326 +Thailand,2021,5.638,9.746,0.883,68.450,0.836,0.290,0.943,0.719,0.298 +Thailand,2022,6.007,9.770,0.867,68.525,0.881,0.299,0.868,0.773,0.218 +Thailand,2023,6.282,9.807,0.873,68.600,0.926,0.338,0.889,0.811,0.217 +Togo,2006,3.202,7.342,0.435,50.240,0.628,-0.030,0.850,0.571,0.348 +Togo,2008,2.808,7.312,0.291,51.120,0.287,-0.078,0.932,0.398,0.379 +Togo,2011,2.936,7.406,0.303,52.440,0.584,-0.093,0.832,0.479,0.395 +Togo,2014,2.839,7.509,0.444,53.760,0.663,-0.108,0.795,0.537,0.443 +Togo,2015,3.768,7.540,0.479,54.200,0.772,-0.092,0.733,0.597,0.416 +Togo,2016,3.879,7.569,0.509,54.700,0.730,-0.031,0.815,0.610,0.483 +Togo,2017,4.361,7.587,0.508,55.200,0.717,-0.066,0.726,0.614,0.426 +Togo,2018,4.023,7.613,0.596,55.700,0.612,-0.031,0.809,0.602,0.446 +Togo,2019,4.179,7.637,0.539,56.200,0.617,0.041,0.737,0.606,0.444 +Togo,2021,4.037,7.667,0.603,57.200,0.619,0.037,0.766,0.628,0.417 +Togo,2022,4.239,7.700,0.579,57.700,0.696,0.002,0.713,0.594,0.414 +Togo,2023,4.365,7.725,0.547,58.200,0.665,-0.071,0.685,0.546,0.362 +Trinidad and Tobago,2006,5.832,10.172,0.887,61.780,0.840,0.139,0.917,0.750,0.229 +Trinidad and Tobago,2008,6.696,10.240,0.858,62.540,0.838,0.085,0.959,0.802,0.184 +Trinidad and Tobago,2011,6.519,10.206,0.863,63.680,0.775,0.076,0.900,0.827,0.134 +Trinidad and Tobago,2013,6.168,10.293,0.883,64.440,0.847,0.121,0.948,0.764,0.286 +Trinidad and Tobago,2017,6.192,10.174,0.916,65.700,0.859,0.010,0.911,0.763,0.248 +Tunisia,2009,5.025,9.238,,66.220,0.781,-0.127,0.722,, +Tunisia,2010,5.131,9.257,0.863,66.300,0.624,-0.143,0.732,0.697,0.249 +Tunisia,2011,4.876,9.224,0.715,66.380,0.603,-0.207,0.913,0.513,0.248 +Tunisia,2012,4.464,9.252,0.614,66.460,0.568,-0.184,0.899,0.490,0.327 +Tunisia,2013,5.246,9.265,0.648,66.540,0.536,-0.214,0.886,0.435,0.239 +Tunisia,2014,4.764,9.284,0.680,66.620,0.589,-0.239,0.783,0.424,0.321 +Tunisia,2015,5.132,9.283,0.609,66.700,0.711,-0.233,0.815,0.514,0.320 +Tunisia,2016,4.521,9.283,0.702,66.750,0.614,-0.172,0.811,0.532,0.378 +Tunisia,2017,4.124,9.294,0.717,66.800,0.478,-0.226,0.869,0.367,0.377 +Tunisia,2018,4.741,9.310,0.733,66.850,0.650,-0.199,0.840,0.536,0.365 +Tunisia,2019,4.315,9.316,0.610,66.900,0.659,-0.217,0.889,0.459,0.433 +Tunisia,2020,4.731,9.214,0.719,66.950,0.668,-0.206,0.877,0.519,0.439 +Tunisia,2021,4.499,9.249,0.711,67.000,0.591,-0.206,0.933,0.451,0.336 +Tunisia,2022,4.261,9.267,0.755,67.050,0.474,-0.233,0.908,0.458,0.304 +Tunisia,2023,4.505,9.282,0.702,67.100,0.482,-0.226,0.882,0.461,0.364 +Turkmenistan,2009,6.568,8.955,0.924,59.780,,-0.105,,0.695,0.152 +Turkmenistan,2011,5.792,9.146,0.964,60.420,,0.015,,0.577,0.122 +Turkmenistan,2012,5.464,9.233,0.946,60.740,0.786,-0.126,,0.541,0.117 +Turkmenistan,2013,5.392,9.312,0.846,61.060,0.705,-0.075,,0.552,0.160 +Turkmenistan,2014,5.787,9.392,0.909,61.380,0.805,0.029,,0.614,0.154 +Turkmenistan,2015,5.791,9.437,0.960,61.700,0.701,0.090,,0.633,0.301 +Turkmenistan,2016,5.887,9.479,0.929,61.800,0.749,0.002,,0.560,0.255 +Turkmenistan,2017,5.229,9.525,0.908,61.900,0.720,0.063,,0.488,0.350 +Turkmenistan,2018,4.621,9.569,0.984,62.000,0.858,0.257,,0.567,0.189 +Turkmenistan,2019,5.474,9.615,0.982,62.100,0.892,0.282,,0.494,0.183 +Türkiye,2005,4.719,9.800,0.820,66.100,0.623,,0.877,0.479, +Türkiye,2007,5.623,9.891,0.792,66.420,0.459,-0.183,0.800,0.592,0.395 +Türkiye,2008,5.118,9.887,0.645,66.580,0.415,-0.194,0.785,0.510,0.345 +Türkiye,2009,5.213,9.825,0.755,66.740,0.456,-0.232,0.853,0.454,0.316 +Türkiye,2010,5.490,9.893,0.795,66.900,0.515,-0.192,0.811,0.532,0.327 +Türkiye,2011,5.272,9.986,0.692,67.060,0.446,-0.247,0.649,0.512,0.380 +Türkiye,2012,5.309,10.018,0.739,67.220,0.471,-0.221,0.702,0.506,0.335 +Türkiye,2013,4.888,10.082,0.795,67.380,0.541,-0.235,0.698,0.551,0.392 +Türkiye,2014,5.580,10.111,0.863,67.540,0.649,-0.029,0.764,0.410,0.377 +Türkiye,2015,5.514,10.150,0.851,67.700,0.653,-0.021,0.806,0.391,0.382 +Türkiye,2016,5.326,10.166,0.880,67.875,0.644,-0.070,0.764,0.414,0.390 +Türkiye,2017,5.607,10.225,0.876,68.050,0.644,-0.242,0.671,0.393,0.313 +Türkiye,2018,5.186,10.246,0.847,68.225,0.529,-0.181,0.805,0.379,0.351 +Türkiye,2019,4.872,10.245,0.792,68.400,0.631,-0.141,0.760,0.347,0.368 +Türkiye,2020,4.862,10.257,0.857,68.575,0.510,-0.119,0.774,0.332,0.440 +Türkiye,2021,4.367,10.357,0.736,68.750,0.447,-0.039,0.810,0.297,0.471 +Türkiye,2022,5.093,10.404,0.830,68.925,0.470,-0.195,0.767,0.311,0.390 +Türkiye,2023,5.463,10.429,0.860,69.100,0.523,-0.159,0.748,0.344,0.349 +Uganda,2006,3.734,7.370,0.760,48.740,0.747,-0.046,0.807,0.552,0.254 +Uganda,2007,4.456,7.422,0.845,49.580,0.708,-0.006,0.881,0.670,0.228 +Uganda,2008,4.569,7.476,0.813,50.420,0.578,-0.060,0.848,0.623,0.240 +Uganda,2009,4.612,7.513,0.852,51.260,0.760,-0.043,0.840,0.594,0.296 +Uganda,2010,4.193,7.538,0.830,52.100,0.801,-0.020,0.855,0.628,0.251 +Uganda,2011,4.826,7.599,0.882,52.940,0.733,0.026,0.830,0.618,0.254 +Uganda,2012,4.309,7.608,0.885,53.780,0.649,0.075,0.838,0.709,0.265 +Uganda,2013,3.710,7.614,0.878,54.620,0.763,0.046,0.820,0.647,0.346 +Uganda,2014,3.770,7.634,0.821,55.460,0.834,0.003,0.898,0.635,0.397 +Uganda,2015,4.238,7.654,0.747,56.300,0.758,0.128,0.873,0.679,0.353 +Uganda,2016,4.233,7.667,0.754,56.775,0.739,0.125,0.811,0.665,0.410 +Uganda,2017,4.001,7.663,0.740,57.250,0.772,0.053,0.816,0.689,0.400 +Uganda,2018,4.322,7.690,0.740,57.725,0.729,0.072,0.856,0.687,0.390 +Uganda,2019,4.948,7.719,0.805,58.200,0.704,0.132,0.826,0.689,0.385 +Uganda,2020,4.641,7.714,0.800,58.675,0.687,0.140,0.878,0.705,0.425 +Uganda,2021,4.225,7.717,0.793,59.150,0.711,0.081,0.835,0.699,0.359 +Uganda,2022,4.425,7.733,0.781,59.625,0.720,0.135,0.836,0.708,0.439 +Uganda,2023,4.467,7.759,0.827,60.100,0.848,0.067,0.912,0.726,0.376 +Ukraine,2006,4.804,9.414,0.852,60.920,0.624,-0.265,0.929,0.551,0.249 +Ukraine,2007,5.252,9.499,0.820,61.240,0.494,-0.249,0.968,0.559,0.208 +Ukraine,2008,5.172,9.527,0.860,61.560,0.487,-0.273,0.929,0.545,0.186 +Ukraine,2009,5.166,9.367,0.845,61.880,0.460,-0.249,0.962,0.545,0.189 +Ukraine,2010,5.058,9.411,0.884,62.200,0.484,-0.197,0.954,0.472,0.227 +Ukraine,2011,5.083,9.468,0.859,62.520,0.579,-0.236,0.933,0.539,0.220 +Ukraine,2012,5.030,9.472,0.898,62.840,0.564,-0.231,0.896,0.509,0.193 +Ukraine,2013,4.711,9.474,0.897,63.160,0.569,-0.225,0.937,0.572,0.225 +Ukraine,2014,4.297,9.424,0.877,63.480,0.533,0.078,0.927,0.543,0.249 +Ukraine,2015,3.965,9.325,0.909,63.800,0.431,-0.039,0.952,0.531,0.241 +Ukraine,2016,4.029,9.353,0.885,63.925,0.503,0.005,0.891,0.550,0.220 +Ukraine,2017,4.311,9.381,0.858,64.050,0.599,-0.008,0.937,0.528,0.235 +Ukraine,2018,4.662,9.420,0.901,64.175,0.663,-0.080,0.943,0.550,0.222 +Ukraine,2019,4.702,9.458,0.883,64.300,0.715,-0.087,0.885,0.549,0.201 +Ukraine,2020,5.270,9.426,0.885,64.425,0.784,0.121,0.946,0.629,0.285 +Ukraine,2021,5.311,9.469,0.879,64.550,0.770,0.166,0.922,0.575,0.250 +Ukraine,2022,4.637,9.281,0.863,64.675,0.829,0.408,0.852,0.527,0.390 +Ukraine,2023,4.672,9.423,0.839,64.800,0.772,0.370,0.922,0.490,0.385 +United Arab Emirates,2006,6.734,11.433,0.903,64.860,0.898,-0.043,0.203,0.694,0.275 +United Arab Emirates,2009,6.866,10.952,0.885,65.040,0.849,0.015,0.339,0.718,0.287 +United Arab Emirates,2010,7.097,10.909,0.912,65.100,0.878,0.051,0.355,0.701,0.233 +United Arab Emirates,2011,7.119,10.965,0.881,65.160,0.889,0.063,,0.702,0.216 +United Arab Emirates,2012,7.218,11.001,0.856,65.220,0.920,,,0.719,0.224 +United Arab Emirates,2013,6.621,11.041,0.864,65.280,0.936,,,,0.291 +United Arab Emirates,2014,6.540,11.072,,65.340,,,,, +United Arab Emirates,2015,6.568,11.128,0.824,65.400,0.915,0.192,,0.722,0.296 +United Arab Emirates,2016,6.831,11.174,0.849,65.550,0.949,0.120,,0.739,0.245 +United Arab Emirates,2017,7.039,11.173,0.836,65.700,0.962,0.206,,0.737,0.208 +United Arab Emirates,2018,6.604,11.178,0.851,65.850,0.944,0.043,,0.723,0.302 +United Arab Emirates,2019,6.711,11.181,0.862,66.000,0.911,0.118,,0.730,0.284 +United Arab Emirates,2020,6.458,11.122,0.827,66.150,0.942,0.049,,0.702,0.298 +United Arab Emirates,2021,6.733,11.152,0.826,66.300,0.951,0.150,,0.697,0.217 +United Arab Emirates,2022,6.738,11.216,0.798,66.450,0.932,0.168,,0.715,0.242 +United Arab Emirates,2023,6.728,11.236,0.776,66.600,0.886,0.155,,0.655,0.304 +United Kingdom,2005,6.984,10.661,0.979,69.100,0.922,,0.398,0.779,0.262 +United Kingdom,2007,6.802,10.693,0.970,69.220,0.838,0.331,0.498,0.686,0.241 +United Kingdom,2008,6.986,10.684,0.954,69.280,0.759,0.325,0.548,0.724,0.218 +United Kingdom,2009,6.907,10.630,0.964,69.340,0.816,0.336,0.559,0.739,0.231 +United Kingdom,2010,7.029,10.646,0.955,69.400,0.841,0.397,0.587,0.753,0.176 +United Kingdom,2011,6.869,10.649,0.949,69.460,0.900,0.331,0.438,0.742,0.174 +United Kingdom,2012,6.881,10.656,0.935,69.520,0.889,0.366,0.425,0.739,0.184 +United Kingdom,2013,6.918,10.668,0.937,69.580,0.905,0.341,0.568,0.719,0.252 +United Kingdom,2014,6.758,10.692,0.910,69.640,0.857,0.349,0.484,0.740,0.251 +United Kingdom,2015,6.515,10.707,0.936,69.700,0.833,0.294,0.456,0.740,0.219 +United Kingdom,2016,6.824,10.721,0.954,69.800,0.821,0.244,0.458,0.732,0.230 +United Kingdom,2017,7.103,10.739,0.937,69.900,0.813,0.285,0.419,0.712,0.210 +United Kingdom,2018,7.233,10.750,0.928,70.000,0.838,0.220,0.404,0.736,0.228 +United Kingdom,2019,7.157,10.760,0.943,70.100,0.854,0.264,0.485,0.739,0.251 +United Kingdom,2020,6.798,10.639,0.929,70.200,0.885,0.196,0.490,0.717,0.225 +United Kingdom,2021,6.867,10.713,0.854,70.300,0.815,0.252,0.448,0.684,0.266 +United Kingdom,2022,6.722,10.754,0.863,70.400,0.857,0.308,0.426,0.723,0.270 +United Kingdom,2023,6.658,10.759,0.886,70.500,0.874,0.270,0.490,0.719,0.272 +United States,2006,7.182,10.921,0.965,66.780,0.911,,0.600,0.775,0.261 +United States,2007,7.513,10.931,,66.760,0.872,0.191,0.633,0.756,0.232 +United States,2008,7.280,10.923,0.953,66.740,0.878,0.249,0.668,0.774,0.227 +United States,2009,7.158,10.888,0.912,66.720,0.831,0.195,0.665,0.753,0.262 +United States,2010,7.164,10.906,0.926,66.700,0.828,0.238,0.690,0.776,0.231 +United States,2011,7.115,10.914,0.922,66.680,0.863,0.155,0.697,0.737,0.273 +United States,2012,7.026,10.929,0.903,66.660,0.823,0.208,0.710,0.765,0.260 +United States,2013,7.249,10.941,0.925,66.640,0.792,0.268,0.747,0.776,0.260 +United States,2014,7.151,10.956,0.902,66.620,0.866,0.215,0.702,0.786,0.281 +United States,2015,6.864,10.975,0.904,66.600,0.849,0.213,0.698,0.769,0.275 +United States,2016,6.804,10.985,0.897,66.475,0.758,0.138,0.739,0.737,0.264 +United States,2017,6.992,11.001,0.921,66.350,0.868,0.191,0.681,0.755,0.268 +United States,2018,6.883,11.024,0.904,66.225,0.825,0.110,0.710,0.757,0.292 +United States,2019,6.944,11.042,0.917,66.100,0.836,0.138,0.707,0.755,0.244 +United States,2020,7.028,11.005,0.937,65.975,0.850,0.028,0.678,0.722,0.295 +United States,2021,6.959,11.061,0.920,65.850,0.816,0.188,0.687,0.740,0.277 +United States,2022,6.693,11.078,0.900,65.725,0.736,0.189,0.701,0.712,0.267 +United States,2023,6.521,11.089,0.861,65.600,0.721,0.185,0.722,0.706,0.284 +Uruguay,2006,5.786,9.640,0.912,66.780,0.807,-0.125,0.477,0.701,0.306 +Uruguay,2007,5.694,9.702,0.875,66.860,0.786,-0.178,0.614,0.710,0.274 +Uruguay,2008,5.664,9.769,0.879,66.940,0.808,-0.156,0.597,0.685,0.264 +Uruguay,2009,6.296,9.808,0.924,67.020,0.825,-0.131,0.544,0.722,0.255 +Uruguay,2010,6.062,9.880,0.893,67.100,0.832,-0.171,0.471,0.738,0.231 +Uruguay,2011,6.554,9.928,0.891,67.180,0.851,-0.093,0.556,0.702,0.252 +Uruguay,2012,6.450,9.960,0.865,67.260,0.871,0.054,0.615,0.692,0.214 +Uruguay,2013,6.444,10.002,0.917,67.340,0.888,-0.056,0.586,0.743,0.253 +Uruguay,2014,6.561,10.031,0.902,67.420,0.904,-0.086,0.533,0.788,0.251 +Uruguay,2015,6.628,10.032,0.891,67.500,0.917,-0.045,0.673,0.812,0.300 +Uruguay,2016,6.171,10.045,0.900,67.500,0.886,-0.085,0.676,0.735,0.283 +Uruguay,2017,6.336,10.060,0.914,67.500,0.898,-0.104,0.627,0.742,0.280 +Uruguay,2018,6.372,10.060,0.917,67.500,0.876,-0.109,0.683,0.775,0.275 +Uruguay,2019,6.600,10.067,0.933,67.500,0.903,-0.107,0.599,0.764,0.222 +Uruguay,2020,6.310,10.002,0.921,67.500,0.908,-0.094,0.491,0.721,0.265 +Uruguay,2021,6.502,10.054,0.914,67.500,0.899,-0.054,0.606,0.746,0.263 +Uruguay,2022,6.671,10.103,0.905,67.500,0.878,-0.055,0.631,0.775,0.267 +Uruguay,2023,6.662,10.122,0.908,67.500,0.904,-0.050,0.662,0.753,0.265 +Uzbekistan,2006,5.232,8.256,0.903,61.340,0.784,-0.125,0.609,0.650,0.195 +Uzbekistan,2008,5.311,8.402,0.894,61.820,0.831,-0.033,,0.647,0.187 +Uzbekistan,2009,5.261,8.463,0.905,62.060,,0.003,0.610,0.646,0.159 +Uzbekistan,2010,5.095,8.508,0.903,62.300,,-0.040,0.519,0.665,0.152 +Uzbekistan,2011,5.739,8.554,0.924,62.540,0.934,0.032,0.522,0.663,0.123 +Uzbekistan,2012,6.019,8.608,0.933,62.780,0.914,-0.047,0.463,0.650,0.118 +Uzbekistan,2013,5.940,8.662,0.963,63.020,0.950,-0.043,0.434,0.686,0.130 +Uzbekistan,2014,6.049,8.712,0.952,63.260,0.954,0.052,0.536,0.713,0.106 +Uzbekistan,2015,5.972,8.764,0.968,63.500,0.980,0.366,0.471,0.778,0.103 +Uzbekistan,2016,5.893,8.804,0.945,63.800,0.984,0.199,,0.771,0.147 +Uzbekistan,2017,6.421,8.831,0.942,64.100,0.985,0.114,0.465,0.745,0.203 +Uzbekistan,2018,6.205,8.870,0.921,64.400,0.970,0.308,0.520,0.746,0.209 +Uzbekistan,2019,6.154,8.910,0.915,64.700,0.970,0.295,0.511,0.751,0.220 +Uzbekistan,2020,5.842,8.910,0.850,65.000,0.928,0.190,0.642,0.678,0.279 +Uzbekistan,2021,6.185,8.962,0.896,65.300,0.927,0.183,0.662,0.698,0.233 +Uzbekistan,2022,6.016,8.996,0.879,65.600,0.959,0.306,0.616,0.741,0.225 +Uzbekistan,2023,6.385,9.026,0.909,65.900,0.927,0.247,0.650,0.752,0.202 +Venezuela,2005,7.170,9.316,0.955,65.500,0.838,,0.720,0.803,0.233 +Venezuela,2006,6.525,9.467,0.946,65.460,0.798,-0.037,0.646,0.837,0.178 +Venezuela,2008,6.258,9.719,0.922,65.380,0.678,-0.232,0.776,0.818,0.224 +Venezuela,2009,7.189,9.567,0.945,65.340,0.677,-0.124,0.828,0.792,0.180 +Venezuela,2010,7.478,9.748,0.932,65.300,0.768,-0.163,0.754,0.847,0.130 +Venezuela,2011,6.580,9.859,0.931,65.260,0.766,-0.235,0.772,0.823,0.199 +Venezuela,2012,7.067,9.862,0.932,65.220,0.804,-0.201,0.743,0.844,0.176 +Venezuela,2013,6.553,9.802,0.896,65.180,0.642,-0.230,0.837,0.812,0.238 +Venezuela,2014,6.136,9.366,0.904,65.140,0.570,-0.191,0.827,0.797,0.244 +Venezuela,2015,5.569,8.532,0.911,65.100,0.512,-0.089,0.813,0.837,0.223 +Venezuela,2016,4.041,7.602,0.902,64.925,0.458,-0.060,0.890,0.676,0.392 +Venezuela,2017,5.071,5.943,0.896,64.750,0.636,0.050,0.844,0.697,0.363 +Venezuela,2018,5.006,5.935,0.887,64.575,0.611,0.068,0.828,0.723,0.374 +Venezuela,2019,5.081,5.527,0.888,64.400,0.626,0.124,0.839,0.730,0.351 +Venezuela,2020,4.574,,0.805,64.225,0.612,,0.811,0.689,0.396 +Venezuela,2021,5.108,,0.812,64.050,0.596,,0.824,0.698,0.389 +Venezuela,2022,5.949,,0.899,63.875,0.770,,0.798,0.754,0.292 +Venezuela,2023,5.765,,0.885,63.700,0.757,,0.825,0.758,0.300 +Vietnam,2006,5.294,8.554,0.888,64.180,0.886,-0.006,,0.657,0.204 +Vietnam,2007,5.422,8.613,0.856,64.260,0.918,0.068,0.754,,0.206 +Vietnam,2008,5.480,8.658,0.805,64.340,0.889,0.180,0.789,0.624,0.218 +Vietnam,2009,5.304,8.701,0.815,64.420,0.834,-0.083,0.838,0.481,0.190 +Vietnam,2010,5.296,8.752,0.787,64.500,0.831,-0.027,0.743,0.671,0.216 +Vietnam,2011,5.767,8.804,0.898,64.580,0.818,0.084,0.742,0.494,0.193 +Vietnam,2012,5.535,8.847,0.775,64.660,0.856,-0.131,0.815,0.546,0.221 +Vietnam,2013,5.023,8.890,0.759,64.740,0.920,-0.048,0.771,0.689,0.165 +Vietnam,2014,5.085,8.941,0.792,64.820,,-0.022,,0.634,0.241 +Vietnam,2015,5.076,8.999,0.849,64.900,,0.064,,0.583,0.232 +Vietnam,2016,5.062,9.053,0.876,65.000,0.894,-0.112,0.799,0.487,0.223 +Vietnam,2017,5.175,9.111,,65.100,,,,, +Vietnam,2018,5.296,9.173,0.832,65.200,0.909,-0.063,0.808,0.614,0.191 +Vietnam,2019,5.467,9.235,0.848,65.300,0.952,-0.148,0.788,0.658,0.186 +Vietnam,2020,5.462,9.254,0.765,65.400,0.945,0.063,0.791,0.699,0.286 +Vietnam,2021,5.540,9.271,0.799,65.500,0.897,0.104,0.798,0.651,0.280 +Vietnam,2022,6.267,9.341,0.879,65.600,0.975,-0.182,0.703,0.774,0.108 +Vietnam,2023,6.325,9.392,0.845,65.700,0.956,-0.159,0.655,0.710,0.120 +Yemen,2007,4.477,8.212,0.825,58.720,0.673,0.006,,0.524,0.379 +Yemen,2009,4.809,8.250,0.756,58.640,0.644,-0.056,0.832,0.511,0.374 +Yemen,2010,4.350,8.414,0.727,58.600,0.659,-0.107,0.853,0.514,0.308 +Yemen,2011,3.746,8.264,0.663,58.560,0.638,-0.174,0.754,0.416,0.285 +Yemen,2012,4.061,8.179,0.682,58.520,0.706,-0.172,0.793,0.413,0.263 +Yemen,2013,4.218,8.166,0.694,58.480,0.543,-0.179,0.885,0.478,0.266 +Yemen,2014,3.968,8.159,0.638,58.440,0.664,-0.166,0.885,0.527,0.276 +Yemen,2015,2.983,7.772,0.669,58.400,0.610,-0.138,0.829,0.458,0.321 +Yemen,2016,3.826,7.552,0.775,58.175,0.533,-0.144,,0.401,0.228 +Yemen,2017,3.254,7.243,0.790,57.950,0.595,-0.128,,0.368,0.295 +Yemen,2018,3.058,7.444,0.789,57.725,0.553,-0.127,0.793,0.409,0.315 +Yemen,2019,4.197,7.448,0.870,57.500,0.651,-0.106,0.798,0.481,0.213 +Yemen,2022,3.590,,0.872,56.825,0.607,,0.788,0.460,0.255 +Yemen,2023,3.532,,0.825,56.600,0.583,,0.771,0.447,0.341 +Zambia,2006,4.824,7.834,0.798,46.760,0.721,-0.012,0.785,0.664,0.226 +Zambia,2007,3.998,7.879,0.688,47.420,0.682,-0.073,0.948,0.653,0.246 +Zambia,2008,4.730,7.918,0.624,48.080,0.717,0.051,0.890,0.707,0.206 +Zambia,2009,5.260,7.971,0.782,48.740,0.696,-0.101,0.917,0.693,0.123 +Zambia,2011,4.999,8.054,0.864,50.060,0.663,-0.001,0.882,0.771,0.204 +Zambia,2012,5.013,8.094,0.780,50.720,0.788,0.004,0.806,0.676,0.250 +Zambia,2013,5.244,8.111,0.761,51.380,0.770,-0.108,0.732,0.727,0.308 +Zambia,2014,4.346,8.124,0.706,52.040,0.812,-0.014,0.809,0.639,0.327 +Zambia,2015,4.843,8.121,0.691,52.700,0.759,-0.042,0.871,0.634,0.382 +Zambia,2016,4.348,8.127,0.767,53.125,0.812,0.119,0.771,0.688,0.372 +Zambia,2017,3.933,8.130,0.744,53.550,0.823,0.137,0.740,0.660,0.387 +Zambia,2018,4.041,8.139,0.718,53.975,0.791,0.045,0.811,0.662,0.351 +Zambia,2019,3.307,8.123,0.638,54.400,0.811,0.074,0.832,0.674,0.394 +Zambia,2020,4.838,8.066,0.767,54.825,0.750,0.054,0.810,0.679,0.345 +Zambia,2021,3.082,8.082,0.619,55.250,0.833,0.138,0.824,0.656,0.349 +Zambia,2022,3.728,8.101,0.717,55.675,0.889,-0.009,0.716,0.660,0.309 +Zambia,2023,3.686,8.115,0.664,56.100,0.854,0.092,0.814,0.653,0.359 +Zimbabwe,2006,3.826,7.460,0.822,40.400,0.431,-0.063,0.905,0.669,0.297 +Zimbabwe,2007,3.280,7.413,0.828,41.600,0.456,-0.069,0.946,0.589,0.265 +Zimbabwe,2008,3.174,7.210,0.843,42.800,0.344,-0.077,0.964,0.571,0.250 +Zimbabwe,2009,4.056,7.313,0.806,44.000,0.411,-0.065,0.931,0.660,0.218 +Zimbabwe,2010,4.682,7.495,0.857,45.200,0.665,-0.081,0.828,0.699,0.122 +Zimbabwe,2011,4.846,7.617,0.865,46.400,0.633,-0.077,0.830,0.699,0.211 +Zimbabwe,2012,4.955,7.745,0.896,47.600,0.470,-0.091,0.859,0.613,0.177 +Zimbabwe,2013,4.690,7.755,0.799,48.800,0.576,-0.093,0.831,0.624,0.182 +Zimbabwe,2014,4.184,7.748,0.766,50.000,0.642,-0.062,0.820,0.661,0.239 +Zimbabwe,2015,3.703,7.747,0.736,51.200,0.667,-0.111,0.810,0.639,0.179 +Zimbabwe,2016,3.735,7.735,0.768,51.675,0.733,-0.082,0.724,0.685,0.209 +Zimbabwe,2017,3.638,7.754,0.754,52.150,0.753,-0.084,0.751,0.734,0.224 +Zimbabwe,2018,3.616,7.783,0.775,52.625,0.763,-0.055,0.844,0.658,0.212 +Zimbabwe,2019,2.694,7.698,0.759,53.100,0.632,-0.051,0.831,0.658,0.235 +Zimbabwe,2020,3.160,7.596,0.717,53.575,0.643,0.003,0.789,0.661,0.346 +Zimbabwe,2021,3.155,7.657,0.685,54.050,0.668,-0.079,0.757,0.610,0.242 +Zimbabwe,2022,3.296,7.670,0.666,54.525,0.652,-0.073,0.753,0.641,0.191 +Zimbabwe,2023,3.572,7.679,0.694,55.000,0.735,-0.069,0.757,0.610,0.179 diff --git a/fall-2024/math/mat-206/00030/MAT-206-00030.ipynb b/fall-2024/math/mat-206/00030/MAT-206-00030.ipynb new file mode 100644 index 0000000..b5f0849 --- /dev/null +++ b/fall-2024/math/mat-206/00030/MAT-206-00030.ipynb @@ -0,0 +1,1361 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import statsmodels.api as sm\n", + "import statsmodels.formula.api as smf\n", + "\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from sklearn.preprocessing import MinMaxScaler\n", + "\n", + "from scipy.stats import norm, uniform\n", + "from statsmodels.stats import outliers_influence" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "#Significance level\n", + "ALPHA = 0.11" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "def PlotSimpleRegression(data, variable, ax):\n", + "\n", + " data = data.copy()\n", + " data = data.sort_values(variable).reset_index(drop=True)\n", + "\n", + " # Scatterplot of the observations\n", + " sns.scatterplot(\n", + " data = data,\n", + " x=variable,\n", + " y=\"Life Ladder\",\n", + " ax=ax,\n", + " label=\"Observations\"\n", + " )\n", + "\n", + " # Plot predicted mean\n", + " ax.plot(\n", + " data[variable],\n", + " data[\"mean\"],\n", + " color=\"k\",\n", + " label=\"Prediction\"\n", + " )\n", + "\n", + " # Plot prediction interval\n", + " ax.fill_between(\n", + " data[variable],\n", + " data[\"obs_ci_lower\"],\n", + " data[\"obs_ci_upper\"],\n", + " color=\"rebeccapurple\",\n", + " alpha=0.5,\n", + " label=\"Prediction interval\"\n", + " )\n", + "\n", + " # Plot confidence interval\n", + " ax.fill_between(\n", + " data[variable],\n", + " data[\"mean_ci_lower\"],\n", + " data[\"mean_ci_upper\"],\n", + " color=\"pink\",\n", + " alpha=0.5,\n", + " label=\"Confidence interval\"\n", + " )\n", + "\n", + " ax.legend(frameon=False)\n", + " ax.spines[['right', 'top']].set_visible(False)\n", + "\n", + " return ax" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "def PlotCompareYHatY(data, ax):\n", + " ax.scatter(data[\"Life Ladder\"], data[\"mean\"], color=\"k\")\n", + "\n", + " ax.errorbar(\n", + " data[\"Life Ladder\"],\n", + " data[\"mean\"],\n", + " yerr=data[\"obs_ci_upper\"] - data[\"mean\"],\n", + " fmt=\"o\",\n", + " color=\"k\"\n", + " )\n", + "\n", + " ax.plot(\n", + " [data[\"Life Ladder\"].min(), data[\"Life Ladder\"].max()]\n", + " , [data[\"Life Ladder\"].min(), data[\"Life Ladder\"].max()]\n", + " , color='r'\n", + " , linestyle='--'\n", + " )\n", + "\n", + " ax.set_xlabel(r\"$Y$\")\n", + " ax.set_ylabel(r\"$\\hat{Y}$\")\n", + " ax.spines[['right', 'top']].set_visible(False)\n", + "\n", + " return ax" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Reading and preprocessing data" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "DataWhr2024 = pd.read_csv(\"DataWhr2024.csv\")\n", + "UnM49 = pd.read_csv(\"UnM49.csv\", sep=';')" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "DataWhr2024.loc[DataWhr2024[\"Country name\"].str.startswith(\"Hong\"), \"Country name\"] = \"Hong Kong\"\n", + "DataWhr2024.loc[DataWhr2024[\"Country name\"].str.startswith(\"Somaliland\"), \"Country name\"] = \"Somaliland\"\n", + "DataWhr2024.loc[DataWhr2024[\"Country name\"].str.startswith(\"Taiwan\"), \"Country name\"] = \"Taiwan\"" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "UnM49 = UnM49[['Country or Area', 'Sub-region Name', 'Region Name']]\n", + "UnM49 = UnM49.rename({'Country or Area':'Country name', 'Sub-region Name':'Subregion', 'Region Name':'Continent'}, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "UnM49.loc[97, \"Country name\"] = \"Bolivia\"\n", + "UnM49.loc[33, \"Country name\"] = \"Congo (Brazzaville)\"\n", + "UnM49.loc[34, \"Country name\"] = \"Congo (Kinshasa)\"\n", + "UnM49.loc[124, \"Country name\"] = \"Hong Kong\"\n", + "UnM49.loc[125, \"Country name\"] = \"Macao\"\n", + "UnM49.loc[126, \"Country name\"] = \"North Korea\"\n", + "UnM49.loc[145, \"Country name\"] = \"Iran\"\n", + "UnM49.loc[46, \"Country name\"] = \"Ivory Coast\"\n", + "UnM49.loc[133, \"Country name\"] = \"Laos\"\n", + "UnM49.loc[129, \"Country name\"] = \"South Korea\"\n", + "UnM49.loc[173, \"Country name\"] = \"Moldova\"\n", + "UnM49.loc[217, \"Country name\"] = \"Netherlands\"\n", + "UnM49.loc[175, \"Country name\"] = \"Russia\"\n", + "UnM49.loc[164, \"Country name\"] = \"Syria\"\n", + "UnM49.loc[26, \"Country name\"] = \"Tanzania\"\n", + "UnM49.loc[116, \"Country name\"] = \"United States\"\n", + "UnM49.loc[193, \"Country name\"] = \"United Kingdom\"\n", + "UnM49.loc[111, \"Country name\"] = \"Venezuela\"\n", + "UnM49.loc[140, \"Country name\"] = \"Vietnam\"" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "_ = pd.DataFrame(\n", + " {\n", + " \"Country name\": [\"Kosovo\", \"Somaliland\", \"Taiwan\"],\n", + " \"Subregion\": [\"Southern Europe\", \"Sub-Saharan Africa\", \"Eastern Asia\"],\n", + " \"Continent\": [\"Europe\", \"Africa\", \"Asia\"],\n", + " }\n", + ")\n", + "\n", + "UnM49 = pd.concat([UnM49, _], axis=0)\n", + "UnM49 = UnM49.reset_index(drop=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Merging the datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "# Data\n", + "Dat = pd.merge(DataWhr2024, UnM49)\n", + "\n", + "# Data of 2023\n", + "Dat2023 = Dat[Dat['year'] == 2023]\n", + "Dat2023 = Dat2023.reset_index(drop=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In a previous analysis, I found that Afghanistan behaves as a leverage point, while Botswana and Sri Lanka bahave as outliers. Thus, we will not consider these countries in our analyses" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Country nameyearLife LadderLog GDP per capitaSocial supportHealthy life expectancy at birthFreedom to make life choicesGenerosityPerceptions of corruptionPositive affectNegative affectSubregionContinent
    0Afghanistan20231.446NaN0.36855.20.228NaN0.7380.2610.460Southern AsiaAsia
    13Botswana20233.3329.6730.70155.00.741-0.2640.8140.6570.247Sub-Saharan AfricaAfrica
    115Sri Lanka20233.6029.3640.79067.40.7540.0500.9220.7090.353Southern AsiaAsia
    \n", + "
    " + ], + "text/plain": [ + " Country name year Life Ladder Log GDP per capita Social support \\\n", + "0 Afghanistan 2023 1.446 NaN 0.368 \n", + "13 Botswana 2023 3.332 9.673 0.701 \n", + "115 Sri Lanka 2023 3.602 9.364 0.790 \n", + "\n", + " Healthy life expectancy at birth Freedom to make life choices \\\n", + "0 55.2 0.228 \n", + "13 55.0 0.741 \n", + "115 67.4 0.754 \n", + "\n", + " Generosity Perceptions of corruption Positive affect Negative affect \\\n", + "0 NaN 0.738 0.261 0.460 \n", + "13 -0.264 0.814 0.657 0.247 \n", + "115 0.050 0.922 0.709 0.353 \n", + "\n", + " Subregion Continent \n", + "0 Southern Asia Asia \n", + "13 Sub-Saharan Africa Africa \n", + "115 Southern Asia Asia " + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Dat2023.loc[[0, 13, 115]]" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "Dat2023 = Dat2023.drop([0, 13, 115])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "More preprocessing" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "Y = Dat2023[\"Life Ladder\"]\n", + "\n", + "X = Dat2023[[\n", + " 'Log GDP per capita',\n", + " 'Social support',\n", + " 'Healthy life expectancy at birth',\n", + " 'Freedom to make life choices',\n", + " 'Generosity',\n", + " 'Perceptions of corruption',\n", + " 'Positive affect',\n", + " 'Negative affect'\n", + "]]\n", + "\n", + "X = sm.add_constant(X)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Q1" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: Life Ladder R-squared: 0.001\n", + "Model: OLS Adj. R-squared: -0.007\n", + "Method: Least Squares F-statistic: 0.07861\n", + "Date: Fri, 29 Nov 2024 Prob (F-statistic): 0.780\n", + "Time: 17:57:08 Log-Likelihood: -187.60\n", + "No. Observations: 127 AIC: 379.2\n", + "Df Residuals: 125 BIC: 384.9\n", + "Df Model: 1 \n", + "Covariance Type: nonrobust \n", + "==============================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------\n", + "const 5.6752 0.097 58.421 0.000 5.483 5.867\n", + "Generosity 0.1657 0.591 0.280 0.780 -1.004 1.336\n", + "==============================================================================\n", + "Omnibus: 10.908 Durbin-Watson: 1.906\n", + "Prob(Omnibus): 0.004 Jarque-Bera (JB): 6.234\n", + "Skew: -0.367 Prob(JB): 0.0443\n", + "Kurtosis: 2.200 Cond. No. 6.24\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" + ] + } + ], + "source": [ + "# Extracting the design matrix and response variable\n", + "XGenerosity = X[[\"const\", \"Generosity\"]].dropna()\n", + "YGenerosity = Y[XGenerosity.index]\n", + "\n", + "# Fit the linear regression model\n", + "Model1 = sm.OLS(YGenerosity, XGenerosity).fit()\n", + "print(Model1.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAIoCAYAAACmmkCFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACt1klEQVR4nOzdd3xT5eIG8OdkN90LWlZZBUG2KEMFGTIUfqAIDlRwK+CEK4iooCKggjhRLwriVcAriFwQFJAlqOyhVJYUkF0KhdJmn98fzUlzMtq0TZr1fD+f0uSck5M3oU3f57xLEEVRBBERERERUZRSBLsAREREREREwcRQREREREREUY2hiIiIiIiIohpDERERERERRTWGIiIiIiIiimoMRUREREREFNUYioiIiIiIKKoxFBERERERUVRjKCIiIiIioqjGUEREROWqX78+6tevH+xihA1BEHDTTTe5bT948CBuu+02ZGZmQqFQICkpKSjl87eJEydCEASsW7fOp+Nzc3MhCAKGDx8e8LIREfmCoYiIosauXbvw+OOPo3nz5khISIBGo0FGRgZuvvlmTJ8+HefOnQt2EcNKRSvC4a5+/frQ6XSVfrzVasXAgQPxww8/4NZbb8XLL7+McePG+bWM69atgyAIePzxx/16XiKiSKcKdgGIiALNZrPh+eefx/Tp06FUKtGlSxf06tULsbGxOHv2LH799VeMGTMGr7zyCvbv34/atWsHu8ghZ82aNcEuQljJycmBXq+XbTty5Aj27duHRx55BJ9++mnQykZERO4Yiogo4r344ouYPn062rVrh4ULF6Jx48Zux+zYsQNjx45FcXFxUMoY6ho1ahTsIoSVq666ym3byZMnAQC1atUKQomIiKgs7D5HRBHtwIEDeOutt5Ceno6VK1d6DEQA0K5dO6xatcrjuJk9e/bgrrvuQmZmJjQaDbKysvDkk0/i/PnzsuOcx0kcOnQIt912G5KTkxEbG4uePXti9+7dHp/77NmzePbZZ9G4cWNotVqkpaVh0KBB+OOPP9yOlcb2XLx4EaNGjULdunWhUqkwd+5cxzH/+9//0K1bNyQmJiImJgatW7fGjBkzYLFY3M63du1a9O3bF7Vq1YJWq0XNmjVx4403urVkuI4puummmzBp0iQAQLdu3SAIAgRBQP369WGz2ZCVlYXU1FQYjUaPr7lLly5QqVT4559/PO4HgKNHj0KhUKB79+4e95vNZqSlpaFu3bqw2WwAgIKCArz88sto3rw54uLikJCQgMaNG2PYsGE4evSo1+fyN9cxRfXr10fXrl0BAJMmTXK8XxMnTnQcYzKZMGPGDLRr1w6xsbGIj4/HjTfeiKVLlwakjCdPnsQrr7yCjh07okaNGtBqtahfvz5GjBiBs2fPenzM8ePHcffddyMlJQVxcXHo2rUrNmzY4PU5rFYrpk2bhsaNG0On06Fx48aYMmWK4//LE3//PhAR+YItRUQU0b744gtYrVY89thjSE9PL/d4lUr+sbh06VIMGTIECoUCAwYMQN26dbFv3z588MEH+PHHH/H7778jOTlZ9pjc3Fx07NgRV199NR588EEcPnwY33//Pbp164acnBzUrFnTcezhw4dx00034Z9//kGvXr0wcOBAnD17FosWLcKPP/6INWvWoEOHDrLzG41GdO/eHYWFhfi///s/qFQqxzlnzJiB0aNHIyUlBffccw9iY2OxdOlSjB49Ghs3bsTixYshCAIAYPny5ejfvz+SkpIwYMAAZGZm4ty5c9i9eze+/PJLPProo17fJ2mA/Pr16zFs2DBHYEpKSoJCocDDDz+Ml19+GYsWLcI999wje+z+/fuxceNG3HrrrahTp47X58jKykKXLl2wfv16/PPPP27H/vDDDzh//jzGjh0LhUIBURTRu3dv/P7777j++uvRp08fKBQKHD16FEuXLsV9992HrKwsr88XSM888wx27dqFL774Al27dnUEJum70WhEnz59sG7dOrRp0wYPPfQQzGYzli9fjgEDBuD999/HqFGj/FqmDRs2YPr06ejRowc6dOgAtVqNnTt3YtasWfjxxx+xY8cOJCYmOo4/deoUOnXqhBMnTqB3795o164dcnJycPPNN6Nbt24en+PRRx/F559/jgYNGmDkyJEwGAyYMWMGNm/e7PF4f/8+EBH5TCQiimDdunUTAYhr1qyp8GPz8vLEhIQEsXbt2mJubq5s3/z580UA4qhRoxzbjhw5IgIQAYhTp06VHT9hwgQRgDhlyhTZ9s6dO4tKpVJcuXKlbPv+/fvF+Ph4sWXLlrLtWVlZIgCxd+/eYlFRkWzfoUOHRJVKJdaoUUM8duyYY7vBYBBvuOEGEYA4b948x/bbb79dBCDu2rXL42t3fd6srCzZtldeeUUEIK5du9bt8SdOnBBVKpV40003ue0bM2aMCEBcsmSJ2z5Xs2fPFgGI06ZNc9s3aNAgEYD4xx9/iKIoinv27BEBiAMHDnQ71mAwiJcvXy73+cqSlZUlarVan44FIHbt2lW2be3atSIA8ZVXXnE7fvz48SIA8aWXXhJtNptj+6VLl8T27duLGo1GPHHiRLnPKz3HY489Vu6xZ86c8fiefPHFFyIA8fXXX5dtHzZsmMftn3zyiePn3vlnQSpL69atxcLCQsf2f/75R0xLSxMBiMOGDZOdy5+/D0REFcHuc0QU0U6fPg14Gcexbt06TJw4UfblPJPavHnzcOnSJUyZMsWtheGuu+5Cu3btsGDBArfzNmjQAP/6179k2x566CEAwNatWx3bdu7cic2bN2PYsGHo3bu37PgmTZrgkUcewd69ez12G3rzzTcRExMj2/b111/DYrFg9OjRqFu3rmO7VqvFtGnTAMBjtyLX8wBAamqq27aKqFWrFvr374/169fj0KFDju1msxnz5s1DZmYmbr311nLPc8cdd0Cn0+E///mPbPvFixexbNkytGnTBldffXW5r0er1SIuLq5KrylQbDYbZs2ahUaNGjm61kni4+Px8ssvw2QyYfHixX593ho1anh8T+677z4kJCRg9erVjm0mkwkLFy5EjRo1MHr0aNnxDz/8MLKzs93OM2/ePADAyy+/jNjYWMf22rVr4+mnn3Y73t+/D0REFcHuc0QUtdatW+cYF+NM6tL022+/AQB+//13HD582O04g8GAvLw85OXlIS0tzbG9TZs2UCjk15ykrl8XL150bJPOf+bMGdnYEslff/3l+N6iRQvHdp1Oh5YtW7odv3PnTln5nXXq1Ak6nQ67du1ybLvrrruwePFidOzYEffccw969OiBG2+8UfZaquKxxx7Dd999h9mzZ2Pq1KmAvTvi2bNnMX78eLeuip4kJibi//7v//DNN99g9+7daN26NQDgv//9L4xGI+677z7Hsc2aNUOrVq0wf/58/PPPPxg4cCBuuukmj/8foWT//v24cOECatWq5fHnUZoqXvp58KfFixfjk08+wY4dO3DhwgVYrVbHPmliCKmMBoMB3bt3d5uWXKFQ4Prrr8fBgwdl26UxdDfeeKPb83ra5u/fByKiimAoIqKIVrNmTeTk5ODkyZNuM4JJrUMAsGDBAtx9992y/fn5+QCADz/8sMznuHLliixIJCQkuB0jBQDnSqd0/uXLl2P58uVlnt9ZjRo1ZK0JkkuXLjlesytBEFCzZk2cOHHCsW3w4MFYsmQJZsyYgY8//hgffvghBEFAt27dMH36dLRp06bM112eXr16oUGDBvjiiy/w+uuvQ6VSYfbs2RAEwdFy5ov77rsP33zzDf7zn/84QtGXX34JpVIpG6+kUqnw888/Y+LEiVi0aJGjRSM9PR2jRo3Ciy++CKVSWaXXFAjSz8Gff/6JP//80+txrj8HVTV9+nSMGTMG6enp6NWrF+rUqeNobZk5c6ZskoyCggLA/rPniaefuYKCAigUCo8h29Px/v59ICKqiNC9dEZE5AedO3cG7LOsVZQUbvbu3QtRFL1+VXbwvnT+999/v8zzDxs2TPY4bxVA6Xxnzpxx2yeKIs6cOeMW2AYMGID169fjwoULWLFiBR5++GGsW7cOffr0kbVqVYYgCHj00Udx+vRp/O9//8Px48fx008/oUePHmjYsKHP5+nTpw/S09Mxf/582Gw25Obm4pdffkHPnj2RkZEhOzY1NRXvv/8+Tpw44ZgQIyUlBa+88grefPPNKr2eQJH+TwYNGlTmz8GcOXP89pwWiwWvvfYaMjMz8ccff+Crr77CtGnTMHHiRLzyyiswmUyy46UJF7zNSufpZy4xMRE2mw15eXk+He/v3wcioopgKCKiiDZs2DAoFAp8+umnHitnZZFmufr1118DUjZ/n79t27aAvVugq99//x0Gg8Fr6098fDz69OmDTz/9FMOHD8eZM2fw+++/l/l8UquLc+uXqwceeABqtRqzZ8/G559/DpvNhkceeaRCr0ulUuGuu+7CiRMnsHbtWnz11VcQRRH33nuv18cIgoBmzZph5MiRWLVqFWDvuheKmjVrhoSEBGzbtg1ms7lanjMvLw8FBQXo1KmTW+vPtm3b3NbratKkCXQ6HbZt2waDwSDbZ7PZPM4mJ7Xqbdy40W2fp22B/n0jIioLQxERRbQmTZrg+eefx9mzZ9G3b1/ZoH9nnlpFHnjgAcTHx+PFF1/02K2pqKjIMQ6iMq677jp06NAB8+fPx8KFC93222w2rF+/3ufz3XPPPVCpVJgxY4ZsPIjJZMLYsWMBp6m0YZ+S2VOgkVoDXMeOuEpJSQHsa9d4U7NmTQwcOBArV67ErFmzkJaWhoEDB/r8miTS2KEvv/wSX375JWJjY3HbbbfJjsnNzUVubq7bY6VWCefXYzab8ddff3kcK1bdVCoVnnjiCRw9ehRjxozxGIz++OMPr600lVGjRg3ExMRgx44dKCoqcmy/cOECnnzySbfjtVothgwZgrNnz2L69OmyfbNnz8aBAwfcHiP9n7366quyLm8nTpzAu+++63a8v38fiIgqgmOKiCjiTZ482bEw5lVXXYUuXbqgdevW0Ov1OHv2LPbs2YMtW7YgLi5O1pIiddkaPHgwWrdujT59+uCqq66C0WhEbm4u1q9fj86dO2PlypWVLtv8+fPRrVs33HXXXZg5cybatWuHmJgYHDt2DL/++ivOnTvndmXem0aNGmHatGkYPXo0WrVqhSFDhiA2Nhb/+9//sH//fgwYMEDWuvLUU0/h5MmTuOGGG1C/fn0IgoBffvkFW7ZsQceOHXHDDTeU+XzSoq3jx4/Hn3/+icTERCQlJbmtp/P444/jv//9L86cOYPRo0dDo9FU+H269tpr0bRpU3z99dcwm8247777ZDOaAcCuXbtw++2347rrrkPz5s2RkZGBEydOYMmSJVAoFHj22Wcdx544cQLNmjVDVlaWxyDljdlslgVLV5VdNHTSpEnYsWMH3nvvPSxfvhxdunRBjRo1cOLECezduxe7d+/Gr7/+6nVMj6u1a9d6LecNN9yAhx9+GCNGjMD06dPRunVr9O/fH5cuXcKKFSuQlZXlcbbGqVOnYs2aNZgwYQJ++eUXtG3bFjk5Ofjhhx/Qq1cv/PTTT7Lju3XrhgceeABz5sxBy5Ytcdttt8FoNGLhwoXo2LEjli1b5vYc/vx9ICKqkGDPCU5EVF127NghPvroo+JVV10lxsXFiWq1WqxZs6bYvXt38a233hLPnDnj8XF//fWX+NBDD4lZWVmiRqMRk5OTxZYtW4pPPfWUuGXLFsdx0jpFrmuvSDytXSOKopifny9OmDBBbNGihRgTEyPGxcWJ2dnZ4j333CMuXrxYdqyn9YJcff/992LXrl3F+Ph4UavVii1bthSnT58ums1m2XELFiwQhwwZIjZq1EjU6/ViYmKi2Lp1a3HatGlu69d4e965c+eKLVu2FLVarQjA4zE2m02sV6+eCEDMyckps+xlef311x3r4fz4449u+48fPy6OGzdO7Nixo1ijRg1Ro9GI9erVE2+//Xbx119/lR0r/V+V9146k9bEKetLUtF1ikRRFC0Wi/jJJ5+I119/vZiQkCBqtVqxXr16Yp8+fcRZs2bJ1vrxRnqOsr6kn0+TySROnjxZzM7OdjzX6NGjxcuXL3v9/z569Kh45513iklJSaJerxdvvPFGcf369V7XrLJYLOKUKVPEhg0bihqNRmzYsKH4xhtviIcOHfL6u+Lv3wciIl8IYsmHNxERUUCcOnUK9erVQ6dOnbBhw4ZgF4eIiMgNxxQREVFAzZw5ExaLBU888USwi0JEROQRW4qIiMjvCgoKMGvWLBw9ehSzZ89GkyZNsGfPnpBcJ4iIiIihiIiI/C43NxcNGjSATqdDx44d8fHHH6Np06bBLhYREZFHDEVERERERBTVOKaIiIiIiIiiGkMRERERERFFtYgKRaIo4tKlS2CPQCIiIiIi8lVEhaLLly8jMTERly9fDnZRiIiIiIgoTERUKCIiIiIiIqoohiIiIiIiIopqDEVERERERBTVGIqIiIiIiCiqMRQREREREVFUYygiIiIiIqKoxlBERERERERRjaGIiIiIiIiiGkMRERERERFFNYYiIiIiIiKKagxFREREREQU1RiKiIiIiIgoqjEUERERERFRVGMoIiIiIiKiqMZQREREREREUY2hiIiIiIiIopoq2AUgIqqKgiIT8gpNuGQwIyFGjbRYDRL1mmAXi4iIiMIIQxERha2TF4sxdtEebDyY59jWJTsNUwe1Qq2kmKCWjYiIiMIHu88RUVgqKDK5BSIA2HAwD+MW7UFBkSloZSMiIqLwwlBERGEpr9DkFogkGw7mIa+QoYiIiIh8w1BERGHpksFc5v7L5ewnIiIikjAUEVFYStCpy9wfX85+IiIiIglDERGFpbQ4Dbpkp3nc1yU7DWlxnIGOiIiIfMNQRERhKVGvwdRBrdyCUZfsNEwb1IrTchMREZHPBFEUxWAXwl8uXbqExMREFBQUICEhIdjFIaJqIK1TdNlgRrxOjbQ4rlNEREREFcN1iogorCXqGYKIiIioath9joiIiIiIohpDERERERERRTWGIiIiIiIiimocU0REREQhRZpA5ZLBjIQYNdJiOXaQiAKLoYiIiIhCxsmLxRi7aA82HsxzbOuSnYapg1qhVlJMUMtGRL4RRRGCIAS7GBXCKbmJiIgoJBQUmTBq/k5ZIJJ0yU7D+3e3ZYsRUQDYbCKsZissZhssZissJqfbZpvXfWajBSaDFcZiM8wGC0xGK0xGC2JiNej7QBuoteHT/hI+JSUiIqKIlldo8hiIAGDDwTzkFZoYiogAWC02WC3ykOLLfZPRAlOxBSajxR5iSkKN1WyF1SpCtNlgs4qw2UTYrKW3RVtpy4/o+FeAAEChFEq+FAIEhQIWsxXGIjPMJitDEREREVFFXTKYy9x/uZz9RKHIZrXJQ4pTy4vVYoPZZJXdl46xmKSWGPuXsSTgmIwWWM22ktBikwKMPNCINhEQBEg92KR+YQJECAqFU5BROAKNQiFAoVFCoVSUBBxpu/2+r65cMsJksATo3QwchiIioijAgesUDhJ06jL3x5ezn6gqRLEkXHgKLr5sMxksMBulL6ujK5nVUhJgRHt4sTm+l4SYksAiQgAAQQBEQETJ9pJQIg8npfcFqDRKt2MEe8ChimEoIiKKcBy4TuEiLU6DLtlp2OBlTFFaHIM8lYQXKZg4hxQpqJR8dw8w0nYptJiN9m5k9tvSsaLNQ3CxyVtgPBEEOLW6lLTACM6BRaUoDS1OrTOCQgi7SQkiEUMREVEEKygyuQUi2MdnjFu0hwPXKaQk6jWYOqgVxi3aIwtGXbLTMG1QK/6shhFpTIpzeHGEFYs8xHg6pmQQf0lYMZvkty0mq0u3MQ/hRZTGvJSEGFEEBMdIGLgHFvt4GIVSgFKlgMplnxRmBAEMMBGKoYiIKIJx4DqFm1pJMXj/7rbIKzThssGMeJ0aaXHs7ulvUlcx51YUt9DiJchIX2b7mBfXwGIyloyRsTm1rpSOdbHJwow07kW0N8CIIhx35C0vpaFFal1RqRRQaJzGvjC8UBUwFBERRTAOXKdwlKiP7hDkHFh8/XIONs4Bx2SwwGK0wGy2lXw3WWWtLc7dwmyut61iaUCB6DTexVFSWRcwhULeNUwKLtIYF9ngfXYboxDDUEREFME4cJ3If8oKKzarD+HF6bEWk71lxVgaUswu0yeL9m5gJYPx5d9lM4x5KqtjpjEPocVxH6VdxRzbBHmI4YB9ihIMRUREEYwD1ynSSWNXSoKJe2CRhRWn/c7bnbuROU+FbDHbHIGlZJ/VrWVFtMGtxUUURfkYFpdpkaWZxgSFwmMYERTOs465Bhl2ESMKBIYiIqIIxoHrVJ2cF3yUBQ+n+67BxWYte7804N5qtpZ0AbO3pljNNpjNVtgsNnkoEaXbcNtW0rIiLTlZQpTdso9jcQkqgiBvXVEoBAgqb4FGgEJgCwtRuGEoIiKKcBy4Hl2cu3hJgcMtqHjaZil7e0mXr5JxK47pi81WWOzbLRZbaUBxCSal90tbUmw2aXYwp9YUe0IpWbaltGuYFEZkQcUlrChVCqgE92OkgKJQCCWBiC0rROQBQxERURSI9oHr1UWq9DuHj4rel0KJp/BS0lpS0kri6OpltsFqKZ0lrDSYeAgkHreVjJwXBMExXbHz91KiLISU3IbHgCKtySJtl7e6gIPsiSjkMBQREVFYcq7YSyHC221Z2LDJg4d0nNWpG5Z0WzrOeeV6xxTFVhusjqmKrbBYRIhW55aS0jJKY0xkY06c9tuXsne0lngehwJ7qwnkIUQQPGyzBw+n1e0FAW7hheNSiIhKMBQREZFHrrNcyYKGl23OwaPC+60u3bSsJa0eVovN0TXLecC8dK7S4IEK3QZQOnOXUwApySWibKPgEiqkVhK4BhPnVhGlIHuc1I3LOYgwlBARhQaGIqIoUFBkQl6hCZcMZiTEqJEWy65U1UVqIXCfsaqkUi+KcAQD51YPb9Pvenusx2Odzls665bV3vJhg2izwWoRS8OH1QabdN8qPYdTlytA1uohhQyIrttKw4cULKTgIYry24BzCJH2uYQM2W15MJG2K5SCPGQ4jinjNoMIERHZMRQRRbiTF4sxdtEebHSZeWzqoFaolRQT1LIB8iv48q5F8m1l7XMOEOU9rvQ+SoOFhwUMnc/rOuWvrDuW22xbImw2p25aFpsjTACu4UIKFKXhyfN9p5AhdaVybuFwbLMf77xqicvCi44WCpeg4QgijhYM+T630CHdBty2QQCDBxERhRWGIiI/cK3Qwj7guswKr62MY23yx0kVak/ndN7netzlYjPe/nE/9h6/iCQAgv35/vj9BMb/cxmjujWGXqNye2xZt22urRRSC4U0BsPDiuglt2329Tzk3aecX6v0XsK+iLr7ttL3TAoXpe+HFAjkAUTiPIhcNpJc1mUK9vVDhJLndFToRXkl3z6lr6AoOZmgsM+h5Rwo3Pbb9yldw4e9JUXhcn5ZgIEs0BAREZF/MRQF0OULxbh0vrjc46SKn3ybtztud93O4bjpaZvL8a7Hlnmch2PK2l+Rfb5sdy6rc5gQbTZHpdi1a4/jGFEEbCJsHrv6oHR6WFEePJxDgeuA6ZLH2M/nqKCX/FNabjhGTTtuyt4L+T75Yz0/rqx9zu81BAFXjGZcPJCHLNfppATgwj+FWJ9vRqxWBcGpK5MzQXou2ehv5wBQWkl3rrhLA8YdtxVSkeQVftk2yMdnwOXcssfaC+ctMLgeT0RERFQWhqIA2rbqbxzccdJtu6fKZ3ncHyPKvskITh33Xacwct3m6McvyHrgwKkODW91SpcHeKg7y0/oeCGCY7t8dW/B/eU4VfBlT2Lf7ngZzhXz0jfCXmF23Cu9LbgcA5RWzJ0q/K7HeH4+D+ewb1BILQWC4LbfuWJf5X0ur1+6f6rAgMKTBa7vqkNC7XhkJOq87iciIiKKBgxFAWQxW6FQCEivk+D5AB+uYAte7zifhlfCyTOtSlHmfk05+4mIiIiiAUNRoAkCFEpWPCk49BolslL1OHq+yG1fVqoeeo0yKOUiIiIiCiWsrRNFMJ1aiZ7NaiIrVS/bnpWqR89mNaFTMxQRERERsaWIKMLF61To2yIDRSYrTBYbNCoF9BolAxERERGRHUMRURTQqRmCiIiIiLxh9zkiIiIiIopqDEVERERERBTV2H2OiIgoRBjMVhSZrDBabNCqFdAoFTBbbTCYS+7r2RWWiCggGIqIiIhCwGWDBatzzsim0K+XEoM29ZKxYu8pmK2iY+bIeB3/fBMR+RO7zxEREQWZwWx1C0QAcCy/GLuOXUDbeskAgKPni7A65wwMZmuQSkpEFJkYioiIiIKsyGT1uMgy7MEoI1HnuH/0fBGKTAxFRET+xFBEREQUZEaLrcz9Vpsou28q53giIqoYhiIiIqIg06rK/nOsVAiy+5pyjicioorhpyoREVGQ6TVKZKXqPe6rlxKD0wUGx/2sVD30Gs5AR0TkTwxFREREQaZTK9GzWU23YCTNPrfz2AXAHoh6NqvJabmJiPyMc3oSERGFgHidCn1bZKDIZIXJYoNGpYBGVbJO0aB2daBRKaDXcJ0iIqJAYCgiIqKQ5rqgaSQvYKqL4NdGRBTKGIqIiChkeVrQlAuYEhGRv3FMERERhSRvC5pyAVMiIvI3XmYjIqKgKatrXFkLmkoLmLKrGRER+QNDERERBUV5XePKW9CUC5gSEZG/sPscERFVO1+6xpW3oCkXMCUiIn/hXxQiIqp2vnSNK2tBUy5gSkRE/sRQRERE1c6XrnHeFjTlAqZERORvHFNERETVzteucZ4WNOUCpkRE5G8MRUREVO2krnGeutC5do3jgqZERBRo7D5HRETVjl3jiIgolLCliIiIgoJd44iIKFQwFBERUdCwaxwREYUChiIiIqJyGMxWFJmsMFps0KoV0DPMERFFFIYiogpgxYj4MxB9LhssbgvNSmOf4nX8M0pEFAlC6tO8fv36OHr0qNv2ESNG4MMPPwxKmYgkrBgRfwaij8Fsdfs/h32B2dU5Z9C3RQZDMRFRBAip2ee2bt2KU6dOOb5WrVoFABg8eHCwi0ZRrryKkcFsDVrZqHrwZyA6FZmsHqcNh/3/vsjE/3ciokgQUpc209PTZfenTp2KRo0aoWvXrkErExF8rBjxanFk489A9HDuIqlSCLiuQQp2HrsAs1V0O9ZksQWljERE5F8hFYqcmUwm/Oc//8Fzzz0HQRA8HmM0GmE0Gh33L126VI0lpGhiLKfiw4pR5Iu2n4FoHTvlqYtkvZQY9G2ZiRV7T7kFI40qpDpcEBFRJYVsKFqyZAkuXryI4cOHez1mypQpmDRpUrWWi6KTtpyKDytGkck5GKiVZbcYRNLPQLSOnfLWRfJYfjEAoG29ZGw5ku/YnpWqh14T+UGRiCgahOxf8c8++wx9+/ZFrVq1vB7zwgsvoKCgwPF1/Pjxai0jRQ+9RomsVL3HfawYRabLBgtW/HEa8349ioVbj+M/vx3D6YJi9G2ZCbVS3nodiJ8Bg9mK/CsmnCowIL/IVG1jlqJ57FRZXSSP5RcjI1HnuC+FxGhoPSMiigYhecnv6NGjWL16NRYvXlzmcVqtFlqtttrKRdFLp1aiZ7OaXq+es2IUWSrSYhCIn4FgttRE89ip8rpI6lQK3HVtXWhUCug10dGdkIgoWoRkKJozZw5q1KiBW2+9NdhFIXKI16nQt0UGikxWmCw2VowiWHktBl2apKNhWmxAfgaCPQV0tI2dclZeN1mdWomUWE21lYeIiKpPyIUim82GOXPmYNiwYVCpQq54FOV0UTLYPNqVFwwsVlHWlcqfgt1SE83j56Rusp7ef3aTJSKKbCH312316tU4duwYHnzwwWAXhYiiVDCDQbBbaqJ5/JzUTdb19bObLBFR5Au5pphevXpBFN1ndiIiqi7BbDEIdktNtI+fYzdZIqLoFHKhiIgo2IIZDEKhC1e0BwN2kyUiij4MRUREHgQrGIRKSw2DAflTtC4GTEThg6GIiMiLYAWDaG+pocgSrYsBE1F4CbmJFoiIqHT654xEHVJiNQxEFJaieTFgIgovvERDRERUBewa5l2wp5gnIvIVQxERkQtWcslX7BpWtmBPMU9E5Ct+YhMROWEll+BjMC6va1jfFhlRH6aDPcU8EZGv+BeeiMiOlVxCBYIxu4aVLxSmmCci8gUv0RAR2flSyaXIVpGJAdg1rHzSFPNZqXrZ9mhZDJiIwgdbioiI7FjJlYvGsVUVaf1h1zDfcIp5IgoHDEVERHas5JYKlbFV1R3MKhKM2TXMd1wMmIhCHUMREZEdK7klQmVsVTCCWUWCsdQ1zFsZGQKIiMIHQxERkR0ruSVCYQKBYAWzigZjdg0jIooMDEVERE68VXIBIP+KKSrG14TC2KpgBbPKBGN2DSMiCn8MRURELlwruaEyvqa6hMLYqmAGM7b+EBFFn+gZNUxEVAkVmaI5UkhdyDyprrFVvgYzg9mK/CsmnCowIL/I5Lf/D51aiZRYDTISdUiJ1TAQERFFuMi7xElE5EehML6muoXC2CpfxvZEWwseEREFDv9qEBGVIRTG1wRDsLuQlRfMAITEDHlERBQZGIqIiMoQCuNrgiXYEwiUFczyr5iirgWPiIgCh6EogkTj6vNEgca1i4LLWzCL1hY8IiIKDIaiCMG+9USBEQrja8hdNLfgERGR/7G2HAFCZfV5ijxsfSwR7PE15I4teMHFzwYiijQMRREgGmfHosBj66NcsMfXkBxb8IKHnw1EFIn46RUB2Lee/I2tjxQO2IJX/fjZQESRiqEoArBvPfkbWx8pXIRbC164dzvjZwMRRSqGogjAvvXkb2x9JPK/SOh2xs8GIopUbEKIAFLf+qxUvWw7+9ZTZbH1kci/yut2ZjBbg1a2iuBnAxFFqvC4NEXlYt968ie2PhL5V6R0O+NnAxFFKl7SiSA6tRIpsRpkJOqQEqsJiz+wFJrY+kjkX5HS7YyfDUQUqdhSREQesfWRyH8iqdsZPxuIKBIxFBGRV+E2sxdRqIq0bmf8bCCiSMNQFEHCfapXCn+h+jMYquWi6MHFZomIQhtDUYSIhKleA4UV4uoRqj+DoVouij7sdkZEFLpYI4gAXGHcO1aIq0eo/gyGarkoerHbGRFRaAqfkZ3klS9TvUajSFkXJByE6s9gqJaLwofBbEX+FRNOFRiQX2Ti5wYRUYTipfIIEClTvfpbpKwLEg5C9WcwVMtF4YEtzURE0YMtRREgkqZ69SdWiKtPqP4Mhmq5KPSxpZmIKLqwRhABpKlePQnHqV79hRXi6hOqP4OhWi4Kfex6SUQUXVgrjADVucJ4OPWvD8UKcTi9fxURqqvch2q5KPSxpZmIKLqwU3SEqI6pXsOtf32orQsSbu9fRYXqdMOhWi4KbWxpJiKKLuFfEyOHQE71Gq5TG4dKhThc37+KCtXphkO1XBS6pJZmT13o2PWSiCjyMBSRT8J5JrdQqBCH8/sXirggLwVaqLU0ExFRYDEUkU/Yv75q+P75T6R3Q/QXBseqC5WWZiIiCjzWIMgn7F9fNXz//CPY3RDDJWgwOPpPKLQ0ExFR4PGvI/mE/eurJpzfv1AKAsHshhguQSPYwZGIiCgchc5fcgpp7F9fNeH6/oVaEAhWN8RwChocv0ZERFRxDEXkM/avr5pwe/9CMQgEqxtiOAUNjl8jIiKqOIYiqpBo61/v765j4fT+hWIQCFY3xHAKGhy/Rt6EUldYIqJQw1BE5EWodR2rbqEYBILVDTGcgkY4j1+jwIn2zzMiovLwk5DIg1DsOlbdQjUIBKMbYjgFjXAdv0aBw88zIqLyMRQReRCKXceqW6gFAbeuPxolUmI11fLc4RY0wm38GgUWP8+IiMrHUETkQSh2HatuoRQEQqHrT7gFjXAav0aBxc8zIqLyMRQReRCqXceqWygEgVDq+sOgQeGIn2dEROVjKKKwFciZlEKt61gwBTsIsOsPUdXw84yIqHwMRRSWAt2dKpS6jkU7dv0hqhp+nhERlY+hiMJOdXWnCoWuY8SuP0T+wM8zIqKyMRRR2KnO7lTB7jpGkdP1p6zunlxUk6oDP8+IiLxjKKKww+5U0SUSuv6U1d0TQNBn1iMiOV6oIPKNUgGopS8loFIAoloBm0UFiGKwi1ch/ItLYYfdqaJPOHf9Kau7Z+75Kzh0phBH84M/sx4RlQiFJQCIQoXSKfCoFSWhR6MEtCpAaw9BCgWgFEofY7MoUGwEYA2vi9T87aawE4juVLwqGPrCtetPWd09Y7Uqt0Ak4cx6RNUvlJYAIKoOrqFH+q5TlYQfT6EHAKwiYBNLvpstJbeldiHBIkLw9GQhjqGIwo6/u1PxqiAFUlndPa22srsWsCsoUfXiEgAUaVT20KPyFHpU9tAjVCz0RCrW+Cgs+as7Fa8KesaWM/8pq7unUlH2tTR2BSWqXhyzSuFG5dq9raKhxwaYxegIPeVhKKKw5Y/uVLwq6C5QLWfRGrTK6u55xWiJiJn1iCIFx6xSqPHUyqNWlnZvU3oIPSJKQo5z6LFGe+LxAUMRRTVeFZQLVMtZNHdRLKu7Z4PUWNRPjQ3rmfWIIkmkLAFA4cNTK480kYEUepRCSfCRSKHHytDjV5FdGyEqB68KygWi5SwQQSvcWp3K6+4ZrjPrEUWaSFgCgEKHIHVvc27pcZnIQMHQEzIYiiiq8aqgXCBazvwdtMK11ams7p7hOrMeUSQK5yUAqHoJcG/lUStdWnrsgcdj6LGVfJnsXd0ouEK3BkFUDXhVUK6yLWdltdz4M2hxYgwiqg68UEFASZCRtfTYw4/WHnrULqFHtAclUZrIwAaYbaXjeyi0MRRR1ONVwVKVaTkrr+XGn10UOTEGERH5i9Il9EitPdLCpGqlfRIDBWTr7thQEnhsIkNPJGEoIuJVQYeKtpz50nLjzy6KnBiDiIh8pRRKgo3ruB6ppUelKJ29TRZ6nNfosQEGKyAy9EQ8hiIikqlIy5kvLTcpsRq/dVHkxBhERCTxtjCp1NKjUpRMZOAp9Ejr9JisJeN6mHmIoYiI3PjaclZey43BbMWpAgO0agVubl4TZqsNRnPluyhyYgwioujgPHOba0tPWWv0wGlhUpsImC1cmJR8w1BERJVWXsuNwWLD0l0nAaeWoeRETaWfjxNjEBFFhjJnblOWP101FyYlf2MoIqJKK6vlpl5KDE4XGBz3/TVDHCfGICIKfc6TGDi39GhUTqHHy3TV0sxtnK6aqhNDERFVmreWm3opMWhTLxkr9p6SHe/vGeJEQN5RnIiIqoXreB4p+OiUJcFHJbXycOY2ChMMRURUJa4tN0qFgINnC7Fi7ymYPfRpqOoMceG6eCsRUbgoazyPtCipyst4HtkkBjbAauF4HgoPrEEQUZU5T8yQf8WELUfyvR5blRniuHgrEVHVeVuUVOMUeqTAU954Hk5iQJGCoYiI/CqQM8Rx8VYiovIpFfKw42l9Hk+LknI8D0UzhiIi8qtAzhDHxVuJKNo5d22ThR4FoFXLu7ZxUVIi3zEUEZHfBWqGOC7eSkSRTim4T16gUpS28qiVpd3avHZtEwGzlV3biCqCoYiIAsLXBWArgou3ElG4c23dkW47T2AgLUrqbdY2i610MgMi8g+GIiIKG1y8lYhCmdvaPK4TGCg8L0gKlIYcmwiYrCVjeph5iKoPQxERhRUu3kpEwSCN5Sm3lcfD2jycwIAo9DEUEVHYCUTXPCKKbkrBvYVHrSgJO5oypqmGaysP1+YhCksMRURERBHGYLaiyGSF0WKDVq2APsovJDjW5bGHHem2bDFSewtPWWN52MpDFLlCLhSdOHECY8eOxYoVK1BUVITGjRtjzpw5aN++fbCLRkREFPIuGyxex93F60Luz36VuXZr8zRjm/MU1WXO2GbhjG1E0SqkPh0vXLiA66+/Ht26dcOKFSuQnp6OgwcPIjk5OdhFIyIiCnkGs9UtEMG+uPHqnDPo2yIj7FqMHC08LsFHoyoJPeoyurW5rstjYysPEXkRUqFo2rRpqFu3LubMmePY1qBBg6CWiYiIKFwUmawep6yHPRgVmawhFYqUToHHuWubRlkaeJTeFiJltzYi8qOQCkVLly5F7969MXjwYKxfvx61a9fGiBEj8Mgjj3g83mg0wmg0Ou5funSpGktLRMHGcRNEckaLrcz9pnL2+5Nz4HGdvEAax+Mt8LjO1mYW2a2NiAIrpELR33//jVmzZuG5557D+PHjsXXrVjz11FPQaDQYNmyY2/FTpkzBpEmTglLWaBLoiicrtlQZ0TZugjzj54ecVqUoc7+mnP2+UinkX87r8UhfSi8TF0jjeKwiAw8RhQ5BFMWQ+RzSaDRo3749Nm/e7Nj21FNPYevWrfj111/djvfUUlS3bl0UFBQgISGh2srtzaqv9uDovnOoWS8x2EWptEBXPFmxpcowmK1Y8cdpj92EslL1YTlugiqOnx/uqvq7ITgHHqU8+PjSpc114gKpe1vIVDSIKOAEiwWCKKJ279bQJ+uDXRyfhdRfjczMTDRv3ly2rVmzZli0aJHH47VaLbRabTWVLvoEesBuJA4IDifhfIU93MZNkP/x88MznVqJns1qegyLvZrXRIJO6d7K49S6I01aIE1c4Ex0Wo+HLTxEFGlCKhRdf/312L9/v2zbgQMHkJWVFbQyVYVKEBGrFaBWlP4hCSeBrnhGU8U21AJIuF9hD6VxExQc0fT54QvnkJOkU2FYhwzYRBsUgog4jQKxWgV0KoXHaanh1LrDwENE0arCtZ+ioiLce++9GDRoEIYOHerXwjz77LPo3Lkz3njjDQwZMgRbtmzBp59+ik8//dSvz1NdasbYUCdbB62+9I+NxQZYrCVTg1pspX2qHd9dtvkzSFW0Yh7oime0VGxDLYBEwhX26ho3QcHn7XMrWj4/lEJJVzXX1h2pO5tGVTKex707mxKAUtadzcZpqYmIvKpwjUyv12P16tXo27ev3wtz7bXX4rvvvsMLL7yAV199FQ0aNMDMmTP9Hr6qi1IQoVSU/BFS2Aec6hSAoHbvhy1x/gMm+hqk7N9tTvddVaZiHuiKZ7AqttXZahOKASQSrrDrNUpkpeq9jpvQa0K7/OSbsj63dOrwDsYKwXPQUSqcurK5hB231h3p7wVnaCMiqrJKXaa+4YYb8Ouvv3qdKrsq+vXrh379+vn9vMEiBRVfCQKgsP/BFJyuEPoSpESX7g8WW0mQKjLZcPRcAdJjgQStDkaLCKNZhNFkwpYj59C1SQ2olUq3P6SBrngGo2Jb3a02oRhAIuEKe1njJkoqzAxF4a68Cwo3N68ZksHYW8uOND21RgVoygk7bN0hIqp+laoFfvDBB+jduzcmTJiAxx9/HHXq1PF/yaKUKAJWeG7t8UZwClHSH1iVCtDZbydoRbTK1KBlpsYRqqwiYLGJsNpENEwD1KqSq40WKUxZAYuoxP0dMrA19wKO5RfDZBFhsNiQHq9Dp4ZpiNEoK1ROV9VdsQ1Gq00oBpBI6XoWr1Ohb4sMFJmsMFls0KgU0GvCZ7IIKlt5FxRMFlu1fX4IkAcd2W2htGVHJU1DzbBDRBR2KhWKWrduDYvFgilTpmDKlClQqVRus8AJgoCCggJ/lZPKIM0I5K3PRKFBxJF8k2xbydVMASqFAJNVhEZlX1RPVdJSJUitUvFKNEpJgVUUYbPZtwsCFIKipGUKpa1SUpiSdefz0LVPmqZVrOaKbTBabUIxgERS1zNdGM2YRxVT3gUFs9UGvUaJLk3SYTBboVEqoFYqoFMrfPqZkIKOUgGoBHnYkVp11MrS9Xecg45ri70N8pZ6hh0iovBTqVA0aNAgCIKnjlwUipSulyvtIcpqFWGyirDYBBitZZ2htOIuiKWtUlJXP7WyZHVywTlMuXDu4ieFqdKWKaX9y2kFc1F+2+YStCojGK02oRhAymqh69a0RrWXJ1r5c2xbqM1u6A9lXVBQKwVoVUq39XgapZdMOx2jkgceZTlBR2ptd+baLZljdoiIIlulQtHcuXP9XxIKGLVSQFKMGheLzW77kmLUULsuRlGG8lqlvHHu4ifd9tgy5YFUCRGdKiTOrVMWm3y2Pufw5ByqYjUKKBXex3gFotVGCiC5568gVquC1SZCpRBQaLSgQWps0CquUgtdodGCSwYLAOB0gQFf/X4UtZJiwmZq7nDlz7FtoTa7ob/oNUo0rqHH2UsG6FQKaFVCSSuQSkCHhik4f/kSmqYpcU3tJMRqFYjTKKBRCUjSG1EvpaTVyPUzxVvQkbYTEVH0Ct+/mOQzlVKBhulx+PtcoSwYJcWo0TA9Dipl4LtwVTZMAaVXcgWnq7q+tE7BJVBZUlXIjMtEfqEZBouIYrMVxWYRxSYb4mPUaJSqhFLhFKicVmO3ivKxABV16EwhjubLK631U2MrfiI/23gwL6RmxosG/hzbFoqzG3ojjbVRKkonI1A6teIoBflioiqFEm0yM3GqoBgGsxUqhQCloiQspcVpcSzfBkADi02ExSraL5CIOHvZhORYHbQqtugQEZHvKh2Kjh07hjfeeANr167F2bNn8f3336NLly7Iy8vDq6++igceeABt27b1b2mp0jQqBRrXiIPZWjK5glIhQK0UqiUQVZUjhFQxUAlQoG6yHkqhCMVmK5SCCkpFSatJzQQdVAr398I5VIku4wakFiqLh1Yq6avYbMVvJ87DZDEhLVYJk1WE2SrixIXgV1pDcWa8aODP9726/w+lcTgKwR5yFJ7DjjTdtNppjI6jq5qXcTlwbckBIAgKZCTEOH5vBKHkcyu/yIZcl3GSzkyWknGSREREvqrUn419+/bhxhtvhM1mQ4cOHXDo0CFYLCVdcNLS0vDLL7/gypUr+Oyzz/xdXqoClVIBVZTVcd0DlQJp8Xq3cFhs8RwOpXFTgktrlVLhW0uVySpAJephaxxjD0yivVtfyfM3ThehUZZOSGFxCVXOX86BzOZhGvaKtmCF4sx40cCf73tFziWgNMQIgvssaY77TqHHebY1pdNjXVtuPZEmH3Du9mq2lQYe0defV0EBtaqkq61EWc7AQk/jKImIiMpSqVD0/PPPIykpCb/99hsEQUCNGvLB2bfeeisWLlzorzIS+VVFwqE0RXpl++EUGmw4eckEpSDYK6SC/aq5AJVSgFoBxGjk4aq86pxry5Xzd9cuf87jqowWGwxmK4yWkjDYIFmFNnViYDSLjunZS8ZmlXRHSopRQKt0mSSDYy+qrKwJBBQCEKNWlKxN5hw8XNYvk4KMRqFE+3p6qBUlP08qBRxjb7RKAdfWUSFOJ59QQHAJNmX9vDkHG+nnzGpzH+NX3fw5TpKIiAiVDUUbNmzAyy+/jPT0dJw/f95tf7169XDixAl/lI/8xGK1lbaOKAV7JSr0u875IpRfm1IhlAQNeE5XBosAoQJFFez/SOHJtXKrUqDkfC7HWG02nL1khEm0IMb+fHqdEiNuzMDJi8XyUCWWjNvITFRBKdgrwPaii86hzKlSLGu1kirMNqdKtb38riHO+Zyu54fTdud3zvlYV6LbjbLeSM+BQHDZJ7gcL/s/cN4uuH8H5LObCQJQJ0GFx65PR6HRApV9WvySrqwCEnUqZKWqoFI6Pb+H55JYbUqk6JJRZLJCcHrvrKKIGLUSiTEKKBTyQOsacsIx44bCOEkiIooslQpFNpsNer3e6/5z5865rVtEwWOy2LxWHsJloU5vQv21+fuKtlsg8KFGa7HacOhsoZcyWJASq8GR81ccFfdkvRqZiTpYbApYnSvirmFMIa+4ux4HL6HD02uqzHX9ilTmRbG0jGUJZPtCaTBUICkrAacuFuOS0eIIKrEaJWon66FQKBytMXAJknB73QroNDqcLHD/HaiREAOTTVGSTCNQOI+TJCKi0FOpUNSuXTssX74cI0aMcNtnsViwYMECdOzY0R/loyqyWN1DAwBcLDbj73OFaFwjfK+qhsNrC4Ur2mar6DEQwf5eZaXGonWdJFnFUqlUVHq2wOrgU3jxdlA5r6l6XrICibEx0OvkFXobFDCVuWaYu2gOB9E4TpKIiAKjUqHohRdeQL9+/fDEE0/grrvuAgCcOXMGq1evxhtvvIGcnBx88MEH/i4rVUJ5FWKzVQzbSkW4vLZgV1qt5QwCstpExIXZejY+BZcQDXQSf1boGQ6IiIiqplI1ob59+2Lu3Ll4+umn8emnnwIA7r33XoiiiISEBMybNw9dunTxd1mpEnypEIercHptway0ljcTVzjP1BXK48mIiIgofFT68vB9992H22+/HT/99BMOHToEm82GRo0aoXfv3oiPj/dvKanSIrlCHMmvzZ8idaauUB9PRkREFCyiKMJsMaPYaIDBaECxqeS7wWQs+XLZ7uk4o8novt1oQLH98cVGA4wmI6w2937fH495E/f1bh2U115Zgij6vFpEyLt06RISExNRUFCAhISEYBcH+5fsgNJggFWtCVoZyh5krw6JcTeVFcmvzd8iLUDw/56IiPzJZrPh0pXLuHD5Ii5cuoiLly/iwqUCXCy0f10uwMVLF3HhcoHjmAuXLyKCqtF+VbdGLfz110Hok71PzBZqfGopOnbsWKVOXq9evUo9jvwnFAb6B0okvzZ/C/a4Jn8Ll/FkRESRymyx4Mz5MziZdxqn8s6g2FAMQSHgoj00FBReKrltDxIX7dso8mnVGrw98pVgF6PCfApF9evXh+DLfLYurNYKTqNEARFpFWJnkfza/C2SBuOH03gyIiIAuFJchL9P5OLIyVz8feIojpw4iiMnS760Gg3MFguMJmOwi0lhQqfRIik+EYlxiUiKT0RyfBJaNGqGFo2bI0ajg06rQ4y25LtOo4VOo4Vapa5Ufb6iBIsFQhi2oPkUij7//HPZm2iz2fDuu+/i6NGjGDp0KJo2bQoA+Ouvv/D111+jfv36eOqppwJXaqqwSKoQu4rk10aeRet4Mk4sQdFCFEUcOXkUfxzehx1/7cGOv3bjwLFDwS5WwJgtnlu+yX9iY2KRFJ+IJHuIkIJEcoL0Panke3ySPWwkQKfVBbvYVI18CkXDhw+X3Z88eTIMBgMOHTqE1NRU2b6JEyfihhtuwOnTp/1bUiIiu0idPKIskTYujPzLYrVg/fZNWLz2f1izdX2wi0MRKE4fi4yUGshMy0BmegZqpWWU3E6ricy0mqiRnA6tRhvsYlKQWaw22CxWwCbiaP4V1NKqkKgP3tj6iqjURAt169bFs88+i+eee87j/rfffhvvvfdepcciVRYnWggfvOJNVRVNIYETS/jfuQt5eHr6OOz4a3ewi0IRLik+EQ1r10fD2vXRoFYWGtTOQv3MeqhTozY0anWwi0fkN9LfZZvZAr1KgXH/GNCySTqmDmqFWkkxwS5euSo1Jff58+dRVFTkdX9RURHOnz9flXJRBIumyiwFTjSNJwuFiSX2HvoTg8cN9+FIIv/pf2MfXHNVG7Rt2gqN6jaAShleC00TRQuLtbRul6Aq7a2x4WAexi3ag/fvbhvyLUaV+nTp2LEjZs6cib59++Kaa66R7du2bRveffdddOjQwV9lpAji/Evj7GKxGX+fK+QVb6qQUB5PNuvbz/Dugo+DXQyKMmqVCnf0GIDbu/0fWjRqVi2DqomIyrp4t+FgHvIKTZEZij744APcdNNNuO6669CxY0dkZ2cDAA4ePIjffvsNKSkpeP/99/1dVooAoXDFm0KP1WrF8EkjsHXfjmAXhaKQWqXGh8+/hS7trg92UYiIwlJ5s75eNoT+ZCKVCkXNmzfH3r17MXXqVKxYsQI7dpRUZLKysvD000/j+eefR0ZGhr/LShGAUyn7R2FRIUa++S/8/se2YBeFolC9jDr4cOzbyK7bKNhFISKiEFDerK/xutAfP1fpzrk1a9bEO++8g3feece/JaKIFqyplM8X5GPm/Fn47+olATk/UVkEQcDPs5YiM63yF4s4Fo+IiEJVWbPCdslOQ1pcaHedQ1VCEUW2i5cLsGHnJmzavQWbd/+Gcxc5cQZVn/bN2+KzCe9zelcn0TSxBBERhReVUoGG6XGO2eckXbLTMG1Qq5AfTwRfQ9GDDz5Y4RMLgoDPPvusMmWKGH+fyMX50ydQZLPBYDLCYDSg2GiAwWiAwVR6u9gkbTPCaDK6b3e6bbFag/2yKAS99viLGNxzYLCLQQEWyhNLEBFRdJMu3tnMZsAm4uu+rVGrVmJYBCL4Gop+/vlntxlsioqKcO7cOQBAcnIyAODChQsAgPT0dMTGxvq/tGHknXfe8bqOEwVX/xv74Ik7HkLD2vWDXRQiIiKiiKFSKiCISgiiiNqpsdCHSSCCr6EoNzdXdn/fvn3o1asXxo8fj2eeeQZpaWkAgLy8PLzzzjuYN28eli9fHpgSh4nU1NRqe64YrQ46rQ4xGh1O5p32yzmT4hNRKz0T17e6Dh1bXoc2TVoiNkbvl3OHAy4uS0RERBQ9BFEUKzzdV48ePdCwYUP8+9//9rj/kUcewZEjR7B69Wp/lNFnly5dQmJiIgoKCpCQkFCtz+3J/iU7oDQYYFWHT0omDmgnouDiRRkiCmeCxVLSUtS7NfTJ4XNBvVKfsr/99hvatWvndX/btm3x22+/VaVcREFR3uKyFqstaGUjoshnsthw6Gwhdv9zEX+cLMDu4xdx6GwhTBZ+9hARBVKlQlFKSgpWrFjhdf8PP/yApKSkqpSLKCh8WVyWiCgQeFGGiCh4KhWKHnvsMSxbtgwDBgzA6tWrkZubi9zcXKxatQr/93//hxUrVuDxxx/3f2mJAoyLyxJRsPCiDBFR8FRqnaIJEybAaDTirbfewrJly+QnVKkwbtw4TJgwwV9lJKo2wVpcloiIF2WIiIKn0ou3vvbaa3j66aexevVqHD16FACQlZWFnj17OmajIwo3Za3InBSjhlrJUEREgcGLMkREwVPpUAQAaWlpuOuuu/xXGqIgc16R2dPsc5wBiogChRdliIiCp0qhCAAuX76MgoIC2GzuA0Dr1atX1dMTVTtpRWbHlLgKAWolp8QlosDiRRkiouCpdCiaNWsWZsyYgb///tvrMVartbKnJwoqlVIBlTLYpaBAEgAIgufbEOzbnA4W4L4fZWwD3O8Hi+h6W/Rtu1iB+9LjOeqlanhRhogoOCoVij7++GOMHDkSvXv3xoMPPogXX3wRzz77LHQ6HebOnYuaNWviqaee8n9piSiqSGFFcAopjtsevsNDEBG9hBPRtVLvXOF3qtyLAERbyX6bWHqs47sI2CC/D5QeCw9hAi7bXctV1vvhtk3wfIws8Dnfd3o/FU73rTYbLDYbbDYRapUAjVIBtb0iLp1TIbgERMH9OSsSBJ3fH9dgVea2CA9fvChDRFT9KhWK3n//ffTu3RsrVqzA+fPn8eKLL+LWW29F9+7d8fzzz6N9+/Y4f/68/0tLRGHBLbQIThVwD0EHKKmUW20ibCKgUABKQYBCoXCrCEvfLdaS4GEVAZut5LvVVhpGbKJTkLEHF+m26HyMc7iJssq35LLBgtU5Z3D0fJFjW1aqHj2b1US8TuU9nJbx/6rw8bZSUfJdIQBKofS2QlEa3KDwHITL4+n/srzvREQUnSoVig4fPoyRI0cCANRqNQDAZDIBABITE/Hwww/jo48+wujRo/1ZViIZi9VW2sVEKUCtYBcTf3Ou9CqcKqQKHyqnboEDJaFF+rJIt0XgismKbUcv4MQFA8xWEWabiLQ4La5rkIoYjQo2e9ixifIWGKo6g9nqFogA4Oj5IqzOOYO+LTKgUytLWrWq+Y1XuAQpKTA5bsPDNqcvpcIetOzflc5hq4JByzVA2SAP2AxXREThrVKhKDExERaLBQCQkJAAvV6P48ePO/bHx8fj9OnT/islkQuTxX3ld2kwskbFYOSJpwqm65V+V6JL64rN3kJjsYcaixWw2IOK1Erj3HJjc9nnqbJoMFux4o/TbpXyA2eNOFFgcVTKKTCKTFa3915y9HwRikzWoL3/0rI8/l6zVOklRLm1WLm0YqkUpUHL0cJVgXDlFqxcgpRNZKgiIgqWSoWiFi1aYPfu3Y77HTt2xKxZs3DLLbfAZrPhk08+QZMmTfxZTiIHi9U9EMG+4vvf5wrRuEZ0zNKkEORBRxZ2PBzv2q3MEWpsgNkebhzBRuqO5mGbv4VypTwUGMxWFJmsMFps0KoV0KuVfn0/jBb3mUOdmcrZH46sfmr1EiDv/icLVQr3LoFSqFJ5CFYKl+6HnnhrpbK53CYiooqrVCi699578fHHH8NoNEKr1WLSpEno2bOnYwputVqNRYsW+busRAAAs1X0uI4H7MHIbBXDcpCyp3Dj3JrjyuYyXsZosQcce8iRAo3VabyNVSztthYqdadorJT7qryxPv6gLadllS2v3oko+X2qCtcgpfTU/c8pVElfSvuXwh7MnMdpeSura6CyeRhPR0QUrSr1V/WBBx7AAw884Lh//fXX488//8T//vc/KJVK9OrViy1FFDDWci6Flre/OnkLOp5ac0SXoGOxlgYcs/MYHFtpq45z0AlXrJR75utYn6rSa5TIStV7bK3LStVDrwnDKwxhRPqdtwBAJVaxcG5xcg1Wzts9BSolAEFRdgsz4Dk8sXWKiCKNfy41AmjYsCGefvppAMC+ffvw9ddf45577vHX6YkclN4uhfq43x9cu8s4D/x25hp0zNbSkGO2d11zbr1x/h4t9QxWyj2rrm6FOrUSPZvV9NoiFc1dF8OBVQQqsySg8+x/biHKqXufI1ApAZXTMWofWqfKClNsmSKiUOO3UOTsu+++w8svv8xQRAGhVgpIilF77EKXFKOGWln5UORt4LXrGW0ukwiYrYDJqUXHU8iJpqBTEayUe1ad3QrjdSr0bZGBIpMVJosNGpUCek3lxy4FehwUVZ1YhUClFNzDU3lhSqUs+RxVl9My5drNz+ahqx8/R4koEAISiogCSaVUoGF6nNfZ5zxNslCZsCO16khhxzncWFymlKaq8XelPBJUd7dCnZ+CS3WMg6pODHjupElYzBXM5UpP06S7BCuVoiQ4OXf1UygAtdNyAJ64hSjO6EdEFRR+f6GI7BXCxjXiSsYPiSLUKgEapQCNSlHhsOMp6Fhs0dtPPliVQH9VyiNFOHYrrK5xUNUl0gJesFWmZUqa4c81QLmGKbWyNExJ+10XC3bFIEVEzvipTiFJKKN1p5RC9sesZBFQe9ixuocdS5SHHV+wEhg6wrFbYSRNrx5pAS9cSTP8VWQiCmlxXrcg5fJdrSgJUxUKUh7GRjmHKyIKX6zlBEBBkQl5hSYUFJuRYLPBqrBFxbo5vpL+YLmu4eH6B8h58U+DpSToGF0XDnVu4eEfpCphJTD0hFu3wkiaXj2SAl60EWHv2oyqBymVS8uUFKLUTkFKXcaEE64L9do8tEwRUWjwORTNmDHD55Nu2rSpsuUJeycvFmPsoj3YeDAPYxIUaJGsQYHVhIbpcVExtbAvY3ccfxjsXdWK7V3ZTK6tO1ZOUFCdWAkMTeHUrTCSplePpIBH5atskHLtyucWqlxapJxn7itrsglP4Ynd+ogCy+dQNGbMmAqdWBACPy1yqCkoMjkCkbOLxWb8fa4QjWt4ngQgXHgKO64TvTmP3bHYg47RQ3c2sz30sHUndBgtZdcEWAmk8oTjOChvIingUWA4uvZV4KNR+rvpHKZULmOlVIrSMVKu3frKa43yNk6KiMrncyg6cuRIYEsSAfIKTW6BSHKx2AyzVYQqROsErkHH04ev62QFJos98Hho2TFz7E5YuWywwFJOQmUlkMoTjuOgvImkgEehw/E31Mcg5TbRhLexUdL05z62RnkLUNI2omjkcyjKysoKbEkiwCWD+7o5zqxBSgkVbeExeQk8Zk5WEJGksUQ1E3SolxKDY/nFbsewEki+CrdxUN5EUsCj8FWZiSa8TjDh1DLlmK1PWTpFurqsEOUpQDl16yOKBJxowY8SdOoy9yu9LbBQBc6DQ72N4XFr4bECRgsDD5WQxhKdvFiMvi0zAUAWjFgJpIoKp3FQZYmUgEfRpaJTn8u69Dl343O67WmmvvImmHAdF8VZ+ijUMRT5UVqcBl2y07DBQxe6pBg11K7NM+WQTUvtFHw8TVpgtTmN4XEKPGaX0MMPI3IlDSg3W0Ws2HsKbeslo029ZFhtIpQKAYkxak7HTVErUgIekTeV7tLnYXY+51n6XMdFMURRqGNNx48S9RpMHdQK4xbtkQWjpBg1Gqa7T7LgaQyP84eF84eE1VbSnc0ozdJmdQ8+nLSAKsN5QLnZKmLLkXzZ/vs7sessERGVcJ5gwujD8Z7GRXma6lxqjXKEKJSOi5KeV6oiMURRIDAU+VmtpBi8f3db5BWacH7Nn0gRLKinVUOtVHgdx2O1r8NjtI/lcQ46jtuc+IsChAPKiYgoUCo6Lso1RLnOzleZlihvY6I4sQQ5YygKgES9Bol6DQw6DcxXLNBoFLhsdOnWZpV/5+8kBQsHlBMRUaiodIhynuK8jLWiVL6EKC+L7XKK88jml1BUUFCAuLg4KJWsPDk7VaTA8f0GpNXRBrsoRGXigHIiIgpHFV0vSgpRbutDOU8soQQ0TgGqrNn5HOtEwSU8MUSFnUqHom3btmHChAnYsGEDTCYTfvrpJ3Tv3h15eXl46KGH8Oyzz+Kmm27yb2nDjAgBVnZ7ozDBAeVERBTpKhqiXBfcVbkstOvanU9aJ0ohlIyJ8hSivI2F4nio4KpUKNq8eTO6d++O2rVr495778Xs2bMd+9LS0lBQUIBPPvkk6kMREREREYWvis7O53F6c9fFdpWl3fqUAiAo3CfbkpTVjY8hyr8qFYrGjx+PZs2a4bfffsPly5dloQgAunXrhi+++MJfZSRyYzBbUWSywmixQatWQM9WDiIiIgqyiq4TJZtQwsMEExWeVIJd+SqtUqFo69atmDJlCrRaLQoLC932165dG6dPn/ZH+YjcXDZYvE4KwPV0iIiIKFxIIcpUwUklVF669GnsAUqltIcqRenU5uzKV7ZK1SDVajVsNu/tiCdOnEBcXFxVykXkkcFsdQtEAHD0fBFW55xB3xYZbDEiIiKiiFPRNaKk8VAqhZcJJRSlAaoqXfkiZWrzSoWijh074ttvv8Uzzzzjtu/KlSuYM2cOunbt6o/yEckUmawe19OBPRgVmawMRURERBT1KjseSuVhinNpOnONh6nNXVuhbEoBRYbwS0mVCkWTJk1C165dceutt+Luu+8GAOzevRt///033n77bZw7dw4vvfSSv8tKBGM508WYuMotERERUYVVtCufcwuUc4CyGGywmKyoo1RUR7H9plKhqEOHDvjhhx/wxBNP4P777wcAjB49GgDQqFEj/PDDD2jVqpV/S0oEQKsq+xdMU85+IiIiIqoaESUtUJ5aoa5cssFksOI6wUMfvBDmUyi6dOkSYmNjZYuzdu/eHfv378euXbtw8OBB2Gw2NGrUCNdccw2EMHsTKHzoNUpkpeo9dqHLStVDr2HXOSIiIiKqGJ8uqycnJ2PhwoWO+w8++CB+//13AECbNm0wePBg3HnnnWjfvj0DEQWUTq1Ez2Y1kZWql22XZp/jeCIiIiIiqiifWoo0Gg2MxtJ5LubOnYuePXuiQ4cOgSwbkUfxOhX6tshAkckKk8UGjUoBvYbrFBERERFR5fgUiq666irMnj0b9evXR2JiIgAgNzcXO3bsKPNx7dq1808piVzouFgrEREREfmJIIrlzyy+cuVK3HnnnR4XavVEFEUIggBrRZb09YNLly4hMTERBQUFSEhIqNbn9mTVV3twdN851KyXGOyiEBEREREF3JVLRpgMFtzxTEfo47XBLo7PfGop6tOnD44cOYKtW7fizJkzGD58OB599FF06tQp8CUk8sBgtqLIZIXRYoNWrYCeLUdEREREVEk+T8mdkpKC3r17AwDmzJmDwYMHo0ePHoEsG5FHlw0WrM45I5uBTppoIV5XqVnmiQKGAZ6IiCj0VaoGuXbtWv+XhMgHBrPVLRABwNHzRVidcwZ9W2SwwkkhgwGeiIgoPPj0V3nevHkAgPvuuw+CIDjul0da2JXIX4pMVo9rFMEejIpM1pAKRWwliF4M8EREROHDp1A0fPhwCIKAu+66CxqNBsOHDy/3MYIgMBSR3xktHpZOdmIqZ391YitBdAu3AE9ERBTNfKqZHTlyBLCvV+R8n6i6aVVlrzesKWd/dTCYrTCYbVj71xkczS+W7WMrQfQIpwBPREQU7XwKRVlZWWXed3XlyhUUFBRUrWREHug1SmSl6j1egc9K1UOvCW7QkFqHWtdNcgtEErYSRIdwCPBERERUIiB/lWfOnIm6desG4tQU5XRqJXo2q4msVL1su9QtLZhBw3kMidVW9vJfbCWIfFKA9yQUAjwRERGV4sAGCjvxOhX6tshAkckKk8UGjUoBvSb4Exg4jyFRKoQyj2UrQeSTAry3cWXB/nklIiKiUgxFFJZ0ITiLm/MYktMFBtRLicExD13o2EoQPUI1wBM54yyZREQhFoomTpyISZMmybY1bdoUf/31V9DKROQr5zEkO49dQN+WmQAgC0ZsJYg+oRjgiSScJZOIqETIfeJdffXVWL16teO+ShVyRSTyyHkSCLNVxIq9p9C2XjLa1EsGACTGqBHLVgIiChFcS4uIqJTPiWPHjh0+n/TkyZOVLQ9UKhUyMjIq/XiiYHEdQ2K2ithyJJ9XXYkoJHEtLSKiUj7X0tq3bw9BKHvwuEQURZ+PdXXw4EHUqlULOp0OnTp1wpQpU1CvXj2PxxqNRhiNRsf9S5cuVeo5ifyFY0iIKFxwLS0iolI+h6I5c+YEtiQAOnTogLlz56Jp06Y4deoUJk2ahBtvvBF//PEH4uPj3Y6fMmWK2xgkomCLpDEkHIBNFLm4lhYRUSlBFMWyF1QJoosXLyIrKwszZszAQw895LbfU0tR3bp1UVBQgISEhGourbtVX+3B0X3nULNeYrCLQlRh/hyAzXBFFHoMZitW/HHa62LYHFNERJVx5ZIRJoMFdzzTEfp4bbCL47OQHuSQlJSEJk2a4NChQx73a7VaaLXh82YThQt/DsDm7FZEoYlraRERlQrpGklhYSEOHz6M++67L9hFIYoq/hqAzdmtiEIbx0ESEZUIqVA0ZswY9O/fH1lZWTh58iReeeUVKJVK3H333cEuGlFU8dcAbM5uRRT6ImkcJBFRZYVUKPrnn39w99134/z580hPT8cNN9yA3377Denp6cEuGlFU8dcAbM5uRUREROEgpELRggULgl0EInJZiNZVVqoeeo1vV5U5uxURERGFA9ZIiMiNNAA7K1Uv217RAdhSuPKkIuGKiIiIKJBCqqWIiEKHPwZgc3YrIjlOT09EFJoYiojIK38MwObsVkQlOD09EVHoYvc5Igo4nVqJlFgNMhJ1SInVMBBR1ClvenqD2Rq0shEREUMRERFRwPkyPT0REQUP2+uJiIjKUdWxQJyenogotDEUERERlcEfY4E4PT0RUWjjpzAREZEX/hoLxOnpiYhCG0MRERGRF/4aC+Svtb+IiCgw2H2OiIjIC3+OBeL09EREoYuhiIiIyAt/jwXyx9pfRETkf+w+R0RE5AXHAhERRQeGIiIiIi84FoiIKDqw+xwREVEZOBaIiCjyMRQRERGVg2OBiIgiG7vPERERERFRVGMoIiIiIiKiqMZQREREREREUY1jioiIiIio0gxmK4pMVhgtNmjVCug5Bo/CEEMREREREVXKZYMFq3PO4Oj5Isc2acr6eB2rmRQ+2H2OiIj8xmC2Iv+KCacKDMgvMsFgtga7SEQhK9x/Xwxmq1sgAoCj54uwOudM2L0eim6M8ERE5Be8Ykzku0j4fSkyWd0CkeTo+SIUmazsRkdhgy1FRERUZbxiTOS7SPl9MVpsZe43lbOfKJQwFBERUZX5csWYiEpEyu+LVlV2NVJTzn6iUMKfViIiqjJeMSbyXaT8vug1SmSl6j3uy0rVQ69h1zkKHwxFRERUZbxiTOS7SPl90amV6NmsplswksZGcTwRhZPwGMlHRBQkXH/DN9IVY09dgnjFmEgukn5f4nUq9G2RgSKTFSaLDRqVAnoNPycp/DAUERF5EQmzQ1UX6Yqxt/eLFSSiUpH2+6LjxSKKAPyrTkTkQXmzQ/VtkcFKgAteMSbyHX9fiEILQxERkQdcf6NyeMWYyHf8fSEKHeExko+IqJpFyuxQREREVD6GIiIiDyJldigiIiIqH7vPERF5EGqzQ0X6LHiR/vqIiCi0MRQREXkQSrNDRfoseJH++oiIKPTxrw0RkRehMDtUpM+CF+mvj4iIwgNDERFRGYI9O1Skz4IX6a+PiIjCA0NRhGM/faLwFumz4EX66yMiovDAUBTB2E8//DDEhp9A/59F+ix4kf76qHrxM5SIKos14wjFfvrhhyE2/FTH/1mozYLnb5H++qj68DOUiKqCl+AilC/99Cl0lBdiDWb+f4Wa6vg/k656d2iQgkHX1MZ1DVKgVgpAkGbBCwRplr+sVL1se6S8Pqoe/AwloqripZMIxX764YWDzcNPoP/PvF31vrtDPQgAYqqhW1B1dUUKhVn+KLzxM5SIqoqhKEKxn354YYgNP4H8Pyvrqvf6/eeqpftrdXdFCvYsfxTe+BlKRFXFmnGEkvrpe8J++qGHITb8BPL/LNjdX9kVicINP0OJqKr4KRGh2E8/vDDEhp9A/p9V11Vvg9mK/CsmnCowIL/I5Ag7wQ5lRBXFz1Aiqip2n4tg7KcfPqQQ6627UkX/zzgtbeD5+//MWXVc9S6re5zJyq5IFF4C+ftIRNGBoSjCsZ9++PBXiOW0tNUnUBceAj1NdXnd47o1rVHm49kViUIRLwQSUVWwhkQUQqoaYrk+VfULxIWHQF/1Lq97nFUUuXYQhSVeCCSiymIoIoognJY2cgTyqnd5Y5bMFhu7IhERhQl2mfcPhiKiCMJpaSNLoK56+zJmiV2RiIhCH7vM+w/fLaIIIlV21UoBbeslIyNRB6tNhEoh4FSBAVq1f8aC8KpUePN1zBK7IhERhS52mfcvhiKiCKLXKNEoPRZX107ErmMXsOVIvmNfvZQYtKiVUOXn4FWp8MeZuoiIwh+7zPsXazBEEUSnVqJr03Ss3ncGx/KLZfuO5RdjzV9nq3TliFelIge7xxERhTd2mfcvhiKiCGOxim6BSFLVK0e8KhVZ2D2OiCh8VceadtGE7xZRhAnklSNelSIiIgoN0vhQT7h8QsUxFBFFmEBeOeJVKSIiotAgjQ91DUYcH1o57D5HFGF8nVks1M5N1YezBxIRRQaOD/UfhiKKKtFQGQzkzGKRNmtZNPw8uOLsgUREkYXjQ/2DfwEpakRTZTCQV44i5apUNP08SDh7IBERkWccAEBRobzKoMFsDVrZAkWnViIlVoOMRB1SYjV+rewG8tzVIRp/HuDj7IFERETRiKGIogIrg+QsWn8eOHsgERGRZwxFFBVYGSRn0frzwNkDiYiIPONfQIoKrAySs2j9eeCaFkRERJ5F5l9+IhesDJKzaP154JoWREREnkXmFEtELiJtKmmqmnD8efDX9OGRMnsgERGRPzEUUdRgZZCchdPPg7+nD+eaFkRERHIMRRRVWBkkZ+Hw88C1hYiIiAKPY4qIiEJYtE4fTkREVJ0YioiIQli0Th9ORERUnRiKiIhCWLROH05ERFSd+NeUiCiERev04URERNWJoYiIKIRxbSEiIqLA4+xzREQhLpymDyciIgpHDEVERGEgHKYPJyIiClcMRUQU1QxmK4pMVhgtNmjVCugZPoiIiKIOQxERRa3LBovbwqjSWJ14HT8eiYiIogUnWiCiqGQwW90CEewLoq7OOQODmYuiUmAZzFbkXzHhVIEB+UUm/swREQURL4USUVQqMlndApHk6PkiFJms7EZHAcNWSiKi0MKWIiKKSkaLrcz9pnL2E1UWWymJiEIPQxERRSWtquyPP005+4kqy5dWSiIiql78q09EUUmvUbotiCrJStVDr2HXOQoMtlISEYUehiIiiko6tRI9m9V0C0bSuA6OJ6o8TiBQNrZSEhGFHo7mJKKoFa9ToW+LDBSZrDBZbNCoFNBruE5RVXACgfJJrZSeutCxlZKIKDj4F4qIopqOi7X6TXkTCPRtkcH32qmV0lt45HtU/QQFoFADghDskhCFP7VFAJQCjCYjFAYxsM+lVkOp9M9nJkMRERH5Bac59x1bKUNHXCYQV0MJhYKJiMgfRJsKoiji5Ol/quX3KikpCRkZGRCqeFUjZEPR1KlT8cILL+Dpp5/GzJkzg10cIiIqBycQqBi2UgZfXCaQVEuNtNR0aDTaKleqiAiwWUWIIpCQGgOlMnBjJEVRRFFREc6ePQsAyMzMrNL5QjIUbd26FZ988glatWoV7KIQEZGPOIEAhRNBUdJClJaajvi4xGAXhyhi2BQibDYROp0uoKEIAGJiYgAAZ8+eRY0aNarUlS7k/kIVFhZi6NCh+Pe//43k5ORgF4eIiHzEac4pnCjUgEIhQKPRBrsoRFQFen3J3x2z2Vyl84RcKBo5ciRuvfVW9OzZs9xjjUYjLl26JPsiIqLg4DTnFE6knnLsMkcU3vz1OxxS3ecWLFiAHTt2YOvWrT4dP2XKFEyaNCng5SIiIt9wAgEiIgpHIROKjh8/jqeffhqrVq2CTqfz6TEvvPACnnvuOcf9S5cuoW7dugEsJRERlSeSJhAQRft0siIglmywf/dtv+MY0WlTeeco6zwejnMcJju2dIP0MKcHuTw/ZAeIzjPoenmMp8eV+1iXx3s7h8dzuR0ium9y3WC/eiw6nchxQVkEdPEKpGanwGyyAbZyFhh2KwwAfzYweZq12Ner31LZHIeXPq59pxZ45MEn8NjDI1x3udwNYGtZOaf2+ZkFYNPmjRg4uB8O7TuGxMSkij91ZV6mID3Mxwd7fY/LOrac/wk2ZlaLkAlF27dvx9mzZ9GuXTvHNqvVig0bNuCDDz6A0Wh0Gzyl1Wqh1bIvMBGRr5wr6I7bPm6THi+K9kq76H5OabtUKS851l4tdtteWtGWKq7u2z2fp6SSIEC641TXhSCUPE6QbYTj/IK0URBKX5fsQKmGKjge4Nw9QxAEp4pSyRM6118Fwb4NpacBXI9xPYf8GEF6fW7HuJzL/tyCy7GCfRpcQSE4ziUIsH9JxwpOxzkfIzhesyCdUxDsx0jbBflrFVxet32/wr4NTudxnaK35HFwOqf83E6nk7+HCoX8HM7vrYftrhsFpRUqnQExcWpoNRrXgzw8MNjkyemff45j8huvY9Wan3D+/Hlk1MxAv1v7Y9zY8UhNSQXs74VWp0JsgtbDGTye1m2npzzo6XHuAdXzA73nYHko7zewD1q2aIUpr7/p2N2pY2fk7D2M5JTk0v9np+cpI2PLwnGF2Oyfg2W/US5XKzzu9XGj627nz6WS74LjU8z5NuSfgx7PJsivG3h6DtHHICh4vFlyNrH0MyichEwo6tGjB/bu3Svb9sADD+Cqq67C2LFj/bYwExFRWWRhwGb/c2ETHWHAOTQ4QoFNdD8ezgFBHiRK75f8URNtcFQ+3M4v3XauLEqFFTz+LXMLAFJZpMc4Vz49VkidK8IeKrvu25wer1BA+lsoKBVQ2CvlCqUAhUJR8lhFScVYoSiplAtOtx3bpccqUPI4hQCFwn5++zlLKvzut50r3hXdJziHAYW88i+7r3AKEJ72e7jven7n+56OkZ4HgCxIlPdYx/8jlclgMODIkSPQx2l97qESKv7++2906XYDmjRpggULFqBBgwb4888/8a9//Qurf16F3377DSkpKRAUAjQxasQmVs/rs1qtEISS3/WqUqmV0MaokZQe67Q1FjXqVH4SLm/ByONmDxsrG7rcd8kDlPeWVC/ndM1f5QZDL+FWdh6ni19Oj3duoYbL3xNZ67EobxEWlAIUYfY5FDKhKD4+Hi1atJBti42NRWpqqtt2Igp9rpV7x3dPAcNlm1uAsJWGB9HeDCG6nBvOx7p1J7FXEkWnS2CiLE9IhS451vkqe0Xuu1Z27QFBUAhQKBVQKFDy3R4QFErB5XbJd6WyJAQoVU6PcQkPguB0Xyg5RlbJd9rn7XigJKxI5Za2lfdYKVh42g8PgYEokhUUmZBXaMIlgxkJMWqkxWqQqHdtefKvkSNHQqPR4KeffnJMSVyvXj20bdsWjRo1wosvvohZs2YBAC5fvoy7774bS5cuRVJSEsaPH4+RI0cC9s/pSZMm4fPPP8eZM2eQmpqKO+64A++99x5gn9DqxRdfxPz583Hx4kW0aNEC06ZNw0033QQAmDt3Lp555hnMmzcP48aNw4EDB/DRRx/hqaeewunTp5GUVNrF7emnn8bevXvx888/4/z58xg1ahQ2bNiACxcuoFGjRhg/fjzuvvtuAMDw4cOxfv16rF+/Hu+++y4A4MiRI8jNzUW3bt1w4cIFx7kXLVqEl19+GYcOHUJmZiaefPJJjB492vG89evXx6OPPopDhw7hv//9L5KTkzFhwgQ8+uijAACTyYTnnnsOixYtwoULF1CzZk08/vjjeOGFFwL6f0ihJ2RCERFVjMeQ4cNtKVDYbKJ78BBF99tiaQsI4HQ12lNbvcuVJFnlWHb1vbQLjjxEOO2TAoVSAaU9KChU9u9SeFCV3FbaA4VSZb9t3y5rfbBX/p2/y/crZOHC43cPIcTbd9cAQ0SR5+TFYoxdtAcbD+Y5tnXJTsPUQa1QKykmIM+Zn5+PH3/8EZMnT3YEIklGRgaGDh2KhQsX4qOPPgIAvPXWWxg/fjwmTZqEH3/8EU8//TSaNGmCm2++GYsWLcI777yDBQsW4Oqrr8bp06exe/dux/lGjRqFffv2YcGCBahVqxa+++479OnTB3v37kV2djYAoKioCNOmTcPs2bORmpqKOnXq4OWXX8aiRYvw0EMPAfYWpIULF2Ly5MmAvZXummuuwdixY5GQkIDly5fjvvvuQ6NGjXDdddfh3XffxYEDB9CiRQu8+uqrAID09HTk5ubKXu/27dsxZMgQTJw4EXfeeSc2b96MESNGIDU1FcOHD3ccN336dLz22msYP348vv32WzzxxBPo2rUrmjZtivfeew9Lly7FN998g3r16uH48eM4fvx4QP7vKLSFdChat25dsItA5CALGE4hw+Zy33Hb5i1wOD3OZZ9jQISdx7ERUiuMc7BQ+HBbCh32sKFRKUpDhVOYUNq/VGqlI3hIX44QYQ8csmDhss05RHjaVtY+1wBDRBRqCopMboEIADYczMO4RXvw/t1tA9JidPDgQYiiiGbNmnnc36xZM1y4cAHnzp0DAFx//fUYN24cAKBJkybYtGkT3nnnHdx88804duwYMjIy0LNnT6jVatSrVw/XXXcdAODYsWOYM2cOjh07hlq1agEAxowZg5UrV2LOnDl44403APvaMB999BFat27tKMNdd92Fr7/+2hGK1qxZg4sXL2LQoEEAgNq1a2PMmDGO45988kn8+OOP+Oabb3DdddchMTERGo0Ger0eGRkZXt+LGTNmoEePHnjppZccr2/fvn146623ZKHolltuwYgRJZNNjB07Fu+88w7Wrl2Lpk2b4tixY8jOzsYNN9wAQRCQlZVVyf8ZCnchHYooOAxmK4pMVhgtNmjVCuhDYCYptzBh8xAwPIYRETab8+NdtonuzR2yOrinEGK/8q9QyO8Lsvslt5VKwdHSoVIrHeFDqVZCqSr5rlIp7PdLg4dSZe8+5dSlSgoO/rjN1gsioqrJKzS5BSLJhoN5yCs0BbQbna8TB3Tq1Mnt/syZMwEAgwcPxsyZM9GwYUP06dMHt9xyC/r37w+VSoW9e/fCarWiSZMmsscbjUakpqY67ms0GrRq1Up2zNChQ9GxY0ecPHkStWrVwldffYVbb73V0eXNarXijTfewDfffIMTJ07AZDLBaDQ6FuH0VU5ODgYMGCDbdv3112PmzJmwWq2O8ejO5RMEARkZGTh79ixg76p38803o2nTpujTpw/69euHXr16VagcFBkYikjmssGC1TlncPR8kWObtPBinFbpHkJsImzOQcQmOrWAlLaCuIYW56DiPFjbeWB4aVQpuScLIeUEE6nVoyRwKKBUKqDSlAQPKYSo1E5hxHk8h0rhCBGu4cRjWFGWBhm3AGLfR0REkeWSwVzm/svl7K+sxo0bQxAE5OTk4LbbbnPbn5OTg+TkZKSnp5d7rrp162L//v1YvXo1Vq1ahREjRuCtt97C+vXrUVhYCKVSie3bt7tNdhUXF+e4HRMT43aR7dprr0WjRo2wYMECPPHEE/juu+8wd+5cx/633noL7777LmbOnImWLVsiNjYWzzzzDEwmUyXflbKp1WrZfUEQYLPZAADt2rXDkSNHsGLFCqxevRpDhgxBz5498e233wakLBS6GIrClHNXLVlAsQcP523OIUYeWOzhxD5Tltlqxa7jBThfaESc04y0568UYM35YrSplwSNSimbMco1mJR2i1JAoRZKgodKCiAlXbJUmpLWEZVG6dgvBQjn8OFtm9JpvEhZx7ElhIiIAiVBpy5zf3w5+ysrNTUVN998Mz766CM8++yzsnFFp0+fxldffYX777/f8Tfwt99+kz3+t99+k3W9i4mJQf/+/dG/f3+MHDkSV111Ffbu3Yu2bdvCarXi7NmzuPHGGytczqFDh+Krr75CnTp1oFAocOuttzr2bdq0CQMGDMC9994LALDZbDhw4ACaN2/uOEaj0cBqLXv9qGbNmmHTpk2ybZs2bUKTJk0qNGtxQkIC7rzzTtx5552444470KdPH+Tn5yMlJaUCr5jCHUNRgFktNhRdNroFGE8hxTXIuI4tcZvu0NOUto5wUjorlFIpQGNvGVFJ36VgolXatymRV2TCl8v2QYzXw6YQIAqAKJR8zxUEPDioOerXiCsNISqXAe4uAYVdtIiIKFKlxWnQJTsNGzx0oeuSnYa0uMB1nfvggw/QuXNn9O7dG6+//rpsSu7atWs7JjSAPSS8+eabGDhwIFatWoX//ve/WL58OWCfPc5qtaJDhw7Q6/X4z3/+g5iYGGRlZSE1NRVDhw7F/fffj+nTp6Nt27Y4d+4c1qxZg1atWslCjidDhw7FxIkTMXnyZNxxxx2ydSWzs7Px7bffYvPmzUhOTsaMGTNw5swZWSiqX78+fv/9d+Tm5iIuLs5jQBk9ejSuvfZavPbaa7jzzjvx66+/4oMPPnBMMuGLGTNmIDMzE23btoVCocB///tfZGRkyGbOo+jAUBRAWp0KGp0KhitmWYBRqhTQOFpKnEKKRgm1/bts/InzYHiVPIC47fOwzddWk53HLuDsliNe98fWiUftepVfH4CIiChSJOo1mDqoFcYt2iMLRl2y0zBtUKuAjifKzs7Gtm3b8Morr2DIkCHIz89HRkYGBg4ciFdeeUUWIEaPHo1t27Zh0qRJSEhIwIwZM9C7d28AQFJSEqZOnYrnnnsOVqsVLVu2xP/+9z/HmKE5c+bg9ddfx+jRo3HixAmkpaWhY8eO6NevX7llbNy4Ma677jps2bLFMYZJMmHCBPz999/o3bs39Ho9Hn30UQwcOBAFBQWOY8aMGYNhw4ahefPmKC4uxpEj7vWTdu3a4ZtvvsHLL7+M1157DZmZmXj11VdlkyyUJz4+Hm+++SYOHjwIpVKJa6+9Fj/88INf1lqi8CKIlV7iN/RcunQJiYmJKCgoQEJCQrCLA2OxGYYrZlmAce76FWoOny1Ejxnrve5f81xXNKoR53U/ERFRuJAWb23QoEGVFm+V1im6bDAjXqdGWlzg1ykiolL++l1mS1EAaWPU0MYEpk9xIASzKwAREVE4StQzBBFFArYNkoPUFaBLdppse3V0BSAiIiIiCha2FJFMraQYvH93W3YFICIiIqKowVBEbtgVgIiIiIiiCbvPERERERFRVGMoIiIiIiKiqMZQREREREREUY2hiIiIiIiIohpDERERERERRTWGIiIiIiJyM3z4cAwcONBx/6abbsIzzzxTpXP64xy+eumll/Doo49Wy3MFU25uLgRBwK5du4Jajvr162PmzJl+Peddd92F6dOn+/Wc3jAUEREREYWJ4cOHQxAECIIAjUaDxo0b49VXX4XFYgn4cy9evBivvfaaT8euW7cOgiDg4sWLlT5HVZw+fRrvvvsuXnzxRcc25/dOrVajQYMGeP7552EwGAJenkCqW7cuTp06hRYtWgT0eSZOnIg2bdp43b9161a/h9AJEyZg8uTJKCgo8Ot5PWEoIiIiIgojffr0walTp3Dw4EGMHj0aEydOxFtvveXxWJPJ5LfnTUlJQXx8fNDP4YvZs2ejc+fOyMrKkm2X3ru///4b77zzDj755BO88sorAS2L1WqFzWYL2PmVSiUyMjKgUgV3+dH09HTo9Xq/nrNFixZo1KgR/vOf//j1vJ4wFBERRZGCIhMOny3EzmMXcPhcIQqK/FdhIgpnoijiypUrQfkSRbFCZdVqtcjIyEBWVhaeeOIJ9OzZE0uXLgWcurxNnjwZtWrVQtOmTQEAx48fx5AhQ5CUlISUlBQMGDAAubm5jnNarVY899xzSEpKQmpqKp5//nm3crl2fTMajRg7dizq1q0LrVaLxo0b47PPPkNubi66desGAEhOToYgCBg+fLjHc1y4cAH3338/kpOTodfr0bdvXxw8eNCxf+7cuUhKSsKPP/6IZs2aIS4uzhFsyrJgwQL079/f63tXt25dDBw4ED179sSqVasc+202G6ZMmYIGDRogJiYGrVu3xrfffis7x9KlS5GdnQ2dTodu3brhiy++kLWKSWVeunQpmjdvDq1Wi2PHjsFoNGLMmDGoXbs2YmNj0aFDB6xbt85x3qNHj6J///5ITk5GbGwsrr76avzwww+O92no0KFIT09HTEwMsrOzMWfOHMBL97n169fjuuuug1arRWZmJsaNGydrTbzpppvw1FNP4fnnn0dKSgoyMjIwceLEMt/T8rh2nxMEAbNnz8Ztt90GvV6P7Oxsx8+p5I8//kDfvn0RFxeHmjVr4r777kNeXp7smP79+2PBggVVKpsvGIqIiKLEyYvFGDV/J3rMWI/bPtqMHtPX48n5O3HyYnGwi0YUdEVFRYiLiwvKV1FRUZXKHhMTI2sRWrNmDfbv349Vq1Zh2bJlMJvN6N27N+Lj47Fx40Zs2rTJES6kx02fPh1z587F559/jl9++QX5+fn47rvvynze+++/H/Pnz8d7772HnJwcfPLJJ4iLi0PdunWxaNEiAMD+/ftx6tQpvPvuux7PMXz4cGzbtg1Lly7Fr7/+ClEUccstt8BsNsv+b95++218+eWX2LBhA44dO4YxY8Z4LVd+fj727duH9u3bl1n+P/74A5s3b4ZGo3FsmzJlCubNm4ePP/4Yf/75J5599lnce++9WL9+PQDgyJEjuOOOOzBw4EDs3r0bjz32mKyLnnOZp02bhtmzZ+PPP/9EjRo1MGrUKPz6669YsGAB9uzZg8GDB6NPnz6OEDhy5EgYjUZs2LABe/fuxbRp0xAXFwfYx0ft27cPK1asQE5ODmbNmoW0tDSPr+vEiRO45ZZbcO2112L37t2YNWsWPvvsM7z++uuy47744gvExsbi999/x5tvvolXX31VFhD9YdKkSRgyZAj27NmDW265BUOHDkV+fj4A4OLFi+jevTvatm2Lbdu2YeXKlThz5gyGDBkiO8d1112HLVu2wGg0+rVsbsQIUlBQIAIQCwoKgl0UIqKQcvGKUbx39m9i1thlbl/3zf5NvHjFGOwiElWr4uJicd++fWJxcbEoiqJYWFgoAgjKV2Fhoc/lHjZsmDhgwABRFEXRZrOJq1atErVarThmzBjH/po1a4pGY+nv9Jdffik2bdpUtNlsjm1Go1GMiYkRf/zxR1EURTEzM1N88803HfvNZrNYp04dx3OJoih27dpVfPrpp0VRFMX9+/eLAMRVq1Z5LOfatWtFAOKFCxdk253PceDAARGAuGnTJsf+vLw8MSYmRvzmm29EURTFOXPmiADEQ4cOOY758MMPxZo1a3p9j3bu3CkCEI8dO+b23imVSjE2NlbUarUiAFGhUIjffvutKIqiaDAYRL1eL27evFn2uIceeki8++67RVEUxbFjx4otWrSQ7X/xxRdlr1Uq865duxzHHD16VFQqleKJEydkj+3Ro4f4wgsviKIoii1bthQnTpzo8TX1799ffOCBBzzuO3LkiAhA3LlzpyiKojh+/Hi3/+8PP/xQjIuLE61Wqyja/x9uuOEG2XmuvfZacezYsR6fQxRF8ZVXXhFbt27tdX9WVpb4zjvvOO4DECdMmOC4L/2OrVixQhRFUXzttdfEXr16yc5x/PhxEYC4f/9+x7bdu3eLAMTc3FyPz+v6u1xZwe18SERE1SKv0ISNB/M87ttwMA95hSYk6jUe9xNFA71ej8LCwqA9d0UsW7YMcXFxMJvNsNlsuOeee2Rdn1q2bClr/di9ezcOHTrkNpbHYDDg8OHDKCgowKlTp9ChQwfHPpVKhfbt23vt2rdr1y4olUp07dq1QmV3lpOTA5VKJXve1NRUNG3aFDk5OY5ter0ejRo1ctzPzMzE2bNnvZ63uLik9Vun07nt69atG2bNmoUrV67gnXfegUqlwqBBgwAAhw4dQlFREW6++WbZY0wmE9q2bQvYW76uvfZa2f7rrrvO7Xk0Gg1atWrluL93715YrVY0adJEdpzRaERqaioA4KmnnsITTzyBn376CT179sSgQYMc53jiiScwaNAg7NixA7169cLAgQPRuXNnj68/JycHnTp1giAIjm3XX389CgsL8c8//6BevXoAICsffHhfK8P5OWJjY5GQkOB4jt27d2Pt2rWO1jBnhw8fdrxXMTExgL31LZAYioiIosAlg7nM/ZfL2U8U6QRBQGxsbLCL4ROpYq/RaFCrVi23Afaur6OwsBDXXHMNvvrqK7dzpaenV6oMUkW1OqjVatl9QRDKHIcldSu7cOGC2+uLjY1F48aNAQCff/45Wrdujc8++wwPPfSQIxQvX74ctWvXlj1Oq9VWqMwxMTGyUFJYWAilUont27dDqVTKjpVCwcMPP4zevXtj+fLl+OmnnzBlyhRMnz4dTz75JPr27YujR4/ihx9+wKpVq9CjRw+MHDkSb7/9doXK5czT++rvCSHKeo7CwkL0798f06ZNc3tcZmam47bU3a6yP6u+4pgiIqIokKBTl7k/vpz9RBQ6pIp9vXr1fJpxrF27djh48CBq1KiBxo0by74SExORmJiIzMxM/P77747HWCwWbN++3es5W7ZsCZvN5hhr40pqqbJarV7P0axZM1gsFtnznj9/Hvv370fz5s3LfV3eNGrUCAkJCdi3b1+ZxykUCowfPx4TJkxAcXGxbFIE1/epbt26AICmTZti27ZtsvNs3bq13DK1bdsWVqsVZ8+edTt3RkaG47i6devi8ccfx+LFizF69Gj8+9//duxLT0/HsGHD8J///AczZ87Ep59+6vG5mjVr5hifJdm0aRPi4+NRp06dcstaXdq1a4c///wT9evXd3tPnIP9H3/8gTp16ngdQ+UvDEVERFEgLU6DLtme/6B0yU5DWhy7zhFFqqFDhyItLQ0DBgzAxo0bceTIEaxbtw5PPfUU/vnnHwDA008/jalTp2LJkiX466+/MGLECLc1hpzVr18fw4YNw4MPPoglS5Y4zvnNN98AALKysiAIApYtW4Zz58557JqYnZ2NAQMG4JFHHsEvv/yC3bt3495770Xt2rUxYMCASr9ehUKBnj174pdffin32MGDB0OpVOLDDz9EfHw8xowZg2effRZffPEFDh8+jB07duD999/HF198AQB47LHH8Ndff2Hs2LE4cOAAvvnmG8ydOxewt4J406RJEwwdOhT3338/Fi9ejCNHjmDLli2YMmUKli9fDgB45pln8OOPP+LIkSPYsWMH1q5di2bNmgEAXn75ZXz//fc4dOgQ/vzzTyxbtsyxz9WIESNw/PhxPPnkk/jrr7/w/fff45VXXsFzzz0HhaJqVf/i4mLs2rVL9nX48OFKnWvkyJHIz8/H3Xffja1bt+Lw4cP48ccf8cADD8jC9MaNG9GrV68qldsXDEVERFEgUa/B1EGt3IJRl+w0TBvUiuOJiCKYXq/Hhg0bUK9ePdx+++1o1qwZHnroIRgMBiQkJAAARo8ejfvuuw/Dhg1Dp06dEB8fj9tuu63M886aNQt33HEHRowYgauuugqPPPIIrly5AgCoXbs2Jk2ahHHjxqFmzZoYNWqUx3PMmTMH11xzDfr164dOnTpBFEX88MMPbt2uKurhhx/GggULyu0OplKpMGrUKLz55pu4cuUKXnvtNbz00kuYMmUKmjVrhj59+mD58uVo0KABAKBBgwb49ttvsXjxYrRq1QqzZs1yzD5XXhe7OXPm4P7778fo0aPRtGlTDBw4EFu3bnWM8bFarRg5cqTjeZs0aYKPPvoIsLe8vfDCC2jVqhW6dOkCpVLpdZrq2rVr44cffsCWLVvQunVrPP7443jooYcwYcKESr2Xzg4cOIC2bdvKvh577LFKnatWrVrYtGkTrFYrevXqhZYtW+KZZ55BUlKSI7wZDAYsWbIEjzzySJXLXh5BrOjk+CHs0qVLSExMREFBgeOXnIiIShUUmZBXaMJlgxnxOjXS4jQMRBSVDAYDjhw5ggYNGngckE/hTRRFdOjQAc8++yzuvvvugD7X5MmT8fHHH+P48eMBfZ5oNGvWLHz33Xf46aefvB7jr99lTrRARBRFEvUMQUQU+QRBwKeffoq9e/f6/dwfffQRrr32WqSmpmLTpk146623vLaEUdWo1Wq8//771fJcDEVEQSBdrb9kMCMhRo20WFZU/YXvLRERAUCbNm3Qpk0bv5/34MGDeP3115Gfn4969eph9OjReOGFF/z+PFTSDbK6sPscUTU7ebEYYxftka0Z0yU7DVMHtUKtJP9PcRpNIaG631siCl/sPkcUGfz1u8yJFoiqUUGRya3SDvvimeMW7UFBkcmvz3fyYjFGzd+JHjPW47aPNqPH9PV4cv5OnLxY7NfnCQXV/d4SERFR5GAoIqpGeYUmt0q7ZMPBPOQV+q/iHm0hoTrfWyIiIoosDEVE1eiSwVzm/svl7K+IaAsJ1fneEhERUWRhKCKqRgm6stddiC9nf0VEW0iozveWiIiIIgtDEVE1SovTuC2eKemSnYa0OP9NgBBtIaE631siIiKKLAxFRNUoUa/B1EGt3CrvXbLTMG1QK7/OChdtIaE631siIiKKLJySmygIpGmyLxvMiNepkRYXmGmyT14sxrhFe7DBZYrqaYNaITNCp6iurveWiMKbt2l8iwtNMBks1VYOjU6FmBC9SDV8+HBcvHgRS5YsAQDcdNNNaNOmDWbOnFnpc/rjHNGifv36eOaZZ/DMM894PcZkMqF58+aYN28eOnfuXK3lc7Vv3z706tUL+/fvR2xsbLU9r7+m5ObirURBkKivnop6raQYvH9326gKCdX13hJR5CkuNGHZ7B0ovFB9yxbEJceg38PtfA5Gw4cPxxdffAEAUKvVqFevHu6//36MHz8eKlVgq3WLFy+GWu1b1+t169ahW7duuHDhApKSkip1jsrKzc1FgwYNsHPnTp8Xb504cSKWLFmCXbt2BbRs/vbxxx+jQYMGskB04MAB/Otf/8KmTZtgMpnQqlUrvPbaa+jWrZvjmDVr1uCll17C3r17ERsbi2HDhmHy5MmOn6Hc3Fzcf//92L59O6655hrMmzcP9evXdzy+X79+eOCBBzBo0CDHtubNm6Njx46YMWMGXnrppWp7D/yF3eeIIlyiXoNGNeLQpl4yGtWIY2AgIvLCZLCg8EIxNFol4pJ0Af/SaJUovFBc4ZapPn364NSpUzh48CBGjx6NiRMn4q233vL8mkz+m2k0JSUF8fHxQT9HKPPn+10eURTxwQcf4KGHHpJt79evHywWC37++Wds374drVu3Rr9+/XD69GkAwO7du3HLLbegT58+2LlzJxYuXIilS5di3LhxjnOMHj0atWvXxq5du5CZmYkxY8Y49i1cuBAKhUIWiCQPPPAAZs2aBYul+lpb/YWhiIiIAHvXw8NnC7Hz2AUcPlcYcWtZEflKE6OGTh/4L01M5VpMtFotMjIykJWVhSeeeAI9e/bE0qVLAXtL0sCBAzF58mTUqlULTZs2BQAcP34cQ4YMQVJSElJSUjBgwADk5uY6zmm1WvHcc88hKSkJqampeP755+E6wuKmm26SdeUyGo0YO3Ys6tatC61Wi8aNG+Ozzz5Dbm6uo1UiOTkZgiBg+PDhHs9x4cIF3H///UhOToZer0ffvn1x8OBBx/65c+ciKSkJP/74I5o1a4a4uDhHKPTVunXrIAgC1qxZg/bt20Ov16Nz587Yv3+/4zkmTZqE3bt3QxAECIKAuXPnAgAuXryIhx9+GOnp6UhISED37t2xe/dux7knTpyINm3aYPbs2Y7uW59++ilq1aoFm80mK8eAAQPw4IMPAgAOHz6MAQMGoGbNmoiLi8O1116L1atX+/yaAGD79u04fPgwbr31Vse2vLw8HDx4EOPGjUOrVq2QnZ2NqVOnoqioCH/88QdgDzWtWrXCyy+/jMaNG6Nr165488038eGHH+Ly5csAgJycHAwbNgzZ2dkYPnw4cnJyHO/HhAkT8OGHH3os080334z8/HysX7++Qq8lFDAUERERTl4sxqj5O9Fjxnrc9tFm9Ji+Hk/O34mTF6uvGxERVU5MTIyshWLNmjXYv38/Vq1ahWXLlsFsNqN3796Ij4/Hxo0bsWnTJke4kB43ffp0zJ07F59//jl++eUX5Ofn47vvvivzee+//37Mnz8f7733HnJycvDJJ58gLi4OdevWxaJFiwAA+/fvx6lTp/Duu+96PMfw4cOxbds2LF26FL/++itEUcQtt9wCs7l02YiioiK8/fbb+PLLL7FhwwYcO3ZM1nLhqxdffBHTp0/Htm3boFKpHAHlzjvvxOjRo3H11Vfj1KlTOHXqFO68804AwODBg3H27FmsWLEC27dvR7t27dCjRw/k5+c7znvo0CEsWrQIixcvxq5duzB48GCcP38ea9eudRyTn5+PlStXYujQoQCAwsJC3HLLLVizZg127tyJPn36oH///jh27JjPr2fjxo1o0qSJrOUtNTUVTZs2xbx583DlyhVYLBZ88sknqFGjBq655hrAHmZdx97ExMTAYDBg+/btAIDWrVtj9erVsNls+Omnn9CqVSsAwL/+9S+MHDkSdevW9VgmjUaDNm3aYOPGjT6/jlDBUEREFOUKikwYu2iP22K/Gw7mYdyiPWwxIgpRoihi9erV+PHHH9G9e3fH9tjYWMyePRtXX301rr76aixcuBA2mw2zZ89Gy5Yt0axZM8yZMwfHjh3DunXrAAAzZ87ECy+8gNtvvx3NmjXDxx9/jMTERK/PfeDAAXzzzTf4/PPPcdttt6Fhw4bo0aMH7rzzTiiVSqSkpAAAatSogYyMDI/nOnjwIJYuXYrZs2fjxhtvROvWrfHVV1/hxIkTjskdAMBsNuPjjz9G+/bt0a5dO4waNQpr1qyp8Ps1efJkdO3aFc2bN8e4ceOwefNmGAwGxMTEIC4uDiqVChkZGcjIyEBMTAx++eUXbNmyBf/973/Rvn17ZGdn4+2330ZSUhK+/fZbx3lNJhPmzZuHtm3bolWrVkhOTkbfvn3x9ddfO4759ttvkZaW5mhBa926NR577DG0aNEC2dnZeO2119CoUSNHi58vjh49ilq1asm2CYKA1atXY+fOnYiPj4dOp8OMGTOwcuVKJCcnAwB69+6NzZs3Y/78+bBarThx4gReffVVAHC0wL399tv466+/UL9+fRw8eBBvv/02NmzYgF27duH+++/HkCFD0LBhQzz++ONuXQZr1aqFo0ePVvj/J9gYioiIolxeocktEEk2HMxDXiFDEVEoWbZsGeLi4qDT6dC3b1/ceeedmDhxomN/y5YtodGUjh/dvXs3Dh06hPj4eMTFxSEuLg4pKSkwGAw4fPgwCgoKcOrUKXTo0MHxGJVKhfbt23stw65du6BUKtG1a9dKv46cnByoVCrZ80otHVJ3LQDQ6/Vo1KiR435mZibOnj1b4eeTWjukcwAo8zy7d+9GYWEhUlNTHe9bXFwcjhw5gsOHDzuOy8rKQnp6uuyxQ4cOxaJFi2A0GgEAX331Fe666y4oFCVV78LCQowZMwbNmjVDUlIS4uLikJOTU6GWouLiYrcWH1EUMXLkSNSoUQMbN27Eli1bMHDgQPTv398ReHr16oW33noLjz/+OLRaLZo0aYJbbrkFABzlq127NpYtW4Zjx45h2bJlSEtLw4gRI/Dxxx/j9ddfR3x8PPbv34+DBw/ik08+kZUhJiYGRUVFPr+OUMHZ54iIotwlg7nM/ZfL2U9E1atbt26YNWsWNBoNatWq5TbrnOt0yIWFhbjmmmvw1VdfuZ3LtTLvq5iY6lvWwXW2OkEQ3MY7VfQ8giAAgNu4H2eFhYXIzMx0tKY5c55Rz9P00/3794coili+fDmuvfZabNy4Ee+8845j/5gxY7Bq1Sq8/fbbaNy4MWJiYnDHHXdUaKKGtLQ07N27V7bt559/xrJly3DhwgXH8jQfffQRVq1ahS+++MIxmcJzzz2HZ599FqdOnUJycjJyc3PxwgsvoGHDhh6f64033kCvXr1wzTXX4JFHHsHrr78OtVqN22+/HT///DOefPJJx7H5+fmyEBsuGIqIiKJcgq7swd7x5ewnouoVGxuLxo0b+3x8u3btsHDhQtSoUcPrOo6ZmZn4/fff0aVLFwCAxWJxjKHxpGXLlrDZbFi/fj169uzptl9qqbJarV7L1axZM1gsFvz++++OKaXPnz+P/fv3o3nz5j6/Pn/QaDRuZW3Xrh1Onz4NlUolm47aFzqdDrfffju++uorHDp0CE2bNpW9l5s2bcLw4cNx2223AfYA5jzxhS/atm2LWbNmQRRFR8iTWmikFh+JQqFwC4CCIDi6382fPx9169b1+P+dk5ODr7/+2jFdudVqdYz5MpvNbu/bH3/8gTvuuKNCryUUsPscEVGUS4vToEt2msd9XbLTkBaiC0sSBYqp2AxDUeC/TMXV0wo7dOhQpKWlYcCAAdi4cSOOHDmCdevW4amnnsI///wDAHj66acxdepULFmyBH/99RdGjBiBixcvej1n/fr1MWzYMDz44INYsmSJ45zffPMNYO9SJggCli1bhnPnzqGwsNDtHNnZ2RgwYAAeeeQR/PLLL9i9ezfuvfde1K5dGwMGDAjgO+L59Rw5cgS7du1CXl4ejEYjevbsiU6dOmHgwIH46aefkJubi82bN+PFF1/Etm3byj3n0KFDsXz5cnz++eeOCRYk2dnZjokZdu/ejXvuuafMVitPunXrhsLCQvz555+ObZ06dUJycjKGDRuG3bt3O9YsOnLkiGyWurfeegt79+7Fn3/+iddeew1Tp07Fe++9B6VSKXsOURTx6KOP4p133nG0iF1//fX497//jZycHMybNw/XX3+94/jc3FycOHHCY1AOdQxFRERRLlGvwdRBrdyCUZfsNEwb1IprW1HU0OhUiEuOgcloReFFQ8C/TEYr4pJjoNEFtuOOXq/Hhg0bUK9ePcdECg899BAMBoOj5Wj06NG47777MGzYMHTq1Anx8fGOVgxvZs2ahTvuuAMjRozAVVddhUceeQRXrlwB7GNSJk2ahHHjxqFmzZoYNWqUx3PMmTMH11xzDfr164dOnTpBFEX88MMPAV/g1dWgQYPQp08fdOvWDenp6Zg/fz4EQcAPP/yALl264IEHHkCTJk1w11134ejRo6hZs2a55+zevTtSUlKwf/9+3HPPPbJ9M2bMQHJyMjp37oz+/fujd+/eXlvlvElNTcVtt90m6xaZlpaGlStXorCwEN27d0f79u3xyy+/4Pvvv0fr1q0dx61YsQI33ngj2rdvj+XLl+P777/HwIED3Z7j008/Rc2aNdGvXz/HtokTJ8JgMKBDhw5o3LgxRo4c6dg3f/589OrVC1lZWRV6LaFAECvTKTNEXbp0CYmJiSgoKPDaPExERJ4VFJmQV2jCZYMZ8To10uI0IRmIpHJeMpiREKNGWmxolpNCm8FgwJEjRxxry0iKC00VXky1KjQ6FWLYGkuVtGfPHtx88804fPgw4uLigloWk8mE7OxsfP3117LWo0Dz9rtcURxTREREgL3FKNTDxcmLxW7Th3fJTsPUQa1QK6n6Bn5T5IqJ0zCkUNho1aoVpk2bhiNHjqBly5ZBLcuxY8cwfvz4ag1E/sSWIiIiCgsFRSaMmr/T4/ThXbLT8P7dbUM+1FHo8NfVZSIKLn/9LnNMERERhQWup0RERIHCUERERGGB6ykREVGgMBQREVFY4HpKREQUKAxFREQUFrieEhERBQpDERERhQWup0RERIHCKbmJiChs1EqKwft3tw2L9ZSIiCh8MBQREVFYCYf1lIiIKLyw+xwRERGRxGIBjKbq+7JYgv2KvRJFEY8++ihSUlIgCAJ27dqFm266Cc8880yZj6tfvz5mzpxZbeWMZr681yaTCY0bN8bmzZurrVze7Nu3D3Xq1MGVK1eCXRQ3DEVEFFUKikw4fLYQO49dwOFzhSgo4to2RGRnsQBHTwFH/qm+r6OnKhyMTp8+jSeffBINGzaEVqtF3bp10b9/f6xZs8avb8fKlSsxd+5cLFu2DKdOnUKLFi2wePFivPbaa359nmDIzc11BD1fTZw4EW3atAlouQLh448/RoMGDdC5c2fHtgMHDmDAgAFIS0tDQkICbrjhBqxdu1b2uDVr1qBz586Ij49HRkYGxo4dC4vTz2pubi66dOmC2NhYdOnSBbm5ubLH9+vXD4sWLZJta968OTp27IgZM2YE7PVWFkMREUWNkxeLMWr+TvSYsR63fbQZPaavx5Pzd+LkxeJgF42IQoHVBpjNgEIBqFSB/1IoSp7PavO5iLm5ubjmmmvw888/46233sLevXuxcuVKdOvWDSNHjvTr23H48GFkZmaic+fOyMjIgEqlQkpKCuLj4/36PNHGZKq+i3GiKOKDDz7AQw89JNver18/WCwW/Pzzz9i+fTtat26Nfv364fTp0wCA3bt345ZbbkGfPn2wc+dOLFy4EEuXLsW4ceMc5xg9ejRq166NXbt2ITMzE2PGjHHsW7hwIRQKBQYNGuRWpgceeACzZs2SBaxQwFBERFGhoMiEsYv2YOPBPNn2DQfzMG7RHrYYEVEphQJQKQP/pah4NWzEiBEQBAFbtmzBoEGD0KRJE1x99dV47rnn8NtvvzmOO3bsGAYMGIC4uDgkJCRgyJAhOHPmjGO/1Orx5Zdfon79+khMTMRdd92Fy5cvAwCGDx+OJ598EseOHYMgCKhfvz4AuHWfO3v2LPr374+YmBg0aNAAX331lVuZL168iIcffhjp6elISEhA9+7dsXv3bp/LAgA2mw1vvvkmGjduDK1Wi3r16mHy5MmO/cePH8eQIUOQlJSElJQUDBgwwK3loizr1q2DIAhYs2YN2rdvD71ej86dO2P//v0AgLlz52LSpEnYvXs3BEGAIAiYO3duhV7f7Nmz0aBBA+h0Onz66aeoVasWbDZ5IB4wYAAefPBBwB5KBwwYgJo1ayIuLg7XXnstVq9e7fNrAoDt27fj8OHDuPXWWx3b8vLycPDgQYwbNw6tWrVCdnY2pk6diqKiIvzxxx+APdS0atUKL7/8Mho3boyuXbvizTffxIcffuj4f8nJycGwYcOQnZ2N4cOHIycnx/F+TJgwAR9++KHHMt18883Iz8/H+vXrK/RaAo2hiIiiQl6hyS0QSTYczENeIUMREYW2/Px8rFy5EiNHjkRsbKzb/qSkJMAeIAYMGOCoeK5atQp///037rzzTtnxhw8fxpIlS7Bs2TIsW7YM69evx9SpUwEA7777Ll599VXUqVMHp06dwtatWz2Wafjw4Th+/DjWrl2Lb7/9Fh999BHOnj0rO2bw4ME4e/YsVqxYge3bt6Ndu3bo0aMH8vPzfSoLALzwwguYOnUqXnrpJezbtw9ff/01atasCQAwm83o3bs34uPjsXHjRmzatAlxcXHo06dPhVtlXnzxRUyfPh3btm2DSqVyBJQ777wTo0ePxtVXX41Tp07h1KlTjvfTl9d36NAhLFq0CIsXL8auXbswePBgnD9/XtZlTfr/HTp0KACgsLAQt9xyC9asWYOdO3eiT58+6N+/P44dO+bz69m4cSOaNGkia91LTU1F06ZNMW/ePFy5cgUWiwWffPIJatSogWuuuQYAYDQaodPpZOeKiYmBwWDA9u3bAQCtW7fG6tWrYbPZ8NNPP6FVq1YAgH/9618YOXIk6tat67FMGo0Gbdq0wcaNG31+HdWBs88RUVS4ZDCXuf9yOfuJiILt0KFDEEURV111VZnHrVmzBnv37sWRI0ccFdN58+bh6quvxtatW3HttdcC9vA0d+5cR4X5vvvuw5o1azB58mQkJiYiPj4eSqUSGRkZHp/nwIEDWLFiBbZs2eI452effYZmzZo5jvnll1+wZcsWnD17FlqtFgDw9ttvY8mSJfj222/x6KOPlluWy5cv491338UHH3yAYcOGAQAaNWqEG264AbC3athsNsyePRuCIAAA5syZg6SkJKxbtw69evXy+T2ePHkyunbtCgAYN24cbr31VhgMBsTExCAuLg4qlUr2fvj6+kwmE+bNm4f09HTHY/v27Yuvv/4aPXr0AAB8++23SEtLQ7du3QB76GjdurXj+Ndeew3fffcdli5dilGjRvn0eo4ePYpatWrJtgmCgNWrV2PgwIGIj4+HQqFAjRo1sHLlSiQnJwMAevfujZkzZ2L+/PkYMmQITp8+jVdffRUAcOrUKcfrfOyxx1C/fn20atUKn3zyCTZs2IBdu3Zh2rRpGDJkCLZt24ZevXrhvffeg0ZTOmtorVq1cPToUZ//X6oDW4qIKCok6NRl7o8vZz8RUbCJoujTcTk5Oahbt67sSn3z5s2RlJTk6OIE+8xlzi0ImZmZbq085T2PSqVytC4AwFVXXeVosYJ9bEphYSFSU/+/vTsNiupK+wD+7252WRoCraAIhSBiiSsjhYhGRTASFZcKYMdoxi0TlIyi0dGJGLUcVCamnEFijEuiqLhMooNLRNRSiaMTjcYFiTDd7qiIbGHYz/th5L5pQaSRTfr/q+oPnHv63Oc0p+l+OOee+wYsLS2lh0ajQVZWVr1iSU9PR2lpqZQ8PO/y5cvIzMyElZWV1L6dnR1KSkp0zlEf1bMd1THg2RLBF6lv/1xcXHQSIgBQq9XYt28fSktLAQCJiYkIDw+H/NmyyqKiIsybNw9eXl5QKpWwtLREenq6XjNF//3vf2vM+AghEBkZCZVKhdOnT+P8+fMIDQ3FqFGjpIQnKCgIa9aswQcffABTU1N07doVI0eOBAApvo4dOyI5ORm3b99GcnIy7O3t8eGHH+KLL77AihUrYGVlhYyMDNy8eRMbNmzQicHc3BzFxcX17kdz4EwRERkEe0sTDPKwx6laltAN8rCHvSXve0NErZuHhwdkMhlu3LjRKO0ZG+v+M0gmk9W4xuVVFRUVwdHRESdPnqxx7LfJU12xmJubv/Qc/fr1q/V6pucTkZf5bRzVs051vSb17V9tyx1HjRoFIQQOHjyI3/3udzh9+jTWrl0rHZ83bx5SUlIQFxcHd3d3mJubY8KECXotCbS3t8eVK1d0yo4fP47k5GQ8ffoU1tbWAID169cjJSUFX3/9tbSZwty5czFnzhw8ePAAtra20Gq1+NOf/gQ3N7daz7Vy5UoEBQWhX79+mD59OlasWAFjY2OMGzcOx48fx+zZs6W6ubm56NKlS7370RyYFBGRQbCxMEHs+J5YuO9nncRokIc9Vo3vyZuBElGrZ2dnh+DgYMTHxyMqKqrGF+28vDwolUp4eXnhzp07uHPnjjRbdP36deTl5aF79+6NFk+3bt1QUVGBCxcuSMvnMjIykJeXJ9Xp27cvsrOzYWRkJG3WoC8PDw+Ym5sjNTUV06ZNq3G8b9++SEpKgkqlkr7kNwUTExNUVlbWOHdD+2dmZoZx48YhMTERmZmZ8PT0RN++faXjaWlpmDJlCsaOHQs8S8D02TwCAPr06YOEhAQIIaQkr3qGRv7cRh9yubxGAiiTyaTldzt37oSzs7NOjNXS09OxY8cOaYvzyspKlJf/b1l6eXl5jdft6tWrmDBhgl59aWpcPkdEBsNJaY6/RfRB6tzB+O7DAUidOxh/i+gDR2Xd/4UkIgNTVQVUVDb9owGzMvHx8aisrET//v2xb98+3Lx5E+np6Vi3bh38/PwAAIGBgfD29oZarcbFixdx/vx5vPfeexg8eDB8fHwa7WXy9PTEiBEjMHPmTJw7dw4XLlzAtGnTdGZ2AgMD4efnh9DQUBw9ehRarRY//PADFi9ejB9//LFe5zEzM8OCBQvw8ccf45tvvkFWVhb+9a9/YdOmTcCzZWj29vYYM2YMTp8+DY1Gg5MnTyIqKgp3795ttP66urpCo9Hg0qVLyMnJQWlp6Sv3T61W4+DBg9i8ebO0wUI1Dw8PaWOGy5cvY+LEiXrP5A0ZMgRFRUW4du2aVObn5wdbW1tMnjwZly9fxi+//IL58+dDo9Ho7FJXveX7tWvXsHz5csTGxmLdunVQKBQ656i+ye/atWulRN3f3x8bN25Eeno6vvnmG/j7+0v1tVot7t27h8DAQL360tSYFBGRQbGxMEEXlSV6d7ZFF5UlZ4iI6P8p5ICx8bOkqKLpH1VV/zufov5fx9zc3HDx4kUMGTIE0dHR6NGjB4YPH47U1FQkJCQAz/67v3//ftja2mLQoEEIDAyEm5sbkpKSGv0l27JlC5ycnDB48GCMGzcOM2bMgEqlko7LZDIcOnQIgwYNwvvvv4+uXbsiPDwct27dknaPq49PPvkE0dHRWLJkCby8vBAWFiZd62NhYYFTp06hc+fOGDduHLy8vDB16lSUlJQ06szR+PHjMWLECAwZMgQODg7YuXPnK/dv6NChsLOzQ0ZGBiZOnKhz7LPPPoOtrS0GDBiAUaNGITg4uNZZmrq88cYbGDt2rM7SQnt7exw5cgRFRUUYOnQofHx8cObMGezfv19nY4fDhw8jICAAPj4+OHjwIPbv34/Q0NAa5/jyyy/Rvn17vP3221LZ0qVLUVJSAl9fX7i7u+vcQ2vnzp0ICgqCi4uLXn1pajJR36v2XgMFBQWwsbFBfn5+k06fEhER0eutpKQEGo1Gum+MpKJCr5upvjLFsxvFEjWRn3/+GcOHD0dWVhYsLS1bNJaysjJ4eHhgx44dOrNHr+KF72U98V1IREREVM3IiN+OqE3p2bMnVq1aBY1GA29v7xaN5fbt21i0aFGjJUSNiW97IiIiIqI2bMqUKS0dAgDA3d0d7u7uLR1GrXhNERERERERGTQmRUREREREZNCYFBEREZHBakP7TREZpMZ6DzMpIiIiIoNjbGwM/OZGlkT0eqp+D1e/pxuKGy0QERGRwVEoFFAqlTr3upHJZC0dFhHVkxACxcXFePToEZRKZY2byuqLSREREREZpA4dOgCAlBgR0etHqVRK7+VXwaSIiIiIDJJMJoOjoyNUKhXKy8tbOhwi0pOxsfErzxBVY1JEREREBk2hUDTaFysiej1xowUiIiIiIjJoTIqIiIiIiMigMSkiIiIiIiKD1qauKaq+eVNBQUFLh0JERERERK2AlZXVS7fcb1NJUWFhIQDA2dm5pUMhIiIiIqJWID8/H9bW1nXWkYnq6ZU2oKqqCvfv369XNkivpqCgAM7Ozrhz585LBxlRU+N4pNaGY5JaE45Hak1aYjwa3EyRXC5Hp06dWjoMg2Jtbc0/sNRqcDxSa8MxSa0JxyO1Jq1tPHKjBSIiIiIiMmhMioiIiIiIyKAxKaIGMTU1RUxMDExNTVs6FCKOR2p1OCapNeF4pNaktY7HNrXRAhERERERkb44U0RERERERAaNSRERERERERk0JkVERERERGTQmBQREREREZFBY1JE9Zabmwu1Wg1ra2solUpMnToVRUVFddafPXs2PD09YW5ujs6dOyMqKgr5+fnNGje1DfHx8XB1dYWZmRl8fX1x/vz5Ouvv2bMH3bp1g5mZGby9vXHo0KFmi5UMgz5jcuPGjQgICICtrS1sbW0RGBj40jFMpA99/0ZW27VrF2QyGUJDQ5s8RjIc+o7HvLw8REZGwtHREaampujatWuzf24zKaJ6U6vVuHbtGlJSUpCcnIxTp05hxowZL6x///593L9/H3Fxcbh69Sq2bt2KI0eOYOrUqc0aN73+kpKSMHfuXMTExODixYvo1asXgoOD8ejRo1rr//DDD4iIiMDUqVPx008/ITQ0FKGhobh69Wqzx05tk75j8uTJk4iIiMCJEydw9uxZODs7IygoCPfu3Wv22Knt0Xc8VtNqtZg3bx4CAgKaLVZq+/Qdj2VlZRg+fDi0Wi327t2LjIwMbNy4ER07dmzewAVRPVy/fl0AEP/+97+lssOHDwuZTCbu3btX73Z2794tTExMRHl5eRNFSm1R//79RWRkpPRzZWWlcHJyEn/5y19qrf/OO++IkJAQnTJfX18xc+bMJo+VDIO+Y/J5FRUVwsrKSnz99ddNGCUZioaMx4qKCjFgwADx1VdficmTJ4sxY8Y0U7TU1uk7HhMSEoSbm5soKytrxihr4kwR1cvZs2ehVCrh4+MjlQUGBkIul+PcuXP1bic/Px/W1tYwMjJqokiprSkrK8OFCxcQGBgolcnlcgQGBuLs2bO1Pufs2bM69QEgODj4hfWJ9NGQMfm84uJilJeXw87OrgkjJUPQ0PG4bNkyqFQqrt6gRtWQ8XjgwAH4+fkhMjIS7du3R48ePbBy5UpUVlY2Y+QAv5lSvWRnZ0OlUumUGRkZwc7ODtnZ2fVqIycnB8uXL69zyR3R83JyclBZWYn27dvrlLdv3x43btyo9TnZ2dm11q/vWCWqS0PG5PMWLFgAJyenGsk7kb4aMh7PnDmDTZs24dKlS80UJRmKhozH//znPzh+/DjUajUOHTqEzMxMfPjhhygvL0dMTEwzRc5rigzewoULIZPJ6nzU90O+LgUFBQgJCUH37t2xdOnSRomdiOh1FBsbi127duHbb7+FmZlZS4dDBqawsBCTJk3Cxo0bYW9v39LhEKGqqgoqlQpffvkl+vXrh7CwMCxevBhffPFFs8bBmSIDFx0djSlTptRZx83NDR06dKhxgVxFRQVyc3PRoUOHOp9fWFiIESNGwMrKCt9++y2MjY0bJXYyDPb29lAoFHj48KFO+cOHD1849jp06KBXfSJ9NGRMVouLi0NsbCyOHTuGnj17NnGkZAj0HY9ZWVnQarUYNWqUVFZVVQU8WwGSkZGBLl26NEPk1BY15O+jo6MjjI2NoVAopDIvLy9kZ2ejrKwMJiYmTR43OFNEDg4O6NatW50PExMT+Pn5IS8vDxcuXJCee/z4cVRVVcHX1/eF7RcUFCAoKAgmJiY4cOAA/ytKejMxMUG/fv2QmpoqlVVVVSE1NRV+fn61PsfPz0+nPgCkpKS8sD6RPhoyJgFg9erVWL58OY4cOaJzfSbRq9B3PHbr1g1XrlzBpUuXpMfo0aMxZMgQXLp0Cc7Ozs3cA2pLGvL30d/fH5mZmVJyDgC//PILHB0dmy0hArj7HOlhxIgRok+fPuLcuXPizJkzwsPDQ0REREjH7969Kzw9PcW5c+eEEELk5+cLX19f4e3tLTIzM8WDBw+kR0VFRQv2hF43u3btEqampmLr1q3i+vXrYsaMGUKpVIrs7GwhhBCTJk0SCxculOqnpaUJIyMjERcXJ9LT00VMTIwwNjYWV65cacFeUFui75iMjY0VJiYmYu/evTp/CwsLC1uwF9RW6Dsen8fd56gx6Tseb9++LaysrMSsWbNERkaGSE5OFiqVSqxYsaJZ4+byOaq3xMREzJo1C8OGDYNcLsf48eOxbt066Xh5eTkyMjJQXFwMALh48aK0M527u7tOWxqNBq6urs3cA3pdhYWF4fHjx1iyZAmys7PRu3dvHDlyRLqQ8/bt25DL/3/ie8CAAdixYwf+/Oc/Y9GiRfDw8MB3332HHj16tGAvqC3Rd0wmJCSgrKwMEyZM0GknJiaG11nSK9N3PBI1JX3Ho7OzM77//nvMmTMHPXv2RMeOHfHRRx9hwYIFzRq3TAghmvWMRERERERErQj/bUBERERERAaNSRERERERERk0JkVERERERGTQmBQREREREZFBY1JEREREREQGjUkREREREREZNCZFRERERERk0JgUERERERGRQWNSRERE1ABarRYymQxbt25t6VCIiOgVMSkiIiK9aDQazJo1C127doWFhQUsLCzQvXt3REZG4ueff27p8FrUoUOHsHTp0pYOg4iI9CQTQoiWDoKIiF4PycnJCAsLg5GREdRqNXr16gW5XI4bN27gH//4B27dugWNRgMXF5eWDrXJCSFQWloKY2NjKBQKAMCsWbMQHx8PfrQSEb1ejFo6ACIiej1kZWUhPDwcLi4uSE1NhaOjo87xVatWYf369ZDLW+cihF9//RXt2rVrtPZkMhnMzMwarT0iImo5rfOTi4iIWp3Vq1fj119/xZYtW2okRABgZGSEqKgoODs7S2U3btzAhAkTYGdnBzMzM/j4+ODAgQM6z9u6dStkMhnS0tIwd+5cODg4oF27dhg7diweP35c4zyHDx9GQEAA2rVrBysrK4SEhODatWs6daZMmQJLS0tkZWVh5MiRsLKyglqtBp4lR9HR0XB2doapqSk8PT0RFxdXY3YnJSUFAwcOhFKphKWlJTw9PbFo0SLp+PPXFE2ZMgXx8fHAs4Sp+iGEgKurK8aMGVOjLyUlJbCxscHMmTPr/XsgIqLGx5kiIiKql+TkZLi7u8PX17de9a9duwZ/f3907NgRCxcuRLt27bB7926EhoZi3759GDt2rE792bNnw9bWFjExMdBqtfj8888xa9YsJCUlSXW2bduGyZMnIzg4GKtWrUJxcTESEhIwcOBA/PTTT3B1dZXqVlRUIDg4GAMHDkRcXBwsLCwghMDo0aNx4sQJTJ06Fb1798b333+P+fPn4969e1i7dq0U+9tvv42ePXti2bJlMDU1RWZmJtLS0l7Y35kzZ+L+/ftISUnBtm3bpHKZTIZ3330Xq1evRm5uLuzs7KRj//znP1FQUIB33323nr8FIiJqEoKIiOgl8vPzBQARGhpa49jTp0/F48ePpUdxcbEQQohhw4YJb29vUVJSItWtqqoSAwYMEB4eHlLZli1bBAARGBgoqqqqpPI5c+YIhUIh8vLyhBBCFBYWCqVSKaZPn65z/uzsbGFjY6NTPnnyZAFALFy4UKfud999JwCIFStW6JRPmDBByGQykZmZKYQQYu3atQKAePz48QtfE41GIwCILVu2SGWRkZGito/WjIwMAUAkJCTolI8ePVq4urrq9JuIiJofl88REdFLFRQUAAAsLS1rHHvzzTfh4OAgPeLj45Gbm4vjx4/jnXfeQWFhIXJycpCTk4MnT54gODgYN2/exL1793TamTFjBmQymfRzQEAAKisrcevWLeDZcra8vDxERERI7eXk5EChUMDX1xcnTpyoEdsf/vAHnZ8PHToEhUKBqKgonfLo6GgIIXD48GEAgFKpBADs378fVVVVr/DK/U/Xrl3h6+uLxMREqSw3NxeHDx+GWq3W6TcRETU/JkVERPRSVlZWAICioqIaxzZs2ICUlBRs375dKsvMzIQQAp988olOwuTg4ICYmBgAwKNHj3Ta6dy5s87Ptra2AICnT58CAG7evAkAGDp0aI02jx49WqM9IyMjdOrUSafs1q1bcHJykvpTzcvLSzoOAGFhYfD398e0adPQvn17hIeHY/fu3a+UIL333ntIS0uTzrFnzx6Ul5dj0qRJDW6TiIgaB68pIiKil7KxsYGjoyOuXr1a41j1NUZarVYqq04e5s2bh+Dg4FrbdHd31/m5elvr51VvgFDd5rZt29ChQ4ca9YyMdD/STE1NG7wTnrm5OU6dOoUTJ07g4MGDOHLkCJKSkjB06FAcPXr0hbHWJTw8HHPmzEFiYiIWLVqE7du3w8fHB56eng2KkYiIGg+TIiIiqpeQkBB89dVXOH/+PPr3719nXTc3NwCAsbExAgMDG+X8Xbp0AQCoVKoGt+ni4oJjx46hsLBQZ7boxo0b0vFqcrkcw4YNw7Bhw/DZZ59h5cqVWLx4MU6cOPHC89e1DM7Ozg4hISFITEyEWq1GWloaPv/88wb1g4iIGheXzxERUb18/PHHsLCwwO9//3s8fPiwxvHfbmmtUqnw5ptvYsOGDXjw4EGNurVttf0ywcHBsLa2xsqVK1FeXt6gNkeOHInKykr8/e9/1ylfu3YtZDIZ3nrrLeDZ9T7P6927NwCgtLT0he1X3wcpLy+v1uOTJk3C9evXMX/+fCgUCoSHh780ZiIianqcKSIionrx8PDAjh07EBERAU9PT6jVavTq1QtCCGg0GuzYsQNyuVy6jic+Ph4DBw6Et7c3pk+fDjc3Nzx8+BBnz57F3bt3cfnyZb3Ob21tjYSEBEyaNAl9+/ZFeHg4HBwccPv2bRw8eBD+/v41kp3njRo1CkOGDMHixYuh1WrRq1cvHD16FPv378cf//hHaTZq2bJlOHXqFEJCQuDi4oJHjx5h/fr16NSpEwYOHPjC9vv16wcAiIqKQnBwcI3EJyQkBG+88Qb27NmDt956CyqVSq/XgIiImgaTIiIiqrcxY8bgypUr+Otf/4qjR49i8+bNkMlkcHFxQUhICD744AP06tULANC9e3f8+OOP+PTTT7F161Y8efIEKpUKffr0wZIlSxp0/okTJ8LJyQmxsbFYs2YNSktL0bFjRwQEBOD9999/6fPlcjkOHDiAJUuWICkpCVu2bIGrqyvWrFmD6Ohoqd7o0aOh1WqxefNm5OTkwN7eHoMHD8ann34KGxubF7Y/btw4zJ49G7t27cL27dshhNBJikxMTBAWFob169dzgwUiolZEJp6/hTcRERE1mTlz5mDTpk3Izs6GhYVFS4dDRES8poiIiKj5lJSUYPv27Rg/fjwTIiKiVoTL54iIiJrYo0ePcOzYMezduxdPnjzBRx991NIhERHRbzApIiIiamLXr1+HWq2GSqXCunXrpJ3siIiodeA1RUREREREZNB4TRERERERERk0JkVERERERGTQmBQREREREZFBY1JEREREREQGjUkREREREREZNCZFRERERERk0JgUERERERGRQWNSREREREREBu3/AFmPl7XOobHoAAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Ensure that PredictionTable only contains predictions for the same index as XGenerosity\n", + "PredictionTable1 = Model1.get_prediction(XGenerosity).summary_frame(alpha=0.11)\n", + "\n", + "# Create the plot\n", + "fig, ax = plt.subplots(figsize=(10, 6))\n", + "\n", + "# Scatterplot of observations\n", + "sns.scatterplot(\n", + " x=XGenerosity[\"Generosity\"], \n", + " y=YGenerosity, \n", + " ax=ax, \n", + " label=\"Observations\"\n", + ")\n", + "\n", + "# Plot the predicted mean (regression line)\n", + "ax.plot(\n", + " XGenerosity[\"Generosity\"], \n", + " PredictionTable1[\"mean\"], \n", + " color=\"k\", \n", + " label=\"Prediction (Regression Line)\"\n", + ")\n", + "\n", + "# Get the min and max of the x-axis for full range\n", + "x_min, x_max = XGenerosity[\"Generosity\"].min(), XGenerosity[\"Generosity\"].max()\n", + "\n", + "# Create a smoother x-range for the prediction lines and intervals\n", + "x_smooth = np.linspace(x_min, x_max, 300)\n", + "\n", + "# Get the predictions for the smooth x-range\n", + "PredictionSmooth = Model1.get_prediction(sm.add_constant(x_smooth)).summary_frame(alpha=0.11)\n", + "\n", + "# Plot prediction intervals across the full x-range\n", + "ax.fill_between(\n", + " x_smooth, \n", + " PredictionSmooth[\"obs_ci_lower\"], \n", + " PredictionSmooth[\"obs_ci_upper\"], \n", + " color=\"rebeccapurple\", \n", + " alpha=0.5, \n", + " label=\"Prediction Interval (89%)\"\n", + ")\n", + "\n", + "# Plot confidence intervals across the full x-range\n", + "ax.fill_between(\n", + " x_smooth, \n", + " PredictionSmooth[\"mean_ci_lower\"], \n", + " PredictionSmooth[\"mean_ci_upper\"], \n", + " color=\"pink\", \n", + " alpha=0.5, \n", + " label=\"Confidence Interval (89%)\"\n", + ")\n", + "\n", + "# Customize the plot\n", + "ax.set_title(\"Generosity vs. Life Ladder\", fontsize=14)\n", + "ax.set_xlabel(\"Generosity\", fontsize=12)\n", + "ax.set_ylabel(\"Life Ladder\", fontsize=12)\n", + "ax.legend()\n", + "ax.spines[['right', 'top']].set_visible(False)\n", + "\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Q2" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: Life Ladder R-squared: 0.271\n", + "Model: OLS Adj. R-squared: 0.266\n", + "Method: Least Squares F-statistic: 49.54\n", + "Date: Fri, 29 Nov 2024 Prob (F-statistic): 9.33e-11\n", + "Time: 17:57:08 Log-Likelihood: -177.57\n", + "No. Observations: 135 AIC: 359.1\n", + "Df Residuals: 133 BIC: 364.9\n", + "Df Model: 1 \n", + "Covariance Type: nonrobust \n", + "===================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "-----------------------------------------------------------------------------------\n", + "const 2.2346 0.496 4.503 0.000 1.253 3.216\n", + "Positive affect 5.2694 0.749 7.039 0.000 3.789 6.750\n", + "==============================================================================\n", + "Omnibus: 6.132 Durbin-Watson: 1.815\n", + "Prob(Omnibus): 0.047 Jarque-Bera (JB): 4.574\n", + "Skew: -0.327 Prob(JB): 0.102\n", + "Kurtosis: 2.379 Cond. No. 13.7\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" + ] + } + ], + "source": [ + "# Create the design matrix XPossitive and the response vector YPossitive\n", + "XPossitive = X[['const', 'Positive affect']].dropna() # Drop missing values from XPossitive\n", + "YPossitive = Y.loc[XPossitive.index] # Align Y with XPossitive, matching indices\n", + "\n", + "# Fit the linear regression model (Model 2)\n", + "Model2 = sm.OLS(YPossitive, XPossitive).fit()\n", + "print(Model2.summary())" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAALCCAYAAAARRXhhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hU1dbA4d/0zGQmnRYMHREUEEW9iKIoAhY+UARRroDdC4qoqGBFEQUF7KBeFCyI3iuKXKyAUsSCjdBCCCENSO+TZPr5/kgyEjIhhZSZZL3Pk0c5+8w5e85MJmfNXnttlaIoCkIIIYQQQgjRRqlbugNCCCGEEEII0ZIkKBJCCCGEEEK0aRIUCSGEEEIIIdo0CYqEEEIIIYQQbZoERUIIIYQQQog2TYIiIYQQQgghRJsmQZEQQgghhBCiTZOgSAghhBBCCNGmSVAkhBBCCCGEaNMkKBJCiFokJyejUqmYNm1avR6nUqm49NJLm6xfTc3pdDJv3jx69+6NwWBApVKxbt26WtvEqZs3bx4qlYotW7ZUa3v11Vc588wzMZlMqFQqXn755RbpY2Or7+/LtGnTUKlUJCcnN2m/hBBtgwRFQgi/VhmQHP+j1+uJiYnhpptuYvfu3S3Wt0svvRSVStVi52+obdu2ea/lf//73xr3W7JkCU8//TTR0dHMnj2bp556ijPOOKPWtqZyskAhEKxatQqVSsXChQsbfIyPP/6Y++67D4PBwH333cdTTz3FP/7xj0btZ+X7OiMjo1GPK4QQ/kzb0h0QQoi66NmzJ//85z8BsFqt/PLLL6xZs4bPPvuMzZs3M3To0CY7d+fOnYmLiyM0NLRej4uLi8NkMjVZvxrqnXfegYpv5t99910mTJjgc78NGzZgNpvZuHEjer2+zm3i1N1zzz1MmjSJLl26VNm+YcMG73+jo6NbqHdCCNH6SFAkhAgIvXr1Yt68eVW2Pf744yxYsIDHHnusSUcPdDpdg0ZBmnrkpCGKior49NNPGTBgAB06dOC7774jLS2NmJiYavseO3aMyMhIn0HPydrEqYuKiiIqKqra9mPHjgFIQCSEEI1M0ueEEAHr3nvvBeC3337zbnO5XCxdupSBAwdiNBoJDQ1l+PDh/O9//6v2eI/Hw4oVKzj//POJiIjAaDRy2mmnMWbMmCpBlq85RSqViq1bt3r/v/LnxH2OnyNx2223oVKp2LZtm8/ns3TpUlQqFf/+97+rbN+9ezeTJk2iU6dO6PV6unbtyr333ktubm69r9maNWsoLS1lypQpTJkyBY/Hw6pVq6rsU5mmlpSUREpKive5devW7aRtx9u2bRtjxowhKioKg8FA7969efzxxyktLfXZr23btjFu3Dg6dOiAwWAgJiaG6667jh9//BEqUrqefvppAIYPH17jeU/UkGv+ww8/cOWVVxIdHY3BYKBDhw5cfPHFvP3223W8yqfuxFTBytS7H374AU54zx2vMd8rdfH5559z44030qtXL0wmE6GhoVx88cWsXbu2xsesWLGCs846i6CgIGJiYnj44Yex2Ww17r9v3z6uueYaLBYLoaGhXHXVVezdu/ek/friiy+4/PLLCQ8PJygoiLPOOovFixfjdrur7Fd5XVetWsX//vc/hg4disViqfV9JYRofWSkSAgR8CpvDBVF4frrr+eLL77g9NNPZ8aMGZSUlPDJJ5/wf//3fyxdupT777/f+7i5c+fywgsv0LNnT2666SYsFgtHjx7lxx9/ZNOmTSed9P3UU0+xatUqUlJSeOqpp7zbzz777Bofc/PNN/Puu+/y4YcfMmzYsGrtH3zwAQaDoUo62/r165k4cSJqtZqxY8cSExPD/v37ef311/n222/59ddfCQ8Pr/O1euedd9BoNEyePJmQkBD+9a9/sXLlSh5//HHvdax83pUT+GfNmgVAWFiY9/n5aqu0fPlyZsyYQVhYGGPGjKF9+/b8/vvvLFiwgB9++IEffvihygjTK6+8wv3334/RaOTaa6+lS5cu3tfh008/5aKLLvIGm1u3bmXq1Knem9bjz9sY1/zLL79kzJgxhIWFMXbsWDp16kR2djaxsbF88MEH3HnnnXW+1o3p7LPPrvE9V6mx3yt1MXfuXPR6PRdddJH3Wq1fv57rr7+eV1991fvFRaX58+fz5JNP0qFDB+644w50Oh2ffPIJcXFxPo+/d+9ehg4ditVq5brrrqN3797s3LmToUOHMnDgwBr7tHDhQjp37sx1111HaGgo27dv56GHHuLXX3/1OY/uv//9L9999x3XXHMN06dPp6ioqJGukBAiYChCCOHHkpKSFEAZNWpUtbYnn3xSAZThw4criqIo7733ngIol1xyiWK32737paSkKFFRUYpWq1USExO92yMiIpTo6GilpKSk2rFzc3Or9WHq1KlV9rnkkkuUk32MVvalksfjUbp06aKEh4crNputyr579uxRAOX666/3bsvJyVFCQkKUzp07K8nJyVX2X7NmjQIo99xzT43nP9Hu3burXcspU6YogLJp06Zq+3ft2lXp2rWrz2PV1LZv3z5Fq9UqAwcOVHJycqq0Pf/88wqgLF682Ltt165dilqtVqKjo5WkpKQq+3s8HuXo0aPefz/11FMKoPzwww91fs71vebXXXedAii7du2qdqwTn099rVy5UgGU559/vtZ9a3quNb3nGvO9UnmO9PT0Wvc9/vepUnFxsdK/f38lNDS0yu9WQkKCotVqlc6dOyuZmZne7YWFhUqfPn2q/b4c35cPP/ywyva5c+cqgAJUed9899133ve41Wr1bvd4PMrdd9+tAMqnn37q3V75mqjVamXjxo11uj5CiNZJ0ueEEAHh0KFDzJs3j3nz5vHQQw8xbNgwnnnmGYKCgliwYAEA7733HgAvvPBClZGILl26cP/99+NyuVi9enWV4+r1ejQaTbXzRURENPpzUKlUTJ48mfz8fL788ssqbR988AGAt5gEwPvvv09RURHPP/88Xbt2rbL/pEmTOOecc/j444/rfP7KAgtTpkzxbqv8/8q2U/XWW2/hcrl47bXXiIyMrNL28MMP065dO9asWVNlf4/Hw7PPPlstZUmlUp3y3Jn6XvNKRqOx2rYTn48/aez3Sl316NGj2jaz2cy0adMoLCysktr60Ucf4XK5eOCBB2jfvr13e0hICI8//ni146SmprJ161YGDBjA5MmTq7Q9+uijPkcJX3/9dQDefvttgoODvdsrq/6pVKoq779KY8eOZcSIEfV67kKI1kXS54QQASExMdE7p0Sn09GhQwduuukm5syZQ//+/QH466+/MJlMnH/++dUeP3z4cAB27drl3TZp0iSWLVvGWWedxaRJkxg+fDhDhgzxeUPcWG6++Waef/55PvjgA6677jqomNv00UcfERkZyVVXXeXd95dffgHg119/JTExsdqxbDYbOTk55OTk+JyUfzy73c6HH36IxWLh2muv9W4fPnw4MTExfP755+Tn559yelVln7/99ls2b95crV2n03HgwAHvv3fu3AnAyJEjT+m8J1Ofaz5p0iQ+++wz/vGPf3DTTTdx+eWXc/HFF9d6fVtaY75X6iMrK4uFCxfy9ddfk5KSQllZWZX2ysIQALGxsQBcfPHF1Y7ja1vl/hdddFG1NrPZzNlnn12twMovv/xCcHAw7777rs/+Go3GKu+/Sr4+M4QQbYsERUKIgDBq1Ci++eabk+5TVFTks4oaQKdOnbz7VHrllVfo3r07K1eu5Nlnn+XZZ58lKCiIiRMnsmTJkia5Ee7bty/nnnsuX331lTcI2bJlC0eOHGH69OnodDrvvnl5eQC88cYbJz1mSUlJrX1dt24dubm53HLLLVWCPrVazeTJk1m4cCEfffQRM2bMOKXnV9nnytG72hQWFqJSqbyvT1OozzWfMGEC69atY+nSpbz55pu88cYbqFQqhg8fzpIlS046Z6wlNeZ7pT7nPO+880hNTWXo0KGMGDGCsLAwNBoNu3bt4osvvsBut3v3LywsBKgySlSpQ4cO1badbP+aHpOXl4fL5fJ+geJLSUlJnY4lhGhbJH1OCNFqhISEkJWV5bOtciHKkJAQ7zatVsvs2bPZt28fR48e5aOPPuLiiy/m/fffr5au05huvvlmHA4H//nPf+C4NK6bb7652vMB2LNnD4qi1PhzYrqUL5XpcStXrqy2GG7lYqKNkUJX2eeioqKT9rlSWFgYiqKQnp5+yuc+mbpecypSqbZu3Up+fj5ff/01t99+O1u2bGH06NEUFBQ0aT8bqjHfK3X1zjvvkJqayvz58/nxxx957bXXmD9/PvPmzfO5oGzlOl++fkczMzPrtX9NjwkJCSEyMvKk1yApKana4wJxEWYhROOSoEgI0WoMGjSI0tJSb0rW8SrTbGr6pj86Opobb7yRb775hl69erFp06ZqqUAnqpyLdGKZ39rceOONaLVaPvzwQ8rKyvjss8/o1atXtRvJCy64AICff/65Xsc/UUpKCps3b6ZDhw7cdtttPn+6d+/OX3/9xV9//XVK56rsc2U6V20q05a+++67Wvdt6PWmHtf8eBaLhdGjR/P2228zbdo0MjMz+fXXX+t97ubQWO+V+qhM0xs7dmy1tu3bt1fbVlktzlfbyfavLMt+PKvVWiUVttIFF1xAbm4uCQkJdX4eQgiBBEVCiNZk6tSpUFGS1+l0erenpaWxdOlStFqtdwTIbrfz008/VTtGSUkJVqsVnU6HWn3yj8jKYgxpaWn16mf79u0ZOXIkO3bs4OWXX6aoqMjnZP9bbrkFi8XCY489xr59+6q1l5aW1in4WLlyJR6Ph7vuuosVK1b4/JkzZw40wmjR9OnT0Wq13HvvvaSmplZrLygoqBJ43X333Wg0Gh5//HFSUlKq7KsoSpU5KQ293tTjmm/bts1n0FU5WhEUFOTdlp6ezoEDB7xpXi2psd4r9VE56nRi0PLRRx/x1VdfVdv/pptuQqPRsHTp0iqjP0VFRTz77LPV9u/SpQvDhg1j9+7d1QqkPPfccz5H7WbOnAnArbfe6nNtpoyMjBrLfwsh2jaZUySEaDVuvvlmPvvsM7744gsGDBjANddc412nKC8vjyVLlnirZZWVlTF06FBOP/10zj33XLp06YLVamXDhg1kZGQwe/ZsDAbDSc932WWX8emnnzJ+/HiuvPJKgoKCGDhwIGPGjKlTX7/66ivvejO+btArK7VNmDCBgQMHMnr0aM444wzsdjvJycls3bqVCy+88KRzrTwejzdl7viFZU90ww03MGvWLFavXs3ixYur3PzXx1lnncWyZcv417/+RZ8+fbjqqqvo2bMnxcXFHD58mK1btzJt2jTefPNNAPr378/LL7/MzJkzOfPMMxk3bhxdu3YlIyODbdu2cfXVV3vXRKpctPXRRx9l3759hIaGEhYWxj333FOnvtXlms+cOZNjx45x0UUX0a1bN1QqFT/++CM7d+7kH//4R5VJ/3PnzuW9995j5cqVJ722J/rvf//rc7I/wLhx4xg3blydj1WpMd4rJ7rvvvtqLDqyePFibr75ZhYtWsS9997LDz/8QNeuXYmNjWXz5s1cd911fPbZZ1Ue06tXL5588kmeeuopBgwYwMSJE9Fqtaxdu5YBAwYQHx9f7TxvvPEGQ4cOZcqUKaxbt867TtFvv/3GxRdfXG2EafTo0TzxxBPMnz+fXr16MXr0aLp27Upubi6HDh1i+/btPPvss/Tt27fO10EI0Ua0dE1wIYQ4mZOtU+SL0+lUFi9erPTv318xGAyKxWJRLrnkEuWLL76osp/D4VAWLVqkjBw5UjnttNMUvV6vdOjQQRk2bJjy0UcfKR6Pp1ofTlynyOl0Kg8//LDSpUsXRavVVtvH17orlUpLS5WQkBAFUIYMGXLS53TgwAHltttuU7p27aro9XolPDxc6d+/vzJz5kxl586dJ33st99+e9J+HG/y5MkKoKxevVpRGrhOUaWdO3cqkyZNUqKjoxWdTqdERUUp55xzjjJnzhwlLi6u2v4//PCDcs011ygRERGKXq9XTjvtNGX8+PHKjh07quy3atUq72sLnLQPJ6rLNf/444+ViRMnKj179lRMJpMSGhqqDBw4UFm0aJFSXFxcZd+pU6cqgLJy5co6nb9yTZyT/Tz11FOK0oB1iiqdynvlxHOc7KdybaBdu3YpI0eOVMLDw72/a5s2bfI+V1/X5t///rfSr18/7+s8e/ZspbS0tMb36Z49e5SrrrpKMZvNisViUa688kplz5493ut/4vpWiqIoGzduVMaMGaO0a9dO0el0SseOHZUhQ4Yo8+fPV1JTU6u9JnV9DYUQrZdKOX7GqxBCCCGEEEK0MTKnSAghhBBCCNGmSVAkhBBCCCGEaNMkKBJCCCGEEEK0aRIUCSGEEEIIIdo0CYqEEEIIIYQQbZoERUIIIYQQQog2rVUFRYqiUFRUhFQZF0IIIYQQQtRVqwqKiouLCQ0Npbi4uKW7IoQQQgghhAgQrSooEkIIIYQQQoj6kqBICCGEEEII0aZJUCSEEEIIIYRo0yQoEkIIIYQQQrRpEhQJIYQQQggh2jRtS3eguSmKgsvlwu12t3RXhBANoNPp0Gg0Ld0NIYQQQrQibSoocjgcpKenU1pa2tJdEUI0kEql4rTTTsNsNrd0V4QQQgjRSrSZoMjj8ZCUlIRGoyE6Ohq9Xo9KpWrpbgkh6kFRFLKzszly5Ai9e/eWESMhhBBCNIo2ExQ5HA48Hg8xMTGYTKaW7o4QooHatWtHcnIyTqdTgiIhhBBCNIo2V2hBrW5zT1mIVkVGeIUQQgjR2CRCEEIIIYQQQrRpEhQJIYQQQggh2jQJilqRbt268fLLL7d0NxrNli1bUKlUFBQUtHRXhBBCCCFEKyZBUYBIS0vj1ltv9VbO69q1K/fddx+5ubkt3bVGcemllzJr1qwq2y688ELS09MJDQ1tsX4JIYQQQojWT4KiAHD48GEGDx5MQkICa9as4dChQ7z55pts3ryZIUOGkJeX1yL9crvdeDyeJju+Xq+nY8eOMrFeCCGEEEI0KQmKGqCw1EFilpW/UvNJzLZSWOpo0vPNmDEDvV7Pd999xyWXXEKXLl248sor2bRpE0ePHuWxxx7z7ltcXMyNN95IcHAwnTt35o033vC2KYrCvHnz6NKlCwaDgejoaGbOnOltt9vtzJ49m86dOxMcHMwFF1zAli1bvO2rVq0iLCyM9evX069fPwwGAytWrCAoKKhaitt9993HZZddBkBubi433ngjnTt3xmQy0b9/f9asWePdd9q0aWzdupVXXnkFlUqFSqUiOTnZZ/rc2rVrOfPMMzEYDHTr1o0lS5ZUOW+3bt147rnnuPXWW7FYLHTp0oW3337b2+5wOLjnnnvo1KkTQUFBdO3aleeff74RXiUhhBBCCBGoJCiqp2MFZdyz5i8uX7qVa5f9xOVLtnLvmr84VlDWJOfLy8vj22+/Zfr06RiNxiptHTt2ZPLkyXzyyScoigLAiy++yMCBA/nrr7+YM2cO9913Hxs3boSKgOKll17irbfeIiEhgXXr1tG/f3/v8e655x5+/vlnPv74Y3bv3s2ECRMYPXo0CQkJ3n1KS0tZtGgRK1asYN++fUyePJmwsDDWrl3r3cftdvPJJ58wefJkAGw2G+eeey5ffvkle/fu5c477+Tmm29m586dALzyyisMGTKEO+64g/T0dNLT04mJial2Lf744w8mTpzIpEmT2LNnD/PmzeOJJ55g1apVVfZbsmQJgwcP5q+//mL69On861//Ij4+HoBXX32V9evX85///If4+HhWr15Nt27dGuW1EkIIIYQQganNLN7aGApLHTyydjfbE3KqbN+WkMOctbt57cZBhJr0jXrOhIQEFEWhb9++Ptv79u1Lfn4+2dnZAAwdOpQ5c+YAcPrpp7Njxw5eeuklrrjiClJTU+nYsSMjRoxAp9PRpUsXzj//fABSU1NZuXIlqampREdHAzB79my++eYbVq5cyXPPPQeA0+lk2bJlDBw40NuHSZMm8dFHH3HbbbcBsHnzZgoKChg/fjwAnTt3Zvbs2d797733Xr799lv+85//cP755xMaGoper8dkMtGxY8car8XSpUu5/PLLeeKJJ7zPb//+/bz44otMmzbNu99VV13F9OnTAXjkkUd46aWX+OGHH+jTpw+pqan07t2biy66CJVKRdeuXRv4ygghhBBCiNZCRorqIcfqqBYQVdqWkEOOtenS6CpHgmozZMiQav+Oi4sDYMKECZSVldGjRw/uuOMOPv/8c1wuFwB79uzB7XZz+umnYzabvT9bt24lMTHRezy9Xs+AAQOqnGPy5Mls2bKFY8eOAbB69WquvvpqwsLCoGLkaP78+fTv35+IiAjMZjPffvstqamp9boGcXFxDB06tMq2oUOHkpCQgNvt9m47vn8qlYqOHTuSlZUFFal6u3btok+fPsycOZPvvvuuXn0QQgghhBCtjwRF9VBkc560vbiW9obo1asXKpXKG9icKC4ujvDwcNq1a1frsWJiYoiPj2fZsmUYjUamT5/OsGHDcDqdWK1WNBoNf/zxB7t27fL+xMXF8corr3iPYTQaqxU+OO+88+jZsycff/wxZWVlfP75597UOSpS+l555RUeeeQRfvjhB3bt2sWoUaNwOJomiNTpdFX+rVKpvAUhzjnnHJKSkpg/fz5lZWVMnDiR66+/vkn6IYQQQgghAoOkz9VDSJDupO2WWtobIjIykiuuuIJly5Zx//33V5lXlJGRwerVq5kyZYo3UPnll1+qPP6XX36pknpnNBoZM2YMY8aMYcaMGZxxxhns2bOHQYMG4Xa7ycrK4uKLL653PydPnszq1as57bTTUKvVXH311d62HTt2MHbsWP75z38C4PF4OHjwIP369fPuo9frq4z2+NK3b1927NhRZduOHTs4/fTT0Wg0de5rSEgIN9xwAzfccAPXX389o0ePJi8vj4iIiHo8YyGEEEII0VrISFE9RJn1DOsd5bNtWO8oosyNO5+o0uuvv47dbmfUqFFs27aNtLQ0vvnmG6644go6d+7MggULvPvu2LGDF154gYMHD/LGG2/w3//+l/vuuw8qqse988477N27l8OHD/Phhx9iNBrp2rUrp59+OpMnT2bKlCl89tlnJCUlsXPnTp5//nm+/PLLWvs4efJk/vzzTxYsWMD111+PwWDwtvXu3ZuNGzfy008/ERcXx1133UVmZmaVx3fr1o1ff/2V5ORkcnJyfJb6fvDBB9m8eTPz58/n4MGDvPfee7z++utV5ivVZunSpaxZs4YDBw5w8OBB/vvf/9KxY0dvqp8QQgghhGh7JCiqh1CTnoXjB1QLjIb1jmLR+AGNXmShUu/evfn999/p0aMHEydOpGfPntx5550MHz6cn3/+ucoIx4MPPsjvv//OoEGDePbZZ1m6dCmjRo0CICwsjH//+98MHTqUAQMGsGnTJv73v/8RGRkJwMqVK5kyZQoPPvggffr0Ydy4cfz222906dKl1j726tWL888/n927d1dJnQN4/PHHOeeccxg1ahSXXnopHTt2ZNy4cVX2mT17NhqNhn79+tGuXTuf843OOecc/vOf//Dxxx9z1lln8eSTT/LMM89UKbJQG4vFwgsvvMDgwYM577zzSE5O5quvvkKtll8FIYQQQoi2SqXUdQZ/ACgqKiI0NJTCwkJCQkKqtNlsNpKSkujevTtBQUGndJ7CUgc5VgfFNieWIB1RZn2TBURCiKoa83dZCCGEEAKZU9QwoSYJgoQQQgghhGgtJGdICCGEEEII0aZJUCSEEEIIIYRoFEV5ZRxJyK3zGpv+QtLnhBBCCCGEEA3mtLs4djifw3uySIvPQWfQMG76+RibqDJzU5CgSAghhBBCCFEviqKQm24l9UA2ibGZ5GeWoHgUdAaNtz2QSFAkhBBCCCGEqJMyq4O0g7kc3p1JelI+thIHRrOBqM4WdHoNJUV2HDZXS3ez3iQoEkIIIYQQQtTI7fKQmVpIyv5skvZmUZRXhlqjIjTSSGQnMyqVqqW7eMokKBJCCCGEEEJUU5RbSmp8LomxGWQfKcLlcBMcGkTHbqFoNK2rXpsERUIIIYQQQgioKJpw9FAeSXuzSDuYS0mRHUOQlrB2JgxGXUt3r8m0rhBPnLJp06Yxbtw4778vvfRSZs2adUrHbIxj1NUTTzzBnXfe2SznaknJycmoVCp27drVov3o1q0bL7/8cqMec9KkSSxZsqRRjymEEEKImimKQs7RIv7cfJjP39jJdx/s5uCf6Wh1ajr3CKfdaSGtOiBCRooCw7Rp03jvvfcA0Ol0dOnShSlTpvDoo4+i1TbtS/jZZ5+h09Xtl2DLli0MHz6c/Px8wsLCGnSMU5GRkcErr7zCnj17vNuOv3ZarZbTTjuNCRMm8MwzzxAUFNTkfWoqMTExpKenExUV1aTnmTdvHuvWrasx+Prtt98IDg5u1HM+/vjjDBs2jNtvv53Q0NBGPbYQQggh/lZmdZAWn8Oh2EwyUwqwlTgxWfS062xBq9e0dPealQRFAWL06NGsXLkSu93OV199xYwZM9DpdMydO7favg6HA72+cerCR0RE+MUx6mLFihVceOGFdO3atcr2ymvndDr5448/mDp1KiqVikWLFjVZX9xuNyqVCrW6aQZjNRoNHTt2bJJj10e7du0a/ZhnnXUWPXv25MMPP2TGjBmNfnwhhBCiLXO7PGQkF5ASV140wZpvQ61Vt6qiCQ3RptPnFEWhpKSk2X8aUrfdYDDQsWNHunbtyr/+9S9GjBjB+vXr4biUtwULFhAdHU2fPn0ASEtLY+LEiYSFhREREcHYsWNJTk72HtPtdvPAAw8QFhZGZGQkDz/8cLW+nZj6ZrfbeeSRR4iJicFgMNCrVy/eeecdkpOTGT58OADh4eGoVCqmTZvm8xj5+flMmTKF8PBwTCYTV155JQkJCd72VatWERYWxrfffkvfvn0xm82MHj2a9PT0k16jjz/+mDFjxtR47WJiYhg3bhwjRoxg48aN3naPx8Pzzz9P9+7dMRqNDBw4kE8//bTKMdavX0/v3r0JCgpi+PDhvPfee6hUKgoKCqr0ef369fTr1w+DwUBqaip2u53Zs2fTuXNngoODueCCC9iyZYv3uCkpKYwZM4bw8HCCg4M588wz+eqrr7zXafLkybRr1w6j0Ujv3r1ZuXIl1JA+t3XrVs4//3wMBgOdOnVizpw5uFx/l8S89NJLmTlzJg8//DARERF07NiRefPmnfSa1ubE9DmVSsWKFSu49tprMZlM9O7d2/s+rbR3716uvPJKzGYzHTp04OabbyYnJ6fKPmPGjOHjjz8+pb4JIYQQ4m+FOaXs+TGV9W/+ztcr/2L3thQUj0LHbqF07BqK0axvswERbT0oKi0txWw2N/tPaWnpKffdaDTicDi8/968eTPx8fFs3LiRDRs24HQ6GTVqFBaLhe3bt7Njxw5vcFH5uCVLlrBq1SreffddfvzxR/Ly8vj8889Pet4pU6awZs0aXn31VeLi4njrrbcwm83ExMSwdu1aAOLj40lPT+eVV17xeYxp06bx+++/s379en7++WcUReGqq67C6XRWeW0WL17MBx98wLZt20hNTWX27Nk19isvL4/9+/czePDgk/Z/7969/PTTT1VG0p5//nnef/993nzzTfbt28f999/PP//5T7Zu3QpAUlIS119/PePGjSM2Npa77rqLxx57rNqxS0tLWbRoEStWrGDfvn20b9+ee+65h59//pmPP/6Y3bt3M2HCBEaPHu0NAmfMmIHdbmfbtm3s2bOHRYsWYTaboWJ+1P79+/n666+Ji4tj+fLlNabLHT16lKuuuorzzjuP2NhYli9fzjvvvMOzzz5bZb/33nuP4OBgfv31V1544QWeeeaZKgFiY3j66aeZOHEiu3fv5qqrrmLy5Mnk5eUBUFBQwGWXXcagQYP4/fff+eabb8jMzGTixIlVjnH++eezc+dO7HZ7o/ZNCCGEaEscNhdJe7PYvGYP65bt5Md1B8jPshLePpjOvSIIjTKhbmVV5BpK0ucCjKIobN68mW+//ZZ7773Xuz04OJgVK1Z4b/Y//PBDPB4PK1as8Eb9K1euJCwsjC1btjBy5Ehefvll5s6dy3XXXQfAm2++ybffflvjuQ8ePMh//vMfNm7cyIgRIwDo0aOHt70yTa59+/ZV5hQdLyEhgfXr17Njxw4uvPBCAFavXk1MTAzr1q1jwoQJADidTt5880169uwJwD333MMzzzxTY99SU1NRFIXo6OhqbRs2bMBsNuNyubDb7ajVal5//XWoGPl67rnn2LRpE0OGDPE+px9//JG33nqLSy65hLfeeos+ffrw4osvAtCnTx/27t3LggULqpzH6XSybNkyBg4c6O3TypUrSU1N9fZr9uzZfPPNN6xcuZLnnnuO1NRUxo8fT//+/atdz9TUVAYNGuQN9Lp161bj81+2bBkxMTG8/vrrqFQqzjjjDI4dO8YjjzzCk08+6U3jGzBgAE899RQAvXv35vXXX2fz5s1cccUVNR67vqZNm8aNN94IwHPPPcerr77Kzp07GT16NK+//jqDBg3iueee8+7/7rvvEhMTw8GDBzn99NMBiI6OxuFwkJGRUS0dUgghhBA183jKiyakxOWQGJtBYU4pKpUKS3gQ4b2C2/Ro0Mn4VVDkdruZN28eH374IRkZGURHRzNt2jQef/zxJnkBTSYTVqu10Y9bl/PWV+WNvdPpxOPxcNNNN1VJferfv3+V0Y/Y2FgOHTqExWKpchybzUZiYiKFhYWkp6dzwQUXeNu0Wi2DBw+uMb1v165daDQaLrnkknr3v1JcXBxarbbKeSMjI+nTpw9xcXHebSaTyRsQAXTq1ImsrKwaj1tWVgbgs3jC8OHDWb58OSUlJbz00ktotVrGjx8PwKFDhygtLa0WFDgcDgYNGgQVI1/nnXdelfbzzz+/2nn0ej0DBgzw/nvPnj243W7vjX4lu91OZGQkADNnzuRf//oX3333HSNGjGD8+PHeY/zrX/9i/Pjx/Pnnn4wcOZJx48Z5A8kTxcXFMWTIkCq/J0OHDsVqtXLkyBG6dOkCFUHR8Wq7rg1x/DmCg4MJCQnxniM2NpYffvjBOxp2vMTERO+1MhqNUDH6JoQQQojalRTaSDuYS2JF0QSHzYXRoqd9TAhaXdsqmtAQfhUULVq0iOXLl/Pee+9x5pln8vvvv3PLLbcQGhrKzJkzG/18KpWq0StnNZXKG3u9Xk90dHS1qnMnPg+r1cq5557L6tWrqx2roZPjK29Um8OJ1epUKtVJ52JVppXl5+dXe37BwcH06tULKkYlBg4cyDvvvMNtt93mDYq//PJLOnfuXOVxBoOhXn02Go1VghKr1YpGo+GPP/5Ao6n6YVQZFNx+++2MGjWKL7/8ku+++47nn3+eJUuWcO+993LllVeSkpLCV199xcaNG7n88suZMWMGixcvrle/jufruno8ngYfr77nsFqtjBkzxmeRi06dOnn/vzLdrikKOQghhBCthdvl4djhfJL3Z5GyL5viAhs6nYaQKCNBJp2MCtWDXwVFP/30E2PHjuXqq6+GinShNWvWsHPnzpbuWos7/sa+Ls455xw++eQT2rdvT0hIiM99OnXqxK+//sqwYcMAcLlc/PHHH5xzzjk+9+/fvz8ej4etW7d60+eOVzlS5Xa7a+xX3759cblc/Prrr95Rj9zcXOLj4+nXr1+dn9+JevbsSUhICPv37682MnM8tVrNo48+ygMPPMBNN91UpShCTSNgffr08RY/qPTbb7/V2qdBgwbhdrvJysri4osvrnG/mJgY7r77bu6++27mzp3Lv//9b29qZLt27Zg6dSpTp07l4osv5qGHHvIZFPXt25e1a9eiKIr3A3DHjh1YLBZOO+20WvvaXM455xzWrl1Lt27dTlpOfu/evZx22mlNXnJcCCGECDSKolCQVUJqfC6JuzLITS/G7VawhBmI7hGOWi2BUEP41cyqCy+8kM2bN3Pw4EGoSLX58ccfufLKK33ub7fbKSoqqvIjyk2ePJmoqCjGjh3L9u3bSUpKYsuWLcycOZMjR44AcN9997Fw4ULWrVvHgQMHmD59ureami/dunVj6tSp3Hrrraxbt857zP/85z8AdO3aFZVKxYYNG8jOzvaZmti7d2/Gjh3LHXfcwY8//khsbCz//Oc/6dy5M2PHjm3w81Wr1YwYMYIff/yx1n0nTJiARqPhjTfewGKxMHv2bO6//37ee+89EhMT+fPPP3nttde86xvdddddHDhwgEceecQ7r2rVqlVQMQpSk9NPP53JkyczZcoUPvvsM5KSkti5cyfPP/88X375JQCzZs3i22+/JSkpiT///JMffviBvn37AvDkk0/yxRdfcOjQIfbt28eGDRu8bSeaPn06aWlp3HvvvRw4cIAvvviCp556igceeOCUy4KXlZWxa9euKj+JiYkNOtaMGTPIy8vjxhtv5LfffiMxMZFvv/2WW265pUowvX37dkaOHHlK/RZCCCFaE1upk8TYDDat3s36N3/np/XxFOaUEtHJTOee4YREmiQgOgV+FRTNmTOHSZMmccYZZ6DT6Rg0aBCzZs1i8uTJPvd//vnnCQ0N9f7ExMQ0e5/9lclkYtu2bXTp0oXrrruOvn37ctttt2Gz2bwjRw8++CA333wzU6dOZciQIVgsFq699tqTHnf58uVcf/31TJ8+nTPOOIM77riDkpISADp37szTTz/NnDlz6NChA/fcc4/PY6xcuZJzzz2Xa665hiFDhqAoCl999dUpL/B6++238/HHH9eaDqbVarnnnnt44YUXKCkpYf78+TzxxBM8//zz9O3bl9GjR/Pll1/SvXt3ALp3786nn37KZ599xoABA1i+fLm3+lxtKXYrV65kypQpPPjgg/Tp04dx48bx22+/eef4uN1uZsyY4T3v6aefzrJly6Bi5G3u3LkMGDCAYcOGodFoaixT3blzZ7766it27tzJwIEDufvuu7ntttt4/PHHG3Qtj3fw4EEGDRpU5eeuu+5q0LGio6PZsWMHbrebkSNH0r9/f2bNmkVYWJg3eLPZbKxbt4477rjjlPsuhBBCBDKPu3xNoV+/TuDz13ey6aM9JO3LxmDU0rlXOFGdLegNfpX4FbBUSkMWzWkiH3/8MQ899BAvvvgiZ555Jrt27WLWrFksXbqUqVOnVtvfbrdXKdlbVFRETEwMhYWF1VLGbDYbSUlJdO/e3edkfBH4FEXhggsu4P777/dWP2sqCxYs4M033yQtLa1Jz9MWLV++nM8//5zvvvvOZ7v8LgshhGjtivPLSIvP5dCuDLKPFOGwuwgOMRASYUSj9asxjWpKiuw4bC6un/UPTJb6zc9uSX4VWj700EPe0SIq5rCkpKTw/PPP+wyKDAZDvSfDi9ZLpVLx9ttvs2fPnkY/9rJlyzjvvPOIjIxkx44dvPjiizWOhIlTo9PpeO2111q6G0IIIUSzcjrcHEvMI3lvFqnxOVgL7egNGkIiTQSZTi2bRtTOr4Ki0tLSavMfNBpNo1fHEq3X2Wefzdlnn93ox01ISODZZ58lLy+PLl268OCDDzJ37txGP48oT4MUQggh2gJFUchNt5J6IJvE2EzyM0vweBRCwoOkaEIz86ugaMyYMSxYsIAuXbpw5pln8tdff7F06VJuvfXWlu6aaONeeuklXnrppZbuhhBCCCFagTKro2JNoQwykguwlTgxmvVEdbag08uaQi3Br4Ki1157jSeeeILp06eTlZVFdHQ0d911F08++WRLd00IIYQQQogGc7vKiyakxGWTtDeL4nwbGq2akIggIjuZZU2hFuZXQZHFYuHll1/m5ZdfbumuCCGEEEIIcUoURaEot4zUAzkcis0g91gxLqcHc6iBjt1C0Wj8u2hCW+JXQZEQQgghhBCBzmFzcSQhl6S9WRxJyKW0yIHBpCW8fTD6ILn99kfyqgghhBBCCHGKPB6F7CNFpMZlk7g7k6KcUlCBJdxIeK9gSY/zcxIUCSGEEEII0UDWAhtp8Tkcis0kO60Qu81FsMVAu5gQtDopmhAoJCiqqADisLma5Vz6IC1Gs75ZziWEEEIIIRqf0+Em/XA+yfuzSdmfTUmhDa1eQ2ikkSiTTkaFAlCbD4rKrA42rPgTa35Zs5zPHG7kmtvP8dvAaNq0aRQUFLBu3ToALr30Us4+++xTKn7RGMdoK7p168asWbOYNWtWjfs4HA769evH+++/z4UXXtis/TvR/v37GTlyJPHx8QQHB7doX4QQQoimpCgKeRlWUg/kkBibQV5mCYpbwRweRCdZUyjgtfmSFw6bC2t+GXqDBnNYUJP+6A0arPll9R6VmjZtGiqVCpVKhV6vp1evXjzzzDO4XE0/uvXZZ58xf/78Ou27ZcsWVCoVBQUFDT5GQyUnJ6NSqdi1a1edHzNv3rwmWei1qb355pt07969SkB08OBBxo4dS1RUFCEhIVx00UX88MMPVR63efNmLrzwQiwWCx07duSRRx6p8h5KTk5m2LBhBAcHM2zYMJKTk6s8/pprrmHt2rVVtvXr149//OMfLF26tMmerxBCCNGSyqwODv6Zzrfvx7L+zd/55asErAU2oqItRPcMJyTCKAFRK9Dmg6JKeqOOIFPT/uiNugb3b/To0aSnp5OQkMCDDz7IvHnzePHFF33u63A4TuFKVBUREYHFYmnxY/izxrzetVEUhddff53bbrutyvZrrrkGl8vF999/zx9//MHAgQO55ppryMjIACA2NparrrqK0aNH89dff/HJJ5+wfv165syZ4z3Ggw8+SOfOndm1axedOnVi9uzZ3rZPPvkEtVrN+PHjq/XplltuYfny5c0SpAshhBDNwe3ycCwxj5/+F8/nr+/k+4/3knogB5NFT+ee4UR2kkVWWxsJigKEwWCgY8eOdO3alX/961+MGDGC9evXQ8VI0rhx41iwYAHR0dH06dMHgLS0NCZOnEhYWBgRERGMHTu2yrf/brebBx54gLCwMCIjI3n44YdRFKXKeS+99NIqqVx2u51HHnmEmJgYDAYDvXr14p133iE5OZnhw4cDEB4ejkqlYtq0aT6PkZ+fz5QpUwgPD8dkMnHllVeSkJDgbV+1ahVhYWF8++239O3bF7PZ7A0K66py1Grz5s0MHjwYk8nEhRdeSHx8vPccTz/9NLGxsd5RuFWrVgFQUFDA7bffTrt27QgJCeGyyy4jNjbWe+zKEaYVK1bQvXt3goKCePvtt4mOjsbj8VTpx9ixY7n11lsBSExMZOzYsXTo0AGz2cx5553Hpk2b6vycAP744w8SExO5+uqrvdtycnJISEhgzpw5DBgwgN69e7Nw4UJKS0vZu3cvVAQ1AwYM4Mknn6RXr15ccsklvPDCC7zxxhsUFxcDEBcXx9SpU+nduzfTpk0jLi7Oez0ef/xx3njjDZ99uuKKK8jLy2Pr1q31ei5CCCGEP1EUhcKcUvb8mMr6t37nq3f/Yvf2VDxuDx27hdKpWxgmi0HmC7VSEhQFKKPRWGWEYvPmzcTHx7Nx40Y2bNiA0+lk1KhRWCwWtm/fzo4dO7zBReXjlixZwqpVq3j33Xf58ccfycvL4/PPPz/peadMmcKaNWt49dVXiYuL46233sJsNhMTE+NNrYqPjyc9PZ1XXnnF5zGmTZvG77//zvr16/n5559RFIWrrroKp9Pp3ae0tJTFixfzwQcfsG3bNlJTU6uMXNTVY489xpIlS/j999/RarXeAOWGG27gwQcf5MwzzyQ9PZ309HRuuOEGACZMmEBWVhZff/01f/zxB+eccw6XX345eXl53uMeOnSItWvX8tlnn7Fr1y4mTJhAbm5ulZS1vLw8vvnmGyZPngyA1WrlqquuYvPmzfz111+MHj2aMWPGkJqaWufns337dk4//fQqI2+RkZH06dOH999/n5KSElwuF2+99Rbt27fn3HPPhYpgNigoqMqxjEYjNpuNP/74A4CBAweyadMmPB4P3333HQMGDADgoYceYsaMGcTExPjsk16v5+yzz2b79u11fh5CCCGEv7CXOTm8J5PNa/aybtlOflx3gPwMK+Htg+ncM5zQKJMsstoGtPlCC4FGURQ2b97Mt99+y7333uvdHhwczIoVK9Dryws4fPjhh3g8HlasWOH9RmPlypWEhYWxZcsWRo4cycsvv8zcuXO57rrroGKuyrffflvjuQ8ePMh//vMfNm7cyIgRIwDo0aOHtz0iIgKA9u3bExYW5vMYCQkJrF+/nh07dnjnxKxevZqYmBjWrVvHhAkTAHA6nbz55pv07NkTgHvuuYdnnnmm3tdrwYIFXHLJJQDMmTOHq6++GpvNhtFoxGw2o9Vq6dixo3f/H3/8kZ07d5KVlYXBYABg8eLFrFu3jk8//ZQ777wTKlLm3n//fdq1a+d97JVXXslHH33E5ZdfDsCnn35KVFSUdwRt4MCBDBw40Lv//Pnz+fzzz1m/fj333HNPnZ5PSkoK0dHRVbapVCo2bdrEuHHjsFgsqNVq2rdvzzfffEN4eDgAo0aN4uWXX2bNmjVMnDiRjIwM7/WsHIFbvHgxd911F926dWPAgAG89dZbbNu2jV27drFo0SImTpzI77//zsiRI3n11Ve97zWA6OhoUlJS6vnqCCGEEC3D41HITisk5UAOh3dnUphTikrWFGrTJCgKEBs2bMBsNuN0OvF4PNx0003MmzfP296/f/8qN6mxsbEcOnSo2lwem81GYmIihYWFpKenc8EFF3jbtFotgwcPrpZCV2nXrl1oNBpvkNEQcXFxaLXaKuetHOmoTNcCMJlM3oAIoFOnTmRlZdX7fJWjHZXHAMjKyqJLly4+94+NjcVqtRIZGVlle1lZGYmJid5/d+3atUpABDB58mTuuOMOli1bhsFgYPXq1UyaNAm1uvzbJavVyrx58/jyyy9JT0/H5XJRVlZWr5GisrKyaiM+iqIwY8YM2rdvz/bt2zEajaxYsYIxY8bw22+/0alTJ0aOHMmLL77I3Xffzc0334zBYOCJJ55g+/bt3v517tyZDRs2eI9rt9sZNWoU7733Hs8++ywWi4X4+HhGjx7NW2+9VSUoNxqNlJaW1vl5CCGEEC3BWmArrx63u+qaQh26hKLRymhQWyZBUYAYPnw4y5cvR6/XEx0djVZb9aU7sRyy1Wrl3HPPZfXq1dWOdeLNfF0ZjcYGPa4hdLqqRSlUKlWNwVpdj1P5rc+J836OZ7Va6dSpE1u2bKnWdvzol6/y02PGjEFRFL788kvOO+88tm/fzksvveRtnz17Nhs3bmTx4sX06tULo9HI9ddfX69CDVFRUezZs6fKtu+//54NGzaQn59PSEgIAMuWLWPjxo2899573mIKDzzwAPfffz/p6emEh4eTnJzM3Llzq4z2He+5555j5MiRnHvuudxxxx08++yz6HQ6rrvuOr7//vsqQVFeXl6VIFYIIYTwF06Hm2OJeSTvyyb1QM7fawpFmYgyamVUSIAERYEjODiYXr161Xn/c845h08++YT27dt7b5RP1KlTJ3799VeGDRsGgMvl8s6h8aV///54PB62bt3qTZ87XuVIldvtrrFfffv2xeVy8euvv3rT53Jzc4mPj6dfv351fn6NQa/XV+vrOeecQ0ZGBlqtlm7dutXreEFBQVx33XWsXr2aQ4cO0adPnyrXcseOHUybNo1rr70WKgKwE8te12bQoEEsX74cRVG8H+KVIzSVIz6V1Gp1tQBQpVJ50+/WrFlDTEyMz9c7Li6Ojz76yFvi3O12e+d8OZ3Oatdt7969XH/99fV6LkIIIURTURSF3GPF3lGh/MwSPB6FEFlTSNRAxgkrOMqc2Eqb9sdR5qxDTxrH5MmTiYqKYuzYsWzfvp2kpCS2bNnCzJkzOXLkCAD33XcfCxcuZN26dRw4cIDp06dXW2PoeN26dWPq1KnceuutrFu3znvM//znP1CRUqZSqdiwYQPZ2dlYrdZqx+jduzdjx47ljjvu4McffyQ2NpZ//vOfdO7cmbFjxzbhFfH9fJKSkti1axc5OTnY7XZGjBjBkCFDGDduHN999x3Jycn89NNPPPbYY/z++++1HnPy5Ml8+eWXvPvuu94CC5V69+7tLcwQGxvLTTfddNJRK1+GDx+O1Wpl37593m1DhgwhPDycqVOnEhsby8GDB3nooYdISkqqUqXuxRdfZM+ePezbt4/58+ezcOFCXn31VTSaqiVFFUXhzjvv5KWXXvKOiA0dOpR///vfxMXF8f777zN06FDv/snJyRw9etRnoCyEEEI0p9JiOwf/OMY3q3bxv7f/4NevEygptBPV2ULnnuFYZE0hUYM2HxTpg7SYw4047G6sBbYm/XHY3ZjDjeiDmn6AzmQysW3bNrp06cJ1111H3759ue2227DZbN6RowcffJCbb76ZqVOnMmTIECwWi3cUoybLly/n+uuvZ/r06ZxxxhnccccdlJSUQMWclKeffpo5c+bQoUOHGosHrFy5knPPPZdrrrmGIUOGoCgKX331VbWUuaY2fvx4Ro8ezfDhw2nXrh1r1qxBpVLx1VdfMWzYMG655RZOP/10Jk2aREpKCh06dKj1mJdddhkRERHEx8dz0003VWlbunQp4eHhXHjhhYwZM4ZRo0bVOCpXk8jISK699toqaZFRUVF88803WK1WLrvsMgYPHsyPP/7IF198UaWww9dff83FF1/M4MGD+fLLL/niiy8YN25ctXO8/fbbdOjQgWuuuca7bd68edhsNi644AJ69erFjBkzvG1r1qxh5MiRdO3atV7PRQghhGgMbpeHIwm57FhfsabQJ3s5kpBHcIiBzr0iiOxkljWFRK1USkMmavipoqIiQkNDKSwsrJYyZrPZSEpK8q4rc7wyqwOHrXkWntQHaTGa9XXYUwjfdu/ezRVXXEFiYiJms7lF++JwOOjduzcfffRRldGjpnSy32UhhBBtg6IoFGSVkBqfS+KuDHIzinG7PJjDgrCEBaGWEtotpqTIjsPm4vpZ/8BkMbR0d+pM5hQBRrNeAhURMAYMGMCiRYtISkqif//+LdqX1NRUHn300WYLiIQQQrRtthIHRxLySNqbybHEfEqLHQSZdER0MDdLJo5oveTdI0QAmjZtWkt3AYBevXrVqwCIEEIIUV8et4fM1EJS9meTtDeLwtwy1BoVIRFGwjvImkKicUhQJIQQQggh/E5hTilpB3NJjM0g+0gRTocbc6iBjl1lTSHR+CQoEkIIIYRoYYWlDnKsDopsTkKMOqKC9YSa2l5qv8Pm4uih8vS4Iwl5lBTZMQRpCWtnwmBs3oJMom2RoEgIIYQQogUdKyjjkbW72Z6Q4902rHcUC8cPIDqs+RZObykej0L2kSJS47JJ3J1JYU4pKpUKS3gQnXuEo5IS2qIZSFAkhBBCCNFCCksd1QIigG0JOcxZu5vXbhzUakeMrAU20uJzOBSbSXZaIXabi2CLnvYxIWh1UkJbNC8JioQQQgghWkiO1VEtIKq0LSGHHKujVQVFToebY4l5JO/LJvVADiWFNrR6DaGRRqJMOimaIFqMBEVCCCGEEC2kyOY8aXtxLe2BQFEUco4WkxafQ+LuTPIzS/B4FELCg+jUIxy1pMcJPyBBEYDLBW5P85xLowatXHYhhBBCQEjQyYsHWGpp92clRXaOHMwlcXcGmSmF2EqcmCx6ojpb0OklPU74F7k7d7kgJR2czfRNjE4HXTv5bWCkKAp33XUXn376Kfn5+fz111/MmjWLs88+m5dffrnGx3Xr1o1Zs2Yxa9asZu1vW1SXa+1wOOjXrx/vv/8+F154YbP270T79+9n5MiRxMfHExwc3KJ9EUIIfxNl1jOsdxTbfKTQDesdRVSALS7vcrpJP5xPclw2KfuysRba0WhVhEaaiOxklvQ44bekyLvbUx4QqStGcJryR60uP1cDRqUyMjK499576dGjBwaDgZiYGMaMGcPmzZsb9XJ88803rFq1ig0bNpCens5ZZ53FZ599xvz58xv1PC0hOTkZlUrFrl276vyYefPmcfbZZzdpv5rCm2++Sffu3asERAcPHmTs2LFERUUREhLCRRddxA8//FDlcZs3b+bCCy/EYrHQsWNHHnnkEVwul7c9OTmZYcOGERwczLBhw0hOTq7y+GuuuYa1a9dW2davXz/+8Y9/sHTp0iZ7vkIIEahCTXoWjh/AsN5RVbYP6x3FovEDAmI+kaIo5GVY+WtLEl8s+41vVu1i309HUKmgU7dQOnYNw2jWS0Ak/Jp/Dle0BLUatE08lOsCPPUPiJKTkxk6dChhYWG8+OKL9O/fH6fTybfffsuMGTM4cOBAo3UxMTGRTp06VbmZjoiIaLTjt1UOhwO9vnn+sCmKwuuvv84zzzxTZfs111xD7969+f777zEajbz88stcc801JCYm0rFjR2JjY7nqqqt47LHHeP/99zl69Ch33303brebxYsXA/Dggw/SuXNn3nnnHR5//HFmz57Np59+CsAnn3yCWq1m/Pjx1fp0yy23cMcddzB37ly0fjpKKoQQLSU6zMhrNw4ix+qg2ObEEqQjyuz/6xSVWR2kHczl8J5MMpLyKbM6CQrWEdHJjN4gn/UisMhIUQCYPn06KpWKnTt3Mn78eE4//XTOPPNMHnjgAX755RfvfqmpqYwdOxaz2UxISAgTJ04kMzPT21456vHBBx/QrVs3QkNDmTRpEsXFxQBMmzaNe++9l9TUVFQqFd26dQPg0ksvrZKqlZWVxZgxYzAajXTv3p3Vq1dX63NBQQG333477dq1IyQkhMsuu4zY2Ng69wXA4/Hwwgsv0KtXLwwGA126dGHBggXe9rS0NCZOnEhYWBgRERGMHTu22sjFyWzZsgWVSsXmzZsZPHgwJpOJCy+8kPj4eABWrVrF008/TWxsLCqVCpVKxapVq+r1/FasWEH37t0JCgri7bffJjo6Gs8JgfHYsWO59dZboSIoHTt2LB06dMBsNnPeeeexadOmOj8ngD/++IPExESuvvpq77acnBwSEhKYM2cOAwYMoHfv3ixcuJDS0lL27t0LFUHNgAEDePLJJ+nVqxeXXHIJL7zwAm+88Yb3dYmLi2Pq1Kn07t2badOmERcX570ejz/+OG+88YbPPl1xxRXk5eWxdevWej0XIYRoK0JNenq2N3N2l3B6tjf7bUDkdnk4eiiPn/4Xz2ev/cr3H+8l9UAOxmA9nXuFExVtkYBIBCQJivxcXl4e33zzDTNmzPA5HyMsLAwqAoixY8d6bzw3btzI4cOHueGGG6rsn5iYyLp169iwYQMbNmxg69atLFy4EIBXXnmFZ555htNOO4309HR+++03n32aNm0aaWlp/PDDD3z66acsW7aMrKysKvtMmDCBrKwsvv76a/744w/OOeccLr/8cvLy8urUF4C5c+eycOFCnnjiCfbv389HH31Ehw4dAHA6nYwaNQqLxcL27dvZsWMHZrOZ0aNH43A46nWNH3vsMZYsWcLvv/+OVqv1Big33HADDz74IGeeeSbp6emkp6d7r2ddnt+hQ4dYu3Ytn332Gbt27WLChAnk5uZWSVmrfH0nT54MgNVq5aqrrmLz5s389ddfjB49mjFjxpCamlrn57N9+3ZOP/10LBaLd1tkZCR9+vTh/fffp6SkBJfLxVtvvUX79u0599xzAbDb7QQFBVU5ltFoxGaz8ccffwAwcOBANm3ahMfj4bvvvmPAgAEAPPTQQ8yYMYOYmBiffdLr9Zx99tls3769zs9DCCGEf1AUhfysEnZvT+GL5b/x1bt/sXt7KopHoWO3UDp1C8MUYpD0OBHQJJT3c4cOHUJRFM4444yT7rd582b27NlDUlKS98b0/fff58wzz+S3337jvPPOg4rgadWqVd4b5ptvvpnNmzezYMECQkNDsVgsaDQaOnbs6PM8Bw8e5Ouvv2bnzp3eY77zzjv07dvXu8+PP/7Izp07ycrKwmAwALB48WLWrVvHp59+yp133llrX4qLi3nllVd4/fXXmTp1KgA9e/bkoosugopRDY/Hw4oVK7wfwitXriQsLIwtW7YwcuTIOl/jBQsWcMkllwAwZ84crr76amw2G0ajEbPZjFarrXI96vr8HA4H77//Pu3atfM+9sorr+Sjjz7i8ssvB+DTTz8lKiqK4cOHQ0XQMXDgQO/+8+fP5/PPP2f9+vXcc889dXo+KSkpREdHV9mmUqnYtGkT48aNw2KxoFarad++Pd988w3h4eEAjBo1ipdffpk1a9YwceJEMjIyvCl46enp3ud511130a1bNwYMGMBbb73Ftm3b2LVrF4sWLWLixIn8/vvvjBw5kldffbVKymB0dDQpKSl1fl2EEEK0LFupkyMHc0nam8mxxHxKix0EmbREdAhGHyS3kKJ1kZEiP6coSp32i4uLIyYmpso39f369SMsLMyb4kRF5bLjRxA6depUbZSntvNotVrv6ALAGWec4R2xAoiNjcVqtRIZGYnZbPb+JCUlkZiYWKe+xMXFYbfbvcHDiWJjYzl06BAWi8V7/IiICGw2W5Vz1EXlaEdlH6hIEaxJXZ9f165dqwREAJMnT2bt2rXY7XYAVq9ezaRJk1Cry38VrVYrs2fPpm/fvoSFhWE2m4mLi6vXSFFZWVm1ER9FUZgxYwbt27dn+/bt7Ny5k3HjxjFmzBhvwDNy5EhefPFF7r77bgwGA6effjpXXXUVgLd/nTt3ZsOGDaSmprJhwwaioqKYPn06b775Js8++ywWi4X4+HgSEhJ46623qvTBaDRSWlpa5+chhBCi+bldHo4dzueXLw/y+Wu/snnNHpL2ZWMwasvT4zqHSEAkWiV5V/u53r17o1KpGq2Ygk5Xdb0DlUpVbY7LqbJarXTq1IktW7ZUazs+eDpZX4xGY63nOPfcc33OZzoxEKnN8f2oHHU62TWp6/Pzle44ZswYFEXhyy+/5LzzzmP79u289NJL3vbZs2ezceNGFi9eTK9evTAajVx//fX1SgmMiopiz549VbZ9//33bNiwgfz8fEJCQgBYtmwZGzdu5L333mPOnDkAPPDAA9x///2kp6cTHh5OcnIyc+fOpUePHj7P9dxzzzFy5EjOPfdc7rjjDp599ll0Oh3XXXcd33//Pffee69337y8PHr27Fnn5yGEEKJ5KIpCUW4ZafE5HIrNIOdoMU6HG3OogQ5dQtFo5Tv049mcbkodbuwuDwadGpNOQ5BO1l0KdBIU+bmIiAhGjRrFG2+8wcyZM6vdaBcUFBAWFkbfvn1JS0sjLS3NO1q0f/9+CgoK6NevX6P154wzzsDlcvHHH3940+fi4+MpKCjw7nPOOeeQkZGBVqv1Fmuor969e2M0Gtm8eTO33357tfZzzjmHTz75hPbt23tv8puCXq/H7XZXO3dDn19QUBDXXXcdq1ev5tChQ/Tp04dzzjnH275jxw6mTZvGtddeCxUBWH2KRwAMGjSI5cuXoyiKN8irHKGpHPGppFarqwWAKpXKm363Zs0aYmJiqvSxUlxcHB999JG3xLnb7cZZsd6X0+msdt327t3L9ddfX6/nIoQQounYy5wcPZRH0t4sjiTkUlbsQB+kJaydCYMxcBeNbUrFNheb4jJJyf0786FrpIkRfTtgkRG0gCahfyWPB1zupv1p4IjMG2+8gdvt5vzzz2ft2rUkJCQQFxfHq6++ypAhQwAYMWIE/fv3Z/Lkyfz555/s3LmTKVOmcMkllzB48OBGu0x9+vRh9OjR3HXXXfz666/88ccf3H777VVGdkaMGMGQIUMYN24c3333HcnJyfz000889thj/P7773U6T1BQEI888ggPP/ww77//PomJifzyyy+88847UJGGFhUVxdixY9m+fTtJSUls2bKFmTNncuTIkUZ7vt26dSMpKYldu3aRk5OD3W4/5ec3efJkvvzyS959911vgYVKvXv39hZmiI2N5aabbqr3SN7w4cOxWq3s27fPu23IkCGEh4czdepUYmNjOXjwIA899BBJSUlVqtS9+OKL7Nmzh3379jF//nwWLlzIq6++ikZT9RswRVG48847eemll7yB+tChQ/n3v/9NXFwc77//PkOHDvXun5yczNGjRxkxYkS9nosQQojG5XF7yEgu4NevE/j89Z1s/HA3ibEZ6A1aonuG0+60EAmIamBzuqsFRAApuaVsisvE5nTX+Fjh/yQo0qhBp6sIilxN++PxlJ9LU7/L3qNHD/7880+GDx/Ogw8+yFlnncUVV1zB5s2bWb58OVR8u//FF18QHh7OsGHDGDFiBD169OCTTz5p9Eu2cuVKoqOjueSSS7juuuu48847ad++vbddpVLx1VdfMWzYMG655RZOP/10Jk2aREpKird6XF088cQTPPjggzz55JP07duXG264wTvXx2QysW3bNrp06cJ1111H3759ue2227DZbI06cjR+/HhGjx7N8OHDadeuHWvWrDnl53fZZZcRERFBfHw8N910U5W2pUuXEh4ezoUXXsiYMWMYNWqUz1Gak4mMjOTaa6+tkloYFRXFN998g9Vq5bLLLmPw4MH8+OOPfPHFF1UKO3z99ddcfPHFDB48mC+//JIvvviCcePGVTvH22+/TYcOHbjmmmu82+bNm4fNZuOCCy6gV69ezJgxw9u2Zs0aRo4cSdeuXev1XIQQQjSOotxS9v2cxv/e/oMvV/zJn98n4bC56NAllE7dwzGHBUn1uFqUOtzVAqJKKbmllDokKApkKqWuM/kDQFFREaGhoRQWFla7MbbZbCQlJXnXjKnC5QJ3486rqZFGDbJ4pWhiu3fv5oorriAxMRGz2dyifXE4HPTu3ZuPPvqoyuhRQ530d1kIIYSXw+aqkh5XUmRHb9ASGmnEYJLRoPpKL7TxyW9pNbZPOi+GjqHyd6mkyI7D5uL6Wf/AZDG0dHfqTO7OoTxIkSshWpEBAwawaNEikpKS6N+/f4v2JTU1lUcffbRRAiIhhBAn5/EoZB8pIjUum8TdmRTmlKJSqbCEB9G5RzgqtYwGNZShloITeilIEdAkFBCilZo2bVpLdwGAXr160atXr5buhhBCtGrF+WWkxeeWV487UoTd5iLYYqB9TAhaP6mMFuhV20x6DV0jTT5T6LpGmjDpA+e5iOokKBJCCCGECEAOm4tjiXkk7csmLT6nIj1OQ0ikiSij1q/mCLWGqm1BOg0j+nao8XkEUoAnqguMd6EQQgghhMDjUcg5WkTqgZzy9LjsEhQFLOFBRPcIR+2H6XG1VW278qyOARNQWIK0XHlWR0odbhwuD3qtGpM+sEa8hG9tLihqRXUlhGiT5HdYCNEWWQtsFYurZpKdVojD5sJo0dPuNP9Jj6tJXaq2BVJQERRgaX+ibtpMUKTTlVdZKS0trbKmjhAisDgcDoBqaycJIURr47S7OJqYT8q+LFLjcykptKHVa7zV4/wpPe5k7K6TV/h11NIuRHNoM0GRRqMhLCysyjo3gfJhIoQo5/F4yM7OxmQyoZXS9kKIVsjjUcg9VkzKgRwO786gIKsUxaNgCQ+ik5+mx9VGqraJQNCm7io6duwI4A2MhBCBR61W06VLF/lSQwjRqlgLbKQdzOXw7kwyUwuwl7kwmfW062xBG+BVzaRqmwgEbSooUqlUdOrUifbt2+N0Olu6O0KIBtDr9ajV8q2iECLwOe0ujh3OJ3lfNqkHcrzpcSERRqKiAyc9rjZStU0EgjYVFFXSaDQyH0EIIYQQza4yPS41PofE2PL0OI9HISSA0+PqQqq2CX/XJoMiIYQQQojmVDU9rhB7qROTRU9UZwu6NpI+JlXbhD+ToEgIIYQQoglUSY+Lz6GkwIZWpyEk0khUtLnVpMcJ0RpIUCSEEEII0Ugq0+PS4ssXV83PLEFRFMxhrTs9TohAJ0GREEIIIcQpshbYOJKQS2Ls3+lxRnPbSo8T9Wdzuil1uLG7PBh0akySYthiJCgSQgghhGiAyvS4lP3ZpByQ9DhRP8U2V40V+SxBcove3OSKCyGEEELUUdXqcZkUZEl6nKg/m9NdLSACSMktZVNcJlee1VFGjJqZBEVCCCGEELWQ6nGiMZU63D4Xs6UiMCp1uCUoamYSFAkhhBBC+OBzcVVJjxONwO7ynLTdUUu7aHwSFAkhhBBCVKhMj0s5kMPh3X8vrmpp5YuriuZl0KpP2q6vpV00PgmKhBBCCNHmVU2PK8Be5sJk1tOuswWtpMeJRmbSa+gaafKZQtc10oRJ3nPNToIiIYQQQrRJTruLo4n5pOzLIjU+tzw9Tl+ZHqeT9DjRZIJ0Gkb07VBj9TmZT9T8JCgSQgghRJvh8SjkHC0i9UD54qqF2aUokh4nWoAlSMuVZ3Wk1OHG4fKg16ox6WWdopYiQZEQQgghWr3i/DKOHMzlUGwm2WmFOGwujJIeJ1pYkCzW6jckKBJCCCFEq+SwuTiWmEfSvmzS4nMoLbKj1WsIjTRiMEl6nBDibxIUCSGEEKLV8HgUstMKSY3P5fDuDApzSlEUJD1OCHFSEhQJIYQQIuAV5ZZyJCGPQ7syyD5ahKPMRXCInnanhaCV9CQhRC0kKBJCCCFEQHLYXBw9lEfS3iyOJORSUmRHb9AQEmnCYNTWKT3O5nRT6nBjd3kw6NSYZI5Ho5NrLAKBBEVCCCGECBget4estCJSD2RzeE8WhTmlqFQqLOFBdO4Rjqoe6XHFNleNJZEtQXKL1BjkGotAIe9GIYQQQvi9wpxS0g7mkhibQc7RYhx2F8EWA+1jGpYeZ3O6q92sA6TklrIpLpMrz+oooxmnSK6xCCQSFAkhhBDCL9lKnd70uKOH8igttqM3aL3V405FqcNd7Wa9UkpuKaUOt9ywnyK5xiKQSFAkhBBCCL/hdnnITC0k7UAOh/dmUZRbikoFlnAj4e3qlx53MnaX56TtjlraRe3kGotAIkGREEIIIVqUoigUZJdWLK6aQe6xYpwON+ZQAx26hKLRqhv9nIZajqlvgnO2NXKNRSCRoEgIIYQQLcJW4uBIQh5JezM5lphPabEDg0lLWDsTBuOppcfVxqTX0DXS5DO9q2ukCZNe0rpOlVxjEUgkKBJCCCFEs3G7PGQkF5ASl03yvmyK8spQa1SEhAcR3iG4TmW0G0OQTsOIvh1qrIwmc11OnVxjEUgkKBJCCCFEk1IUhfzMkvLqcbsyyM2w4nZ5CA4x0LFr06TH1YUlSMuVZ3Wk1OHG4fKg16ox6WUNncYk11gECgmKhBBCCNEkSovtFelxWaQfzqfM6iDIpCOiQzB6P1mjJkgWEm3yxVXlGotA4B+fSEIIIYRoFVxON+lJBaTszyZ5fzbWAhtqjYrQCCMRHZsvPU7UjSyuKkQ5ebcLIYQQ4pQoikLusWLv4qr5mSW43QrmMAMdu4Wi0UiVMX8ki6sK8TcJioQQQgjRICWFNtIO5nJ4TyaZKYXYSpwYzToiO5nRGeQWo7nVNw1OFlcV4m/yiSWEEEKIOnPaXRw7nE/yvmxS43MoKbCh1akJiTQR2cks6XEtpCFpcLK4qhB/k6BICCGEECfl8SjkHC0i9UAOh/dkUpBViqIomMOC6NQjHLVaAqGW1NA0OFlcVYi/SVAkhBBCCJ+K8so4cjCXxN2ZZKcVYre5MJn1tOtsQSsLb/qNhqbByeKqQvxNgiIhhBBCeDlsLo4eyiN5XxZpB3MpKbKj02sIiTQSZdJJepwfamganCyuKsTfJCgSQggh2jiP20NWWhEpcdkk7c2iMKcUlUqFOcxA5x7hqCQ9zq+dShqcLK4qRDkJioQQQog2SFEUCnNKOXIwl0OxGeQeK8ZhdxMcYqB9TAhauSkOGKeaBieLqwohQZEQQgjRpthKHBxJyCNpbxbHEvMoLXZgMGoJjTJhMOpaunuiASQNTohTJ0GREEII0cq5XR4ykgtIicsmeV82RXllqDUqLOFBhHcIlnlCrYCkwQlxaiQoEkIIIVohRVHIzywhLT6HxNhMcjOKcbsUgkMMdOwaikbKLbc6kgYnRMNJUCSEEEK0IiVFdo4m5HJ4TxYZyfmUlTgJMuqI6GBGX8MinkII0dbJp6MQQggR4JwON+mH80nen01qXDbWQhsarYaQiCAiOpolPa4NsjndlDrc2F0eDDo1JhlFEuKkJCgSQgghApDHo5BztIi0g7kc3p1JflYJHrcHS1gQnbqFodZIelxbVWxz1Vh0wdJEo4UShIlA51dBUbdu3UhJSam2ffr06bzxxhst0ichhBDCnxTnl1WU0c4k+0gh9lIXRrOeqGgLulpKL4vWz+Z0VwuIAFJyS9kUl8mVZ3Vs9GClJYKw1kqCy5bjV+/U3377Dbfb7f333r17ueKKK5gwYUKL9ksIIYRoSQ6bi6OH8kjel0XawVxKi+xo9RpCIo1EReskPU54lTrcPtcroiIwKnW4G/UmuyWCsNZKgsuW5VdXuF27dlX+vXDhQnr27Mkll1zSYn0SQgghWoLH7SErrYiUuGyS9mZRmFN+o2QJD6JTj3DUagmERHV2l+ek7Y5a2uuruYOw1kqCy5bnV0HR8RwOBx9++CEPPPBAjd+A2e127Ha7999FRUXN2EMhhBCicSmKQkF2KUcO5pK4O4Oco8W4HG5MIQbax4SglZsiUQtDLaXW9Se01zVdq6b9mjsIa60kuGx5fhsUrVu3joKCAqZNm1bjPs8//zxPP/10s/ZLCCGEaGxlVgdHD+VxeE8m6YfzKS12YDBqCWtnwmDUtXT3RAAx6TV0jTT5vMHuGmnCdNy8s7qma51svyBd/YIw4ZsEly1PpSiK0tKd8GXUqFHo9Xr+97//1biPr5GimJgYCgsLCQkJaaaeCiGEEPXncrrJSC4gJS6H5H1ZWPNtqNQqQiKCMIUYZJ6QaLC6BDtWu4v8Egc2lwetWkV6oY2/UvNxuhW6Rpq86Vo2p5uv92bUGGRd0a8DG/dXT/uqbJe0r7rJK3Hw/s/Vi41VmjKkKxHB+mbtU0OVFNlx2FxcP+sfmCyGlu5OnfnlSFFKSgqbNm3is88+O+l+BoMBgyFwLrYQQoi2TVEUctOtpMXnkBibSX6mFbdbwRxqoEO3UDRSRlvUQW0pb5YgLVee1ZFShxuHy4Neq8ak/3ufYpuLTfszSMkr8z6mS4SRK/t34us96VXStWpL63K4PIzo2+EkI0kSENVFfUb4RNPwy6Bo5cqVtG/fnquvvrqluyKEEEKcMmuBjSMJuSTGZpKVVoitxInRrCOikxm9wS//FAs/VdeUt6CTzA3aFJdZJSACSK3496Au4exMyvOma9UlrSsiWH/SIEzULkinkeCyhfndJ7HH42HlypVMnToVrdbvuieEEELUicPm4tjh/PIy2vG5WAtt6HRqQiJNRHYyS3qcqLfGqFB2spGf1Lwyzu4SDsfNBapr4YaagjBRd7WN8Imm5XdRx6ZNm0hNTeXWW29t6a4IIYQQ9VJZRjstPofDezIpzClF8ZSX0Y6WMtriFDVGhbLaRn7cHqVKupakdTUvCS5bjt8FRSNHjsRPaz8IIYQQ1SiKQlFuWfk8od2Z5BwtxmF3EWzR0+40KaMtGk9jVCirbeQnSKuukq4laV2ivoL1EKZXQ4Ddz/tdUCSEEEIEAluJgyMJeSTtzeLY4TzKih3oDFpCIo0EmaSMtmh89V2DyJfaRn7Cg/WYT5jnJmldoi4sBog0QrBGi9PpAXdglRGXoEgIIYSoo8oy2qkHckjel01RXhlqjQpLeBDh7YNlnlALqesCpIGuMVLZahv5OTEgOv5xrfGailOjVkFYEESayoMiFWC3l28PNBIUCSGEECfhLaN9MIfEXZnkZ1lxOz2Yw4Lo2DUUjSxO2aLqWo2tNWisVDYZ+RGnSqeGcCNEmcCoA48CZU5wK6ByKwRgTCRBkRBCCOFLZRntw7szyUwtxFbqJMikI6KDGX0ru9kOVI1RjS3QNFZAIyM/oiGM2vJgKNIEBg04FbA6ILBmD/kmn+pCCCFEBYfNxbHEPFL2Z5Man0tJoQ2tlNH2W41RjS0QSUAjmlvlfKHQINBpwO6CIkdL96pxSVAkhBCiTasso50an0PSCWW0O0kZbb/WGNXYAllbmUslWoZaVR4ERRnBbCj/t80FZa6W7lnTkKBICCFEm6MoCoU5pRw5mCtltANYY1RjC1T+NJdKgrPWpXK+UKQJTLryytplrvL5Qq2ZBEVCCCHajDKrg6OH8ji8J5P0w/mUFjswGLWERhoxSBntgNNWFxZt6rlU9Qly/Ck4E6emynwhLTg9rWe+UF3Iu1UIIUSr5nK6SU+qLKOdhTXfhkqtIiQiiPAOUkY7kLXVhUWbci5VfYKctljoojXyOV/I3tK9an4SFAkhhGh1PB6F3GPF5WW0YzMpyCrB7VYwhxro0C0Ujab1plW1NW2xvHRTzaWqb5DTVgtdtAbe+UImMOtb/3yhupCgSAghRKtRnF/GkYO5HN6TRWZqIfZSJ0azjshOZnQ1LEopAp8/VGNrznk1TTWXqr5BTlsvdBGI2up8obqQvxBCiGZRWOogx+qgyOYkxKgjKlhPqEnf0t0SrYC9zMmxxHyS92WRdjCX0iI7Wr2GkAgjUdFSRls0veaeV9NUc6nqG+S05UIXgcaog/Cg1rm+UGORoEgI0eSOFZTxyNrdbE/I8W4b1juKheMHEB1mbNG+icDkdnnITC0k7UAOh/dmUZRbikqlwhxmkDLaolm1xLyapppLVd8gp60WuggkbWF9ocYiQZEQokkVljqqBUQA2xJymLN2N6/dOEhGjESdKIpCfmYJRxJySdyVQW6GFafDTXCIgQ5dQtHIt9KiBbTUvJqmmEtV3yCnrRa68HdqFYRVjApZDKBC5gvVhQRFQogmlWN1VAuIKm1LyCHH6pCgSJxUSZGdIwdzSdqbRUZyAWVWB0EmLeHtg9FLyV/RwlpyXk1jz6VqSJDTFgtd+KvK+UJRpvJ0OY8CZU6ZL1RX8tdECNGkimzOk7YX19Iu2ian3cWxw/mkxOWQGpeNtcCGRqchJDyIiI7+WUZbFrBsm1rbvJqGBDn+UOiiLTPqIMJY/iPzhRpOgiIhRJMKCTr5gpiWWtpF2+Fxe8g+UkRqfC6H92RSmF2KoiiYw4Lo1D0MtR+X0W4LC1hK0Odba5xXI0GO/1OdMF9IowGHzBc6Ja3jk1oI4beizHqG9Y5im48UumG9o4gyS+pcW6YoCoU5pRxJyCMxNoOcY8U4bC5MFj3tOlvQBsANZVtYwLItBH0NJfNqRHPSHDdfyHzcfKFSmS90ytr2J5kQosmFmvQsHD+AOWt3VwmMhvWOYtH4ATKfqI0qszo4eiiPpL2ZHEvMp8zqQGfQEhJpJMgUWKOHrX0By7YQ9J0qmVcjmppeU7G+kFHmCzUVCYqEEE0uOszIazcOIsfqoNjmxBKkI8os6xS1NS6nm/TD+aTG55K8Lwtrvg2VWoUlIojwDv45T6guWvsClq096GssknImmoLpuPlCeg04PTJfqKlIUCSEaBahJgmC2iKPRyH3WDFp8Tkk7s6kIKsEt1vBHGqgQ7dQNH48T6iuWttE+xO19qBPCH+jAkIMEGEqny+kVYHdLfOFmpoERUII0YYVljrIsToosjkJMeqICm6c4LUot2Ke0O5Mso8UYi91YTTriexkRmdoXX96WuNE++O19qBPCH+hUUFYRUntYF15dGRzQal879AsWtdfJiGEEHV2rKCs2sK6w3pHsXD8AKLDjPU+nq3UydFDeSTvy+LooTxKiuzo9BpCIo1EResCNj2uNq19on1rD/qEaGmGyvlCJgjSls8XKnWV/1c0H5WiKK3mkhcVFREaGkphYSEhISEt3R0hhPBbhaUO7lnzl8+FdYf1juK1GwfVacTI7fKQkVxASlw2yfuyKc4vQ6UCS7iR4BADKnXrDIR8qSxZ3Ron2kv1ueYV6OXPA73/zSVYDxFBEG4CnQacbrC7An++kMrlQqUodB41EFO4qaW7U2fySSaEEG1QjtXhMyAC2JaQQ47VUWNQpCgV84QScjm8O5O8DCtul0JwiJ4OXULRtNF0qtY80b6xqqvJzXLtAiUArem1DJT+txQV5fOEIk3l6wxpVWBzQ7G9pXvWOL775Xve+mwl/xo3lVtGDWzp7tSLvDuFEKINKrI5T9pe7KO9OL+MIwl5HN6dSVZaIbYSJ0HBOiI6mNHLzU6rd6pBn9ws1x4UBkr585pey8v7tmdzXJbf978laNXl6wtFmcCkB5TyYKg1zBdKTk/lnkWzOXQkybvtmXeXcMvjM1u0X/XVNj6FhBBCVBESdPK1gCwV7fYyJ8cS80nel8WRhFxKCu1odeXzhCI7mVvtPCHRuALlZr8p1SUoDITy5yd7LQtLnX7f/+YWpP17faEgLbgUKHUG/nyhMruN595dzH83f+Gz/YlbHmj2Pp0qCYqEEKINijLrGdY7qsqCupWG9YzElV3CL78fI2lvNsW5paBSYQ4z0KlHOOo2NE9INI5AuNlvSnUNCgOh/PnJXktbAPS/uZj15SlyYUGgU4PD0zpKan/2w/949I1nfLZ1bh/N8jlL6BPdDVUAliyQoEgIIdqgUJOeheMHMGft7vLASFEIsrn5h8XIZYVutn+0F5fDjSnEQPs2PE9INI5AuNlvSnUNCgOh/PnJXktNLV+Y+EP/m5JaVTFfyFg+X0hdMV+oLMCDofjkBO56fhYZuVk+21+Y+TT/N+yqvze4XM3XuUYkQZEQQrRR0WFGFl7VlwN7skjem4U1swRK3LjVDsLbB8s8IdFoAuFmvynVNSgMhPLnJ3stMwptft//pqBT/11S26grny9U5gJ34A2WeBWXWHnyrQV8/dMmn+03jbqeR6bOwqA3NHvfmor8xRNCiDbGYXNx9FAeKXHZpMXnUlJoQ6NT06GdCaNZL/OERKMLhJv9plTXoDAQ1rw62WuZa7Vz+Rnt2Xwgy2/735hMuvJgKMJYvtaQU4ESR+CW1FYUhQ+++pjnVi712d6na29ee+gFunQ8rdn71hwkKBJCiDbA7fKQmVpIWnwOSXuzKMwpv2GxhAXJPCHR5ALhZr8p1ScobKzy503lZK/lpX3a+33/T5WK8tS4SFN5qpxGDQ5XYM8X+it+N7fNv5dSm+8Uz2WPLOay8y5p9n41N1m8VQghWilFUcjPLCHtYC6HYzPIzbB65wlZwoPQtpKbFBE4WvMCt7VpbSXJ29prqVFBWEUVObOhPDiyucAZoNPh8grzeejVJ9kR+4vP9juuncrMG+5Gp63/e1MWbxVCCOEXSgpt5esJ7ckkM6WAMquTIJOWsHYmDMaTl+IWoik1ZK2j1rLga2sbQWnNixUfz6D5e75QkLa8lHagltR2u9289dlKXv3kLZ/tg/sNYsmsBXSIaNfsffMHEhQJIfxWYamDHKuDIpuTEKOOqGA9oSZ9S3fLLzlsLo4l5pGyP5vUg7mUFNjQ6DSERAQR0VHWExKBqTlHV5oj+GorgURrYNaXB0PhRtBrwOEGa4DOF9oR+yu3zb/HZ5tWo2HFE6/zj7MGN3u//I0ERUIIv3SsoIxH1u5m+3Hr6AzrHcXC8QOIDjO2aN/8hdvlISutkNQD5fOEinJLURQwyzwh0Qo054KvrS21TTSMWgUhFfOFQipKatvdUGRv6Z7VX3pOBrOWPkrswT0+2++/aTp3jJuKRwGnW8Fqc6HRqNCpVWg1rbsaZE3kN10I4XcKSx3VAiKAbQk5zFm7m9duHNRmR4wq5wkdScglMTaT3PTi8nlCFgPtTguReUKi1WiuBV+bM/gS/kmnLp8vFGUqryjnUcqDoUBbPsvhdLL0o9dZ9b+PfLZfeu5FPH/PU4Rbwsr3d3k4nG2loMzp3SfMqKNHO3OrL5PviwRFQgi/k2N1VAuIKm1LyCHH6mhzQVHVeUKFlFkdMk9ItGrNteBrYwVfrWXuU1ti1EF4UPnIkEFbHgSVBOB8oW9/+Z77Fj/isy3UHMq/H3uFAb3PrLLd5a4eEAEUlDk5nG2lV3tzmxsxkqBICOF3imzOk7YX19LeWlSbJ1RoR6NVExIeRETHYJknJFq15lrwtTGCL0m/CxzektrG8pLaWg3YXYGXIpecnso9i2Zz6EiSz/an7niESSPH1/h3wulWqgVElQrKnDjdCto2FtPLb6oQwu+EBJ185MNSS3sgO3E9oSrzhLqHyTwh0WY014Kvpxp8SfpdYKippHapq6V7VndldhvPvbuY/27+wmf7mItH89SdczAbg2s9lruW4bDa2lsjCYqEEH4nyqxnWO8otvlIoRvWO4ooc+tKnatxPSGZJ9QmSRpWueZa8PVUg6/mmvskGsZXSe0yJ7gD5J5fURQ+++F/PLZsvs/2zu2jeXPuUnrH9KzXcTW1fMFWW3trJEGREMLvhJr0LBw/gDlrd1cJjIb1jmLR+AGtZj6RtcDG0UOynpD4m6RhVdUca/ucavDVXHOfRP2Y9RBhLB8dCsSS2geSD3Lnc7PIysv22f7CzKf5v2FXNfj4Oo2KMKPOZwpdmFGHTiNBkRBC+IXoMCOv3TiIHKuDYpsTS5COKHPgr1PksLk4eiiPlLhs0uJzKSm0odGpCYkwynpCbZykYfnWHGv7nErw1Vxzn0Tt1KryeUKRxvJ5Q4FWUru4xMrjy5/l2182+2y/bMg13D1hBmdER5zy+0qrUdOjnbnG6nNtrcgCEhQJIfxZqCnwgyAq5wmlFJAWn0vSviwKc8pvei2ynpA4jr+nYbX2tL6GBl/NNfdJ1EyvgbCKKnJGHaBAmSswUuQUReGDrz7muZVLfbZ3ie7JPTc/TvvITkD5HKjGqg6n16rp1d6M063g9iho1Cp0GlmnSAghRCNSFIW8DCtHDpavJ5SXacXpcBMcYqB9jMwTEtX5cxqWpPXVrLnmPonqTLryFLmIihQ5pwIlAZIi9+eBWG5/dialNt9fhLz84IuEdejvs60xq8NpNeo2V2WuJm37k0wIIRqZtcDGgT0ZHPgrg8zUQhSHG4tFT1R7M/o2fvMoTs5f07Akra92zTH3SZRTASEVo0IhhvKqcg43FDlaume1yy3M4+FXn2JH7C8+2++4diozb7gbnVaL1eZi77HCGo/VFqvDNTX5Cy2EEKfIXuYsnye0P5v4vVn8diCLrFInDp0al1ZF16hgRrQ3E/iJgKIp+Wsalr+n9fmL5pj71JacmK4ZatDQ0aIh0gSVWdU2V/mCq/7M7XazfO27vP6ft322D+43iCWzFtAhol2V7VIdrvlJUCSEEA3gdnnISC4g9UAOyfuzKcotxelW+DO7mBTFA6a/P17lG3VRF/6ahuXPaX2idTo+XbO9RUu/jkEM7W4hOsSESqWm1FleWtuf7Yj9ldvm3+OzTavRsOKJ1/nHWYNrfHygVodzuT14XG7wKKTklRBt0AbM3GAJioQQoo48HoXcY8UcScjl8J5M8jKsuF0KwSF6OnQJpdDuIiUlF3xUkJNv1EVd+GMalr+m9YnWyeZ08/2BTLQqF+P6h9K7vYFgvZpCm4tdR6z09OPKaOk5Gcxa+iixB/f4bH9w8j3cNvZm1Ora+x+I1eEcLg+Hs614nC5MWjVz3v6V/qe3Y+H4AUSHGVu6e7WSoEgIIWpRlFfGkYO5JO3NIiutEFuJk6BgHREdqs4TspfIN+ri1PlbGpa/pvWJ1kejhhC9h2E9gjgtTI9aBXmlLjKLXRV7uButwEBjcTidLP3odVb97yOf7ZcNHsaCGU8Qbgmr97EDqTqcy+3xBnAh2r+/GNyWkMOctbt57cZBfj9iJEGREEL4YCtxcPRQHsn7szl6KI+SIjs6vYaQCCORnXyvJyTfqIvWyF/T+lq7QCyB3tA+B2kh3Fi+vpCiqNGgI8vqxO6qniPnLwUGvv3le+5b/IjPtjBLKP9+7BX69zrzlM8TKNXhnG7FZ6ofFYFRjtUhQZEQQgQKl9NNelIBafE5JO/Lpji/DJUKLOFGOvcIR1XLxFb5Rl20Vv6Y1teaBWIJ9Ib02WIoL6cdFgQ6NTg8UFAKRwt931zTwgUGko6lMGPRbA4fTfbZ/tQdjzBp5Pg2uQi326OgU6sIMaoJN2gosLqqlEYvttX8mvoL//zNEkKIZuLxKOQcLSLtYC6Hd2dSkFWC2+3BHBpEhy6haOoxuiPfqIvWzN/S+lqrQCyBXp8+a1TlQVCECcx6UKvA5oayipLaWj8rMFBmt/HsOy+y9vv1Ptv/b9iVPHnHI5iNwc3aL3+hVZevERWkUVEUoqOgzMXOo1bSsu1YLQbQlb9eliBdS3e1VhIUCSHaHEVRKMot8wZCOUeLsNtcGIP1RHYyozM0/KNRvlEXQpyKQCyBXpc+hwZpylPkTOXpch7A5gT3Cdlw9S0w4HJ7/p5zo1GhU5/6nBtFUfjsh//x2LL5PttjOnRm2Zwl9I7peUrnCUQqQKcpD4TUgEspfx2zS+D7Q6X8nlKMx+ZG61HKhwKBYb2jiDL7d+ocEhQJIdqSMquDIwm5JO/L4lhiPmVWBzqDhpBIE1FGbaOlPMg36kKIhgrEEug19VmtgphwPd3DVXSNKL+RdrrB6oCTzQyqa4GBympnvoKnhszhPJB8kDufm0VWXrbP9hfvm8+Yi0fX+7iBTq0qf+10FZfU6YGCMiiyQ4kDylwAGvpGR3K00MXRDKv3scN6R7Fo/AC/n0+EBEVCiNbOaXeRnlRAyoFsUvZnYy2wo9aosIQHEd4huE3mfgsh/FcgFmw5sc9BWhW92xkY2NlITLieLuFqPEr5TXRd1VZg4PhqZ8crKHNyONtKr/Z1K1tdXGLl8eXP8u0vm3223zTqeh6ZOguD3lD3zrcClWlxWlX5qJ7dBXml5QFtiaM8MDpRZaZEXqdSSkudvHDXYE7raA6IgAgJioQQrZHH7SErrYi0+BwO782iMLsUxaNgDjPQsVsoGj8sZyqEaJ3qW5EtEAu2VPa5uMzOGR2CGNjZSLtgLS5FwelWUeJQNXoFtZNVOysoc560dLeiKLy3YQ0L33vJZ3vfbqfz6kOLiOlwWmN22a950+LU5UvtuT3l87wK7eWBUF0XzA3SaQg16TGq1XRvF4wpQAIiJCgSQrQWiqKQn1nC0UN5HIrNIC/disPuwmTR066zBa0f3kgIIVq3hlRkC8SCLVHBGu66qCN2hw0VHqx2D2mFDiwGHT3aBTfJujq1leb21f7ngVhum38PZXabz8csm7OEywYPa7Q++rsT0+Icbsgvg6KK0SCbq7YjtC4SFAkhApq1wMbRQ3kk7c0iI7mAMqsDg0lLaKQRg8n/q90IIVqnU6kiFwgFWzQqCA0qL5xQXkVOQ6nDiNWhYDIodApr2oVGayvNXdmeW5jHQ688yU+7f/W5313X3cK9N9yJVtM2bomPT4tzK3+nxRVXBEJ+OGWt2bSNd4AQolWxlzk5lphPSlw2afG5lBTa0Og0hEQEEdFR5gmJwNQci3X664Kg/tqvU3GqVeT8tWCLQfP3QqtBOlCU8on25VXk1BibKVtKd5LS3RaDmn9/9g7LPv23z8eef+a5LJ71LO3Do5qhpy3rxLQ4l6c8+KksklBSS9GLtkSCIiFEQHC7PGQkly+smrQvm6KKmw1LWBCdeoSjbsEF/YQ4Vc2xWKe/Lgjqr/06VYFYRe5kLPryYCjMWPcqck3JV+nuPfG/s+Sdx2vYX8M7T7zBBWed28w9bX4aVXkgpFOXvz5ON+SVlY8GWR3lo0OiusD9tBFCtHoej0LusWKOJORyeE8meRkluF0eTBZ9vRdWFcJfNcdinf66IKi/9qsxBGIVuRNVT5EDu7t+VeSakl6rJlht5fG35rI3cb/PfR6cfA+3jb0Ztdr/r/eJ6rMGk05dHghpVOUFEewuyC0Fqx1KnG07La6uJCgSQvidotxSjiTkcXhPJllpRdhLnQQF64joEIw+gL85FsKX5lis018XBPXXfjWGQKwiVylIC2FBxy20qpRPuj9xodWW4nA6WfLha7z35Rqf7ZcNHsZzM54kzBLa7H1rLLWtwaTi7yIJJ6bFWR1QKmlx9SZ3F0IIv1BmdXD0UB7J+7M5eiiP0mI7Or2GkAgjUdFmmSckWq3mSLPydQ6dRsWgLuF0DA2izOkmr9TR7HN5WluK2fECrYqcCjAbIMJYHhDpNOXVyFoyRe5E3/y8mVlL5vhsCw8J4+1HX6Z/rzObvV+NraY1mMqcLvJLyugRZUSlUktaXCOToEgI0WKcDjfph/NJPZBDSlw2xfk21OqKhVXbhaOSeUKiDTjVNKu6FCk48Rw6jYor+3diV2o+O5PyvNubey5Pa0gxO5lAqCKnVVekyBnLgyIVYHNDmZ+kyCUdS2HGotkcPprss33enXO54YprW9UXZ5VrMKmAYL2aEKMGg1aFw6WQWeRApTKgqNSSFtfIJCgSQjQrj9tD9pEiUuNzSdqbSUF2KR63gjlUFlYVbdOppFnVtUjBiecY1CWcXan5pOaVVTlec8/lCeQUs7ry1ypyRm150YRIIxgqUuTKnP6RIldmt/HsOy+y9vv1PtvHDruKJ+94hGCjqdn71tRUgE6t0CVcj0YFpQ4PRwucHMq2k1bgIL3IyYRzjXQMlVv4xiZXVAjR5BRFoSCrhCMJeSTuziD3mBWn3YXRrCcq2oKuFdz4CNFQDU2zqk+RghPP0TE0qMoI0YmPb665PIGWYhboVEBIRYpcSFD5fBSHxz9S5BRFYe3363l8+bM+22M6dGb5nKX0iunRoOPXp2hBcztxEdViRcXeY2Uk5zlIK3CQW+Kusn+gj6D6KwmKhBBNxufCqkZZWFWIEzUkzaq+RQqOP0eZ0+3zcZWacy5PIKSYBTqd+u/CCSZd+cR8m6t8faGWFpcUz53PzSI7P8dn+4v3zWfMxaNP6Ry1FS1oCSdbRDW3BP465iQlt6za45prBLU1rh1WGwmKhBCNqnJh1eT92Rw5mEtJkR2NVk1IuCysKsTJ1DfNqiFFCirPkVfiOOljm/tG0V9TzAKdSVe+tlBExdpCbgVKXeWpci2pqKSYx5c/y3e/fO+zffKVE3n45pkY9IZTPldNRQsKypwczrbSq725WUaMTlxE1e0prxBX6GMRVa2mZUdQW+vaYbVpvc9MCNFsKhdWTT2QQ/L+ExZW7R4mC6sK0QROpUhBW5jL01apVeUpcpEmsBjKRyLs7vIRiJakKArvbVjDwvde8tner3sfXp29iNM6dG7U81YWLfCloMyJ062gbaK3+/FpcQrgckO+rbxsdomjfLSuJi01gtqa1w6rjQRFQogGqVxYNe1gDod3Z5GfZcXtUggOkYVVhWgOpxLYyFye1kevKR8VijRCkA5QyqvIlbZwdbI/D8Ry2/x7KLPbfLYvm7OEywYPa7Lzu2sZFqutvb4q0+I06vJRKqvdQ6bVQ6lThdOtRqOp++9WS4ygtua1w2ojQZEQos4URaEot4wjCbkc3pNF9pFC7KUujGYdER3N6A3ykSJEcznVwEbm8rQOFn15MBRmLE/NcnqqpmK1hNzCPB565Ql+2r3TZ/td193CvTfciVbT9H8zNLVkKtTWXhc6TXkgpKY8RdHmhPRiN9/tz+H3lGKcFYFXIKSgtea1w2rjv6+KEMJvlBbbvQUT0pPyKS12oDdosEQYiYrWyTwhIVrIqQY2MpcnMB2/tlCwvjxNy+6GohZMkXO73Sz79B3e+O+/fbaff+a5LJ71LO3Do5q1XzqNijCjzmcKXZhRh05T/79fKlV5AKrTlM8VcnqgyFb+Y3VAfpmbr/dmBGQKWmtfO+xkJCgSQvjksLk4VrGwauqBbKwFdtSaioVV20vBBCH8hQQ2bYdRV1FF7ri1hWyull1baPuun7nj2Zk+23RaHe888Rrnn3lus/erklajpkc7c43V5+paZEFTMT9IWzE/yOGCnJLyuVolDnAcV9AxkFPQ2vJ8QwmKhBBebpeHzNRC0uJzSNqbRVFuGYpSvrBqp26hqP1kTQchhPBnjVnOWK0qL5gQYYRQQ/lNeUuvLXQsO4NZS+aw+9A+n+2z/3kvt/7fP1Gr/eNvhl6rpld789/rFKlV6DS1r1OkO25+kNtTHoBmlfxdLa6mYDSQU9Da8nxDCYqEaOMURSE33crRhFwSd2eSl2HF5XBjshhod5oFbSv+ABRCiMbWWOWM9Zq/1xYyVizrZneVl9RuCQ6nkyUfvsZ7X67x2X75eZewYPoThFlCm71vdaHVqGutMndi2WxXRfBZWJEWV+asWyAa6ClobXW+oQRFQrRRRbmlHD2Ux+E9WWSlFWIrdRJk1BHePhi9H08CFUIIf9UY5YzNFYUTwo3lIxVuBUqdLbe20Dc/bWLW0rk+28JDwnj70Vfo36tfs/ersRxfNhvK0+DyysrT4qz28rla9dUaUtDaYlqu3PkI0YaUWR0cPZRH8v5sjiXmUVJkR6fTEBJpJLKTWeYJCSHEKWjoXJLKwgkRxvKgSN3CawsdPprMjEWzSTqW4rN93p1zueGKawP2b8bxZbMVpXwELq/07/lBp5rd1pZT0AKZBEVCtHJOu4v0pPKFVVPisinOt6FWlxdM6NwjHJUsrCpEo84BEW1XfeeSmCoKJ0T4QeGEUlsZC95dzNrv1/tsH3vJ1Tx5+8MEG03N3rfGoFODXlu1bHZBRVpcU4zEtdUUtEAmQZEQrZDH7SErrYi0+BwO782iMLsUj6e8YELHrrKwqhDHa6w5IELUZS6JWgUhhvK5QhZD+WiF090yhRMURWHt9+t5fPmzPtu7dDyNZY8soVdMj2bu2alTVczLOr5sdrENCu1/zw9qam0xBS2Qyae9EK2EoijkZVg5eiiPxNhM8jKKcdjdmCx6ojpb0AVADrMQza0x5oAIUelkc0kGnmamV6SGjhYI0gEK2Nzgaoab8xPtPxzPXc/dR3ZBrs/2F++bz5iLRzd7v07V8fODlIr5QbmlUFwRCDkaMD9ItB0SFAkR4IrzyziSkEfS3kwyUwqxlTgJMmkJjTJhqCxZJITwKZDXExH+58S5JBo1dI8wcHEvC0O6h2LUq3G5y+etNPeoUFFJMY8tm8/GX3/w2T75yok8fPNMDHpDM/fs1FTOD9KqytPi7K7yQMhaEQi15BpOIrBIUCREALKVlBdMSInL5khCHqXFDrRaFZYIKZggRH0E8noi4m/+NCfMEqRl7MCOmHQe2gVDiEGNTqPCqagptjdvXxRFYeX/VvPC+6/4bO/X4wxefXAhp3Xo3LwdO0Unzg8qc/5dNrslAk7ROkhQJESAcDrcpB/OJ+1gLin7synOL0OlAnNYEJ26h6GWgglC1Fugryci/GtOmFkP4UEQbtSg12pwVSz46WzmtYX+iNvFbfPvwebwHYW9OfclLj33oubt1CmocX5Q5fpBLbR2k2hdJCgSwo95CyYczCVpbyYF2aV43OUFEzp0kYIJQpyq1rCeSFvmD3PCKstpRxohuKKctsMNRc08KpRTkMvDrz7JT7t3+my/e/yt3DPxDrSawLj1O3F+kFPmB4kmFhi/GUK0IYqikJ9ZwpGEXBJ3Z5KXXozT7sZo1hMVLQUThGhMsp5IYGvJOWHBOgirWGTVoGmZctput5s3Pl3Bsv+u8Nl+/pnnsnjWs7QPj2q+Tp0Cjao8LU574vpBdrA6wS3ZrKIJSVAkhJ/wVTDBIAUThGhysp5I4GruOWEaNYQaKhZZNZTfxDtaYJHV7X/9xB0L7vPZptPqeOeJ1zj/zHObt1MNpKsolKBW/b1+UGYTrh8kRE0kKBKiBUnBBCH8g6wnEpiaa06Yr0VW7W5ozjocx7IzuG/JI+w5tN9n+0M3z+SWMZNRq/07rVpF+dwgvbo8EHJ6ygOgwuMCISFaggRFQjQzp91FelIBqQdySInLxlpgQ6UCS7hRCiaINsefqoaJwNOUc8I0KgipCIRaapFVh9PJkg9f470v1/hsH3H+pTz7r8cJs4Q2U48aprJQQuXL4XRDvq183pXVXh5gCtHS/C4oOnr0KI888ghff/01paWl9OrVi5UrVzJ48OCW7poQDeZ2ecg+UkRafA6H92ZRmCMFE4Twp6phIjA1xZww43GjQkHa8rktzb3I6jc/bWLW0rk+2yJCwnnr0Zfp36tf83WoAaotpOqC7JK/CyU4ZX6Q8DN+9VcnPz+foUOHMnz4cL7++mvatWtHQkIC4eHhLd01IepNURTyMqwcScjj8O5M8jKKcdjdmCxSMEEIf6gaJlqHxpgTduKokFYFDk/zjgodPprM9EUPknws1Wf7vDvncsMV1/p1WrVGXV50QqMGj6e8UEJOyd/rB8lCqsKf+VVQtGjRImJiYli5cqV3W/fu3Vu0T0LUV1FeGUcTcjm8J4ustEJspU6CjFIwQYjjtWTVMNH6NHROWE2jQqXNNIpRaitj/jsv8PkPG3y2j73kap68/WGCjabm6VAD+CqUUCALqYoA5FdB0fr16xk1ahQTJkxg69atdO7cmenTp3PHHXf43N9ut2O3/70QQFFRUTP2Voi/lVnLCyYk78/mWGIeJUV2dDoNIZFSMEEIX+pTNUzmHbUtTf16t/SokKIofLr5C554c4HP9q4dY1g2Zwk9T/PfL4X1FYUSVKryYhOVhRKKHVAmhRJEgPKroOjw4cMsX76cBx54gEcffZTffvuNmTNnotfrmTp1arX9n3/+eZ5++ukW6asQDpuL9KR8UuNzSI3LoTi/DLVajSU8iM49wlFJwQQhalTXqmH+Nu9IArSTa+j1sTndlDndKMDWA1mk5JV52xrr9TbpyhdZbalRof2H47nzuZnkFOT5bF8yawFXXzSyeTpTT5WFEnSa8v93espHgwor5gfZXS3dQyFOnUpRFL8Z2dTr9QwePJiffvrJu23mzJn89ttv/Pzzz9X29zVSFBMTQ2FhISEhIc3Wb9F2uF0eMlMLOZKQS9KeTApzylA8CsFhBsxhQWg0UjBBiLqwOd18vTejxqphV57VEaDWfZozIPG3AM3fNPT6VD6uQ0gQGYVlpB4XEB1/nIa83hpVeSAUXjkqpC5fV8juap5RoaKSYh5bNp+Nv/7gs/2fV97Aw1Nmotfpm6E39XN8oQQov25F9r8rxkmhBFGTkiI7DpuL62f9A5PF0NLdqTO/+hTv1KkT/fpVrabSt29f1q5d63N/g8GAwRA4F1sEJo9HIS+9mLSEXJL2ZJGXYcXlKC+Y0K6zBa0UTBCi3upSNSyvxOE3846kMMTJNfT6HP+4gTFh7EzyPYpS39c7+LhRIcPxo0LNkNqlKAor/7eaF95/xWd7vx5n8OrsRZzWPrrpO1NPalV5oQTtcRXjMkvL0+KsDnA3YyAko7KiuflVUDR06FDi4+OrbDt48CBdu3ZtsT6JtklRFIpyyzh6KI/E3ZlkHynCXuYkyKQjvH0wevlWWIhTVlvVsPrMO2pqUhji5Bp6fY5/nNtz8rGb2l5vrbpiVCgIzC2wrtDv+//itmfvxe6w+2x/c+5LXHruRc3Qk/rRqECvLb9+lRXjsisqxlkd5QvVNjcZlRUtwa/eWffffz8XXnghzz33HBMnTmTnzp28/fbbvP322y3dNdFGlBTZOXooj5T9WRw7nE9ZsQOtXkNIhJGoaCmYIERjO1nVsLrOO2oO/hSg+aOGXp/jH6epZR5mTa+3WV9eQS7MWD7K4aH8xr451hXKKchl9suP88ve3322/2v8rcyYeAdaTfPdbrncHpxuBbdHQaNRoVOr0J6Q2q2tqBinVZcXSrA5IdNPKsbJqKxoKX4VFJ133nl8/vnnzJ07l2eeeYbu3bvz8ssvM3ny5JbummjFHDYXxxLzSInLIS0+B2uhHbVahSUiiPB2wVIwQYgWYtJr6BppqnFOkakZU1f9KUCrSUumGzX0+hz/uIxCG10ijDXOKTr+9dZVjAqFGDwYtQqg4HCpKHOomnxup8vtYtl/V7Ds03d8tv/jrMG8eN982oVHNWk/fHG4PBzOtlJwXAm4MKOOHu3MBOvVVUpnlzr+Lp3dFGmFDX0/yqisaCl+FRQBXHPNNVxzzTUt3Q3RyrmcbjJTCkmLzyFpXzbFeaUoHjCHB9GpWyhqKZggRIury7yj5uJPAZovLZ1u1NDrc/zj/krN58r+nQCqBEaVz8Oo02AxVIwKBYFK5eFovo29+TZsrvKxjcoAoCmC1G1/7uDO52b5bNPr9LzzxGuc1++cRj9vXbncVQMilQosBjUWgwq7w4ZZH0SxXU1hRSBU1oQV407l/SijsqKl+FX1uVNVVFREaGioVJ8TPnk8CjlHizhyMJfDezLJzyrB7VIwWfRYwoPQyjdPQvilym+cfc07ak4tHXjUpC6V/Jrjep1q9bmU3FJ0GhWDuoQTE25Eo1ERpNUQYdLQ3qwh0lS+2KoKKHV62H/MSr6PRXHCjDp6tTdXSxlriKPZ6dy3+BH2Jsb5bH/o5pncMmYyanXLf5FW5nCz52gBIUEaQoM0qFVQbPeQmu/gULad83u0x2Ro+ip3p/p+zCtx8P7PKTW2TxnSlYhg/6vWJ/4m1eeE8EOKolCQVcKRhDwO78kk91gx9jIXRrOOiI5m9Ab5FRDC351s3lFzqq0wREvxl3Sjhl4fX4+zGDS0M2sIN0KIoTxdzqWUp3l5FChzKD4DIoCCMidOt4K2gU/Z4XTw4gev8sFXn/hsH3H+pSyY/gShZv/48rVyDSGtQaFLuJ5im4fdx8o4nGMnJd9Bka18ZOWMaA+mZrg/PdX3o7+PyorWS+4IRatkLbBx9FAeSXuzyEgpoMzqQG/QEhJpJMqolYIJQogGqS1Aa4l5Pf6UbtTQALbycdUWWK0omnBiqldtlepqa/fl6582cv/SR322RYZG8NajL3NWz771Pm5TUFFeMU5fMUBld0OmFf77VwGp+Q5KHNVf8+aa91bf96Ov3xl/SZsVbYsERaLVsJU4OJqYT2pcNkcScikptKPRaQgJDyKiQ7AEQkKIJtVS6XWBUATiZHRqCDmulHblAqsnK6VdW6W62torHT6azL8WPkhKeqrP9mfuepQJI8b5xd+P4xdT9bWGUIldRalL7TMgas4Rlvq8H2v6nbm0TzuGn9Eet0fB6fKg06rRqFSUOFw4Pf/f3n2HSVWe/QP/Ti87ZXdnZitbWFg6S9FXsWEjGizRBBPFHtEYBQvYQFDBBsZEUYzGrvHVaN4QU4z+NMQYYhJj4fW1GxBBlLpt+syZOef8/jgzyy4726ecmfl+rotLmWd3uVlmZ859nvu5b4kziygjmBRRXotF49j1ZSd2/KcN2z/ZB39HGBqNBrZSE6qbyqBl5zgiyoJcthHOx3IjDZQEqNSktNI2dmulPZhOaAadBqUWQ48ua0mlFgMMur5f+0ORMG57/Cd48a8vpVw//ZiTcdOC61FisQ7tL5UBByZC0TjQHgJ8UaV1ttgta1RLYxK9TjOoLoL9/cz89bO9qHJa0BaIYvY4D17/bK/qzvJR4eGzifKOGJewd4dXaZjw0V54W0OQRBk2pwmV9U7oVH5XlIgKTy7P9ajlYngwzHrljFD3pgmCqOx2DIVep0WTx9Zn++kDmyzIsoz/2fA73PzwnSm/XkN1PR684acYM2r08P5iaaTVKPOW9IlEKBIDWoPK9yg4wDDVXJ97i8REvPH5PkyvLwMO6CJYX27B8RMqumLp72fmq/Zw19f4y6d7eiVYnFlEmcCkiPKCJMlo3+XHN1va8cUHe9C+O4CYIMJqN8JdY4dBhXdCiah45PpcT64vhvuj0+wvj7OnaJowXEa9FmMrbPsHlWo1MOh6Dir9eOtn+NEdV6HN257ya/zs6jtw8pEnDD+INNEldoT0OkCSgEgc2BsE/NGhD1PNZWOSkCBi674gdrSHMKO+DNPry7r+bXZ7IxC7NTwe6GdGlGRUOc14+8vU/3acWUTpxqSIVEuWZfjawl0NE/bu8CISisFsMaDUY4XJYsh1iNSPXA6SJMo2NZzrUUuXviSbUdkVKrcAJj0gy0pDgHTOx9HrtL26zHkDPqx48Db8+e03Un7OeSedievOuxJGQ27bOus0SrMEgxYQR5gIqUUy0YmJcspkpsld0vX/A/3M6LSaARtmcGYRpROTIlKdoC+Kb7a0Y9vHe7Hryw6E/QL0Rh0c5Ra4qm2qOPBK/VPrPBeiTMnHcz2ZYNIp3ePKLIDVoJSCxaT+myakgyRJePKPz+LuZ+5PuT5lzESsvWYNRlXUZDCKgek0SoKo1yjngSJxYE9YKY0L5Wki1N1Qbg709zNTX27Bbm8EVU7zoL8e0Ujx6oRUIRqOYWeic9yO/yid4zQ6DexlZpR5SqBhw4S8kcsD55Rf8mU3cTBx5tO5nnTTaZSyuDKzUian1+6/4BczfJX/7if/iwW3X4GoEE25/vCNa3H0zCMyG8QADkyEwjGgM6LsCIVi+Z8IdTeUmwN9/czUl1swvb4Mr3y4CzPqywbVtIEoHZgUUc7EBBF7tnfiq89asf3TVvgSL4q2UjOqGp3QpmEaOWWfWgZJkrrly27iUOJU87meTOheHmdMfCtSzRRKt9bONly7dgXe+ujdlOuXn7EAl3//Yuh1uXsepUqEOiJAIAoEB9FdL18N9eZA95+ZSFyEKMrY0RHGKx/uQkyU0RaI4viJlX12nyvUny3KDfW881BRkEQJe3f48PWWNnz54V507g1CjEsoYee4gpHrA+ekfvmymzicONV2rifdTHrAaepdHpfpMzBxMY6f//pRPLT+iZTrs6YcjLuvug2eMncGo+hfMhHSaZQGEslEKLkjVCyGenOg+89MJCaixKRHk7ukx+cV080Gyh0mRZRxsiyjfXcA32xpx9YP9qBtVwCxaBwWmxGuahsMJj4NC4kaDpyTuuXLbmK+xJlpOq2yI5TsHpfN8riNm/6BH915dco1k9GEx1bcj/+aNDOzQfSjrx2hYkuEDtTfzYH+ylH7+rxCv9lA6jDkq9FQKIRzzz0X8+bNwznnnJOZqKgg+NpCSiL0YaJzXDAGk1UPp8sCk5Wd4woVD5zTQPJlNzFf4syE5HBVZ2K4qkk3vO5xcVHa3zJbp4FBq+k1Q+hA3+zbhat+egM++uLTlOvXn38VLjzlbGi1ubnB0tU1rshK49IhX8pmqTgN+RlotVqxYcMGzJ07NzMRUV4L+ROd4z7Zh11bOxD0RWEw6GAvN7NzXJEo5gPnNDj5spuYL3Gmk8Wwvzyu+3DV4XSPE+JSn8NVD/zeCTEBdz9zP555+YWUX+tbhxyD2y+/CU6bY1h/r5FKzhEy6JT22eEYsCexI8REaHDypWyWitew0vIjjzwS//rXv3DJJZekPyLKO0Ikjp1ftOOrz9vw1af7EPBGodUqneNqm8rYOa4IFduBcxqafNlNzJc4R8qoU8rjSs3K7pBOM/LhqnGxd0IEAJ3hGLbuC2BshQ16nRYv/+M1LLl3ecqv4XKW4+Eb12LKmInDC2KEtBplh0yvVb4PkTiwJ1A47bOzjeWopHbDSooeeOABnHjiiVixYgV+/OMfY9SoUemPjFQtHhOxe1sndnzehm2f7IO/PQRZAmylJlSzcxyxBpz6kS+7ifkS53Ak22g7zcovoxYQE93j0lEVGBPlXglR0ifbt+KK21dhx56vU67feumN+P6c03NSWaBN7ghplaQnHMv/gapqUczlqJQfNLIsD/ln3G63Ix6PQxAEAIBer4fJZOr5hTUaeL3e9EU6CD6fD06nE16vFw5HbrbYC5kkStj3tQ9fJxomdO4NQhRllDiMsJWaoc/jCwQiyr7kgWu17ybmS5wD0STbaJuVpgkmvXKRL4jKr3QKROL4aOf+a4CoEMEvX3wA/3hvQ8qP/+6xp+CmBdfDarakN5BB0CS66iUToUhijpCPiVBatQcF/PJf2/tcP/+wBpSXGLMaE2VG0BeFEInjjKtnwWo3DeIz1GFYO0Xz5s3j2ZAiIcsyOvYE8c2WdnzxwW607VQ6x5lLjCivtsHIznFENEz5spuY6TgzPcTWYtg/Tyh5TigmDe+c0GDptBrIsoy//fsVPPXb+1N+TGNNPR684Wdoqm3MUBR90yTKBo065XsQjQNtof2J0HDLBqlvxVKOSvlrWFe0Tz31VPojIVVJ2TnOonSOM1r0TIqJiNIgU924kueEyixAiVFpGR0b4Tmhwfp462e45I4r0e7tSLl+7YUrcOHcUwfsQpdu3RMhJBKhPQGlNM7PRCjjCrkcNVsyfQOl2PE2P3Xp6hz38T7s3NqBsD8KPTvHERFlRLq7cem1yjmh0sQ8IUOiQUBUBEIZPq7hDfiw/MHbsOHtN1Kuf+uI0/CDkxfAYy9Bk8eW1YQomQglO+ntCyo7Qv5o5ucsUU9swjN8bGeeecP+Ln711Ve488478de//hV79+7F73//e8yePRutra249dZb8cMf/hAzZsxIb7SUdtFwDDu/6MBXn7Vix+etPTrHlXnYOY6I0od3OXtKRzcurQawJ84JlZoT5WAyEJWAiJChwBMkScKTf3wWdz+TujxuypiJuGfxanjKq5Q5RVoNDLqB5xSlg0GrdI7TaJRSwfYQ4E0kQjzPn1v5UjarJmxnnh3DSoo++eQTHHXUUZAkCYceeii2bNmCeFyZ5uZ2u/Hmm28iGAzi8ccfT3e8lAYxQcSe7fs7x/naQoAM2MrM7BxHRBnBu5y9DbcblwZKSVyyPM6kH9k8oaF655NNWHDbFRBiqbOuR25ci9kzj8hwFL3pE4mQTgvERKAzCnjDyq5QjIkQ5TG2M8+OYb0TXX/99SgtLcVbb70FjUaDioqKHusnn3wyXngh9QA2yg1JlLB3hw9fb27Dlx/t7dE5rrLeCV0BDiEkInXgXc7Uhjoc1mrYnwiZ9couUUxShocOvY/s0OzraMW1992Ef3/0bsr1y79/MS4/YwH0uuwmuDqNkhTqtMpQVX9U6Rznjyplg0SFgO3Ms2NYr14bN27EzTffDI/Hg7a2tl7r9fX1+Oabb9IRH42ALMto2xVQGiZ8sAftuwMQonFYSoxwVdtgYOc4IsoC3uVMbTDduMx65XxQmRmwGvcPVo3EM38eJi7G8fNfP4qH1j+Rcv2wqf+Fu6+6De5SV2YDOUByqKpBpyRCoRjQEVYSoXA8q6EQZcVQb6DQ8AzrqliSJFit1j7X9+3b12tuEWWHLMvwtYXxzZZ2fPlRonNcKAZzonOcyWrIdYhEVGR4lzO1vrpxTamx4TstFah26GAzKmVhoqyUx2XjW/W3Tf/ApXdenTpmowmPrViHgydl98zwgbOEkkNVfRFlp4yokLGdeXYMKymaOXMm/vSnP+Hyyy/vtRaPx/H8889j1qxZ6YiPBinojXR1jtu1rQMhvwCDUQdHuYWd44gop3iXs2/JblwxUYTNIKPKroPbpoVZr+2an5ON3Y+v9+7EVT9dio+3fppy/frzr8KFp5wNrTa7/1ambrOEhDiwOzFLKBDlUFUqHmxnnh3DSoqWLVuGU045BZdddhnOOussAMCePXuwYcMG3Hnnnfj000/xwAMPpDtWOkAkFMOurR3Y9sk+fL25DUFvBFqdFo4yM8o8JewcR0SqwLucqek0Smmcs1QHh0nX1TlOkJS5OZkmxAT85Jf3479fSX0G+FuHHovbL1sBp82R+WC66d45LtlC25tIhNhCm4oV25lnnkaWh3c885lnnsFVV10Fr9cLWZah0SjTqx0OBx566CHMnz8//dEOwOfzwel0wuv1wuHI7ot4tsSiceze1okd/2nDto/3wd8RhkajQYnTBFupGVomQkSkQuw+p9BqAFuic1ypWSkJQ6JznCBmZ/fjT2++hmvWLk+55i4tx8M33ofJTROyEMl+XZ3jEs0j/ALQmTgnxM5xRPkl6ItCiMRxxtWzYLXnz3GaYSdFABAMBvHaa69hy5YtkCQJY8aMwYknngi73Z7eKAepUJMiMS5hz1fers5x3tYQJFFGicMEe5mZneOIKC8k5xQV211ODQCbSZkndGAL7WwlQl98/SUuX3MNtu/ekXL9th8vxxnHn5bVUuuuhglapXlESAA6Iso5IXaOI8pf+ZoUjej2XElJCb773e+mLxrqIkky2nb68fXmNmz9cA869gQRF0RY7Ua4a+wwFGm5CVGxKaSBp8U0tDE5SyjZOc5sUB7LVgttAAiGQ7j1sZ/g93/7U8r17x17KlYsuA5WsyXzwSRoABj1gLFbw4Q9AeWcUIgNE4gohwaVFH311VfD+uL19fXD+rxiJcsyOvcGlRbaH+5B6zd+RMMxmEuMKKsogbGISkyIaHAlZ4WUNBWCEkMiEeo2SyieaBstZSERkmUZL/z5Rax8ZHXK9caaejx4w8/QVNuY+WC6MSYaJiDRMGFPaP85IR4TIiI1GNRVdmNj47C21EWR+9+D4e/Y30J7z3YvwkEBRpPSOc5da2fnOKIiNJiBpzFR5jkdFbAa9u8IWQz7z8VkY5ZQ0kdffIof3XEV2n0dKdfvXXIn5h7+rewEk5A8J5QcMtse2j9YlQ0TiEhtBvWu+cQTT/S4MJckCffddx+2b9+Oc845B+PHjwcAfPbZZ3juuefQ2NiIK6+8MnNRF4BwQFBaaH+6Dzu3tCPki0Jn0MJRZkF5VQkTIaIiN9DA00hMwl8/39tv0sQdo8yxGPY3S0gmQmKWhqomdfq9WP7gbfjLO39LuX7+yWfh2nOvgNFgzE5AKc4JBQRlsKovqpyfIiJSq0ElRRdeeGGP399xxx2IRCLYsmULXK6ek6xXrlyJI488Ert3705vpAVAiMSx84t2fPV5G776bB8CnRFotVrYy8yobipj5zgi6jLQwNOYKPWbNIUEkUlRmln0yo5QqRmwJoaqxiVlllC2EiFJkvDkH5/F3c/cn3J96thJWHvNGtR6qrMTUPKcULd5QslzQt6o8v9ERPlgWPUVv/jFL7B48eJeCREAeDweXHLJJbj//vuxbNmydMSY12KCiD3bO7Hj8zZs+2Qf/O0hyBJgKzWhqrEUOh07xxFRbwMNPBXE/pMmYYCkigYnmQg5zUrjhOSOkCBmtzHAO59swkW3LkIsnvoPfeTGtZg984jsBXTAPKGouL9hgp/nhIgoDw0rKWpra0MolPoOJQCEQiG0tbWNJK6C8Nm73+DDv3+Fzr1BiKKMEocRnlEO6Hn3logGMNDA04F2gYxs1T9sByZCeo1SCiaIys5QtuzraMW1992Ef3/0bsr1y79/MS4/YwH0uuydH9NplJbiukQDic6I8ssXze73hogo3Yb1Sjpr1iysXbsWc+fOxUEHHdRj7d1338V9992HQw89NF0x5q0dn7eh9WsfKhucMJh46JmIBs9s0GHOxMo+GykYdJp+kyYr2/YPiUWvzBIq7bYjJMnKDkgoixf7cTGOB379KH6x/omU64e3HIKfXHkr3KW9KzUyRQMlETJole9JKKacE/JGldJBIqJCMKwr9QceeADHHHMMDjnkEMyaNQvNzc0AgM2bN+Ott95CeXk51q1bl+5Y85LBrGdCRETDYjfrMXdKVZ8DT/tLmnieaGA9doQMgE67PxHK9q7H3zb9A5feeXXKNbPRhMdWrMPBk2ZkNSaDTimPQ6KN9q6gsiMUELIaBhFRVgzran3SpEn48MMPsWbNGrzyyivYtGkTAKChoQFXXXUVrr/+elRVVaU7ViKiotPfwNOBkibqLVVpnJhMhLK86/H13p248qc34JOtn6Vcv+GCq3HhKWdntRtpsjxOrwEECegIAR1so01ERWDYWxiVlZW49957ce+996Y3IiIiGrT+kiZSWAyA3dita1y3RCibpXEAIMQE3PXL+/DsK79OuX7CrONw+2Ur4CixZy2mVOVx7WHAF1G+R2rDgcVElAms6yIiorwwlIthqwGwGRMDVQ9olpDtRAgAXnrzVVy7dkXKNU+pCw/feB8mNY3PakwGrZIMIY/K4/yROAcWE1FGDOoV5KKLLhryF9ZoNHj88ceHE1Pe84YEtAYEfNMRQiAahzPGeSFERCMxmIthq2H/HCGLYf8coVwlQl98/SUuW7MEX+3+OuX67ZetwLzjvpPV8jitBjAnyuNiktIwoTMxXFXt5XGRmNjrOQAOLCaiNBlUUvT666/3etEOhULYt28fAKCsrAwA0NHRASRmFZWUlKQ/2jywszOMG9Z/gL9vbkXDdj8cvhg8gQjvYhERDVNfF8M72kP46Os2nDzVjYoSHSwG5aK/qzQuB4NDg+EQbn30Lvx+48sp17937KlYseA6WM2WrMXUfbiqJCsDVdvzsHtcSBA5sJiIMmZQV+nbtm3r8ftPPvkEJ5xwAm688UZcffXVcLvdAIDW1lbce++9+OUvf4k//elPmYlYxbwhoSsh6o53sYiIhq/7xbBOC4xyGlFfbsSEChPcNj1GOQCtFojE+97tiIsSYqIMUZKh02lg0GqgT9PwbFmW8cKfX8TKR1anXB9d04Cf3/BTNNU2puXPGyy9FjAfMFzVG1HK41S+KZRSdICWgBxYTEQjMaytiyuuuAJz587F7bff3uNxt9uNO+64A3v37sUVV1yBDRs2pCvOvNAaEHolREm8i0VENDwxUcJolxENZUaMrzTBVWKAQQeEBAmtwTjKgjJs5r4/X4hL2LovgM7w/q2jUosBTR7biIbcfrjlE/zozqvQ4etMub52yWp8+/A5w/76w6HRKImQQaucofJFE00TCmC4qmmAfysOLCaikRhWUvTWW2/hjDPO6HN9xowZ+NWvfjWSuPKSL9J/rQbvYhERDY5Oo7TMtpuAMWV6NJWWQ68FgoKEfYEYovH9ex06bd9ncuJi74QIADrDMWzdF8DYCtuQdoz2tO/D0T86qc/1C06ej2vOXQSjwTjor5kOxsRMIRlAJJbYFYoqpXKFwmrUcWAxEWXMsJKi8vJyvPLKK7jssstSrr/88ssoLS0daWx5x2E29LvOu1hERH3TaZWOccn22Ua9ch4mEtciHJPRGux9hV9qMcCg6zspiolyr4QoqTMcQ0yUoR/gWlqSJCz6yXV4/d2NKddbxk7G2mvWoMaT3fl8yZlCukTThLZuM4WkfKyPG4DZoOPAYiLKmGElRZdeeiluvvlmnHbaabjiiiswduxYAMDmzZuxbt06vPLKK1i1alW6Y1U9t82I2c1ubExRQse7WET5i3NRMkevVZIguwlwmJXdDkAZHBqMAbIMAFrUu2yIS6lL4Prb6REHyA76W//dG3/C0gdW9rl+91W34dSjvt3v188EU6JpggwgJCSaJqh0plC6cWAxEWXKsJKiFStWIBqN4u6778ZLL73U8wvq9Vi6dClWrEg9j6GQOa1GrJnXgqXrP+iRGPEuFlH+4lyU9DPqlB0hh0n5ZUhc4MfEvpsAGPVajK2w7W+WoNXAoBu4WUJ/pXWp1rfv2oETr/henx9/8KQZePLmB2HQZ/ffXpdomqDVKC3G871pwkhwYDERZYJGluVhv562trZiw4YN2L59OwCgoaEBc+bM6epGl20+nw9OpxNerxcOhyMnMaDbnKI3f/0ROr70onZ0KV/AKee42zF0kZiIVz7a3ecZBnaUHDyTXtkRcpiVhMigVXaBBElJhjJ1YR8XJWzZ2/tMERI7TWMrbJAkEefdcin+7z8f9vl1/vzzF1FXOSpDUaamSXzfjFqlq14gsSvkiyjlckREahT0RSFE4jjj6lmw2k25DmfQRnSry+1246yzzkpfNAXCaTXCaTVia5kVsV1BXjRRznG3Y3g4F2VkLAYlAXKalKYJ+kQiFJWAiJCdGPQ6LZo8tpTd5/7xzh9x+i/X9vm5uSqP69FKOw7sDCq7QimOVPXAGx9ERMM34qshv98Pr9cLSep926q+vn6kX56IRohT4IePc1GGRgPAagBsJqDUBFiMgD4xTFUQgXCOBoV2L7375MvPcc7yC/r82BNnHY97l9wJrTa7jXG67wrFZaVzXEfirFBfs5e6440PIqKRGfYr5UMPPYR77rkHW7du7fNjRLEITn0SqRx3O4ZPjXNR1LYboNUAJclEyAyY9cpjyUQopIK8UYgJOOOGC/Cfr7b0+TF/f/QVeMqyX/pt0CaaSyR2hb4JAp2RobXS5o0PIqKRG1ZS9Itf/AILFy7EiSeeiIsuugjLly/H4sWLYTab8dRTT6GyshJXXnll+qMloiHjbsfwqW0uilp2A3QapSwumQiZEq2z4xIQiQ9uZyMbXnrzVVy7tu+mP4/cuBazZx6R1ZiQ2BUy65WEKCYpSVB7WGmlPZzvHW98EBGN3LDeRdetW4cTTzwRr7zyCtra2rB8+XKcfPLJOO6443D99dfj4IMPRltbW/qjJaIhU+NuR75Q01yUXO8GGJIzhBId45IzhGISEIqpZy7OF19/icvWLMFXu79OuX72t7+PmxZcB42m/650mWDQKgkkug9YjYy8rDDfb3yobfeTiIrTsJKiL774AgsXLgQAGAzKwFJBUE7NOp1OXHzxxXjwwQdxzTXXpDNWIhoGte125Bu1zEXJxW6ASafsBjkSyVDyywsiEFRRK+hgOIRbH70Lv9/4csr1ecd9B8svuhZWsyXrsWk0StMEg07pstcRVn750jhgNZ9vfKhl95OIaFivOE6nE/G4cmvL4XDAarVix44dXet2ux27d+9OX5RENGxq2u3IV2qYi5Kt3QCLXkmEDuwYJ0jqmokjyzJe+POLWPnI6pTro2sa8PMbfoqm2sasx4YUu0K7E7tCkQw0m8jXGx+53v0kIupuWEnRlClT8H//939dv581axYeeughnHTSSZAkCQ8//DDGjRuXzjiJaATUsttBw5ep3QANAKtRKY0rNStttHUaZRcjlx3j+vLRF5/ikjuuRIevM+X62iWr8e3D52Q9LvSxK5Q8K5TJ8sJ8vfHBs1BEpCbDSorOPfdc/OIXv0A0GoXJZMKqVaswZ86crhbcBoMB69evT3esRDQCatjtoOFL526ANtkowQg4Ex3jdBqlFbQgKg0T1KTT78WNP78Vr7+7MeX6BSfPxzXnLoLRYMx6bMjyrlBf8vHGR76fhSKiwjKspOiHP/whfvjDH3b9/ogjjsDHH3+MP/7xj9DpdDjhhBO4U0RElEYj3Q3QJxslJBIho0o7xiVJkoQn/vDf+Ol/r0u53jJ2MtZeswY1nqqsx4YUHeQycVZoqPLtxkc+n4UiosKTtlOMTU1NuOqqqwAAn3zyCZ577jmcffbZ6fryRERFb6i7AUadkgQlO8bpdfs7xgVjylkhtXn74/ew4LZFiMVTb7M8uvw+HDXj8KzHlaTXKiVy0OzvINeZ5V2hQpGvZ6GIqDBlpLXLiy++iJtvvplJERFRmg20G2AxJMriUjRKUFPHuO72dbTimrUr8PbH76VcX/j9S3D5GQug0+XmIlkDpTzOqFVKDDujQHsot7tChSBfz0IRUWFiv0siojymgZL8JBslmA2AXqOUw6mxUUJSXIxj3QuP4OHfPply/fCWQ/CTK2+Fu9SV9diSkrtCGo2yE/RNUNkVCsdyFlLBycezUERUmJgUERHlGV2yUUKidbZJD2i1gCgpiVBIxefT33jvTfx49eKUaxaTGY+tWIeDJk7PelxJGijnrUyJXSFfVOkg542o79xVoci3s1BEVJiYFBER5QGjLtEowaT8MnY7HxSOq7uM6+u9O3Hl3dfjky8/T7m+9ILFuOCU+dBoNFmPLUmnURonaDVANA7sTOwKhbgrRERUFJgUERGplEWvlMY5zcp/DVrlTFBMVO/5oKSoEMVPnrkfz77y65TrJ846HrddthyOEnvWY+vOpFMSTElWhtMmd4XYDZqIqLgMOim65557Bv1F//GPfww3HiKijIvERIQEEdG4BJNBC6tKyneS54NKjECpCbAYE+eDoJTFRYRcRziwl958FdeuXZFyzVPmxiM3rsXE0eOzHld32sSukF4LCHFgbwDoiChJERERFadBJ0XXXnvtkL5wLssgiIj64o/E++x2ZTdnf/M8eT6oJNEowXTAIFU1nw9K2rJjKy5bswQ79nyTcv2Oy27C9447NefvCwad0jhBlpWyuLbErpAg5jQsIiJSgUFfAXz55ZeZjYSIKMMiMbFXQgQA29tC2PDpHsydUpWVHaO+zgfF8+B8UFIwHMKqR9fgDxtfSbk+77jvYPlF18JqtmQ9tu66hqzqlLLDtpBSIuePqrv8kIiIsmvQSVFDQ0NmIyEiyrCQIKYcFIlEYhQSxIwlRRa9kgg58vB8UJIsy3jhtd9i5aNrUq431TbigevvRlNtY9ZjOxCHrBIR0VCw0QIRFY3oAKfnhTSeru8+P8hpVoaq6jSABOUcSz5dnH+45RP86M6r0OHrTLm+9po1+PZhx2c9rlRMOuVXXAa83dpp58PuGxER5Q6TIiIqGia9tt914wDrA9FrlUTInkiEjLqe84PyqaNZp9+LG39+K15/d2PK9QtOORvXnLMIRoMh67EdqEc7bRHY6Wc7bSIiGhomRURUNKxGHRpc1pQldA0uK6zGoZfOmVKcD0KezA86kCRJePz3z+Bnzz6Qcr1l7GSsvWYNajxVWY8tFWNiV0gGEIwqjRM62U6biCgn4jER/o4Igt4oSius0Grzq+kakyIiKhpmgw5zJlb22X1uMOeJNFBK4ZJlcVaDskMky0oiFMiT80Hdvf3xe7jo1oWIi6nbsD26/D4cNePwrMeVSvfGCYIItCYaJwTYOIGIKOskSUagM4JAZwQA4HBZMePYajRM8sBcYsx1eEPCpIiIiordrMfcKVUICSKEuASjXgursf85RTpNt/lB5kSplhaQEmVx4Tw6H5S0t6MV19y7HO98sinl+qIf/AiXzbsIOl3u5zchReOE3QGgM6yUyxERUfbIsoyQX4C/IwIxLqLEacaE/6pFw0Q3qpvKYLLkvqx6ONKSFHm9XthsNtW8eRIR9cc8iGGtRt3+80EOE2DU72+bHYkDYh5uS8TFONa98Age/u2TKdcPbzkUd191K1zO8qzH1pdejRNCyn/zqSyRiCjfybKMaDgOX1sYQjQOq82I+glujJ7sQe3YcpQ4zbkOccSGnRS9++67WLFiBTZu3AhBEPDaa6/huOOOQ2trKxYsWIDFixfjmGOOSW+0REQZ1G/b7JhSIpeP/vru33HZmiUp16xmCx5bsQ4zJ0zLelx90SYaJ+g1QISNE4iIciYWjcPXHkE4KMBk1sNda8eYlkrUNrtQ6rHmfCh3Og0rKfrnP/+J4447DrW1tTj33HPx2GOPda253W54vV48/PDDTIqISNW0GuVMkC1ZFte9bbYIRIRcRzh8X+/5BlfcfT0+3faflOtLL1iMC06Zr6o3NINWSYZkKLOb2kJKO+1YATROiMREhAQR0bgEk0EL6yB2K4mIckGMS0rDBF8EOp0WpRUlmHpUPUY1u+CptUOrG1mnVrUaVlJ04403YuLEiXjrrbfg9/t7JEUAcOyxx+Lpp59OV4xERGmj1ypJULJRgkkPaDT52Tb7QFEhirueXovnXv1NyvUTZx2P2y5bDkeJPeux9UUD5d/AqFWSn7ZE4wR/ATVO8EfifTb3sJt5tJeIsqO/mzOSJCPojSDQGYUsy7CXWdByVAPqxrtR1VgKwzC6s+abYb0av/POO1i9ejVMJhMCgUCv9draWuzevTsd8RERjZhZ361ttlHpXIZE2+xQLP/Pp/zx7/8P1913U8q1inIPHl52LyaOHp/1uPrTfbZQJA58HVBK5PJpqO1gRGJir4QIALa3hbDh0z2YO6WKO0ZElHEpb86UW3BkfTmkoIB4TILVYcLY6VVomORB7ZiyvOseN1LDSooMBgMkqe/bqd988w1sNttI4iIiGjYNunWLMykttHWJttlCnrbNPtCWHVtx2Zol2LHnm5Trd1x+E7537KmqKo9Dt9lCkqy00W4LKyVy+di4YjBCgphyLhYSiVFIEJkUFSCWS5KaHHhzRitKMAkS2r7y4R/+GE4+uhETZ9RgVHM57GWWXIebM8NKimbNmoXf/OY3uPrqq3utBYNBPPnkkzj66KPTER8R0aDotfu7xTkT3eJ0GqVrmSAC8QLYgQiEg7j10bvwh42vpFw/4/jTsPyia2ExqasLkCaxK2TQKEnp3gDQEVGS00IXHaAeU8jnek1KieWSpDYhQcRX+4IwCxL0cQmSVoOwRQev04jP7QYsO30Cxlaqp6w6V4b107lq1SocffTROPnkkzF//nwAwP/93/9h69at+OlPf4p9+/bhpptSl3IQEaWLWa8kQg4jYDMpuxBIlMWF4/lfFodEG9TnX1uPVY/elXK9qbYRP7/hpxhd05D12AaSnC2k0QDhGLArpJTICUU0W8ik7/9AsnGA9f5wN0J9WC5JaiKJEgKdEeza5Yc1LCJq0qLNZYHfbkDIooesVSoJAtECuGuYBsNKig499FC8/PLLuOyyy3D++ecDAK655hoAwJgxY/Dyyy+jpaUlvZESUdHTALAmmyQkyuL0BVYWl/Thlo9x8e1XwRvwplxfe80afPuw47Me12CYdEqCKnK2EKxGHRpc1pQldA0uK6zDPLzM3Qh1Yrkk5Zosywj5ovC1RyBJMmylJjQfXIPnRAGBEgMkXe+Sars5P4etptugXjl9Ph9KSkp6DGc97rjj8Pnnn+P999/H5s2bIUkSxowZg4MOOkh1NexElL+SZXHJRMiUOJwvJsriwgV0g6vT78WNP78Vr7+7MeX6haeejSVnL4LRoL43sK7ZQlogGgf2BICOsDLfqZiZDTrMmVjZZwIznAtk7kaoF8slKRdkWUY0FIOvPQwhKsJqM6Jxsgejp1Sgdmw5YjoNfh8XsHFza6/Pnd3shttWXA0V+jKopKisrAzPPPMMzj77bADARRddhEsvvRSHHnoopk+fjunTp2c6TiIqIqZkt7hEx7hCLItLkiQJj//+Gfzs2QdSrk8bNxVrl9yJandV1mMbDH1ithCglMh9EwI6w4UxWyhd7GY95k6pQkgQIcQlGPVaWI3DL3XjboR6ZbJckuhAQjQOf3sY4UAMJosenlFOjJlWiVHNLjhclh6bFGvmtWDp+g96JEazm924a14LnFYmRRhsUmQ0GhGNRrt+/9RTT2HOnDk49NBDMxkbERWJ7mVxDpMyULVQy+KS/v3Re1hw20LExdQHbB5dcT+Omn5Y1uMaLJNOSV7jkpIEtSVmCxVSwppO5jSe9+FuhHplqlySKEkZrBpG0BuFTq8MVk3OE3LV2KHVpq7Wqim1YN38GWgNCPBHYrCbDXDbjEyIuhlUUjRhwgQ89thjaGxshNPpBABs27YNmzZt6vfzZs6cOaRgVq5ciVWrVvV4bPz48fjss8+G9HWISP26d4tzFHhZXNLejlYsufdGvPvJ/6Zcv/yMS7Dw+wt6lCqrSbJETqdR/o12+pTGCaEiL5HLNu5GqFcmyiWJUg5Wnd2A+gnKYFX9IJ9XTiuToP4MKilavXo1zjzzTMyZMwcAoNFocNNNN/XZYU6WZWg0Goh93AHtz+TJk7Fhw4b9Aep5YJSoUBRDt7gDxcU47nv+F3j0xadTrk8ZNxM/Out6OGylKLUYIMoaqO2yyaBVklYACAlAW6KLHEvkcoO7EeqW7nJJKk6yLCMcEOBvD3cNVm2eoQxWrRlTDrNVfWdL892gMo5vf/vb+PLLL/HOO+9gz549uPDCC/GjH/0Ihx2W/tIOvV6Pqip11s4T0dB0H6Ja6N3iDvT6uxtx+ZprUq5ZzVbcdNlqVFeP7/F4ZziGrfsCGFthg16X+7v9Jp0y70mUlKYJ7SHAFy3cf7N8wd0I9UtnuSQVl2g4Bn97GJFwHGarATVjyzF6SmXRD1bNhkFvw5SXl+PEE08EADz55JP4/ve/j+OPT3872M2bN6OmpgZmsxmHHXYYVq9ejfr6+pQfG41Ge5x18vl8aY+HiIZGr1XOBtmMgNOs7AZ1H6JaiGVxSV/v+QZX3H09Pt32n5Tryy5cjPNPno9ITML/fd2Z8mM6wzHERBn6HF1PdXWR0wAREdjlUwathlkipyrcjSAqHPGYCH97BCF/FHqjDq4qG5qmVWFUcznKq2zs6pwlw6pN++tf/5r+SBLzj5566imMHz8eu3btwqpVq3DUUUfho48+gt3ee9Lu6tWre51BIqLsMye7xZmUM0KGIiiLS4oKUdz19Fo89+pvUq6fOOt43HbZcjhK9r+GiQN8QwZaz4QDS+RaEyVyPLOvXtyNIMpfkigh4I3C3xGBVquBw2XBhENqUDfejYo6J3Q8G5h1GlmWB3z3/eUvfwkAOO+886DRaLp+P5DkYNfh6uzsRENDA+655x4sWLCg13qqnaK6ujp4vV44HI4R/dnp8OdnP8D2T/ahst6Z61CI0kqrUTrEJXeDLAZlNyhZFhcTC7/E6o8bX8F199+ccq2i3IOHl92LiaPHp1wPC2KfO0UAMG1UKSxZOhfSvUTOGwHaw4Avoq5/v0hMREgQEY1LMBm0sDIZIKI8JMsyQn4BvvYwJFGCzWlG/QQ36id6UNNUBiMHL+fUoJIirVYLjUaDcDgMo9EIrXbg7HW4jRYO9F//9V+YM2cOVq9ePeDH+nw+OJ1OJkVEGWDoNkS11KxcSGs0ysW0IBbHjsLmHV/gx6uX4Ju9O1Ou33H5TfjesacOWOoQFyVs2RtAZ4qatFKLIeNnirp3kYuKylkhtZbI+SPxlGdnjh1fgUhcVMrGmCQRkUrJsoxoWJknFA3HYbUbUTW6DKMne1Db7EKJw5TrEClhUCnpl19+CSTmFXX/faYFAgF88cUXOO+887Ly5xFRTxYDYDMAdrOSDBkS1+kxSWnDXMhlcUmBcBCrHlmDP/79/6Vc//7xp+HGi66FxWQe9NfU67Ro8tiwdV/PxKjUYkCTJ3MJUfdBq/nQRS4SE3slREgMKH39sz2oclrw9pftXQ0G7LzLSkQqERNE+NvDCPkFGC16uGvsaJpaiVHjXCj1WHlOSIUG9Q7S0NDQ7+8PFAwG4fV6hxzMtddei1NPPRUNDQ3YuXMnbrnlFuh0OsyfP3/IX4uIhk6n2T9E1WkCzImyOAlKSZxfyHWE2SHLMp5/bT1WPXpXyvWxo0Zj3fV3Y3RN/6+F/THqtRhbYUNMlCFKMnRaDQw6TUYSIpNO+RWX9w9aVVuJXCohQUzZdhoAvmoPY3p9GZBIkjZ8ugdzp1Rxx4iIckYUJQQ6Igh4o9DqNCj1WDH58DrUjXPBM8oBrQq6ilLfMnJbbe3atbj55puHXD739ddfY/78+Whra4PH48GRRx6Jt956Cx6PJxNhEhGU7nDJbnEOU6IsDvu7xRVDWVzSh1s+xsW3XwVvIPVNnfuuvQsnzjoubX+eXqfNWJe5ri5yWiAaB3YFlLba+TRoNTrAk697Q4rtbSGEBJFJERFllSzJCPqi8HdGIIkS7GUWTDm8DvUT3KhuKoOBc8PyhqpqDZ5//vlch0BU8DTJsrhEEmRNlMXJid2gYExpmFAsOvydWPbAKrzx3psp1y889WwsOXsRjIb8GJSn1wJmnfIPHY4BO0NKMqTWErn+mAbovqTT9iw/EYopgyeinJFlGZGQMk8oFhVhsZswenIFRk+pQO3YclhsxlyHSMOgqqSIiDJDp1XOBpUkusWZ9cpOgpTYDYoU8OygVCRJwqO/exr3PvdgyvVp46Zi7ZI7Ue3On0HSJp2y6yfKgDeqnBfyRfP73JfVqEODy5qyhK6+3ILd3kiPx4xsYUtEGSRElYYJkWAMRoseFfWlGNNSidqx5XC4LDwnlOeYFBEVKFNydlBifpBBlyiLk5QkSMzji+Xheuujd7Hg1kUQpdSlvY+tWIcjp8/KelzDpcH+ErmYCOxJlMgF86hErj9mgw5zJlb2arZQX27B9PoyvPLhrq7HGlxWWFmmQkRpJsYl+DsiCHoj0Om1KKssQcvsBtSNc8NVY4dWy0SoUDApIioQGig7QSXJsjiDcrEsy0rpVFBQ/8H6TNjTvg/XrF2Odz/535TrV555KS793g+h0+XPBbVOA1gSLdHDMWCXX+kiJ4x8CoLq2M16zJ1ShZAgQohL0Os02OWN4JUPdyGWyOyT3ed4nogKEed0ZZ8kyQj5ovC1hwEA9jILWmY3oH6CG1WNpdDz+1+QBp0Ubdq0adBfdOfO1DM8iCi9us8OcpqV8imdZn+ThHCRlcUlxeJx3P/CL/Doi0+nXD9y+iz85IpbUe4sy3psI2FMdJGTZKU0ri2sDFzN5xK5wTAfcBFoM+lRW2qBEJeUOUVGXiRSYeprThdb0KefLMuIBGPwtYURj4mwOkxonlGFhknKOSGzNT/OldLwDfon6uCDDx50raQsy6yrJMoQi37/bpDNpOwGaRKzg8Lxwr9A7s/r7/wNl991bco1q9mKx1bcj5kTpmU9rpFIlsgZdEqiuy8ItIeBQIG1Rx/K3fADkySiQtTfnC62oE8fIRKHL3FOyFxiQHVTGZqmVqC22QVHuSXX4VEWDTopevLJJzMbCRGlpNV02w1KzA7SJ2YHCWLxlsUl7djzNRb95Hp8vn1zyvUbf7gE5510Vt7dqNFp9jfEiMT3nxeKFmCJHO+GE/XW35wutqAfGeWcUBhBbxQ6gw7lVSWYfmwj6ppdcNXY8+79gtJj0O82F1xwQWYjIaIuA80OChV55+GoEMWap+/Fr15dn3J97uFzcOuly2EvsWU9tpEyaJVkSAYQSJTIdYYLtzEG74arF8+y5NZAc7rYgn5oJElG0BtBoDMKyDLsLiumHV3ddU5Ix+6VRY+34IhUQAOlMUKyLK7EmGiSkJgdFIoVd1lc0h83voLr7r855VqVqwK/WHYvJjSOy3pc6WDWK8lwTFTaabeHAX+08HcBeTdcnbh7l3sDzeliC/qB7T8nFEI8JqHEqZwTapxcgZoxZTBZeE6I9uMrG1GO6LVASSIRKjUrLbS1WkCSirtJwoE27/gCP169BN/sTd3A5c6FN+O7x5ySl+UO2kSJnF4DRERgp08pkSumf3veDVcf7t6pQ39zutiCvn9CJA5fWxiRkHJOqGZMOUZPrUTdOBdspeZch0cqxaSIKIvMySYJRqVJAmcHpRYIB7Hy4dV46c1XU65///jTcONF18Jiys83N70WMOuULcKQoOwMdUSU50Gx4d1w9eHunTr0NaeLLehTE+MSfO1hBH1RGIw6lFfZMLOlErXNLriqbXl544yyi0kRUQZpNUpZXLJJgsUA6BKzg4Qinh2UiizL+NWrv8Gtj/0k5frYUaPxwA0/RWN1fdZjSxeTTimRE2XAG1WSIW+kuJ8DvBuuPty9U48D53SxBX1PkiQj2BmBvzMCAHC4rJh5bA3qxrtQ2cBzQjQ0TIqI0syo69ktzpgYsikmyuLiRVQaNRgfbvkYF99+JbwBX8r1+6+9CyfMOi7rcaVLV0ttrZIIJ7vIBWO5jkwdeDdcfbh7py5sQd+TLMsIBwT42sMQYxJKnGaMO6gGjZM8PCdEI8KkiGiENFB2gJKd4qxG5QIYidlBbJLQW4e/E8seWIU33nsz5foPTz0Hi89eCKMhf9/curfUDseA3YlkSCjAltojxbvh6sLdO1KjrnNC4RjMVgNqx5ajaWolRjXznBClB5MiomHQaQFbokmC07z/4ldKtMyOcDeoF0mS8Ojvnsa9zz2Ycn3auKlYu+ROVLursh5bOiVbakuyMmA1WSLH82L9491w9eDuHalFX+eERo1zobyK54QovZgUEQ1SskmC3QjY2SRh0N768B1cdNsiSFLqcwiPrViHI6fPynpc6WbWA0atsjvY2q2lNlE+4u4d5cqB54ScbivGH8RzQpR5TIqI+nBgkwSzITE7SFYufNkkoW972vdhyT034r3P3k+5fuWZl+LS7/0QOl1+X2D1aKkdB74JKiVy3CmkQsDdO8qW/s4J1Y4th5GzsSgL+Cwj6qarSYJBKYs7sElCMc2PGapYPI77n38Ij/7ulynXj5p+GO66YhXKnWVZjy3d9IkSOUBpqd0aAjqLtKU2EdFw8ZwQqQmTIipqbJIwcq+/8zdcfte1KddKLCV4bMX9mDG+JetxZYJRp7TVFmXlnFBrCPAVeUttIqKh6HVOqNKGmdN4Tohyj0kRFR02SRi5HXu+xqKfXI/Pt29OuX7jD6/BeSedWRBvbmypTUQ0MpIkI+iNwN/BeUKkXkyKqCiwScLIRaIRrHl6LZ5/bX3K9bmHz8Gtly6HvcSW9dgyoXtL7QhbahMRDYksy4gEY/C1hRCPSShxmjhPiFSNSREVpB5NEsyARa/sEMmycrefTRIG7/d/exk3rLsl5VqVqwK/WHYvJjSOy3pcmZJsqS0DCESVEjm21CaibIrERIQEEdG4BJNBC2seNb0QInH42sOIhJRzQtVN5WhqqUTdOJ4TInVjUkQFo6tJQqJb3IFNEuIsixu0zTu+wKV3LsbOfbtSrq9edAu+e8wpWY8rk0w6wKQHYqIyWyjZUpu5EBFlkz8S73NGlF2lXdjEuAR/RxhBnwCdXgtXlQ3Tj61A3Tg3XNU8J0T5QZ0/XUSD0F+TBIFNEoYsEA5i5cOr8dKbr6Zc/8G3votlFy6BxZS5O31xUUJMlCFKMnQ6DQxaDfS6zNWaazTKLqJeC0TjwE4f0BEBwjwvRETdZGvnJhITeyVEALC9LYQNn+7B3ClVqtkxSp4TCnRGIcsyHC4rps2uRv0EN6oaeU6I8g+TIsoreq2yG1RiAErNyp19rRaQJDZJGA5ZlvHc//sf3Pb43SnXm+uasO76u9FYXZ/xWIS4hK37AujslpGUWgxo8thgTPObqy6RDEGjJEA7Q8p5oRhbahPRAbK5cxMSxF4JUdL2thBCgpjTpKjrnFB7GHFBhNVhwtjpVWic7EHNmHKYrTwnRPmLSRGpniXZJMGk7AoZE+8HbJIwfB9s/hgX334FfEF/yvX7r70LJ8w6LmvxxMXeCREAdIZj2LovgLEVtrTsGCVbaksy4IsqZXLeKHcUiSi1bO/cRAcYdibkaBiaEI3D3x5GOBCDyWpA9egyNE2tQG2zC45yS05iIko3JkWkOjqNUgqXPBtkNiiPJZskBNgkYVg6/J1Yum4V/rbpzZTrF33nXFw9/3IYDdm/0xcT5V4JUVJnOIaYKEM/zOsODZQdRYNWSaT3BZXzQgFhZDETUeHL9s6NaYBd8XTvmvdHOScUQdAbgU6vRVmlDdOObkTdOBfKq+3QanlOiAoLkyJSBZNu/26Q3ZhokgBlF0gQlYtZGjpJkvDo757Gvc89mHJ9xvgW3LvkTlS5KrMeW3fiAFs1A62nok201NZpEueFgkqJHEssiWiwsr1zYzXq0OCypkzEGlxWWI2ZLZ2TJRlBXxT+jghkWYa9zIKW2Q1d54T0KjnPRJQJTIooJzTYvxvkMCnts/VaZQcoJiqDMWVuBw3bWx++g4tuWwRJSv2G/fhND+CIaYdmPa6+6Aa44zjQenf6REttAAgJSkvtzggTayIaumzv3JgNOsyZWNnnGaZMnCeSZRnRkHJOKBYVYbGb0NRSidGTPagdWw5ziTHtfyaRGjEpoqwxaHu3zNZqlN2gmAiEeQd/RPa078OSe27Ee5+9n3L9qrN+jB9990LodOq702fQaVBqMaQsoSu1GGDQDZwUGXWAWQfEZWWuUGsI8EVYaklEw5eLnRu7WY+5U6oQEkQIcQlGvRZWY/q73cUEEb62MMJBASazHp46J8ZOq0Lt2HI43dY+P88bEtAaEOCLxOCwGOAuMcJpZeJE+Y9JEWVUsmV2sklCsmV2TFKSIB5wH5lYPI77fvUQHvv9L1OuHzX9MNx1xSqUO8uyHttQ6HVaNHlsfXaf66vJggbKrpBepyTWewLKeaEgW2oTURrkYucm+edm4muLooRAp9JGW6fToLSiBFOPqkfdOBfctY4Bzwnt7AzjhvUf4O+bW7sem93sxpp5LagpZcMFym9MiiitdJpEy2zj/pbZOg0gJcri2CQhPf7y9t+w8CfXplyzWUvw6PL7MWN8S9bjGgmjXouxFbb9c4q0Ghh0qecUaRMttbUa5YzQnoByXigq5iR0Iipg2dq5yRRZlhHyC/C1hyGJMmylZkw+fBQaJ3pQNboMhkHudnlDQq+ECAA2bm7F0vUfYN38GdwxorzGpIhGzJxsmZ3YETLolDv4cUk54M6W2enx1e6vccXd1+Pz7ZtTri+/6FqcO/cHeT05XK/T9ttlruu8kKzsBrWGgM4wn2NElFmZ2rnJpOQ5oWgkDqvNiMaJHoyeWoFRzS5YbENPXloDQq+EKGnj5la0BgQmRZTXmBTRkGk1SmOE7i2z9VqlMUJMAoLcDUqbSDSCNU+vxfOvrU+5ftIRJ+DWS5fBZrVlPbZsMumUM0OirCRBbSFlzhCfZ0RE+8VjIvztYQT9AowmPdy1doxpqcSocS443dYR3TTzRfqvS/YPsE6kdkyKaFCMut5NEjQaQJSUltlskpBev//by7hh3S0p16pcFXh42VqMb2zOelzZlDwvZNAqz7HkeaEQ33eJiLpIkoxAZwT+jgi0Wg2cbgsmHjoKdePdqKhzQJuGwdcA4DD3P8POPsA6kdoxKaKUNFB2g0qSLbO7NUkQJOXClE0S0us/X23Bj+9cjJ2tu1Our150C757zClZjyvbdIn5QloNEIkBuxPnhYQhnheKxESEBBHRuASTQQtrHpa/EBGlIssywgEBvvYIxLiEEqcJkw6tRf1ED2qaymA0p//yzm0zYnazGxtTlNDNbnbDPYySPCI1YVJEXfQHtMxONklIDlDl0Mv0C4SDuOXh1fjTm6+mXP/Bt76LGy9cArPJnPXYss2QOC8kAwhElRK5zsjwzgv5I/E+u0XZM3CxkC1M9IiKmxCJw9cWRiQUg8VmwKjmcjRNrcSo5nKUODP7PuG0GrFmXguWrv+gR2I0u9mNu+a18DwR5b38vTqgtLAYgBKDshtkMypNEpBomR1hk4SMkGUZz/2//8Ftj9+dcr25fgweuO5uNFTXZT22XDDplAQ8LinlcW0hwD+C80KRmNgrIQKA7W0hbPh0D+ZOqcrLRKJQEz0i6p8Yl+DvCCPojUJv1KG8yoaZ06pQN86FssqSrDbXqSm1YN38GWgNCPBHYrCbDXDbOKeICgPfSYtM95bZySYJOo1yASqwZXZG/d9/PsIld1wJX9Cfcv3+a+/CCbOOy3pcudA1X0irtGrf7U/feaGQIKYctIhEYhQSxLxLigo10SOi1GRJRtAXhb8jAlmW4XBZMf2YatRPcKOyoRQ6fXrOCQ2H08okiAoTk6IiYNIru0C2xPmgHi2zRaVZAmVGh68TSx9Yib9t+kfK9Yu+cy4Wn70QBn1x/Ch2Py8UjgG7/EqJ3FDPC/UnGu//CS0MsK5GhZjoEVFPsiwjEorB1xZGTBBR4jBh7PQqNE72oHZsOUwWNjIgyqTiuBIrMt1bZjtMSokcW2ZnjyRJeOTFp7D2Vw+lXJ8xvgX3LrkTVa7KrMYVF6X9g1F1Ghi0qQejZsKB54VaQ4B3mOeFBmIa4A6qMYd3WIerEBM9IlLEBBG+tjDCAQEmqx5VjaXKOaFxLjjKLbkOLy28IQGtAQG+SAwOiwHuEu42kfowKSoQKVtmY3+TBLbMzrx/ffA2fnjrwj7Xn7j5ARzecmhWY0oS4hK27gugM7y/Pq3UYkCTx5bRJMGkU56Logi0h4C28MjOCw2G1ahDg8uacmelwWWFdZDT29VkOIkemzKkD7+XlG6iKCHQGUGgMwqtToOyihK0HFWPuvFuuGrs0Grzdwj3gXZ2hnHD+g96DH6d3ezGmnktqCktjKSPCgOTojzVX8vsGFtmZ82etr1Ycu9yvPfZ+ynXr55/GS45/QLodLm7gIqLvRMiAOgMx7B1XwBjK2xp3THqfl5I6HZeKJyl+UJmgw5zJlb22ZQgHy9mh5rosSlD+vB7SekiyzJCfgG+9jAkUYa9zIwph9ehYaIbVaPLYMjDGzYD8YaEXgkRAGzc3Iql6z/AuvkzuGNEqsFX9DySbJltTyRCJj2g0+4foMqW2dkRi8dx368ewmO//2XK9aNnHoE1i1aizFGa9dhSiYlyr4QoqTMcQ0yUoU/De3E2zgsNlt2sx9wpVQgJIoS4BKNeC6sxf+/uDyXRY1OG9OH3ktIhGlbOCUXDcVjtRjRO9GD01AqManbBMsLZPmovS2sNCL0SoqSNm1vRGhBUFS8VNyZFKmcxADYDYGfL7Jzb8PYbWPST61Ku2awleHT5/ZgxviXrcQ1EHGDLcKD1gWTzvNBQmAusxGmwiR6bMqRPvn4vWe6Xe/GYCH97BEF/FEaTDq4aO8a0VGHUOBdKPda0tNHOh7I0X6T/EgH/AOtE2cSkSGW6t8wuNe8foMqW2bnx1e6vsfAn12LzV1+kXF9+0bU4d+4PsjonYqh0A9SmD7Tel1TnhXzRYQZJgzKYRI9NGdInH7+XLPfLHUmSEeyMwN8ZgUYDOFxWTDikBvUTPKioc0CbxjLlfClLc5j775hnH2CdKJv4CqkCZv3+sjg7W2bnXCQaweqn7sULf/5tyvWTjjgBt166DDarLeuxDYdBp0GpxZCyhK7UYoBBN/ikKNfnhWhghdh9L1fy7XvJcr/sk2UZkaBSHhePiShxmjH+4Bo0TvKgZkw5jBlKRPOlLM1tM2J2sxsbU8Q6u9kN9wjLB4nSiUlRDmg1QImh5wBVg1ZpjMCW2bnzuzf+hKUPrEy5VuOuwkPL7sX4hrFZj2uk9Dotmjy2PrvPDabJgprOC1H/CrH7Xq7k2/cyX8v98pEQjcPfHkY4EIO5xIDqpjKMmVaJUc0u2ErNw/66gz0jlC9laU6rEWvmtWDp+g96JEazm924a16LKhI3oiQmRVli1PUcoGrUAxrN/iYJbJmdG59v34LLVi/GztbdKdfXLFqJ0485OetxpZtRr8XYCtv+OUVaDQy6gecUqfW8EPVNbd338vl8i9q+lwPJx3K/fCLGE220vRHodFqUVdow7ehG1I1zwVVjH3EZ9VDOCOVTWVpNqQXr5s9Aa0CAPxKD3WyA26auhhBEYFKUWSatjDq3Hg0upX22XqtcXMZEtszOpUAogJsfXo2X//FayvUzv/U9LLtwMcym4d/tUyO9TjvoLnMmnXKeLS5lb74QpY9auu8VwvkWtXwvByPfyv3ygSzLCPmi8LZHIEsyHOUWtBzVgPoJblQ1lkKfpufBUM8I5VtZmtPKJIjULz/elfKUxyLBMsoIvZG7QbkmyzL++5Vf444nfppyvbl+DB647m40VNdlPTa1SJ4XMiTOC+3ieaG8luvue4V0viXX38vByrdyPzWLhmLwte9vo900xYPRUypRO7Z8xG20UxnqGSGWpRGlH5OiDNJCRlyUEeVFZc68/58PcfHtVyAQCqZcX3fdT/CtQ4/NelxqwvNClAk835JZfZUl5lO5n9oobbTDCPoFGE16uGvtGNNSiVHjXHC609NGuy/DOSPEsjSi9GJSRAWnw9eJpQ+sxN82/SPl+sWnnY+r5l8Gg764n/56LWDpdl6oLaQkQzwvROnA8y2ZM1BZYr6U+6lByjbah45C/Xh32tto92e4Z4RYlkaUPsV9VUgFQ5IkPPLiU1j7q4dSrs+cMA33Lr4Tla6KrMemNiad0vhDlJXyuLYQzwsVArU1NOD5lswYbFliLv7t1fYc7Mv+NtohxGNS1tpo9yffzggRFSImRZTX/vXB2/jhrQv7XH/i5gdweMuhWY1JjQ48L7QnoCREIZZ2FgQ1NjTg+ZbMUGtZohqfgwfq3Ua7PC1ttNOBZ4SIck8dr1REQ7CnbS+uvmcZ/vfzD1KuXz3/Mlxy+gXQ6XjRpdUoJXJaDRCJAbsDQEeY54UKiVobGvB8S2aosSxRrc9BABBFCYGOzLXRTieeESLKLSZFlBdi8TjW/upBPP77Z1KuHz3zCKxZtBJljtKsx6ZG+sR8IchAMKbMF+oM87xQIVLrzgHyrJ11vlBjWaLanoOyLCPkF+BrC0OWZNjKzJh6pNJGu3p0+tpoZwLPCBHlDpMiUrUNb7+BRT+5LuWao8SOR5bfh+njpmY9LrUy6pQzQ6KsNE1oCwI+nhcqaGrcOeguX9pZ5ws1liWq5TkYDcfga9vfRrtxkgdNLZlro01EhYVJEanO9l07sOju67D5qy9Srq9YcB3O+fb3VVX2kEsaKINWjbr954U6wsoOERU+Ne4cUOaosSwxl8/BeEyEvyOCkC8KvVEHd40dY6ZVYdQ4F0o9mW2jTUSFhUkRqUIkGsGdT92DX//5xZTrJx1xAm69dBlsVlvWY1MrbWK+kE4DROLA14lkKMrzQkVFjTsHlFlqK0vM9nNQkmQEvRH4OyIAAKfbivEH16B+ghuV9c6stdEmosLCpIhy6sU3XsKyB1alXKtxV+GhZfdifMPYrMelZnotYNYpW0RBQWmp3REBRI59KUpq3DmgzEtVlpirltjZeA7KsoxISCmPiwkiShwmjJtZjcbJFagdm5s22kRUWPgqQln3+bbNuHT11djdtjfl+ppFK3H6MSdnPS61S54XkmTAG1WaJ/giPC+ULWqewaK2nQPKvly3xM7UczAmiPC3hxEKCDBZ9KhsKMWYlkqMGueCo9yStvjTzRsS0BoQ4IvE4LAY4C5hAwUitWNSRFkRCAVw88Or8fI/Xku5ftYJ87D0gqthNuV2VoQamfWAUQsIErAvqMwXCgi5jqq45PqCczDY0KB4qaUldrqeg5IoIdAZgb8zAq1Oi7KKEkw5sh71491w1dih1ar7nNDOzjBuWP8B/n7AvKE181pQU6reRI6o2Knj3ZwKkizL+O9Xfo07nvhpyvVx9WPxwPV3o75qVNZjU7vkeSF94rzQN4lkKBrPdWTFRy0XnER9UVtL7OGQZRnhgABfewRiXITNacakWXVonORBdVMZDHlyNs4bEnolRACwcXMrlq7/AOvmz+COEZFKMSmitHv/Px/i4tuvQCAUTLn+wPV3Y84hx2Q9rnygSwxb1WiU7nFtQeW8UI67Khe1QrjgpMKmlpbYwyFE4vC1hxEJxWApMWBUczmapirlcSUOU67DG7LWgNArIUrauLkVrQGBSRGRSjEporTo8HXi+vtvxt/f/1fK9YtPOx9Xzb8MBj2fcqkYEsNWJVmZK9QaUv4r8cBQzuXzBScVh3xryy7GJfg7Igh6I9AZtHBV2THzuErUjXejrLIkr9to+yL9z0LwD7BORLnDK1QaNlEU8fBvn8T9Lzyccv2gCdNxz+I7UOmqyHps+cKkB0xaICYpiVBbiOeF1CbfLjip+ORDW3ZZlhH0ReHviEASZTjKLWiZ3YCGiR5UNZZCVyA/Rw6zod91+wDrRJQ7TIpoyP75wb9x0a2LUq5ptVo8vmIdDms5JOtx5QsNALNB2R2KxIGdfmW+UJjnhVQpHy44qbipuS17NKy00Y6G47DajRg92YPRUyoxqrkc5pLCKyNz24yY3ezGxhQldLOb3XDbCu/vTFQoNLIsF0yBjs/ng9PphNfrhcPhyHU4+Px3m6CLRCAa8v9FcHfbHiy+50b87+cfpFxffPbluOT0C6DVFsbdvkzQJZonaDVAKJaYLxRWdolI3fKh+xxRsm18rtuyx2OiUh7ni8Jo0sFVY8fYaVUYNc4Fp9uasfI4tbTB3tkZxtL1H/RIjGY3u3HXvBZUs/sckWoxKcqgfE+KYvE47n3u53jiD/+dcv3omUdgzaKVKHOUZj22fJI8LyQD8EeVZKgzwvNC+UYtF5xEaiRLMgLeCPwdEQCA023F6CkVaJjoQUWdA1pdZm+Yqa0NdjJB80disJsNcNs4p4hI7XiLk3r587//iivuvj7lmqPEjkeX349p46ZkPa58Y9IpZ4biEtAeAlrDSlJE+YlzgIh6kmUZkZBSHhcTRJQ4TBg3sxqNkytQO7YcxiztoqqxDbbTyiSIKN8wKSIAwPZdO7DoJ9di846tKddvWnAdzv729/O6K1A2aBLDVg1aQBCB3X6gLQyE2XCIiApETBDhbw8jFBBgMutR2VCKMS1KG21HefZ3ZdgGm4jSgUlREYtEI7jzqXvw6z+/mHL9lCNPxMofLYXNast6bPlGm5gvpNUAkRiwO6CcFxLEXEdGRDRykiQj0KmUx2m1GpRWWDH58DrUT3DDXeuAVpu7G2Zsg01E6cCkqAi9+MZLWPbAqpRrNZ5qPLT0HoxvGJv1uPKRPnFeCLIybLU1BHSGAZHnhYgoz8myjEgwBm9bCGJMQkmpGZMOrUXDJA9qmspgMKnjEoJtsIkoHdTxikYZ9/m2zbh09dXY3bY35fqaRStx+jEnZz2ufGXUAWYdEJeVpgltQWXYKnMhIsp3sWgcvvYwwoEYzCUG1I4pR1NLJUY1u2ArNec6vF7YBpuI0oFJUQHzBwO4+eE78Mo/N6RcP+uEeVh6wdUwm9T3JqdGmsSwVaNOKYvbEwDaw8oOERFRPpNECf7OCAKdUeh0GpRV2jDt6EbUjXPBVWNX9XlSp9WINfNa+myDzfNERDQYTIoKjCzLeObl53Hnk/ekXB/f0Ix11/0E9VWjsh5bvtIm5gvpNEA0DnydOC8U5XkhIspjsiwj7BfgbQ9DEmXYSs2YcngdGiZ5UD26FPo86rZYU2rBuvkz2AabiIaNSVGBeP8/H+Li269AIBRMuf7z63+K4w85Outx5TNdonkCNEBISJwXiigttomI8pUQicPXFkYkFIPFZkTDRA9GT6lA3TgXLHlcasY22EQ0EkyK8li7twM3rLsFf3//XynXL/nuBbjyzB/DoOc/81Akh61KsnJOqDWk/Hcow1aTgz6jcQkmgxZWzrghohwS4xL8HREEfVHo9Fq4qm2YOa0KdeNcKKssUXV5HBFRNvBqOc+IooiHf/sk7n/h4ZTrB02YjnsW34FKV0XWY8t3Jp3yKyYpiVBbCAgIQ/86/kgcGz7dg+1toa7HGlxWzJlYCXuWhhkSEcmyjJAvCl9HBJIow1FuQctR9WiY6EFVYyl0em2uQyQiUg1eoeWJf/zfv7HgtkUp17RaLR5fsQ6HtRyS9bjynQaA2aDsDkXjwE6/0jwhEh/e14vExF4JEQBsbwthw6d7MHdKFXeMiCijouEYfG1hRMNxWO1GjJ7swegplRjVXA5zCcvLiIhSYVKkYrvb9uDqny3D+//5MOX64rMvxyWnXwCtlnf7hkqXaJ6g1QDhGLArpDRPiI3wvFBIEHslREnb20IICSKTIhoUlmDSUIhxCb72MILeKAwmHVw1doydVoVR41wo9VhZHkdENAAmRSojxGJY+6sH8cQf/jvl+jEHHYnVi25Bmb0067EVguR5IRlAILq/ecJQzgv1JzpAFwaBXRpoEFiCSYMhSzKCvij8HWHIMuBwWTHzuBrUTXCjst7J8jgioiHgu6tKvPbW67jypzekXHPanHh0+X1oaZ6c9bgKRfK8UFxWyuPaQoA/A8NWTQNchBh5kUIDYAkmDSQaisHbFoYQjcNqN2HMtCqMnlKB2rHlMFkMuQ6PiCgvMSnKoW27vsKiu67Flq+/TLl+88XXY/6JZ7DsYZg0UHaFDFpAkIDdiWGroQwOW7UadWhwWVOW0DW4rLAaeTFL/WMJJqUSj4nwt0cQ9EdhNOnhrrVjTKJ7nNNtzXV4RER5j0lRlkWiEdzx5M/wPxt+l3L9lCNPxMpLl8FmKcl6bIWi+7DVSFxJhjrCgJCFYatmgw5zJlb2WfrEi1kaCEswKUmWZAS8EQQ6o5BlGU63FRMOqUH9BA8q6hzQ6rjzTESULkyKsuTFN17CsgdWpVyrrajBQ0t/hnH1Y7MeVyHRawGzTtkiCiaHrYYBMd01cgOwm/WYO6UKIUGEEJdg1GthNfKQPA0OSzCLmyzLiIbj8LWFIERFlDhMaJ5RhcbJSnmckWfKVMEbEtAaEOCLxOCwGOAu4eBYonzHV9cM+nzbZlx625XY3b435fpPrlyF78w+KetxFRpj4ryQJAPe5LDVSPrPCw2FmZ3CaJhYglmc4jERvvYwQn4BJrMenjpnV/c4R7kl1+FRNzs7w7hh/Qf4++bWrsdmN7uxZl4Lakr5b0WUrzSyLOfy2jGtfD4fnE4nvF4vHA5HTmN57rnncM455/R6/OwTz8ANF1wNk9GUk7gKiVkPGLVKG+2OsHJeaDjDVonUht3nioMkyQh6I/B3RKDRAE63FU0tVaif4IZnlANaLc+Tqo03JGDRr/63R0KUNLvZjXXzZ3DHiChP8d01Q3bu3Nn1/+MbmrHuup+gvmpUTmMqBBoAFoNyXigqAt/4lYRouMNWidSIJZiFS5ZlRELKcNW4IKLEacL4g2vQOMmDmjEsj1O71oCQMiECgI2bW9EaEJgUEeUp1b76rlmzBsuWLcNVV12FtWvX5jqcIbvmmmtwXO0sODRaiAa+QI6UTgNY9EpWFI4pJXIdYYBnzqlQsQSzsMSFRHlcQCmPq2woxdhplRg1zgV7GUuu8oUv0n/7Uv8A60SkXqpMit555x08/PDDaGlpyXUow6bRaFBisQKRSK5DyWvdh636E+eFvGkctkpElCmSJCPYmSiP02pQWmHF5MPrUD/BDXcty+PykcPc/xwo+wDrRKReqkuKAoEAzjnnHDz66KO4/fbbcx0O5UiPYashoC0M+KK5joqIqH+yLCMSTJTHxUSUOM2YcEgtGid7UNNUBoNJdW+7NARumxGzm93Y2MeZIreNlSFE+Up1r84LFy7EySefjDlz5gyYFEWjUUSj+6+UfT5fFiKkTOkxbFXMzrBVIqJ0iAki/MnucVY9qpvK0NRSibpxLthKzbkOj9LEaTVizbwWLF3/QY/EaHazG3fNa+F5IqI8pqqk6Pnnn8emTZvwzjvvDOrjV69ejVWrUs/+ofyhTZwX0uZg2CoR0XBJkoxAZwSBzgg0Gg3KKksw5ch61I93w1VjZ3lcgaoptWDd/BloDQjwR2Kwmw1w2ziniCjfqSYp2rFjB6666ir8+c9/htk8uLtqy5Ytw5IlS7p+7/P5UFdXl8EoKZ30ifNCQG6HrRIRDVav8rhSMyYeUouGSSyPKyZOK5MgokKjmjlFv/vd7/Dd734XOt3+bkuiKEKj0UCr1SIajfZYS0VNc4oA4PPfbYIuEmH3uQN0H7bqU8mwVSKi/sQEEb62MMIBASarAZX1ToyZVolRzSyPIyIqBKq5pXX88cfjww8/7PHYD3/4Q0yYMAE33HDDgAkRqV/3Yav7ghy2SkTq1lUel+geV1ZZgpaj6lE33g13rR0aDcvjiIgKhWqSIrvdjilTpvR4rKSkBC6Xq9fjlD84bJWI8sn+8rgQ4jEJtlIzJs4ahcZJHlQ3lcFg5A06IqJCpJqkiApLctiqRqN0j0ueF4px2CoRqdCB5XHVTeUsjyMiKiKqToreeOONXIdAQ8Rhq0SUL1geR0RESapOiih/cNgqEeWDA8vjSlgeR0RETIpoJDhstX+RmIiQICIal2AyaGE16GA28IKLKBeSw1XDAQFGy/7yuLpxLpQ4WR5HRFTsmBTRkGk1SjKk47DVPvkjcWz4dA+2t4W6HmtwWTFnYiXsZv7YEWVDquGqU49keRwREfXGqzMaNL0WMOuULSIOW+1bJCb2SogAYHtbCBs+3YO5U6q4Y0SUISmHqx7K8jgiIuofkyIaUPdhq94o0JZonsBcKLWQIPZKiJK2t4UQEkQmRURpliyPC/mT3ePK2D2OiIgGjUkR9cmkB0yJYautISUZ4rDVgUXj/fcdFwZYJ6LBSZbH+Tsi0Go1KK2wsjyOiIiGhUkR9aABYDYozRMicQ5bHQ6TXtvvunGAdSLqmyzLiIQS5XGCiBKnGRMPqUXjZA9qmspgMPFtjYiIho7vHgQkhq2a9UoThVAM2BVSkiEOWx06q1GHBpc1ZQldg8sKK880EA1ZXBDhaw8jFBBgsuhRPboMTVMrUDfezfI4IiIaMSZFRU6vBSyJYauBxLDVTg5bHRGzQYc5Eyv77D7H80REgyNJMoJepTxOo1HK4yYfXof6CW64ax3QalkeR0RE6cGkqEglmyeIsjJbqC0E+KNsnpAudrMec6dUISSIEOISjHotrEbOKSIaiCzLiIZi8HaVx5kw/uAaNE6uQO0YlscREVFm8N2liGgSzROMOmWm0B4OW80oM4e1Eg1aPJYoj/Mp5XGVDaUYO62S5XFERJQVTIqKQPdhq9E48HVi2GqUw1aJKIdkSUagqzwOcLqtmDRLKY/zjGJ5HBERZQ+TogKm0yjnhaABQsL+80LsCE1EuaR0jwtBiIoocZgwbmY1Rk+pQM2YchjNfFsiIqLs47tPATJolZ0hSQZ8yWGrUTZPIKLcicdE+NsjCPqjMJr18IxyYuz0Kowa54Kj3JLr8IiIqMgxKSogJh1g1ANxUdkVag8Bfg5bJaIckSUZQV8U/o4IIMtwuK2YcEgN6id4UFHngFbHmV1ERKQOTIrynAbKrpBeqzRP2OVTzguFOWyViHIkGlaGqwqROCx2E8ZMq0TT1ErUjmV5HBERqRPfnfKUNnFeSKsBwjFgl185LySweQIR5YAYlxLd46IwmHRw1zowZloV6sa54HRbcx0eERFRv5gU5Rl94rwQZCAYSzRPCCvzhoiIskmWE+Vx7RHIsgyHy4oZx9agfqIblfVOlscREVHeYFKUJ7oPW/VGlGTIF+GwVSLKPiESh7cthGgoDqvdiNFTK9A0pQK1zS6YrYZch0dERDRkTIpUzqxXusnFJWBfEGgLA0E2TyCiLBPjEvwdEQS9EeiNOriqbBg7oxp145XyOI2GM4WIiCh/MSlSIQ0AiyExbFUEdvqV5gkRNk8goiySZRkhvwBfexiyKMNebkHL7AY0TvKgsqEUOj3L44qBNySgNSDAF4nBYTHAXWKE02rMdVhERGnFpEhFksNWNRog1O28UIzDVokoi4RoHL62MCLBGCw2IxomejCmRekeZ7HxYriY7OwM44b1H+Dvm1u7Hpvd7MaaeS2oKeV8KSIqHEyKVCA5bFUG4E8MW+2McNgqEWWPJErwd0bg74hAr9eivNqGmceNRt14N8oqS1geV4S8IaFXQgQAGze3Yun6D7Bu/gzuGBFRwWBSlEPdmye0h5VkyBfNdVREVCxkWUY4IMDXHoEYF2ErNWPqEfVonOxB9egylscVudaA0CshStq4uRWtAYFJEREVDCZFWaYBYNIDBh0QE4E9ASUhCsVyHRkRFYuYIMLXFkI4EIO5xIBRzeUY01KJUeNcsNpNuQ6PVMIX6f+NyT/AOhFRPmFSlCVajVIip9MoDRP2JpIhDlslomyQJBmBzggCHRFodBqUVZRg2tGNqBvvhqvaxvI46sVh7r+9un2AdSKifMKkKMN0WqWTHDRASFCaJ3REAJHNE4gow2RZRiQUg681jHhMREmpGRNnjULjJA+qm8pgMOpyHSKpmNtmxOxmNzamKKGb3eyGm003iKiAMCnKIBlK8uOLKsmQl8NWiSgL4jERvvYwwn4BRose1U1laGqpRN04F2yl5lyHR3nCaTVizbwWLF3/QY/EaHazG3fNa+F5IiIqKEyKMqg1osPurVGYXHzjIKLMkiUZAa/SPU6jAZyeEkw+rA71E9xw1zqg1bI8joauptSCdfNnoDUgwB+JwW42wG3jnCIiKjxMijIoLGrQGZRQ6cp1JERUqKKhGLxtIQgRESVOE8bNrMboKRWoGVMOo5kv8TRyTiuTICIqfHzHLFKRmIiQICIal2AyaGE16GA28HwBUa4M5WdSjEvwtYcR9EVhNOnhrnVg7PQq1I13w1HOgZpERERDxaSoCPkjcWz4dA+2t4W6HmtwWTFnYiXsvLNMlHWD+ZmUZRkhXxS+9ghkWYbDZcXM42rQMNGDijoHtDrOFMoGb0hAa0CALxKDw2KAu4S7KEREhYBXwEUmEhN7XXwBwPa2EDZ8ugdzp1Rxx4goiwb6mTx+rBuCL4pIKA6r3YjRUyrQNLUCo8a5YLKwJXI27ewM44b1H/QYaDq72Y0181pQU8odOiKifMakqMiEBLHXxVfS9rYQQoLIpIgoi1L+TMoyTIKEtu1e7C0xobGxDGNnVKNuvAtOt5UzhXLAGxJ6JUQAsHFzK5au/wDr5s/gjhERUR5jUlRkovH+ByQJA6wTUXp1/UzKMvRxGaaYCI0ECEYd9rnNaDl9Ao45rB46Pcvjcqk1IPRKiJI2bm5Fa0BgUkRElMeYFBUZ0wAXVkZeeKkGm2EUB50kwxyOwyDKiOs08NmM8JYa4bcbENdr0TjezYRIBXyRWL/r/gHWiYhI3ZgUFRmrUYcGlzVlCV2DyworJ9yrApthFDZJkhHojCDQEUFcllFZWYKPZBE+uxERsw5IlMfNbnbDbePugxo4zP2f37IPsE5EROrG249FxmzQYc7ESjS4rD0eT15wcyci9wY6eB+JiTmLjYZPlmWEgwL2fOXFrq0dkCQZE2eNwqkLZmLl6hMw4Yh6RCz6HgnRXfNaWJKlEm6bEbOb3SnXmLwSEeU/3nIuQnazHnOnVCEkiBDiEox6LaxGlmapBZthFJZ4TISvPYywX4DRrEf16DI0tVSibpwLtlJz18etmz8DrQEB/kgMdrMBbhtbPauJ02rEmnktWLr+A2w8oPsck1ciovzHpKhImXk+RbXYDCP/yZKMoC8Kf4cyU6jUY8WkWXVomOiGu9YBrbZ39zinlUmQ2tWUWpi8EhEVKCZFRCrDZhj5KxqOwdcWhhCJw+owYez0SoyeUonaseUw8ixYQWDySkRUmPguTaQybIaRX8S4BH9HGAFvFAajDu5aO8ZOr0bdOGWmEBEREakfkyIilUk2w+ir+xzLHgcnky3NZVlGyC/A1x6GJMpwlFsw45hG1E/0oKrBCa2Ou3lERET5hEkRkQqxGcbIZKqleSwah7ctjEgoBkuJEQ0TPRjTUolRzeUwl7CkioiIKF8xKSJSKTbDGJ6BWprPnVI1pO+rJMkIdITh74xCp9OgvMqGGceORv0EN8oqS6DR9G6aQERERPmFSRERFZR0tDSXZRmRoNI0IR4TYSs1Y/Jho9A4yYPqpjLomawSEREVFCZFRFRQRtLSPDlTKOQXYLLoUd1UhjHTlJlCJU5zn59HRERE+Y1JEREVlKG2NE/OFPK1h6HRAE5PCSYfVoeGiR64auwpZwoRERFRYWFSREQFZbAtzZMzhaKROEocJjTPqMboKRWcKURERFSE+M5PRAWlv5bmx43zINIZRZs3Aj1nChEREVECkyIiKjjdW5pHYyLkqIi4X0BwdxD2cgumHd2IhkkeVNY7oRug3C5feEMCWgMCfJEYHBYD3CVGOK1sE05ERDQYTIqIqCDpJBmyLwoxGIOlxIDGqZVomlqBUc0uWGyFlSzs7AzjhvUf4O+bW7sem93sxpp5LagpteQ0NiIionzApIiICoYkyQh0RhDoiECr06Cs0oZpxzSiYYKnYGcKeUNCr4QIADZubsXS9R9g3fwZ3DEiIiIaAJMiIsprsiwjGorB2xZGXBBRUmrGxFnKTKGaMYU/U6g1IPRKiJI2bm5Fa0BgUkRERDQAJkVElJfEuARfWxhBfxQmsx6VDaUYO70KdeNcsJUWz0whXyTW77p/gHUiIiJiUkREeUSWlZlC/vYwZBlwuq2YeGgt6id64BnlKMqZQg6zod91+wDrRERExKSIiPKAEInD1xZCJBSH1WFEU0tVV9OEYp8p5LYZMbvZjY0pSuhmN7vhLrCmEkRERJlQ3FcTRKRakijB3xlBoDMCnV4Ld7UdY2dUo268MlOoEJsmDIfTasSaeS1Yuv6DHonR7GY37prXwvNEREREg8CkiIhUQ5ZlRIJK0wQxJsJWZsbUIxvQOMmDqsbSgpkplG41pRasmz8DrQEB/kgMdrMBbhvnFBEREQ0WkyIiyrm4IMLXHkbIL8BcYkDt2DKMaalC3XgXrHZTrsPLC04rkyAiIqLhYlJERDkhS0rTBF97GBqNBqUVVkw9sh51491w19pZHkdERERZw6SIiLIqGo7B1xZGNBJHicOEcQfVYPRkD2rHlsNgyo+XJG9IQGtAgC8Sg8NigLuEuzRERET5LD+uQIgor4miBH97BEFvBHqjDp5RDoyZVoX68S44XNZchzckOzvDuGH9Bz0Gps5udmPNvBbUlFpyGhsREREND5MiIsoIWZYRDgjwtoUhiTIc5RZMO7oRDZM8qKx35mXTBG9I6JUQAcDGza1Yuv4DrJs/gztGREREeYhJERGlVUwQ4WsLIRyIwVxiQP14N8ZMq8SoZhcseT4zpzUg9EqIkjZubkVrQGBSRERElIeYFBHRiEmSjKA3An97BBqtBmWVJZh2dCPqJ7hRXmUrmKYJvkis33X/AOtERESkTkyKiGjYoqEYvG0hCFERNqcJE/6rBo1TKlAzphwGoy7X4aWdw2zod90+wDoRERGpE5MiIhoSMS7B3xFG0BuFwaSHZ5QDY6dXo268C/aywm404LYZMbvZjY0pSuhmN7vhzvPyQCIiomLFpIiIBiTLMsL+RNMESYbTZcGMY0ejYZIHFXUOaHX51zRhOJxWI9bMa8HS9R/0SIxmN7tx17wWniciIiLKU0yKiKhP3ZsmWGxGNEzyYExLJUY1l8NcUpwJQE2pBevmz0BrQIA/EoPdbIDbxjlFRERE+YxJERH1IEkyAp0RBDoi0Og0KK8swbRjGtEwwYOyypKCaZowEk4rkyAiIqJCwqSIiAAAkVAMvrYQYlERJU4zJh5ai8bJFagZUwa9ofCaJhARERElMSkiKmJiXIKvPYygLwqjSQ9PnRNjp1WhfoIbtlJzrsMjIiIiygomRURFRpZlhPwCfG1hyLIMh8uKmcfVoGFicTVNICIiIkpiUkRUJGKCCG9rCJFQDJYSIxonedDUUolR41wwWzlfh4iIiIoXkyKiAta7aYIN049l0wQiIiKi7pgUERWgA5smTDikFqOnsGkCERERUSpMiogKhBiX4O8II+Bl0wQiIiKioWBSRJTHZFlG2C/A2xaGJMlwuq2YeWwNGiaxaQIRERHRYDEpIspDMUGEry2EcFBpmtAwyYMxLZUY1VwOcwmHihIRERENBZMiojwhSTKCnRH4OiLQajUoryrBtGPYNIGIiIhopJgUEalcNBSDty0EISrC5jRhYqJpQnVTGQxGNk0gIiIiGikmRUQq1LNpgg7uWgeaZ1SjbrwL9jJLrsMjIiIiKihMiohUQpZlhANK0wRZlGEvt2DGMY1omORBZb2TTROIiIiIMoRJEVGOKU0TwggHBJhLDKgf78aYaZWoG+di0wQiIiKiLGBSRJQDsiQj4I3A3xGBRqNBWWUJWmbXo36CB65qG5smEBEREWURkyKiLIqGY/C1hRGNxFHiMGHcQTVomlqBmqYyGEz8cSQiIiLKBV6FEWWYKEoIdEQQ8EahN2jhrrVj7PRq1E9ww1HOpglEREREuaaqk9sPPfQQWlpa4HA44HA4cNhhh+GVV17JdVhEQ5ZsmrB7uxe7t3VCo9Wg5ah6nHTRDJz6o4Mx5fA6JkREREREKqGqnaJRo0ZhzZo1aG5uhizLePrpp3Haaafhf//3fzF58uRch0c0oHhMhK89jJBPgMlqQO3YMoydVoW68W5YbGyaQERERKRGqkqKTj311B6/v+OOO/DQQw/hrbfeYlJEqiXLMoLeKPwdEciyjFJPCSYfVoeGiR64a+1smkBERESkcqpKiroTRRH/8z//g2AwiMMOOyzlx0SjUUSj0a7f+3y+LEZIxU6IxOFrCyESisPqMGLMtEo0Ta1E7dhyGM2q/dEiIiIiogOo7srtww8/xGGHHYZIJAKbzYYXX3wRkyZNSvmxq1evxqpVq7IeIxUvSZIR6AjD3xmFTq+Bq9qOg2dUo268C063lbtCRERERHlII8uynOsguhMEAV999RW8Xi9+85vf4LHHHsPf/va3lIlRqp2iuro6eL1eOByOLEfe25+f/QDbP9mHynpnrkOhEZBlGdFQDN7WMOIxEbZSMxomezB6cgWqR5dBp1dVvxIiIiIiGiLV7RQZjUaMHTsWAHDQQQfhnXfewX333YeHH36418eaTCaYTKYcREnFQIxL8LWHEfRFYTLrUdlYirHTq1A/3oUSpznX4RERERFRmqguKTqQJEk9doOIMkmWZYT8AnztYciSDIfLipnH1aBxkgeeOie0WpbHERERERUaVSVFy5Ytw9y5c1FfXw+/34/nnnsOb7zxBl599dVch0YFLiaI8LWFEA7EYLEZ0TjRgzHTKlHb7ILZash1eERERESUQapKivbu3Yvzzz8fu3btgtPpREtLC1599VV861vfynVoVIBkSUbAG4GvPQKtVoOyyhJMO6YRDRM8KKssYdMEIiIioiKhqqTo8ccfz3UIVASiYaVpghCNo8RhwoT/qsHoKRWoGVMOg1GX6/CIiIiIKMtUlRQRZYokSvB3RBDwRqE3aOEZ5cDY6VWoG++Go9yS6/CIiIiIKIeYFFHBkmUZkWAM3rYwpLgEW5kZLUfVo3FyBaoanNDq2EqbiIiIiJgUUQGKx0T428MI+gWYLAbUji3D2GnKrpDFZsx1eERERESkMkyKqCDIsoyQLwpfexiQAafHikmH1aFhogfuWjubJhARERFRn5gUUV4TonH42sKIBGOw2o1oaqlC09QKjGp2wWjm05uIiIiIBsarRso7kiQj0BmBvyMMrU4LV7UNM49vQv0EN0o9Vu4KEREREdGQMCmivBENxeBtCyEWFVHiNGPSrDqMnuxBdVMZ9Aa20iYiIiKi4WFSRKomihL87REEvBEYTbpEK+1q1E9ww1ZqznV4RERERFQAmBSR6nRvpS3GJTjKLZhxTCMaJnlQWc9W2kRERESUXkyKSDXiMRG+tjBCfgHmEgNGNZdjzLQq1I1zsZU2EREREWUMkyLKKVmWEfRF4W+PQJZllFaUYPIR9Wic6Iarhq20iYiIiCjzmBRRTsSicXh7tNKuxJiWStSOLWcrbSIiIiLKKl59UtZ0b6Wt02nhqrbjoDlVqJ/ghtPNVtpERERElBtMiijj2EqbiIiIiNSMSRFlBFtpExEREVG+YFJEaZOqlfb0oxvROJmttImIiIhIvZgU0YjFYyJ87WGEfAJMVgNqx5Zj7LRK1I13s5U2EREREakekyIaFlmWEfJF4WsPAzLg9Fgx+bA6NEz0wF3LVtpERERElD+YFNGQxAQR3tZQVyvt0VOVVtqjml1spU1EREREeYlXsTQgWZIR8Ebg74hAq9WgrNKGmceNRv0EN0orSrgrRERERER5jUkR9SkajsHbGoYQicNWasKE/6rF6CkVqBnDVtpEREREVDiYFFEPkijB3xFBwBuF3qBNtNJWBqzayyy5Do+IiIiIKO2YFJHSSjsUg681hHhchr3MjJaj6tE4yYPKhlLo9GylTURERESFi0lRERPjEnztYQS9UZgselQ3lWPs9CrUjXfBajflOjwiIiIioqxgUlRkZFlG2C/A2xaGLMtwuKw4aE4NGiZVwDPKAa2WTROIiIiIqLgwKSoScUGEty2McECAxWZAwySP0kp7nAtmqyHX4RERERER5QyTogImyzKCXmXAqkajQVllCVpm16NhogflVTa20iYiIiIiYlJUmIRIHL62ECKhOKwOE5pnVKOppRK1Y8pgMPGfnIiIiIioO14hFwhJkhHoVAas6nQauGrsOHhGNeonuOF0W3MdHhERERGRajEpynPKgNUQYlERJaVmTJo1Shmw2lTGVtpERERERIPApCgPdQ1Y7YxAb9TBM8qB5sSukK3UnOvwiIiIiIjyCpOiPCHLMiLBGLxtYYhxEfYyC1pmN2D0lApU1juh1XFXiIiIiIhoOJgUqZwYl+BrCyPoi8Jk1aN2TBnGTKtC/QQ3LDZjrsMjIiIiIsp7TIpUqGvAansYsiTD6bZi4qG1aJjkgbuWA1aJiIiIiNKJSZGKHDhgtXGiB2OmKQNWTRYOWCUiIiIiygQmRTmWasDqtKMb0DDRg7LKEg5YJSIiIiLKMCZFOSJE4/C1hhEJxfYPWJ1agdqx5RywSkRERESURbz6zqL9A1bD0Om0cFXbcfBMDlglIiIiIsolJkVZoAxYDUOIxmFzmjDpUGXAanVTGfQGXa7DIyIiIiIqakyKMizojQJA14DVuvEu2MssuQ6LiIiIiIgSmBRlUGWdEyUOExoneVDVWMoBq0REREREKsSkKINaZjfkOgQiIiIiIhoAty6IiIiIiKioMSkiIiIiIqKixqSIiIiIiIiKGpMiIiIiIiIqakyKiIiIiIioqDEpIiIiIiKiosakiIiIiIiIihqTIiIiIiIiKmpMioiIiIiIqKgxKSIiIiIioqLGpIiIiIiIiIoakyIiIiIiIipqTIqIiIiIiKioMSkiIiIiIqKixqSIiIiIiIiKGpMiIiIiIiIqakyKiIiIiIioqDEpIiIiIiKiosakiIiIiIiIihqTIiIiIiIiKmpMioiIiIiIqKgxKSIiIiIioqLGpIiIiIiIiIoakyIiIiIiIipqTIqIiIiIiKio6XMdQDrJsgwA8Pl8uQ6FiIiIiIhUwG63Q6PR9PsxBZUU+f1+AEBdXV2uQyEiIiIiIhXwer1wOBz9foxGTm6vFABJkrBz585BZYOkXj6fD3V1ddixY8eAT2CiJD5vaKj4nKGh4nOGhorPGXUoup0irVaLUaNG5ToMShOHw8EXEBoyPm9oqPicoaHic4aGis8Z9WOjBSIiIiIiKmpMioiIiIiIqKgxKSLVMZlMuOWWW2AymXIdCuURPm9oqPicoaHic4aGis+Z/FFQjRaIiIiIiIiGijtFRERERERU1JgUERERERFRUWNSRERERERERY1JERERERERFTUmRZQTP//5z9HY2Aiz2YxDDz0Ub7/99qA+7/nnn4dGo8Hpp5+e8RhJfYbyvHnqqaeg0Wh6/DKbzVmNl3JvqK81nZ2dWLhwIaqrq2EymTBu3Di8/PLLWYuXcm8oz5ljjjmm1+uMRqPBySefnNWYKbeG+jqzdu1ajB8/HhaLBXV1dVi8eDEikUjW4qXUmBRR1r3wwgtYsmQJbrnlFmzatAnTpk3DiSeeiL179/b7edu2bcO1116Lo446KmuxknoM53njcDiwa9eurl/bt2/PasyUW0N9zgiCgG9961vYtm0bfvOb3+Dzzz/Ho48+itra2qzHTrkx1OfMb3/72x6vMR999BF0Oh2+//3vZz12yo2hPmeee+45LF26FLfccgs+/fRTPP7443jhhRdw4403Zj12OoBMlGWHHHKIvHDhwq7fi6Io19TUyKtXr+7zc+LxuHz44YfLjz32mHzBBRfIp512WpaiJbUY6vPmySeflJ1OZxYjJLUZ6nPmoYcekpuammRBELIYJanJcN6furv33ntlu90uBwKBDEZJajLU58zChQvl4447rsdjS5YskY844oiMx0r9404RZZUgCHjvvfcwZ86crse0Wi3mzJmDf/3rX31+3q233oqKigosWLAgS5GSmgz3eRMIBNDQ0IC6ujqcdtpp+Pjjj7MUMeXacJ4zf/jDH3DYYYdh4cKFqKysxJQpU3DnnXdCFMUsRk65MtzXxVrRdQAADnhJREFUme4ef/xxnHXWWSgpKclgpKQWw3nOHH744Xjvvfe6Suy2bt2Kl19+GSeddFLW4qbU9LkOgIpLa2srRFFEZWVlj8crKyvx2WefpfycN998E48//jjef//9LEVJajOc58348ePxxBNPoKWlBV6vFz/96U9x+OGH4+OPP8aoUaOyFDnlynCeM1u3bsXrr7+Oc845By+//DK2bNmCyy+/HLFYDLfcckuWIqdcGc5zpru3334bH330ER5//PEMRklqMpznzNlnn43W1lYceeSRkGUZ8XgcP/7xj1k+pwLcKSJV8/v9OO+88/Doo4/C7XbnOhzKI4cddhjOP/98TJ8+HUcffTR++9vfwuPx4OGHH851aKRSkiShoqICjzzyCA466CCceeaZWL58OX7xi1/kOjTKA48//jimTp2KQw45JNehkIq98cYbuPPOO/Hggw9i06ZN+O1vf4s//elPuO2223IdWtHjThFlldvthk6nw549e3o8vmfPHlRVVfX6+C+++ALbtm3Dqaee2vWYJEkAAL1ej88//xxjxozJQuSUS0N93qRiMBgwY8YMbNmyJUNRkpoM5zlTXV0Ng8EAnU7X9djEiROxe/duCIIAo9GY8bgpd0byOhMMBvH888/j1ltvzXCUpCbDec7cdNNNOO+883DxxRcDAKZOnYpgMIgf/ehHWL58ObRa7lfkCr/zlFVGoxEHHXQQ/vKXv3Q9JkkS/vKXv+Cwww7r9fETJkzAhx9+iPfff7/r13e+8x0ce+yxeP/991FXV5flvwHlwlCfN6mIoogPP/wQ1dXVGYyU1GI4z5kjjjgCW7Zs6brxAgD/+c9/UF1dzYSoCIzkdeZ//ud/EI1Gce6552YhUlKL4TxnQqFQr8QneSNGluUMR0z9ynWnByo+zz//vGwymeSnnnpK/uSTT+Qf/ehHcmlpqbx7925ZlmX5vPPOk5cuXdrn57P7XHEa6vNm1apV8quvvip/8cUX8nvvvSefddZZstlslj/++OMc/i0om4b6nPnqq69ku90uL1q0SP7888/ll156Sa6oqJBvv/32HP4tKJuG+/505JFHymeeeWYOIqZcG+pz5pZbbpHtdrv8q1/9St66dav82muvyWPGjJF/8IMf5PBvQbIsyyyfo6w788wzsW/fPtx8883YvXs3pk+fjv/3//5f10HFr776itvH1MtQnzcdHR245JJLsHv3bpSVleGggw7CP//5T0yaNCmHfwvKpqE+Z+rq6vDqq69i8eLFaGlpQW1tLa666irccMMNOfxbUDYN5/3p888/x5tvvonXXnstR1FTLg31ObNixQpoNBqsWLEC33zzDTweD0499VTccccdOfxbEABoZO7VERERERFREePteCIiIiIiKmpMioiIiIiIqKgxKSIiIiIioqLGpIiIiIiIiIoakyIiIiIiIipqTIqIiIiIiKioMSkiIiIiIqKixqSIiIiIiIiKGpMiIiLKOI1Gg5UrVw7qYxsbG3HhhRdmPKaR2LNnD8444wy4XC5oNBqsXbsWALB582accMIJcDqd0Gg0+N3vfpfrUImIaBCYFBERFZmnnnoKGo2m65fZbMa4ceOwaNEi7NmzJysx/POf/8TKlSvR2dmZlT9vKERRRE1NDTQaDV555ZWUH7N48WK8+uqrWLZsGZ555hl8+9vfBgBccMEF+PDDD3HHHXfgmWeewcEHH5zW2EKhEFauXIk33ngjrV+XiKjY6XMdABER5catt96K0aNHIxKJ4M0338RDDz2El19+GR999BGsVmta/6xwOAy9fv9bzj//+U+sWrUKF154IUpLS3t87Oeffw6tNnf37F5//XXs2rULjY2NePbZZzF37tyUH3Paaafh2muv7XosHA7jX//6F5YvX45FixZlJLZQKIRVq1YBAI455piM/BlERMWISRERUZGaO3du107GxRdfDJfLhXvuuQe///3vMX/+/LT+WWazedAfazKZ0vpnD9V///d/Y+bMmbjgggtw4403IhgMoqSkpMfH7N27t1cyt2/fPgDo9TgREakfy+eIiAgAcNxxxwEAvvzySwBAPB7HbbfdhjFjxsBkMqGxsRE33ngjotFoj8979913ceKJJ8LtdsNisWD06NG46KKLenxM9zNFK1euxHXXXQcAGD16dFcZ37Zt24ADzhS9++670Gg0ePrpp3vF++qrr0Kj0eCll17qeuybb77BRRddhMrKSphMJkyePBlPPPHEoL8H4XAYL774Is466yz84Ac/QDgcxu9///uu9WTpoSzL+PnPf94V+8qVK9HQ0AAAuO6666DRaNDY2DjkuCKRCFauXIlx48bBbDajuroa3/ve9/DFF19g27Zt8Hg8AIBVq1b1+LOJiGhkuFNEREQAgC+++AIA4HK5gMTu0dNPP40zzjgD11xzDf79739j9erV+PTTT/Hiiy8CiR2TE044AR6PB0uXLkVpaSm2bduG3/72t33+Od/73vfwn//8B7/61a9w7733wu12A0DXBX93Bx98MJqamvDrX/8aF1xwQY+1F154AWVlZTjxxBOBRPODWbNmQaPRYNGiRfB4PHjllVewYMEC+Hw+XH311QN+D/7whz8gEAjgrLPOQlVVFY455hg8++yzOPvsswEAs2fPxjPPPIPzzjsP3/rWt3D++ecDAFpaWlBaWorFixdj/vz5OOmkk2Cz2YYUlyiKOOWUU/CXv/wFZ511Fq666ir4/X78+c9/xkcffYQ5c+bgoYcewmWXXYbvfve7+N73vtf1ZxMR0QjJRERUVJ588kkZgLxhwwZ537598o4dO+Tnn39edrlcssVikb/++mv5/ffflwHIF198cY/Pvfbaa2UA8uuvvy7Lsiy/+OKLMgD5nXfe6ffPBCDfcsstXb+/++67ZQDyl19+2etjGxoa5AsuuKDr98uWLZMNBoPc3t7e9Vg0GpVLS0vliy66qOuxBQsWyNXV1XJra2uPr3fWWWfJTqdTDoVCA35vTjnlFPmII47o+v0jjzwi6/V6ee/evb3+PgsXLuzx2JdffikDkO++++4ejw82rieeeEIGIN9zzz294pIkSZZlWd63b1+v7yUREY0cy+eIiIrUnDlz4PF4UFdXh7POOgs2mw0vvvgiamtr8fLLLwMAlixZ0uNzrrnmGgDAn/70J6Db+ZmXXnoJsVgsI3GeeeaZiMViPXafXnvtNXR2duLMM88ElBt8WL9+PU499VTIsozW1tauXyeeeCK8Xi82bdrU75/T1taGV199tcd5qnnz5kGj0eDXv/71sGIfSlzr16+H2+3GFVdc0evraDSaYf35REQ0OCyfIyIqUj//+c8xbtw46PV6VFZWYvz48V1d37Zv3w6tVouxY8f2+JyqqiqUlpZi+/btAICjjz4a8+bNw6pVq3DvvffimGOOwemnn46zzz47bQ0Tpk2bhgkTJuCFF17AggULgETpnNvt7joHtW/fPnR2duKRRx7BI488kvLr7N27t98/54UXXkAsFsOMGTOwZcuWrscPPfRQPPvss1i4cOGQYx9KXF988QXGjx/fo0sfERFlB195iYiK1CGHHDLgHJ2Bdig0Gg1+85vf4K233sIf//hHvPrqq7jooovws5/9DG+99VbXuZqROvPMM3HHHXegtbUVdrsdf/jDHzB//vyuBEKSJADAueee2+vsUdJAZ2+effZZAMARRxyRcn3r1q1oamoaUtzpiIuIiDKPSREREfXS0NAASZKwefNmTJw4sevxPXv2oLOzs6vTWtKsWbMwa9Ys3HHHHXjuuedwzjnn4Pnnn8fFF1+c8usPtRzszDPPxKpVq7B+/XpUVlbC5/PhrLPO6lr3eDyw2+0QRRFz5swZ8t/3yy+/xD//+U8sWrQIRx99dI81SZJw3nnn4bnnnsOKFSuG9HWHEteYMWPw73//G7FYDAaDIeXHsIyOiCgzeKaIiIh6OemkkwAAa9eu7fH4PffcAwA4+eSTAQAdHR1Q+g7sN336dADo1bq7u+Tcn87OzkHFM3HiREydOhUvvPACXnjhBVRXV2P27Nld6zqdDvPmzcP69evx0Ucf9fr85AyhviR3ia6//nqcccYZPX794Ac/wNFHH931MUMxlLjmzZuH1tZWPPDAA70+Lvk9Tg7VHez3jYiIBoc7RURE1Mu0adNwwQUX4JFHHkFnZyeOPvpovP3223j66adx+umn49hjjwUAPP3003jwwQfx3e9+F2PGjIHf78ejjz4Kh8PRlVilctBBBwEAli9fjrPOOgsGgwGnnnpqryGp3Z155pm4+eabYTabsWDBgq7zT0lr1qzBX//6Vxx66KG45JJLMGnSJLS3t2PTpk3YsGED2tvb+/zazz77LKZPn466urqU69/5zndwxRVXYNOmTZg5c+aA37/hxHX++efjl7/8JZYsWYK3334bRx11FILBIDZs2IDLL78cp512GiwWCyZNmoQXXngB48aNQ3l5OaZMmYIpU6YMKSYiIjpArtvfERFRdiVbcg/URjsWi8mrVq2SR48eLRsMBrmurk5etmyZHIlEuj5m06ZN8vz58+X6+nrZZDLJFRUV8imnnCK/++67Pb5WqjbSt912m1xbWytrtdoe7bkPbMmdtHnzZhmADEB+8803U8a8Z88eeeHChXJdXZ1sMBjkqqoq+fjjj5cfeeSRPv+e7733ngxAvummm/r8mG3btskA5MWLF3f9fQbbknsocYVCIXn58uVd3/Oqqir5jDPOkL/44ouuj/nnP/8pH3TQQbLRaGR7biKiNNHIB9Y9EBERERERFRGeKSIiIiIioqLGpIiIiIiIiIoakyIiIiIiIipqTIqIiIiIiKioMSkiIiIiIqKixqSIiIiIiIiKGpMiIiIiIiIqakyKiIiIiIioqDEpIiIiIiKiosakiIiIiIiIihqTIiIiIiIiKmpMioiIiIiIqKj9f5WRHxYvYNV3AAAAAElFTkSuQmCC", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Ensure that PredictionTable only contains predictions for the same index as XPossitive\n", + "PredictionTable2 = Model2.get_prediction(XPossitive).summary_frame(alpha=0.11)\n", + "\n", + "# Create the plot\n", + "fig, ax = plt.subplots(figsize=(10, 8))\n", + "\n", + "# Scatterplot of observations\n", + "sns.scatterplot(\n", + " x=XPossitive[\"Positive affect\"], \n", + " y=YPossitive, \n", + " ax=ax, \n", + " label=\"Observations\"\n", + ")\n", + "\n", + "# Plot the predicted mean (regression line)\n", + "ax.plot(\n", + " XPossitive[\"Positive affect\"], \n", + " PredictionTable2[\"mean\"], \n", + " color=\"k\", \n", + " label=\"Prediction (Regression Line)\"\n", + ")\n", + "\n", + "# Get the min and max of the x-axis for full range\n", + "x_min, x_max = XPossitive[\"Positive affect\"].min(), XPossitive[\"Positive affect\"].max()\n", + "\n", + "# Create a smoother x-range for the prediction lines and intervals\n", + "x_smooth = np.linspace(x_min, x_max, 300)\n", + "\n", + "# Get the predictions for the smooth x-range\n", + "PredictionSmooth = Model2.get_prediction(sm.add_constant(x_smooth)).summary_frame(alpha=0.11)\n", + "\n", + "# Plot prediction intervals across the full x-range\n", + "ax.fill_between(\n", + " x_smooth, \n", + " PredictionSmooth[\"obs_ci_lower\"], \n", + " PredictionSmooth[\"obs_ci_upper\"], \n", + " color=\"rebeccapurple\", \n", + " alpha=0.5, \n", + " label=\"Prediction Interval (89%)\"\n", + ")\n", + "\n", + "# Plot confidence intervals across the full x-range\n", + "ax.fill_between(\n", + " x_smooth, \n", + " PredictionSmooth[\"mean_ci_lower\"], \n", + " PredictionSmooth[\"mean_ci_upper\"], \n", + " color=\"pink\", \n", + " alpha=0.5, \n", + " label=\"Confidence Interval (89%)\"\n", + ")\n", + "\n", + "# Customize the plot\n", + "ax.set_title(\"Positive Affect vs. Life Ladder\", fontsize=14)\n", + "ax.set_xlabel(\"Positive Affect\", fontsize=12)\n", + "ax.set_ylabel(\"Life Ladder\", fontsize=12)\n", + "ax.legend()\n", + "ax.spines[['right', 'top']].set_visible(False)\n", + "\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Q3" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Log GDP per capita',\n", + " 'Social support',\n", + " 'Healthy life expectancy at birth',\n", + " 'Freedom to make life choices',\n", + " 'Generosity',\n", + " 'Perceptions of corruption',\n", + " 'Positive affect',\n", + " 'Negative affect']" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "['Log GDP per capita', 'Social support', 'Healthy life expectancy at birth', 'Freedom to make life choices', 'Generosity', 'Perceptions of corruption', 'Positive affect', 'Negative affect']" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: Life Ladder R-squared: 0.856\n", + "Model: OLS Adj. R-squared: 0.845\n", + "Method: Least Squares F-statistic: 80.73\n", + "Date: Fri, 29 Nov 2024 Prob (F-statistic): 2.99e-42\n", + "Time: 17:57:08 Log-Likelihood: -59.747\n", + "No. Observations: 118 AIC: 137.5\n", + "Df Residuals: 109 BIC: 162.4\n", + "Df Model: 8 \n", + "Covariance Type: nonrobust \n", + "====================================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "----------------------------------------------------------------------------------------------------\n", + "const -2.5991 0.785 -3.309 0.001 -4.156 -1.042\n", + "Log GDP per capita 0.3141 0.086 3.638 0.000 0.143 0.485\n", + "Social support 3.2510 0.567 5.735 0.000 2.128 4.374\n", + "Healthy life expectancy at birth 0.0102 0.016 0.651 0.516 -0.021 0.041\n", + "Freedom to make life choices 1.3683 0.444 3.082 0.003 0.488 2.248\n", + "Generosity -0.4163 0.253 -1.646 0.103 -0.917 0.085\n", + "Perceptions of corruption -0.8887 0.269 -3.309 0.001 -1.421 -0.356\n", + "Positive affect 1.9932 0.461 4.322 0.000 1.079 2.907\n", + "Negative affect 1.0249 0.599 1.712 0.090 -0.162 2.212\n", + "==============================================================================\n", + "Omnibus: 4.969 Durbin-Watson: 2.170\n", + "Prob(Omnibus): 0.083 Jarque-Bera (JB): 4.505\n", + "Skew: -0.371 Prob(JB): 0.105\n", + "Kurtosis: 3.604 Cond. No. 1.51e+03\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n", + "[2] The condition number is large, 1.51e+03. This might indicate that there are\n", + "strong multicollinearity or other numerical problems.\n" + ] + } + ], + "source": [ + "# Extract all covariates (independent variables) except the response variable\n", + "XAll = X[['const', 'Log GDP per capita', 'Social support', 'Healthy life expectancy at birth', 'Freedom to make life choices', \n", + " 'Generosity', 'Perceptions of corruption', 'Positive affect', 'Negative affect']].dropna()\n", + "\n", + "# Add a constant column to XAll for the intercept\n", + "XAll = sm.add_constant(XAll)\n", + "\n", + "# Ensure YAll is aligned with XAll\n", + "YAll = Y.loc[XAll.index]\n", + "\n", + "# Fit the linear regression model (Model 3)\n", + "Model3 = sm.OLS(YAll, XAll).fit()\n", + "\n", + "# Display the summary of Model 3\n", + "print(Model3.summary())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [], + "source": [ + "PredictionTable3 = Model3.get_prediction(XAll).summary_frame(alpha=0.11)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Q4" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "scaler = MinMaxScaler()\n", + "\n", + "X[\"Healthy life scaled\"] = scaler.fit_transform(X[[\"Healthy life expectancy at birth\"]])\n", + "\n", + "X[\"Log GDP scaled\"] = scaler.fit_transform(X[[\"Log GDP per capita\"]])" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "XAllScaled = X.copy()\n", + "\n", + "XAllScaled = XAllScaled.drop([\"Healthy life expectancy at birth\", \"Log GDP per capita\"], axis=1)\n", + "\n", + "XAllScaled = XAllScaled.dropna()" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    constLog GDP per capitaSocial supportHealthy life expectancy at birthFreedom to make life choicesGenerosityPerceptions of corruptionPositive affectNegative affect
    count118.0118.000000118.000000118.000000118.000000118.000000118.000000118.000000118.000000
    mean1.09.4956690.79062765.2372880.7963640.0343730.7223470.6546530.293610
    std0.01.1498380.1311705.4926340.1136880.1625900.1735670.1064310.088618
    min1.07.0760000.39800052.2000000.452000-0.2680000.1840000.3440000.114000
    25%1.08.6125000.69575060.7000000.735250-0.0725000.6632500.5782500.229250
    50%1.09.6360000.83750066.1000000.8175000.0220000.7675000.6670000.283000
    75%1.010.4702500.89425069.6500000.8770000.1342500.8445000.7387500.357500
    max1.011.6760000.97900074.6000000.9650000.5900000.9480000.8430000.516000
    \n", + "
    " + ], + "text/plain": [ + " const Log GDP per capita Social support \\\n", + "count 118.0 118.000000 118.000000 \n", + "mean 1.0 9.495669 0.790627 \n", + "std 0.0 1.149838 0.131170 \n", + "min 1.0 7.076000 0.398000 \n", + "25% 1.0 8.612500 0.695750 \n", + "50% 1.0 9.636000 0.837500 \n", + "75% 1.0 10.470250 0.894250 \n", + "max 1.0 11.676000 0.979000 \n", + "\n", + " Healthy life expectancy at birth Freedom to make life choices \\\n", + "count 118.000000 118.000000 \n", + "mean 65.237288 0.796364 \n", + "std 5.492634 0.113688 \n", + "min 52.200000 0.452000 \n", + "25% 60.700000 0.735250 \n", + "50% 66.100000 0.817500 \n", + "75% 69.650000 0.877000 \n", + "max 74.600000 0.965000 \n", + "\n", + " Generosity Perceptions of corruption Positive affect Negative affect \n", + "count 118.000000 118.000000 118.000000 118.000000 \n", + "mean 0.034373 0.722347 0.654653 0.293610 \n", + "std 0.162590 0.173567 0.106431 0.088618 \n", + "min -0.268000 0.184000 0.344000 0.114000 \n", + "25% -0.072500 0.663250 0.578250 0.229250 \n", + "50% 0.022000 0.767500 0.667000 0.283000 \n", + "75% 0.134250 0.844500 0.738750 0.357500 \n", + "max 0.590000 0.948000 0.843000 0.516000 " + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "XAll.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    constSocial supportFreedom to make life choicesGenerosityPerceptions of corruptionPositive affectNegative affectHealthy life scaledLog GDP scaled
    count118.0118.000000118.000000118.000000118.000000118.000000118.000000118.000000118.000000
    mean1.00.7906270.7963640.0343730.7223470.6546530.2936100.5820220.526015
    std0.00.1311700.1136880.1625900.1735670.1064310.0886180.2452070.249965
    min1.00.3980000.452000-0.2680000.1840000.3440000.1140000.0000000.000000
    25%1.00.6957500.735250-0.0725000.6632500.5782500.2292500.3794640.334022
    50%1.00.8375000.8175000.0220000.7675000.6670000.2830000.6205360.556522
    75%1.00.8942500.8770000.1342500.8445000.7387500.3575000.7790180.737880
    max1.00.9790000.9650000.5900000.9480000.8430000.5160001.0000001.000000
    \n", + "
    " + ], + "text/plain": [ + " const Social support Freedom to make life choices Generosity \\\n", + "count 118.0 118.000000 118.000000 118.000000 \n", + "mean 1.0 0.790627 0.796364 0.034373 \n", + "std 0.0 0.131170 0.113688 0.162590 \n", + "min 1.0 0.398000 0.452000 -0.268000 \n", + "25% 1.0 0.695750 0.735250 -0.072500 \n", + "50% 1.0 0.837500 0.817500 0.022000 \n", + "75% 1.0 0.894250 0.877000 0.134250 \n", + "max 1.0 0.979000 0.965000 0.590000 \n", + "\n", + " Perceptions of corruption Positive affect Negative affect \\\n", + "count 118.000000 118.000000 118.000000 \n", + "mean 0.722347 0.654653 0.293610 \n", + "std 0.173567 0.106431 0.088618 \n", + "min 0.184000 0.344000 0.114000 \n", + "25% 0.663250 0.578250 0.229250 \n", + "50% 0.767500 0.667000 0.283000 \n", + "75% 0.844500 0.738750 0.357500 \n", + "max 0.948000 0.843000 0.516000 \n", + "\n", + " Healthy life scaled Log GDP scaled \n", + "count 118.000000 118.000000 \n", + "mean 0.582022 0.526015 \n", + "std 0.245207 0.249965 \n", + "min 0.000000 0.000000 \n", + "25% 0.379464 0.334022 \n", + "50% 0.620536 0.556522 \n", + "75% 0.779018 0.737880 \n", + "max 1.000000 1.000000 " + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "XAllScaled.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(np.float64(1508.9221), np.float64(43.9715))" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from numpy.linalg import cond\n", + "\n", + "condition_XAll = cond(XAll.values)\n", + "condition_XAllScaled = cond(XAllScaled.values)\n", + "\n", + "condition_XAll.round(4), condition_XAllScaled.round(4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Q5" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " OLS Regression Results \n", + "==============================================================================\n", + "Dep. Variable: Life Ladder R-squared: 0.841\n", + "Model: OLS Adj. R-squared: 0.834\n", + "Method: Least Squares F-statistic: 119.1\n", + "Date: Fri, 29 Nov 2024 Prob (F-statistic): 2.26e-43\n", + "Time: 17:57:08 Log-Likelihood: -66.306\n", + "No. Observations: 119 AIC: 144.6\n", + "Df Residuals: 113 BIC: 161.3\n", + "Df Model: 5 \n", + "Covariance Type: nonrobust \n", + "================================================================================================\n", + " coef std err t P>|t| [0.025 0.975]\n", + "------------------------------------------------------------------------------------------------\n", + "const 5.6699 0.040 142.681 0.000 5.591 5.749\n", + "Social support 2.8341 0.538 5.266 0.000 1.768 3.900\n", + "Freedom to make life choices 1.3681 0.452 3.027 0.003 0.473 2.264\n", + "Perceptions of corruption -0.7368 0.272 -2.711 0.008 -1.275 -0.198\n", + "Positive affect 1.7803 0.472 3.773 0.000 0.845 2.715\n", + "Log GDP scaled 1.7166 0.289 5.940 0.000 1.144 2.289\n", + "==============================================================================\n", + "Omnibus: 1.443 Durbin-Watson: 2.108\n", + "Prob(Omnibus): 0.486 Jarque-Bera (JB): 0.998\n", + "Skew: -0.194 Prob(JB): 0.607\n", + "Kurtosis: 3.226 Cond. No. 15.6\n", + "==============================================================================\n", + "\n", + "Notes:\n", + "[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.\n" + ] + } + ], + "source": [ + "XScaleFewVariables = X.drop([\"Healthy life expectancy at birth\", \"Log GDP per capita\"], axis=1)\n", + "\n", + "XScaleFewVariables = XScaleFewVariables.drop([\"const\", \"Healthy life scaled\", \"Generosity\", \"Negative affect\"], axis=1).dropna()\n", + "\n", + "XScaleFewVariables = XScaleFewVariables - XScaleFewVariables.mean()\n", + "\n", + "XScaleFewVariables = sm.add_constant(XScaleFewVariables)\n", + "\n", + "YScaleFewVariables = Y[XScaleFewVariables.index]\n", + "\n", + "Model4 = sm.OLS(YScaleFewVariables, XScaleFewVariables).fit()\n", + "\n", + "print(Model4.summary())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "PredictionTable4 = Model4.get_prediction(XScaleFewVariables).summary_frame(alpha=0.11)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Q6" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAPeCAYAAAB3GThSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT9f7H8Vea0gKtogxx/JDlYogTlKvI9ep1oV73FbeooGVYqy2glVmlFoUKWLUIuPe67nlduABxgOBgiHhVhijQUtqS5vdH2pKmGSfJSc5J8n4+Hnm0OTk555PkJDl5n+/5fh1ut9uNiIiIiIiIiIiIiNhCmtUFiIiIiIiIiIiIiMhOCm1FREREREREREREbEShrYiIiIiIiIiIiIiNKLQVERERERERERERsRGFtiIiIiIiIiIiIiI2otBWRERERERERERExEYU2oqIiIiIiIiIiIjYiEJbERERERERERERERtRaCsiIiIiIiIiIiJiIwptRUQSnMPhYMKECWHf76effsLhcPDggw/GpC4RERERESO0Pysi0pxCWxEREzz44IM4HA4cDgfz589vdrvb7aZTp044HA5OP/10S2qMxm233caZZ55Jx44dI96pFhERERH7Sub92e+++46CggIOPfRQdtllF/baay8GDRrEokWLrC5NRCQghbYiIiZq2bIljz/+eLPpH3zwAb/88guZmZmW1BWtwsJCFi5cyGGHHWZ1KSIiIiISQ8m4P/vAAw8we/ZsjjzySO666y7y8vL4/vvvOfroo3nnnXesLk9ExC+FtiIiJjrttNN45pln2LFjR5Ppjz/+OEcccQR77rmnZbVFY/Xq1fz22288+uijVpciIiIiIjGUjPuzgwcPZu3atTzwwAMMHTqU/Px8Pv/8c9q2baszyETEthTaioiYaPDgwfzxxx+8/fbbjdNqamp49tlnueiii/zep7KykhtvvJFOnTqRmZnJgQceyJ133onb7W4yX3V1NTfccAMdOnRgl1124cwzz+SXX37xu8z//e9/DBkyhI4dO5KZmUmvXr2YO3duxI+rS5cuEd9XRERERBJHMu7PHnHEEWRnZzeZ1q5dOwYMGMDy5csjWqaISKwptBURMVGXLl3o378/TzzxROO0119/nc2bN3PhhRc2m9/tdnPmmWcyffp0TjnlFKZNm8aBBx5Ifn4+eXl5Tea9+uqrKS0t5aSTTqK4uJgWLVowaNCgZstct25d46leI0aM4O6772a//fbjqquuorS0NEaPXERERESSQSrtz/7++++0b9/etOWJiJhJoa2IiMkuuugiXnzxRaqqqgB47LHHGDhwIHvvvXezeV966SX++9//MnnyZGbPns3w4cN56aWXOO+887j77rtZuXIlAF9//TWPPvooOTk5PPbYYwwfPpznnnuO3r17N1vmLbfcgsvl4ssvv+TWW2/l2muv5T//+Q8XXnghEyZMaKxLRERERMSfVNif/eijj/j000/597//HfWyRERiQaGtiIjJLrjgAqqqqnjllVfYunUrr7zySsBTyV577TWcTiejRo1qMv3GG2/E7Xbz+uuvN84HNJsvNze3yXW3281zzz3HGWecgdvtZuPGjY2Xk08+mc2bN7N48WKTH7GIiIiIJJNk359dv349F110EV27dqWgoCCqZYmIxEq61QWIiCSbDh06cOKJJ/L444+zbds2XC4X5513nt9516xZw957780uu+zSZHqPHj0ab2/4m5aWRvfu3ZvMd+CBBza5vmHDBv766y/Ky8spLy/3u87169dH9fhEREREJLkl8/5sZWUlp59+Olu3bmX+/PnN+roVEbELhbYiIjFw0UUXcc011/D7779z6qmnsttuu8VlvXV1dQBccsklXH755X7n6dOnT1xqEREREZHElYz7szU1NZxzzjl88803vPnmm367ZhARsQuFtiIiMXD22WczbNgwPvvsM5566qmA83Xu3Jl33nmHrVu3Nmmd8N133zXe3vC3rq6OlStXNmmN8P333zdZXsNIvC6XixNPPDEGj0xEREREUkGy7c/W1dVx2WWX8e677/L0008zcOBA05YtIhIL6tNWRCQGsrOzuffee5kwYQJnnHFGwPlOO+00XC4Xs2bNajJ9+vTpOBwOTj31VIDGvzNmzGgyn+/ouU6nk3PPPZfnnnuOpUuXNlvfhg0bonpcIiIiIpIakm1/duTIkTz11FOUlZVxzjnnRLQMEZF4UktbEZEYCXQ6l7czzjiD448/nltuuYWffvqJQw45hLfeeov//Oc/5ObmNvb5deihhzJ48GDKysrYvHkzf/vb33j33XdZsWJFs2UWFxfz3nvvcdRRR3HNNdfQs2dPNm3axOLFi3nnnXfYtGlT2I/lkUceYc2aNWzbtg2ADz/8kKKiIgAuvfTSxhYUIiIiIpI8kmV/trS0lLKyMvr370/r1q159NFHm9x+9tlnk5WVFdYyRURiTaGtiIiF0tLSeOmllxg3bhxPPfUU8+bNo0uXLkydOpUbb7yxybxz586lQ4cOPPbYY7z44ov84x//4NVXX6VTp05N5uvYsSMLFixg0qRJPP/885SVldGuXTt69erFHXfcEVGdc+bM4YMPPmi8/t577/Hee+8BcOyxxyq0FREREUlRibA/+9VXXwHw6aef8umnnza7ffXq1QptRcR2HG632211ESIiIiIiIiIiIiLioT5tRURERERERERERGxEoa2IiIiIiIiIiIiIjSi0FREREREREREREbERhbYiIiIiIiIiIiIiNqLQVkRERERERERERMRGFNqKiIiIiIiIiIiI2EjShbZut5stW7bgdrutLkVEREREJCLapxURERFJbUkX2m7dupU2bdqwdetWq0sREREREYmI9mlFREREUlvShbYiIiIiIiIiIiIiiUyhrYiIiIiIiIiIiIiNKLQVERERERERERERsRGFtiIiIiIiIiIiIiI2otBWRERERERERERExEYU2oqIiIiIiIiIiIjYiEJbERERERERERERERtRaCsiIiIiIiIiIiJiIwptRURERERERERERGxEoa2IiIiIiIiIiIiIjSi0FREREREREREREbERhbYiIiIiIiIiIiIiNqLQVkRERERERERERMRGFNqKiIiIiIiIiIiI2IhCWxEREREREREREREbUWgrIiIiIiIiIiIiYiMKbUVERERERERERERsRKGtiIiIiISnrg5mzYKXXrK6EhERERGRpJRudQEiIiIikkA2bYIzz4SPP4Y994TjjoPddrO6KhEREbGxyspKsrOzAaioqCArK8vqkkRsTy1tRURERMS43XaDFi0gOxtuvRV23dXqikREREREko5a2oqIiIhIcF9+CfvtB7vsAmlp8OCD4HDAvvtaXZmIiIiISFJSS1sRERER8a+qCsaMgb59YezYndM7d1ZgKyIiIiISQwptRURERKS5jz6CQw+FO+4Alws2bvT8FRERkaRQWVmJw+HA4XBQWVlpdTki4kOhrYiIiIjstHUrDB/uGWDshx9gr73ghRfgySfB6bS6OhEREUlBCpglFSm0FRERERGPRYugVy8oK/Ncv+oqWLYMzjrL6soSisvl4tZbb6Vr1660atWK7t27M3nyZNxut9WliYiIiEiC0EBkIiIiIuLRqRNUVEDXrjB7NpxwgtUVJaQ77riDe++9l4ceeohevXqxaNEirrzyStq0acOoUaOsLk9EkkBlZSXZ2dkAVFRUkJWVZXVJIiJiMoW2IiIiIqnK7YZPP4W//c1zvWNHeOMNT2tbBQAR++STT/jXv/7FoEGDAOjSpQtPPPEECxYssLo0EREREUkQ6h5BREREJBX99huccw4ccwy8+OLO6f36KbCN0t/+9jfeffddfvjhBwC+/vpr5s+fz6mnnmp1aSIiIiKSINTSVkREDNFpeCJJwu2GefMgLw82b4b0dFizxuqqksqYMWPYsmULBx10EE6nE5fLxW233cbFF18c8D7V1dVUV1c3Xt+yZUucqhURERERO1JLWxEREZFUsXo1nHSSZ4CxzZvhyCNh8WK4/nqrK0sqTz/9NI899hiPP/44ixcv5qGHHuLOO+/koYceCnifKVOm0KZNm8ZLp06d4lqziEgqqKysxOFw4HA4qKystLoc8aLXRqQ5hbYiNqAvKBERibmHHoLeveGdd6BlS7jzTk9/tgcfbHVlSSc/P58xY8Zw4YUXcvDBB3PppZdyww03MGXKlID3GTt2LJs3b268rF27Nq41i4iI+KPfqtbQ8y6oewQRERGRFNGhA2zbBgMHwgMPwH77WV1R0tq2bRtpaU3bRjidTurq6gLeJzMzk8zMzDhUJyIiIhJ76l4vegptRURERJJRTQ18+y0cdpjn+mmneVrZHn88pOlkq1g644wzuO2229h3333p1asXX375JdOmTWPIkCFWlyYiIiIiCUKhrYiIiEiyWbTI02/tmjWwbBnsvbdn+gknWF1ZSpg5cya33norOTk5rF+/nr333pthw4Yxbtw4q0sTERERkQSh0FZEgtIpDSIiCaSqCsaPh7vugro6aNcOfvhhZ2grcbHLLrtQWlpKaWmp1aWIiIg08v1tJyL2ptBWREREJBl8+KGnde2KFZ7rgwfD3Xd7+rIVEREREZGEog7NRMSvhtEqG47Eikh4NOKrxI3bDSNGeAYYW7EC9tkHXnoJHn9cga2IiIiIJJ1U+a2l0FYkgaXKB5WIiAThcEBGhuf/oUM9g4+dcUbA2fXdISIiIiJifwptRURExC8rwj0FigZt3OgZZKzB5MnwwQdw//3Qpo2VlYmIiIiIiAkU2opIwlPIY1yyP1fJ8PiS4TGkMu/XLyavodsNTz0FPXvCxRd7BhsDyMqC444zd10iIiIiImIZhbaSMhSEWMvf86/XpCk9H2KWaLalWG+H3stfv369KesKVHPSvad+/RXOOgsuvBA2bIC//oJ166yuSkREREREYkChrYWS7sekDeg59TDjeUjl588OsrOzU2Y7Djdw0/vcXoK9Hon6WvnWbfnjcLvhgQc8rWtfeglatIAJE2DxYthrr/jXIyIiIkknlX5/iCQKhbYJIt4/GC3/gWpTRp8Xs0LTQKGBkfX7+18Sl90CzOzsbFPWV1lZSXZ2dpPryahhJ3j9+vVRLSeRP5vN+iHg77PRextKOhs3woknwjXXwObN0K+fJ6wdP37n4GM+Enk7ERERERERD4W2UUqEH0aJUGO8xfI5iVeAEM16Em2bMLPeRHvsgTQ8DjuFVVY8t2aEx5HU7XsQJVan9/ve7v16hxuCxuP1CXcdHTt2jGp92dnZAd8DSRPmtmkDmzZBq1Zw113wySfQu7fVVUESfZ6KiIiIiNiRQtsk5u9Hvn5UxZ7R59i7L0ff1ndGwoZow45EFU5I56/vTKtDnGAtZuNdm1mtZY0I1Kex0cCtIaCMRzgUaf/L3jWaVWd2djbr168Pum0Yqc2M7Sue20s07HhAI2zLl1O5aZPndc3IYNvs2bBkCeTlgdNpdXUiIiIizehgroj5FNqKpfTBbp5ECVTsJJLTtc3cZiM9XTzeAW80IVgsArREP2ARy889f58DZm4v+syOsZoamDgRDjmEFnfe2TjZ3aMHdO9uaWkiIiISmPaRRCQWFNqKiIiIWG3hQjjiCM8AY7W1pC1bZnVFIiIiYjKFux5qcCRijEJbEREREats2wY33QRHHw1Ll0KHDvDkk1Q/+qjVlYmIiIgBSdOPvkiqqqmxuoKAFNqKiIiIWGHRIujTxzPAWF0dXHwxLFsG//43OBxWVyciIiIRUCtSkQSxaRPccgt06QIbN1pdjV8KbUVERESssPvu8Ouv8H//B6+8Ao8+Cu3bW12ViEhc6XRxsRttkyL2eB/ErIbNmz3jSHTtCrffDr/9Bg8/bN7yTaTQVkRERCReli7d+X/37vDSS/DttzBokJVViYiIiMnsEHqJh14LAaCiwhPSdu3qGUdiyxY4+GB44QW44Qarq/NLoa2IiIhIrG3YABdd5Nkx/PDDndNPPBF23dXKykRERERMpZDUXOpywyRffOHpDuHPP6FHD3jqKfjqKzjrLNt2TabQVkRERCRW3G54/HHPjuETT0BaGixebHVVIiIiIikhlgPFKZy2ue3b4dNPd14fOBCuvtrTJdmSJXDBBZ59cxtLt7oAERERkWS0D5B5wQXw+uueCQcfDHPnwpFHWl2aiEhS8A5jKioqyMrKsrokEZGw6bPMZDU1nn3uoiL46y9YvRo6dPDcNnu21dWFxd6RsoiIiEgCugRYBqS//jpkZMDkybBokQJbERERkQTX0MI2Vi14JUK1tTBnDhxwAFx3Hfzvf56Bf1essLqyiCm0FREREYmBXQFXv37w5ZdQWOgJb0VERERE4iypu3JwueCRRzzdkV19NaxZA3vuCTNmwI8/Qv/+VlcYMXWPICIiIhKtHTtg1SrYZx8AHgW2AQ+//TZZGmhMRERERHz46283OzubiooKy2pKRI7ffoOrrvK0tO3QAcaMgWuvhdatrS4tagptRURERKKxZIlnR3HtWli4sHHy88DDTqelpYmIiIiIJBW3m7TPP9959f/+DwoKIDsbRozw/E0SCm1FREREIlFdDbff7rns2AFt2pD27bdWVyUiIiIiSaahBW5KD1LmdsMrr8D48bT68ksOBb5quK2oyNraYkR92oqIiIiE6/PP4YgjYNIkT2B71lmwbBl1xx5rdWUiIiJiMxq4SuIt2fqwdb7zDhx9NJx5Jnz5Je7sbHpYXVQcKLQVERERMaquDvLyPAMafPst7LEHPP00PP887L231dWJiNhesgUJIiLUt4QN5zPNX3+20tzfgY+AlmedBQsWePqpLShg29KlPGF1cXGg7hFEREREjEpLg40bPadnXXYZTJsG7dpZXZWIiIiISHKpruZxYC/AnZmJIycHRo+Gjh0hRQ76KbQVERERCeavv+gAbGi4Pn06XHQRnHKKtXWJiIgteLeYS/k+J0V8NPTFKmLI4sVw6KGehhKZmUwADgaGLF1K6/32s7q6uFP3CCIiIiIBOF95hVZHHskD3hPbtVNgKyJikB26Q7BDDSJiD/oMsKkvv4QzzvCMGfH0042Ty4GRgHuvvWKyWrt/P6ilrYiIiIiPDsAMoOWFFwJwENDe6qJERERERJLJkiUwfjy88ILneloafPed1VXZhlraioiIiDRwu3E++STLgQsBt9NJzY03cgiw0eraRERERMSQhhaUGuzLpr77Di68EA45xBPYOhye7seWL4cJE6yuzjYU2oqIiIgArF8Pp59Oy6uvph3wFbD9/fepnTiR7VbXJiISZ3Y/ZTRVKYgSo2L5Htbng0Tt6qvhqac8g/ued56nxe1jj8EBB1hdma0otBUREREByM6G777DnZHBzUBfoO6ww6yuSkRERCQl2SkctlMticixZg1s3rxzwvjx8K9/wVdfwTPPQK9eVpZnWwptRUREJHWtXg0ul+f/1q3h8cep+uQTpgA7rK5NRERERCSB7QOUAa0OPRSmT995wz//CS++6OkeQQJSaCsiIiKpZ8cOKCmBnj2hrGzn9KOOwn3QQVZWJiKiFl0iIpLYfvuNjJtuYiVwHeCorYWlS62uKuEotBUREZHU8vXXcNRRMHo0bN8O773n6U9LRESSTmVlpfp/FRGJlw0b4KaboHt3Wtx3H5nAB0DVG2/As89aXV3CUWgrIiIiqaG6Gm69FY48EhYvht12g3nz4LnnPCPWioiIiIjtZWdn6ywEu7r5ZrjrLqiqwtWvHycCfwfqjj3W6soSkkJbERERSXppX34Jhx0GRUWerhHOOQeWL4crrlBgKyIiIiLixTsUDxqQb94Mv/228/rYsXD00fDqq2x/913ejXGdyc52oW2XLl0a+2/yvgwfPtzq0kRERCRROZ3www/QsaPn1KznnoM997S6KhERERGRxLN1K9x2G3TpAjfcsHN6t27w6adw2mlqGGGCdKsL8LVw4UJcDaM4A0uXLuWf//wn559/vqV1iYiISGLpDKyp/7+uTx946ik4/nho29biykREREREEtC2bXDPPZ4BfTdu9Ez79luoqoJWrayuLunYrqVthw4d2HPPPRsvr7zyCt27d2fgwIFWlyYiIiIJYDdgDvADcLD3Deeeq8BWRFJeZWVl49mM6hNSREQM2b4dSks9LWkLCjyB7f77w2OPwVdfKbCNEdu1tPVWU1PDo48+Sl5eHo4Azaqrq6uprq5uvL5ly5Y4VigiIiJ2kvHaaywD9gLqgH8AS6wuSkRERFJax44dTVtWZWUl2dnZAFRUVJCVlWXassUcSfka3Xsv5OV5/u/aFcaPh4svhnRbx4oJz3Ytbb29+OKL/PXXX1xxxRUB55kyZQpt2rRpvHTq1CmuNYqIiIj1OgJPA7tdeSV7Ad8BA4C7rS5MREREglLrbxEbqq2lSbp2zTVw5JFQXg7ffw+XX67ANg5sHdrOmTOHU089lb333jvgPGPHjmXz5s2Nl7Vr18a1RhEREbHWhcAy4HzA7XRyG3Ao8InVhYmIiIhITCjgj5EdO+Dhh2l3zDG86D09OxsWLPCEty1aWFdfirFtLL5mzRreeecdnn/++aDzZWZmkpmZGbe6RERExF72BNoCi4Eub71F4QknWF2SiIiISFBJeQq9JK66Os+gvRMnwvff4wT2Abp5zxOg21KJHdu2tJ03bx577LEHgwYNsroUERERsRFH/U5kgxnAEOAoYEfv3hZWJiIikhrUpUH0vJ+3RHkOs7OzE6ZWMaiuDp57Dvr0gYsu8nR90LYtFYWFdANWWV1firNlaFtXV8e8efO4/PLLSVcfGSIiIlLP8cMPfAC8B7Ssn1YHzAN2WFybiIiIiEhCefttOO88+PZb2G03mDwZVq9m28iRbLO6NrFnaPvOO+/w888/M2TIEKtLERERETuorYXiYlr178+A+i4RDrO6JhEREUk6idgCViQcDu+xoE46CQYOhFtvhdWrobAQdt3VyvLEiy2bsZ500km43W6ryxARERE7+PJLuOoq+PJLHMDrwLXAz1bXJSIi6pdTJELdunUzMJeIeY4HJgOtjj3WE9Dusounn9r33lN/tTZly5a2IiIiIuzYAbfcAn37eoLbtm2pnj2b0xTYioiIiIgYkvbxx7Q89VT+CxwDUFkJn3++cwYFtral0FZERETsyemEr74ClwvOPx+WLWPH4MFWVyUiIiIiUbLbYHZ2q8cM/YA3gVYnn4zzo4+oBmYCVUuWwIknWl2eGKDQVkREROyjooLGXrQcDrjvPnj+eXj6aejY0draRCThJOOPcLGOticRSRSOn3/mU+AkwJ2eTu2QIewHjALce+1ldXlikEJbERERsYc336RV375M957WqROcfbZ1NYmIiIiIJILffmv8173vvjwGzAWqvvqKmhkz+MXS4iQSCm1FRETEUrsDGcOGwSmnkLZ2LccDGrNWRERExBpqVZ5gli+Hf/8bOneGFSsaJ18OXAW4u3SxtDyJnEJbERERscw5wDKgxWOPgcNBbU4OBwNbrC5MRERERJpRiGsjP/4Il14KvXt7uhKrrYU332y82W1pcWIGhbYiIiISd+2BZ4HngD2BugMPhI8/pqakBP0UEBEREREJYPVqGDIEevSARx+Fujo46yz4+msYPtzq6sRECm1FREQk7uqAY4FaYDJQ9ckn0L+/1WWJmKZLly6Np5Z6X4brx5QkCO/WdGa2rIvVcsV6OqVeJA6qq6FfP5g3D1wuGDQIFi2CF16APn2srk5Mlm51ASIiIpIaOgK4PSdqbQIuAdYD3wB5mZlWlydiqoULF+JyuRqvL126lH/+85+cf/75ltYlEkvZ2dkAVFRUkJWVZXU5SaOysrLxuV23bp3V5UiSa9jWxD7aAxsbrmRmwogR8PHHMGkSHH20tcVJTCm0FRERkZhKA4YDtwOuF15onP6OpVWJxFaHDh2aXC8uLqZ79+4MHDjQsppEREQkcXQARgM5wFneNxQWgtNpXWESNwptRUREJGYOAh4Ajqm/vv2VVyyuSCT+ampqePTRR8nLy8PhcPidp7q6murq6sbrW7ZoOD4REZGU9McftLj7blYDDecsNAltFdimDPVpKyIiIuarraVFSQlf1Qe2W4DrgC0PPGB1ZSJx9+KLL/LXX39xxRVXBJxnypQptGnTpvHSqVOnuNYoIiJiRMeOHWPeZ3F2dnZK9ovcBpgItO7dm4xp08gCFgAn17e2ldSj0FZERERMdQjQ8rjjyJg0iUzgNaAXcB9AmnY9JPXMmTOHU089lb333jvgPGPHjmXz5s2Nl7Vr18a1RhGRVJOqwaDY16vAOMCxdSuuPn04AzgKeMvqwsQy6h5BRERETLU74FyyBHfbtlyyaROPW12QiIXWrFnDO++8w/PPPx90vszMTDI1IJ+IRCA7O1uDv4kkoNbADqCm/vqM+ta2+z36KK4zz+SVXXe1uEKxmpq7iIiISNS8h1x6H6i+5x62LVqkwFZS3rx589hjjz0YNGiQ1aWIiIiIHVRVkT5rFquAYV6Tn6k/Y8111lk6O01Aoa2IiIhEZcsWZgErgbSff26cvOPyy2GPPSwtTcRqdXV1zJs3j8svv5z0dJ3gJiIikgiys7NxOBzmd59RXQ2zZkH37mSOGUNH4AKvm91AnblrlASn0FZEREQi8/rrtOrXj+HALkDmW+pxS8TbO++8w88//8yQIUOsLkVERESsUlsL5eWw//4wciT89ht1nTpxNXC81bWJrSm0FRERkbC0BTKuuQZOO420X35hJfAPoOrqq60uTcRWTjrpJNxuNwcccIDVpSS0yspKHA5HbFo9iYiIxNrw4TBsGKxdC/vsA2VlVH39NXPq+7QVCUShrYiIiBh2LrAcaPHEE5CWRu3IkfQB3rO6MBERSUjeQbxCebEjHTiSsLlcNBkWMCcH9twTSkthxQq47jrIyLCuPkkYCm1FRETEsEOBPYC6gw6CTz6hZsoUtlldlIiIiEiKU7hsA3V18OyztDrqKEq8px96KKxZA9dfDy1bWlefJByNiCAiIiJBtQU21f9fBGwEbvv4Y7LatgX9KBARERGRFHcm0PKYY2DJEtKAc4CbvGdQy1qJgFraioiIiF9pP/3E28CbgLN+WjVwN0BmprXFiYiISMJRa1BJNqcAC4D/AM4lS2CXXagZO5YDgSqri5OEp9BWREREmkgDrgfa/f3vnAj0BA6zuigRERERERsZCbwO9AUqgJqbboKffqL2llvYYnVxkhQU2oqIiEgjx/LlzAdKAUdVFe8BfYBFVhcmIiIiImKx1l7/PwGsB+4EugG1EyZA27YWVifJRqGtiIiIwI4dMHkyrY45hv7AZmDL1KmcAKy0ujYREZEkoK4BRBJX2uef8xbwste0jcC+QD6wwcLaJHkptBURERFwOOC113DU1PAy0AvYftlluK2uS0RERJJWZWUl2dnZVpchEtiiRXDaabQ64QT+CRwLOFetary52tLiJNkptBUREUlVVVWeC4DTCXPmsH3uXM4E/md1bSIiIkksOztbrW2lUceOHbU92EwfIPPCC6FvX3j9ddxOJw8ABwCubt2sLk9ShEJbERGRVPTBB9CnD4wfv3Naz564LrjAyqpEREQSgro6EEle/wC+BtJfeQXS0uDSS6lavJhrgDVWFycpRaGtiIhICtkFyLj+evj732HFCnjqKdCPTREREZGQ4tFCOlkPCNTU1AS9brmGs8+AD4EfgB3nngvffgsPP4y7e3dLy5PUpNBWREQkRZwGfAu0mDPHM2HYMPjmG8jKsro0ERERkZhpCELVf641CgsLad++fZNpnTt3tqyeJlatgiuuoNVRR9GiftIO4DCg+qGH4KCDLC5QUlm61QWIiIhIbLUF7gYuqb9e160baQ88AMcfb3FlIiKSrDTAlIg0KC0tbTatrq7Okloa/fwzFBXBvHmwYwdpwEnAq/U3b7O2OhFQS1sREZHk1xo4E3ABU4Gqzz5TYCsiIiKS4uzSRUE860j7/XcYMQL23x9mz4YdO+Dkk6l6773GwFbELhTaioiIJKE2Xv//AgwB+gMFAK1bW1eYiIiIiFjOX5cFVikvL4/LejoB7Y46Cu65B2pqPI0YPvoI3niDur5941KDSDjUPYKIiEgycbtJf/BBfgIu8Jr8nIUliYiIiIi9+OuywCqrVq0KOU+kA5m1AGrr/18L1PTvT2ZNDUyerDPPxPbU0lZERCRJdANaDhpE5siR7AZcbXVBIiIiEhd2Oc1dJBLdunULOY/vwGWdO3emoKAg8B3+/JPJwM9AR6/JWx54wNO6VoGtJACFtiIiIgkuDbgBWAI4P/wQd6tW3AAMtrowERERiYv27dsHD7BEbGzo0KEh5/EduKyuro6pU6c23+63bIFJk2jduzeFwJ7AFV43u7OzweEwq3SRmFJoKyIiksCcy5fzCTCtfsAx18CBVC1YQClg8Zi8IiIiYrKJEyf6nR4wwBJJABkZGX6nG2lBPm3aNM98FRVQXAxdu8L48Tg2b2YJcA5wh9f8lZWVOBwOHA4HlZWVJj4KEfMptBUREUlg6StXchSwub47hO2vvIK7a1eryxIREZEYuO+++4Le3hhgidhIbm4uaWlN4yff6/4YGaDM5XJRNmMG9OoFY8fCpk1w0EFsf/BBDgFeiKpyEWsptBUREUkwu3j9X3366eQDPYE5oNO9REQkYVRWVtKxY0cDc0oD31PEfblcLsrKyuJWT6JTwB0fRUVFbNy4scm0NWvWhLyfkQHKAFauWQNnnw3du8PDD8PSpbjOOw93xBWL2INCWxERkQTRCrgT+BHo4DX9TuBXC+sSkdSl00xTW2VlJdnZ2VaXIT5WrlxpdQkxZebnjvoCDs2sYNu3CwTf677rqampMTRAGUD37t2hqAiWL4dLLwWn04SKRayn0FZERCQB/L1+oLEb60fAPdfqgkRERMSWunfvHtf1ZWdn2/6gTWFhod/pqdwXsL8uC/zp3Llzs2mB+laOVGFhIe3bt28yrX379qxduzbkfZ1OJzk5OZCdDS1amFqXldQKXFBoKyIiYm+OLVu4H3gP6A6sBU4DgvdoJyIiktjUitu/UCFbY4CVIrKzs0NuIzU1NcyYMSPoclKxL2B/XRb4469LDrO74CgtLW22nrq6Ou65557G64E6AMvLyws4kFmi8hdiE+Tgg115v6dmzZqVcu8xMyi0FRERsanTgbYDBjC0/noZ0At43eK6RETEOgozU9u1114b9PZkDLCiVVZWpr6AA0iEbaUD8Aywj8/0tLQ08vPzKSkpsaiy2PEXYjdMT5RW4QUFBU2C5zFjxtC6deuEqd8uFNqKiIjY1CDA+fvv/AAcBwwHtlpdlIiIhYy0qhNJREbD+PHjx/ud7nQ6kzbAipbRPn6TvS9gErTl4wYgA/hm9Ghaek1fs2ZNSm7vidAqvKCggKlTpzYLnl0uV8p2RxIphbYiIiI24vD6oTYaqBg9mkOAjyytSkREROxsw4YNKRlgGWG0j9949wUcb/5aPvo7Bd+OLgRq8/LY7jUtEVoJx4LdW4XX1NQwbdq0oPMkQvBsFwptRUREbOD/gJeBNldc0ThtC7DNZwdVRERExFeqBlhG5OTkpHxfwIWFhX5bPobqNsIuqqwuwGbs3Cq8rKwMl8sVdB4zgudEbDUeCYW2IiIiVqqrI33OHL6t78O2xWef0cfqmkRERESSREZGBqNGjQo6T7L3BRxqIDYrdOzYkQH1fdYGGmRM/LNzq/B4dEeSSv3lKrQVERGxiGPFCvjHP8i8/np2BT4BNr37Lt9YXZiIiIhIEikqKvI7PVX6ArZji9oS4EPgPqsLSTB2bxUe6+5IUq2/XIW2IiIiceYEbgRaHX00fPAB7tatGQUMAFwHHGB1eSKSgowOgiQikkzUF3Bo/rqWiDQ09G5R+ypQA/wG5F91VbP1OJ1OcnNzI1pPMrN7q/CcnBycTmfQeSINnlOxv1yFtiIiInHmBK4CHNu3w4knUrVgATMB+7WBEBGRVOUd3ivIl3AlyoEgO4dfdrFmzZpm08aPHx/WMtK++YbMCy5gkte0D4B9gRHAuLvvZuPGjU3us2HDhoAtpJNdbm6u37A8NzfX9gcZMjIyyMvLCzpPpMFzvPrLtROFtiIiInGQAbBjB9S3KhgCVN97L7z1Fu4uXawuT0RERESSVKiB2IKJJtjuCTwDtPrb30h/7TVGAK29bl8XZD2pHKgXFRU1C7EJ0s2H3ZSUlJCfn++39XQ03ZHEo79cu1FoKyIiEmNHAYuB1vft7LXrM2DHpZeCQ0MviIiIiEjshBqIzWzOFSt4DFgCnAe4HQ52nH8+RwPb4lpJ4kr00LqkpKRJ8FxcXMy2bduiaikc6/5y7UihrYiISIy0BqbVDzDWC2j14INQXW11WSIiIpLiEqX7AjFHUVGR35aPjhg0HrgCaDtgABfVB07PAlWffUb1vHl8b/raxM68g+cRI0ZEHUTHsr9cu1JoKyIiEgMtPvyQJcAN9V+2DwGb3noLMjOtLk1ExBIKiSRS2dnZ2mZEouTb8nHy5MmG7mdoUCe3u3G+V4D3gOeBQ4HzAXevXpEXLlIvlv3l2pVCWxERERO1AWYDu59/Pt2ANcAp9a0O3G3bWl2eiIiIiMSYXUev9w6zWrRogdvtDnmfefPmBbxtbyAjN5fynj1p3749ABuBE+rqOBf42qS6RRrEqr9cu1JoKyIiYqK9gUvr/58F9AbetLgmEREREYmNwsLCZtPat2/vd7qdrFq1ytB8P/30U7NpaevXMx1YCbz8wANc+9131NXVxaBKkeZi0V+uXSm0FRERiVJLr/+XAyOAP//zH0YCFRbWJSIiIiKxU1BQQGlpabPpdXV1fqfbSbdu3QzN16VLl8b/2wN3AO369SMXaAFcB4Rqr1tTU2P7EFsSi9n95dqVQlsREZEoXFLfBcKRXtMeAGqPPtrCqkREREQklmpqarjzzjutLiNiQ4cObXaKuT9XXnklAMcAq4ACwFFVxWdAP2C9gXWdddZZQUPsSAJd9XMtqUChrYiISAQ6Aa8CjwB7ALlWFyQiIpLg7r//flP7Aq2srCQ7O9u05Ulq8N4Gg22Tp5xyiqE+YSNZbzxkZGQwatQoQ/MBLAYqgS+Avx59lP7104z48MMPg94+c+ZM2/YDnKqMvg/iVcOsWbNSchtRaCsiIhKOujrSy8v5FjgNqAZurh9oTERERIybMmVKk+vjxo2jdevWFBQUWFaTpLaCggI6d+7ceH3cuHGNA2x5q6mp4b333jN13eXl5aYuz4iioiK/0x3A2cB7ePZ9AaqA/vVnl9X885+m1uFyueL2+OfOnRuX9SQyf++DeH82FxQUNHnvjRkzJiW/H9KtLkBERCRR7A+0POUUnJ98QibwMXAV8L3VhYmIiCSg2bNnN5vmcrmYOnUqtbW1ltQkqaugoICpU6c2m+5vgK2ysjLT1290YLBYalEf1t4N7Fk/7a83dw6p23xIMkhLSzNlELJ4Pf5AQXUwRlvt19TUkJWVFWFlocV6+QR5HzR8NlM/EJjVNYwfPz6mNdiFWtqKiIgYdDzg/OQT3FlZjAAGKLAVERGJiZkzZ4acR6fOillqamqYNm2aoXmzs7O54YYbTK/B6MBgsZAJjKwfp+Gp+sD2B+BioOakk4Le10gXC0ZY8fjNHhytffv2prUE9Vebmcv3x8j7YNq0aTH9rLVDDXai0FZERCSY7dsb/50N1Nx4I1ULFnCPgZFyRUREJDIulyvo7Tp1VsxUVlYWcpuLtaFDh1qy3n2AFcAMYC9gNXAl0BN4HMDpDHr/oqIi8vPzDQ1qFojT6TT98RsJ9SLtS3fixIl+p9fV1TF16tSow+DRo0f7HbitYfmx+pwz8j5wuVwxaWkebg1WdCdiBYW2IiIifmQCLSZMgN69YetWqA9paydOxO3Vx5OIiIjEV8Ops76nZDecOqvgVsK1cuXKsO/jcDhMraFhwK94+1/9ZS0wDDgQeBAIJ8IuKSnh119/jbiGkSNHmv74zzrrrJDzRBpA3nvvvUFvN3KmQDD33HNP0Ntj1dLU6PsgkveL2TXYoTuReFBoKyIi4qM/8CWQceedsHIl6c89Z3VJIiIiolNnJUa6d+8e9n0OPvjgmNQSUy4XlwCfA2ze3Dj538B+QDkQaW/SDz74YMRlRdLPbDA1NTV8+OGHhuaNJIB0u4OfbxfrVtuRhM1GupMx+j6I5P1ilNFlW9mdSDwptBUREWlQUUHGTTcxH+gB1O2xBzz3HDuuuMLqykRERFKKM8Ap2XY4fVeST05OTsBtLpCLLrooZvWYrq4OnnySVkceySNAP6CF10CAa4BoD3PYqeVjOO//WAaQwUR7YCmcsLmwsNBQdzJG3gdOp5OcnJwIKjbGaA1WdScSbwptRUREgH8Crfr1o8V995EGzAWqvvgCzjnH6tJERERSzsiRI/1Ot8Ppu5J8MjIyyMvLC+s+Q4cODTvotcLZQKujj4bBg0n78Uf+AEYDtdddZ+p67NTy0ej73+FwxDSADMZI9w3BhBM2l5aWGupOxsj7IC8vL6ZdedihBjtRaCsiIgJcA6T9/DN1++7LScBVALvvbnVZIiIiSeuaa65pNs3pdJKfnx/wdGk7nL4ryamkpMTvgFqBgtlIgt64qqnhc+B5IG3ZMmjThprCQroCJQBZWaauzk4tH42+/wcMGBCT8C9UmF9QUGC4+4ZAyzcrbPbtTibY+yA/P5+SkhJT1huMHWqwC4W2IiKSurx2UEYCNbm5VC1YwNuWFiUiIpIaxo4d22zahg0bgv4gt8PpuxJax44drS4hIiUlJaxZs6bx+qRJk9iwYUPQ+XNzc/3eZvZAZWHLyGA5sAWoGT0afvqJ2jFj2Bqz1dmn5WNOTk6zwM+fF198MSbrD3SmAAb75Q7l8MMPD/l8G+1+wV93Mv7eB9u2bYtrWFpSUsLGjRsbrxcXF8e9BjtQaCsiIqnn99/h/PPhsssaJ60DaouKIDvb0tJERESSmXeQMHfu3Ga3hwoidOqsxJr3tjNs2LCQ25K/VuGbNm3ijz/+iEl9gaR98AHvAQd4TRsDdAVqb70VdtstfrX4aSEZKNyOhYyMDEaNGmVoPrMNHDgw6MBqRvrlDmXhwoXN+qP1VlBQ0KQP21D8dScR7vsgFrzXOWLEiJT8XFdoKyIiqcPthocegp494dln4bnncPzwg9VViYiIpITCwkI6d+7ceD3SEeN16qzYXVzDpfnz4R//oNWgQfwduMXrpt+BTfGrpJF3K03qW9BH+n6PVKD1GWmBG40PP/yQwsLCgLeb1d+2b7cGDQoKCpg6dWqzPmyDUXcy9qXQVkREUsOaNXDqqXDFFfDnn3D44bBwIe4DDjBwZxEREYmWv8FwIhXpqbOzZs2KetR2X97Li8XyJTGVl5fHdPn9gMx//QsGDID33sOdkcGs+ta1VvMNrcvLy23zvgjWQtUMbreb0tLSgLd/++23pqzHX7cGkXS9oO5k7E2hrYiIJLe6Opg1C3r1gjffhMxMKC6Gzz+HQw+1ujoRERGJUCSnzo4ZM4bWrVubGtx4tx6OxfIlMa1atSpmy34I+BxIf/ddSE+HoUOp+vprRgK/xWytxk2cOLHJ9TFjxoR1un4sFRcXR72MSFvr1tTU8P7770e9/ga+rXYj6Xoh1buTsftBN1uGtv/73/+45JJLaNeuHa1ateLggw9m0aJFVpclIiKJqLIS7rjD83fAAPjmGxg92rODKyISI9qfjUxlZSUOhwOHw0FlZaXV5UiCC3SKssvlYurUqaYFq76th81eviSmbt26xWzZ3wE7gNpLL4Xvv4f778fdqVPM1hcu3xag+Hmf2EGwbgxicb+ysjLcbndE9/XHt1uDcLpeUHcyzfv+teNBN9uFtn/++SfHHHMMLVq04PXXX2fZsmXcdddd7L777laXJiIiCcJJff+1ALvsArNnwz33wPvvg7pDEJEY0/6sSOShhllqamqYMWNG0HkC9QlpdPmhRLN8SXxDhw41Z0HffQeDB8OrrzZOmgH0AGruvRdiGA4HYvfWiQAVFRUh55k5c2ZEtf/yyy8R1WRWf7YE6NbAaN+0gwYNMtSdTDIL1Pev3Q662S60veOOO+jUqRPz5s2jX79+dO3alZNOOkkdI4uIiCGHAguA9Icf3jnxlFMgJwdiPPCAiAjan5UkUVtb2/j/3Llzwwo2jASmsVZWVhayZZ+/PiGNmjdvXsh5oll+IHYMx8S/aE857w5kXHONp4uvJ5+E8eMbGyVUAitC3D+Wwaq/LkGsPlDjraCggL322ivkfJG+R7t06RJRXeGEqsOHDw86j79uDXJycnA6nSGX/8gjj6R8lwih+v61y0E32/16femllzjyyCM5//zz2WOPPTjssMOYPXu21WWJiIjdbd9OiwkTWAgcDrS4807YscPqqkQkBWl/NrUkY5cOBQUF9OjRo/F6UVFRWKeMlpeXW34qtNEWbZG2fPvpp59iuvxAvMMySU6ONWuYXd8FQosnnvCMz/Cvf8GcOeBwGFpGYWGh39O+zQpW/bVODDb4VqS8Q7P777/f0H0aWlAa7YYgkveo90GtcIQTqt5xxx1+bwvWrUFGRgZ5eXkhl5/KgS0G+/6NxUG3SNgutF21ahX33nsv+++/P2+++SbXXXcdo0aN4qGHHvI7f3V1NVu2bGlyERGRFDN/PhxyCBl33kk68DRQ9c476rdWRCwR7v4s2qcVH0ZbyGVnZ5seFptxymgsB2AyymiLtkhbwBttaWd2C/tAYbidWjlKFO64g1aHHsrVQDqw46STYOFCePFFOOQQw4spLS2NW7AaK77B87hx40Lex0gLSl9G3qO+76/JkyeHtY4G0YaqxcXFIbs1KCkpIT8/v9lgaUbC4lQR64N6ZrJdaFtXV8fhhx/O7bffzmGHHcbQoUO55ppruO+++/zOP2XKFNq0adN46WSjzrdFRCS2soGMvDzPAGM//EBdx46cDfwboGNHq8sTkRQV7v4s2qcVL1YOjGLWKaOxHIDJqJycnJAjvPvrE9KoK6+8MuQ80Szfm5FTdCPtm1NsZr/9cNTW8jbQH6h+/nk48kirq7KEv+A5FCMtKL0ZeY8WFBSEFXY7nU5yc3MD3h4oVDVixIgRhlrJlpSUsHHjxsbrxcXFbNiwIez1JatYH9Qzk+1C27322ouePXs2mdajRw9+/vlnv/OPHTuWzZs3N17Wrl0bp0pFRMRqPYH0hlOOr7qKqkWLeNHqokQk5YW7P4v2aaWe1QOjmHXK6NChQw0FEmPGjAm7RqMyMjI49NBDg87jr0/IcJYfSjTL91ZeXh5yHrucyivGtQemAk0iw7PPpuq//+Uk4DPrSksI/rooCLdl5MiRI4O+R8NtudvQEraoqCjofL6haix4Py6jYW+qMNJNhVkH3aJlu9D2mGOO4fvvv28y7YcffgjYd09mZia77rprk4uIiCQv76/XBUDthAnw9tvwwAOgkdlFxAbC3Z9F+7Rik4FRzDplNCMjg1GjRoVcztChQw3XFq6CggIWL14c8Pa+ffuaNnK6v9OQA/U5GQmj3U3Y4VReCW134DZgNXATMAFo3XBjWhp1/fpZW6AJ/IVdZp+eP3z48Gafh+G2jAwVrpaXl4fVcjeccNTuIapvf8LJ1JLfSDcVZh10i5btQtsbbriBzz77jNtvv50VK1bw+OOPU15eHnLkPBERSX7n1o+Ue4DXtNobb4QTT7SwKhGRprQ/K5Ew2srVSKvLSJl5ymigMCSSU4LDZSQAX7x4sWkhxJo1axr/N9LnZLiMdjdhh1N5JbA29QHtT8DN9d18LQQuA7ZZXZzJxo8f3+R6LE7Pf+edd5p1HWN0oC+j7NA/txUKCgqaHGgeN25c3LrpiZdgff+aedAtWrYLbfv27csLL7zAE088Qe/evZk8eTKlpaVcfPHFVpcmIiIW2RN4DngW6ALE7mRKEZHoaX9WImG0lWQsQ4RYnzJaXFzcJOCMlXiPDB7r05CNtEi2y6m84t/Z9S1rxwO7Al8D/wL6AW9YXVwcxOr0fN+uY4y0oLzmmmsML98O/XPHm9Xd9MSTv75/zT7oFi3bhbYAp59+OkuWLGH79u0sX748rDeViIgklyuAZcA5QC0wCbjW6qJERELQ/qyEy2gryViGCLE+ZTRe/Som0sjgRhh5zkL1zSnW+rG+pe0y4DzgMOAlq4uKgr/WicEG34o1765jQg30NXbsWMPLHTp0qOndOtiZHbrpiTe79/1ry9BWRESkC/AWMK++769FwJH1LRSSZzdBRETEw2gr12j7gfX+sT1r1qxmP74T5ZTRYBJpZPBwBQqiQvXNKfHTEki/5x5aeHURsBQYCBxcf/aYO4rlh3oPA+Tm5sY0WPXXJYiV26Bvy3mzBvoyciDLHyOvkR3F+ywFCU2hrYiI2NK/gX8CVUA+cDTwjdVFiYiIxEg8BkYpKCigffv2jdfHjBnjt5/CkpISli9f3ni9sLDQdqeMBpNII4OHKx7dS1gpkQIuXxnAdfXjL2SOHk2L0lK6et0+H6gLcn8jjL6Hi4qK/J72bVawGo/Wif6C52B8W86bVVNJSUlYYbfR18iOku0shWSg0FZEROzD68juXcB9QB/gTsD4uK0iIiKJKZatXMPtp7BFixaN/w8ZMsR2p4wGk0gjg4crEWsOprCwsMn1RAq4GtXWcjXwA1AG7APU/d//ccff/85qE1cT6j3s+1za/bTvUHyD51Bi2XLeN+yeNGmS3/kKCwsTuj/YZD5LIVEptBUREculA7cAu596KtS3rtjh1VpBREQkVcRiYJRU7KcwUOu4ROrmIdkVFhZSWlrabHqiBFwAfPEFrQ4/nNlAZ+BXYDhw01lnMfbdd8NaVLD3n5H38MyZM8NaXyIwGjTHu+X8sGHD/E6fMWNG0PvZ/XM2mc9SSFQKbUVExFKH1/dXWwS0+PpreOopq0sSERGxlNkt5FK1n0J/p4Jv2LBBga0JfIOnSIKoRA+4AOjaFccff7AOyAW617e2vTuC91L79u0DBtVG38PxYrfX5fDDD7dFS2LfFra+7P45m8xnKSQqhbYiImKNqiqKgQXAIcBGYPM998All1hdmYiISFJRP4U7KWyInm+fndQHjr6n54eSaAGXAzgXmO09sW1btj/3HN2Au4Ht9ZNDPTZ/6urq/HZzgMXvzYkTJzab1rlzZ0tqCWTx4sW2C5IDsfvnbDIMRplMFNqKiEj8ffghrfr3ZzTgBJ4AegLV550HDofV1YmIiCQV9VMoZgnUr2pdXZ3frg6iZYuAy+3mTGAx8Cxwdf1guQ3q+vdnm4mru/vuu5tNs/K96S84jySUjqVwAv7a2tqY1xNMInzOlpSUNBn0cNKkSQk1GGUyUWgrIiLx5XbDxImkrVjB/4AzgYuADVbXJSIikqTUT6GYwUi/qmazIuDybrH59I030mLAAP4DHApsASbWnykWK263u9k0o+9hK9ilhavRgL9Hjx4xq8G3daqvRPqc9T4rYdiwYTpLwSIKbUVEJCLh7qA1fuE4HFBeTu3VV9MTeDkWxYmIiEgj9VMoZjDSr2o47BhwFRQUNDn1f+Sjj9L9q694HJgCdAUmAJtDLCfUYwuXkffwyJEjTV2nUeXl5Zas15dvwB+ou45YthIeNWpU0Nv1OSvhUmgrYgPep2jMmjXLNkcrRYIJNliCt7bAQ/X9fDXq3p2a0lK2xLJAERERaRSLfgoDhSLh9m0qicHsrgrsFnAF6vrhF+Bi4GZgk8FlhXpskQj1HvY38F48rFq1ypL1evMN+GtqakIOdEcMWgkXFRWpP1gxlUJbERvwPkVjzJgxzTr2twsFyqkp2FHqqVOnBg5u3W6czz3HcuAy4Fpg39iWKiIi0oT3fov2Yzyhz8aNGxuvFxcXR9xPYUFBQcA+TEtLSxXcJiGzuyooKioiNze32XQrAq6aDz9k7p13mra8QI8tWma+h83SrVu3qJcR7eezb8BfVlZmqEWtdyths74f7PgaSeJSaCtiA/468reavy+tMWPG0Lp1a0OtKyU5GDlKPW3atGbbi+O33+Dss2l5+eXsASwFjgF+jnG9dpLqwYCIiNV8R7jXfoyHd7AxYsSIiFoyGunbdObMmRHVZ2fe3+3333+/pbVYwUi/quHybR0a74Ar7csvYdAgPhk4kD/89CUbjVi1fDXjPWymoUOHRr0MIw2X/HWVESjgN9oqvKGVsO/3RYNIDz7Z7TWSxKXQVsQisQh0zFpmQUEB++7rv02ky+UK3rpSkoqRo9S+o7UOAVodeST85z+4W7RgAnB4jAdssCPv/tAaTJw40ZJaIuX7mRKPIFqt4mJPz7GkgkCnOWs/xhxG+jY1s+9TO/ANdcaNG2dpPVYw0q9qtOIVcB0MPA+0GjAAXnuN/zkcMV+nUccdd5zVJYTFrNcr1G+O8ePHN7leWFgYMOA32iq8W7duAb8vqD9rQN8XYiWFtpIy7HZkfN68eaYv02gfo8E0fGn5G7XUm7/WleEyKzhQAGFcuCGc0aPUDfO1A6YCjs2boW9fqj76iIlAbcglmMNO24K/Hb+ysrKQR+ytCEoDrc/34I2/INoss2bN4sYbb0z4VnG+r1dpaamtPpPU8lCSRWVlZcDbjLQCNWM/JpWZ3bep3QULdUjAg7LRCNavaiy6AzBbOvAk8A1wNuB2OOCSS9g8dqzVpTU66KCDrC6hiWOOOabZNLMHWovEkCFDAgbGOTk5hmq84oor9H0htmb9Oy2F2SlcSHZ2PDL+008/mb7Mhj5GvR/f/fffb3jbMvIjp4Fv60ojy25gZjijAMI4f6f9hAr6jR6lbpjvD2A4UH377fDpp7h79w6rxnC21wYN8yfKthDqdFHfYDSSoDTSg1S+z6HvwRt/P1aDrcvfaxno9R0zZgzTpk2LulVcoMcbzves7+dVRUWFoeUUFBTQrl27JtMKCwtp2bKlLbZDtTyUVGG0FWg4+zHSlNl9m9qZkf3j++67L2712IFvn50AGzZssGwgrHDsAFrX//8UULVwITzyCFePH2961w+RMqOPWDN9/PHHzab9+OOPltRiVEZGhqHB4B588EFD3xfefd+KxJU7yWzevNkNuDdv3hyX9VVUVLgBN+CuqKgwfL/8/Hx3Wlpa430Bt9PpdOfn5/udf9OmTY3zFRcXu6urq8OqreGybt06Q/VFsr5IRPr8BeKv7vz8/GbPg/clNzc3quX7WrduXZPlB5pv0qRJQevyXcbvv/9ueH7fi8PhaLJtBXrep0+fHtZyR4wYYeh587e9B7v4vg98t+WGmo28tt7bfqD5wtn2ot1m/b0vKyoqmtTqfTnuuOPc1dXVTba9QNtOsPdqqOcq0GdPdXV1yNeuI7irn3nG73MT6PEGuq1hez388MMNby9paWnuvn37RvT4/L2moR6H7zzRXEI9F0Yuvtt2bm5uyNfM37YbahvxvWzatCnoe9tIHeFcnE5ns/dCJMsIti24DX5e+VuOkecv1LqDbZfh8PddVV1d7XY6nYae43jUKKElyj5tOPczMq/R75Jg+7QjRoww9JlgdD8mlFi8F4ItM9h3q5n1rlq1qnG+VatWNbnN6GeKvzrXrl3beL2wsDDgYwm0/xfOY4n2uXJHsH8cbPnBHpPR1zzQPm24j8vsfdpg+0fBHqeR1znUuoPeb9Uqt/vqq92VP/zQOO8B4O7t537h7guF2t+NZP/O6XQ2+R4PZ7uP5z6t976Sv2X7bqeRrMv3Pr7L9P1cMrKd+NY+dOhQQ7X4zhfqfRju953R7Seaz/pw3/Pej9FojhSqBjPvb9Z3r933ZxXaRimScDPc8CTcgLeBvzf5pEmTQtYY6foiYeYbxF/daWlpbofDEfT5djgc7q1bt0a0fH/Py7Bhw5qtw9983jus8bo01BBouzX6I6fhMn36dEPPW7h1+gYH/nbmwv2xYOfQNlBgG8nF37YWbVgTqr58cLsPOsi9aePGZttVsJ2NcIJZM56XQI/P9/3gb0fZ93WPJjj091xEc1DmmGOOCfs+vt9XRrYR38txxx0Xt9ev4XL88cebEgQH+j4L9/OqYTlGDm5Q/51kNBSN9LMm0HfV8ccfb+gxGflcbxCvA7ypSqFt5KGt0ZAtnO092sdl5jLjFdp+//33jfMVFhY2e4+Hc/Dce5rRA4t2CW3D3T9O5dA20P6RJaHtzz+73cOGud3p6W43uGuuucbQ8xboezScbTXQYzNyyc/PD2u7tiq0DfU82Dm09f5sKy4uNlSL73wKbSOrwcz7K7RNUPHcwY0k3Aw3PIm0dZzb58eU0RqjWV8kzHqDRBIMel98W6KGu/yG+4bT2m/lypVR1Rzp48zLywu43YbTksBIi6xIgqCGi/cPKd9tefLkye6SkpKwlhcstA2ntXW026y/96WZrRH9bWvR/ng1soN17CGH+N2u/P1gKy4udo8aNSru27+/xxfoYI93rb6tO4877riQB4OMXioqKtz5+fmmLS+ci/d3QbitiBL94u/zK5LPq4blhPP8GQ2JYnFQ2MglmjMoYnWAN1UptI08tI1Fy/JoH5eZy4xHaGv0PR7sTKFID3DaLbS1Q0tbI2dcWR3aBgvk4xra/vqr2z1ihNudkeF2g+fyz3+6t/33v4afN+/GNZMmTQoZRgeqJ9yGGQ2/SRIttN20aVOzZds5tPU+i2DTpk2Gvi98twGFtpHVYOb9FdomqHjt4EYaboYTnkSzw2kkBDC7NV4kzHiDRBMMGnndjD4vRr6UG56/UOGuVZdwgjQjP8yjCYIaggMzQgjA3b9//6C35+XlGdreomlZFm43EdFcvN+r0Z4malarUqsvvo/P6LblcDhiFqoee+yxlj8v+fn5YbciSoaLb3ga6efV9OnTw3r+jISisTooHMnzEqi+UNuURE+hbeShrTvO22myhbbhPHfBQodI93nsFtoa+Xz1d6p4qOfed95Aj8Xo/qPVoW2wi3cDiZiGtoWFbnfLljvD2oED3e4PPwxar7/1+YZVoe7r7/ZIzqQzGvjZLbQtLi5utuxECW0r6htQBKvDt/Wzv1rCfQ1DvYcU2oa+f6qEthqILALRjEgbzkjskQ6i0DDQiO8AMqFqtGLQBjMGYzNSt1H+Xjejz0tpaWnI5btcLvbbbz8WLlwYda2xEGqApAbHH388JSUlIeeLZmTh7t27N27LZvj000+D3j5t2jTy8vKCzhPNQFehRh02m/d7NdzBxHzdc889ptZmFe/HF86ge/UHOGNS0/z582Oy3HBMmzaNfffd1+oy4s738ynSz6uVK1eGNSBPqHkjHSzMjO9Cp9NJTk5O0Hmi2QcSiadgI9zn5+cb2o9JRWa+x+O1zxNrGRkZIfcRr7322pisO977j7Eyc+bM+HwvVFXB9u3wt7/Bu+/Ce+/BgAGxX68fM2bMsGS9Vli1apUpy/EdCC5eg7UH+r4AyM3N1feFWEqhbQSiCTfDCU/CCXgbhBNE+NYYyfqiYdZI72bVQ4DXzczlA6xdu9bU5ZnJaDDVq1cvQ/NFOrKw0+nk6quv5s4774zo/pGaPn16wO0vmlHXw3lfmqlh283JyTE0Gu7PP//cbFpBfj633nprTOqLJ98wysyDPYmu4Xmwy4jJ8eL7+RTp51X37t3Jycnxu6PvKy0tLWgoGo+DwsHk5eWRkZERdB4rDvCKRMp3hPvi4mK2bdumH+BBhPseT5UDNMFCHYDx48ebvk6r9h9jIRbfC22AicDR3hNHj4bXX4f58+Ef/wCHI+RyYhUMJnrQHo5u3bpFvYzi4uJmBz/GjBnTJC+IJd/viwZFRUVxWb9IIAptIxBNuGkkPGkIFyJpHRduEPH999/7XY7R9UUqmgAsFvV4833dzF5+MjD6nBgNC33l5eXxwAMPxKx1YzD+ApFoW51YFRA2vE4ZGRlcf/31IeefMWNGk8dw+7nnxj04jxXfMMrsgzGJ7ueffw7ZisgqTqeT448/3vTl+oankXxeNXxfZ2RkcOONN4ac/8YbbwwaisbjoPDxxx8fVcvDeB/gFYmW93tuxIgRIQ9MpLpw3+Pl5eUxrsg+fEOdSZMmxXR9yXaA2bTvhS1baFFczE/AOKBJpNahA5xyiqGwtkGkDYdkp6FDh0a9jN9//93v2X3xDL/1/SB2pNA2AtGEm0ZOr2kIF8IJeBuE+2X4+++/N/4fyfoiYfaplUbqdoTxxe37ukUaPCaqUM9VONuAke3dd9kNwUE423I4r28o/gKRaFuWWRFe+L5OnTp1CnmfxsewYQO1F17Ivc8/T/xjc3MFCqN0MKap7t27h2xFFC/HHnts4/8NreLeeOMNUz+Hjz/++GY75uF+XuFzMKDh+fP3eeRwOAyFovE4KPzGG29E1fIwngd4RST+wn2Pm3VadKLw/u4YNmxYTNcV7v5jvE4lj1TU3wuVlXDHHdC1KxlFRewGLAXMaL8bScMh2cmMAxhGupOw8/YtEisKbSMQbbhptI+tcALeBuF+Ge61116N/0eyvkiYfWqlkbpvuummJgF1IP5eNyPLP+SQQwzVussuuxiaL1aMBLK5ublB5wl3Gwi2vQ8fPrzxum9wEM62PHny5Mb/+/fvb/h+gUTa12Wg+awILyJtWbr59dehZ08+fuopfolhfbHivY0HC6NS7WBMKA2fe4FODYsXp9PJSy+91Hi9oVVcJIFqIA6HgzfeeMPvbUaD60AHA0pKSvjjjz+aTCsqKmL79u2GQtF4HRSOpuVhvA7wiog1wn2Pm3FatPgX7v6jnVuMBvpeyM7OJjs7O/QCHnoIunWDMWNg0ybq9t+fwcAhwPMGazAS+JnZJ7uZjUrszow+i420qJ03b15U6xBJSFaPhGa2eI20a8aItEZHoQ9nFOlwR4/2N0p0JKNWhyPakewDCVW3kdEqgz3GYMs3Our47bffHtaImWZdGuo0ut0GGqXWe+TXcPnb3oON1FhdXe12OByGHpvvsqN9viIdVT7QqOtmjepu9OJvOzb6GN6rH213dtu2huZ3OBzuvn37WrJd+7v06dMn4DblK9T7IVUuhxxySJPnxYxRhCO9+I7O6/samvGaRfL9/Pvvvze5Huj72t/zF84otEY+K5xOZ9D1G/kOj3aUXDP2gSS0eO3TNoh0uwjnfuGOph1sZHajI1nHY1ToWKzD6IjZsXjNwnmPe39eGrnk5ub63cf091iMfJ6GeizRPlfBluc7srqR5Qd7TL6PJZr9RyOfw2aO6m7kdTd6P7+1zJ7tdoPb3a2b2/3QQ+6Kv/4K+3U1+hth+vTpzV7bQDU3rDM3N7fZbUZ+xxjZ9sPZ7n2nh/o89Z0nmsv06dMDvj/MWteQIUOaXF+1alVE2+iqVatCPn8NF3+/W/09vnBfw1DvhUDPVzSf9eG+533fB5Ew83Mm2HehWZ/rsdpPiIZC2yhEG26Gs3EYDXjdYfyoDfbDL5z1hSvaACyYYHV7P9+Rvm6Blh/OD+14B1yTJk1q8jwY3W7Xrl0b1ZeELyM7Db6MbMu+Ic+mTZuiCkj9vS/MClIiqee4445zV1dXNwmNgl22bt3qd/1GHkMncNemp7vdEye6p0+damh9JSUljY8v1I+weFy8d8iNbK92qdvKi+9nbTQ71P4+W3znOeaYY/zet+EHXajPhXADAu/LDTfcEHKb8FdDpKGU0e3Qd5sM9hjMOChsxs5prA/wikJbAuwvNFwU2jZ9Psx+zYy+x8P9zqioqGiyj1lYWBjwsaR6aOuOYv8x1H6pkecunOeCEIF8qGCsybx//ul233+/2/3MMztXVlPjdj/yiOdvhK/r0KFDDT13I0aMCCu0NbMRQCKHtiNGjIh5aDtp0qQm1+MR2ja8n3yDeYW2kdVg5v0V2iaoeO/gRhNumr2T6y0/Pz/k0b1gP6xiueGaEYBFUrf3bd47i+G8bsGWH84P7WDBrb8dHn9fFEYv/j5gjWy3/r6I4h3aBnteHQ6H31bU0e48BXpfmBGkHH/88WHXE+wHq79tJ5hQj6H8wAPd7qVL3e4I36fe21UkrQuivaSlpTWpwej26n2f4447rlntDoej2bRkCXr9fdZ6b2s5OTlhLc/3s9VfwBrtTm6kO/wjR440tD34qyGeoa07DgeFzfqOj+UBXlFo6z1PoM+SWD6ucCRjaOt2u93ff/9943yFhYV+3+PBPpP97UdUVFQ0+R7wDk8aLps2bfK77FQMbd1RHGAO1QDG7NC2oqIi4IFVQ8EYuC8Ht6tLF0+r2s6d3e4A3yuRvK7RtLQN9LiibSwS6DEkYmgbbUtbI9u4b6Mis0PbcH5vK7SNrAYz76/QNkElyg5uuPeNZD2BvlyM/PCL9YYbq1Mrjb6pje5YhbN8d5g/tFeuXNk4z4knnthkub6v3aZNmyL+QvX3AWvk9bVLaOv2sy1Pnjw5YCvqhuWEu4Nr5H0RbZBitMuHUF/8RloxBOJvZyTQYwj1PvUNib1rDLXTs8cee/h9HMOGDYu4NXqoU+sD8b2PvyDKd1qkrT1zcnJCHpQJNyiN5uLvdQ+2wx3q4vvZ6u9zK9ahbTTvj0DbRLxDW3eMDwqnyk5uokuUfVqz92d95wn0fZ6TkxPTxxWOWKzD6D5tLF8z72AjUDgS6DM50HdlhU9oe8011/j9HPf9To/08yza5yrY8uIV2rp9vhOM7ieF6mrOzDAl2Pd+sMcJuNPAfRG4v6/vossNbnfHjm53aampoa2RfbeGg9ner6e/fTfv7dzIa2H0YvSso0C3G9l/CTZPoEuo31QNz1uwfchQ6zISmPou08zQtrq6OqzfjgptI6vBzPunyv6sQtsoRfMCm72TG+w+DRffU+XNXF+4YnFqpdE3daxCW7efbgUaWgv4CtTKwN8HtNEv1Ibn0Dv0SYbQNtROe6DleO+cjRs3LuBzFk4gEm3LsnBbTPt7rvx1XWH09an8/HP3J/V91z4O7vKLLw67f0yjr0Og+w4fPrzZc+m7vY4cOTKs5ylQq2sjYrWD63sKF35aa/jrJ8v3vedvOd6XYcOG+f0cCHV7oM/aYLWECpztENpG8/4IZ5swct9w1xusBjPvmyo7uYkuUfZpzd6f9Z4n1HdmPPrtNCIW6zC6TxvL1yya0DZY4GD0gKDv6x/J51m0z1Ww5cUztPW+LdR+QcPFipa2wbYHf/cbCO6lXmHtenBvv+02t7uyMqx1R/L9HOwzxeg26j2WglkXI40QjPz28T1wEs0+bagGBf7C5nBD24qKioCNSwIt08zQ1mgXjoFqCfU8h7tNBvsMNSqa/Vm3QlvbCD48siSdYcOGhTVKdCz5jlIebKT3ROL7/Mbz+W54DsePHx+3ddqZ93M/fPjwgPOFM3p6NKOuUz+SvD+hRmoOVINhNTUwYQKtjj2W/sChwDvARffdF3R5vu/TcAS67x133AEhHseUKVMMr2fTpk22/NwYNmyY3+nhbkOBltNg0qRJTa4XFxezYcOGgLcDbNiwIaLnbM2aNU3Ws23btoDbtFXs8h0nItGbMWNG0NvNHOld7GfmzJlWl2BLV155Zch5nE4nOTk5caknGjuAXsAm4GagG7Dj+uuhdeu41uF0OsnPzw9732jJkiWm1xLp51pBQQHt27dvvD5mzJgm16MR6relWfuCvsvx3aeNpZUrV8ZlPSLhUmgrloo2AJOm9BwmppjvkCxYAIcfDhMn4qit5UWgJzAXwOEIefdotql4bI/a5psy8jkQ6XOmz2wRiae6urqgt7tcLsrKyuJWj8SXy+WyugRbMvLdm5eXZ7/vaLcbXnsN9733Nk76GLgU6ApMASosKCuahkNutxuHgX3pcLhcLsrLy8O6T0FBAVOnTm32mRnqMzQa/hoFmC2e+5rdu3ePy3pEwqXQVkTEYjHdIXG7Yfhw+PZb6NCB7Q89xNnAb7FZm4iISFypdZTITpG2GI21tPfeg7/9jecHDeKg/Pwmtz0KbLGssuj3ww855BBT6wFYtWqV4XlramqYNm2aofnMFOpMsESTk5NDWpriMbEfbZUiIsnI7fb8dTigvBwuuwyWL8d17rlWVyYiImIatY4S8bBjV3PHAe8Drc44g+c/+4zzgP9ZXZTJLr/8cnJzc5tNdzqdfqcb0a1bN8PzlpeXG2qVHm7r3VSTkZHBqFGjrC5DpJmIQ9tNmzaZW4mIiERv82YYOhS8T1k67DB46CFo187KykREbEn7tPYVqtVTovTbKZEJp7//ROHb2tHM1o926rZof+Bt4ANgILAjI4OrHQ7cVhdmsobPIH99um7YsCGivl6dTidDhw41PL/RVrnhtN5NVcHGHok0gBeJVsShbf/+/Vm9erW51YiISMScr74KPXvC7Nlw++3w++9WlyQiYnvap7WvUK2ebNlvp5hm5MiRVpdgKt+BogDatWtHXl6eZTXFyjbgWKAGKANm3ngjf7qNRbaJNLjgyJEjA34GRfrZNGrUqLDua7RVbjitd2Unuw68K6kj4tD2+OOP5+ijj2bBggXmViQiImHpADwBtPz3v+HXX2H//eHtt2HPPa0uTUTE9rRPa19FRUXk5+f7bXGbk5Njq9PAJTLXXHNNs2kN/bImU0gSaKAot9vN9OnT6devn2W1meEQoMVddzVe/x9wBXAAMBz47o8/DC+rffv2FBQUxKjS8AXr6zQW2+iMGTMoLCw0PP/QoUMNtUoPp/Wu7GSnFuySmgyHtk888UST6/fddx+5ubmccMIJ/Oc//4lFbSIiEsJFwDLgQsDtdMLo0fD113DccVaXJiJiS9qnTSwlJSVs3Lix2fTx48dbUo+Ya+zYsc2mbdiwISECee8Woffff3/Q+UINFLVw4UK/z4Xd9QSeAb4CMsaPJ+2LLxpvewpYU/9/OK086+rqmDp1qm2C2/Hjx/v9DIoVl8tFaWlp4/VZs2YFbX2ckZFhqLW2gkeRxBQytP39998555xzePvtt5vdNnbsWO677z4GDx7MzJkzY1WjiIj4sRcwG2hfv7O8/f33obgYWrWyujQREdvRPm3iUtiQWhLl9e7cuXPj/+PGjQs4X1lZmaGBombNmmVabTH3/fdkXnklS4DzgDpgx3nn4W7b1u/sRluDeps2bZptukqwcpscM2YMrVu3Dhpil5SU+D0rIRn7hRZJNSFD2/Lycmpra5k7d67f2y+++GKee+458vLyGDhwIAUFBTz11FP8+OOPsahXRETq/QYUAIVAX6DusMOsLklExLa0TysSX3YJ3GLFt6uDBr6ntq9cudLQ8twG+3y11B9/wBVXQM+epD/zDGnAs0AfoPrBB3F37er3bkZbg3pzuVyUlZWZVHh022Og7grC6cYgGi6XK2TrY9+zEoqLi9mwYUNc6hOR2AkZ2o4aNYq2bdty7rnnNrvtr7/+oqioiCuvvJIOHTrwf//3f7z++utccsklHHjggbRp0yZWdYuIpJz9gHeBFp991jjtHuA2YIellYmI2J/2aUXip7CwsNmgW8Qx5IoVI8HfzJkzm8zXvXv3GFcVR1lZnnET6urYcdppHAacD3xr4K6BWoMGYzTwDsXfIHBGTZw4sUl3Bd5KS0vj2o1DqNbH3i2C1RerSHII+Ym522678dBDD3HVVVc1mZ6bm8u+++7L7NmzufXWW1m9ejWPPfYYS5YsYcuWLXz88cdMmTIllrWLiKSGHTtoUVrKN8A/gOwE/8EjImIF7dOKxE9paanflqilpaVMnDjRkprMUF5eHnIe3xaiOTk5OByOGFcWI7/+ChMnQkP3Di1bQnk5fP451U8/zVdhLi5QH9WBmBF4BxoErkGoAwn33Xdf0Nvj2Y2D2a2PRcT+DB/mOu2005pcf/nll5k2bRorVqxg+PDhZGZmNt7WqlUr+vfvT05OjrnVioikGMfSpdC/PxmFhbQC3gY2z5ljdVkiIglL+7Qi1goVgtnZqlWrDM3n3UI0IyOD3NzckPexVf+j69ZBXh507w4TJsCTT+68bdAg6Ncv4kUbbf3pdDqj/uw1Mgicb8toX4HC3gYul8tQmG8Ws1ofi0hiMH5ugo8ffviBq6++mhYtWphbkYiIkAFMBFodeywsWoR7t924EjgJqPMa+EJERKKjfVqR+AoVgtlZt27dDM3n20J02rRp9O3bN+h9Ro4cGVVtpti4EUaPhm7dYPp02L4djjkGAvRVG0t5eXlRn95vZBA4M1qvGg3zzZBU3W2ISEgRh7a2OhIoIpJkTgfGAY4dO+Dss6latIgHrS5KRCQJaZ9WRIwaOnRoyHkCtRBdsGCB32DW6XSSn59PUVGRaXWGrbYWbr3VE86WlMC2bZ7WtG++CR99BH/7W9xKaXg+SkpKol6W0Vap0bZeNRrmR8uM1sciklgiDm1FRCR2ngceBLY/8gg8/zzuPfe0uiQRERGRlGak5efIkSMDzufbP3ZxcTHbtm0zJaCMSno6/Pe/UFEBhx0GL78Mn30GJ50Ece6Pd8OGDaY9H0ZbpQabL9TAaU6n01CYb8Rxxx0X9HYzWh8L1NbWNv4/a9asuPVJLBIJhbYiIjaQ9t57fATs5jXtSsB19tkWViUiIiJirlAhWKII9DjCaTE7YsQIa0K4igpalJbu3O90OODOO+G55+CLL+D00+Me1jYw8/nIyckJeTZFqNar1157bdD7mxmkvvbaa+Tn5zfbtsxsfSzQo0ePxv/HjBlD69atKSgosLQmkUCS4xtTRCRBtQEyhg+n1RlncCxws9UFiYiIiMRQqBAsUaxZs6bx/0mTJllai2FVVTBtGnTrRkZhIXnet/XvD+ecY1lYGwsZGRnk5eUFnSdYy2iA8ePHBxxILjc31/QgtaSkhI0bNzZet01r7CTi26+2y+Vi6tSpFBYWWlaTSCAKbUVELPIvYBnQ4qGHAJgJJMguv4iIiEhAubm5flui5ubmMn78+Mbr3qcpJxrvoG/YsGGW1hLS9u0wc6ZngLEbb4QNG6jr1o0lVtcVByUlJX5brzYw0jI60Dyx6ofYe9uyrDV2Cpo5c6bVJYg0o9BWRCTO9gCeAl4E9gbq9t+fqrfeYhRQYXVxIiIiYfDuC1B9A6aeQK93UVFRk9aC3tO9eZ+m3ECt3Uw2Zw7svz+MGgW//w6dO8MDD1D1xRc8Y3VtEQr3c8a39apYIysri4oK+/7acblcVpcg0oxCWxGROBsPXADsAG4Hqj79lLo4jsorIiJihoKCAtq3b994XX0Dphbf19+XkdaBvqcpA5SWlmobMtPHH8Mvv8A++8C998IPP8BVV0GLFqauJl4HbQJtd6HCfrVWFZFEpNBWRCTObgXeBPoBtwC0bGl1SSIiImEpKChg6tSpAfsGVOiW3AK9/g2CBWhGgr1p06Y1a5GnVtwGuFzw6KOwfPnOaePGwd13w4oVcO21YFJ46fsajxkzJmiIb4Zg211paSk33nhjTNcvIhJvCm1FRGKprg7KyuCSS8DtBmATcArwpdW1iYiIRKCmpoZp06YFnWfatGkK2WLE6ufVyOs/c+bMgHXOmzcv5DpcLhd77bVXk2nt27fXwYAAHIDz2Wehd2+49FJPUNugSxdP1wgmNhIoKCigtLS02fRAIb4ZjH7uhBp4TJrKysrC7XbbutuCeHE6nVaXINKMQlsRkVj5/nsYOBCGD4fHHoM33rC6IhERkaiVlZWF7PvP5XJRVlYWsxruv/9+y8NLK0R6ariZjL7+5eXlfm/76aefDK3HXX+wu0FdXZ1acftxFvAV0PKKK+C772D33eGIIxobC5jNSHgaC0a2O4Dp06drG0lSWVlZrFq1KmbLHzlyZMyWLRIphbYiImbbsQOKi+GQQ2D+fMjK8ozYe/LJVlcmIiIStZUrV5o6XyTGjRuXcv3nhjo1PF7PhdHXNVC40qVLl6jWn6ytuMMd1O9EYBHwAtAHcO+6K0ycCD/9BGPGgMMRkzqNhqdmC+fzJFm3ETFHWlrTGMzpdJKfn99soEQRO1BoKyJipq++gqOOgrFjobraE9R++y2MGAFp+sgVEZHE1717d1PnCyVQK9JU6j/XTl1SGH1du3Xr5nf6lVdeGdX6Y92K2wqRDOp3GHAEsBUoArZ9+62nW4Rdd41prbE8GBNMOJ8nybiNiHmWe/X5XFxczLZt2ygpKbG0JpFAlCCIiJilrg4GD4bFiz2npj34ILz+OnTubHVlIiIipsnJyQnZ95/T6SQnJyfqddXU1DBjxoyg86RCqzo7dEnRwOjrP3ToUL+3ZZgwEJZVwWEsGB3UbyAwwOv2e4DKvDy61g9yy+67x6Vesw7GhMvIductmbYRMVeLFi0a/x8xYoQpn0kisaLQVkTELGlpnkHHzjsPli2Dyy+P2alpIiJiXxMmTMDhcDS5HHTQQVaXZZqMjIyQg/3k5eWZ8kO4rKws5OBGqdCqzg5dUjQw8vqPHDnS0Ovve5qyUVYFh2Yz0oJ61l13kX7KKbwPzKK+kQCwDagcPZo/4lNqo3DDU7MY2e68Jcs2kmwCnTkRz365RRKJQlsRkUhVVMD118M99+ycdvzx8MwzsOeeVlYmIiIW69WrF7/99lvjZf78+VaXFFS4/WmWlJSQn58fsG9As041tVNYaaV4d0kRSqDXv4HRviG9T1NuECrINasVtx2Ul5eHbEFdVVfHp/PnUwN8BFBVFa/y/Ao3PDVTSUmJoXWH2kbWrVtncmViREFBAaWlpX5vKy0tVXAr4odCWxGRCPwTaNWvH8yYAaNHwx/xbucgIiJ2lp6ezp577tl48e6v0m4i6U+T+gBl48aNjddj0Teg3cJKq8SzS4oGtbW1jf/PnTu3WZDv+/pHwvs05QajRo0Keh+zWnHbQaDB2nx9cdBB7AeMAM8AtxYrKSkhNze32fRA26iRA0FG3XXXXQwfPjzoPMm0jdhBVlZW1EG3kVblM2fOZNOmTVGtRyTZKLQVEQnHpk3MBd4C0n7+2dNf7fPPQ7t2VlcmIiI28uOPP7L33nvTrVs3Lr74Yn7++eeg81dXV7Nly5Yml3gw2p9mIN7BSCz6BszJyUmplpeBxLNLCuq3ix49ejReLyoq8hvkxyIYKyoqiksrbjsINFibrx1XXMHamFcTHt/W1MXFxWzYsMHvvEYPBBl1xx13+J2ejNtIsjDSqtzlclFeXh63muwuKyuLiooKq8sQiym0FREx6rnnaHXkkVwJ1AG1110HS5fCSSdZXZmIiNjIUUcdxYMPPsgbb7zBvffey+rVqxkwYABbt24NeJ8pU6bQpk2bxkunTp1iXqeRlk9WD/KVkZGRUi0vgwnWJUFubq5pQVW0Qb4Z/LXi3bBhQ9KFcUOHDiXDwEGJQIO62UmogzYN20+sToGPRUt/MY/RVuVG55PEkJWVhdvtxu12k2WDswQSkUJbEREjVq2Cf/+btPXrWQ4cC9RMnQrZ2VZXJiIiNnPqqady/vnn06dPH04++WRee+01/vrrL55++umA9xk7diybN29uvKxdG/t2dWVlZYZaPlk9yFeg/lFTsVVdoC4JjPYhG4qdgnzfADDZgvnuQPbw4TzudhNs2NpYHZQItx/rcJcZyMyZM6Nejz+xaOkv5jHaqtzofCKpQqGtiIgR3bpBYSE1+fkcBnxqdT0iIpIwdtttNw444ABWrFgRcJ7MzEx23XXXJpdYS+RBviZNmpSyrepiGUwlSpCfyPYFZgPfAS2eeIJz3W7Ku3enRRy7g4i0H+tQjJzaHmr7ktiyquXj0KFDDfXLnQitykXiSaGtiIg/a9bAGWfAN9/snDZhArXjx1NtZV0iIpJwKioqWLlyJXvttZfVpTQR70G+zGzZN2zYMLWqiwE7B/lmDmZlid9/JyM3lx+Bq4F0YMdJJ8GCBVy9YgXrYjyoX4NYdn+hU9slkHj3yy2SLBTaioh4q6uDWbOgVy945RUIMTqtiIiIr5tuuokPPviAn376iU8++YSzzz4bp9PJ4MGDrS6tiZycHEMtn8wY5CtWLfvEXPEO8oPx7fs04beZP/8kfe5cMoB3gL8B1c8/D337QhwG9SMO3V/o1HYJpqSkhNzcXL+3mdkvt0gyUWgrItLg++/huONg5EiorIQBA2DOHKurEhGRBPPLL78wePBgDjzwQC644ALatWvHZ599RocOHawurYl4tXyyw8BWYkw8g/xgCgoKKC0tbTY9obaZjRvBux/rHj2onTCBgcA/LepqK9bdXxg5tT3U9iXJLVD/22b1yy2pI1UGOVNoKyJSWwtTpsAhh8DHH3sGF7vnHnj/fTjgAKurExGRBPPkk0/y66+/Ul1dzS+//MKTTz4Zl5aJkSgpKSE/P5+0GPWnaaeBrSQ0O5zCnPDbzKZNcMst0LUrDB4MP/zQeFNtXh4fWlharLu/MLJdjBw5MqJli4ikIoW2IpLy0p96Cm6+Gaqr4ZRT4NtvIScH0vQRKSIiya+kpISNMepPUwNbJZ5YB/mhlJeXJ+Q2syswDmjduzfcfjtUVMChh8LWrVaX1sjK7i8ath+1qJRo1NbWNv4/d+5c+x68ETGJEgkRSXk7Bg+GQYPg4Yfhtddg332tLklERCSuYtWfpp0HtpLASkpKWL58eeP1wsLCmA2M5cvoYFZGtpl4BDqtgNZ3381qYCLg2LIFDj4YXngBFi2CI46IeQ1GWdX9RSwHVpPUUVhYSI8ePRqvFxUVJXY/1yIGKLQVkZRzDPAy0LJhgtPpGXTs0kvB4bC2OBERkSRip4GtJDwtWrRo/H/IkCFxG9Xd6GBWobYZ38HvGvgOcBatDKD1PffQFlgGbH/4YfjqKzjrLNvtV1rV/UWsBlYT8zT0D1pRUWF1KQGVlpaqb3RJOQptRSRlZAMzgfnA6cBoqwsSERFJcnYZ2EoSx9ChQ6PeZgINfkd98BNNwJMJDAZwuwHYDFSMG8fFwMGA65xzbN3FltXdX4jEQqz7ufZdtrplkHix77eJiIiJMv77X5YCI+qvPwDcbXFNIiIiyc4OA1tJYol2m4nZQGY1NaTPns0K4HEg4913G2/afsklPA40j4jtKZb9WKeSWbNmKbyziVj2c+2v1X7nzp1jsi4RXwptRSSptQUeBHYbPJjOwGrgROAa4C+rixMREUkBatkn4SopKSE3N7fZdCPbjOmD39XWwpw5cMABZN5wA/8HrMUT4iayWPVjnUrGjBlD69atTe9yI1E1dLHgdrvJysqK+/pj0Td6YWGh31b7/lrxi8SCQlsRSWqlwOWA2+FgOtAbeNfA/URERMQ8atkn4SoqKmpy3eg2Y9rgdy4XPPII9OgBV18Na9ZQt+eejAD2A2pOO83QeiS5uVwuSktLrS5DYtQ3+owZM0xfpkg4bBfaTpgwAYfD0eRy0EEHWV2WiCSom4HPgD9ffpk8YJvVBYmIiKQoteyTaBjdZkwb/M7hgDvugJUroUMHuOsuqpYs4R4gsdvYSrjM7gKhoqKCdevWmbrMRJGVlRWTwc5i1Te6WtSK1WwX2gL06tWL3377rfEyf/58q0sSkQSR/sgjcMMNjdd/AfoDO/r2tbQuEREREYm9iAe/q6uDF1+EqirP9bQ0KC6GKVNg1SrIy4NWrWJYudhVeXm51SVICOobXZKVLUPb9PR09txzz8aLb6fPIiK+ugBvAZnXXQelpfDRR1aXJCIiIiJxFvZAZm43vPwyHHEEnH023HvvzhlPPx3GjIHs7BhXLXa2atWqsOZft26dJX26Jrvc3Fz1jS4px5ah7Y8//sjee+9Nt27duPjii/n5558DzltdXc2WLVuaXEQkhbhcpN9zD0uBfwLuli2hpAT697e6MhERERGxQKDB76gPfkpKSjxh7ZtvwtFHw5lnwldfecJZt9uSmsU+vAPXrKwsunXrZmk94lFUVMTy5csbrxcWFsa8b3R/nyGpwvd9YFUNVg5uZwe22wKPOuooHnzwQd544w3uvfdeVq9ezYABA9i6davf+adMmUKbNm0aL506dYp7zSJikWXLYMAAMkePJgt4H6j67DPIz4f0dKurExEREZEwzZo1y5Q+RH0Hv2tQVFQE770HAwbAKafAggXQujWMHg2rV8ONN0a9bkkuQ4cODTmPd5ccDeFSVlZWyvZdGystWrRo/H/IkCERdYkQTvg3atSosJcvYibbhbannnoq559/Pn369OHkk0/mtdde46+//uLpp5/2O//YsWPZvHlz42Xt2rVxr1lELFBbC6eeCp9+inuXXRgG/ANw77ef1ZWJiIiISITGjBlD69atKSwsjHpZAQOdmTPh44+hZUvPWAirVnn6r1W3fFEJ9JqZ8VpayUgwOHLkyLjUkihiNeBYvBUVFfltte99PZbBfLI8jxI524W2vnbbbTcOOOAAVqxY4ff2zMxMdt111yYXEUkBLVrAXXfBoEFULVpEOaCT2UREREQSx5QpU/xOd7lclJaWhry/0VNn+wH7eE+YMAFGjICVK2HaNOjYMZLyxUthYWHA16y0tJSCgoK41xQPDX2qFhUVWV2KxIi/Vvtr1qyxrB5JLbYPbSsqKli5ciV77bWX1aWIiIVaAsXAv70nnnsuvPwy7n32CXxHEREREbGlOXPmxHT5aV99xcvA58A47xv69PG0tt1775iuP5XMmDEj6O3Tpk0zpdsLOykuLo55n6piD76trSPpliEUdaUh/tgutL3pppv44IMP+Omnn/jkk084++yzcTqdDB482OrSRMQiafPn8zUwGpgJ0DDgoMPhuYiIiIhIwqmrq4vNgpcsgXPOodWxx3I64IrNWsRLqNfS5XJRVlYWt3riYcSIETEJ78T+NECWxIvtQttffvmFwYMHc+CBB3LBBRfQrl07PvvsMzp06GB1aSISb1u2QE4OrU45hQOA/wFXAagbFBERkaTk3RLPrAGpJIV89x1ceCEccgi88AJuh4NHgR7AMKtrE1auXGl1CSK2FesgWEFzYrJdaPvkk0/y66+/Ul1dzS+//MKTTz5J9+7drS5LROLttdegVy+4914AyoGewMtW1yUiIiIxUVBQQHuvgaDMHJBKUsTDD8NTT4HbDeefT9WCBVwK/Gh1XQKg3/UiAVRUVChIFb9sF9qKiLBsGQwaBL/8At26UfXKKwwDtlhdl4iIiMREQUEBU6dObXaKtdEBqSQx+Y7IHraffoJvv915/cYbPS1tv/oKnn4ad48eUdcoxoR6LZ1OJzk5OXGrR0QkGSi0FRH76dkTrrvOs+O9ZAl1f/+71RWJiIhIjNTU1DBt2jSryxALXHXVVZHdce1auPZa2H9/yMnxtKwFaNcOnnjC0z2CxNWoUaOC3p6Xl5fy/b+uW7dOp6ZL2NStQWpTaCsiltsLyLziCli9eufEe+6BO++E1q2tLE1ERERirKysDJcrcYeKskM/vIna/+/YsWP9Tnc6neTm5ja/4bffYNQo2G8/uP9+2LEDMjOhoiL2xUpQRUVF/l8zIDc3l5KSkrjXJJLKFPYmB4W2ImIdt5shwDIg/dlnYcSInbc5HFZWJiIiInGSyIMTBeqHt6CgIK51WLXeSHiHB/6ChOLiYrZt20ZRUVHjtA5Axs03Q7duMHMm1NTAwIHw4Yfw1luwyy5xq18C837NjEwXSQaRhqMKVcWIdKsLEJEUtWoVLYcMYU79VdeRR+K84w6LixIREZF4S9TBiRr64fXlcrkap8eidWGggdlivd54GTFiBBkZGdTW1jZOOwVoMWOG50r//jB5MvzjH7Y5yN8QvoiIiJhJLW1FJK7SgPR77oGDD8b5wQdsA/KA7e++C717W12eiIiIxFlOTg5Op9PqMsJipB/eadOmmd5lQU1NDTMawss4rjdaFRUV4bUm++sv0hYvbrz6OLDj3HPhtdfg44/hhBMiCmw1QrtI/NixJak+AyTRKLQVkbgaBmSOHg3btuE67jgOBqYDJNiPNRERETFHRkYGeXl5VpcRFiP98LpcLsrKykxfb11dXdzXGy/ZQIuSEujalcyLLqJh2CoXUP3QQ3DqqbZpXSsiIonPjgcXvCm0FZG4mgu4+vaF8nK2v/oqq6wuSERERCxXUlJCfn4+aWlNf54EHJDKYkb74TW7v16r1htrrYF8YDWQMWkS/PUXZGfTyerCRCRhNYRxFRqoUBKYQlsRia2FC+Gyyzyj+wLVwPb//heuuUYtJURERKRRSUkJGzdubLzub0AquzDaD6/Z/fVatd6YqariemAVUAK0B+r23x8ee4yqzz8nsaJnkdRh99aJIslCoa2IxMa2bZCfD0cfDY88Qvp99+28TWGtiIiI+JGRkdH4f8OAVHZkpB9ep9NJTk6O6ev1bY0cq/V6BzGxCmXSly2jFOgIrAQuB6oWLoSLLlLXWQEoLBOjtK2IJD6FtiJivvffhz594M47oa4OLrqIHRdeaHVVIiIiIqYw0g9vXl6e6aFzRkYGo0aNivt6TVNbS9qCBY1XdxxxBPcD1wAHAQ8DpKdbWaGI2Igdg2cNZibxpNBWRMyzeTMMGwbHHw8rV8I++8DLL8Njj0H79lZXJyIiImKaYP3w5ufnU1JSEvGygwUVgbqLMGO9MbNjBzz0EBx0EC1PO429vG66FngA2GFheSIiInak0FZEzDNkCJSXe/4fNgy+/RZOP93qqkRERERiIlA/vPEOTq1abyhpwIVAq7594YorYNUq2GUXDrSgFrWOExGRRKPQVkTMM3ky9OwJ770H990HbdpYXZGIiIhITNmhH17b9f9bV4fzhRf4GngCSPvxR2jXDu64g21Ll/K+1fWJiIgkAHUYJCKRcbvhySc9LSZuucUzrWdPWLIEQgyQISIiIiLJy7FhA5nXXENv4E8g69ZbycjPh112gcpKq8sTkQQVjwESxaOhmx6xlpIVEQnfL7/AmWd6RvYdNw6+/HLnbQpsRURERFJOX6//3R07UnvDDUwEugK1o0d7AlsRERExTOmKiBhXV+fps7ZXL3jlFWjRAiZM8FwXERERkdTidvMP4GNgAXC01021t9zCBGCzheWJiIgkMnWPICKGdAdaDhoEH33kmXDUUTBnjgJbERERkVT04Ye0vPlm3q2/WgX0Aj6zuCwREZFkodBWRELKBOYDzo8+gtat4bbbYORIcDqtLk1EREREwhB1P4WffQa33grvvIMTqAbuB6YAv5tZqEgSiEUfrOpr1P70GolZ1D2CiIRUDUwAXH//u2egsdxcBbYiIiIiqWbHDvj3v+GddyA9ndohQ9gPuF6BrZigoqJCg0uJiHhRaCsizVVXkzV1Kv/0mlQObH/5ZejWzcLCRERERCSeelEf1gKkp3vGM7jySvjhB2pmzOAXi+sTkdQRi5bLInam0FZEmvr8czjiCLLuvJNyoFX9ZDeAw2FtbSIiIiISF87vv+cpYCnQ8tlnd95w5ZUwdy507WpleSIiIklPoa2IeFRWQl4e9O8P335LXfv25NcPKiEiIiIiKeKHH+CSS2g7cCAX1E9K/+47i4sSu8nKyqKiosLqMiRO1KpVxBoKbUUE/vtf6NMHpk8HtxsuvZQ/PvqIZw3cVURERESSwOrVnla0PXvCY4/hcLt5HjgYqJgwwerqREQi0jAomNvtVvgsCUehrUiKS/vySzjhBFi1Cjp1gtdeg4cfxt22rdWliYiIiPh1//33U1NTY3UZyWXoUHjwQXC5YNAgNr39NufWd48gkkoU8omIXSi0FUlxdYcdBuedBzk5sHQpnHqq1SWJiIiIBDVu3Dhat25NQUGB1aUkrl9/hT//3Hl93Dj45z/h00/hlVfY0aePldWJJDWFwSJihEJbkVSzfj0ZI0bQ3nvak0/CPffArrtaV5eIiIiIH4WFhX6nu1wupk6dquA2XOvXe8Yx6N4d7rhj5/QBA+Ctt+DooyNa7Lp168yrUURERBTaiqQMtxseewx69qTFgw9S6n2b02ldXSIiIiIB1NTUMGPGjKDzTJs2TV0lGPHHHzBmDHTt6hnHYPt2+PJLzz6iiIgFKioqbNMNRUO3GBpgT+xEoa1IKli7Fs44Ay65BP74A9fBBzPN6ppEREREQigrK6Ouri7oPC6Xi7KyMr+3qW9K4K+/4NZboUsXT8vabdugb1944w3PxeGwusKEoe1JRETiSaGtSBJzAC0fegh69YJXX4WMDLjtNrZ/+CGLrS5OREREJISVK1eaOl9KGj8eioqgogIOPRReegk+/xxOPlmBrYiIiI2lW12AiMTODcCuDf289e8Pc+ZAjx5QWWl1aSIiIiIhde/e3dT5UkJlJWzeDHvv7bl+003w8cdw881w1lmQpnY7IhJaRUVFY4vySv1+FLGEvrFFktgDwI799oMZM+CjjzyBrYiIiEiCyMnJIS1EyOh0OsnJyYlbTbZVVeXpq7ZbN/B+Pjp1gkWL4JxzFNiKSESysrLU16uIBfStLZJE0pYsgRtuaBxQYguw6YMPYORIDTYmIiIiCScjI4NRo0YFnScvL4+MjIy41WQ3GUD6ffdB9+6Qlwfr18PSpbBli9WliYiISBQU2ookgQxgEtBywAAoLaXlk0/uvDFdvaCIiIhI4ioqKvI73el0kp+fT0lJSdxrsoMWwFBgBZB5003w22/QuTM88AAsXw677hrV8r0H2jJz0C0N5pW81BqzOW3vIhINpTkiCe5oYA7QE2DHDjj7bGr+8Q+ryxIRERGJmUmTJjF69OiUbmE7BLiv/v+6vfcmrbAQrrrKM/CsJJWG4E8k1rStidiLWtqKJKjWwHTg4/rA9ndg+6OPwvPPU9exo9XliYiIiMTMsGHDUi+wdblg7drGqw8BXwCjgKpvvoHrrrM0sFWLQolWYWGh1SWIiNiKQluRBPU0kFv/Jn6wPrh1nXWW1WWJiIiIiJnq6uCZZ6BPHzjlFE94C2wHjgRmArRsaXWVIoYEC2ZLS0spKCiIaz0iInam0FYkQRUBq4CTgSuBP60uSERERPwqLi7G4XCQm5trdSmSSNxuePFFOOwwuOACWLYMfv0Vxw8/WF2ZSERqamqYMWNG0HmmTZtGTU1N3GoSe1GLfZGmFNqKJAjnyy8z1Ov6Z8CBwFsW1iQiIiLBLVy4kPvvv58+ffpYXYokCrcbXnsN+vaFs8+Gb77xDCo2fjz89BPuHj2srlAkImVlZdTV1QWdx+VyUVZWFtM6FAxGRs+bSPwptBWxuT2AzEsvpeXgwZQC+3ndtsPCukRERCS4iooKLr74YmbPns3uu+9udTmSKObPh0GD4IsvICsLxo6F1athwgRo08bq6kQitnLlSlPnExFJdgptRWzsUmA5kP7CC7idTqYDaw3cT0RERKw3fPhwBg0axIknnmh1KWJ3//vfzv+PPRZOPBFuuskT1t5+O7Rta2V1YlOJ1vKxe/fups4nIpLsFNqK2JDj5595DXgYaAu4+vRh+4cfcgtQbXVxIiIiEtKTTz7J4sWLmTJliqH5q6ur2bJlS5OLpIBPP/UEtL17w19/eaY5HPDWWzB1KnToYHWFIqbJyckhLS14BOF0OsnJyYlbTWZJtABdAtNrKXai0FbEbioqaHXssZxaPyrwWGD7Bx9Qd8ghVlcmIiIiBqxdu5brr7+exx57jJYtWxq6z5QpU2jTpk3jpVOnTjGvUyy0aBGcdhr87W/w7rtQWQkffbTzdofDyupEYiIjI4NRo0YFnScvL4+MjIy41SQiYmcKbUXsJjub2uHDmQ8cChQDtGhhdVUiIiJi0BdffMH69es5/PDDSU9PJz09nQ8++IAZM2aQnp6Oy+Vqdp+xY8eyefPmxsvateoQqUFDq6d169ZZXUr0vv4a/vUvzyBjr78OTidcdRX88AOccYbV1YnEXFFRUcDbcnNzKSkpiWs9Vmn4XKuoqLC6FBGxsXSrCxBJdelAm3vvpS+wsH5a7Y03ctzkybgtrk1ERETCd8IJJ7BkyZIm06688koOOuggRo8ejdPpbHafzMxMMjMz41ilxN3vv8ORR8KOHZCWBpdcArfeCvvtZ+DOIskvWKBrpaysLCoqKsjOzra6FBFJMQptRSx0KDAHaDt1KnOAIxpuSE9XYCsiIpKgdtllF3r37t1kWlZWFu3atWs2XZLcunXQsaPn/z33hMsug23bYPx4OOggq6sTERERG1NoK2KF7dvJuv12Fta/CV1t2jB182Zqra5LRERERKK3ahVMmgSPPw5ffQU9e3qmz57taWUrImKyhi4XRCR5KLQVibePP4arriLr++8BeAbo99ZbPHLUUVZXJiIiIjHy/vvvW12CxIFj7VqYNg3mzfN0gwDwyis7Q1sFtiIiImKQQluRePr4YxgwANxuXHvswfnr1/MCsKpDB6srExEREZEI7Q3cDLTq0wdq68+dOvlkT2vbfv2sLk/ENhpag1ZWVqqPWBGREBTaisRT//4wcCB07cqmMWN44cADra5IRERERKKxYwefAZ3AE9j+4x+esPaYY6yuTERERBKYzs8RiaHdgYyxY2HrVs+EtDR44w2YOxf3brtZXZ6IiIiIRGLTJmjoOzI9nVnAR0DVa6/Bu+8qsBUREZGoKbQViZFzgGVAi5kz4eabd96QmWllWSIiIiISqT//hMJC6NwZXnqpcfKdwHFA3XHHWVqe2FtWVhYVFRVWl2E7FRUVuN1usrKyrC5FRMRW1D2CiMnS1q/nGeC8+ut1Bx5I2kUXWVyViIiIiERs82YoLfUMMrZli2fas8/Cv/4FQJ211UkCaejTVQRtDyISglraipjF7YYHH6TtgAGcB9QCk4GqTz7x9GUrIiIiIomlogKmTIGuXWHCBE9g27s3PP88PPyw1dWJiIhIElNLWxGzTJkCt9xCGrAIuAr4BshTdwgiIiIiienss+Gddzz/H3QQTJwI553nGadAUppaSEqsaNsSkQba2xAxy5AhsPfeVNx6K0fXB7YiIiIikkC2b/dcGowYAfvtB488AkuXwgUXKLAVSUENQar6JBaReNIeh0iEHN9/D0VFOyfsuSesXMm2ESNwWVmYiIiIiISnpgbuuw/23x9mzNg5/cwzYflyuOQScDqtrDDhNIRcGmBK7EDbo4gkIoW2ImFKB8YCrfr3h1tvbTJyMC1bWlmaiIiIiISjthbmzIEDDoDrroNffoEnnvCMVQDgcEC6epQTERGR+FNoKxKGtK++YgFwO+CoqYFTT4VDD7W6LBEREREJh8vl6fKgRw+4+mpYs8Zz1tSMGfDpp56wVkRERMRCCm1FjKiqgrFjaTlwIIcBfwDbH3gAXn0V9t3X6upEREREJBw33QSXXQYrV0KHDnDXXZ7/R47UmVMiIiJiCwptRYw44wwoLsbhcvEU0ANwXXihWmGIiIiIJAK3Gyord16/5hpo3x6mTIFVqyAvD1q3trJCERERkSYU2ooYccMNsNdebH/iCS4ENlhdj4iIiIiE5nZ7zow68khPK9oGPXt6+q8dMways62sUERERMQv9aov4s/rr8PWrXDBBZ7rgwbBihW4GgalEBERERH7crvh7bdh3Dj4/HPPtFWrYPp0aNPGcz0z09ISRUQk/rKysnDrd70kCLW0FfH2xx+e/s1OOw2GDoVff915m06ZExEREbG/99+H446Dk0/2BLatWkFBAfz4487AVkRERMTm1NJWhPrWGM8+CyNGwPr1nr5qhwzRjr2IiIhIIpkzB66+2vN/ZiZcd52nC4SOHa2uTERERCQsamkrKc/x++9wzjmerhDWr/f0cfbJJzBtGmRlWV2eiIiIiARTVbXz/3POgT32gJwcWLnS0x2CAlvbajhNuaKiwupSREREbEctbSWltQFa9esHmzZBejrcfLPnoj7OREREREKytG/Ar77y9Fn7xx8wf77nTKndd4fVq9WtVZyob0ixQsN2V1lZSbYGEhSRJKbQVlLaZmDHhRfSYsECz+l0ffpYXZKIiIiIBNEL2HXIEHj1Vc+EtDRYsmTnfpwCW5G4UGgvIhJb6h5BUkoaMApwrljROK1m0iT49FMFtiIiIiI25lyxgseBb4CWr77qaVl70UWwbJn245JQVlaWuk2QoBpCY7fbTZa6tRORJKSWtpIyHMuXMx/oD9Tk5eEA3AAtW3q6RhARERERe/rkE9oOGMDg+qvbzziDllOmQK9eFhcWfzo1XEREJDWopa0kv5oamDyZVsccQ39gC7D9vPOsrkpEREREgqmu3vn/UUfhPuAA/gMcCrieeCIlA1sRERFJHQptJbktWgR9+8K4cThqangF6Alsv+wy1PuSiIiIiP3sA5QBrQ4/HKqqPBOdTqree4+zgK+tLlAkBnSqv4iI+FJoK0kr7f334aij4JtvoH17ts+dyxnA/6wuTERERESa+/13MvLzWQFcB6StWQMvv7zz9l12sbI6ERERkbiyfWhbXFyMw+EgNzfX6lIkwdQdcwwcfDAMHgzLluG64AKrSxIRERERXxs2QH4+dOtGi3vvpSXwIVD1+uug/TcRkaSiVuUixtl69KWFCxdy//3300ejwYoRW7bQoqSEFkAtQIsW8NFHO1tlVFZaXKCIiIiINLFuHey3H1RUAODq14+TFyzgXaBiwACrqxMRERGxjG1b2lZUVHDxxRcze/Zsdt99d6vLEbt77TXo1YuM225jrPd0nUYnIiIiElI8Wz41aTXSsSOccAIccQS8+irb332Xd2O6dhEREZHEYNvQdvjw4QwaNIgTTzzR6lLEzjZuhEsugUGD4JdfqOvWjQ+trklEREREmtu6lZuBnwHHL7/snP7QQ7BwIZx2GjgcVlYoXnQKs0SroqJC24+ISBRsGdo++eSTLF68mClTpoSct7q6mi1btjS5SApwu+Gpp6BnT3jsMUhLg5tuouqzz3jf6tpEREREZKdt22DqVFr37s1twF5A+rx5O29v00ZhrYiIiIgP24W2a9eu5frrr+exxx6jZcuWIeefMmUKbdq0abx06tQpLnWKxSZNggsv9Axc0bs3fPopTJ0KrVtbXZmIiIiIAGzfDnffDd26QUEBjj/+4AfgYqD25putrk5ERETE1mwX2n7xxResX7+eww8/nPT0dNLT0/nggw+YMWMG6enpuFyuJvOPHTuWzZs3N17Wrl1rWe0SRxdf7GmVMXEifPEF9OtndUUiIiIi0mDHDjjkEMjN9Qw21rUr1ffdR0/gcQCn0+oKRVKaur8QEbG/dAPzxNUJJ5zAkiVLmky78sorOeiggxg9ejROnx28zMxMMjMz41ylORq+KMWAlSvhzTchJ8dzfb/9YM0aT3BrkPfzXVlZGatKI+K7LdihPu+dt4qKiqh35vxt72a9B5LtvbRu3To6duwYk2VnZWVRUVFBdnZ2TJYfrVhsZ1ZpqGX9+vVhvZ5mvEbRfN75Poehagm2robbKisrG5fh+/h8P1+ieQ0r6kef9zc9mm0rnJrstA0Gkgg1SoJyuXaGsenpcPbZ8PjjUFgIV1zBjtpaXNdea3WVIiIiIgnBdqHtLrvsQu/evZtMy8rKol27ds2mp5J4/8CyzQ86l8tzWl1hIVRVwcEHw4ABntv8BLaxrjvc5a9bty7qEMo7bPAORoKFKHvssUfUz4NttoEUFCrg9g3GzAjVjYrluuL5OOLJN5CMVkMwadfg3R8zD0z5C4K9tx0zDnol+udfotcvCWjHDk84O2kSzJu3c1+tsNBzVlR9A4usjAxtmxIWfZ6JiEgqs11om2gSbUcioQKRpUvhqqtgwQLP9eOPh733NmXRsXzdzA5oQomkVWaibbdmS8TQKxFYsV3FohW4kdDPX3AYzfKN1hDoIE44zDiYFIjRbcCMbcXIMpL1QIBdpPp3iQB1dZ6BYSdOhO+/90ybPn1naKvvWREREZGIJURo+/7771tdQkIKJ1SwlZoamDIFbrsNamth113hrrs8AW4SjSwc73A3kSVTMBDofRnpY0y0UCpQvUYeR7zC9nC68vAXtppdn9nbf7jbi527lklmyfS5J0morg5eeAHGj4dvv/VMa9cOCgpg+HCrqxMRERFJCgkR2kp0EuqHn9sNJ50EH3zguX7GGXDvvbDPPlZXZrpgr0uo10whijG+z6Pd+g1OdeF8NjWEunrdmrN7P8UikoTOO88T2gLsthvceCOMGuU50C4iIiIiplBoK/bicMCVV8KyZTBzJlxwQcK1rk2okDyFRfo62eH1jbYGqx5DOK2CEzWINPLcmjVPODUl4nMZKTu8R0WSjtvtuaSlea6feSa88w7k5kJenie4FRERiTHt50mqUWgrlvs70MJ7wmWXeX4M7L67dUWJSCM77RzZqRY70fMiIjHz3//CuHFw+eVwzTWeaZdc4jkbql07q6sTCUrfjyIiksgU2op1Nm8mq6CA9wD22svTfy31rW0V2BqmnVGxs2i2T23b5jHrudRrIpJC5s+HW2+FhrElNmyAq6/27KelpyuwFREREYkxhbZijZdfhmuvhV9/9Vz/17/A6bS6KpG4UfglIiK2tGCBJ6x96y3P9YwMGDoUxo5NuC6rREREzKDfbmIVhbYSXxs2wPXXwxNPeK7vtx888AAMHGh1ZSIiIiKpbcIEmDjR8396OgwZArfcAvvua3VlIiK2oPBOROIpzeoCJIWsXw89e3oC27Q0KCiAb75RYCsiIiJiByef7Dnz6cor4Ycf4P77FdiKiIiIWEQtbSV+9tgDTjkFvv4a5s6FI4+0uiIRERERadC/P6xZA/vs8//s3Xl8VPX1//H3JCEBEsAl7rIICOKCiqhFtNZ9q9a6fUW0CmqwgcSIZgy/RhAMEicaI9AgQUGt4lZ3W1xb91pQ69YqyA6uQWRJAiQk8/tjkjCZzHJn5s7cOzOv5+ORxzdz586dT8J87cm553OO1SsBAABIeSRtETstLZ7WB+edtyv4//Ofpa5dPf3RAAAAYC8kbAEAAGyB9giIjW++kU49VRo3TsrPl9r6/vTsScIWAAAAAAAACIKkLcy1c6d0993S0KHS229L3bt7krc0awcAAAAAAAAMoT0CzPP559K110offeR5fPrpUk2NdNBBVq8MAAAAAAAASBgkbWGOV16Rzj/fU2nbq5dUWemZPOxwWL0yAAAAAAAAIKGQtIU5TjpJ6tPH0xbhz3+W9t/f6hUBAAAASADZ2dly004tKfBvCQDmoactIlNfL913n9TS4nmcnS19+KH07LMkbAEAAAAAAIAoUGmL8L35pnT99dKqVVJGhjR+vOf4XntZvTIAAAAAAAAg4VFpC+M2bfIka08/3ZOw7dNHOvhgq1cFAAAAAAAAJBWStjDmhRekQw+VHnjA83j8eOnLL6Uzz7R6ZQAAAAAAAEBSoT0CQps8WbrjDs/3gwZ5ErcnnWT1qgAAAJBkGGIEAADgQaUtQrvwQikrSyopkT77jIQtAAAAAAAAEEMkbdHZunXSE0/sejxsmLRmjTRjhtS1q5UrAwAAsL05c+Zo6NCh6tmzp3r27KkRI0Zo0aJFVi8LAAAACYSkLXZpaZHmzPH0rr3qKumLL3Y9t88+Vq4MAAAgYRx44IEqLy/Xxx9/rI8++kinnnqqfve73+m///2v1UsDAABAgqCnLTyWLZOuu056913P4xNO8LREAAAAQFjOP//8Do+nT5+uOXPm6MMPP9Rhhx1m2boQG1b14aX/LwAAyY2kbarbuVOqrJSmTJG2b5eysz1tEMaPl9IoxAYAAIhGc3Oznn76adXX12vEiBEBz9uxY4d27NjR/njLli1xWiEAAADsiKRtKnO7pVNP3VVde8YZUk2N1K+f1SsDAABIaF988YVGjBih7du3KycnR88995wOPfTQgOfPmDFDU6dOjesaAQAAYF+UUqYyh0O68EJpt92kBQukV18lYQsAAGCCwYMH69NPP9W///1v/fGPf9TVV1+t//3vfwHPnzRpkjZv3tz+tW7duriuFwAAAPbicCdZI6QtW7aoV69e2rx5s3r27Gn1cuzngw88bQ9+9SvP4+ZmacMGBo0BAADE0Omnn64BAwZo7ty5hs4npu2svr5eOTk5kqS6ujplZ2dbvSQAEeL/nwEgNCptU0VdnXTjjdKJJ0p/+IO0bZvneHo6CVsAAIAYa2lp6dCzFgAAAAiGnrap4PXXpbw8afVqz+MTTpCamqRu3axeGQAAQNKZNGmSzjnnHPXp00dbt27VwoUL9dZbb+nVV1+1emkAAABIECRtk9kvv0g33+zpVytJffp4Bo2ddZbVKwMAAEhaP/30k/7whz/o+++/V69evTR06FC9+uqrOuOMM6xeGgAAABIESdtktX69dOyx0g8/eAaOjR8v3Xmn1KOH1SsDAABIag8++KDVSwAAAECCI2mbrA44QDr6aGnlSumBBzy9bAEAAAAAAADYHknbZOF2SwsXSueeK+2+u6e69uGHPZW1XbtavToAAAAAAAAABqVZvQCYYM0a6ZxzpCuvlG65ZdfxvfYiYQsAAAAAAAAkGJK2iaylRZo9WzrsMOnVV6WsLGnQIE/VLQAAAAAAAICERHuERLV0qXTttdL773sen3iip3ft4MFWrwwAAAAAAABAFKi0TUQvvywdeaQnYZuTI/35z9Lbb5OwBQAAAAAAAJIAlbaJaMQIqVcvadgw6f77pb59rV4RAAAAAAAAAJNQaZsItm+XHn54V6/aPfeUliyR/v53ErYAAAAAAABAkiFpa3fvvy8ddZR0zTXSU0/tOt6nj+RwWLkyAAAAAAAAADFA0tautm6VCgqkk07yDB3bd19P/1oAAAAAAAAASY2etnb06qtSXp60dq3n8dix0t13S7vvbvXKAAAAAAAAAMQYlbZ2U1oqnX22J2Hbr5/0+uvSgw+SsAUAAAAAAABSBElbuzntNCktTbrxRumLL6TTT7d6RQAAAAAAAADiiPYIVvvhB+k//5HOOcfz+JRTpG++kfr3t3plAAAAAAAAACxApa1V3G7poYekIUOkSy+VVq/e9RwJWwAAAKCD7Oxsud1uud1uZWdnW70cAACAmKLS1gqrV3sGjb3+uufxMcdI27dbvSoAAAAAAAAANkClbTy1tEizZkmHH+5J2HbtKrlc0ocfSoccYvXqAAAAAAAAANgAlbbx0tzsGTL29tuex7/+tTRvnjRokNUrAwAAAAAAAGAjVNrGS3q6NHKk1KOHNGeO9M9/krAFAAAAAAAA0AmVtrH08ceeFgiHHeZ5fNtt0g03SL17W70yAAAAAAAAADZFpW0sbNsmlZRIxx8vXXONtHOn53jXriRsAQAAAAAAAARFpa3Z3nlHuu466ZtvPI8HDJAaGqSePa1eGQAAAAAAAIAEQKWtWbZskcaPl04+2ZOw3W8/6fnnpSeeIGELAAAAAAAAwDAqbc2wcqX0m99I69Z5Hl93nVRRIe22m9UrAwAAAAAAAJBgSNqaoW9faf/9pYwMad486bTTrF4RAAAAAAAAgARF0tYM6enS009Le+whZWdbvRoAAAAAAGwrOztbbrfb6mUAgK2RtDVL795WrwAAAAAAAABAEmAQGQAAAAAAAADYCElbAAAAAAAAALARkrYAAAAAAAAAYCMkbQEAAAAAAADARkjaAgAAAAAAAICNkLQFAAAAAAAAABshaQsAAAAAAAAANkLSFgAAAAAAAABshKQtAAAAAAAAANgISVsAAAAAAAAAsBGStgAAAAAAAABgIyRtAQAAAAAAAMBGSNoCAAAAAAAAgI2QtAUAAAAAAAAAGyFpCwAAAAAAAAA2kmH1AszmdrslSVu2bLF6KQAAAIiRHj16yOFwWL2MmCGmBQAASG6h4tmkS9pu3bpVktS7d2+rlwIAAIAY2bx5s3r27Gn1MmKGmBYAACC5hYpnHe622/hJoqWlRd99913SV1/AY8uWLerdu7fWrVuX1H+4ITg+BxCfA3jhs5Aakj3WI6ZNLfx3C+JzgFZ8DiA+Bykj5Spt09LSdOCBB1q9DMRZz549+Q8Z+BxA4nMAL3wWkMiIaVMT/92C+BygFZ8DiM9BymMQGQAAAAAAAADYCElbAAAAAAAAALARkrZIaFlZWZoyZYqysrKsXgosxOcA4nMAL3wWACQa/rsF8TlAKz4HEJ8DtEq6QWQAAAAAAAAAkMiotAUAAAAAAAAAGyFpCwAAAAAAAAA2QtIWAAAAAAAAAGyEpC0AAAAAAAAA2AhJWyS88vJyORwOFRUVWb0UxNntt98uh8PR4euQQw6xelmwwLfffqsrr7xSe+65p7p166YjjjhCH330kdXLQhz169ev038PHA6Hxo8fb/XSAMAQYtrURDwLb8S0IKaFtwyrFwBEY8mSJZo7d66GDh1q9VJgkcMOO0xvvPFG++OMDP6zlmp++eUXjRw5UqeccooWLVqkvfbaS99884123313q5eGOFqyZImam5vbH3/55Zc644wzdOmll1q6LgAwgpg2tRHPQsS0aEVMC2/8rwESVl1dnUaPHq158+aprKzM6uXAIhkZGdp3332tXgYsdNddd6l3795asGBB+7GDDjrI0jUh/vbaa68Oj8vLyzVgwACdfPLJlq0JAIwgpgXxLERMi1bEtPBGewQkrPHjx+u8887T6aefbvVSYKFvvvlG+++/v/r376/Ro0dr7dq1Vi8Jcfbiiy9q+PDhuvTSS7X33nvr6KOP1rx586xeFizU2NioRx99VGPHjpXD4bB6OQAQFDEtiGchYlr4QUwLkrZISE888YQ++eQTzZgxw+qlwELHH3+8HnroIb3yyiuaM2eOVq1apZNOOklbt261emmIo5UrV2rOnDk6+OCD9eqrr+qPf/yjCgsL9fDDD1u9NFjk+eef16ZNm3TNNddYvRQACIqYFsSzaENMC1/EtHC43W631YsAwrFu3ToNHz5cr7/+envfr9/85jc66qijVFVVZfXyYKFNmzapb9++qqys1LXXXmv1chAnmZmZGj58uD744IP2Y4WFhVqyZIn+9a9/Wbo2WOOss85SZmamXnrpJauXAgABEdPCH+LZ1EVMC1/EtKDSFgnn448/1k8//aRhw4YpIyNDGRkZevvttzVz5kxlZGR0aNqN1LLbbrtp0KBBWr58udVLQRztt99+OvTQQzscGzJkCFsLU9SaNWv0xhtv6LrrrrN6KQAQFDEt/CGeTV3EtPBGTAsxiAyJ6LTTTtMXX3zR4diYMWN0yCGH6NZbb1V6erpla4O16urqtGLFCl111VVWLwVxNHLkSC1durTDsWXLlqlv376WrQnWWbBggfbee2+dd955Vi8FAIIipoU/xLOpi5gW3ohpIZK2SEQ9evTQ4Ycf3uFYdna29txzz07HkdxuueUWnX/++erbt6++++47TZkyRenp6Ro1apTVS0Mc3XTTTTrhhBN055136rLLLtPixYtVU1Ojmpoaq5eGOGtpadGCBQt09dVXKyODEAeAvRHTQsSz8EJMizbEtGjDvz6AhLV+/XqNGjVKP//8s/baay+deOKJ+vDDD7XXXntZvTTE0bHHHqvnnntOkyZN0rRp03TQQQepqqpKo0ePtnppiLM33nhDa9eu1dixY61eCgAAhhDPog0xLdoQ06INg8gAAAAAAAAAwEYYRAYAAAAAAAAANkLSFgAAAAAAAABshKQtAAAAAAAAANgISVsAAAAAAAAAsBGStgAAAAAAAABgIyRtAQAAAAAAAMBGSNoCAAAAAAAAgI2QtAUAAAAAAAAAGyFpCwAJZufOnerfv78KCws7PXfDDTfo4IMP1oYNGyxZGwAAABAK8SwAhEbSFgASTEZGhiZNmqT58+dr48aN7cdnzJihZ555RosWLVJubq6lawQAAAACIZ4FgNBI2gJAArr66qu1xx57aPbs2ZKkxx57TGVlZXrxxRc1cOBAq5cHAAAABEU8CwDBZVi9AABA+DIzM+V0OjVt2jQNHz5c1113nR577DGNGDHC6qUBAAAAIRHPAkBwDrfb7bZ6EQCA8G3fvl0HHXSQfvrpJ91zzz0qKiqyekkAAACAYcSzABAYSVsASGBXXHGF1q1bp3fffdfqpQAAAABhI54FAP/oaQsACezzzz/X8ccfb/UyAAAAgIgQzwKAfyRtASBBNTQ06Ouvv9Yxxxxj9VIAAACAsBHPAkBgJG0BIEF99tlnam5u1rBhw6xeCgAAABA24lkACIykLQAkqE8++UQ5OTkaNGiQ1UsBAAAAwkY8CwCBMYgMAAAAAAAAAGyESlsAAAAAAAAAsBGStgAAAAAAAABgIyRtAQAAAAAAAMBGSNoCAAAAAAAAgI2QtAUAAAAAAAAAGyFpCwAAAAAAAAA2QtIWAAAAAAAAAGyEpC0AAAAAAAAA2AhJWwAAAAAAAACwEZK2AAAAAAAAAGAjJG0BAAAAAAAAwEZI2gIAAAAAAACAjZC0BQAAAAAAAAAbIWkLAAAAAAAAADZC0hYAAAAAAAAAbISkLQAAAAAAAADYCElbAAAAAAAAALARkrYAkOAcDoduv/32sF+3evVqORwOPfTQQzFZFwAAAGAE8SwAdEbSFgBM8NBDD8nhcMjhcOi9997r9Lzb7Vbv3r3lcDj029/+1pI1Ruq7777TlVdeqcGDB6tHjx7abbfddNxxx+nhhx+W2+22enkAAAAwQTLHs74ee+wxORwO5eTkWL0UAAgow+oFAEAy6dq1qxYuXKgTTzyxw/G3335b69evV1ZWlmVri9SGDRu0fv16XXLJJerTp4+ampr0+uuv65prrtHSpUt15513Wr1EAAAAmCQZ41lvdXV1cjqdys7OtnopABAUlbYAYKJzzz1XTz/9tHbu3Nnh+MKFC3XMMcdo3333tWxtkRo6dKjeeustTZ8+XePGjdOECRP0wgsv6Le//a1mzpyp5uZmq5cIAAAAkyRjPOutrKxMPXr00IUXXmj1UgAgKJK2AGCiUaNG6eeff9brr7/efqyxsVF//etfdcUVV/h9TX19vW6++Wb17t1bWVlZGjx4sO6+++5OrQd27Nihm266SXvttZd69OihCy64QOvXr/d7zW+//VZjx47VPvvso6ysLB122GGaP3++qT9rv3791NDQoMbGRlOvCwAAAOskczz7zTff6N5771VlZaUyMth4DMDeSNoCgIn69eunESNG6PHHH28/tmjRIm3evFmXX355p/PdbrcuuOAC3XvvvTr77LNVWVmpwYMHq7i4WBMnTuxw7nXXXaeqqiqdeeaZKi8vV5cuXXTeeed1uuaPP/6oX/3qV3rjjTc0YcIE3XfffRo4cKCuvfZaVVVVRfyzbdu2TRs2bNDq1av18MMPa8GCBRoxYoS6desW8TUBAABgL8kczxYVFemUU07RueeeG/E1ACBu3ACAqC1YsMAtyb1kyRL37Nmz3T169HA3NDS43W63+9JLL3Wfcsopbrfb7e7bt6/7vPPOa3/d888/75bkLisr63C9Sy65xO1wONzLly93u91u96effuqW5M7Pz+9w3hVXXOGW5J4yZUr7sWuvvda93377uTds2NDh3Msvv9zdq1ev9nWtWrXKLcm9YMECQz/jjBkz3JLav0477TT32rVrw/xNAQAAwI6SPZ59+eWX3RkZGe7//ve/brfb7b766qvd2dnZYf+eACBeqLQFAJNddtll2rZtm15++WVt3bpVL7/8csCtZH//+9+Vnp6uwsLCDsdvvvlmud1uLVq0qP08SZ3OKyoq6vDY7XbrmWee0fnnny+3260NGza0f5111lnavHmzPvnkk4h+rlGjRun111/XwoUL23+ebdu2RXQtAAAA2FeyxbONjY266aabdMMNN+jQQw8N67UAYBWauACAyfbaay+dfvrpWrhwoRoaGtTc3KxLLrnE77lr1qzR/vvvrx49enQ4PmTIkPbn2/5vWlqaBgwY0OG8wYMHd3hcW1urTZs2qaamRjU1NX7f86efforo5+rbt6/69u0rtSZw8/LydPrpp2vp0qW0SAAAAEgiyRbP3nvvvdqwYYOmTp0a1usAwEokbQEgBq644gpdf/31+uGHH3TOOedot912i8v7trS0SJKuvPJKXX311X7PGTp0qCnvdckll2jevHl65513dNZZZ5lyTQAAANhDssSzmzdvVllZmfLz87VlyxZt2bJFklRXVye3263Vq1ere/fu2nvvvU36CQDAHCRtASAGfv/732vcuHH68MMP9eSTTwY8r2/fvnrjjTe0devWDtUJX3/9dfvzbf+3paVFK1as6FCNsHTp0g7Xa5vE29zcrNNPPz0GP9kuba0RNm/eHNP3AQAAQPwlSzz7yy+/qK6uTi6XSy6Xq9PzBx10kH73u9/p+eefj/q9AMBM9LQFgBjIycnRnDlzdPvtt+v8888PeN65556r5uZmzZ49u8Pxe++9Vw6HQ+ecc44ktf/fmTNndjjPd3puenq6Lr74Yj3zzDP68ssvO71fbW1t2D9LoNc8+OCDcjgcGjZsWNjXBAAAgL0lSzy7995767nnnuv0dcopp6hr16567rnnNGnSpLCuCQDxQKUtAMRIoO1c3s4//3ydcsop+tOf/qTVq1fryCOP1GuvvaYXXnhBRUVF7T2/jjrqKI0aNUrV1dXavHmzTjjhBL355ptavnx5p2uWl5frn//8p44//nhdf/31OvTQQ7Vx40Z98skneuONN7Rx48awfo7p06fr/fff19lnn60+ffpo48aNeuaZZ7RkyRIVFBRo4MCBYV0PAAAAiSEZ4tnu3bvrwgsv7HT8+eef1+LFi/0+BwB2QNIWACyUlpamF198UZMnT9aTTz6pBQsWqF+/fqqoqNDNN9/c4dz58+drr7320mOPPabnn39ep556qv72t7+pd+/eHc7bZ599tHjxYk2bNk3PPvusqqurteeee+qwww7TXXfdFfYazzvvPK1YsULz589XbW2tunbtqqFDh2rBggWGAnkAAAAkr0SIZwEgETncbrfb6kUAAAAAAAAAADzoaQsAAAAAAAAANkLSFgAAAAAAAABshKQtAAAAAAAAANgISVsAAAAAAAAAsBGStgAAAAAAAABgIyRtAQAAAAAAAMBGSNoCAAAAAAAAgI0kXdLW7XZry5YtcrvdVi8FAAAAiAgxLQAAQGpLuqTt1q1b1atXL23dutXqpQAAAAARIaYFAABIbUmXtAUAAAAAAACAREbSFgAAAAAAAABshKQtAAAAAAAAANgISVsAAAAAAAAAsBGStgAAAAAAAABgIyRtAQAAAAAAAMBGSNoCAAAAAAAAgI2QtAUAAAAAAAAAGyFpCwAAAAAAAAA2QtIWAAAAAAAAAGyEpC0AAAAAAAAA2AhJWwAAAAAAAACwEZK2AAAAAAAAAGAjJG0BAAAAAAAAwEZI2gIAAAAAAACAjZC0BQAAAAAAAAAbIWkLAAAAAAAAADZC0hYAAAAAAAAAbISkLQAAgEnq6+vlcDjkcDhUX19v9XIAAACAsBHT2gNJWwAAAAAAAACwEZK2AAAAAAAAAGAjJG0BAAAAAAAAA2gdgHghaQsAAJBE+EMCAAAASHy2S9o2Nzfrtttu00EHHaRu3bppwIABuuOOO+R2u61eGgAAAAAAAADEXIbVC/B11113ac6cOXr44Yd12GGH6aOPPtKYMWPUq1cvFRYWWr08AAAQhfr6euXk5EiS6urqlJ2dbfWSECH+LQEAAIDYsV3S9oMPPtDvfvc7nXfeeZKkfv366fHHH9fixYutXhoAAAAAAAAAxJzt2iOccMIJevPNN7Vs2TJJ0meffab33ntP55xzjt/zd+zYoS1btnT4AgAAAKxCuy8AAIDoMKfBhpW2JSUl2rJliw455BClp6erublZ06dP1+jRo/2eP2PGDE2dOjXu6wQAAAD8od0XAACIFq2oYLtK26eeekqPPfaYFi5cqE8++UQPP/yw7r77bj388MN+z580aZI2b97c/rVu3bq4rxkAAABo493uq1+/frrkkkt05pln0u4LAADARuxezWu7pG1xcbFKSkp0+eWX64gjjtBVV12lm266STNmzPB7flZWlnr27NnhCwAApDa7B2BIbuG2+wIAAAB82a49QkNDg9LSOuaS09PT1dLSYtmaAAAAAKPCbfel1jkNO3bsaH/MnAYAAIDUZruk7fnnn6/p06erT58+Ouyww/Sf//xHlZWVGjt2rNVLAwAAAELybvd12GGH6dNPP1VRUZH2339/XX311X5fw5wGAAAAeLNde4RZs2bpkksuUX5+voYMGaJbbrlF48aN0x133GH10gAAgM3Eow0CrRYQrnDbfYk5DQAApCziWQRiu0rbHj16qKqqSlVVVVYvBQAAAAhbJO2+srKylJWVFYfVAQAAIBHYLmkLAAAAJDLafQEAACBaJG0BALC5+vp65eTkSJLq6uqUnZ1t9ZIABDFr1izddtttys/P108//aT9999f48aN0+TJk61eGgAAABIESVsAAADARLT7AgAAQLRsN4gMAAAAAAAAAFIZSVsAAAAAAADEVH19vRwOhxwOh+rr661eDmB7JG0BAAAAAAAAJIRUuQFA0hYAAAAAAAAAbISkLQAAAAAAAADYCElbAAAAAAAAALARkrYAACAp5OTkJHVPKwAAACQ34ll4I2kLAAAAAAAAADZC0hYAAAAAAAAAbISkLQAAQAqpr6+Xw+GQw+Fg+x0AAABgUyRtAQAAEL5Nm7S31WsAAAAAkhRJWwAAABi3fbt0zz3qfsQRusfqtQAAAABJKsPqBQAAACBBvPqqlJcnrV0rh6QjJXW1ek0AAABAEqLSFgAAAMbk5Ehr10oHHKAd1dU6StJ2q9cEAAAARKin1QsIgqQtAAAA/Pv4Y+nhh3c9HjlSeuopadky7fzDH9Ri5doAAACASP3wgzJvuknrJB1g9VoCIGkLAACAjlaulK64Qho+XPrjH6Vvv9313KWXSt27W7k6AAAAIHLPPCMNHKgu8+app6SLrV5PACRtAQAA4FFbK914o3TIIdLjj3uOXXSR5HBYvTIAAADAHEcdJTU2qvnYY3WypJlWrycAkrYAAACprqFBmj5dGjBAmjlTamqSzjxT+uQT6dFHpf33t3qFAAAAQPhaWqQnn5QmTdp1bMAAackSbf/HP/SOlWsLIcPqBQAAAMBiGzZId9wh7dghHX205HJJp59u9aoAAACAyL35pnTrrZ45DZJ02WWeWFeSjjxSqq+3dHmhkLQFAABIQcd5P+jTR7rzTmnffaXLL5fS2IwFAACQquq9kpn19fXKzs62dD1h+/RTqaREevVVz+MePSSnUzr4YKtXFhaStgAAACkk7cMP9a6kEyVtW7xYOuUUzxMTJ1q9NAAAACByP/3kiWkfe8zzuEsXz1Dd0lJpr72sXl3YKKMAAACWqK+vl8PhkMPh6HA3HzHy9dfS73+vbqefrhMlNUhKW7rU6lUBAAAA5ujWTXrtNc/3o0ZJX30l3XdfQiZsRdIWAAAgyX3/vTRunHT44dLzz8udlqZ5kg6WtPOqq6xeHQAAAELIycmhyMGP7pIy5s+X3G7PgR49pAcf9PSwXbjQM3AsgZG0BQAACSOS6tyUDnJbWqTf/EaqqZGam6Xf/U7b/v1v5Un6zuq1AQAAAJHYuVN5kpZLyioslP76113PnX++NGyYlaszDUlbAACAGLAsWdzYKEfb92lpnqELI0ZI777rqbQdMiT+awIAAEhCkbb7ok1YhNxu6dln1e3YYzVX0n6SWvr1k7p3t3plMUHSFgAAwCSNjY1BH8dUS4v0xBPqdswxGu19fMwY6f33pRNPjN9aAAAAADO9846nEOHii5X2zTeqlVQgadsnn0jnnWf16mKCpC0AAIipVKkkcDqdys3N7XAsNzdXTqcz9m/+5pvSccdJo0YpbdUqjfd+Li1NcjgCvxYAAABBpUo8a1tut1RUJP3731L37mq89VYNkDRbkjIzrV5dzJC0BQAAiJLT6VRFRYVaWlo6HG9paVFFRUXsEreffSadfbZ0+umegQs5OWosLdVpsXk3AAAApADv3WJz586N7+6xVo7169Xe9MDhkFwu6YYbpBUr1HTbbdoa9xXFH0lbAACAKDQ2NqqysjLoOZWVleYHu+Xl0tFHS6++KmVkSAUFniC2pEQN5r4TAABAwqJKNjxOp1N9+/Ztfzx58mR17949PrvHJOmXX6Rbb1W3o47STd7HTz9dmjNH2nff+KzDBkjaAgAARKG6ulrNzc1Bz2lublZ1dbW5bzxypGer2P/9n/T119LMmdLee5v7HgAAAAmIRG1kAu0ea25uju3uMUnavl2qqJD695dcLjm2b9fxsXu3hEDSFgAAIAorVqww9Ty/tm3zbAm7665dx046SVq6VHriCWnAgPbD3hW9s2fPtmQ7GwAAQLLybR2QLCzbPdbcLD30kDRokOR0Sps2SYcfru1//asuMPedEg5JWwAA4FcsKhSSMcgd4JUwNeO8DpqbpQULPEHsrbdKU6dK33+/6/lBgzqc7jsMraSkJL7b2QAAAJKcb+uAZGHZ7rGSEmnMGGndOql3b08C99NP1Xz22ea+TwIiaQsAAOImGYPc/Px8paenBz0nPT1d+fn5xi/qdkt/+5t01FHS2LHS+vWeIPb++wO2QIj3djYqegEAQCryjbXalJaWxn0tZorL7rE2O3fu+n7cOE98W1EhLVsmXX21FCK2ThUkbQEAQLtY9/9KxiA3MzNTEydODHrOxIkTlZmZaeyCS5dKp5wi/fa30pdfSrvvviuI/cMf/Aax8d7ORkUvAABIJUZiqFmzZiX0TeyY7h5rs3SpdPHFnsraNgMHSmvXSrfcInXtGvm1kxBJWwAAEFOpEOS6XC4VFxcrLa1jaJWenq7i4mK5XC7jF+vWTfrwQykrSyoullasCBnExnM7m6UDKgAAACxQU1MT8pyYtA6Io5jsHmvz/ffSDTdIhx0mPfusZybDt9/uej4rK4IVJz+StgAAIKZSIchVa+J2w4YNHY7V1taGTtj++KP0wAO7HvfpIz3yiKey1uXyVNqGEK/tbJYNqAAAALDQypUrDZ1nSusAi5i+e0ySNm+WSks91bRz53rmNVxwgfTpp9IBBwR9Ka24SNoCAAADcnJyIm6XkApBbhvfIDZoUFtX5xksNnCgdP310r//veu5yy7zJG8Nist2NisHVAAAAFiof//+hs6LNtby5pukjEfS0tTdYx9+KA0YIE2fLjU0SCNGSO++K73wgqfiNghacXmQtAUAIInFuketEakS5BrW1CTNmeNJ1t5+uyd5e+yxUQ1ciOl2Ni9xHVABAABgE3l5eSHPMSPWauObtJSk3NzcuCQtXS6X1qxZ0/542rRpamhoCC9hK0mHHiqlpUmHHCI995z0/vvSiSeGfFk8W3HZvZqXpC0AAIipVApyg3K7pWeekQ4/XMrP97RFGDBAevJJT5Xt8OERXzom29n8iFdFLwAAgJ0YiaEKCgqijrXUOqDXX9KypaUlbvMDvH+OcePGGfu5XntNuvZaT8wrST17Sm+9JX3xhXThhZLDEfIS8WzFlQjVvCRtAQBATLRV+e6xxx4hz02mIDegbdukggJPr9q99pJmzZL+9z9PKwSfIDaSCmlTt7MFEK+KXgAAALvyjbXalJWVmXL9mTNnBn3edvMDPv5YOuMM6ayzpPnzPUUKbQ49VMrIMHwpo624jMzMCCZRBuuStAUAAHFjdpDrG7Ded999Qc+PJMiNZtuUY9kyqS0Y7N5duusu6bbbpOXLpQkTJBMS1d58h6GVl5dHtp0tgHhV9AIAANiVd+uAWPBNJPqyzfyAlSulK67w7BZ74w1PXHvTTdJvfhPxJY222DI6M8OfRBqsS9IWAADEjZlBbmlpaac2CO627VgBhBvkRrpt6gBJD0jqNny4tHDhrieuukqaNs2zXSxGvBOmEyZMMD2BGo+KXgAAALsyO7aKJDkY7vwAU3u3NjRIhYWeXrWPP+7ZMXblldLSpVJlpeQTn4fDaIstozMz/EmkwbokbQEAQNyYGeRWVVWFrETwx2iQG9G2qU2bdKekbyRdK8nR0iItXhz2Gu0u1hW9AAAAZvFuNWXVYN5g+vbtG/ZrwpkfYHrv1q5dpXff9QzXPfts6ZNPpL/8RerXL7LreTHaisvIzIxAEmmwLklbAABszu5TTRONkSA37G1TO3ZI996r7kOHapKkbpLelbTtzTelEH3JElWsK3oBAADaRNLvP1GEW4QQzvwAU3q3NjVJ8+ZJbb/3tDTpz3+W3nxTWrRIOuqosNYfTDxacSXSYF2StgAA2FgiTDVNJEaD3LC3TV15pTRxohwbN+p/ki6Q9GtJLccfb9bSAQAAkCSiKcIwmrQ0o3frJZL2OOkkKS9P8p4dccIJ0qmnhrdwg2LdiiuRBuuStAUAwKZC3RlPxkqDWDMa5Ia9bWrCBGn//bVj9mwNlfRStAsFAABA0qqpqQn7NeEmLaPp3drl/ff1b0lPS8pYtUrae29pv/3CXnOkYtmKK5EG62ZYvQAAANCZkTvjbedlZ2fHZU2h1NfXKycnR5JUV1dn9XI6SE9P18SJEw0HemFvmzr5ZGnlSu3cuVPNEyZEs1QAAABYxDeejVWcvXLlyrBfU1tbq913393w+RH1bv38c6mkRLsvWqTjJNVJUnGxciZPllp/L/ESy1ZcbX8T3HPPPR0KZML9myHWqLQFAMCGjNwZV4R36VOB73aq2trasIKvUNumHJIOkJR/zTW7DmZlRbZYAACAFMCchl369+8f9mvCTVpG1Lt1+nRp0SK5MzI0W9IASQ233BJRwjaWfYjN+CwlwmBdkrYAANiQ0TvjkdylTwWFhYUdHocb5AbbNuWQ5JY05vrrlbnbblGtEwAAIBUwp6GjvLy8kOeE6rsaipHerV3S0pR/8cW7DpSVSZdfro3vvacCST9FtYLYMPOzZPfBuiRtAQCwIaN3xiO5S58sioqKAg4oKCsri/r6LpdL0y+6SPv7HM9KS1NxcbHuoMoZAAAgpFBzGlIxcWskOVhQUBD1e4Tq3fpoRoYyS0t3HTj4YOnxx9V80EFRvXespNpniaQtAAA2ZOTOuAzepU9WZWVlHbY0SdLUqVNNSdi2+X/33KM1XbporqTDW7dNbd62zVbbpgAAAOzKyJyGysrKlG6VEOsihOLi4k7vsb+kZyRd1tgoffGFtH171O8Va6n4WSJpCwCADRm5M64Itv0nm2nTpnV4XFpaqu7du6vUu2LAKLdbeuEFqaRk17F+/dT01lu6QdKXNt02BQAAYFdG5jQ0Nzeruro6bmuymzVr1nR4HO4shlBcLpc21NZqhCSXpH9KWivpor59pb/8RfroI6lrV9PeL1ZS8bNE0hYAAJsKdGc82v5WyaK0tFRVVVWdjjc3N/s9HtQHH0gnnSRdeKF0113SkiXtT7UceaTcZiwYAAAgxRid0+DvvFgOsrIT34KAmpoa06tFu//lL/pAUrGkk/fYQ+mVldLSpdKVV0ppiZEajOazlKgS418GAIAUCty8+ZtqWltbG9G1cnJykup3N3PmzOgv8vXX0kUXSSNHSu+/L3XrJk2aJA0aZMYSbYnJzQAAIF6Mzmkwel4ymjp1aofHbYO1Ito55q2pqf3bnZddpjWSpktq+OIL6aabpKys6K4fZ6n4WSJpCwCAzdl9qqlVfAcQhOWXX6Rx46TDD5eee85TYXDttdI330h33in16mXmUm2Dyc0AACCejMxpSE9PV35+vuFr5uTkJE0Rglq3/fuKaOdYm2+/la67TvrNbzztvySpZ08dLKlUStg4NxafJbsjaQsAAFJPZqb00ktSc7N0wQWeAQwPPCAdcIDVK4uZVJu2CwAArGdkTkNBQQFFCWbYtMmzY2zgQOnBBz3tv/71r/anm4K+2P6MfJYmTpyYVJ8l2yVt+/Xr17711ftr/PjxVi8NAAAkqsZGz6CFtoRldrY0d670zjue4WOHHmr1CmMqFaftAgAAc0TboizQnIY2ZWVlJqwyhW3fLlVWSgMGSOXlnscnnuhJ2p5wgtWrM1WwmR/FxcWmDnCzA9slbZcsWaLvv/++/ev111+XJF166aVWLw0AAClFe+vaUaDA39dlkrodc4z0hz9Ijz++64nzz/cMH0sBqThtFwAAO0u1eNJ3TsO0adMsXU/SWLVKGjxYuvlmaeNGTyHCiy96ChNGjLB6dTHhb+ZHQ0ND0iVsZcek7V577aV99923/evll1/WgAEDdPLJJ1u9NAAAOgk13CvVAvJ4KiwsDPr8YZIWS3pSUtqqVdI++0gh+mAlq1SctgsAAOzFe9v6uHHjLF1L0ujbV9p9d+nAA6X586XPP/cUJjgcVq8splJl5oftkrbeGhsb9eijj2rs2LFyJPkHDgDQEcnOyKXK766srExFRUWdjneR9CdJX0o6VtJWSY1/+pO0fLl0+eWWrNVqqTht12q0/AIAJIP6+nrl5ORYvQy0WbJE+r//kxoaPI/T0qS//lVatkwaMyZlCxSSla2Tts8//7w2bdqka665JuA5O3bs0JYtWzp8AQCSS6JMiE2VZKmd+PZAmzZtmt6UVNY6bGGWpAGSmiZNklL4D45UnLZrNVp+AQDsLpLYNVHicjPZIXE9UFLWVVdJxx0nPfWUdN99Xk8OlLp1s3J5iBFbJ20ffPBBnXPOOdp///0DnjNjxgz16tWr/at3795xXSMAAGYj+Rue3SRlt34/btw4lba2RBgiqVBSrcXrs4NUnLZrNVp+AUBqIX5DpPzdNG+72b63pNmS/icp47nnPG0PrrlGGj3agpUi3mybtF2zZo3eeOMNXXfddUHPmzRpkjZv3tz+tW7duritEQBgnVC9ZJECtm9Xl6oqrZRU7HX4HUmXS6I7a0epNm3XTmj5BQCwO2Jr60yZMqXD4/LyctX+9JOmtMaz41vbf+08+2zps8+kBQukPn0sWy/ix7ZJ2wULFmjvvffWeeedF/S8rKws9ezZs8MXAABIXmmS/iCp21FHKbO0VLtLOlMSqbDQUmnarp3Q8gsA4M0O2+1hXxMmTFBmVpYOk5Qj6UNJJ0va8de/SkccYfXyEEe2TNq2tLRowYIFuvrqq5WRkWH1cgAAgB243Up/9VX9R9LDktLWr1fLgQfqakknSnJbvb4EkSrTdu2Ell8AkJoStWVCoq47kTkk/Z8k7//1/3+SLpY0onUnWTw1Nja2fz937twOjxE/tkzavvHGG1q7dq3Gjh1r9VIAAEAczJ49O3QwOGOGul58sYZK+kVSY1mZtv3nP3pEUku8FgqEiZZfAADRfgBBdHn7bS2R9ISkqV7Hl0t61oL1OJ1O9e3bt/3x5MmT1b17dzmdTgtWk9psmbQ988wz5Xa7NWjQIKuXAgAA4qCkpMR/MOj2qp+94grt7NFDN7RWIdybkaHG1iENoRhKCgMxQMsvAADgz1GSXpG0+2WX6RhJW1sTtR3iXy/xiGedTqcqKirU0tKxJKK5uVkVFRUkbuPMlklbAABgTDJtX+sQDP70k1RQIF19dfvzzupqdauv11xJ9a2J3tzcXEPXDpgUBmKIll8AgFSUTPFpTKxapaxrr9V/JJ0lyd2li+6T1F/SnZIUYGhprOPZxsZGVVZWBj2nsrKSQog4ImkLAEAMtAWrDJnoyEiQN+/uu7Wzf39p9mzpL3+Rli5tv+u/0+euv28VQDBWVAhQ4ZvaaPkFAAA6efBBZTz5pCTpMUk/v/eeiiRt8DqltLTU70tjGc9WV1erubk56DnNzc2qrq42/b3hH0lbAAAslkrVCAsWLAh5zia3W+/V10vHHCO9+aYaDzoo5F3/NkYSpLGsEPANsKnwTW20/AIApLqcnJykj2/bBLxZX18vrVq163FxsbZfcIEOlnSlpDmvvtrh9MbGRs2cOTPoe8Uinl2xYoWp5yF6JG0BAEDcvPTSS4bOe+uss6TFi6VTTzV017+NkaRwrCoEnE6nqqqq/L4fPcAAAACSW6eb9Tt3SjU10sEHS6NHt/eqdU6fruyXX/b0r20d9OWtpqYm5G6yWMSzAwYMMPU8RI+kLQAANlJfX5/ULRWWLFli6Lzdzj5bSvOEKeHczV+9erWh88yuEKAHGAAAQGqYO3duwOfabtaXX3ihdPjh0rhx0vffSz/8IH3/fcBBX95WrlxpaB1mx7P5+flKDzHkNz09Xfn5+aa+LwIjaQsAsFQqtQZI9J8v3H+rQL24QvENBsO5m9+vXz9D55ldIUAPMAAAAPuL5G8P35jWtzLWn+oXXlDz0qVSbq40c6b09ddqzM011PKrT58+htZldjybmZmpiRMnBj1n4sSJyszMNPV9ERhJWwAAYDojvbgC8Q0Gjdz1bzNmzJiQ58SiQoAeYAAAAPbU1NTU/v38+fPDem2g9lehrJP09BlnSCtWSAUFUmam4ZZfbrdbaWnB03Wxqnh1uVwqLi7u9P7p6ekqLi6Wy+Uy/T0RGElbAADgl+9W/nC29hvpxeUrUDBo5K6/97mhxKJCgB5gAAAgVSTCTjnvuPWQQw5p/76srCysaxgdhuvP+4MHSz17tj82evN+3bp1KiwsDHpOLCteXS6X1qxZ0/542rRpamhoIGFrAZK2AADEUSIEuW369u0b9HEwRntxtSkvLw8aDAa7629ULCsE6AEGAABgD06nU7m5ue2P3a0DwHyFauVVU1NjeBiuP743643evO/fv3/A5HK8Kl69E8Ljxo2jJYJFSNoCAIB23lUJvpWy4VTO9u/fP6z3nTBhQshg0OVyacOGDe2Py8vLVVtba+j6oZLC0aIHGAAAgPWMDPpqM2vWrKA7ycItQvDm72a90ZZfeXl5fo/HOp6F/ZC0BQDABDk5OcrJybF6GVFxOp3ac889DZ0bKMA9TVJOa7AZqheXN6NDy7yTnkYSvZGcGymXy6WioqJOx+kBBgAAEHvhtjMINSQ23CIEb/5u1htt+RUoZo1HPAt7IWkLALCd+vr6hE+AJpq2qoRA28d81dTUdDzwn/+o6wUX6A1JN7cGm6F6cXmrqqqS0+kMd9m247uVjYoIAAASSyK1skJHRgd9eQvWZzYvLy+sVlwycLM+UMsvwB8+JQAApLhIhiy0bxdbtUoaPVoaNkzp//iHGiV1aT0nnEEPklRZWRnWsLNEQEUEAABAfBgd9OUtWJ/ZcIbhqjX2NXKz3rfl17Rp0wy/B1ILSVsAAFJcJFUJg/bZR7rpJumQQ6SFCyVJOy+7TIdIMtbooLNQW9QSQXZ2turq6qxeBgAAQESsavkVboWzv3OMDvpqE2hI7CBJj0tyrF/f3v7KSPJs8uTJEbX8GjduXFjrRuogaQsAQJLIycnpFMAaqVyNpCohf8UKqapKamyUTj9d+vhj7Zg/X6vCvlL0awEAAACMDvpqU1BQ0HFH1PffK7OwUP+VdLmkLtOnS60VtN5jzUaOHOn3ei0tLaqoqEiKll+wB5K2AACEkMi9zfr27dvpmG8FQLhVCZI0NStLOu446dVXpddfl4YNi2qd0awlGXkn22fPnp10bSMAAIC5EjleNUsk7QwkSZs3S6Wl0sCB6jJ/vjIkvSCpqaDA7+v+9a9/Bb1uMrT8ys7O9vs94oukLQAgqGQPAJP952tpael0zHfoV7hVCZJ09yOPqPHdd6UzzzRlnQqyRS3VOJ1O5ebmtj8uKSlR9+7dqdoAAAApwd/uMaNCDfrq1L5g7lxpwABp+nSpoUHNxx+vkyRdKMl96KF+r+EvvvaWDC2/YA8kbQEAsLH6+vqw+4oZubPvXQEQblWCYhSMTpw4MeWHdjmdTlVUVHT6Y6C5uZntdgAAwLbsVAjhO+jLO1E7duzYjievWSP9/LNnTsNzz2n7G2/oPRPWQMsvmIGkLQAASaampibkOb5J11BVCf5E1As3QCVtUVFRyEm7ya6xsVGVlZVBzzGy3S47O1tut1tut5vtbAAAICV5FwJ4J2q7vfuujvE+0emUHnhA+uIL6cILJYfDlPen5RfMQNIWAIAks3LlSkPn+SZdXS6XNi1cqLsNvk8kwajL5dLGjRs7HW/vKZbCqqur1dzcHPQcttsBAACEb5ik1yXte/XVus/7id12k669VsrIMHytUEUOtPyCWUjaAgBMYactUamuf//+hs7zl3RN+81vdLmkPUO81kgwGqgiNNVbIARitHLZLtvtqOgFACSaWMWr/tpZRdLiCubrL2n3CRN0j6RaSW+mpelDSdFEo4WFhUGfp+UXzELSFgCABOOdDJ07d26n5/Py8kJeIz09XfnXXSfNni2de67U1kM1J0dHSfo5xOsLCgqCBqOlpaUdhml5H4d/RiuX2W4HAAAFA5FIqd/ZTz9ppqQZko74+991iqQrJJ3e0qJbJIWeABFYWVmZ37Zi6enpKi4uTvmWXzAPSVsAABKIbzJ08uTJnc4xcme/7NxzlXnUUVJBgbRokfT88+3PtY1tCFZJG6qdQVVVld/JulVVVSRuA8jPz1d6enrQc9huBwBA4kv6hKkf0VYe++7g2rRpU9DzM157TQdIulzS+gDnRBOT+g47k6Ta2loStjAVSVsAABJIoGRoIL4VAFmSHtpnH5W89JK0YoW0zz5SdbV0/vmdXjtlypQOj6dNmxb0vUINyGoza9YsQ+elmszMTE2cODHoOWy3AwAAqahv374dHg8ZMkROp3PXgaYm6euv2x82XHyxrpfkDnLNWbNmGY5f/fGNyYjRYDaStgAAJBHfwHPNmjWSpG6S7pRUL+nqH3+UsrOl22+Xli+X/vhHqUuXkNceN25cwOecTqffdgj+hBq2ZZYff/wxLu9jJpfLxXY7AAAAH75FCy0tLaqoqJCzuFh6+mnp0EOlM86Qtm2TJNU8+KA6j77tyN+AV+9Yevbs2VEldYFokbQFgBSTUr2sUlBNTU2Hx213/LdLOkNSi6Sm66/3VNlOmSKZMCDD6XSqoqIirApgBOa73a68vFwNDQ0kbAEAQEoxkjB95O671XzZZZ5ChMZG6auvJEkrV6409B7eA159ixBKSkrUvXt3WntFKNoEOENvSdoCAJBU2gLU3STdLsnRmph3S7pe0qGSGu+919MWwQSNjY2qrKw05VrYxXt73YQJE9huBwAAkso+BmJR32IEf36U9FaXLrt2kA0bJknq37+/oXW0DXgNVITQ3NysqqoqQ9fCLoES4B1aWiAkkrYAACSRAb17K+O++7RC0hRJ3e6/v/25TyUtN/n9qqurw253EGrYVjiys7NVV1dn2vUCvUeq3+UHAACIN6PVsn+76irPDrIePdqP5eXlhXxd24BXihDMFSwBXlFRYavErd3jfJK2AABLebdooF1DdLpLumnuXGX96U/aQ9KXknYefXRM39N7S5lRBQUFMVkLAAAAkofRatk+RxzR6ZiRXUoFBQXKzMyMqAgB/hlJgFdWVtIr2CCStgCAhJCTk6McE/qvJiuHpL9I6rJ+vVoOOEBjJB0pqfHUU2P6vm1byowqKipSWVlZzNbjHQDOnTs3Zu8DAACA2Mq78kr1aI1zA2mrlg3Gd8Brm7aYNJIihGBSeYaIkQS4vwFw8I+kLQAg5lI5cDFTXV2diouLOwWee0r6q6RTJTVOm6Ztn36qh1qHjvlj5iTc/Pz8sNodxDJhK0l9+/Zt/37y5MkxfS8AAACYL11SxkMPKWf4cN3SOpshkIkTJ4asqv2qdTiZJL9DxcItQjBbMrX7MpoANztRnqxI2gIAElqqTXN1uVz6efFitbX1nzZtmnpIWilpgKSmiROlbt2CXsPMQQCZmZmaOHFi1Ncxi2/vrDap9jkBAABIFN4FBRdI+lzS3yZMUP8fftCUAK9JS0tTcXGxXC5XyOt36dKl/fuxY8d2ej7cIgQEZjQBbnWiPFGQtAUAxExbha2/tgZtzxmZHBtMVVWVrZrZx1RtrVRYqF4jRqhthu24ceO0WlKxpI1+XjJ16lS/lzJzEIDL5fJbARyv4NdI1fCsWbPonQUAAGwvFXeolZSUKDc3V5MlvSDpa0mXSFof5DVOp9O0HVx2K0JIZEYS4EZaWsCDpC0AIOElezP77pL+JKnbEUdIs2bJ0dSk3SRlGHjt/fffH/R5s353LpdLGzZsaH9cXl6u2traqK9rRE1NTchz6J0FAABgjljE3S0tLZom6TFJY0K0RFBrrGnWzjGFKEIoKioy5T1SgZEEuJGWFvAgaQsASHjxTshFGqjOnTs3rNemS+r6yCP6RlKZpLS6On3U2rv2t5J2GrhGoHYBbcz83XkHXxMmTIhbMLZy5UpD59E7CwAARCMVq2D97dryniFgtqskbTF4rpk7xxSgCKGhoSHmMxmSTbAEuNGWFvAgaQsAMCwnJ8e2QWq8EnKlpaXKzc01cGZnkydPDuu1EyT1LC7W/pJWSNp8//06TtI/I3r3wBI9mdm/f39D59E7CwCA1BSsZZcdmDkk1mz+bu6HKgqIRqgKW3/M3HVnVRGCL7t+HowKlAA3K2Ebr8FqViNpCwBICvFKyFVVVRkKVC+66CK/x0O+1ish/qCknYccogJJQyTt+P3vIwpkQ0n0ZGZeXl7Ic+idBQBIBqlY6ZmMfKtXzRwSG2+Gk4vbt+ucGK0h2dpgBSoSSbTBunZJgCcykrYAUgIBbmIJNyCxY0Lu/fffD3mOd5B7iKTnJe1+0UVytB6rk7Txrbc0W1JTGO8dVgsGG/7uwrX77ruruLg46DkFBQUEigAAwHKlpaV+E4xtW/0TLTFnZLZA+osvqtvRRyuWKelE3znmLVCRSEoNYIZE0hYArEESOTCn06mqqqqwXnPjjTcmZEKupqZG+u47ZU6YoC8l/U5Sxhdf6Givc+YaCIS9hdu+IVkGAQTqndWGXmQAAMAOZs6cGfT5WbNmxW0tZmzBNzJbwLF5s9LWrdNBrQN2YyGWO8d8f09Wti5I9gHM6IikLQDANhobG1VZWRn26+67776EvOvsfuIJaeBAdXnoIaVLek6S87LL9InXOZMnTw7rmkbbNyTjIADf3lnTpk2zdD0AACA1BetRa2RIbDxEM6fBm7/ZAhmffKIzvR7vvOIK7aiq0iGSGgxet6ioKODNeF+x3DnmdDo7/Z5yc3Mt+9sj2VpBIDiStgAA21iwYEFEgarZk2Pj5Veffipt26bmX/1KIyVdJOnuxx8PeL6/6b2RMHsQgJ14Vw2PGzfO0rXYVaoMbgAAIF58WxqUlJSYkhCNJaM3+kNZt25d+/cDJT0laY9zztEDkrq2PZGerp3XXaftQa6Tnp7e4XFZWVmHm/HBxGrnWGlpqSoqKjr9nlpaWixtZZFMrSAQHElbAIBtrF69OqrXV1ZWJkzbiX0knXDwwdJzz2n766/rAwOvuf/++015bwYBAACAaKVKu69QP2eg1l5mJEQTwf3336/GtWuVWVSkryRdKsntcOjNMFohlJeXq7a2ttNx73jVXyVtrHeOxbOVRXZ2tu69915D5yb6EGEYR9IWAGAb/fr1i+r18dpOZoYmSU1LlkgXXig5HAZekTrBPwAAQCKItLVXML4Vp3bX3NysdwcOVJcHHlCGpL9J2viPf2iMpI0Gr2GkoGDKlCkdHpeWlsZ851i8W1nk5+eH/PdPhiHCMI6kLQDANsaMGSOHwQSmVcLpr+VPWyC2UZIyMsxbGAAAQApoq3zNycmJ+3vvs88+HR5XV1ebnrgrKCgw9Xrx8FNTk5qHD9dvJP1WUvOhh8b8PceOHZt0O8cyMzM1ceLEoOckyxBhGEPSFgBgG5mZmbrpppusXkZQ4fTXcrR+TZZ0laQ7b73V79YvAAAAJB6ze4s6HI6wh9Dawfarr9b2f/5Tb1u9kCTgcrlUXFzst0ikqKgoKWdSIDCStgAAW7nnnns0bNiwiF4br+1kRu9uHyjpRkl/af26Nso74/6Ct0CTiQEAABBbZvcWdbvdqqmpMfWasZaenq7RNTWG230lklC762L1t4fL5fJbJFJWVhaT94N9kbQFANjOO++8E9Hr7LCd7DZJCyU93bevukqqkrTKpGvfcMMNnY717du30zG7t5gAAABIBvn5+VG1zfJn5cqVpl4v1goKCjoVJfgWFSRqkUFhYWHQ52P5twctECCStgCAZNA2OTbed5/TJI2R5J02fVSSS9L/rVunb3zOnzp1qt/reAeyI0eODPh+vgMYFGBAgtvtbv9+2rRpIX4KAAAAc7X1nXU4HKqvr7d6OTGTmZkZMrEXrv79+5t6vUDMSjj6i799iwr23HNPTZo0yZT3i6eysjK/rQqs+tsDqYekLQAgoZWXl8d8cmwnbrfOk/SZpPmSvMO1VZI+DZBMra6uVmlpaYdjTqdTubm57Y/ff//9Ds9H29ds3LhxUb0eAAAAgZmZuEtPT1deXp5p1wtmxowZGj9+fESvDVUU4BsHu91uzZo1K6L3spq/VgW1tbX0lkVckLQFACS0CRMmxHX7UNqSJep69tl6WdLhkjZK+iSM18+cObP9+9LSUlVUVPhN8LaJxR38SLeoeb9u9uzZCbvVDQAAIJYibVU1Mcr5B+G66667Inqdv6KAZI4Lff9NaF2AeCFpCwCwjblz59o24DtY0tOSup1yitLff1/bJd0laYCke8O4jneC1juBa+T8SPhryZCbmyun0xn2tby3upWUlKh79+4RXQcAACCZ3XjjjWGd37bd3orqzXRJ10p6StI+UVwnUQaoNTU1tX9PEQLsjqQtAMA2Jk+erO7du3dqIWAHoyVdIsntcKjpqqt0sKQSSZuiuGa4CdlIgsrq6mq/71tRURF2wtV3vc3NzRFdx1tdXZ3cbreys7MjvgYAAICdlJWVqaioyPD5lmy3d7uV/sIL+q+kByRdKqkyisslygC1IUOGtH9PEQLsjqQtAMASgRKzzc3Nqqqqivt6Otm6VVqxov3h3a1DxrZ9+KEa58zReguWtGDBAlOvV1lZaUp1gVnXMSI7O1tut5tELwAAsLVwWlzFe7v9SZK6nnqquo4ercGSaiUVtg7Y9eWvf62/llnxGqAWrVgUISQjYm57IGkLADaTCtN2GxsbDbUGsERTk1RdLQ0cKI0aJbndkqQ6SVdJch92mGVLW716tanXa25u9luJa9V1zEawCQAA0NH9kt6RlL5kidzdu+uO1nZfsyT5uwXvr3+tv5ZZ3377bYxXHjnvlgiBxLMIATCKpC0AIO6qq6uj7tUaC+nPPScddpg0frz000/SL79I331n9bLa9evXr9OxtLSO/1Oenp4e1na8FV7VxNEw6zrJgGQxAACwq8WSdkpquvZabfv8c02WtDXMa/irVp01a5ap6zTTX/7yl5Dn2LUIQbQTS2kkbYEwpEIFJBAPdkvw/VrSh5K6XnWV9M030t57S3/+s/S//0kHHGD18tqNGdN509qaNWs6PK6trQ1rO96AAQNMWZtZ1wEAAIBJfvlFcjqlxx9vP/SwpCGSGu+7T+5997V0efHiGy8HYre/UQCStgCQQurr65WTk2P1MmyV4Et76y29Lel4Se7sbGnKFGn5cik/X+rSxerldeCv35nvsXB6oqWnpys/Pz/qdRm5DhUCAAAgEfjr15pwtm2TKiqk/v09/7ekRNqxQ5LULGl5jN/eX0uF9PT0GL9rYN7tHIKx098ogEjaAkhVVE1bKz8/v9O2/rjy6mvV8utf69+S/ixp2+efS7ffLvXoYdnSHA5Hh8ex/D1NnDjRlMEXZl0HAADASk6nU7m5ue2PS0pKOjy2uzRJ10jqdtRRngrbTZukww+X5syR4hir+Q4vKy8vV21tranvMX/+fMMJ9auuuirkOdEWM9TV1YVVnEA7LRhB0hYAEHeZmZkqLCyM/xtv2iTdeqt0yCFSW7I+LU0jJU2Q5N5nH78vi2fFxdq1azs8Nrqdq43v+vwFn+np6SouLpbL5Qrr2v7650ZyHQAAALtxOp2qqKjo1K/VjnMY/En74AN9JmmBpLRvv5V695Yeekj69FPp3HMln8KAeJowYULIG/y+8bXv46lTp3Z4XFZWpu7du8vpdIZ8/y4Gds9RhAA7ImkLALBEOH1Xo7Z9u3TPPZ4tYi6XtHKl9NRT7U83B3lpvCsuwm134BvA+q5vypQpnV5TW1sbUaLVO4FcXl6uhoYGErYAAMQYO8Rir7GxUZWVlVYvI2qHS9ooacedd0rLlklXXy1Z2JbAqNLS0k7xdW5urkpLS9sf+xsS1tzcrIqKCkOJ2zbRFiGEW1ELRMOWSdtvv/1WV155pfbcc09169ZNRxxxhD766COrlwUASDTNzdIjj0iDB0u33OIZxnDYYdLLL0vXXCOFqKK1Q8WF93rmzp3b6Xl/AWyo9UVaReD9OiMVEwAAAImgurpazc3BbuPb0NKl0hNPtD/cPny4zpbUW1JVWpoaTWqx5VsgEAtVVVV+4+2qqipDr6+srDS8E+6rr75q/54iBNid7ZK2v/zyi0aOHKkuXbpo0aJF+t///qd77rlHu+++u9VLAwBbiHe1RUIOX5CkhgZp+HBPhcHatdIBB0gPPih99pl03nmSw+G3irZtm5VdKi68BydMnjw57NdH8++XnZ2turq6iF8PAACQCFasWGH1Eoz7/nvphhs8hQhjx0rffdce074qqcEnpo2WvwIBf9WqRUVFUb9XpJqbmzut07tn7N57791+fLfddmv/niIE2J3tkrZ33XWXevfurQULFui4447TQQcdpDPPPJMpfgBgAd+kZhvvrUpmMnXoVvfu0qBBUq9eUnm59M03nsC2dYtYoCratm1WZ599tukVF/4GsIUKcqOt6l2wYEFUrwcAJBe22kMWfg7s+vlLiHzD5s1Saak0cKA0d65nR9kZZ+i2qVODxrRmJG59+WuZFdfWZ34kVOIdMMh2SdsXX3xRw4cP16WXXqq9995bRx99tObNm2f1sgAkILsGhYkiUFJTrVuYYhEA3nDDDWG/pr2SdOVKZV13nfp6P3nvvdKKFZ7hY926dXhNqCrat956K+y1ePM3AGzKlCnasGFD++N4BLmrV68O6/x4TLJlWi5SAe2+AMAYO8Ts+fn5Srdr79cdO6T77pMGDJCmT/fsJhsxQnrnHTU+/bRmPPhg0JeH0zrAKH8ts0K19Iq1hEi8A2GyXdJ25cqVmjNnjg4++GC9+uqr+uMf/6jCwkI9/PDDfs/fsWOHtmzZ0uELsJIdgo5Ukwq/cytaIoRKavoGgMF6wxo1ZcoUFRcXh1Vxu3durv58zDHSIYco44kndIf3k/vvL+25Z6fXGOlb5na7w1l6J/4GgMmCvrD9+vWL6fUBdEa7LwBILJmZmZo4caJp1zM1Sfrjj54ChJ9/9sxpePZZ6f33pZNOMhTT+msdYDbf3XmRtPSKRnp6ut+CCSDR2S5p29LSomHDhunOO+/U0Ucfrby8PF1//fW6//77/Z4/Y8YM9erVq/2rd+/ecV8zEC+pkJxEeGL1mQg3AAzUGzaSNgoul6tDNWoozS0tKvjkEz3b1KSdp52mewy8JpW2T40ZM8bqJQAph3ZfAJB4XC6X3+KBUBW4/uLd3NxcTZo0KbKFuN060vtxnz7S1KlSTY305ZfS738vORxSGDFtLGPf0tLSgLvz4mXixIn0pkVSsl3Sdr/99tOhhx7a4diQIUO0du1av+dPmjRJmzdvbv9at25dnFYKIBWlSuI8nAAwWG9YoxNffYUTdLlbv65KS9PWp5/WZwZeYzRxcsoppxheh135+12GU/1BKwMgfJG0+2L3GGC+VInbEBl/O8N8iwfKy8tVW1sb8BpOp9NvvNvS0qJZs2aFv6iPP1bX88/Xp5KO8z5+663S9ddLGRkdTjca07adZ8bOOF8zZ84MeY4Z7zNy5MhOx9LT01VcXCyXyxX19QE7sl3SduTIkVq6dGmHY8uWLeswPdtbVlaWevbs2eELABAdowFgnz59QrZRiJeGlhbV1NQYOtdI37L09HS98sorEVVcxJO/rWDe65s6dWqn53Nzc2PSkxiAR7jtvsTuMQARSPSkdE5OjmlrjyQB2bYzzDcmMtrKykg7MaMcK1dKl18uDR+u9Lfe0g5JRxl4ndGYNj8/3+/OOH8Dh8NlpMK2pqYm6sTt4MGDOzw+/fTTtWnTJksTthQ3INZsl7S96aab9OGHH+rOO+/U8uXLtXDhQtXU1Gj8+PFWLw0AUobRAFCtFbWxdrDB81auXGnoPCN9y9q2WYVbcRFvvr1zfdfnr4dZS0tLzKYJAwi/3ZfYPQakvERPwFotUAK2TaCWXc3NzRHHRDU1NVHHwT0kFUjKPPpo6cknJYdDTaNGabAkI6UIRmPaQC0MjCRczegVu3DhwqgTxL7FfW+88YZ222034lkkNdslbY899lg999xzevzxx3X44YfrjjvuUFVVlUaPHm310gAg6QSqSjAaAAZqXWOWQyQ9ZzBolaT+/fsbvnawvmW+26ziPTzMWzhD2RTm+mIxTRjmoHIjsYXb7kvsHgMAw8JNwDY2Nobcwh9JTGS0WCCYrZJmSTqouVkPHnSQ9J//qHHePK0J4xqhYtqysrKoKoIDDdcNx+effx40QWwk3n3//fc7HYsm6Q4kAtslbSXpt7/9rb744gtt375dX331la6//nqrlwQAScE3yA1WlRAoAJSkoqIiuVyumA3VcXz/veZK+lLShZJOkBRq5np6erry8vLCeh9/VbQNDQ226ou1Zs2usH3atGmmXjse04SBVBRuuy8AgDGRJGCrq6tDVpRGEhOFUywQynpJ161aJedjj0X0+mAxrZEBw9EIt8DAn2h3VlOIgGRly6QtAOuxRSv5BBqUEOwOtW8A2KasrEwy2EYhHI6tW6XSUnUbOlR5ktIlPS/pSEm/hHhtpFNjrayiNcJ7PePGjTP9+rGcJgykKtp9AUBsRJKADWfAbjjy8vJMn3MQTfIxUEwb61ivsLAw6msccMABKioq6nTc6O+XQgQkK5K2AJACjAxKCBQkBktiGmmjEI5nbr1VzdOny7Ftm96VdISk30v6OshrmBobnVhVSwOpjHZfABAbkSRgjcY64cZEZsfBak0+Gh2sa1SsY72ysrKAu/OMWrhwYXtRSJtw50hQiIBkRNIWAFKAkW1Rkd6hDtZHy98dc1/e98//+Mwz2kfS2QcdpF+3tkcIpba2loRthNqmCQMwH+2+AMB8kSRg8/PzQyYUI42JXC6XoXg3HGb0yvVm9s44f3x354Xb0uvzzz/v1MYt3B1wFCIgGZG0BeCXd0sE2iMkvlhtC2sTqI+W7x1zeQ0/q/jDHyRJvqnknyW9umqV4fe2WzuDeKmrq4t6SFWkLSUAAIiUVS24cnJyiGmTQCQJ2MzMzJBb+KOJifzFu10jupKHmb1yFaOK4EDv0yaSll6zZs2K+L3tVojgvXsx0OBnwAiStgCQAmK1Lcyb0d6wJSUlOiArS7OffTbi94JxRUVFAacJU6EMAED0mAURP5EmYP0lVhXDmGh7hK+LZLCuEcF2xtlFNMPSQiXds7Oz5Xa7oy54MMLpdCo3N7f9cbDBz0AoJG0BIAUY2RYVizvUkyZN8nt8Q2tFLcITyV37srIyrVmzpsOxWLWUiGdADAAAUpNZCdi2nWFRx0QNDbpVkhkpuVjugvK3My6cnrHRGDp0aNTX8Pd3it0KEZxOpyoqKjoNyws2+BkIhqQtAKQAI9uizA4SJ06cGNU2J6NSabtR3759279vu2vv2//LH99/13i1RCCJCwAA4iGSBGy4PVM72blTevBBdTvqKJVLmiJpnwgv5Z18jOXWeqM748x2xRVXRH0Nl8ulpUuXtj8uLS01J+lukmgGPwOBkLQFgBQRaFBCLO5Ql5aW6t577zXtesGYPWHXzvzdta+qqrJsPQAAAHYQzwSkJF0gqdvxx0vXXae0777TKknXS/qp9flQfXd9te2CStat9Xl5eYZ6EYfSpUuX9u/Hjh1rq9kMsRz8jNRF0hYAEtg++4R3P993O5lp28K8OCQ9cN99pl0vFLMn7NoNd+MBAACiY1Y8dYikmZIul/TO0qXaucce2nHXXTpE0kJJ7tbzQvXd9ZWZmZnUW+uN9CIuKCiI23qCiXSnWKwHPyM1kbQFgBRmalWC261zJT0gqc7tNvACc5g9YdduFixYYPUSAAAAEpZv9WobIy2mfH0jqVDSFZJOkdRt0yaVfP+9fFPCZWVlfne4BZIKW+sD9SJW6+DcYM8ngngMfk40tEqLHklbAEDYOvXXWrxYXc85R3+T1C3Oa4nFhF07Wb16tdVLAACkoPr6ejkcDjkcDtXX1yf8+yQL7/hr7ty5lq4lEQSqXpWkqqqqkNWrju++U8aDD7Y/9t38vrOlJWCrqnCSkDU1NSm9tT7RE7aycPAzkhtJWwApIZYN/VNRh/5aY8ZIxx+v9Pfe03ZJb8V5LXbqZRUL/fr1s3oJAADAJryHkk6ePNnStdhdNNWrvSTdKanb0KHKuPFGdfH7avMYbffF1nr7smLwM5IfSVsAKcE7wC0pKfG7RSqeEimJHGjrWFt/rZlffy05HGq68kodLKkmguELCGzMmDGmXu/HH39M6u1JbMMCACQzfxWjinCrf7KLaDDU9u3KmDVLKyRNkuTYvl1/69tXTTFeq9F2X6m0tT4RuVwuFRcXd/pbKBaDn5Ea+KsaQErwDXADBbzxkEhTYRsbGzVz5syg59y8ZIkalyxR4/33a33rsXCHL4Rj2rRpMbu2HXE3HgCA1Gbk5v6sWbNsXQRghbAGQzU3S488Ig0erKxJk7SnpP9K2v7UU/rbWWfFfK15eXlsrU8SLpdLGzZsaH8ci8HPSB0kbQFYJtY9zIwGrvEMcBNtKmx1dXXIBPfO5mZVv/tuh2NlZWUqLi72e77D4Qj5vsGC1nHjxgV8LpEqmCPh7659OEMuAABA4qmpqQl5TjL3O41UWIOhtm+XSkqktWvVsv/+GivpSEnN554bl6G3bK1PLt7/TqYOfkbKIWkLIGkZCXDDOS9aiTgVdsXy5cbOC6O/ltvtDnlOQUGB4eu1SaQK5kitWbOm/fu2u/bJMLgBAAAEZtd+p3a/WR7WYKjsbMnlksrLte2zz7TAa+hYvIbepuLW+rq6uqAtrWh7hVRH0hZA0jIa4Bo9L1pG+2rFK4kc0r/+pbNfesnQqb6VDEYS1P4qbtPS0lRcXBx2IjLeFcxtAWRdXV3Yr4sGd+0BAEg9dux3mgg3y0NVrzok3Xn22bviqSuvlG69VerWLX6L9MHW+uC8Y2mSuEgFJG0BJC2jAW48tjwpjOqHeCWRQ/rmG529dq0OCHGav/5aNTU1IRPU/ipu16xZE3ZQamUFc6TJWwAAAKOMVHrGs99pIrX7ClS92lvS05KcRx4Z9PWlpaVBBxjHolUVN+kBtCFpCyBpGd3KFK8tT0arH+KVRO5k/XrpnXd2PR49WulTp+qK668P+jJ//bUiTTxHEpQaSRDT5w0AACQqI/FRQUFBXJJ7dmj3Fe61Xbfdpq0336y/S1oo6Z+SZkk658MPpenTg762qqoq4HyHAw880LRWVaWlpVFfA0DyIWkLIGkZDVzjdffaaF+teCWR223a5Bm8cPDB0qhRUkND22KkyZM15d57A641UH8tsxPPwZLAduvzFqo3FwAAocR6WCsSl2/FaJt49bi3ut2Xb1uGNkGTnpdfru4VFTpH0kGSpki6UJL78MOjWsv69es1adKkqK7RZtasWbbrCQxr0c8XImkLIFUECnDjyW5TYTMlZcyaJQ0YIN11l2dq7oABklcfrUBC9dfKy8szlKA2KligYsc+b2apq6sjSAMAAO28h5JaIRbtvvbZZx9D5wVqy6DWitj2tgwtLdKOHd4vVMvBB+tiSSMkvdPp1ZG79957/bbJCjcBy64wAP5Yn8UAgDiwOsBtY4epsA5JV0paKilr0iRp40bp0EOlF1+U3n5b6tMn5DVC9dcykqAuKCiIaP3e6urqdNNNNxmfDJwiuDMPAEBysrq/qVXtvgy3ZVi0SDruuI5tD04+Wds++kjPmroiD7fbrX333bfT8T322CPslgfx2hUGIHGQtAWQEqwOcL1ZPRX2KEl/kdRPUst++0kPPCB99pl0/vmSw2Ha+7hcLr+DGdoS1GZt47NbBTMAAECyMtru65prrml/PHv27Ki3/htty/DBuedKH38szZvXsdo2jB1eZqmqqgrrfCt2hRkZqutdDEBRABBfJG2BBEa/s8QV96mwP/7Y/u1/JD0oaZKkbZ99Jl17rZSREZO39ZeYra2tNT1BbYcKZgAAgGRn5Gb5sGHDtP/++7c/LikpUffu3Xe1L4iA0SrUbx0OqbBQ+vxzKSsr4veLt1TbFZZo2MUGq5C0BYBktmqVdMUV0kEHSWvXth++TlK5JHXvHvclxSpBbXUFMwAAQCoIdrP82GOP1ZIlSzr1nW1ublZFRUXYLQPaGK1C3fz//p90333SXntF9D5WsXpXmJGKWwDxF3HSduPGjeauBDABladIBt7bxyLeTrZhg1RUJA0eLD3+uLRtm/TKK+Yu1IbiXsEMIOER0wJA+KZMmdIhMVteXq5Nmzbpk08+Cfq6WbNmRfR+RtsyXDd5ckTXD2TYsGGmXSs/P9/vcOSioiJbFhnU1dVRWQpYLOKk7YgRI7Rq1SpzVwMAKc7pdCo3N7f9cdt2MsNVCQ0N0p13SgMGeKoMmpqkM86QPvlEysuL3cIBIEER0wL+eRdAUAyBUCZMmKAHHnjAUN/ZSGSmpan81FODnhOLatV33nnHlOG58rMrrI1Zcx4AJJ+Ik7annHKKfvWrX2nx4sXmrggAklhbNXhOTk6n55xOpyoqKvxuJzM0yGDnTunII6U//UnaskU6+mjptdc8X0cfbeaPETPRDqkAgHAR0wKAOYz2nQ2L2y09+6x02GG65fXX9YykrDhXq86YMcPvcX9Vs6GwCwxAOAz/V+bxxx/v8Pj+++9XUVGRTjvtNL3wwguxWBtgO6ZsWwf8aGxsVGVlZXQXyciQLr1U6tdPevRR6aOPPFW2NuWverhv375RDalIRdnZ2fQfA8JATAsAsWG076xh77wjjRghXXyxtGyZlJuri2bO1PfffdfpVCuqVQsLC+P+ngBSS8ik7Q8//KCLLrpIr7/+eqfnJk2apPvvv1+jRo2KuDcNkCgCbVsnwQQzVFdXh71d7FeS3pE00vvgn/4kff21NHq0FMHd/3hxOp1+q4dbWlqiGlJhJwx0AOyFmBYAYsto39mQvvtOOv986eSTpX//2zM497bbpBUrpIICZfrZsWaFsrIyFRcXy+Fw+H2+qKgo7msCkFwyQp1QU1OjpqYmzZ8/3+/zo0eP1h577KELLrhAf/3rX3X88cfrmGOO0bBhw3TwwQfHYs1A3LVtW/fVNgVVrT2KgEiFs50sfflyPSPpotbHUyWd3vZkiEEBvtXhjY2NcR8uYKSqmKQJALMR0wJAbGVmZmrixIl+/25qU1BQELrtV69enh1j6ememQyTJ0v77mv+gk3gcrm0ffv2TrFrJK0TkknbTjB/LeEAGBfyvySFhYXaY489dPHFF3d6btOmTSorK9OYMWO011576cADD9SiRYt05ZVXavDgwerVq1es1g3EjZEEU2VlJa0SEBWj28lukrTHr3+tiyQ1S3pA0h8Mvodvtbgk5ebmxr1avKamJmZDKhJVW1UuE3qB2CGmTU1tveQdDgfDtGKM3zXUmsQsLi7ulLRMT09XcXGx3zYGu7XGuO31qtnZ0iOPSP/7n1RdbduErVrja3/FBi0tLcZmUiQx4lsgeiGTtrvttpsefvhhXXvttR2OFxUVqU+fPpo3b55uu+02rVq1So899pi++OILbdmyRe+//37Aht1AIjGybb25uVnV1dVxWxPMZYf+xEa2kx0oqUKSo7lZL0oaKul6SZ27enUWaMhZWzuCeCZuV65cGbf3soNwA9ZYBLje14nmmgTfSGTEtAAQHy6XSxs2bGh/XF5eroaGhk47E7Mk3SJppaRKSf/n/eQZZ0iDBsVv0REwZSYFAARhuGb/3HPP7fD4pZdeUmVlpZYvX67x48crKyur/blu3bppxIgRys/PN3e1iBvulO9idNt6TKalIi7s0J+4bTtZMPdJWizplxde0O8k/c/gte1WLd6/f/+4vA8A+ENMCyDReMdoc+fOtXQtRmVmZrZ/P2HChA6P0yRdLWlZa0HC7pK+kPSDRWuNlJHdYwAQjYgbrSxbtkzXXXedunTpYu6KAJsxum3d9GmpiKu2/sRWJm6DbScrKizUA5JOkNT0q1+FdV27VYvn5eWZM6QCAExATAvAznzbW02ePNnS9UTF7Vb6okX6TNJDkvpIWtuawD1K0ltWry9MqbZ7LFmwcwyJJOKkLX9QI1UYnYJKFU5ysLo/seucc7Rt6FD9U9IsSXdNm6aGhgaV3XmnFrWeE+767FYtbqSquKCgIC5rAQBiWgB2Fai9VSLrctddOlzSRkk3Sxok6RFJifgTsnsMQKyl9khDwAAjCaaJEyd22PLTJicnJ+XbSyQay/oTf/65dM450qmnKvPTT3WMpB8ljf/jHzt9tvr27RvWpe1YLe5yuVRUVNTpeLAhFXYWzh177u4DAIBQYt0v1bsIIJbzHQZJ0tatngcOh+onT1aepN6tfWx3xORd48PI7rFkRTwLxAdJW8CAUFNQvZvq+wY8Vg+4SgaR9liOtP9XPPsTHygpMy9POuoo6ZVXpIwMNY0bpwGSyiSpWzfJ52cJVG1x7rnn+v282bVa3F9itra2ttOQCgAAYJ54JesQHSPtrSLl23IhFvMdHN9/r/sl/VdSl5kz29939wsv1DxJDQFel0ifSSPFPQAQDZK2gEFGpqD6BkCSlJuba1oARJDtn7/fSzT9v+JZcdpbUpeFCyW3W7rsMumrr9R4zz2q9TrH6XRqzz33DHmtd955R127du30eYumWjze2taQnZ2turo6q5cDAEBSiUeyDoGFU4gQqyKCQC0XTJvvsHmzVFqqbkOHapykDElpK1YYbvWQaJ/JYLvH/B0HgHCQtAXCEGwKaqBApKWlxZQAyF+Q7ZsgTkX+fi9du3aNuP9XqIrTqBPn27bp114P/yWpsbRUWrxYevJJaeDADqeXlpaqoqJCbrfb0OXdbrffz1s41eIAACD5xDxZB1PFoojASMuFiOc77Ngh3Xef3P37S9Ony7Ftmz6QdJKkrfffH1arB6s/k+Fu/ffdPVZaWuqZSZFg7b4A2A9JW8AE0QZAoe66B0sIp7JAvxejCU5/glWcRlWd0twsPfSQuh11lF5pbYvQpqmkRDr2WL8vm9m6nSxc/j5vvtXioh0BAAApIabJOhtL5LZlRtpbhctIy4VI5ztk3nabVFQkx8aN+krShZJGSnpPUk1NTUStHhL1Mzl27Fhb7GADkPhI2gImiGUAZHQIQSIGNNEwezhDqIrTiKtT3G7pb3/z9KwdM0Zp336rWkn+Rom1Je9zcnLaj0WamA/0efMNIAkojbH7sAW7rw8AYK1Yxqp2Feu2ZbEWbr9UIzvAjLZcMHpeltf3TePHSwcdpB2zZ+sISS94Pbdy5UpD1/OVbJ9JRM87ziXmRSogaQuYwOwAyJvRIQQ1NTVhXzuRmTmcwV9/Ym8RV6csXiydcor0299KX34p7babGsvKNEjS+6asPLhYDlTLyckJaygcAACwTixjVTuKdduyWPDXgitQeyt/jOwAM9pyIeR5H3+sruefrwVeh9x9+0rffKOd11wj3wi9f//+ht7XH+LZ1MFMC6AzkraACUwLgPwwGqhEegc7UZkZwPn2J/YVUXXKL79Iv/mN9PbbUlaWVFwsrVyppqIi7TBt5cHFc6BaIrN7lard1wcAsL9IYlXvZFYiJbYSsRVEsBZcvu2tpk2bFvA6oXaAGWm5EHS+w4oV0qhR0vDhSv/nP/V7Sft2fLHfl+Xl5UXc6oF4Nr6IOwF7IWkLmCDqACgIo4FKNHewE1E8AzijCeLV//vfrge77y5NnChdfbW0bJnkcnmOhclIZYU/kX7e/GkL3rjzDQBAYoplrGo3idYKwkgLLu/igjFjxoS8ZqCktJGWC37nO/z0k1RYKA0ZIj3xhORwqGnUKB0i6YfQP2LYrR7aJMtnEgAiRdIWMEHEAZABRocQ5OXlhX3tYLwDvblz59qqGkExGs4QiNEE8fkPPyy979X44I47pIcekvr0ifi9CwsLI3pdpJ83AACQfGIZq9pNIrWCiKQqeMGCBUHPV4ikdKCWCwHnO7zzjjRggDRrltTUJJ19tvSf/6hx3jytCbmSzu8bjmT5TMYLVbJA8iFpC5gk7ADIIKN3pvfYYw/Ttq45nU717btrVNbkyZND9siKNyO/F4fDYcp7hUoQOyT1lvSbxkbpL3/xXkDU711WVma4l5lM+LwBAIDkFKtY1W5i2bbMbEargr1nV6xevdrQtYMlpX1bLgSd7zBsmJSdLQ0fLr35prRokXTkkYbW4KusrMxQTJuWlpZUn0kYR+IZ6IikLWAil8ulNWs63nOura2NOuAIFmSbzcgWLbsI9cfHzz//3H4sWP+vUIIliNvSsjN69VL6E09IMdhqZ7SXWaiBarEWryCLYA4AgMiElaxLUInUCiKS2RX9+vUz9JpQSWnvCtb2+Q5ut/T009L//Z/U9rdATo70wQfSv/8tnXqqofcOpLq6utPfGP6Ul5cn1WcyVRCjA+YjaQuYzHcLj1lbevwF2bW1taZcu00iDm4I9seH9+9+3LhxUb+PvwTx/pIqTjtNo3/6yRPgRtiDNhQjP0uogWoAAAB+k3VJJJFaQUQyu8JIT9uIktL//Kd0/PHSZZdJTz0l/fWv3gswJcY1mqReu3Zt1O9lJRKWAMxC0hZIILEOshNtcEObeP3x0ZYgPkvSfEmPnnqqVtbW6uY33pBsEPgDgVD5AACwC++b/7Nnz45JMUDbzXZ/rbLMap/lLdKfyWhVsPfsCiNxbjhJ6SMkZV10kaeKdskSTyuEKVOkc84x9PpwJFLrCjNkZ2czyBdAVEjaAmi3bNkyU89LCuvXS9ddJz3yiNQaKL8uaZKkC198UZm5uVavEACApFZfXy+HwyGHw2Fa/35Yw+l0KtcrdiopKenw2Gxut9vvMTNbfvn7mYzOgjC7Kjis/sR1dXpY0qeSMl57TcrIkMaPl1askG6/XerRw9B7hiM/Pz9kT9t4tK748ccfY3p9O+NGPpBYSNoCFrHjHyDff/+9qecltE2bpEmTpIMPlh58UCot9UzMldQiKXVDPQAAgPAFmptgpMdpuOLV8suMWRBmDYgLuz9x9+4a0poQ2HnRRdJXX0mzZ0v77GPs9RHIzMxUYWFh0HMKCgrC2jVXV1dHAjKFkHRGqiFpCySonJwc5eTkmHrNfffd19TzEtKOHdK990oDBkjl5dL27dKJJ0pPPil16WL16kxVV1dHsAMAAKLSVogQLC41kkSVT5uBaMSj5ZeZiWEzBsSFbBHW0CDdc4/Utl0/LU35ko6VtOORR6SBAw2/VzTKysqieh6Jqy3hSssIwDiStgDaDR482NTzEs7rr0uHHCJNnCht3CgNGSK98IL0zjvSiBFWr67d1KlT/R4vLS2N+1oAAABCMZJElaSamhpT3s/owCuj5/ljdmI4ZjMadu707BobNEi65RbJK9H8UesXrEGVMIBQSNoCaGd0GEKs+0xZJjtbWr1a2n9/ad486fPPpQsukGIwsCIagYL/qqoq0/qzWeHHH38kaAUAIAkZTY6uXLnSlPeLx8CreCSGo+J2e4oPhg71zGf49lupb19PgQIAICGQtAXQzuxhCHZ3lKQ/eB844QRPG4RvvvEEtxkZ1i0uQmb0ZwMAAGhq7eUvSfPnz48qvjCaHK2pqdEvv/wS8fu0iUchQjwSwxF7/33ppJOkCy/09Krdc09P+6+lS6XLLov/egAv9KUFjCNpC6ADs4Yh2Fk/SY9K+o+k+yU5vv1215OXXSZ1727l8qISbX82AAAAp9OpIUOGtD8uKytT9+7dI97RYySJ2iY3NzfqnUPxKESw9Q616mpP4rZbN+n//T9pxQqpqEjKyor/WlIcCUoA0SBpm8TahgI4HA7V19dbvRwkEJfLpTVr1rQ/njZtWtjDEHzZ4fO4h6RKSV9LGt167DnJdu0PomXZNjwDGH4GAIC9OZ1OVVRUqKWlpcPx5uZmVVRURJRQNZJEbdPS0hLx+3hzuVwqKirqdNysQgQ77VDLldS0evWuA3fcIY0bJy1fLk2fLvXqFfM1AADMR9IWgF/eAea4ceNiEnB6b7ObPXt2zLb1d5PU/b77tFLSTZKyJL0h6ZjW5K17//1j8r5WsWQbXgx4VybsvffeVCkAABBjjY2NqvQaVOVPpK2YAu3mMvt9vJWVlXU6Vltba9rOMbvsUNsgaeDhh+9KdPfvL91/v2dOA4C4o8IaZiFpC8ASTqdTubm57Y9LSkqi2nYXzJ6Ssisr1UvSx5KGSzpD0iemv5P1knpQHAgAAQAxVV1drebm5qDnRNOKyeVyacOGDYbOjVXLJ7MLEXx/pvLy8qh3qAUzdepUv8d/lkypUAYA2Iftkra33357+xbqtq9DmHAZtZycHNokJBg7tBOIldLSUtO33XXgdkuLF7c/XC+pbtIk/bo1Yfuxn/UkC7sNisvOzlZdXV3A53788ce4rwkAAPhntMVSNK2YwolT7NzyyZv3zzRhwoSYxWIOSY/MmRP0HIbSAkDysF3SVpIOO+wwff/99+1f7733ntVLAmCimTNnBn0+mmAzbfFi6eSTpeOPV9qHH7YfL/nxR70b4DVVVVUJVZUQqJK2qKgo4QbFeVeLUjkKAIC1jLZYilcrpmRp+WSW30mqc7uDnsNQWgBIHrZM2mZkZGjfffdt//LeQg0g8flW2PqKJNgcJOmvkrqdeqr07rtS165KW7q0/fn7778/6OsTqSphypQpfo/769sGAIg/do7FDrvHYis/P1/p6elBz4lXKyY7tnyyZCfctm3t3y4y+JJEqVCGf7TDAtDGlknbb775Rvvvv7/69++v0aNHa+3atQHP3bFjh7Zs2dLhC4C59tlnn7j/gWQ42PzhB2XeeKP+K+liSe60NOnaa6Xly7Xz6qvbT4tFohgAgEDYOYZElJmZqYkTJwY9J16tmOzW8inuvvlGuuwyzw6y1jh2h8GXUqHcGYlQAInIdknb448/Xg899JBeeeUVzZkzR6tWrdJJJ52krVu3+j1/xowZ6tWrV/tX7969475mAOYzFGy63dJvfqMuDz6oDEkvStr24YfSAw9IBxwQ9ntSlQAAMAs7xxAN790/s2fPjutuIJfLpeLiYqWldfxTMT09XcXFxaa2YvJXSRuL90kk+0jKLCqSDj1Uevpp6aOPlPbxrokMvv8uvuxYoZxs6urqSP4CiAvbJW3POeccXXrppRo6dKjOOuss/f3vf9emTZv01FNP+T1/0qRJ2rx5c/vXunXr4r5mAOGJKthsbJTapho7HJLTqebjjtNJrX2+3IceGvG6qEoAAJglnJ1jgDen09khyV9SUqLu3bvHtf++y+XSV1991f64tLRUDQ0NpiRSvXdu3XLLLZ2er62tTc2E7datul3SckldHnhA2rlTOu886bPP1HLsse2nFRYWBr1MolcoJ0q7MgCIB9slbX3ttttuGjRokJYvX+73+aysLPXs2bPDFwB7izTYvExSt+HDpUcf3XXwmmu0/c03FWrTqR2rEhLtLn12drbq6uoieh3b0QCkknB3jomWX2jldDpVUVHRqa1TqchiTAAAOsBJREFUc3OzKioq4pq47dKlS/v3Y8eOjVsiMJETjhFbvlzdjzhCUyTlSGo+9ljprbekl1+Wjjiiw6llZWVxq4S2Qm5ubkINCAaAWLJ90raurk4rVqzQfvvtZ/VSAEvV19crJycn6DmJcmc63GAz7e23tVjSk5LSVq6U/vxnT2sESUpL81TchpDsVQkAAPsId+eYaPmF1jiusrIy6DmJNDi1jSXDuxJN//5qOfBALW2d0bD9H//w9LINwOVyacOGDR2OJUuFcktLS9xvUACAXdkuaXvLLbfo7bff1urVq/XBBx/o97//vdLT0zVq1CirlwbYXiLdmfYNNsvLyztvu/viC+ncc9XtvPN0rKStkiZLqn/pJUOJWm+BEsWSVFRUlBRBLqjqBWBPoXaOiZZfkFRdXa3mthZQATA4NTmcJinr97+X2nYwpaVpxxNP6HBJz0qG4lzfYoNkKz5IxBsUAGA22yVt169fr1GjRmnw4MG67LLLtOeee+rDDz/UXnvtZfXSANtLtDvT3sHlhAkTOgabLpd05JHSokVyZ2RotqSBku6QpBAVx4H4q0pQa0IXAIBYMbJzjJZfMDoQlcGpiSvts8/0iqQ3JGW8/rp0333tz7kPPFA7LV2dvXCDAgBsmLR94okn9N1332nHjh1av369nnjiCYYDwTCjk3aTfZtWUtyZHjnS0wLh0ku17aOPVCDpJxMum2xVCAAA+2HnGCJh9G+etvOSPZ5NKqtWSaNHq9vIkTpLUqOkpj/+UcrLs3plEfP+W6O8vLxDD2SzcIMCQKqzXdIWiJQdJu3aRaLdmc6S1KWqSrrrrl0HR46Uli6VnnpK7oEDrVyeqYzeWAAAJC52jiES+fn5Sk9PD3pOPAenNjU1tX8/f/58YpZItLRIN90kDR4sLVwoSXpM0iGSMufMUX337lavMCLx+rvLLsVb3u23aMEFIJ5I2iIp2GnSrl0kxJ3p5mb9QdIySZmlpdLUqdJ33+16ftAgK1dnOm4sAEBqYOcYIpGZmamJEycGPWfixIlqamqSw+EIOaA2Gk6nU0OGDGl/XFZWRswSibQ06YcfpKYm6YwztO2993SlpFVWrysKof7uKi0tNeV94nmDIp6YvwAgHCRtkfCSddJutGz9x6HbLS1apG4nnKCHJfWR1HLAAVJ1tbTPPlavLia4sQAAAEJxuVx+B6emp6eruLg4LoNTiVkily4pY/58TzuENtOnS6+9Jr32mlqOOsrK5UXNyN9ds2bNMuW9Jk6cGLCtGYlPAKmCpC0SHpN2O7PznemDJXU97zzp3HOV9t//apMkp6Rtn34qXXONFGJbYCLixgIAADDKd3BqeXm5Ghoa4pKwJWaJkNut30v6r6SswkJp8uRdz/XvL51xhpWrM43Rv7uiEc8bFABgdyRtkfCYtNtZsDvTVtsuKe3f/5YyM9VUWKj+kiokqVs3q5cWM0YD3JqamritCQCAVJCoveS947gJEybELa6jGCIC776rrqedpmclDZbk3nNP6fjjrV5VTMTj76na2tqES9hmZ2errq6uw2MAMANJW/iVSAFuuJN2k5kt70z/9JP04IPtD9dJ2lFTIy1bpsY779Qvli4uPowGuCtXroz5WgAASBX0kg+fWcUQdv/7wQyO//5XOv986de/VvrixaqXNE1SwxdfSBMmWL28mIjH31N2LTwBACuQtEUniRbg2m3SrpVsdWe6vl664w5pwADpuuuUtnhx+1PNF18s9e1r6fLiyWiA279//5ivBQCAVEBf1siYVQxh978fzJDx/PPSyy9L6elquu46DZA0RZJ69rR6aTFj9O+uNnV1dfSdBYAokLRFB4kY4IY7adfhcKi+vj5u64snW9yZbmqS5s6VBg709POqq5OOOcYzPTdFGQ1w8/Ly4rYmAACSFX1ZIxdJMURpaanf89r+fgj0fMLZuFGOZcvaHzYVFkpjxkj/+58aq6r0o6WLiw8jf3cVFBTEbT0AkOxSN4uCThI5wLXDpN2U53ZLzz4rHX64dMMN0g8/SAcdJD3+uLR4sVqGD7d6hZYxemPBO+lOZQIAAJGhL2vkwo1ZGhsbNXPmzKDnz5o1y9Q1xt22bZLLJQ0YoKzrr991vEcPaf58adAgK1cXd6H+7iorK7NsbQCQbEjaol2iB7hWTtoNJhV6ekmStm+XCgqkZcuk3Fzpvvukr7+WLr886ipb399fIv4+ubEAAEB8MKQ2OuHELNXV1Z126PkK9feFbTU3SwsWeJKyt94qbdokx7Zt2sfqddmAXf/uAoBkQ9IW7ZIhwLVq0q63qVOndnic1D29li2T2gL1bt2ku+6S/vQnacUKqbBQMuH379tjWZJyc3MT8vdJgNtZdna23G43VcUAANMwpDZ6LpdLX331Vfvj0tJSvzFLrP8uqK+vj397M7dbeukl6cgjpbFjpfXrpd69pYce0rZ//Ssl2iAYYYe/uwAg2ZG0RTsC3Og5nU6/lch27gkcke++k66/XhoyRHrssV3Hr7xSKiszbQBDoB7LLS0tCfv7JMAFACC2GFJrji5durR/P3bsWL8xS1L+XfDKK9IFF0j//a+0++5SRYWnUOHqq6UQnysAAMxE0hbtCHBDC1YVaGZP4Pr6euXk5ES9XtNt3uyppB04UHrgAU+V7eLFMXmrRO6xDAAArBNJL3lEJj8/v1MbBV+h/r6whYaGXd+fdZZ0wgmelggrVki33CJ17WrK2yRDyy8AQPyQtEU7AtzoJHpP4GAyJRVK6n7EEdKdd3oGMpxwgvTee1KMhksk8+8TAADEFr3k4yMzM1OFhYVBz7F1T9vvvpPGjZMGD5ba2i+kpUnvviuVl3sqbU2STC2/0BktvwDEAklbdECAG7loegJ732U3Y3CZ2f2/HpF0nyTHxo3SIYdIzz3nSdiOHBn1tQNJhh7L4TL7c+APASUAIFXQSz4+ysrK/B63dYXt5s1Saaln91hNjadv7Ysv7no+yiG6vpKx5Vcg8YhnASBVkLRFJwS4kYmmJ3Dfvn3bvy8pKel0F94SXlURsyV9J2nHzJnSF19IF14oORwxfftU67HsW32R1APsAACIE3rJW6O8vFy1tbVWL6OTTEkZf/6zNGCANH36rt1j774rjRoVk/dMpZZfxLMAYC6StvCLADd84fYE9q6A9XfX3TKffiqddZayvZL070k6SNLOsWOljIy4LCMePZbr6upsUXEaqPrCjgPsqJ4AAACh2PHvhxxJX0nKuvVW6eefO+4eO/HEmL2v0ZZfNTU1MVtDPCRSPAsAiYKkLWCScHsC2y7ZtXq1dNVV0rBh0muvqduCBeru9XS8V5sqPZYTqfqC6gkAAJCo6iQtkdSy337SvHlx2z1mtJXXypUrAz5n9/ZWiRTPAkAiIWkLmMjlcmncuHGdjvvrCbxgwYI4ry6An3+Wbr7ZM4Dh0Uclt1saNUobX3tNDQZeHkup0GM5UaovqJ4AAAC+6uvrlZOTY/Uy/Pv4Y2VddJH6eh0qkLTts8+k666L2+4xo628+vfvH/O1xEpNTU1CDRBm5xiAREHSFjCR0+nUvHnzOhxzOBy68cYbOyUYV69eHefV+fG3v3l6elVWSo2N0mmnSR99JC1cqJZ+/axeneSnx7Ik1dbWJkXCViZVX8Qa1RMAAKSepqam9u/nz5+fOP87v2KFdPnl0vDhynjtNd3u9VStJHXvHvi1MWC05VdeXl7c1mQ2o3GqHQYIs3MMQCIhaQuYJFAlotvtVmVlZadAoF8MkqJh3yk+4ghp+3bpyCOlV1+VXn9dOuYY09cVLd8WCIneEsGb0eqLIUOGtG+L23vvvVVXV9f+XKx78xqtBrZL9QQAAIiO0+nUkCFD2h+XlZXZP7H1009SQYGnV+2TT0oOh3ZefnmHpK0VUqHll9Eq4VBxb11dXUzbP7BzDECiIWkLmCCSSsQxY8aYvo62O8WlpaWdn3S7pZdekkpKdh3r00f64APpk0+kM8+MeU+vWAnU58vu/b8Up4Fr0TJaFWGH6gkAABBcqPgoIRNbd9/t2T02e7a0c6d09tnSJ59oxwMPaI3Va7Npyy8z4+S8vDzD8Wzb+3oXIMQDO8cAJCKStoAJIqlEjOZu+o8//hj0faqqqjoe/PBD6eSTpQsukO66S/r3v3c9N2yYlMZ/CowyOxGcCNUXRquBjZ4HAADsKWETW1u2SHV1nh1jb74pLVokHXWU1avqIJlbfiVCPMvOMQCJiEwNYIJoKxH93XUPxmigPFBS1ujR0ogR0rvvSl27Srfe6hk6BtuwY/WFt0SoBgYAANFLiMSW2y09/bT0r3/tOnbLLdJTT0mLF0unnmrd2kJI5pZfdo9n2TkGIBGRtAVMEEklonfi1XubWXl5uWpra4NeZ8GCBYbe735JGS+84KmkHTNGWrZMKi+XdtvN0OsRP77VF+Xl5WpoaLA8wFWCVE8AAJKX7ao6k5jtE1v//Kd0/PHSZZdJRUWeBK4k9ewpXXppp91j2dnZnbbhhz0DIgHEuhesUXaOZ9k5BiARkbQFTBBuJaLT6VTfvn3bnysvL2//fsKECSGTX6tXrza0rp8k7TznHOmzz6T586XevQ29Dtbw/nc38jmIJ7tXTwAAkpPvpPc2fvv3I2p2TWwdISnroos8VbRLlkjZ2dK550pNTSFf6/tZaZsBYcvevEnArvEsO8cAJCKStgmivr5eDodDDodD9fX1Vi8HPsKpRAw03KGNkT9C+vXrZ2hd5ZI2PvSQdPjhhs4HgrFz9QQAIPkEi5mqqqpIusWA3RJbjrVr9bCkTyVlvPaalJEhjR8vrVghTZkihUgIOp3OzrMebDpULREG6CYydo4BSEQkbQGTGKlENDLcYdasWSG3bI0ePdrQmj43dBZgnF2rJwAA9hdOEULCDsRKcOEmtgIVG5hVCZ32r3/pD61/tO68+GLpq6+k2bOlffYJ+Vo+Q/DFzjEAiYakLWCiUFNhjQ53qKmpCXrOwQcfbMJqAQAA7CkhBmIlKaOJrUBVrGqthI4kcdtNUtrnu8oOmi+9VNWShkva8fDD0sCBhq/FZwj+sHMMQCIhaQuYLNhUWKNDG1auXBn0+UCtFWTiljW2ZQEAAKvYfiBWknO5XPrqq6/aH5eWlnZIbBndPWZUuqSxkpa19a6tr1d9fb1yevbUeEkfR/Az8Bmyt7Z2EL6D4uKBnWMAEgVJWwvRpzb1GB3a0L9//07HjGzdcjgc2rRpk6ZMmRLR+rxZGUgBAIDUZteBWKmkS5cu7d+PHTu2Q2LLaBVrSG63LpD0H0lXSXpX0mvbt6vx66+jWzyfIQBAEiBpm8Toz2Q/Roc75OXltT/uJUl1dSFbJkiS2+3WAw88YMZSTef9eZw9ezafTwAAEJDdBmKhIzOqU0+QtNell+oYSb+RdIqkKySds2mTuh9/fNR9cfkMAQASHUnbJOV0OpWbm9vpuFlDARAZI8MdCgoKlJmZqSxJEyWtlNSlsjJky4Q2dtzi5ft5LCkpUffu3fk8AgAAv5j0bm/RVqceLOlmSf0++URTJG30eb65uTlgv1yj+AwBABIdSdsk5HQ6VVFR4bfvaVVVlZxOpyXrgkeg4Q5tyqZNU8bjj2uppHsk7SEp/R//UP9+/Qxd325bvAJ9Hs0IxgEAQPIKFjMVFRUxOMhCRqtYvXX3+v4bSRdL+jlG62tjdKhatNrairndbuZCAABMQ9I2yRgZClBZWcnWdIu5XC6tWbOm/XFbxemZkrqOHKms669XX0nrW4cybH/zTeXdcEPI69pti5eRzyMAAEAgvpPe25SVlVmyHngY3T2m1lZfd7bGtY61azv0yo0H389QeXl5h6FqAADYFUnbJGN0KMDZZ58dtzXBP++tWGPHjpVT0quS0r/4Qu5evVQsqb+kBZJmz5lj6JptrRXswsjnEZGhogMAYAfxGKxrp9gGu7hcLhUVFfl9rqioSGWlpe2tviZJ2l1SxuOPG5rTYDbvz9CECRP4TAEAEgJJ2yRjtJ/pP//5T9ok2MyTkjZLaiookPPyy3W3pKbW50pKSjr0hA3YWsFmVSd27K8LAAAAc/iLPR2Syg89VN2OPrq91dd/JZ0vqcnpNDynwY4YrAsAiCeStkkmnH6mtEmwUG2tcv70Jz3idWiNpN6SnOnpunvu3E4v8e4J691aIdaiCU7t1l8XAAAAseOQ9J6krLw8pa1bp3WSxkgaKullSXI41L9/f6uXGZFAg3UphAEAxApJ2yRjZChAm+bmZlVXV8d8TfBSXy9Nny4NGKDuDzygqyQd4vX0VkkzZ860cIEdRRuchvN5BAAAMIoqR3tyS3pTkrtXLzXecYcGSXpIkvc42ry8PAtXGJlgg3UrKipI3AIAYoKkbZIxMhTAG9vX42TnTqmmRjr4YKm0VNq6VU1Dh+p0SV/7nOobDPqzYMGCmC21jRnBabifRwAAACOocow97575gfrnO5Yv15OSTvI65pLU8MUXarrpJm2P8L0dDkfAfrnxxqBnAIBVSNomIZfLpVNOOcXQuWxfjz3H0qXSEUdI48ZJ338vHXSQtHChfnn1Vb0Z4TVffvllk1fZkZnBqcvlUnFxcac+vOnp6bYJxgEAgH2Vlpb6PU6Vo4V++EHKz1e34cN1maQZXk/VSdIee/h9WWlpaYddXP78+te/1vbt220zq8HooGd2MAIAzEbSNkm98sorcjgcQc9JT09Xfn5+3NaUqtwHHiht3iztuadUVSV99ZU0apQUYJiYEYsXLzZ1jb7MDk5dLpc2bNjQ/ri8vFwNDQ0RB+NsiQQAIDU0NjaGbB1FlWMcbd0qTZkiDRwozZkjx86d+pukGwy+vKqqKuSusr///e/KzMw0ZblmMLozkR2MAACzkbRNUpmZmbrxxhuDnjNx4kRbBUTJwrF0qSpaBzFIkrKzpRdekFaskG68UcrKCvp634pUK8QiOPX+rE2YMEGZmZnKzs6W2+2W2+0OuO1OfipsotkSafQ9AQCA9aqrq0Mm+ahyjJPHHpMGDJCmTfPMaTjuOG37+9/1W0lfWr22GDK6MzHeOxiJaQEg+VmfHULMBKpiTE9PV3FxsVwuV9zXlNS++07Ky1O3Y4/VLZJGeT937LFSr16GLlNYWBirFRpmp+DU6XSqqqqq03G2RAIAYJ76+no5HA45HA7V19dbvZx2VDnaSEuLVFvrmdHw179KH36oll//2upVxZyRwbrsYAQAxAJJ2xQzbdo0NTQ0kLA105YtnuFiAwdK8+bJ0dKi5yV9HOHlysrKLO/1apfglMEPAACkNjvdSE41Xd5+W+d7Hxg9Wnr0Uem//5UuvlgK0YotWRgZrMsORgBALJC0TTHjxo0joDBLc7M0c6Znm9j06dK2bdIJJ2jb66/r95KWRnHpSHu9BhrUES67BKcMfgAAILXl5+eHbB1FlaPJ/vMf6ayztPtll2mOpG5tx9PSPInbLl0MXcasuNQOgg3WjWYHI3MaAADBkLSNkl23kiE47+Ao4mApLc3T22vDBmnwYOm556T33lPLiBHmLjYMVVVVprULiFVwGg62RAIAkNoyMzNDto5KtSrHmCX5Vq3yJGWHDZNee03uLl30tCRjKdqOjAyQSzSBBuuGExObOacBAJD8SNoiJfXt27f9+7CCpX/8w9MOQfJsCauslObOlb78UrrwQltsEzOzXYAZwWk02BIJAACY07CL0+lUbm5up+NRVbVu2CAVFXmKEBYu9By74gr9/N57uknSlgguWVNTE3KAXCLyN1jXKOY0AADCRdIWKck3iAwZLH32mXT22dJpp0l3373r+MiRUl6elJER4xUb19zcrAULFph2vWiC02jZpbcuAACwl2Sf05CdnS232y23263s7GypNelXUVHhNxlaVVWlm2++ObI3W7FCuu8+qalJOuMM6ZNPpMceU0u/fhGvf+XKlRG/NhkxpwEAEAmStkgZRoKgTsHSmjXSVVdJRx8tvfqqp4dXU1NsF+pHUVFRyH5u3lavXh3T9cSLXXrrAgAAe0m1OQ1Gk36h4iZJ0s6d0r//vevx8cdLf/qT9Nprnq+jj456vf379zd03tlnnx31eyUC5jQE5u8GBQDAg6QtUkZNTU3Ic9qDpZ9/lm6+WRo0yDMl1+2W/u//pK++kmbMiMt6vZWVlXVoUxBKvygqI+zG5XKpqKio0/FU3BIJAABSk5GknyTde++9gXeOud3Ss89Khx0mnXyytHbtrufKyjxVtibJy8szVHAwb948097TzpjTAACIBElbpAyj27RWrFghlZR4+tU2NkqnniotWSI98YRkYe9Uo9Uk6enpGjNmTMzXE0++vezi3VsXAADASuEk8/xus3/3XemEE6SLL5aWLZN69JCWLjV/oa2MDJBTGPFtomNOAwAgEiRtkTL69Olj6LwBAwZ4togde6y0aJH0xhvS8OExX59ZUqFdQLx76wIAAFgpnGReh232X34pnX++9OtfSx9+KHXvLt12m6ePrYmVtf4EGyAXTDL2dWVOAwAgEiRtkVQC9URyOp2aPHlyyNe3B0v9+kmLF3uGjzkcMV51+AIFdEVFRVSfAgAAJBkjST9vK1askLZskUaMkF5+WUpPl264QVq+XJo2TerZM6brDaS8vFy1tbXtj6dOndrpnNzc3MAtHhIUcxoAAJEgaYukF2zSbhtH65fzj39MiGBpypQpfo8HqmiAfTBsAQAAhMtI0s/bgAEDPInZwkLpkkuk//1PmjNH2m+/mK4zFN/dUv4Gb7W0tKiiokKlpaVxXl1sJducBmJaAIg9krZIakYm7UpSL0m3FhTozlmz4rIuAAAAIBwulytk4tYhqVta2q5dWXfcIT39tGe4bpi8E3FWJOVm+cTls2fPTvjWCcxpAACEg6QtkprRSbv/z+XSjJkz47ImAAAAIBL33HOPxo8f7/e5toZe9x566K5q1rTE/XPPN4YvKSlR9+7dk6p1AnMaAADBJO7/igMGGJ20u3bt2pivBQAAAIjWXXfdJUnq6nN8P0nl55yjcZ9+asm64qG5uVkVFRVJlbgFACAQkrZIXk1NOu777w2dGs5E3njw3foV7lYw7/Pnzp2b8FvJAAAAsMujkuok/VNSjaSHzj1XqzZvlvPvf/cMHUtylZWVxLcAgKRn+6Rt+f9v796jo6rP/Y+/h8QgJOAtWLFQxHATEVGjlKr1/qvC4djWYqtUqZcWBUSMJpVKsVKQGBYpIsJBWi9VPN5YtrbnoEd6DtqlogiiVEsFVMSCIloIAUl0Mr8/hoQEQi4wmb1n8n6tNUtmzyZ8XO4VH558n++3uJhIJFLvpu1qOSm9sXwsBk89Bccfz+ULFtClkdszMjJ27/sVAhMmTCA3N7fOtdzc3CYfxlBUVES3bt1q3k+cODHtRskkSZKaIqVr2gY8B1QCS4BC4AdPPEFWx45Bx0qaaDRa7yFmkiSlk1A3bZcuXcrcuXPp379/0FGUKl58EQYNgmHDYPVqMjp1Ytx55zX4W2644YZA9pKqvTrg/vvvr/n1jBkzqKqqqnNvVVUVM2bMaPRrTpgwgWnTpu31+x0lkyRJSlEbNsDIkfDQQzWX5gM9gPHA1kDD1VVeXl7TIG/plbBN3QZNkqRUFdqmbXl5OcOHD2fevHkcdthhQcdR2G3dCkOHwllnwauvQnY2TJwIa9dy86JFFBYW0mYfBzHseYprMuy5GjZRGWY2cpiao2SSJCWfk2PaL1u3woQJ0KMH3Hcf3HYb7KrjqoANQedrQFFR0V6TY+xaYFBbfdNukUhkr2v1Cdv2ZpIkJVpom7ajR49myJAhnH/++UFHUSro0AE+/ji+h9d118GaNXDHHfHrQElJCZs3b665fdKkSYFFLSoqqnc1bCI09jUdJZMkKbmcHFOzVVTA3XdDXh5MmQJffBGfJPvP/4QApsOaq6Fad8aMGXUat7fffvte92zcuJGMRvblDdv2ZpIktYRQNm0fe+wxli9fztSpUxu9t6KigrKysjovtQJbtsSbstu2xd+3aQPz5sHbb8OcOXDUUXv9ltpbIIwcOTIpMcvLy+vsn1ZZWUlpaWlS/ux9ScVRsuzsbMrLy4OOIUlSszg5pmZ7/nno0wfGjYPPPov/+umn4aWX4Mwzg063lz0nuMrLyxutde+5554GP8/JyaGgoKDBewoKCgLZ3kySpGQKXdN2/fr13HjjjcyfP5+DDz640funTp3KIYccUvPq2rVrUnIqIBUVUFoaX3nwq1/B9Om7PxswAHr3DjJdo2bPnk00Gg00g6NkkiQlh5NjaracHPjgA+jcOb4lwsqV8N3vQhO3DEim+rZA6Ny5c6O1blNq4ZKSknq3E8nIyKCwsJCSkpL9SCxJUmoJXdN22bJlbNq0iZNPPpnMzEwyMzN54YUXmDlzJpmZmXv9T378+PFs3bq15rV+/frAsqsFVVXBI4/Em7I33wyffw59+8LAgUEna5aWXuW6r317qzlKJklScjRncgynx1qv11+HWgfSMmgQPPlkfKuvn/4UMjODTLdP+9oCIRaLJezP2PPMh+LiYnbs2GHDVpLUaoSuaXveeeexcuVKVqxYUfPKz89n+PDhrFixYq/9jdq2bUvHjh3rvJRm/ud/4JRT4IorYN06OPpo+O1v4c034aKLgk7XLC29ynXs2LENfu4omSRJLa+5k2M4Pdb6rFkDP/oRnHoqjBoFtRee/OAH0L59kOkaFNR2X2PGjLGOlSS1KqFr2nbo0IF+/frVeWVnZ3PEEUfQr1+/oOMpCA8+CCtWwCGHwNSpsHo1XHNNaFceNGTUqFGNHqwQiUT2OjU3IyOjSSdOT548mcLCwr1W3DpKJklS8jR3cgynx1qPTZtgzBg47jh4/PH4tgeXXho/TDdFHOh2X43VwunMcxokSc0RuqatxPvvw0cf7X4/ZQoUFMDatXDrraFeedCYrKysRg9WuPHGG/nss8/qXPv000/3GhHbl5KSEtatW1fzftKkSY6SSZKURM2dHMPpsfRXXh4/RDcvD+69F776Ci68EN54A37/+/gkWYo40O2+brjhhoRlkSQpnaXEUsXFixcHHUHJsHkzTJ4Ms2fHx8IefTR+vXv3ugeOpbjq5un06dP32geMevbvYleztzlq3z9y5EhHyVJEdnZ2QveCkyQFo3pyrDYnx1q5rVuhuBh27oT8fLjrLjj33KBT7ZembvcViUT2qmvGjRvH5MmTmTFjRgulU9CsZyUpcVxpmyIqKytrfj1r1qw671Pe9u3x1bR5eXD33fDll/Cvf8X/mabqWw1bUVFBLBYjOzv7gL9+7edj7ty56fW8SJIkhV0sBn/96+73X/96vFH7+OPw2msp27Clidt9ZWRksHHjxr2uN3VyTJIk2bRNCUVFReTm5ta8v/XWW2nfvj1FRUWB5jpgX30F8+ZBz54wYQKUlcFJJ8Hzz8PChXDQQUEnbFEttRq2qKiIbt261byfOHFiejwvkiSlsMWLF7u6sLVYvBgGDoRvfxteemn39bFj4/vX7nF2QappynZfBQUF5OTkJC2TJEnpyKZtyBUVFTFt2rS9xuij0SjTpk1L7UbcvffCz34GGzfCMcfA/Pnw+utw/vlBJ0tZEyZMSN/nRaFQPfKWqFXhkqTWI60nxwDeegsGD4ZzzoGlSyE7O34mQxoqKSnx8FtJklqYTdsQq6yspLS0tMF7SktLU6vg3b5996+vuQaOPx5+8xtYtQouvxzapP4jGWRTa+bMmQ1+nnLPiyRJSgtpOzkGsG4dXHklDBgQnxbLzITRo+MN2yuvDDpdiykpKWHz5s11rn366ac2bCVJSpDU75ClsMZWG8yePZtoNNrg14hGo8yePbvFMibMqlXwve/B2WdD9SrQnJz4ioRx46Bt26ATpoX6DjarLWWeF0mSlDbSenKsqio+Jfbww/F9bH/4Q/j732HWLPja14JO1+L23N7Lw2+VCpwck5QqbNoGpCmrDdY2cZyqqfcFYuNGGDkS+vWDP/wBli+Pb4FQLQ1W1oZBeXk5Y8aMadK9oX5eJElSWknLybEdO6B6YUWbNnDbbfEtEV57DR57DHr0CDphQgTd2NrzmUipZ0SSpASwYxaApq42yMvLa9LXa+p9SVVWBr/8Zbxove++eGH77/8OK1fCaacFnS4tpfTzIkmS0lJaTY7VPkT34Yd3Xx8xAv7yFzj11CDTpZU9F7gA5ObmpvaqbEmSmsmmbZI1Z7XBqFGjyMjIaPDejIwMRo0aleCUB2jNGsjLg8mT4ysRvvlNePFF+OMfoW/foNOFRu0VC4lYvZCyz4skSUpbaTE5FovFJ8ZOOCF+iO6GDfC73+3+PBKJv5QQ+zpYt6qqKvW305AkqRls2iZZc1YbZGVlUVBQ0OC9BQUF4ds76thjoVs36NULFiyAl1+GM88MOlXaS9nnRZIkpa2UnwR66SU444z42QyrVsHhh0NpKSxaFHSytOXBupIkxdm0TbLmrjYoKSmhsLCQNnvs/ZqRkUFhYWE4Tmf93/+FwYOhvDz+vk2b+GqEv/0Nvv99Vx4kUUo8L5IkqdVIxCRQ9d6qn3zySQskbMDEifGG7csvQ7t28ItfwHvvwU03eYhuC2qJg3WD3p9XkqT9YdM2yfZntUFJSQmbN2+ueV9cXMyOHTuCb8C99RZcdBGcdx4sXAi/+c3uz7p0gYMOCjJdq1VSUsK6detq3k+aNCkcz4skSWp1UnoS6MILISMjviXCmjUwZQocckjQqRT27TQkSUoQm7ZJtr+rDWoXsmPGjAm2sF23Ln7gwoAB8OyzkJkJY8bAyJHBZVIdtZ+PkSNHhvMvQpIkKeXVHlOfNWtWvWPrKTEJtGULjB8Pd9yx+9q3vgUffABz58LRRweZLiWUl5cnbRVraLfTkCQpgWzaJllKrzaIxaCwEHr3ht//Pv7+0kvh73+He+6BI48MOmGrkZ2dTXn1dhSSJEkBKCoqIjc3t+b9rbfeSvv27es9KCq0k2M7d8b3qM3Lg+Li+Ovjj3d/3qVLkOlapT2b+3vyYF1JUmth0zYAKbHaoD6RCHz0EVRUwDnnwGuvweOPQ48eQSeTJElSEhUVFTFt2rS99h+NRqNMmzat3sZtqCbHotH4IoTeveHmm+Hzz6FvX3jiCfja14LLJcaOHdvg56Fd4CJJUoLZtA1IaFcb1BaNwoMPwvvv7752553w3/8Nf/kLnHpqkOkkSZIUgMrKSkpLSxu8p7S0tN6tEkJhxQo46aT4dl8ffhhfTXv//fHzGoYO9RDdgE2ePDk1F7hIkpRgNm0DFKrVBrXFYvHG7EknwVVXwYQJuz/r3j1++JjFrCRJUqs0e/ZsotFog/dEo1Fmz56dtEzNkpsLq1fHDxW76y549914zdvIuRNKnj0XuAB8+umnNmwlSa2KTds0lp2dTSwW45NPPmn6b1q6FM49F4YMgZUr4dBD4eST441c6QBUP4+xWCxph1RIkqTEW7t2bULva3GrV8P06bvfd+kCCxbAe+9BURG0axdkOtVS+zCzPRe0hGaBiyRJSWLTthWoPZo2d+7c+kfV1qyJHyp22mmweDG0bQu33AJr18b3+XJlrSRJkoC8vLyE3tdiPv4YRo2C446L17WvvLL7s8GD4fDDg0wnSZLUIJu2aa6oqIhu3brVvJ84cWL9p/o+8gg8+WS8OTtiRHxMbNo0i1lJkiTVMWrUKDIa2UogIyODUaNGJS1THWVlMHEi5OXBnDnxcxoGD4bDDgsmj/YpOzub8vLyoGNIkhRKNm3TWGOn+v7yZz/bffHmm+Gyy+IHMzz4IHzjG8kPLEmSpEDUnsSaNWtWg4eIZWVlUVBQ0ODXKygoSPg4e6PTY5WVcM890KMH/PrXsGNHfIrs//4P/uu/oE+fhOaRJElqSTZt01Rjp/pGgHnz5lG5c2f8QocO8Oij0L9/8kJKkiQpcEVFReTm5ta8v/XWW+ufzKqlpKSEwsJC2rSp+9eJjIwMCgsLE35gVJOmx6LR+MFin34KPXvCU0/BkiVw9tkJzSJJkpQMNm0PUHNWJSRTY6f6xoBPgHnFxUnNpdTjAWKSJKWvxiazGmvcbt68ueZ9cXExO3bsaJGGbYMZb7klfqFdOygtjW+J8PbbcMklnsughLIuliQlk03bA7A/qxKSpamn9a767LMWz6IDU/sUXUmSpERpbDILoLS0tNGtEqqNGTOmRbZEaGx6bE7tjJdeCtddBwcdlNAckiRJyWbTdj8dyKqEZEiZU30lSZIUiMYms9hV286ePTtpmfbUlOmx8lgs0IySJEktwabtfkjEqoQW9eWX4T/VV83W2sexWvu/vyRJidbUyaym3tcSUiGjmseaTpKkprFpux9CuyphyxYYPx569yarsjKQU30lSZKUGlJhMisVMkqSJLUEm7b7IXQ/8a+oiB+6kJcHxcXw/vvw+ONJP9VXkiRJqSPUk1lffgk7doQ7oyRJUguyabsfQvMT/6oqeOQR6N0bbr4ZPv8c+vaFZ56Bq6+GJJ7qK0mSpNSSlZUVvsmsWAwWLIB+/WDy5HBmlCRJSgKbtvshFD/x/+ILyM+HK66Adevg6KPht7+FN9+EoUMhEqm5taVP9VUw3A9MkiQdqFBNZr34IgwaBD/4Abz7LsyfD5WV4cooSZKUJDZt90MofuLfrh306gUdO8Kdd8Lq1XDNNZCZ2XJ/piRJktJO4JNZK1fCv/0bnHUWvPoqtG8Pv/xl/PquejrwjJIkSUlmh28/VReI06dPp6qqquZ6RkYGBQUFCS8gIx98wEPAxNoXS0th1izIzU3onyVJkqTWJbDJrPvvh2uvjW+LkJEBP/0pTJwInTuHJ6OUQNXTcpIkNcaVtgcgKT/x37wZxo2j3UkncSUwufZnRx9tw1aSJEmp64ILoG3b+JYI77wDc+bU27BVaisvL3dLL0mSmsmVtgeoxX7iv2MHzJgBd90FZWVEgOeBUuB7ifkTJEmSpOT54gtuAXrXvta1K6xZA1//enC5Ukz1Ss3t27eTk5MTdBxJktRCXGkbRg8/DD17wm23QVkZDBjAF888w/8D3gg6myRJktQc0Sg88ADtBgxgGnAt0Gb58t2f27CVJEnai03bMFq9GjZsgGOOgUcegWXLqDr33KBTpZXqFQqOaUmSJLWQWAz+/Gc48US4+mra/POfrAOuBKpOPDHodJIkSaFm0zYEvrnnaoPCQpg5E1atguHDoY3/mSRJkpRCPvwQzjoLhg6Ft9+Gww6j4s476Q08DPFDxyRJkrRPdgMDFHn3XRYArwBZBQXx1QgAHTrADTfED2VQwri6VpIkKUlyc+G99+Dgg+HnP4f33uOrsWOpCDqXJElSirBpG4SNG+G662h36ql8H4gCVX37xg8fkyRJklJMZ+CgKVPi+9cCtG8Pjz4a3/aruBgOPTToiGknXRYkpMu/hyRJiWbTNpm2bYOJE6FHD5g7l0g0yjNAf6By9mywSJEkSVIq2bqVXwNrgKypU+ON2mrf/jZ06RJkOkmSpJRl0zaZ/vxn+PWv4ytqBw7ki2ef5WLgnaBzSZIkSc1RUQEzZtD+hBOYALQHogMHQs+eQSeTJElKCzZtW1IsBh98sPv9D38Iw4bBU0/BK69QdcYZQaaTJEmSmicWg/nzoU8fuOkmIp9/zt+B7wI7Fy2Cb34z6ISSJElpwaZtS1m8GAYOhEGDYPv2+LU2beCJJ+CSSyASCTqhJEmS1Hz33htfmNC5MxX33MMJwB/B+lYtpry83P1uJUmtjk3bRFu5EgYPhnPOgaVLobwcli0LOpUkSZK0f5Ytg61b47+ORGDaNJgyBdas4aurriIadD5JkqQ0ZNM2QboCWSNHwoknwsKFkJkJo0fDmjXxQxikPTR0Uu6BnqJb+/e4KkGSJO2XtWvhRz+C/Px4o7ba6afDL34B7dsHmU6SJCmtZQYdIB0cBfwDOGj+/PiFYcPiqw88iEGSJEmpZtMmKC2F//gP+Oqr+OrazZuDTiVJktSq2LRNgI+BPwGXnHEGGdOnw2mnBR1JkiRJapZsoABo379/fIsvgAsvhOLi+DSZJEmSksambYL8BBiycCHZOTlBR5EkSZKabSpwA8Qbtvn5cNddcO65QceSJElqlWzaJsgXeGKuJEmSUtc04Gyg50MPcfAVV1jb6oBUn9EgSZL2j01bSZIkSawH+gPll1xiw1ZNYmNWkqSW0yboAJIkSZIkSZKk3WzaSpIkSZIkSVKI2LSVJEmSJEmSpBCxaStJkiRJkiRJIWLTVpIkSZIkSZJCJDPoAGoaT2aVJEmSJEmSWgebtlIasskvSZIkSZKUutweQZIkSZIkSZJCxJW2kiRJklqck0CSJElNZ9M2QBaukiRJkiRJkvbk9giSJEmSJEmSFCKha9rOmTOH/v3707FjRzp27MigQYNYuHBh0LEkSZIkSZIkKSlC17Tt0qULxcXFLFu2jNdff51zzz2Xiy++mLfffjvoaJIkSZKkJKjeSi4Wi5GdnR10HEmSki50TduhQ4cyePBgevbsSa9evZgyZQo5OTksWbIk6GiSJElSo5wckyRJ0oEK9UFk0WiUJ598ku3btzNo0KB676moqKCioqLmfVlZWRITSpIkSXVVT4717NmTWCzGQw89xMUXX8wbb7zB8ccfH3Q8SZIkpYBQNm1XrlzJoEGD2LlzJzk5OTz99NP07du33nunTp3KHXfckfSMkiRJUn2GDh1a5/2UKVOYM2cOS5YssWkrSZKkJgnd9ggAvXv3ZsWKFbz66qtcf/31jBgxgnfeeafee8ePH8/WrVtrXuvXr096XkmSJKk+0WiUxx57rMHJMXZNj5WVldV5SZIkqfUK5UrbrKwsevToAcApp5zC0qVLufvuu5k7d+5e97Zt25a2bdsGkFKSJEmqX3Mmx0jh6bHqw6IkSZKUWKFcabunqqqqOvvWSpIkSWHWnMkxnB6TJEnSHkK30nb8+PFcdNFFfOMb32Dbtm08+uijLF68mOeeey7oaJIkSVKTNGdyDKfHJEmStIfQNW03bdrElVdeycaNGznkkEPo378/zz33HBdccEHQ0SRJkqT94uSYJEmSmiN0Tdvf/e53QUeQJEmS9puTY5IkSTpQoWvaSpIkSanMyTFJkiQdKJu2kiRJUgI5OSZJkqQDZdO2FcjOziYWiwUdQ5IkSZIkSVITtAk6gCRJkiRJkiRpN1faSpIkSa2ck1mSJEnhYtP2AFngSpIkSS3PuluSJLUmbo8gSZIkSZIkSSFi01aSJEmSJEmSQsSmrSRJkiRJkiSFiE1bSZIkSZIkSQoRm7aSJEmSJEmSFCI2bSVJkiRJkiQpRGzaSpIkSZIkSVKI2LSVJEmSJEmSpBCxaStJkiRJkiRJIWLTVpIkSZIkSZJCxKatJEmSJEmSJIWITVtJkiRJkiRJChGbtpIkSZIkSZIUIjZtJUmSJEmSJClEbNpKkiRJkiRJUojYtJUkSZIkSZKkELFpK0mSJEmSJEkhkhl0gESLxWIAlJWVBR1FkiRJLaRDhw5EIpGgY7QYa1pJkqT01lg9m3ZN223btgHQtWvXoKNIkiSphWzdupWOHTsGHaPFWNNKkiSlt8bq2Uis+sf4aaKqqooNGzak/eoLxZWVldG1a1fWr1+f1n9xU8N8DoTPgWrxWWgd0r3Ws6ZtXfy+JXwOtIvPgfA5aDVa3UrbNm3a0KVLl6BjKMk6duzoNzL5HAh8DlSLz4JSmTVt6+T3LeFzoF18DoTPQavnQWSSJEmSJEmSFCI2bSVJkiRJkiQpRGzaKqW1bduW22+/nbZt2wYdRQHyORA+B6rFZ0FSqvH7lvA50C4+B8LnQLuk3UFkkiRJkiRJkpTKXGkrSZIkSZIkSSFi01aSJEmSJEmSQsSmrSRJkiRJkiSFiE1bpbzi4mIikQjjxo0LOoqS7Fe/+hWRSKTOq0+fPkHHUgD++c9/8uMf/5gjjjiCdu3accIJJ/D6668HHUtJdMwxx+z1/SASiTB69Oigo0lSk1jTtk7Ws6rNmlbWtKotM+gA0oFYunQpc+fOpX///kFHUUCOP/54Fi1aVPM+M9Nva63Nv/71L04//XTOOeccFi5cSKdOnVi9ejWHHXZY0NGUREuXLiUajda8/9vf/sYFF1zAsGHDAs0lSU1hTdu6Wc8Ka1rtYk2r2vy/gVJWeXk5w4cPZ968eUyePDnoOApIZmYmRx11VNAxFKC77rqLrl278sADD9Rc6969e6CZlHydOnWq8764uJi8vDzOOuuswDJJUlNY08p6VljTahdrWtXm9ghKWaNHj2bIkCGcf/75QUdRgFavXs3RRx/Nsccey/Dhw/nwww+DjqQke+aZZ8jPz2fYsGEceeSRnHTSScybNy/oWApQZWUljzzyCFdffTWRSCToOJLUIGtaWc8Ka1rVw5pWNm2Vkh577DGWL1/O1KlTg46iAA0cOJAHH3yQZ599ljlz5vD+++9z5plnsm3btqCjKYnee+895syZQ8+ePXnuuee4/vrrGTt2LA899FDQ0RSQP/zhD2zZsoWf/OQnQUeRpAZZ08p6VtWsabUna1pFYrFYLOgQUnOsX7+e/Px8nn/++Zp9v84++2wGDBjAjBkzgo6nAG3ZsoVu3bpRWlrKNddcE3QcJUlWVhb5+fm8/PLLNdfGjh3L0qVLeeWVVwLNpmB85zvfISsriz/96U9BR5GkfbKmVX2sZ1sva1rtyZpWrrRVylm2bBmbNm3i5JNPJjMzk8zMTF544QVmzpxJZmZmnU271boceuih9OrVizVr1gQdRUnUuXNn+vbtW+facccd52hhK7Vu3ToWLVrEtddeG3QUSWqQNa3qYz3belnTqjZrWuFBZEpF5513HitXrqxz7aqrrqJPnz78/Oc/JyMjI7BsClZ5eTlr167liiuuCDqKkuj000/nH//4R51r7777Lt26dQssk4LzwAMPcOSRRzJkyJCgo0hSg6xpVR/r2dbLmla1WdMKm7ZKRR06dKBfv351rmVnZ3PEEUfsdV3p7ZZbbmHo0KF069aNDRs2cPvtt5ORkcFll10WdDQl0U033cS3vvUt7rzzTi699FJee+017rvvPu67776goynJqqqqeOCBBxgxYgSZmZY4ksLNmlZYz6oWa1pVs6ZVNf/rS0pZH330EZdddhmfffYZnTp14owzzmDJkiV06tQp6GhKolNPPZWnn36a8ePHM2nSJLp3786MGTMYPnx40NGUZIsWLeLDDz/k6quvDjqKJElNYj2rata0qmZNq2oeRCZJkiRJkiRJIeJBZJIkSZIkSZIUIjZtJUmSJEmSJClEbNpKkiRJkiRJUojYtJUkSZIkSZKkELFpK0mSJEmSJEkhYtNWkiRJkiRJkkLEpq0kSZIkSZIkhYhNW0mSJEmSJEkKEZu2kiRJkiRJkhQiNm0lKcV89dVXHHvssYwdO3avz6677jp69uzJ5s2bA8kmSZIkNcZ6VpIaZ9NWklJMZmYm48eP5/777+fzzz+vuT516lQWLFjAwoULyc3NDTSjJEmStC/Ws5LUOJu2kpSCRowYweGHH86sWbMAmD9/PpMnT+aZZ56hR48eQceTJEmSGmQ9K0kNyww6gCSp+bKysigqKmLSpEnk5+dz7bXXMn/+fAYNGhR0NEmSJKlR1rOS1LBILBaLBR1CktR8O3fupHv37mzatInp06czbty4oCNJkiRJTWY9K0n7ZtNWklLY5Zdfzvr16/nrX/8adBRJkiSp2axnJal+7mkrSSnsrbfeYuDAgUHHkCRJkvaL9awk1c+mrSSlqB07drBq1SpOOeWUoKNIkiRJzWY9K0n7ZtNWklLUm2++STQa5eSTTw46iiRJktRs1rOStG82bSUpRS1fvpycnBx69eoVdBRJkiSp2axnJWnfPIhMkiRJkiRJkkLElbaSJEmSJEmSFCI2bSVJkiRJkiQpRGzaSpIkSZIkSVKI2LSVJEmSJEmSpBCxaStJkiRJkiRJIWLTVpIkSZIkSZJCxKatJEmSJEmSJIWITVtJkiRJkiRJChGbtpIkSZIkSZIUIjZtJUmSJEmSJClEbNpKkiRJkiRJUojYtJUkSZIkSZKkEPn/Y2/NYxyqp4AAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Assuming PredictionTables and Y variables for each model are already calculated:\n", + "# Replace these with actual data (e.g., YModel1, PredictionTableModel1)\n", + "models = [\n", + " (\"Model 1\", YGenerosity, PredictionTable1),\n", + " (\"Model 2\", YPossitive, PredictionTable2),\n", + " (\"Model 3\", YAll, PredictionTable3),\n", + " (\"Model 4\", YScaleFewVariables, PredictionTable4),\n", + "]\n", + "\n", + "fig, axes = plt.subplots(2, 2, figsize=(14, 10))\n", + "axes = axes.ravel()\n", + "\n", + "for ax, (model_name, Y, PredictionTable) in zip(axes, models):\n", + " # Scatter plot of actual vs predicted values\n", + " ax.scatter(Y, PredictionTable[\"mean\"], color=\"k\")\n", + " \n", + " # Add error bars for prediction interval\n", + " yerr = PredictionTable[\"obs_ci_upper\"] - PredictionTable[\"mean\"]\n", + " ax.errorbar(Y, PredictionTable[\"mean\"], yerr=yerr, fmt=\"o\", color=\"k\")\n", + " \n", + " # Add identity line\n", + " ax.plot(\n", + " [Y.min(), Y.max()],\n", + " [Y.min(), Y.max()],\n", + " color=\"r\",\n", + " linestyle=\"--\",\n", + " )\n", + " \n", + " # Set labels and title\n", + " ax.set_xlabel(r\"$Y$\")\n", + " ax.set_ylabel(r\"$\\hat{Y}$\")\n", + " ax.set_title(model_name)\n", + " ax.spines[[\"right\", \"top\"]].set_visible(False)\n", + "\n", + "# Adjust layout\n", + "plt.tight_layout()\n", + "plt.show()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/fall-2024/math/mat-206/00030/MAT-206:00030 - Thanawin Pattanaphol.odt b/fall-2024/math/mat-206/00030/MAT-206:00030 - Thanawin Pattanaphol.odt new file mode 100644 index 0000000000000000000000000000000000000000..a2195839a8a8e219b322b16c62c02c1b612ecb40 GIT binary patch literal 216893 zcmdSBbx_YPa^E z?W(uZ^JaSb^pWR0=P)4u4g3=t2naL?NQjQNy3Q~Y90dpn$j1lx3dGvn+Stk6&RE~h z&dS_S-^tw8hQYV*3Q_*$kx!=+Sta4-pSa_N&f%xFkt=vG4Ozyu&s@W zxv8_mzsEQ-G3Xl_8e16ym$nWJ|Mx4g{+pG+hRz21|I;d*|7Mk)t(~*o$I|~{xBpH~ zI|o}+2V+Oa|9Qv%PEIFVTdV(h72$s)r@6Jhsj(x2khzn!zMbR$Anbp4NJl4qC+Ghc zqMBIQ>N^?#KUL|+0qyi{jII7lN@!^4e|`j<>i-z9z|7If-OAXJ-p$(T6xZB#r}fs; zH#mO?gHC=a#f!{^LLIGP(PdeZYw>3RA!eh)5grupV;x~j^8z4 z!R+!Qc|A=k@(_s3OCnpbWu^yc%%+*}Rt940Jv@Lm9$;jON1^3C#_wrHaBQvM8K>Eb zHWouno?5lg->ED~#F8Z$8f0#bAcLM46H#ajDL)TNUl4XZMoS?W7jRJ-x zq-oNjq(_w*m*yzG)JNzw%mf0(D3vWZ2eLQ^3pp)0Mpn{i7r8y2 zOo5;bNs`!?YuF}^`tQU;f8a{hWV5CM%;iHGiUKd#_6?qy#8EuPiBpJcqFyfy{juYT zlBnygqXRA3lXVJr6iGT}3#Jbw4gSPQCteamI_XoP`X7fHS}`k0R6~vYN@$gj*Ag{s z4jV~iFi1^7HxQVbi`oicQsCOr=U+xge9n;$LkNp@i4dyx6s3MhazCc3jN;{jlNa8A z`^=J}w%y)Hw`ay9X#n+AJEH5#$0%tqafCM}vMmAbcLg+`e{MxS@7Wl6ahrK!FbnVXKlU%eD94=j&MK?*G{@SQd2DGlAz z2E)z_Hl;{ApYWAt@--*LCU}L1{6%txST|n5{^FSg_}w{JXnpmF)hGT&m9%<}F?I_} z*A=c6l#fti4$}tBF8RqlIOUve_mRS*Y6a=Eq)#MYjY$mNV4;w z+!Z^}ihRTg!aL*eK)zmnd9iMJ^(t1ETD*RrILAmXJN+%JiI(7%p}92f;G?WCj)!*C zZ}PvgiD;07e_gS5(8LYi|4}&9@Y##UQi_h4-u9~mDIST@|1`nG5h?P!;_wUVy!{0a z-AkGuvBOV89V+q;>oN~9Ly)3z%nprA77f2P@)IUr7WhmN{<*W;& zBYH(z?K&{*f?pPqSC-_dbVkD-x=TzqJV5P#Y-V|Zx*=f*MHkB(#F`-rbEtwNJCOu{ zZs_u*k`IBUc)k-fXvwHm{E0gfKJdRf3sBaVI>KO1lT%gvOgczukgtn?VZc)Fci&>Y zR9_=~S=f=nVw8gAu@9gA4W zls)*9L!bx0>U<)$u~rMvl%2nP!A7QQ^o)w6kt2_R&nBP6JOBd&2{=hhe*DU`7GX#b zUbz3|7$*%W3Ra&fDfU*{{@T8MHK?Myh_+W*xy)@W>pg$mJ`iOkVJYf+2(yTT?%9Ra z_m;wLjw@l*V*L3ycw}lfsxnm4;OIEt0$Kur#LbLWWlW69$VJIM)ma#CxJ_DeDwja5 zb5Ykkw4mhii0^yWu#U-`_ZoeCg{2{OSmtPy+DwN8k%6l&<-e|i^i=a?8>Zqe84c1p2+BEhW(H)x3bTbZXS#elFUCH&bAYNh7 zGjfcCj(@l7ysqo)nIX-m#rVnZk5+~_g#bVavX0HG&L8$ zbZ^rcY@dt=mul;=e-(lo?{f?}?+^Gqo5|sBUANg^QO3$_Gat$;JM3V=(Ab@%j<orO-2chQ)8RY^J zl5CwjwlYQE439RT2~S>2Q%YgCc2?QJ4y`lel(4Hd{z@7L)6D(#ToC>U4+24Ev=_3L{^Z(8Dji?4C`Z*zB%6 zQ-{DBaAz3U3FJMJT8d15qd4>|vz2ixri$5;?S3iWH6;Z9^%%2&bYPzwP^2k1rlV0b zo%c=p9P)dQy8=6TW|O1If-%8BF_Ulvs=gjsY??pS=cG%Fs{$%!td&@G&%HY6%j|-Vx2jZs$iMBqHH)VH=pp8!qW8*g#aNr!mM3!! zqT>zx)|keSLvCf+u4elix?eOAi4MapYS1|G0%deqLW>oqaDp6%t(;t|1!jP#S2!q? z`8)1wT+gWlkA%j2qYgoZvLC&3wk4FCcdds?DO0tF3`LCx@wvpVroe{euZhyly--a# zg8SnZs`_U3Sn@aT-2gIE-SrUgh2_0&UOMxhYaCzGWsfs8{tZOSgJ%jy_r^kVt6VW9 zscdsbSpoiwGm{q06k7|8kum*iH+9Emy@?)4O#-@mg;eMWpPQf86QviLZFiY&W=Q815LHLRb=e))iA6f-+9IJb#nxZz7gOMj0; z4c|L&qA$Ihmx)$UE$y;w*+S^@zn~($qJS)k%$NRZM9?tDa8FOqkm8-{X`OZg-cBrS zsp|g}SOdqjX7h;cL2Ft%Y43c>5_K>Bxc^PKyk#aN$0y>YCo8S&F1g6O>`xi5=S*M%_Wg0tx%R{J-`!uY3Y&OQr4 zs~SJZIAWbE$|^m`FQt7Wa@BO)({jgFTz~uTR+P4#Rms6rZH#_oEcyu3dXwj}z-dtHTgfdASc6m;_; zp6U%ig+X~hfa{N%>%Zg5Z~#}f*0(V?F?MvKcQ7)UNSv?<{E8HG&J%1rxhTK@0pURT ztIZ;}mo-EUg5fFyWxYElQAMGs{BQ2;PPG{GMoeSosXpFlWc`o6?<|H?Uw%oLH677# zbZSzKvBOzSH55>~WnA;fb&~YWao9`14L8O> z!w^IZncwbu;c!lF!K%K#rqM;jN?@|k^eOJ3@rqDcyyioFjrV5L5TGC+f#Cm>`aT2d zGqkmF`lv^NT4PUpEn$VjrF%-LHYww~tM#|-o*$E~r6-pjF64K^tY_aHQUfI9`!mQ| zKP_3D&UFh{UwJ%}ae_QhD3XM$bgU_-mz!sj`Ca>7WDD26?#RX37x8XJA!l@^V}JH8 z*%~Ybm29>(dAEPpKb!Dre=a37$3h|8fShG8$l7(xCFgu8>pKZrdx}zj%v_?MnpxR% z=-FVnn-4Hq*?T?z_GXo{GvdWbBW~M36eb(Z=Den1lM4Fl&x`-&E59l;fvdZhLr9%Y zP3pEeZ&Ez-H{7xJr<=>jo&m;;#GpOOOM7M-tXyS81apiA=ADURFD-ZkGcOloEXEPU zykQTPYvzOi@<`gY;xJ^F%si}ymDQeNDp~5=jb`x;*utOOSvRvwURItqQCDl&_?}~O z7xFI;H+47++6L53)BYMal*O!^e1b7Q8VwotoJp6yOU2S=grf1V$STOPDWo3y#Qo(X z<(#xo5+{4~SigLjS^kZ^j2K~b_>He*D4c&ZJeH(KrxQB^L!Ar~;tfSS?ek>HaQ}~i z$f-a(nz>}_<2-otcmXTHywst@^=5;lnF!B`*IGd?STpuxt1N>hs zS!V`crz*`!zP{GRR;3!quLLNWU)IHutVBVkqf6)7K%BOzXCPi2(K2UE)7pwZ8cLQE zc>O9#x(9Wa$LmdvbK+nceb zj3sc!Wu?9W4f=Upcz4I$?=@`gl@hzc*77Rj`qJc%uaN9_cV3Wru9=W24##&^7Vy^&M4}i8W?5^*5zfwM2j++!t>6ITm@8i|`UfWE7gS;i?!f_~#a*uh zo^JnZuDNXS`^(EpkGZZ7U&ZoSFO`cg`C03i(z*qlN0OH{;c~s@+)JJ3E~mnoRp(*e zR89J+;*={sY6mrPiZ`uFr31XnYl*liF_{V@9#QON6UsGZ#7#&B^T8pl$tSQmLBD!E z6}oYSpFF`v;SE`SgLHROl$GnhZHU8#ROX%6?&&sc_{-GOU5D+^8_95xre0*XgTM2w z8`iJ&skG)R*yaDWE_YbsJPD*M!#L;P7a;48-Saz=YS4+6!&1Sj4A8$#GAxNS?IE}X zYi!O&zT8ba+UBeg<3ar;;5pbf#yB(Ns2l4RvlA6TF(Qp=d+Raic-z#5gDe-5PM>rC z>$)!BH$!UdLXEaL&92*g*z_+(h7uNGU*32YZGPA*Z-!mAH5xXPR)R#07KASx(h{tYBx6G5C6`P+&yS-vZ> zF?!+W2obZ%)RTLds02N9KjX{Pp#pZ8ywb12smLax3CM65@`7?-ma)C7`4LbI7ts>_^C0$Vh z==e9sm_4`dLXnUAI2T2!SL)o&Cl##KS2I)h@y49v3lsMK-2)j@RWt|O+|yh@evw4?9^$Kf$STSi_qPr>C9aXvM3h*$q1sX&(dn zoUDlLYCc&9zwq6hbX^m8{>pTh{7*;V{$^uNDXiXhmV?E~VQ1xwa%bQ+pk&~M%lPTkpO(j6ob0Sva$s|Rezh_#~p%DMI zHOKtL>D~JKAlVinjK7dC<@x1Q4%6V(d=(s2RfTnk{dD`fh^Xfq#t@?iGxN=S1oFf_ zS=p3ED5XKGmxMv%kYff(?rtdRi~&yX-%1Nk>a>p3oSy8qQq8CLs_gQe>Q}?6y+C+) zgj)!?PZwj%vpnM znZ-=$b|}a7M7cPBT^(9>8vnarZ56iidBk~0Uhv9x^8wV>>3CB$dc<-Yymdu8L>MXH zfm32CW%G5yH{~>pUuNcc$vra$NFYod$68)(tt#U zSCKrXRJ8%hj-pB5BvUe*7MlmHGrcrxMpjBe@{5O>pIjHC^JeOcWgo&lK+(Vtn&%RL4-J7C#Sy1d1)&2`; zi~Sj~WDPv8A~-&u5Xpba{W@8nXcA1RTv~gL`6_4w{@r!)9X4YbuQ5PS4F2?qPfWss8h#`RXQ|SiV-Fq?4cNFe2}gz&W90SW_$|bT5wp0)L#JZ-Df& z&|5!0^Cs3&9x?e@;1QUeOopIe)0cDZVKVI~>;qLn)&U$T1dUtCK(rWrJZAVi4!9+7 z(1T}u*+$;fiP#8`&n{HC6FD0aZ0smzhV-|D)0I^;@}=Es?jFYR1|1L!4AIj#nDUFe zs2P^rHy|VyQC6s6nJB4{gDBkKEAih~61^yP&2g&~#Ya$5L*UF_dG|cfq$OKGVt@z|Ew?juxd)9aS9=0KImpA6Aon?X-&{um zqnTorb=ylvUt7Wlfj*k0V|Iao7G6)%ktk}j6N)@NlVHbw`@Bib$W0}{+adhRJ2rm$ zuZ*-H5wRT{PWT?q5N}^pvR`6>b%3^|ETeeL%a9G4po>U`mtj?3bGE6Gl3h=h!TcqM z#!rp{d$6&9aw2I9%P`7-?PJOsd!50SQVkH2QMm^<7^S)}5?IdqnA8n<$d$<#{K+_% z+m#MW!7W1HcU={w_-ezIl)KoT_gEs5#LC%EQ#=>^g`4Akg$D@{VfN`1kEw;9PkmHt zGv^<~I!KgQvD0^Dej}Q@UK;6g4A+q2-k^E~M2>8Ieh5pB zD2n$PIv}i$L^e3MPl7H3okpuh(m3p1w3+zl3%|moo)BtJ6V2>C8;0c?Z+eEN0p$0^ zu*4s{F$<`C6XoMtP$vxs8hT7r25Xj~)Ighfn; zbn7Q)(AoAeF|BRb2rg+;5FiV%A`7C4gyxRjtHJ6+oLZ9b!jg8sMS=t}stX}sK(Hpi zkRbKA83~ggyxgA9XYgPxT0?ng%I|5N#t7hpOMxn}9g_LCgm^GWWl|OMWDvxD ze}&Fy!wJ4Orcz)cjSQbExP?(au*P!O?GLQXh5uqy)~w@`e7Ts|8{5d6Hrr`Clc#j#RYjUl`&cL7zrAwA1pE% z2A@1ptj2Jw4^hkp_WtZj8bs{|VT!-yEn+NVj7A+-Dq60rInwn**9sn;G-0H>%+*ae zcZK`afIo}tt8*)VdmLE*)Zz5|u4Guz@JDV%g+j8QtasaX-gTbuoL4nmsOYR_a0}(CrB9k;o0xY>hdKyy6MjI3THP2h78ku-;tq7 z6DRH7pVck-E+WEal#S$W-sOX(zjQSPF&-Fl`Q-hjQ1fk)l|$uqqmb7@21f>N@H60e zGa{X9z35Vy>wGc+f~-PV8lO+KXgnMoHJWZcF@DLo#9q>;Ze{uV5bDccGlFJnCkzH?+R zWpKt9Q1tDm{N?J$)u#VgLwWsJv&VBm+d+(d5?Iu9$`&m6e z(T}}Su%svkBPTa@mA0%iQh7C zF&RO^fe`8c64y6E+NObaMi8@3Jz6>8I_dC6z>hxYQ}F|$iHEW(I%(eLSGP}FATKvu z?xyased~NcN%rsoQXt9w{qh}2ixaGY+>>i{(YQT4!u}Pa#Au zSl&pqiByy~2GUrGFbyddO_w`=z_Yj25;tXo6RuC{kZJ?VJqq9K3&t|<%&9vl2aoyz zlYCA9tHO*<;wQt7=^@h(z}oyiJ6>SPRSqhKe4besKrCxO+$N; znK-YOss%W)k=z1#QR#${n7R`_&9K}HPsz-JLv4>Jz>j<`Tg zE7vIv>db|8;DzmYFItz|1eis$YBjCVCY7O{fjo?+%&XJIg*j7ntq zM>qSs@lhkx1zY8ywraKoQh)l5pj%<5KtZnXp93WESLg8(Immr|RVEzmEozx1e-7G6 zsE!_OO_dMdpzSxQ;(}KuEd!8D%Z@>8Oh;tYVk;Y4VMBF^qqZtMmFhOK`0lX#I#nQC9ou z!gr6F5ztR??kg2UHQn;L=Nq~aN$<^%xTnG)_5z|qc!f1;CC5c*k2ZS$?wQxa8jS@~C>P4=9!^H9u=1dKt>z%3 zuQM81rN)B%TnVmQ^eMLiVL%-cwAcBv`L}888cz+^H4L-ng0mZ&`zMU>I%X5K&~9q> zl$78bg$2{#;?fhEx7w3-zIHm-0y$q0-4Gi5EUduSDrdws@?{c!Y7({;x%RQc?dkYPY>v>(D$dFz%{6pxb)MdS_5B}1aAMC6) zLA(%OA|h>3Rr)Try*3w~9?D-8MCFnmb)I^{`#dF)_kUV&3dw}7x6kub9uq5Xzcr~! zRMr?5+oh>d_dE?sRorK0hax|mR_5SkUnKld(SbnAZ!hpiz4cd`Ij`66ix*IZdn5G9 zm&>T)hs!8)57eG)bU75XMPPrr=8f6`}%|7kTtlxx4*L#=m*1| zOoMx3y2g?)3y-oO9)2P;Ul~t#Tzq=2uVVQdN)khRe}a9nsVFoOAwcJJhC_o@^COA- zi~UYs>yeuFKxr&W7J=e}le$$DG$7+FG`L0S-VW|Xzr?nNmQW;0-;RX-R}_!`QdTn6 z|8J9o(qv}_-+-7Lc3XjF|0w<^Wp!?Z(N;_3IuK2RI?}8~1{Q5W^~ALHa?|WNkZdkpXXo>@?Ne zRSW79aJI^0Ed0V_S$ZX)U23(e^tdA#7E~$~B@MS`WDo&3)dd(^Aceu6Wyx>XW=zsl zqK2;dIEE_Q&Jk4SD5PRaUG*b>eM!eVaD~S=*gwa1IxL;BTB=8d2Sc1ehVWY|?bmvl@)!YC08vd22WmigTHn_M;S7d+JY*ksH* zbR;NWU!rHst!h?XhG<}soXEY6+1??H6^92Vgl;VH~U=q;&Lr7|9m3_L*ZZ_=yX2( zkDbnsMzN!@laslP>A%-1hBP-+alXO%^!Nscx<-DlNH#nLO_GZ22dzA~vtES%y0Dba z%iKWn{wibQ@A3FYao#OA$(TLeD1kwjX>91=Km?!1-+B5_uJ~6+;WX&s=%8XOfASgB z#6WEERI0Cb+8+rq`DmG>FL|%|;OCbZu70tWs?kvdl3qj&?G{0a)#ajK)qe}iB?TD> zD!My6aFX^^bCPFcbEQzvXDr%yvSl}9VmGk4=~XAErpC5bhN_0s_M*wSb=6xRU;q4( z?5hbPCzfQ#?o(wuwqHYn|hWSAsqNOFU<8WEDu2pdGN?UC8%!==$~Gcns&6|SFo z6EAOLdKnrnfmj@~g}v=;YK>5L0Tai%QQrMs-?wcg zVeh8W!KuDRjUp6QhhH;5E#w5j!BcbQQ{u(Wh*16UuxFx``rXgVoPJ-dL^%0bi(Z+i z+u*NdbSC82@P+jvHT$=gk~O&34;JBFXQ?G&opqTDI%QesFcQ^>uq24~Gusd$#lGMY zp8ekjh&oD08ws~Td7csG5967_s11=Pu#)xyp2NJLKdF&rh&`9p#ln^2h*{>Xb-Vsv zAUWNFf@H0#6FZ-)E8v?KBRH`x=`4C$NXkA*Ff?ab{*8+@Am zqP)(+I0B^75bpvjibvL}Xhi*5(1b{0pEzIA9V`}5#8ij{$-ky(40z9!qo3p>rF1x#o3%-fqbc7~4?>q@jnVc~h0p4A&c zCxOk1vqbkRem|fTW^Zr;({O7&Z)(9&ETSaCa?t)vTC1jB(_V#+e>mL59BKeJgQCG@ zY5*>L={*4&q{|e$rFDJ0`jiaIqLMOhgn%iBVSgf`XVf&FNyR#YI4x&Wr=^temGanB z*fw6DZEl>-OqtHhK*2=#mGr@@H|vB#h^o4%w5wi>k?a*DJ#h*~pJ0kJ*&%;)rU#B3 zelYH9M{Y#eFFJ57!(P^6=N!Mb;BmOeASaBUHPJ^X=IhH8Xcxvdm?@!kvv4Nbq+BEL ziAAtE&+*A+6mOGAXo3n8lKJX$LBC60j;L2-!xb2HFUeV1&rerWPBus1#x)A1?-^!@D!|g%6>dG4fuc%Z4spYjwngf(>Ho{CKHGa`cY>);SgR)PeTEf6wk|CoIjh{%r$oAH)gF@rZS_CK`z4=yUNs*J9@eMJ3x3?$geSXvL^l7 z0Zq!E)MPm~??Rm5*+X`i_XLlPm85jU)YMe;>0xL*v{+Ie)*nvjkCk4-E6rb>I2b3< z2)a&INkXsT=}RJG3TnzuEZ9&lcF94Fjpk=KGf}+P)6DT|#<8_8cSERfIcah=yZdrfnFeIjIGXafDDyQ4Wb2zg#2%X|4%^FHh^&Gm<5sCb zZf><25Fk0{k?L;oEU2N;9Nxd|)x_9P?r`9RqzQO~En>z`E>NHu&^y|>*U9VnnYY>M zIb)SNGvhzf;vLybTT%+EbYy7eGv~L8wS8X_3E~!Ngu!KktylGZEZ$o-fd2M2!YX39 z)7{zEi+b&Ynksl@@1dBgvA86Av(o3P|0USkP42RK{oH}GB#sRhbDNB8Iy_S4JaDG~6(7iLHKmLHipkv_!*raxf2^t$fDijgRJ z)r3}MK{T_No;#R!hp}`D|oq=Vw4I6^HK?IH8C?hQSaO8!)W z<*DXerd@z9gbTBo%GW=NW0TNo`c29_*1|@T6SKyRN3C;?ZH^Z2v=%SW04g^70O7>j zcjqeqR~GR)m<#jD#wE1_Qv5rY(InCD1l!vA%{OB7Vxv<~>nBt=X@t6(b3!h`C6(Wv!iDf%#gO281fx;u5%VU$yVKtoJxtR^Fa%op+vfSIxT9 z+Hapf$l@%A`Pl*#2uLLR|4tVF_qTQB*8C~u2|+Zm%aQn)YP?k4lpG0@`4d_Lf_1n zjoui9M)VV;$rFD{#~fUPP5(67=N2cwex5w9g$@8A`LBU)Fpl6C_Mg!Yc?~V{pHYPI z|Mj$pIdX`}dYOgQk$~T4)u66Yqlvl|6d4&gzRb;508KwloG3!9LZzx+jTR$v?|O-a!D`87 zwOFg$N3NTm~1X*i-`G zcr*@cL~Lx&fgBv)drIZ&-1SP(p;Ye?-xKp1YAyLLPA1b zUS4AlKqawH(j0HoxYqu$Pf1 zXc2|eJ}5$3I=Zz+^O?u%19t1>T^;+&*ZYkYjjEmDXw*{aEDi;vpovWOj&%qkZ`YTH z%WX?Rr1=_M-znaE=m5Ls>5ccd`+|akwGLM(*8w2JBogh~*f|{c$2a=|Guf;&GBV2b znZqfOls`gn{CkZ~*Ls&{jdsUffAD97&>i4>aT9U5xxTk^stc9sN?FsL?v4vi3q6dC zjN#$o+a2udZiNr+d3l?FZZt34iTIFO z90&}(mX-64^X_xtSp$gtR&(XaF&-gpd9 z+RzBXhVOfqW&5#i>CEF!EPq5S4gx+Gna}*3Lc_q;A)uMx?18`@PAI?bA!SRi>qZEk zcN674A}WX1(?Sy(86xZz5SKf1qS@(a+I*&D&2ftN?0g-FL4;7l%k811hkU@ zm=bVmkdIw(|=_%#mN8PObhHboeVAwI-jeT>^~0HSYhA-@&S$C^oh^9Fm=8BA>n@) zLREK8p8)xp5-m9?Y0-)eWN2uJ)nfK5H(rEV<%b5)uBtmx>gsBjE>;~|w_zI!fmBxT zV;BH1z}+pT2((=BE#^g};Z&*uh5{^WSh>joRYkb`XRU|SH%50RF6aIvs?-t|n{l!a z>ji`Tv%b){X>PtY_jo#ZD7fiV|JGM-A`%kVh=c@`$RUF|H2_$~V}eH!0R#Y+L|q>+ zda!uh^llB9Eh3$F2C}dF%~`mp0rI7%jS^XZcrOVoe1}WE@weSwkltE-4m*(7=S+O1 z-<)_c2RWYAKxogED}R%g&f;_|A%Zr65(N$*wKzorsK(4}7J6vNY#D7VWy{u=nHwh% z06Ej6>0%&KY?kWxfT+xI+YZ-gvH+lG@}xDa9}((>lw<%%X(A#<1cJS(y4&-bphU!= zgkF9rbjUIgey1xf?>mI=hYK}?en5Wge0w_Pb~*XVO$lg6vEKzA*qofx8TNiH)Ml;L zey5l!n_FBN1+=%SW&Pn2N@arc#-kuC{TYu{(Ddiew`Yeib#4em$=fCuu^X1)`B3nY*Z{h}m>f%lmc?&_D*4bNTi=}s`_rc;3|K43zsSOFAP%lYxikHN-`L_!iMVaqfT6D&dcpZ)Y! z*ns^=#X$fLcd;G$Lv`vT4KQ?=Q}1xPh(k4>p0>LI33%TwRQ}_oy!S)}A#JPWppxnB>B`p{=sw1LD01=BBe0yy@Ah=g|s{`y^aPbc|e?pWc z;cf*VG?>Qc`X1emr$5{%b-plJ%rUWk#4O1xBf!ucNIEOg`EaoU>_hY<^kr6a{m&Ey zd)uAO{(vF!!`P+qDmvXPg5HCWr6aDc1wg+k z3+->-s5rh?pGSz-XT#q_XlMYBxHzscfdbZwplOYhQovwfQ)-G9X zIjj7jN)j7hvVn_zrgn14V@b#p{{pSnjYp@kx#o(D8)-gM>&cG82KTESK&^t{wO4de z&V6Jsl&H+v-);B{kyjYzGzT52sAwq+o`PIV^#V2xODwcXcm>#7b_lI!#FJT^I}4>k ze+%+Y*(C0Y5n}%+PUeW7uVXQSiHaVsVt2Tb^1dqGN1zZpJN>f-va|aqRNEtx6C1_U zi9ap9n+wxITXtqK#ApGorWbDMg3B;C_2|^3@%x=G@GC3SM$cL@*g7MxB_;|mFfcxJ zGbRmfxkAJl>OYh}2M7O9foJFh;NeesGUzef#5o_}exjK_#z@nITxzDC`Qxvuku+7l z5l&GjQNGaC1tH`btEyXG>!p_Q%rij`OEoDo%5Sdo2Rr1?DqqakeJ|+_gtMPpo(E3( zak9%i%F6Ep_Oq{8k3*ZgNz_n?DQFlPv>4yCR)dYlYF!x;67`!h@G*c*F-=l_0!9#N z{n0g;ruo1a^^0paLk|4bc{VWK?4kk=ThE_)HbK7K%h7lPY+{7cf`Qb*g}X#fe5JYW zdcTbvdLomQ@y{xNOcLO4jR2AQml}0l&ITvg4VPJxQb+JO^juf~Q;WpM8;2!?S{Pyc zbNkK?JJ2bfKzi+3TS6epacz^T)D2yvMMR3U!(2Lqi_+I@Ubxaf5dF$vfxgi^5L3r* zCOnjI*dP4ifM35Z?L+*dK*Uq3PIQdzCDT7eFq1i~ZWI4fg}eQn^1~kH%O1mGBaG#I zo{e?`kn4Ly#qgaK!$UK{OncRf2B;$8_ zAwAe}Zt(7Nb8Kqykpe}=`F;%IqoYJbGFoB)s~XKYToI}?cd}i->Id{G{7VDh%kn@1 zp$eTXtyWyjrOwxZT&ZLTMAa2_#@L<0GVPx4`#{6g_Wj16PR{wN0rrhNU*8>EZKjW1 zKS6`dSBqZnyS+LO4(i?8d`L_JOWb}VhdrSl>!;Nj#?aGw({3sUM;OCu2^f*U3yE<* z>98WLUIhs6-}dlG@0)>(o!B56EyKT(4;TLc`C{~wfn-^0YpYl^j!CGnh(MAr^BeN@T#f zztqcOTd`@{+t-C(VhuR_MGJu!cIN~fW%sAsmE`vt8y9(pe_JOlbzlyJZ0$;(tR7|5 zg1QY^u(E&T*9e^er0d&-RGqgy1__zqi4aCZq;fjJ4~|gqLqR1(z2U1R1~s*Oh06Hb z>wnN_xy^zy$n_vHz)vPKE=R|DD#xXly*eBldmnNS_4#Ar;l=Gj>!ZndntufB&3P<1 zR94HH$%oUT2`yskiNNmhAy;ZP=Y7Lm^<=m^LAGk%HyJ4;_-JyV9c9S^soGNYWFz+J z_HsXSu@+QS*BT%%XteoSRzxHqY?%`W3rh2xLP3u-7ufPmzP=}mK>mx*@X+7rUYLlH z;{B&F2~5<$22)~aw-d(k+*mH>afAO;IcY+%1AFr^5(t#sj@E)$bOUS7`l&G-KHelFK_ z&0f+s@B5%AX#SO%Y|6)r_H7TY*<8{jNTO`u%S^RxpW;9FfcdO6K;5qfX4(#C+P0JL zf*FG5>koinTFpC$-+pXfFbj?WrVIrSW``=jaN-6?O6hUB7J1{;d5r)vIJo(IK7k-X z_>U*X3n5k7cG@FheS%i0@ZKJ5?p1FH{0IR{ykVij^PZ7BL9-Q%^G@(ch(M^FO+o2Q z6Bo57Jp%u*Fp~as=GN!4@`2C=&~8wAppx2~Db-~Gc-FMv1k}rrflk=WUef+O$qNuW z&c{U1ZkwPdYmo~&1Muu=_=z_EoFYuGVe9!kxV6<6G#kY9`R<=jpcTN4Nr`Aa4J72o z78HE*1u{F~doTOOW>w4Y`rDvPF`#V?XVtsUX+TaiSPxOKx4)Af{ z-z^sqK4WNQIE~;hwjx`vWZdP@^>o z1$Z#puoW9F4ff-y?tA}dhP=kvKW&b-n>Bvd%`4+EKZ*VY+hW*K1JvmXDJeKQdh0nK z9#0staGD5!(Ij1Ak7!fj$ps`?T+T_9OVXxPy5u{We=-93R3WL=4)j|J z5zS}QDX`wRS4uk3CJU2LV{+kR(piAh3l_^{vV9>Z2T175e?-!PsRTg)uNsoP-dL0oLwhUHb3+l<7q1%O>riF_Mc7+@fzrI^!5tj~cpbhu)=TD3l9HRe~ zWAm^8f}z`=_xOUCL38-8_;;C%2#bis(-9L3u0RcK@kB&MTF(B+x0FYwpLJcEE|!pm z^ed5x&xr{o6hn8E`kgGec`Z~24Aa|8cY|;XMZS=4hWNykX(NOu?17* zyA%=L^vvVFC|Du}7%W?*kC1*z=gXAhVHon^B63?BhZA%x|0G$!XckX@1Uk*r-Ki(g z=;`QTHU5=UAVndU!@|c#Lc+8_veOTK{!SP{TAY!uST!Fm9gy2`)%ox)H}-Az0Y_}I#4Igl z1&_(VR}Ew4irsYLy1u$1@O`AA?~PaX0ARf8tb@n8fxvw;iW0GWPt;-#n0wY!`muz)OQ zew-?}38_p_Ab*PFZg8O#(c^B=acXOkv8Z?}f<`);#tKWDDo-w#FMtTEQxWh5QO`TQ z#jhtzhM;WVa$pqWF=1gsgqf9z`anN<-;*4cy~{6MplQWspw94zIx5EJW*cJ)=r<mf|#=et+_JY2s76tCCYV)itV3&M|# zW5iK`zTpMb)!dAJy`$mXI$dbgT|28T?;0@Q^pTCY^9_5OK5=NYFKh4OVD z_qjiqKOI-O=pTj$98(k7%u=qpn~wiX>;kz91hVQbJWcK4=BD7wb*|YemUv7nIS&FH zco4aaG(1hgKL{0cBD4bu^FC!&qurB~tnzm>3H>N5bkdaMk3$K8=9k$VtZjGrm4nwq zz9rMh=UM!J$r#Pqzs3Jn0KC_IC;DOgv!@Ei`A36L!WZ~u`a^jZTYz8z<(sds*E5}1 zEE{)a*uUBdA{ez5o)XFgtazmb$m9*A1xRy6lBi>QV%L)l?cuRHto(uSUNF0;6&p&> zR5Zc|lcQsS1O7g*wU(Ic?oigtY4|E+|7pOWDWHHrgZT+o}Lc$c6mMTSQrTa z-?YE=lN3Ptt(%pU0$DLP7*_!Qp{1h0Ousz=c97m7nM~=Jkp9Fq8{GyI83%{@A%plX zWtESy@8Nxh$9+sj5~0%b`o9r%m0?wFYj?w@8z~Var4^(EX^`&jmKLPDQzYDiG)Q-s z(rJKnhje#$e{*~9eZKSSoaa35HP@VTy)njkhr~C_kzEii?p)y$GYp#ayClV_8GRyu=5~0utG7GdH|Hp%dI#tQ!1{2Q zQmWusgS9)6@m!Nup}|c|XXiHy)HfzCgoXV9y+QWM_VDsOpgIJ+cb=(sS=2~4Uwk2y zDTWdSJcU%^6(Z}`SwyeQd-E7LhW?3>5ESA7!L#k--0~d>qh9rDXSsnqjdH;Mhd4M7 zl#QpXt80F=oYP*|gKm#thXCN;((}g{9$4Yw-IN;xFHroDOcm1{6be0V9mgu{-zyXD zrzu(*8qNcF+b|E~o$Mq0Q1;Y*KqnyD*sE%W{fdl9dMxbegm`GYW`^LfjZeK51g}g~ z?M~KhzVgFRY!Htqt8{3#EWjHvD5gDzgB}3tjPdO0jY*B%spy)j;&ttrE*y5qOq>>t zk@|Og?7s!pNl7rYo|j;S#{A!6aQ6bP15WZ&D}9@M&v!BZ zrBlM?q+f^qTR&&)wVKuvo;%7mxpfbAjVk5XXn;S*J(UW=j;AIWBND_6Vi~y6c9|`? z_jmCQ;9mI1>xP*&b?>K|cu?wbJtTdCUGX}R;E-61e&5jwC6p3T6Cy%-NE2}B;hY2F zW@Wq7QSPE5xP+DS>_V!VcuWk3=c!m(I?A-+5aftml zVrrnG2)nWWIw`rZ;XP3J_kD`s`WNt6tH=c|Uw_8dmX)hRv%cx1@R&puvV@4x~c z)bBls>xrciF#50}T>h1O2*jB4{tKpc52#k?`aZkt9lP)<91(;O5Laq)s5p23hBoaN zgIqm_FpHuMqi|JV<>X-=L5Dw6rL>kXFArk;&Gc79B#YKO=B=%pGFVExMNO5gSh%#b z^kS8A1vZ|r6&?V1*ZYIU8_DYt9Jt`htw#Mh_9RQkCzYdPspJ z93$72@-!<0t9oXS!U)x1D=&+z4&g&!#LYq1{hh}e5jFd8{o`&C_;ry;Yznv&*^MBA zytE-~y}{wONqP#BevEy&sQ|zJA^nRNWq_Vp&H#bvm1&t2%(VNnP2KDxOh_T*FVwt5 zYb8H5N}E49H)0wATnSMdC>tUS0!iyn`SslBlVOYer;p)`#=C!D-E{o?de;S`TUh(o zifJN}D96XjD)`V-gn1}LA8lWk=~*RctyO9Zab_`j0~$oOw2c0xZZp=mDHNNn2}z>` zAa0kpQS>HcWh44OcyCRV9c(q>VA%b8i+bI7Hb2BLM1w$e$aqQW<454;{z;)mQhNWs z{FB@}q_KuI;^#VuO;20AmTCqMJ5UD{zq;rnhYG=a#R&Z%W%Kdkl>lC>A6^8(ped&j z%=lCBKP>>d4rj>XYp>J7y1KE8-p816P>3SpdAY&Lo?BnqpT=mFNO%iJqsEzO)8=>d zw#yJ5i--R)C>CS0o}Q_71NJnzt}fS?9S}jh+}z_oIf(-|fV{*$@PL=)(c@OO$%udxJq_u?SgOsZXcp3AJpJ1*5Os_h)+t z(wsM5zLh-FEE@?xY5&~wC#WAKl8(1S)dT+BFlKAxQq1D?p%z0wr3=cr?{=dE%^Gpy z<0o5RpKet%QDB4+{#ssMHd7qQk!q4Eyl_&vsmqmL8^)0HeOBaK_lGR}~F_E&;Ar z(<&ifDE)7Tck$GRZ~G$_)2V9nq;nM>=T?}naDa8AQL(e*lalg!;K772N;KX)COrE0 zn{WM*&k+d%krw@Gz+K5!{*shbc*9}$Dpkj`wzigQI<9gbU2FnNRFW?iQQ#~n%TQNW z7X+hU!hp~7K30$ivdD5^YbR;aT@7zG08oKyzJatjK2 z^R>$+hS>0~@9SIJ{8(}b zvDYIz`?vXI2|Y7iG9pL0GIoK3pil$dfvTveXc93R5#z-fUQ{|&km&iYuBOC-ad5!# z>S|=Xf0+FqQ4MqM)ZRHD!M%N08BfG= z4t0lC8TpR?-gN-0lE)_@0bMCC%sy0332*-TBUWrkNXWj3pwd?+Neb{wn^P0?yL>wT zK2;Z;PvjkYbzPu(AZmBZJp7{6%E=GVJ(?ObGqdje5G^GzRdf(gZr@dj3*p_UqtRS65df!gEq<4kRaY?nk&nygA2%N`dbJ+1tlRjQ+_z z^h8Aiz572ou>0M5=!BUABHv;y7Q~&{FJA;(^Mt--*)w2R=e*vyf9h)%~|r<$hNLL`YGF(mnB#0=paG13#CLv+kJ5 zfR=V>fN_;N7Wou%eddjgm`vfCXmxe<&oN1$B?!eNxhH?d2!5N?PRs--<=w zWB*a|Mwe=10eIS%CvLKvF*HWRgO;LT2w$Te9l^=gCsnq@k^pAHB_Nf*-t}7VOU7_! zcCBPUD|hEX&>s1<;|0oAZH}nuXdkli5zi2lxe2dJ&ss-(e9PQ2jTh+%v2LgCsH#4>X=Ea%frl~8vWr7-IqCs-eHJFMM5fzAK; z=HRR1rxijK#9gxv4|sSdEwfpR3~qnCcmcBZb7fl#@Jr$<)ZE;|a3bkw^Xn{R_VwW3(bdLsiFvYa*VB ztQIKX#|WS9y4^H;p7ecMRsu;<{W1FSM}~CB5H>GHE@HySNJYRvJLv)D?m}BzS6X<_ zDq<5R^}lGsAx*m|xTujS^m2aJ7?fcBKv+@QK<6VP^ReGzl!pQX2yX3dH=8 zm=jBL>g#z!W2g+2a^0bH?GFLM6Qx@iyPEooK%63=XjE$zb2KLs!nRf;y`b^ju$fmL z_g{zDvEicmr+*H27C8>#0WmD;DL~!0k_5fKUwUni6#?Ctl7a#^I|WAZ*x1+1VM2F%TIQg*8ox`4TdP(Y}SGjNyXJhj`AvKh#Y8;YXJJ zEsIw9n4>kdgc~vPN_I?23Uhke7X~Gq(H&Ky8Yrl8944U}2hF36zTN_d$S<)L+XuwO ze`|lYO+Hon@Pi#x6vxL-HOpCxG71V``Q6K1B1#!Lfi6cRp<Or3TdaL zG~D*Tx?HRI_4B9IrkTpZ<=iMG1(Vil)yy7fPSFG&wtbD(~I#$SzvN-?*4l&cjFLYP;%FqgJ$-jbA1OgKx3&3m=(95Hl5%u`e zpfFNA#$1K&fC|TC(WHI80M?aElp@B6rg|IbvZD=ZBfG(+IjPy9HP6;g9WMWS9|Kl2 zl+wc~0D4f;P|VBMcRWG6br$N4GP#TS`7-VcAJE z@>6Mx0NNpxNB$4@cP%Y>tpP1ATdJ^8qHR>qT9Er;qfr0!3LoMkfi6UyPy{W|2`=&pws_=q2XE0v%Lz+RtC9h8Yscs9SIm{$*v#kYFBUH}Anjx0xZG zgM(VRUzV5aEz_^at#EjECcCcBh~9u3PXOw1ow?#jGUbfqAZ8|}KX;XlWC9+Q2px=$ zd_YS%&gbSsw2Ado^BkIjdzo6w0RrjZiBTfrcd7gQLmvw+AP|K=E=@wSgd6;eCP7LXF<^gbBiKM7(yZ&@jO!O`(S-_X7&! ztw}u#25xSR2Eou9r&@EaT)RYpbO}&?d0}5$^?`2*p4K4D{vN*(&yQBX-M*Zf1*DO* zX-^!}h%hDwhQNF&*y-0nbkCk8J?*3eRU63E<&&HieTw+>BKBU)DbZ z*_b4(n}(f(Jw1Ft)w$zpVPWx7(*y#~Xwk2Qt84ThDqdlskCUstAJ_NHHlkjk+NNL|rK zS+L-D!|xFi(Ap5cI6R-xZkuEB9hw!6RJJ3S72UYx@ybSlmZ|gY)QY(rR*Gw-Ve19%dG@CfMT*lB!1WfL`jB zO^&c-o5gpTJq#I{vP4njI@f!3Zv)i=*(MXWMhhY<0LQUggVV;!!O3}d7kjXXAli2o( zT(ptZmo2euC5yWAwC8obF7r$)n2RHC)^qn;DJ_33LMa z+!Jn_IG_y$mo#4?^?YmegRd^03gbJ}T}W~BaZg^`K{J7j%uta%H4WkccJ~*MgC`^7 zS+uU7XEPEWpMffQWskI?RPcLsbF+ZG{na;e_dZdi?gg8@k0P_-_*T=8?3)8mT_#V$ z9xa9^Ub)I3bf^44;`gPORZy^-s?4f$AJ1r1Na0dxkjz+n7|xOM_K}+q6EzXgg21ug zdLGNeiJM?{PnkCdVGF(&bDy5_a8x6`uU>(hwYAN0BV|v#6@6rSjPCdwq?GS*l5S5B{lSabgjEs`0RU3c^g|^RBPjow>#} zs~c?4R#a0X|EG!!_eZ#;+6a*nOSIP3*3~H+e^nvXT>}(N4C+eHEn9)W6{Dsh-Gil$ zL)mjX;z~5bC*fhEFPS!Vvnn*G)1w^iH}BKms+)Jz?ajHeVe9yxCdy~Ub@tfOT7*r!5Lddt$nc>xY z@tN;El(E=Uk32A_97e`|11)e%f4);QG*nH?ivmcD)XY8Z6CQ{pwT^hxOL|_4r5Ro+ z^kenY@_rov((Aqy?h-)Kg7Sl$-Snp%Tg$Ul%m0A<9L3&`XlO{t@DkIa_U9ZgD>FE_lX+$(9dzJZCss=hDy*5>7^P69p*HukT&DTP{RC5QM)m%YS;sX&Q ztel2y@LOi4NI%D$jQ=i}3yg9|L=rD&0ExY@<8p{?I+I#Hp#~VG$cW(WkGSa>Y#E9ygtimbsj&j6w)K3V5kkNqc@*;Njfq}0I(Y;WekL;hlZgQkx34V#= z0;A^%$Y2cMOee9!vS_}PqpkKN{Bzl4&d~K6J;M)3i0YkRCJtveVg1(stjie_YnUEr?q@W?C+*?M{+|`Pk@DU@Z z7bY}+cMlG_wJZx(t$#=wXE)Rt?B}`-&4k)G(~E2tZ0<~p!o!hj?~$V+khSq zWFfdnHU=QQGC+s~wTCJ|p4zlNih1y`$77A7e7~b=F;tTB-oheZTNzjXC7;A(Ny0ZV zJIuGtucXou+S#d|)+1gLU!o3?UbgQRj$t;>x7Jq0b`l%_l|GP71$>eVqMj?zb!BwgqZLPy3LW7G#e0DBmK=(he+RPg6W_ zO^F$I5#(r5bK!Qe?ZQ{jCn3yR21FsP$Zf7n)%3IiOMySmB?bPGQ%`{lz#&T48@>|; ze1d&7FT#f9y4uy2v9hrATK;}k_~y?wOB@SjC>1Ex7;V(olZ+sSh<_m`5K04d0(=!Z z17^%ZYd>-_vK=ott3S%Jkvh-R_=NgVm=p-s%kM@pBNF2haZz!guiLo;PT2gDPbS+a zMjKz+7u34^cw;v!3LrZ&gYCc4ob;gH{M?e7kU*^Z6+c8`EoTT`xJtA#x7W05_}+BB zM^#q20#;Drw~vf73{C#tPTf@%Zr0ehm?b5UVp`pYJ3Hx#<2=IaCG!_f8&$?e_%aMJ1Z45{O(+@ zRL{~4Kp9IfJ~Nao&D?5h;280F~=2v zME-(Tec2?blpmNbSRrYO1*IK9ZBdMj7@aNc?-%Wic^#zI%q%C%NorY-e~}o)-II=e z(M+&WNj?|~9TZmrsE{)B<&n+j_;@-ueZIH9u|}J`uysI@sq*X*l6(e*^J@2CdrP}< zW;>i13-5>hh!G=!1fr>ms`y0QumAj5HP`e&W`&vt&4==zYPVA9zaq~)W-9B#5PX@R zAK;W-;CZqhSkXC?gr9GO{S!k9oK{3yNO5;RS2{eiOCQx&T^22J>}OtF^ykaUq`Y2 zqdFoE^ClxUV3vvk69_9VhS;5mCuoEyKa163P1lkAweU)_BPKc~d->#Vg&Jq(q{C zrX!VeGm6mAtc16T;~$pfdLDKI6#e4W6$r2LbVwRh*mxWq98shkqpfx`J)S4Ez7vAd z{>Z!(#cgm2%z@Nx%X?`8!Pl=}V|>H?*@OSLTn^=cZv-FyhGuuyNZzj1JB#4)@NtZF zkuDV(>Z=!I&wGG06a}mB`f}wg&{u?KF+@dln{GA|Nu1Djr2Lq6MN8(#Vhl#vDG8`- z^~^-63|Ec(uFRcjhb6NxA>6sJwO|$HC?IOPyS6)+KB?>VW<8W!bVWrZ#T_?-6H^zo z7_enCZ24IN!5$)2{diilAD-GFHSYO$I4rCoACmP(u`;ofLsV7qq^_}^r2W<~EDl6<~o5Menh?s`HgrDOGBh-#qSSgXcM!9~$LR6LvX>&b zB&)0t?+6)-+gzRdZPX;fI$}aLjmx(B^|a+Ef^QcU$F4}XpO>?fQ?vO|uzIt*Q9f5{ zes92dBnewOucK+9pmO~FkKJ9{AFc0WE^L!sR8&=$g;bWPo5PIqDlH~Fjsp+1Tg9wa zBkz{0Fasbnh)CHOhbV_nUqbMn6AK(m563b6F1^lAea~Sb0Rcl{^mm+}@2NDN0A+%A zEDaNrjLA5Vhb(b3^RdG+pDjl^-*fO5_yL?Yb@Q=yao&CV1PGuJ1|5Khekmh8eLk20WL}BeGqhKcSvZcY!&adZ zl=%&Y9PM~|6jAIyNETOC4z0+PR}yEGYL=Xet6t&5P{ovQae9REDqH4>_m9F^2AS#& zAiX_3gpyA#Jo|B1V<}|%S_BVY7j$Cvkg&q)Pyr&Ma>>W|z>M5lwJp4VL{s`2rHcO= z)T&anDOb2ckGf-}P6esV+BlrHd zwHV$rGo6Bio~MN`eLVgw{U|4W579LcDoCN^u)n}!_O~q4Eb-8|@Lb>Y^QO9Q|3ge8 zc+E`0_*LQBaf?TBX;V5_WxrJPy1cGNy`Otj?{Hpd)9&?tS0^pI`kHF$F?yznpB;&1 z%|3QED=f1*t~|dshkkgGhJVtsFKNkcd^@oycAY?uSVmqx>X+OPFwE|Bf9o0F8)G+I zsFIT#8Qa1#kF?qQ4da4S^vbZ`9E?h1=oMS+jbsPyCTjFQjb-vg>L(&GM;%*u6jyha z59w6kA(HjFcmdAoGIE*IJkum{b|o%du6hP@%R`FN{C`@2^ox?h=T0xWDtwYlpXBn4 zyvyv&iosCL88U3~vX*{RZ$vikgKChW+O3KZ{_&#<>tM-)Sc4J7`)oT8FTIoK_njH0 zz%Y4hHZv?!pZLsk0I43FMY%o2(ooi$a(57&atj&mSOI zSzr#!Auny>l=C7WQ&LgNQ>qswg%wx2l`3_Y0MfwOGW2?$ZNB)Wh z_^2QKrO*4!!&+r?_CAT`y)WsH!6cXZsBcx5K+qsF^?f=@HRr4LbB|?&vy1oIOCJuu zf47U*vj(3U3NLwW5APi3dsE0r*RG(~>0!c0HBEi}wAk3}y&9p9BsAQ({bJF(H-*Ri zo7ZuJdm5~%$Vo6wV0v57PSC%^QhbbtFkyo3@OIo^A3W{2XurxY?OMDn#uEv;P0Kij zf#pWg@wQs>L7?@$UTNuRX{8SGcV1yd`L1C` zKMAH5{xC1`-~DrKZN)u*y>SO(#!QKFI<5d^ znN#HKvg=j+k&%#M4K{N;uXDohb|;U6ZIeeHW!5E|k7`Ubsk5FwNtWvF>x*OkIV&Ir zaI4Nq&1=zhe4l|qfuQ#;%_@f_ar-s3Irmk?PV8?Qw~f{H3Ar?a#&6A3zcWBRJEwt! zx<6xFzM*>(4E=|GUDsl_1s~GiShOC{x-PQ6YD+gkp?#^I-hQ9H3a$v2W5akhT8W#k&HSz1^$;vQ0vj-_ocar-6QIDBN? z+S&?y{>r0m5&`2dLLD;+#|8f(oeMpcXXRwj@n-MvzLMckWqcNO9n0~_?*?7+Ng~;OesjGko^4rPz$jC_V>#c&8{u(gH&z`FT zNcSjpxy4+%76$o3t0_~V3P&KTA>Gc%do|Am;({;JVnZu-0ptInaEi% zuF#NA{N{K`;%S0JzdK&6{O5Px<_p|fiBnSA$ zwdAYp!$h4s+Iq%13H4D~O@*7Of^@H*3iDz@V|z@D7{(~!jVhQ7%o%VJn$*pptYvN{ z;|(?I0FERAt$D|I^%TgZ{F?lnoF)>-Q!vSrR z8f$WmMrEYa!a?$c=deYs5TQ`l2eh8xzAH0_2ej%zSuz8b=UtW$Xw3c+5aXKcLM^*E~wOk#flB z^3|&G2NC;&)&m+iaXha0k$8Tl)9J046w|Qd$4)8ys>gMZtpUAf7?bq&Z-lS;JC{p! zYU12eEXu#JWS|3?hl-5bfJc*(>gBK4gl}B4FNzL2=3Ax+qJpY+OO8WJ@w4XVSZgwjb zc7CCivBE9Q4qF^d*lH_WT*F5qDrih`Dd?g`Z`r$Y=%c+n^Dc9U9}?MF-j=p{JM4JBkGD%9A z{lCe)V?niXFlX7B3+ZfyyU-~ANn_OgBKsr9jKYO4`@Kh={1j0^%ODN@EK?RDFl!M& zIaWBo5JFE({6-kIdM52AY0Yw8sILX15Cm!&!tDYGFYt4)y~3d8M(in3$In+Xdg)%? z$x%~XJqt7b9L~dnu@S%?gA{)nv^d%SVOQ>%ZwY`|tCQnD%$=7|gw$op%(ew@_j+TT zbmP=@edb!t;lAD8nR)B4{g$F5 zWEs=Ncm`W!*I6l(zS_WQdthz8tv;O4OH8n;!vxZqslDxsN~cK(C|{3~rG{>?sB(`% z=8qZ%;XU^n&4Fz5>wlAZs_`u2rG_l-s-fuWJd)Px5wUWjnrNbIWzR<4CFY*9l9&Fc z!5K$b5z;g)VfQ#!-i=zBm%uEs!FUy4U>`wi#&){k_WGN%a1Ixtx4N6}#u2@CkDefo zJ@p!}cB!<_$h_Vqf@QAnKZ^s>hkC8f3+XhVh@}`Y1|CVLgG2H>-K=QK2pXddk*73N za!9~rD)TlnThFRn1VzAZDT78M9Z{266%hvgM6ZA( zVl}Jn&=gcO`@?Ts$^kaCz`(Un9V$)Hv2cxsQ4n!@r9%bw=wcPz#Iy`gq`4&ToJX_kJ4@RIZMCXF^f zUmbM-_NW?-|I(xLaUYpB`z5fIu}#^~D@hl(-g~>}G|n)ce&M0E91S+^hJHI<>Tsvo zNtk@QV#y}q`3N25Q^O04EP9S(wEf9*P$3x5oHDgbFfCAQR+IgriSRD^edn~~7x*G! z^&j`{%R)~t>E)^QFn8(>74*{t`%cwB&h*ge`EIDVVHL`@rg33~@Dmao_$Hu)5(!M2 zbq`FWNhvP~2X#^VLAQ+FG?;$9aS2_Zh1oZ#Z60+k+~X5sT#dlq4baBL$6qz;m{W9Y z+%CD=w+o1gaNg+kImBpI;=U9!N6-w?5Nd;ho1Iuky-T$j9+Y8i6`V z>d=jH<(}zC%NgJn`>9(sFINsY<+;BJn2|BQ!^&=6kZry9;;$sq##|M;t-QuLY2Kr| zNCtQ8g@@+^kK3+xhTevjl1JbIV>h2+f{<7YH(OkK+I-`?gfmoDArHrleLvB|dK!Bf zY$zxIzG?~Ke(3D8N!WEHO0mSL@D5cbK=4GePtAokDW406Oy=XCP@kqOSeHVSVq>m~MfmP_CSy^@2c?pA>={Bjc zRjB8K;qH|*S*Rrz29N!SdZJMs>O2KSH^&p3V_*~VYhTH6R=E5%EHnQAjM@4OP#RvK z^wA=5)%4^wEST&NWhn)!!}rYf4{bNA&;0y&f|P?@bsc74Pa)zhJqx7*j0b~4cvZ_k<6>_h6l z=A1XHy7LlRXx5m)N`?fSJ?2c<`L1+q4=gCcwjmeO;O-$u51 zR0GmGP0<9e1ZG&2B{frynuxOrT_&;3FeE+t_4hM3;nAh)G6YTmG(Cj?)kgu zA1?Vm&p=~3TLSBld-A=T1c$&C++UuXS!Y}z^WdMQXgg+BGT^>I0odhsh^e>1NDQyp zQ4;&x+_z;?!Hl!3RDb&Vo-;BInTYbcWxhcLe^C?@+X7lGL=*AwK5~C@Y4k{2YQ#F{ z@P%?)@~{snHO3<#zjti>ub4WCan*sh4@cAzgJc63hrMB&3ktYcAW2|#y*oobWE>() z!oKWYeixsd47|TWOG}@-4x&8IW?b^pJju=(+38=aeq6Fd}RP=79@(5ClSu z>EwJg^_JIT$noJ02o1yuvoEz_E=!YY*X?JJdrbAFjdW}y-!sTz4g0(CRWM2Ae!wJh zcL^um)Y7SWc(k%QBU84qmKa%C-vj#3LP|93m=?A;c{wjG&d3ayA-s~MZ}zb95|x5a zMeIPy<>8$fDE5HXh}$c+&jq`+#M+{L*AJ_}e)rK$@R0qGX^5aOJd*5v70{q*uuN(_ z2hvo&DnO;al2}@SYZKF@8ajgp!4rFZDX-%*vnp4lD6#8(Di7NG4cy+LC5drH5N^)P9%*|E3j7oY|llhG!>+b>A_|IPNhc! z&Vr=H9T>?Ou5Y9QTf|J$E31?BDZ`dmvIcqjOaE*dt7y}~c#j;=;VM}s-rsWU%# zUmh;SGixw^r;klY&@B8B^Q&ML(v$gtuUu5A{L*|uCp>4k@f59e z!GDq#R_J-MSvMaMJD;$eH|o662qZP9A_s}fCk^^=SE~3Iaz&q9huP6ApT;XQvnH10 z?h_&NlPe^>Txt)5`uP~NW5|}$Vo?ZO0t=(NnT$kBexFMRFz*5E{A?yluO{2>U4c~< znCP?}$&~?KW{8wT0Yu!fLh;O{Ix7uV)u*L#Z(k7v1Y~(aN=RQjnRR?bUpsLAb$sHq z%@0PwZ@tT!RttV)nfJz}rj8bku8sJP;L-_y-^{x-^<+zl%N=?aHxFi|SpBiYT7g`* z4OYxp$>>gz97R}PBdV9%V4n+J(3TkC$>;QH2VQYkF z2g?b-Qp$j<>A6WT3ih#cX*LeUSfz>0kjNMMtuZD8_pcFs0gEI6&dJ-`H~^35a6vsZ zoMwXVe3C&x%qMh3qJM%+wS{9{Yu5W`Snwk4c0IKr{{-?favfpO05}=SHkNG0Ujchg zVrEh>T9WnV1CVylERuI+`#B|8EjRqND-L4sI{al>UFfHda=M4KJ0)fQs zmhK=wR^b}g@g_xbDE2R?5tEdhH*!l=U~A5FpC7(HYh3vxqK+rfb883;RAjfW)m7aC zx+uI$r@9iaYW@Gj(uF2uGdf>Hyc{ak;T-&Zxb%ZXqj>c~_?*a>*NW-tUX4$ZlGN67Bnl-dN)XMx5kztWYBh- zE##~IX-)S|Pm0CMOs@EH2pLj|1};GayX>`gqpp{vs(u;>(Z+^OPR9Vgi~NM~Y4&7f zk@@<{o6x&+YmJacP_Sij{IA2l`m)nj#>1GB@Y)=?pe|cWZkgWM)LZ7!X^#$=7f2bu zCR}kBA`%;yT4FsqR#PzhUgksYOx{Bh4l;x|CO$qsJ>78E z0DQ4aKCIiRBL0YmLJx3#neW+a=k>T#br9%*&h&~0p4$&gkfxvA%-ENh%L!g)O2P(a zyoV*82-NpYq5!odCkF?{K9lY!6ZBxAGS2_cUgU3u63wG+%+m`m~~VE#;M+?v;`0?>)yV=yKz%F z%^@pSaqHffc3yZX+ftOoz(u7fec}46tWWY{P0ML?t#m}5kw%SZe0Bdgo#>AB|2xpT_G*127(23M5JfERo!vevOO$>vKJ@ zN$UgSBYDMIgD&)t%0e&@7c2Sjckdkh%ZQMPrsf2ol_OhNLRi~TOzJ;;xEO2$p0S~B z2_~8k?O&M_zg(aT*~k4&pMI!z5nw86<&qtFy>ZF@W}4Z&_0Y-eMCW`+yc)xj_~tRM z168DzI6c_u+=z&gTI=n<8p8L5A1GP<3#1^7!Jshyi(&P*wrETISLDZ!Ox8Vhz^{;l zE2lsqRda;PmD&a271|F$fo7k3c=9;DlDeAx!|G7bv$mAi)deQoqFV3HiAL0A8X961 zrMo_0-v~n3eZaw!u}Qtk;Kq%PC)(Rty!oBO{O&2{rOe?GgR!Vo z`MV;W=;!2Q9aR|YOGATEnQlCtFEwy(2>5-tX4}>WH0{j-o-!XSK)yuiA=r*6FQsOp zr43d^yp7~T#AA9N&ur-Xjb3S@(&SnYFOdb3`8+!(hfUyz5z9zo1T1)vE-x?dDKMd~ zF&I$k=n#P7lDFYr9Ci;3oZI%L3pN?+6fABWTBxOW)KcZP_Z5>?;0csa)~ZF@XG439<_>XgN%6_gZUYR zHGIH+PLD9Cj#ac38w$4ElmkoEujr6tQ10fr?fnIA-kYGp1ma%Z-M5MvLcX;S;nv2B zjtz;mjFC8JbqCK5%qOsM z`(OfWSwrhA)+ukdi*hnwp>gjO_+Y7&KpO_y;G1D7N(Hbm(8Srzd=~^b&F}{xh0x^B z0rJs%ud~b-Jj&`IPr+BIS@i=OY)`M-wbozY-A1@Q29|-ql2LRHO5OZbFSTKG`r!Or zzLX7*_%=+z5=dP11!GlbrVNVLL zN<2&I021WE2rL9{5Dnz7Kx6P+r+O8nV0&OSKKvmX*i3f=+s2!{N47%=WQ>}_fp^qi z2;Vmyf~(7(QPx%~b`Th|B-%cajYq}OUUVbjCvdvjQD~LNT<(RDz}=9lyJCMbL(JD& zpph5efvQ=bAR*sSu(_PfCWf*S<&2UC5Fzs#pxky``3+j27hYPnwzlJlw`UOvDZ36p zmXhU-Fu_*fW6{f(psJO^boX4tzf#}vIYE&Yu+U`x(r_|Y|N4Kzw+)&8kHnK2w+Q7+yIdi2u_GH41*00^Yk1TSWR1Png2Q>%4x z;{;u6`%U&I=zEw%$M8)8zr6n~zM!{TRIPraCLd6;+KkKIr!K19lL?D4c)nw9tPbm8 zH%C`~1foR!RI?7xY^G?i%WeJN@8hL9`A~%R={+#y;(f6X^!vc>Ko8hQPXOm}U^1WC z(&%3?hivkx{g60Q;~A!mqT)bzH)DO*tqGrp^3`Y%*SiF84WmcO5Xe4nRvgh9^8HD4 zA;%||U|?jLiK9cS9!e>V0T=tax+XrQSdMLcd%Rd*2TVT_v5eJMZD~Us+`wGKEO;?6 z8*%}46mW|yt=;hu!^bcA!T(9hTPpxnssXt!5U_WJ** zdkdf}*XUpLB}EVc6;wKv1|_9MxPj-_netCXYR~>X3v&^?|a`T*0Xx8pV0fFCDcnp+F(I)Q5VIsQB+d1$T!(LpuDnU zHsMk2v48*KMdqi$jEI;jRumcI_O#tR&JLbuq=Q^|OpIArv$_T;n}+$QT95GUtcOv0 znX{Tg_vRs`U*7H4&AIN{qw$dATiBRu+ z@Z7A-_~?NH7P}dgR!5k){%Q+5)oX4#8uWT{If6>LkXbJBiHn&(x6)?{;aqw4zEsJ> zc``lcjQS@{)eXT^e>%wD<9voFGw;7F#js#W+~6q?$$R^RQtiO)pT*<5jTc-t?~exR zJtaj5ZSKd>ab8i+R%tBht9G(J>*m~WH*W~P{IGF}OBlC%P+RAYT1J$-Nr9TUfS6w@)Ph>ysow> zd*cp~F)-T{`uVA|NqYPb^tH^jM*No%YJ!e(f4_dpTcVvE(UHW$cJrEM-q*I5vJ&01 zT=sOSf4iJDBHJCM)HEjGn~3i^Y~mPreQmkzA>46W5gOLlKt`n9k@Ipx)lNmX*WQoG zhsyaYW}zd$=18q&WaQ{l!DOu>2fy?)Cc;@Au^*qB-52lv z$3#$1e9AOTw8(?raWAg}va<0UelZQ^Tu4E&VA8wk{tOjeyt3v@?&bmn2-GRod?T~P zExa{-!WsGUP$5dbs5aBMYp|loajm^}v&mbHjw$b9mTmeQ&o8=#V2ckhiHqGcae(&9 zpXM@Mb%gU*nSf`glc8=u@BXGd3UW+P`h}EQ@dW7GGaI#bMJa z-JiM%sw?hR9!3hoVcE#euZYAoVKp+QEDe^DFa!x8&xjV`;?vrw&5F3qz{D(f^%f(K z#&`t_lPoa{HUleeM`tHD1&#WhJiKn^9}a$ti;H+YjHN!8z1*(LCdqsX6)k*s3G7Qy z+Yt%cr1|Ie)nE~VD*E?l+S0)GdfnV*e5%6sNZ-h7Eue-TJ)$bHo~lE-I0%_R2*nIx zJttfhK=p7lhX&SgSt*5GP?>U)R5noKnudjWkJ2EqgZN~tBQE_hgOhH2fB#@+@R9<& zEIW0;L{1Kbn!J3(ctNP>Fwe+hw_w>*UuLbn{8b#^tswNv{%QBYf!OTl2TgRKSn7L; zuNUITOPzh;3$(kpTj)l$yv|fks)KS5VCj@_K)uhv z-I+CoswzK7V9;jKQsT-f@rZ!$-(S#}aBVZzxDs5=^;f}4GkZEtS!L5tgTRpiq zaKJ`N^Mi9B>(dQ>emfLdVqeT$a8w!syIaxzACT-JPK9v8|XX z(IbN(?Mys8WxbRe9jDG4FWky@qK?U)wVF?hS&nD!*z4JN*Q5If0xKgqxdAp3SW3aa z{v?dlDSHbu;xUrw`Nx)}d>1Vm+V{o1*U?KU`O0m=@`loC4CyGJWtIxKs zbBF?hjvKedFl)V#^57f%pp2r7zJu!7IasCn$X>^`e>`|xuUCtLu_%fAMmb?@B<0F<=ZzRC1! z?DSz|%yxh_fP3I4t%a7F;AhKIP5TD<5#R>A*@<{*kPGMf`2|)?O==$&4N6~0dxcQ{ z{H>qGHvYmBr##7X_~h?OzkHc#*tqdg)}X?&wZMm6Q0}_yG5u&fBWV~-_T^PpaQ;Uj z+4KgV444U8p7v)6Hl0@=qq{%E$_FXlMn^Dpz^ZmOnV(_Vh8N_5pt7!^sd)T%!pU}R z>_P@x=GE7jI{TY~Sp(nA>WBO`n-axj4*y7lOcQn;Om6&6AhO6o!IOZ45Sl`B7s#<; z{XzWm=!NHIlp2R&y|&8{vd!J@1QNXfhkev+Y{`UbFv#MaB5lD_4BTvBfr3 zr4gSzXFK83FK;gOeG9JSn=lf=|I;ET^M0I7 zmdAW?cf?^S!#n7D6*d7S|)i07izr3&F*ADx4_e!lo?!hcsnh2!(TnzQ-eQ z70E@udjsqK4v;On?08+h*Zs^$^SRKz1`yHVu0i1?B-MD1?be@}Z5r^Hr{CoI5Rvvn z`xE=gC_Mh!>5UAiP5&tFg{Aru2NT2~b>&2D235vl#nf13!NT-}K?Jo%`0?T=k2NvxFbc z?zoI%T>E|WNO<8)lf+U0A*?I64qcfTFR?0H$<15s5w+$gKpHSt6a*JyGE=50qdI<% zKJ4yjlU#VWGs1NgWinci(n7k%GjJnr%d5rl9v)3Obg(t%?7DV`_-u+Jgw#9I$T5dp zAY{_(*}irE-F{Uq+`hOZ2OR-1wKrt%c+8(&OO<%6~N7H7~PRct+%%GxwC|ew|g17Lpo*V2XP(IsV{G z;Ge0Qc_W`L8_wG6gNfWAx_T9y@-zZz+sYm%Wd~!}Dsl<}IP#!Oei(myl~h1|L^o~ZNs!0y$eILoLIm+7xjMI`n8Y`( z|6YHhgB#zmT9}3=MW{!&I8X8*sWN?tq@DV(m5M7JFWs`gx&OPv%1#5u4BwCUTna&R z2+c7#N!m?Xa9dheUS9`S)dkA7$}^7vZv4VX4IldEBZ~DiuE2)Sp$QA=J z;Av4Bfb5=LHMTD8)g|e^JEYHF8H=`k@2hb(ALA~3n5AQ~Cw!}x`8Oud1;p@kIUo%?mK-S`>Dd84Q5BDJkZDp z458vnz{9!e5kJZ;^h(M)M(L?TJUUw4Xonxetx(2;z|AlIq;$)51hSSF|6 z8ZF2lN4@(V`VCcmV>f%6z?b-9ZYePR3n4IxxrjpM7Qu?(M`^boYx zDtZzt{CIbTtP5ZmA5fsZr>77tOs6k1OQZ5=6W*vv>6eAr3=+T(-rq#wp4va(tisb5 zlRSCjFJPT}m(2tujZ%COR^Z^&Cr49(p@3p!TfIB&TkrX&W!&WKCJ>9LpkuZc2ak2( z!M3H<-)gWf>{hi0J|VyUCEzmq{Y%ZYL9Il)^hzYEyvPB zC=^@KK*xlbrB<#w6J*WWzo#Cn*77_Ks}Oc6wW`(7ch4XYX?q*WM~e6U#zW*4xOIul z&Q7DfF?u@cD{WGqcs$a`BUQje0=OaU&RW{~+g1_U6w}IGJo*dDH9pz$!NT@lsb!wB zNFUG0{yyf>-Wr}dFVZjybMbpw&Er`Y%U8tdWF>W~R6Supi-=)Dwp^@`v+XA*s3h{= zM*JaOxjB=ouYVp;I$034tyVNaZ~6!=4!ao%dIGK(&%PrcBqEe`+|Z0-Umkr3(dnvR z;r3vfB19GthXp5c%j9p{O0YjPO-=aU9g4VVr%5fP2Ei>9cqv|>vy>JJfLBlJ>umYS z1(AKOWt;#UUM8zaA=J$fRabbI=)N}yD03D9#0a$^C?^G-f8XTZdG;Zk_S|ItI|bNr zc@O-HIbizQfxHw5&YRmAxrsBGmSd*FtUMN(bFGU0=!iriXe}QPCRJ>Yzl4yhu8oE7 z3_jGU)dAUAy`gz6>a*9CdkIR)8^#62vi>9|OjRmrT_A z_kx-q*(DX`_(wE9b?Lgo zW98dXu|J~;+n^<2TJaN5Bkzw-M$#`#_jyBkxY^g%f6QH~pXFS;X!<$W_E zraX&UsR&Goyz^RVOu$W%Nr!BbE#u%&S=P#f5$uyTI_FWOa7-9URYR|g@vWf`F-dUp-noNisfEQ z&{4wZ6FQzSkvlgpASzPe{fvXl?dDdqM7`O*HXP0X9xkvvH|n*9a!I+Q1f8lLJ-lh6 z5XZ~L$5-*A`X3$Sc#ApAPLBNE#!{s zw9T?YIovU>8v|hs1vor=Xww8;7BYR4G0#q{C%^5EF?|yJx?X~M!`e_&ZP5i0m z7srX>r_KNIq<~K+hbvc>sQN3zSwv3Zj)~GG@Io|C#TXR+zQ_Y9D6E2ZN!mS|IIA(hD@3lxYe3UYM<>S5q-313s zziU|~V8}RqP?DvC+zqYyCoVZ)TYG&T2Pmnl%0hQMPmlSFxQ?^_!fmDLP z(wN2WQkH;+uD)AX#gs7@DW2x_|8{F|zqcr&UAs?#Mw4Otdld~sQ#MNWD!oRwfdCRq=?pS@e)5lStEq{IB6X9J@v;)_{4FG-sJdfzR+injMz->d0dC$k<5^cYA z{Zeio*aX>(yQ?{>X@l8)qn^0@afU&7Xy?9p6PUK|ag`W7L>A?%6=E3@1YgdwF3I&2 zE}8~{nZ%o`p3@J=hsSZ?hX7m`tiRMUdusz&*JU6Avz+2@KkEk-aRZr|&(M(k00H#; zTjVVQ1?=Nzbj6@zcYsUX`&D!vUMqlGXWjv z+A>aY`cU3bR_L>BV_9oiEzhm*76p${Zg`w8#4MW8A%yo|R6DT<>)FjSg1i^mr!EQ+ zBSJ%_i5)PtdzOdH$2F}gR*ttfz+)X&n$QB;)n?LI|A1P{{;TIE@@oEW9Zo!6Nlhv4H6j$TaGP$Bh#oqO_^!F&SPc>rW`WEaN8tUU0Tht+^SL%+B;UQ zD43ulepe0)8n1MR8A`qD{q!vS8gWLbNIzhTEe|O!pd-|}VCs0r_6Imx#3kmH#&s-F!venJ8zJuz?0I$Es%v>Pv9V}3608KvZLkTF(zhXN1rDxS7y z=F!+)u~^jxukA;+-Sz6jR#AmkSSQ9IUBml9b>VG=4?Dqw(uYsv3|TRN+-!SC>ze0ixsa_oA~O{S(F-wt$N|Vw`fW)-o-Gx; zGX}C+cA`pELd<9@e$Ri@?Wz~?rZiULv+@`q~pKyb}_c`|!H~?xEd4Na? z;(%DDv+H`zL(!A;MB(QZWQru0673|7w}LRqEgEQnIp0XlAX01Lwd6KeKQ-zL4B`T; zVz1t)gn~yU;DV?0)OFnhyL+3&sdV&O*QN#{CI&37K@yt!Xu2qUe*Qe?nY5l`3`#Ef ziTropCs4QfmXZ5zh&iO>bK4@p>Id-oc24s{+6 z70KQ1erTRsZmp#j&a81a_7XyPAJ+9Ayj*4G2`(qQM;REIB?v;;^wY|HKc%or&KLXl zn%N{Q%yi#IqwodyO@w-u6OG{5a!HLsFw<&+KF7|)a$?yqQV(9!xi(_1Ts4CY zLGGe@&6YqprQwfk&XSl2aw$a={kU;$c--1zT5N5KBTli_b>J%+l3Zilr8ZR;evK>- z!h4%DRnzDY-b0c_(c8O#+k@)ju#$OlG*nYrcdWLwWXrFBx;NYjLNOIDH);jW+!*Lh z$9WZFC5Tck3Dp*zb3lYp6Vw3PoLd?-hvpOl>5HbqC#8uVv7cgrsgV3oZ6xD0-7!5m zt=23E@5;362G7YmLe>D)(V2ETBj~I7B*yuHw~81A+HYHl_R6zUT#FI&Vb+$`xDX6P zOvao>V{PIwl?S7&s_NL6I~zsJl9<{T9mo;NcNStflCr)GN5ch)agTrpl^=YH!$>g>x?lL1%p+M@ z-tTNo>`Hyd(&$L?4zy+h*I>1LxRS%tm8jTU61Gdy%vS|6FvKKaXWc$VX4Ie6&N_^g zg@wpvRXOsYtkhonL;Fck71qB6pE2m&s(j)pED;31mjQF7?qHs*%sitn&GOMBDw(c~ zhXlf3H^G%H_nV`iJ7<la(QK}FK>YDsm*hQbBkmcAJ(uM8FGhEd4^?Udny-IKop z8#ND0Oq{|_Ed+o#Y33o&_vZ2hvoO2l+E_+Q(Dt5Ijv+S*a5Lll5XhkVR{>&1+@f43 z9IAd@fv^>or@h09vA|{c`tJrbe2QFbd}e5Paoe3eLAOf%SQv|t)862Ia!d>*3Y8TS zJOfPF4Os+TO2u__u$UgJy~aJ94XVMr)f!5685S_1Uww3T-JJc4 z*xJ}qJIn5je-@x+KdcuLL=dT)*>sm~a3+JV96EFnoXXFwUZzyND~#4G`-K zB_Zs55e8SB%sSiI4jdNQjKaHv-+3%FQMo!|ZTv6Auin-)AKiMC^YNOniPGe$`A{~B zqsxLf6vBlbvu|(D_asqWzpmB)-yQcs_CSfJM-J0opeAYQo6SmSF)*YInj( zxm9dGuK{{^n2XG)vZ$p192pwXpg^k?QN~V~=7vyF(}S zj^FkhKxg~jvu( zE^WT~Lx;4pX0Py+T8vnMgZ+RHs)a*Z1HpMV!9JbG51roaZPoJ~xcxJvhd!2tw1+f$*1g z?R|C^T}_%>e)ARMEc~P}_rjT*Z~BNqz2{>sINyEHS`WB5pf;XV_vD+g+gb zsSn@Z5&{F5W$oUR)0>i~Op2ctgut-$Fq^_!bLEg@{%}nwgZ05li(tJ_%GARHy~c>O z{?q)04}$v{G2-pITP*5t+C;UVXOroy9a)qKZHC5^vuP*)nd1Qhq3R8zOIm@uGUAde7VmL*VdWcWmXQNWl$nc~@&Q&##Bilc#ZZ^>t^c z`LwKSQeMtMo)^7h><2CBfa$4kh!>90=a6E<7F^#VN(B>PPn^Vj){M;MQIp7of?SQ= z*`Vct*3S_#7gE~|m_7gXZ;R%`S|JdSuf=DBmVXK3b?iJU-j6);hdg28(!>l*?%g0m`x7~ zI=ddMc1fGlcPbB2A$0I7cKj7Uckh4;a;%vIABVpv2Ped4l*rx4#?c zo1(~pM7W{hU{R9PyW%EJF$71F`&RP}2R|G8X|Kdr;zjlBvcaT~P3bTfoXLfT7+69W z>?gl$V2I|%B=|9h3M?QtCp!ItWV4!a0Bzd(=r6=XYEP?DQ$NJ#Z`5Z6fO~S(VUfBT zlCYPe^tqp5qf`euaZkTuyVC=(y50XK821coXvLg!7}Ei%YR5-zl12!U?EjaS%}?%Y9H7=&slAv}%ojmNK!?Xi6a8+dXrUfjBLlB*MmS~L(6VK$xL z=XmnkO`qAhGTRJ@Te4LIFu`MCcz^x!<~>NeY|egGAy3 z(o{L}*MI-Y*5S#>f_i<;3T)KhK#lY39V{fh2it|6o+PZKzVmD4PvN$eWaXX;V9GgBI=KX zFBd}%oc#$_`lN^IY8_WqCaS9T4N(qr7-2yIK4m8>`rtN(GEP~@wj8)M;TVSs9wUfX zTgw-0JThS&&$DWJ9;hpTSy~6MrkK32JqmX~Lr~x;d zPP=n`Lgx#o^-&-TaACEF#Me!@A=K)97eZH%@01H2iy?9ekahA=?5J=V5|8D8*#U>L zvjj6C5XlZE+je|nb5M!s;b1g7@rg#A~zZ=kQGQ1uT!Fo{nXi!W9k$%n_OsiN{vDmk~fYaQkXe^B< z&&aaqypbRPDV{kwuyLw8SHY=C64kK_VD%KD9yKsa$qiwcI0#-Heg zJKJgqB{@$Jf~zworfQM4ISkIZ5KQKBvw?YNGYKt1pOl)aLbuZ(ky|`G4p6+**aIgX zI9pYr${V*{_joAJqMO|P_zn=S7^ZoD`gd^h)j_!n;N%_8_*0=^rGi9^AsQ#${iD{^ zY4ZU(;^oH6Lhww`WycgMBSOgUfgZ0h@aTBCgM*kj!=f;ZK1%)q!QCXFjPS7v>nU)U z+~hKT<*X3RLl6QAYo+aTS*5Ij8Jp-3jD7sG3U5v+PrqqfRQhApsf+N=d!@t=^wkOH zcO0Cb2iw#@2^NMPe$+bU3MYqV3rez8dpgfe@(d+W%jGnO$w5^_{^N>u$k-%d)duDr z7%F=D=xac@Yps}c z$y-u^yA5tN?+TMpoicDSd^aBOLUUQar;%fb3fO<-gs}Di*uG**D$+PL^~aJ?`h{!b zyUTg7fB`cUXi1jQnB!A29tHH@&0q0kou>(zGp8c^C830rHo$B zvla|B#aLA21NB|eKB`7#$VrQOk~@^AQTZ7zGm91~`~bs`>X2?RsWjfJrwlYvqZm z&!g{*&(}d+41b;c^o*2S26F4RjrCroFl+IGMi0Y_`l*MX8k9Edu4L(ZMy5~J?l$2G zERdtb5)7OxhjbslwS@t%JUPr`uafEbXg19H?;Zq*Q>1W@l|5Ad0L&T!O75=zZY&P( zH=g(|aQld!skVlM+i!P`eU^l1$-nEr2@8oCFQ~K|%8yyERu*)cUrP^wmmRmx*nF9= zg49SGegzXWq~SJvu(3N~c|^J6qilbq7Wj4kWl5Z&r#O3yzhy%D`EW({ulDgf^J zhbtjieN^|uOFe35X9rVX(?j(~E9Jukf&cj0J)$WpfZc^O9I#i~=-R)BrGMf7XD^Uz zET50)+)gVG_l7>Qg%1{|D8;J`<^IPv^}@!eW)@ZPZzPjh4}N6J)sTlYq1Sl-a^`70 zi9P8bb$Wag=@ZoqIoA4$@!8r|QmeD>T5V8Dn=43yF zB;76AySgSIK`&dE@*)B7-GYZ%-C#pJNM*WN$d9YppjwP`S%UL*JC$zig~nFCKHPtP zi5?=(`P#_SFFQNC9x4ShA4;TxyxA(_4oNe>BF74v7E7j%y^y)7Sc)FvLu_*`-z&|4 zWSjM$-TAMDe}-;_!}i$PK@(Q>OPO)0X>7vt4685CKTbrB(}25wO9xH5@t>D+cK83s z6Xc)jg6M|vzuD;IVi0LRUX()u#lU^qK4^e%iN$R>HfW!UvpWUOIFp`4XuO`S{b`mV zN_VS^Zz@{p+Dmp2GUG}3H#i&Y8L3nIgg9T9dpq>d!*t7y`9*RjJ_-Y5>d0^d!EU6Ho&_dXwI!bDxc<-@w?QY%C zIv3f+03&XK&QwbSEN+5)FL=Rb9L`zNz|tzDd3VNeJycUuFnOyBCf@ZYuTqw-5v@Ub zb`cyAw9^*iTNx>`=2bSz1;~)oJ;*I0<$duA$_`08F(mHBUij9>TZ|riK~rqILEy%S z*O_&L7aE{hSWVT{E>RO%!o;9t3su_y?JrPm-v(aN_CfP-&mj%138yJ{FnUgZLxQH= zyu!d+S{(?6h@KtvOxC)NgE#Gw7mnn11OFH{>gj5xlsBX)(40xwb@$gQrZO`#V=rIn z)2Xl$1|*G8kwa6E>Vl4|rr^K?l2q^yq7psbpMxCwL_X`pC6%xh zDDQ+y#Z5YB8!CW9n1Xuvcmu5|r8aIC#@q|wZuZ#G6_5&?S6F2Zc3omhDBpzr!1E}* zk6~d?1+*kkWsXp+0cku(J4??5_ zb<6nAY)hsu5*9G;J=Dv~3IAlEj{6knefsXo$i`ItSs+Vc07L~sLO`m0_7F1m%iIpOAlWeXGP(pKoW+Cj2Dlc(_qQ8x zqfLmy2mhzOfBeiq8-UapFSjHR*-wVEg4)l*@fv5l(=JG~&VVF1>}`q9P!1IDd3pdR z%1eP6paSIcrri5J{Np?CO{^mAMX!;ghU(;Wz(;Xe8uF!a*YDd1?G8TFtFq70Dw>3Y zgziKCWNcdrsDE{a_DMyxdt(cUu7!}Sj_SeOi5lD#%vYe7XmV}G5XrR5d3Lr4<3kgmi+4Wo|ofl%d zK(+J%#EpXzgeDfv@35?Xa<~f)pR?H@ z4k-4E1!pI6DGffu03zjh$@>B&D64;A1y5o3kYda+Y_a{P9+=4K4jcpINRHX#qC_<; zYZLs7UQKeT;wwxFWO1}=+UwPOL?GAJ8|upFiHuP{_E`M*EyGSk35PGp_rZCkJx zh=_3`jsBG1uY>GkW{upRfNlWCNd(#oVP%!m#woCUj>qMl zc3c3h11Ih=?R^1PcojnY&`uR4^owsLAaI3MKS{-)Iy@L zEAGj@=h@K|a20)-EIF5q^WLD4ag(LM5t%F}%6jmC8WCqZ8x223IK%W?drfHDQg5PSiqk*AS2@7w}ro=hy4Nk~+7PEO82ebHE% z#b1DPI9xz!jaYti zBlvKjqpmJ=ikq;a0@^!Gq3sghPN4cy=s&7t0N z`fH}y9|}xi;0dpRL)cwG8%isnHHYjnP!?2rfURBcylwo37fd#4O)D}5C5IS5;gH{obVGE%7^LndEcUM>BV2Mc&udHxDumaE}N zx3_ylH+oZiskXr7GOJx;X#+VYa8IBT6S~Dg>VflvxWA7RDzDIXP=vUM9)@7HxBrq!3D_jgD6s7ptZA-#J90} z>{{SsKDjc)l|2K+9UjiG9u-!La(vK)2(kuZ08$5fOxSpW0NAKnVeiSuM|^w_U~O8U zexO1V6oTb&LnJrW26G~yP#1bwoF>AB8hud?s3me+$AW-EdF+bUUGbt~{0wk|dp!P~n<&yFQM9k;vqT3cHFmD(AeQAj(e zLWp{)_0u|by{eyZEqa8uJ0V$}qjslX8CAb>cBo}&m}>HK4z#dgAQ;ea0p{Y@m_^aa z&VVv1Uw^apHefuAnj`_j)*;jgT29s+z!iq#(Q(v<3D_^@=RgkEDC9s)c^s`l1%xo< zD?yEO383;p=>$qkKeoP!Ag`V_mfz2ii(Ciw*~fL#b)y#5cwp=zH4aJ~-(qH72A)9$ z4OhvmYwp064Pvh{h4v!A$i90v056BLx(CT5f8m=SA6p%4HWRGC9(rzIUDquJeGQTd z>W|i|ArAv`J$sa$h zDwZyt%Q|XqPSK{bXB*uZX^b0Z-t~O9Wi^T38K_>qn3as4O466B&SqXl!a^Bmw z^?fXZ*$DL=u^%!xeo|NNeZ{CDw)A{ePSV2sYDMdJo#Z82nJc!%qf=B@zddzya)kdv zCjPD@Ss9y{P=%LocP<>bi4dUBwqWG6@T33p)Bo|0&zJdqTIUWx_ZOlJ?E~m>0NUiB z!_5s)*Ku9Ly}brI+OU+iYy840zW=#IwV?mWkAc)AcoH|y7fkzl;1=vfph(p>B4ES4|G572;69MO(mNu<;J`8Y=Tf{}1 zmtsRVK^+!`dk-Lt$8h_#^0oi8(S_z~e-d|8QdRAnnRDEjEco|jhF#BqWu9(D)$6+N z4xwI6tM)y65L<5!2MY@zl3#DaJQs9v2d2^$!zJyg1l1$ouee+e1;|iFT-!4l z@7P!rhUr~my%kbYGP1c@k6_)et*sShWlQ&v^FQ$Lgd(wVsPTH_MG}f?S>X*M`kp7C z#6X9EJ5YE8+EadNsv$HhaJdY`9-ttZ?@SIy0V;DMpjLrc1y@3w(z7EJ8try(Sz$_U z?lOnxfjlU2&~S(9)wDO1EP#B`MxAWfcQfsl1|J-Gm519n<;rk=Pvgm=-xnU>+)l7p zgQn=upJycM%fVDKGd|DX0mB5~^jcrSafRsv&7dw%y7smV%=F$n05^L?%%_~msG^|( z>Bt0d@6YzUb3JBvS5`S5eb6dqK1(f>Jg|RdC^K% zOu&HL8})pk9hqTVV@YYy<3}kt1~XjrTgCYJ4zgwm8wr4fO68(N&^9yL{CY)s8doxMK72{1HVd0)Kc|=bRB;-G}oheoQ=r1|1rGVo?g5{gbf$%AXU;b3#nTq51@hL}qT&T4g-5M{S*&Dy(#=l-o;QF_m zs^-8rJ(E;`72bC@;<~;>lE~XoVaK~R5$pQhC~g{dZ*XYl^yrQOqFI3Mb?2Eu$xUI@ z?Y^5q^PsnXwr<*|!|QdG=e;>V*pra5c=0v=QCnL>(`!@9mLaXV0p&k~4;P2K7Qrqbqjq!a;a(>i}8 zIB~iQh#X)d-$Gh?QxKa;XH!#7BmVPKy*VfTM6)uIQ~lmHpky< zQc`GuRs3i~8Wxh$iV3Z2(2&~+nEn{))0yg%yQ&=WhIy_d%n=X?P>ERijUT) z9aGH@GVn{yXt`Ar5aiqJO+>dj=?XLHY49dG5P+52J=EX6@n9&7lHiF8({CRhWS6Y%s;7TEvi#8f3iUP-qhpW7sXQ0sOx~GD&vJ*dftlmk2lg-TQFKgvr z*2c2}F3imul$h-i13_h)6jXYn2~qy~J(CvtK6dP`y9;(Pj+k0_Uo-AI6!iz*gRIV) znwo+FMWO!TVa+E`3hy({1aWY>a2M8GNpeH4u5DR5cK@PKvNaKe+&a=E62WjCOp?m8qrk|B- zqHu=1R$sY#0^)>%M)5(P3skY9hsPbr24TIUcq>Yzpk-hEXMb*Sgy8Z8z+0Sdgw{?r z4;G`iuu!BX!`>NrA)<%)ZiwhF|IPKHpH{5;As#1i9gVxc*14~>9_?OL4lB21Wn~={ z;R^@SqfKu?{}%E!2`7_e6f*KV z=ATGvl2qB>cfQAK+2nU|lk4Iq64a!#6Ev~j-%4VE%>UmD3rB7&qN1X*&LtVaWT5Tu z&rty~CLo%*E7>e0e7<*|-j*(A0*LZsnoUPuZth(T1>HD%$;NNNUzTnu#Q!*bmL&3{ z439v_3wGy5a^=4S+^gI8+m`s+wXZEFE?3`$hH@}6LbozBk(h8Fz~8jJi;G+AkXL`t zd%iL(Z0#7x5p~1N zn#Jv~5ca4Q5UjJI4h{|;zBosJpM4MC8xeMyetWyv?5Zxi{qnDk*|B*ksp4&b)K#U2 z^moOX36(%B+FSYdl88S+^AfP~>>Tg$U@|Mn!uA~AUEu7>s;!qJlO5E&y zkX_V@bsckvST^ow+g#}eYHQMiIy)6StzX+bxF(a-jFz62WwB4bZd>WN{*$SOor%fp z#fwYi5{S*-Xh2Z27uu_X=lPHQ<=Ou@rOv+&l*-`!_eg%~Hu8mD;HV2|^bJdZUZY`Q z-X=*c(o|3PZFWa+`1rOY#*Fzu4_K0#`4|-uadj1+$ZKHfgRnm+N@nAnGUOUin$(Xo z<#yF+3P1D$q9k&2qb{hZt|^$W$$0zk#V$NzdovS#)eEmV?qxi7I!-z>jENG}hqiX^!R7FBp#yA%vlx>DI z_M54o!RHgVPbbr(CUi9S5A51s2jaSCy4@|mz=hhw^iMYPxc#yXfIi@sm}Xl@sGgYw zJ@;^&W(Ut zv#O_P_Mcm;2>ak?Hehq`ds(zVH!%CBiQKnM%Fc75_$Hpn!k?gIM(iuyM!b`1T$n5} zuyM)Y;`_U9{F;R?M7ceL_9O|`P;!@C*b=$k0TCiu0GR(5{=PDM9$ znvj-C+>+B`?+XJi8$JUIi{`^!nqZyVI?qvu_F9T{F-W(^ILT#iHD|um3*WbC`BrZV z1`u6A!3|+j5HPosB#NGxi@L_!rlg7|F91rcPq@=Z8Fe&rXjA z?RwbI)x7?CrESz;h%!XYr)W5008bS2UyE#BcxW&}R#pAJCL(dxp-_GjreJs*G;MI^DE0_0uCq`z4>LW2uwq zq26?rJ~&FW@=Vy;64ihlyp7C^j3v%@|7kis@h`dxroqC(0?U+@#`8lx$D8Gr5Sxm2 zT~@c0mH{?Zl5Xd_X+p>Rmm@nb59J!zx@TT}(d~c%7f-O@ksXZ+L2`1#6WvSIdP6q8 zDY7Z4oD{JTxcX9@ZXBCVJde`V--#Wfrj_WX(wvQ1fv`Iyit{Rvhd5O z>kYifh*WhzME3V7mU&|HkmJ>89z2WTS68l(pxqRk!yw4ML~Gh_OzS5a@BI&@e7=Ft zM^*0k^QZ2gve-(W9tBadX|!9DcFO%sS*AiFAlU~3GWTS0kFM`q;7^B&^Ff-_m(@5c z^RtxFYhXlep8U1*qVhfTDSmzI&z1Yn-6BbwnQu0Zh>BX6aL$I>upcYX9^}!pZ}t)7 zvLQh%jEt}Nm&18r-z8FB$Ql^pDz|`@()grZpU*q%%9Zf=?meo*y_Q^!^^$Jf<=L5% zS*j3}LJ|Z!|KQFmYY({ahAxy|F;EXUr^_FoJXAAY$pp-^oq+MRj}(8_dJEhk?Vj|qjc-dr2hGLeMmi+QNIp7aNQ$chAf!$3K z3sesZC+hAt|JmeIn|YLIYZ0)Rkdyp;xfX;Pv#4psxZ+W$-WQvvy-5e_g70qnhS7l@ zsivl)?&onr%gG%qsmNssmd3@h$5*s_At2l`B2FM)RvDN&tT`hZ8cb1rH5!ZCW0yEn zk*j%Lk>sQqWy2Y1NI5J9lbiXcG>n71N|^R8&a`2?fV5t0%0wd9absKRw_bKDDlQobR&NlT#8P@ou*I4Hu(L$_eMG zx*5-zB@Y9`Oxeh^F>8`g#5BHQZlhE zMhth&(pdI?c?5--SZdxUz+&6ZTX8}{?UyJ4izQovJWz2<73 zW*HTvH|e_MP|^(qNV?v=O4M?TWwJVBEh7Cfb<6v;@xFS|(?czCp@5Q}Z+S(AYdY_4 zJl!cqf4^I6{^A9<9U+=PE0L1mTIoRO5ybXl!opsTK94$gLo^>)*qOF`51a>#Uw29> z%=`<9ShMBU(j$e%tMk`L*1iKoCJC)^6Oi6b!7I;pR^KWm*v!XhmtWHNc)L>M-(|cL zt^P@KisjiM9W)<6g>oS#^ZC)QP&tV{`pm>11-qf3vUhcKL{Q3No?dpt*G0(DbWTs5 zUX1!Yw&pSSd-~Z_d0yt(C>>E)#W_c`+F@ihY{vd+i$_X^M$LYiqsB`yj`L-z!*$Be zo@o9imZBQl#om)7w*#615OMdwlir%0+#?e$sB}1mNVQmQ0+De%EU_ zl~&tX?Rj5fXV|yT(zJn(m~UekPb%E^zMS%2L~LvS&zDVcFwaR?`8`Sr)YNDXYmF4h zpF$7f5nVe)a1z%{LEJ;Bbq*p@g=atDezB6I5@aD}h!^x+zrD%IN!W(9e2Fp&n{_PW zUcdI9jKpEk>m#$l_bsEZ1Kh3~5N+bW-`wgb9<>?KyTR9;jP{KdV-^Q^fZNep1q#!B zdm=S8wYha|vi9-9Cn8nW?U72aoq@p*+K(#n8Tma7*lbt`6)iFHe?&auV|ArZjc$<* z@PWL(fFf|TEPEWk#4aX|MyE$_l?wfKUEkoqc4zVFH1)G!w3mM1#CBTh{|$lq?E|ZG z2bDl*FxcTl7k*w$zjQPFm%Sr;A$IEiy?$Ha7>8!qp1TC)w>h&Qx^|13F+$lv*x2~^+a0~FfvqDaAL_9;dQ~j0u9=R@0H`Jg zZ3Rz(@lXBP1R{jdDdb^!9ni91N>eDz(O*!vRHJ#N(=dkIc@F7f28>z)joF85`5_%n5qhjSo%m#Xb12&*jZc z&Cw2*<~R7b8;N&axMydRX-n&$wO)Sh)cokC0Y1v!PJ|ZTH3Yas$DhfpzfL!T|EJD< zf9AsK_`<}7N~z^I?`!LeCRQkmcq41n&dtru(b2I@D?|&(Q_jFs*AQhbR#J#-JpO-NT+~Emvjh7OQ>{*fKt*(3l`EXAT1@0gwi1`-Sy4$ z-h03Q=Q+F9UVF|lNAz32{|}a6VOQO}k-Ai(@tI@Uk6jP@;x+q;5BJX`lrd=%;`l1c zR5Q+gbimjd8aQs>CO9Ep*6X>uadzC<&5l=+^!^mIL@>TQJWXap9>W2K%&i-+@BaAl z0F&4kiLrJ)$1mwv1%t$aaY;^nE?lr@@STbD!@Nr3E$Hq+I50r5G766wT!mX5Vmq0A z#?36AI5`!$aa&W_p_|=Lp9KQoHb;210h%Qr6F2wkW&ErEn#!$q3@kf;nP%e<7{6jQ z>;c>QayruF&Ug^omXB;oQqr$qzc`IM&BU1=e+`1S7gs5FHaF+Xm!79HdFg_f@jSsL z#z(1XX`Ettzor6%Taim11=jE+(9T6@A-(HME6xmQ*eu#h1_6N)vw}ROI^y>yQ^iEi z8eYNPplagfRrd}RjDrr6Nw5m%DxI{@;0aMT(+S-8nGpoR3T8eXG>K$JU&~+Q^@n0$ zZTl*~3jJ*saI#rJC_J?zw4=|!$=MD6{0W?${6cI6;@KX!35G;);8L1WQmQ7N--`0B z7J&FT{KucLuZexP%N6g^TscKVSZ4OvC~e)3`cv~{N(7(g=Jj?!4I&bub6|w3p{Yq+ zYW+T_HeE(uo~6L;m??V;AGKNwQ^U~k3sFl-vP5!X;wLJcHRRgLd;HO@CD&}cI8}%M z4by!2A)*r~DF}`v?u;(8_4h$w5xc&z5lx2y5Jr7hlEjzp(YVF}n`5T!zwMWSx`9pu zbh-W-^L7=G=W0FqL{CqzIX9{@7MRxE4Il4@UCbG8yteQ#KFlODD>qAd8?cGADISGx z3oXr_kcc{|3J2kG!k3|Tu$EBkXnhYH~80kIW46^b^W^ z2qqxv)#*2jlkX>+7L;aYb@8FS8K2s-^+C+J%rjesVW&zwJUlQMsEd;NbMoAJpg(-?EP7 zkANjs&QkcCmCqR5-NIxrUQG+pS;=}572PpviTFBX}$&Z*v~kju_^goJ-&Uf&P= zDx_ik+5F80!E;~^&}m>bkWw5o5{+g`3JZ^~>~e7Uyir9~_zGyd%HKbHc;GD#FXyZx zjJzw@)qmtE)E*gP3tqoGCz@lITFEZ0NeCTTBQv@Yr5H@zz{;^=$;X}$!Qsnau4LXA z@HbZK4*Flj%0<()2ZoE7i?z`oG--``p2Xzj9xjf>#YH?^+^?obloiM&Q7*og;0s@w zgWF-00c%y`Yy?!n8MI#wLiA0E32`$MegED%DO5$`B{TR;XR+JDg#%uYO zzj{gnxM1_Ww4V_wJS&b?OFpr9sHaimW7qot0sR&}(_;$c<4j(;WZ72zh8l-2K2zl| z?@(f~q4#_%YTe#Apz&bozj{yQ;X_|j4X>J&FJHbiFIJOo;k*c%)h);{15=}qH6X|3L0aX zKG2Lf6GqWTagyGUI5ywV`cFOZ4|ELjo^fYUoM(Zv9Ot3gbw+!bl8 z_yV2SO{40Z0*qOIyk9<2%Hx!{|Gj|kOS*=#&CxhC2Sw8U=fb8=)KTbA9SH~!;>{Ax zlhVBxr>nmOLmjFsD|K{qY{k?Zi1+!xsIn*H5o|$4#aGV`hLbSUE}QEkBe$qtw}s10 zEh;5*mUmzUp7bTx|hKrD~%#jPR<44R`ot1}W7Ex|?2_zc#&mh*Ef&B=Vl1|}v& zA8cC8R9a!{LT;OK=U7!xRL4nJgqAnm(3Fz-3suH5TQ_zo$QDSr9WDC2?=h zZCV!RLElSQWO*Fy$!hI}1PWYyMIYEsw*$8EeF?1oZ%KF z6APl2t50#h?3*}6ZqbZq9OxQQBj(l1p(DRKBQUJe_`_@vM&L=JG*$6&>x}>#>I%y3 z_YdsctQq|@4NOh5npBxWm}UYU?Co2dr~&Q3xw~Dv$kP0G<91lzn}W=6jMgpFW$F<1 zkl@wgLQrTYea#K}tHA6cT5=(QE8uX2QIumw*^g1STKrB|Tt++; znJ3?W0#(B*y58pPO}9FK!zRg_Fm6$ zEIOJ9p^z(U?+Bp@6Nmx@F3L z6M3HqLLZ?Ugax~3gY}y8mXg@Tx2(#ocI&m&Aoi`Ujc&^Iu2+tYzr-> zGC{32I+|uqa0{2TQw0*LtE)-o?9B7B-7pdG8^&#eRrhE{US8h(7Q=8^ghH-3izu=_ zVxfq9rF&R&ot~Z^$li%|E6dYTKm)h^*LVQ_8`LXo+Wl+dZE6&muItCU|B!rMr|ra^ zcbWN;%U3nK*V`#w(yreR0OYJ|qiuje%ZrhED1(FyN$^4;OpSl3$^` z;F`JuVmPzd!tv5#OJYHD843(AgQWMfufMt(&c#k<{RDd6Wh40^@~JSEu6oyZE03Va zI;+v*pk(E}OE1Pb=l*G|u-Yi}B%JQ&8M?-!FxWA;=j9oF?VW{0rM?2aynohc!Po+^ zgF9&VlhUGa#d~h9e)|rpA)1M}OJwM2)=x3GTN)a3`$ZWU8I*Mrq{Q(-U_rkrW2kf@ z+{RoeOObn`Z>CBGZ>{aCNjGwZ83%!}jksIn$gjw3-d!7zm_yJ!TGmUTq`zCTsH(2M zIUA6D@5TCfb9P{8$#-h+iz4dl5$yPMZ(R2yl)YjhvUb@5R^Tx?|2Ln2t=#ThfiZuT z`#Ev>ElFC?8yHC2d%h2TP!}~EU?TsT`0FsESUPeMl;r`;nU^Qqmj+R#e9Gp3_J0bj zj*Fuk-R#a*s2lM*CRwwlb6H+JbUYN$}o%m(7cP%^$RHC*eGnbc_;Vu{%8Oh_xJu-?QE<$dskAdYLlha@F=@Vad`Fm~`*V*r$r^_E| zX3mQp=GI zhg1FbO>~Xem5`xVY>-P|bH5b=!z+Pd&z)gj{b5Km78X?$IdGkD*L|JbDdYxmE1f3- zX`Y4leQ-&yvXO$80aMFtX*J=w?koooh#MvSNK$x|5my+r7spNPs95Aud8M9wPk!L< zR*kHUa_RGvgfT)W(3Sr+n`-*rL$-2$4|5;~83BC&G<777cCygdMQ@*fzN z2!YM7WZVEC%EHF_`nn69wY!^JC8cJqzoXNO8}$D7cNCj}(P(J$5;#RR{ko6-+f9#8 zlkdNKpePI_Du*6SXhHbe7gs{~IKmdqQJS9*h#Y?3cuwQsHr*puBX8`p(H>cPjHOD- zb`N~@t_8g*&-Uvwwc*RseJ-KEiu{-GpYMd90ldkjJ|^U$dH<0=n~T&A%MOc+M;!l) z$?3#%I{5CKlER;LE`HW6TXV|?8E9-_k#4cqy^N-NKX=&mhqp4&r$~PjAwNBi2Ea}4 z5qQyM;!E@xM|`&8DOL{21l_R0zs6(JwOC+4CSKXz_N8C75N4YbX zJY6rW(!V>?shM%}4KkrFeV9;rXWemW*E5uYm6bI&_8m;XZ#XzD#3d#!Z4>K9LqqBy zk~&ED#d@D~?W_gqpsb@q_OG-OnlLVI>4>SND12lmGlT=(aHYMTFKXp3eG^lk(iShNH(%iPyp=)$ZG^`+Xv`pTA z-!`9%0%qmsoJD3MZ|1lD-t%vs!t0+2d{9p2;~ZiH#!rx$gD)G`Kw=Trjq{1gTu(rEBhcGie2(fKhudr&Y+G?s8!zjvy>R2tbwoTB z*_rZe%PAk@wLhDfQ&#n(>_U7&7=)UR5y|M;)Ou{2He#N0mu0lP`|E&j<%Yb4&%YEG z6IO>vr!JWJQ-xq!^pIVgFvI8ttPBT^kJf*woV|C9EeNbjH;VnJhR#~4o<_t>26wIL zu$eyxOuJ&i7Mb5gzC+Q96A`}Iy94ryGar>}LCn&Z!y0dxHQEhqG2Z1xX5IMKgeHkD z`i4HX@7+)V-qr36-+h995xMMV*&@54@?9VXiz38aNsx|TwVy! z5`Hygy{JT`#IEFdJa_-{`IAm^vNhT^qtUPYanx`T@iWxa)KJmpH!0L$P1kzNUh=vS z&nc_4y`h>Y$C#W{dNjK7XI{6GYLpHf7k6Q+Z1I2J`my#dOxiK;E}C{I#^yE9Hu}78 zpbZPNb;g{-thRmbWpFA7o`?@9j%23khlg&oJumYMPnRyZj2OdS!zw zbre9Ql|MB#6=8ff$oMEb1_g~l-eqCo0jf5Ny8h{pf%K9n@PJqGEy^%jy=*M6uRkj) zwI-los`>9sy5LN_yy_|=1N)ucS}jPPz^-zisK$f$n@8tjEEw&&ZdJwc;Mh7tM#L5B z<*--8!Qp?CJE#+S-iffCsn;w~%YC(g$}Uf@c?==rU=N9GtJ5@hD5{;>+y`)8O@Hr? zZvPUIo{q5=Dt*=nHcN3?AN;u;`OP)|f6ErH%qO5Z3J8v-ro{or5^}rwJ6Ta?N6Pj{ znuVJ%5o}7=#91UHOr~gz#%MK{*EUb4 zg*4nkTI81&)<00V9vmK4xiV*YJ@A~o=X+wCBc?$`F;1eznfKg+;SmyJzOM{()z(uK zVOONn(*JBhz;^Y&I$Z&IGKk!Y4J!V^d@fD+nJM&+2f$xeP-01z|2a&DBmIOq{6=Re z4v>+aW&{i=te{MB6~rE{99NxS*G zU+u9eT#Rx848mIv<_K~$?@C}Fy)6$5GCzJn_{xz~u}obi<&H@x^G9g>c7kE0s*H;O zh0Gn$*Y7Zf!Q*Y%`C8ErK30X3zY-#R-%4iVwWBx0h0Ub$36fu)+txhi8o$C(vKPjOdj(6y{F+jI;Pm$NGcU+YU*MA**G7y3x4=+hb9M+9SbV4y-sFA3?3&;AV;^bY3Af%Jx7 zqA9cMo2AqDe(Kiw~T!Tmv9@nMu_dQ*M~ zQnU0as9ThwKb3zGu#8p*f)!j~L125vgh$6uK1myW(#Nd%e8hq}0RZ`-OF};f=O4is z{|mW+l=E?Y_44V;3XjS9{y|^|YLAt5_*D;0RqL{;)&~b#3s6cRWxwF~Gz)rUkW=u2 z1O^0Z?5w%E!&igog{GLBbhQ2C^vy?0a0^6`$nlC`Ii6jdhueP z-(0#?U_hLQZflI-V-}Z$YA)Hx;_fG^*yrZu%<;C$gD?e9Etbo_Jtj_~c>B{3d7`=tpdhPzH4#mfVRm0$L&aJM!z&~Kh$>}}> zdT2Rpl+9lIXI+o*q-+aA+4%mI^b#6Sv6V>gq^MLI&hg602t7qw+jDVgoeR&Iuq#kl2yZ5jE8*Z`znff^GR(jGiZ;(u16B-Um!)DNsB|#oAh)p zr(t0@`8SdTV;||WJTcf%qZYHeA36Lh_9Ymzdhww8ztAY zwHo4g{Y3xOVd3B`pe(Ni?KorKPtpSS*Mnm{Y<(KggB&Odz7rvlSrLJhXl7yODUPdJ zyAigs*;-^GqZN+CD@A#m9AC75L+@Wn(#Q)}SN$3r;yRz-&xe3ooOG*1J!8p(s*EX=!TxF%t%EUK|Q**Wo; zb;1lkk<#|^hUwAm-p`3IlJw*lNpq{Kg(fs)K@Zt64$S0b5F0U3%g=Esj1CIM@Hzdi zydibr0^&{x=QRMg7AL2zL{4qwhLe`PM?e`EP9uM;>xJMGd_`yzW%vUqrR6IUajoh0G;{X(N@gI zY(1~<18YID>}xrn43y$2)l;M|FBM^EkJ%l5F0I$Vto% zUF~U4-HHwBZZmhYSMz|sn%?YZkvwHA`|rYF>YTCh*m)5r>Ml}xl7texQzMI<1${Kp z)KDLv89^&@u7yUX#eeCIKz|pKS)q9);gS}Fik!L~ydRwHI-l9xPZQ4|$TQ23oR)A% z-dY_x4s;KcLYqAmy*(yM?j9>~_a<^1unv^&)5Gp*O;bQX0o@~!nq>E)4fq;|YJYU9 z-IgC(NIb~-;6$22r9=e?Rz7{$8_C1?XW7=T$~o#2DW5fMcTm)$z8`>m$>#B^5;J{$ z3NabV7hOc>iT;GvQG%9CTRygesD0xfmVz08d%idA-*P%oQm+0G1}J zPKHU+bSY`Vn=?cZ4?5zu^HbF?13Hr-20;TEJuY`XnQGjoyX>&OH(S;J1>uEG9Im2ozbjcO9yig61O^T)8#0fV%A8(hqoy7CIhzX$NV2Z z)}*o33)5M4yWP0ZjySPlfn?EaDq2RZ=3{lqvamKjqMvNMzGn%pLj39mtAb`g8AY=x`SZ|4i7pQ25<8z|fAWU=v)O^2< zvEWF#iAhX@uCc|xec3JY-L`0^+Vsm(!Y{`{X++4!&Aol~z~aI8OtqDZ)BP$+!+IA( zej3@ET`5k5&?Z{lkDqvWipj8?_nObkZR&XT8P-1(Q2KwGJdsvf5C|agx3T#k`w=G~ z8&asqOhFW@TvM!^elWv^hJ=U=*MAGTxR_P%Yly@@qbap&2_BT(P!}mmJ#5#IfB{qb z;6FdKz_8|`=HJmYu`m8jiF^D*n6u8IAWj_m7?L11C6dKAOpO%iT%!2We*SrSjWyj! z4p@A=teMM>XE8=H;*c)3S`POkc|}$-ubK0IYM%pURV*To#64vvOt+vvLEM3fa<6cY zw-O#O15E+#AG%#Gi|@7?DFU9nFP(5)cw3yj4+l8t^PyR-uf4N;j-+*haVI1@-ZHwh`^qnhXHGd>g^`=$KP~3Z}(+M zjg9>^K~U~c)mK-K4J)76;4v}0ZLCqIhch=&=6P0j?!XAj(Aw3!6S$+OGttcyYkE|a zA3$(SC4mk@3yiXPXQ(L4m?PtIhEYUOD}oZ;2UJ0+Egy}UW4zzRazP~j=~!qj92OvV z{L8;71xI%MJE>tF<#`$rwLA6O<`q>lu8L+kdL};kpYDO4FHWjH;M!khX}ZHanSodn z+p6$DBXj2&xxLSxpdhP`t`kNS!bp3h$@|Fhmo1`4Fg97GRTw9w7kF$8nO$pj8!Ta* z4_0R7Z?a}`c&bz1v+`720Htsk9>tmOMhT5jrQ^h4x#un&V*NKWhK`mN$(6$MAMlJd z-)Kkd0j8;-J!3hSMqUnIo<_$met; zD4Dl1+Tf(hYkw8w<~#czz7lC#aI+ccwSs{9*VHz1dVH>AI+Csa$fD6?KhLktfv#}` z#&G*IU26*W4&4CbYL=sw))*>XIE_dXnf0_?w4^pXb2Ur&c?5?zM@~D z>7b1Jo-o?p{fck$ZomZvnyQUq#8>ty1;=yv8+cC#U&*xjR_GE=$38M*fJ>D@7YIXM(7<WwAx3vj3US?5;G;@65&hZGm{ zyBe4bf`TNoH~r_B4UZ#$U5pzvfPIeC)?2h;Zuc?#+IG%q=n6P_7SI-qA+l9D_~UD? z5<82Vk!^Vf!vZ$e4Z1f|B3+@i)#@|tz8ws16gOz4P3fSC`=Tr2O;*xG*RpFDLSK|w+RjfZpp|n@}+QDc{cXxWaTas{L;C>iHOMx(9K}r4gQWQEN=an%|s%m zND}WVBEirXiAQPN%~u4B%{$;zom&;uvjJfvNzv5H`$c@(h_PZ58rgd5jMO-e!Iz|} zd8r%yhs^xBTQ}`o@Lj$$X1-y6=eTJx#fx)NYc1F-)%)!ZN10Mh$1}u#GX9I$QXplAhX5yad#wc;Q|Oy#U;c4gFU;cj;q|n&vo*x{KyxBldA+9D z&^-TSfA%_N`+Hlhs|Ll@cyil(T!9LZ8!&!dC<|{E%inBWLm|dVG@?1VoH(9cJlg>3 z^vNo7{)dGYEPyZE+}^7F41N;_Kr^uG-i=F+luy5pDS~zq8nQb8`MvZ7_fJ4U zzt4x$Anj_v{bBWDe}G=d@iCwg%;IY0ER3Y4-twypc!5RRMXcukEH9F8^P)aMAOwQA z!`}O!p(&4O0Tq;K=z$VrQ1HNg`FW)G0eY)VTzOg+13P=?vt_`G;Rd#MG7FG)bckFY zbj1w6?p+3g<6AXMott8*$#Ji2$61NwSoY4P-T}-A8~yC_5!K-ku#@7teLE9;nCw1g zzWkf^6bW~MP0#9VQvf)XFiYu_Q-)#HMMdG>6nXsG?cc(^oc(R!Sh}F81d5UKvZ`vL z#ARjCMUo`}$8G1GR2o)|8QcEcK{LmcymELGk-$zJm6eQ4&{wW`GIQ#|EVQ`faQ3Wb z;n|#ThSv&Y2z*q)cItJZt`#025>1GcT1enw`vzVgS7d<=vl4E|)tl zH+C8a_7NxcV;rN@wsa3Cz%!$oVl*gSSvr*zV^>?oFQbC=?E>7<{QP>F#H1uaA)$xv zY6(GDflksGF0VZgz7!6YWY3^s5E(YHGwrcTQx8;)n{t2m->Mo1>P5BVCr5$p@{RV;CoRI3~Sd4{8^{v^Cj;}q`#rNwKzXQ-g>I20umh%jG_)Z+Frq%#rTPmDn}ABLJ&JL} zJ-f=$8_n^|2=fX-GK#0D(?Pg7_kV8KKV&o+x)2d&&<0?esmqMQtPCaA@mi{}^Xa|A zM!r!BY5N(^g+~mW0;F=`bBE*caf9heNhpb^O3LwsKYf&uW-&>Zs)y>D@nQHdPOY8i zAdaW9Jx8Z;AX`WOm5{6uI%(To{cP59?mDnN3@?n^@H8m&| zbGo!v7Yct}1q=yO#9zJ+<_aA3)ol`st94@)r+ahj^|L0YG~tqeCq{&?kl^>>aSOP| zyj&fWITI$}QeY(sEg`Blh&k|p;ieR|WXpqsz+U|M5-QIWh0qDxwH*tQOwN_8cNi=P zSECv(3gguIfh_?O&6lAOsQalCU|xhmE9pD28npV*xAk*LNo-8~NrM`^kOSAUH_6D* zU$`244>=Ld;0H@Vv)V2&IFkDwA${txx-HCnNdbcT!)y1L*w|;z&PP{yzy!o)hd1O@ zTt>3=+qYTeJAXExdykc*L>pY*(mxVDOv}r=__Kd1mUwyOo3*)(yWqMu`}^ET=Sp3A zzB1x!VDj8-{_=*-RROU9*+;Boy2x~#z;v3jGqJC1O`>ZAtQS%;*du6bEih9*zqs{~ z6TiH!&VW%u!y?P2m3RJQws=yKQ>K^?;zlW9ExL&3PEOAklx?G?JyofR5#KC)vk|n9 zBa>58Jm=?JzOT=&MZ@?cu-BUkQFxhr^yiz}sMY-B%(JfD-{OMDv$?j;t)XEosmtIL{VY&cu>#n%*Ac0tVhub{u7!+M<#VzI8zD8lhu+9O?kj>k~Se?-dOgUDSx zsV_GsJ+D;@gf~~ed(r$Ni7ZNu=*l>lLOhl;)U~u%P>pW_!j1?Wnm%Ai)Ec*6w9soP z&pq&0=Z!D3xt(#gsBKYx{I+;BAH?qbA3h8-Oa(#T}*|9jJ|EuB7|GR+e zz;KswdyQjCl}ZfCY3j3Q2wFA)GE0s`j;KOx$oD-scHQ<=B>KaCdBW`G&JT&BUYJ5g z8%{L@2>%@^ox^&r^!))<`E@9&F$b-#rIy*`U~bPysP~7T!b@ z6i4Y}7Yf=cyc*==j;)WKLR^zz!bU!j#si>RJPKD=oXqW&&fE>*hJjiv?9jL=8EI(~xf-M(s*vLhPSo@p6 zqX#Ny)5m=nCOi=4H*U;NDG10HVd_FRP$PXKCPIO8x7kckR8cF}>JK9~N}FaRp2~mVjVE z?lwGrotGh6tFbvkGrQT>a{z$7dfBO=!jC5{llQB_7{8c_;gXC2(*}Js*q<*9eE1C+KmW!Ll4TBE1?%X-Q75;wgzTq z16Yok{KYbiaG<Zk(D_fI-d0X;+uD0abdsOE;_MkpT-EwFFNS5OTdb znV9l&uzT?(w@+{fF5+}Z(G}XtJLBX?7@vPQFruEEi16BHSla3AutuXm^ueTA(r@&V zS%(vJFY6+9O4zuik3yJ$JDvCP^86SMrtP_L8#wtFz96{_LM!tY94qdKAU^Xwg^9Yg zBFxGp%~WBnXn6j`V)*x#l5Dv+sAsz;l=SUjj>mA>lgHo4F3;wJuw2A5cKLT)ImV;N zAH^{2y+R%!e0z(mxboiSM3D3J&cu_GJ(VdJwAKw&azXU}B`;%=`5Ne{JF&&!7lhMGYZ~ydUMvajYb&B)KWw!%v zjpNLl?u7U_^SMv*-v3en%+-8fRi*1$<~UiN^N+bl{Sa(1fY<9@8ZzXP){+{HKUUOM zkh1WDW_PPbt@2?+)+`hpv497UrwJmysKZNIrdxHNMf8yw$la%O7 z9xd%?+Of#zGrRzV! z?hVX3#A}H%PyP_#IIARYrOD{{l%ZhfCol9Ccot0$QhI@~&Mran`)-JHTI`ziM$D}( zDe()w^72w^Jexk*&KN^K4B`$Ec#D?WX}o}RnkxK)pT-^3B=b*CJ|aHj-E>6zfYROk zr}?y5qWWD{=PY}CeUt4mj^9+HOb#kMZ$%u13D zafVMfMR#Xyn&ve{Te~&}cu1j_alo;dI_6!#Tm!EJL?t0TKM&S)7>e@pn0IjaXlrp# zbY8nYh!H%~Hl%;nEKhc;^0$TNHxu@3=SNtxY@%-#SqPx5i5jw*#jvth} zG0B42Zd&-be!71>9KM%o?Q74&6Vgt(W3e{I@pz9BhYAW!XyItt87C(5H^Am?Qyr`w z|2FEn85;hE>hF*W{Mo{k+dw@uagP(@BnqC5ytHVL}7E^w~d0<=4UFS7!x-uE7M+NU6lE^1=nv*PjlQSP4f3R zV(G}Q+@lu^e%P4G(~psm;2gv-JI*xJ0m=(*kaRE-hF!Wr-PYOpN=+C)^9-) z(t3o)0lmM{x9h8GG-p(CSJ&EeXU9o5$5!eiudf zhWd)3Wq%8Caf~r9=q)%&B&%}xIBq%;PQXv2@`v^GPj+y4C!N~IgiSOe+2p^(;HWNO z-VByJqElWgnV{S5hxuc^C;3KPi zR<~q7e&ZIAsq@;tC@TJmBNE{7%&qk^ zOTv2|qwd}9&i1bPo#Tr5yYmQy4DJU#O&*`hAmCC0o6Jq>?##ycZKmq5;=I3oD%8SP zhTn`t&tn5tlZ|@(Sp@|4SBKtb)f|0o;NaxMQCz?YJml$PegmfV;LJM(ft=Zm)uAvDBxZQ{Qy`&d1iqOA4PGrn4+JUcL-G2vVFp2z9Jz zv+R=#LNn(NsEV?jd`|!@-;#+&^b&mU%Wyf~&qpR6-6ruAq}rvvr-H*~1&H?;+f*20 z19v7^cF}W0;T&j1T+G4UAB+p>fI9;D2Ib&ys>0hiiadwSxc#FkpzP6IUfz-r&>lA} zB%8Y%yO#QW zg-XNP%F5IGu?|5bJHs&5Ml9l8MGj+yAY4fC?O#3pV{fPmwtWr;Au0ZszR7Jv%IMyb z(tm3hh?!5iZ^$6{{7rQ9?c?`x$7i>>xZIi^Lt;?nRQSV(2koTx(}rM2ZOBy>zpyee zP-ry%+^RrU>~5uv&`^bBJZqG6SG=P1eIAD{M}ma=+Y1X=1({mDhUp(34Yh<6bQ)FN zy{V;O{|FaHT0TdQUkmJIkoLS&u^{s_($QH0bLJP4#fhN2uXg(L&Fmw1UiUh2uswhn z;XI~k*Uq$9sqbcIKc36aTtwrK3=eb!-&}jQPZeS}QfZ&0 zSH!h8F=T7}9rX=9c-Cr%(erpDaMDc&b;;79e7AorXTyAdJ9!x6^6c}o*;J=LYD%An z)B4^WZkY9|D|}KNZ6G5-FjS&CDd;$9KBsZ3`}ek5xhf$+&`xWuZUS0YBQ58CC?x2?kaS5_Z6hQT^}tI3FpEV*XZi*E)$_c z1itbU9Zzf`*W?&2O~Y>j1Jqz}1LdkpHcm0lbDn;Lr4vLHa|!WFmakZ3Wo3g$8goC$ zpQ339E)hF+o=7vMhW{jPSe6z{PL#{K)h>ne8YR<527t;sR$NLzr}da?p4 zVh2X14qt>4EX2!5#5=2Y25;@-Sx72|m)1#C-9 z+@tCIbYS7x^c}27IZS_hd&lIFqTY)jZKbRRe0M^Gd77;q6$5AO9}NqOc`!@vy;S=J zhkGyZG%@XSe*W)RaV_tBQ;FM#Rx6F!m%GAuL5(F$Nsb8VVx9<_#>BO7>M}0IHk{>9 zemY?PlX7e7b2!1_#XiKP9nTm|TB2_Un7+HHNRUNE7=57DaDzJzB(xNR$_JsPb&!e=v9s8np$ArNj z?Rcj^?N(oEE>MGbo(4$GH1e?s!XTXOdQ;Fbr`dlL!DJY1=TF-JX%Fveq6;(}9dDc|qQ1YwPLexcCHGQ=prQi3=4!y_{yE!V83-cE6ceMm-Z{}g%AnVB_Dt42K z02Cfv*#{M=n!6Lc&+Mvfb1BSplq37MyELq;*TYZ{r4AHShJ8 zBcE!MqsMKfo5Y{k_OOLWbkV{d9)|3&EEW#FE)&ILxaN@Hy&prb|4ztzk-+bw%=_Te zW^AH$n<-_>r+(d?mOdH;S3&rT;?Ez-eb7@s%Zqqv+1c3-$pX8?MfzEzu6F~qnDigt z$tMPkv^0na9=JKI-k7*a>sUkJ(trFK3{gDU*V>jZLVp;q<>>JFR98Fy;`L{I#mpi_ zAKA#)@KKTJJu@3(l;?TzE;}~G(<{r=GXx_7Y!Hp6umZDbS_tqGx}6yYOlmF9X) zn+FjcxA@ckLFm(yT~AKU-*tq5EXs|?V z{($e2fyd8ss$L&5hx;=jQZBRO^+uKyZ45S3Aw~G^8u14)1mb8uaZH6Zn%Zu@bugJ5 z({!R1K>2bk)gsb+l0pb`S}%0UgtWB#mhITv%#xQ3H+fAR6=*wS?50GjoQqgh;0rsL zvskFNtbg(J7l}+G-%qtzzG)Q1j*a;rHf0*&v8!d?cUb|#4@4`hU(@-ER4zvaQ3!!G zy?E%#mk%&hSiJTAvo88irdR|rwU*+J@v7H`iwIr7h3huf8kFyBfo?J>Y1xma z_KWwxzRdE+KQ-f%6_AcsWc>MfcKpS-?#i2_<;Kt!=UystRP|Ue6B#qn^a9%@puiuu zXuNPT4|#-$kcBh_aEN@-qy}5oQH1A7DMa4G5?v<0PrCxrrZm26zTjjD%sVkV!fr02 znT!SjGDS@0Sa1^3ar-}^9V+TKm^xhpx(hw+i@JlOKk0nA2V0P-mY`l~m*9UkqEYnh z>-X~BTLjLDl&!^aN#waSR;UQBrS0!FDT?j0mukw&>0g7 zgr3)Pe#kp&eu8$)>%&GV8)2x>%+|%+9LTVe#+~F1#uL{@|4Kk=1z5zE;k4Up|04m| z@dhNhB_`_JUsQX?VEP3ev-F$CxFY>pFy6taw*9o|s^|O6&&6?= zDvSukn80bosv8LM57s^wJnM`dFD!vy9BxwmNB{@7UOLrif={~Wj=|!n_}Fe)lL^#2 zIs%|SL0ZL6HQ_eYwOuQ_2AsdMw7mEH)60K455n&>ln%Qp@^7!jzj^cK;=&j2gCdh{ z0S7_{MQ}p$jRe!xe)js9DjF6StHPZWmR}_$C}<76@y2%Evr%3zE;5XZ`|& z_x_@8v`10Cvu5@?k5e)%e=XyT2hm#2#cb-y*{|lII;4MYT;70^-xAYXEsK0g$kiX{ z^%vok3|8xlC2w4I=2}qHjul>5hS@!M$cV_X=gN3eswph<4(Bg%+2$MBU+W^4kc}4Eu6Ze(%z1~Z|G!+}}Q7+V%(sU?4PBxTiYx}g+)YR(et6-K&D}#z4GQ5{@ zgJFl+axxF03{(l34k9>z&Kw~Snla(~%Jr#4v=I^Rs8_BL}kj?pl7Km^{P?$=kf{&;Eha52A7$SIxY*0HFmv9WP=x2(DG zUBr$I9b?19#Ao}SY6CZwY*E2~0|8ft>8vI^9aoF=eQ3_dw$`65CLK(|;&BlS)QLXt zRFsu-^^Fm5z2YSsSpj7#|Btlyj>r1_|AtQ^R5Hpc5ut1iD|=)`M#Eka6+%|FLJ5hC zBq5uGR1!i+l4OrWc2-G7Huv-F`}S%+Id;0*YP9v5z#vGfU^kDVJTB4pM0z+~t;^PWe)RkfuoG zbL1?og%Of5e0+Rzl$bHl*51~)ll|~1W@v;>*BgH|I;)9ap-TJ;kuO_lac!8oJy>xt zDK_lGT@7@y3}~oCXAn*PDt+urs+yWmw!gllgmAE&v|hnSo;qKX%VQ-y;lllAGJDH&vtKSZGz>8)dr2o>G|Wz zreBWlArP2c)emSEhtNh6Cvb?Ko8qY8Y8aaR%G3Mgh3vxwRZ?BDC^f2d!mgWrVd3H9 zO^KI`Wazm>blS7{_;P2$MdUb&PXsK#67~7(V6T+()2s?DH3S7qEq#LrnyU&fVwZI> zkSISRo?EBTx>>l@Htt)H7mjttZo)~aIjRc`PdK9}7iZ<2XCAw_biBxHYjaz5(+i;~ z(Ug8GxAb+T=G$;xxH6*()m8E+whnd)A)WsBmR<#adf~+2ZGX9R`N# z=%F#!sd5FOLYJHFjy|WvuyX|Z2pOdw?3@pVg7-x}>wDO;X&S*gJ*r{m68hq0v0pjG zt}_W;p(G%)73RKhZoI(4LoH`ejX(A!slquvLBWL*!^j3Zi)oQS#8LHjKNWY6+9 zy};x=r+~AL1?&N)#rE-Q8!r-%1)GZfUX_zp+V*`%tIwgQXU3lWd`?BU?}$KTGub`i z*(RFH;$kyEEF7ObT_`_4Q@*9M+UBNPO=ar3?_Sus+mr-BW%lYFHit8uLgqbr(i zLbyaknjalMX2kX^dNcGCta}2I>@My!4+xw4wJV~f1WN8 z>O2+O)&_D_CSkYO*tdLFsaJIXf7SM1d-teZt|Fem@ySTuh)vPXZ}~z%b7FN+@x{>B zSKIrqH#RHj`Rr&3O27`?zb6w&f&#cZZHa2vifo(p&wwGJJ>huS(Cy3@AI?IZ`dnz9YFm0>wSw8sr%a?-Q zeK)5D76ne85Fnf^U0(JK2wyyS?S&M1bJ>7zdUa4|=}Y~5m(Hh)j~IAeXKT-{O&eaJ zwDCD&Ao)1Q1>f^rt7D9wjvtNm?o~Ou-ciI?7An`~LPf@Xk=91*7d7N&7%SVPW&Pp4U1z zU!S?Y@hNR-H{qRH#w(q3_U@eHE z^W$HQpQ_tC)bUs-?LV<8$6ry)CY^O{q~mGa1Ht=^nHC$TzLnUoE;y6NBqz@p`3*Lo zk4tEOeg@qJ&ENOX8-LkBxMNI`?8CDGdTEht{noKIi>;@5gx zO=G;kRr`W;s^G*JUmYQyu(7pF}kwp!K7hA6;}4!5$xd$sJ0 ziFlldLj9@pqT0_{iF?LCd^q%f+1${HiH=@aXrJmmFQ9*U(awF+%E)po?1>oZ|GeOu zpV(%+#nXU*e&3f}1?T(AR)0CgC7O)wBR??a@l0?jQQYaM0wnG}Jl%Ev@?;_GDrP%u zR$6$6luz;Jn`D2l5bC*CZSpnI9@7QeG5a7`=f=2sB#I1@q%vpv7r#h{MRcY|+ATSr zPI|h!Sj%u;RrLen_`bqyt%TtXJ=ClIdi#e2OGI22D*e)33H|${l~4KoJQ{TU4V<90 z{m_9oIa+sbC(zv`G*_@g5T06CG&Gcrv->T^{b)8wSG^GNsr-F&w!{SujRvGi1xkc6 zi+}dXg$|JrXmQa~H*SB9-lwh;v3I`j@d^FgAlSUy`1$if{3&O3cPpz?J1J89^b0Gp z^z#E(PB&ZIJxn$j_lz(Ed7^zu9StPYGGLURE*7Y6Kup33zrPLwBP0ZZ_)#!xfii1l zznh5Tx?j0RW+n;auXYEX-<(Y#=9}uuxBvE^zt$074UqaN=&bz1Np?*fq-zt$F@-~e z*^})Gw+-?dR`a%JIky$QdE~k zxyjH$0zvG@8!sgyaE)Xw42ABismk*ueD++@{rm+t{Ssj<|S`Pg`uAS(*XU zeYr=Sx%ZV*h2~@a_HY<47?+MGFadqOzoz2h@p|btJ*HbgCv0xYz*oK$w0#FN34tmh zh*Hcd*xdi?hGTAr(j(raS5xbtlTR|-ex6Nn@cd%}ftJjRJiGmb=j`Gx% zJmGa_V{Q6@$->u5r_@_AG(I)4K}p5v$n8CwrE})tYl8)0o}6Aj+qEkj>R7d&J;h=4 zBcmFbnYk)E$3`b6v(Fpy=AM+geDDE=Nc=Wd(fD2*CdU&4JM~V-s1&U_2Or&(smakx z2e;I9%+xgrup`eim-Smpva(*BNbjvMIh&PZE~^25519q`02_3`4@n2u**(?aQ)FCT zbH&5GyA3>^dfPVdO)nxCBbsy~9p_?PzOnB%=@<t-esY$iIGmyZVqhzPdbNg)6+ zqRf5pw{&~9j+3)FMl(O77V&0e;1z(^?)_tL)1&j=&#l#p9j|gf21l@$)6e}h48o*0 z@^$lA_U_(Oe7$g=*ct76|DdeY8;#^jUoLG|PFIas-^D^o%?$_6uj>mGA=vf+{v@P^ z?IGC7XwFlyN;t}Z?-(;dN5H)@JS>Nb?5{5`fxpjdtI8jN)8XcC@MzB!1~^ylG1b-Nro}11#QW`2bwrH{;d$H+dq$PgG(}eN3EvWH_umD`KhE@fkJ8uG z8SPj9%0rF$rgrjU{nz=pxVYryQ@BYHKWBOcqhIPOxTxm6z%0C1#&Z^AkQK~NJCX6N zWEQ9mm&((h1QPL%thYqRz!Xp>_}i!2>)j0T-ReZ7Q4+_?@<4S5f0&C3m&fm}ilwLa z1`+%DnmfM8F6B6yO8BT>k-DG^vww@B$fhn0JeVCF5qEUZN2DU7 zDY5g(%`6=dO?ppoPLDHv5_1_<50H(5qjf!dtf!|3JU;N1{KOwVai%ByJoM05MX%s; zQEiBr_p9F5odSg)hg#m+k1*W zHFXAWSN*}X9vT_B)J--?6T0lB4VvAz~4Cuf~LdnP(Lz+6RTbztk_`0#;U%I)Kt`k=82L1FQ} zT8`B3rjSEg4|Or`8%pLS=Ze&I?VZd|Z8SmD(81?El>tmI4B>sF+eO7(e?CQ&)uY#@ zzYtZO7whfG39~P-Hd*(Diftpx+}oQZrU$l!WuqTIyGbVWy`@Nrq)P^*dE!Tpwhnv3 z7seN+y-1{GWM*#0Tm|#UT#>g=hHBj>q6*4RX~x^tQmC|d^&#O+?;Jr#e*Npk&K+k6 z@2u|YOi1k^4_5?It1Iecm6GnZKNPhU)o>?zL-w-g?bHqbe|!_LwLrcbm?4 z(WyCnXewL;`l`1$;?~7`I+3chwcS(%U1b&3d@GGm$11ac)fiLZjVXiwMuAR;Fbe*5 zzxPV#o-Lpt+xu#>0`Fp#2Ae|o%f<9A@0ZG;=W=Tj^PWF_wKroI>#4|Zg%s7K;2>X^ zXeFt%{DD2T6E5%O|1sVuyKVQL^z4+bt0hdbcL2Sk1Ty3JlM!^V1qLB?iu|{oN;LinI-F0I%$f zbI(<2ipJPq)ux!kR$hFVVCgeT|4DD?-z^K8<#)d=eI$-{8t)BvzqwEtg0i#U5+e%e z2^>3m3TS2qwz?uDrV7emS%(N$8X6fHSM*M?{0w3LOrYD1>(GCW4Qyx%!EBzzUjo@@ zqphqKek88WX>QEL>q(ak(z2c;AqbwmB_(;C`NkIf=F~{rHtv4Ubh(w2?o$&IRjnvW z7!I9qDEpcINcQ36FG_+V@v5V-flEJ>Q8a-0)fWO3HimaDPNthzyt2CGzqQsD6v3LO zpFf){VFl=I=37bghBs`lz9|;r+zSIX%!Y;EIXeUk-JX@JNT%7$o-k2OO{nII)V(*D z%^*`72muVae&@MU3OHWs?|J{0t*g7Ta5;j7{zH2wNAmPBq#GW9zWHgxKyu456Uytu z!H2XvV)-(ioZcw&ME5|C7e_hgT@WzfEr%Js2#~6Ja7pVyfO-!CTmuaW%7{kNy zT~FQZBUrOX>N^XP%>B;CTd;pPu3AZ~SBY#7+DqWSB@<{tk;Nbr7QWb~x%wlqt)y8t z`}#n{kNjj3!jZfh*;Ju>YKangXAke%o90w?e&mDkD|HLs)Xj}6W%~^=h{y~P3`g{R zHLCYzeA{T_HGfy4$Qk%{TiYpGar-PeKNgVHTAsS)qhzu_a-Vodftg*4!g1Tn+>2MG!`_tl;&J!h59wdNPOi13GE}{*?t)=3DF8;IJsZa(2uW+~_!AHD4@3 zE`_{u9;&H%d5I?%>1dNI8n$ONG=v*D@sA$$KEI&6G!4XXxr;iP`JQYlS)2e9Gwjm; z1Xzswz3t<4$Wb(*V#c0YvppngzI*5^&xV2V!}}K$sdGrB4v{K|&Kew_5Q(FMC~PEq zuX}1dJ*#G91n2VG>&cn&D+vsxEP8|-uQY*3y3t_e%iCs#-j4JXIaBJM^(qr4Bj}24 z+EMUe#@UL=;Gn-=6Ye8c;LFlu??DCG)f}+R&lwR2R3W^dxX#(ta0XLf_oN^Y{Fn3g z#-1}Zl|eRcTIW~vV_^eB9RP`9Dw^!6JND3|>Ycmztk%`-&Vq5ZdgK8lwg(?oze`b_ z$xSCIF(6RoU2foFdFU*8O=-{Jr|#3sH8n@viP!DC@Z2`a1r~TT?14;RrqNa)sf`UE zp9ap@57vsgQ<73LWP}@b$Ic!%JeRTV`-zc+a9_Z9j*7`&H3P16_L@`yJ(aZ;1LI_%k2!ttp#6~GpLYi@On z-hWiCeofolkYyFS^|bc*`h}z1geNbaphLPz^0TtnnZfmsK z^MlhC+4qc#&upxE&z$(xn;F7>#?+L`p9$LHY>z!fiDT#1T0q$tli%Njsjg0^fV_MY z#sf}uxrm>Fc)eTP2Ofg0cI@lwQE_p2?M0oX7o`8r_!&JK^-77$EOkY?Urc!$fuO&` zx@j;?#e4ZesVS5sSLEe3ZZW%yt-16?eLN3{AwpGJCVRC|tkG7wT3qy*?6cXFnQqP1 z0tFnQAbYO7UeET_%w(xAy|5DUFQ-9{X?v3wy|@U59AQ)ReM(V_&CLcLuWdiKvU$ly*Jzkx~m_#&b1Yo zNqOoTm}T;4zPe_u(VUz`cI8BPpZv+^kj9;J zRE%q(OR?a%u>0%qt0%QOh_SXxmOx1RUNSKCz@($93Rt2FGo#Fssr{r*^tyv2_B&%l zLz1rkOH!d`%Berr^`H91O3Y;=_NMn1pANC5wxJ>r))i`R_r6qPHhqG^j%3;K=$M^a zYB+v|@IyvgIAvEaCl#0l@G)xg{OaYCA8^yc!!hmCD25Aqt%$obKhLJ|m3{oNV{SvY zvXqZEB**Ofdv^!n;6AV5W7;WQ85$@a*vTXr7CsOyrG9JvN2m`ifgtHMXLO~6LEf+I zfslZ#=X{f0U(aPj0>LmuMrrTww`dB1dMR_4p8xJ6A76Ql4NG&R@QK3LukHZbVx~^j z^_S(^Xtp1PcT4ah*NAS+tnksa*qSmxOdqfkF1PV&^aJZ@RS3|}cVlgBnRe}}Ix<6& z{=Vf4J12imb*?t(XsJ;UZjg-9XNcK%y37VfNQI0)?Ln z&s|*Ie^=my9>4T}eX>=#Y9(T-OKcxb*K4{g|GxE;myGp+{Tv2R-+O@l=VGijq~@qym9(Lr5$BgSv}UXJ)wVXI+RY7ZN;K zX`+$Ns;`W&NCSy{{rttgD`Pv^J#Q!~UA(rWeT;1z;pBbZCN7*n&u=2`QI8$g9h@?# z3GZmq+^X<5cjBwxe?+u3`Dsq1`rwm}m6p)eb zLW?S&r5P}JKcD;g?*mUB0Vog!Z#EZ~HNan1aR;;ojU(GPkBS5%Xi}W8$38<(8^=zm zs~^G9Kgo^I9t{w`zm+(Fdc>sIP7K{9C<;PFtugWQ&l&BYqwh%Ct_q^Nv*$!0F>e@LR$2%xj_c7N=6u*ke2^g=ygY~zXYo;h2z6+w5-HKwJEN#r%_q_o0wIxk zR-kqV4Ues9w=$*+${j%#gu!L&;Cg&prCW}2)na>-{fs!7nJ82KnrqtHpVsWg0O7jm zE*n@99lcve0O%!M692RF3}Zl)dqOi8i49{v+q0YFfcm0L+NSYAzR^qDu}^XOM6vjp zg)8a7#@t9Ue559cx(gyVJCG)dUHbqyUBKtA_gxE#1ENWgPS=M3t-TbDoDGp*um04I zA0`ricH@q z%>O@Ls4jtq1Dzl|laQt?G7`d*A9)6a$+bgA*i`CR;I~`u3a}7ykrT=VjmCdI zBkeVJ5nFj$P46g@Wdy_8fu46m+Ed@o0+6l_qU5si&afrULkCFq_xHd7dgX>kVR@F6 zrrQz+l??gLIKH8#eO4b3>hbRUbFzX!HfP3X4EGnQjvhT4!73rnrXu>(qDpSdXkY!m zU!Qj79E=#c$+sSV8CQ@V^+o1!hgt!TI9K9QI)?Rx((MB(XsDU&vu=f<;Xh+bp=stPfI3iGHFXsOG;|mpFvxD zhI|m-qof3L{D?)IY?=#5Y_GLO`d^d^%MnKr>7mn)Fqyk&<26o??MSG0yt#MoxVx&V zDw6m@C4E*$*f|~@l{s>+=qB3{ndfA;DgRcNQTRIHk+AjU7-)Bza(5?=uzMY&fvD4W zUwqeq|62Z}b6Ts3Q$=T{W;_WQ1?HsKBuTj&qt_SfWsIuRXdX@A@IRa-wdzSv^4+HV za8#Ul@z*u8?Q6p@-UbN0Ew!HlN=W5&@g*$VC6hN_3R+TYWY8 zB<)MGtPfEuzp!bU;NRoMp%823X(@4c z7d8HK06Tp{E<7sZKL~B-JR03oVMn~CaqQeVGJxStlI3I z_W+!XMHXYx5jA=1`Nt;StgFyMzWpXaFKp;${}J&ccZP2I5jTB~Dk=kCZRXk}mRte= zGTziBbcx>3dVTp1td~>ot4SPpFz@YWWtG0%!qKj%l5{xPbNDu^qvuTNI0eoAHyAU6 z5&uY%<9F#8;E4$$w0n;QpZ-EPi=#kdO_m6e-9t_55E!s_BZAmefR+Zd#Fj6#X*#|A z^8p6Y+sTQ{-tAZKVuZwZkarD3RV9kqKS)ZF^_;aNUKS^Zxb{Gkj+U zUMD_jKKM_EQZe~4{Zq96kFLW1u@0rWiIG1jWRf{?;_KRAdZb)0WD$$}C=4FN!O#`E~I|7ZbWc@LUli9-e z4`OB>A+s`3S=kK;rX4KkKXbnK?yeh;`2Ru+9c3fC@rXlQ{I!0*F`A&>VsI@4d6P%; z!TLhBycin{(2?6kB)Vr$mFvJg7xkbAz`_3SIg7$9(pi;lLE+7AuSVoml$748y8 z>^|Jie`-@QA5 z24<^=^uMol5raGs&EX*~L97S_6H5mIF%eA&MjVs4d(R%YJT_8v`1+lApnaio$iU&n zVc7A%_vHSMw}*Je|HVN350~(NTxfcW%u11u(!FBs=I&zSDsuG5|MEI6D)#SR$CQtWD~gGWN+>A`J3C$q z)zwzpwPPRAq1>gRe)0@~KnA~pw1$dky^;_A7RP_KJF6SH5(qo@5dTL)c=VVB3qc^J z&OIOh?DvxC__ifEd;IR+T59X2=**~`bEnMs+k{@di9I86i>dSUx6{-4KJAr-B{>BL zc}i1aP4lCL7<2Dvy{6`m?zjB>&}(Z`a-ezbxIA~N%F?3m!o-l@_i?{3UR49fz1+X7 zJ(jq|LG>S(!&@-7upc*sR|^kaGbDgOSaA6N|7KRUrJMNL>dl|9W!PbZVEsVT-(AUT z(6&TYJj^aj)kPCXoAz+kXReocP7^trn` zUMcl`U7cSj1xd?}_pVPa^h8WUMmw>DnH?jw;fJH5ro89@xH)#*8lIm1 zcCf#_Jw_?jxwOymS)SOsPawC5h!e2+>1h)Si-AQe>5XZ%7aHgIiBnI%em%j-nJRGF zZXmw2mrc*m5X^n2Q+46a40!*BZPPC>)yQr)C@?LB14^9WsvK(8ZR@$fIOOyRCQi!# zBdQVm`}*wc?E~PJV_dnUq@-J!$NF}!g$ccEO~RA$H2+@|gcdJQ3_xZ0Z?2c7rVb$w z33es)EufSR!)vWAiLcpW)}AEP6+)lhq2uS{3%z@{ugrZKj`aNOkn+BWzr~L-($Zd_ z+%uRirCCQ)6P~p(^5KStJ$LsWFU$0W_j35~QmX?zto}1*^+~cm`hrYnd1Da}AdC09 z?mMQlt(QD_puZNnr361_V<_Z+sF+woEWDIG)QjeM@x{!l$DjaNtr<;+S^}ZHvJ0?$u014^!4|n`5$BErQ{YGtcsjjmY~{c z$1oHI{)i?z`TuB~PL?@=&FaJ8?H)KX2ZJ51UcEL_zDd=K#RJ1isp$+Nz-y;0EeDbG zNYFYI(}0TVi_;gXXJ?&RSy>?%Mn*O(?8VtjZ+u1Fi0%ze#*Lx9~I92{g~ zG%IzvrIhN>`zlmxWn$NA)WpOD=5)cO6Eb{G;B@=(d9MpI`^NhN>~rbh8~6G+Ki-V( z$;{2wNN-(OSimq(b3MJ*v=0jlZW0nDAl(?rl9H6fNG*9PPHY-7*_^>h_;#0F)L?rn zsFNa>BlmQboq_cW0@|5037#SIZb-{iZ#i`ue0IvW{hbCvv z97BcprAy=3abklr;>@N;Vv<26B}*8%TpxL$Fe~dX9t$iiSX_%zmpaTv;1u=vX($}; z0|CH&AG>Y&@++LO9Y{jx=-?wfiA}0h_w`gEZJ|@!|q*2s1k&WiM@;hUZssffVm;atnp>Da{8Y98FK13M(yLL47k8o0*Bp13^Pe zi*BFS?b>S8#?jK!_Br_Oph`uMPb?$w^mJRz73_P85nk(9Cd`_VoY_uGn}U!Wr}rMa zY}m_{wKWm5vU6w8x*{cn8CsY&g7hy4x81K@yJBVwk!gckfkAc|s@Zn^`t^nd2mx0x z>V3i`q&ZGw}C70@bcz7f9?#FLNXvR)bQfP z3~=7Z#>U3P#N4~54Y~p>AdYF$!Pe z=b%%U>(NCf@XD2yA5E-2K0dClt~4RXFVv8)SIKE?Zf<`6{@p?RTWhPHnVBpqzTg}~ zIp7tYN%SyLZh+x)py0#OPAz=B86Zu1gMAtjMa9V!J~lE!Y^uhHTk)5>4#@52bX#4x z((oRHZFA$;0gV~&wZHk0hWq#F69T0TunBEx7qQ2|x|kYuF-?I3mJt>X$Af1NUf4Py zGD=y4B7;Z@W0?Lo`P2K!gKyuC=EK@#Wo1#N!s8rbkp1^MMm9rymObHhl4Dpj(R~q3 zw%uJ_rQ@4auysF8mi&$F81BT$mlDa z|6pAuB~tC95)#?1mr*|$BY1M|5Hyy9!^bA^LXTrB@9|~ljeGwr%LXQ)5Jie=80rGX z0-Eaf?c2EV#-=8od1!rP&cGY&wk z?E!5$z3!S)*KwF}+?le+;4U_)j@sIEkY-^5%SKohm=}kfXGN0#Vid>7p{wABLb!{A z9UmQCb5`z8PflT>$jb9rU}*O^c*-|$9lW?3-}@Dq9lbtddS5-5jEhLO$3ce@LP{r( zb&6t-&2_Jv3JQPchh~HuIJ@udq@gLu&+kXCKZX(}NZNM^y1LFIULI@21r!t9yG`TTe^E{@TVgf(x-k&X5Iwep` z3sEF(BULmsdDI9{AgF-#--=s<(`}+1rCX%%< z9{Ik*`!ymytUZd7rV)RlGYEnIVeQ9~u0OQk^B^h@raPsfp-2VAP<-|y5G_R3evoP? zO?B-IPaMh7-@P<7jXW1GT`Dmg$iNU4L8kH1(ZNlnVBHisKbRhALkCY!N&nYcuq^N1 zSz>Yt${(+|y4d3}a6v6CE#vjBlH%eGj9kFP%8$+&r}I+`x1w-1`sm>+f?{C`nr~zT zo+wLj3v@M|l8}C6Eg5RBxk5q%=+r*@NdeKA4z)^P%v-oKCOVVK?UP_8c zX&-HJ%uPC2JTpg_Je4+HKYJ&W;X_;NF!c zu)a%Jy}$GCeoSC6;6}=bamvY6y2f0@?0$MB3^2Jm6SpqZh9$qp%(`#iYU=klOwN?5 z(=~q%(wj|wzg*qZ^QO+}P=mNS3Z~)J90D6tI9$?QhA(X+!otF;sYZjPa$Not->; z`uqD2$aoT!gm`zFJ*DFZ#Pf0;)aTE4M*4e8&!orOjDEb2$QUDJEr=`2S9URWhn9Q{0_jZ-&a!3(~&%P*_c;SCASfc<@QW8+gZ8+}lg@2!rWXl2Aob5R94 z5N;_Y$OmkW)JI}kX#kWkKu)NytDj=|4&KiRFCL*$Uw^&@r$6ew7S#fuM9wyuf_<#4 z0;La*nM+GZN*eMq_@Cjrb{x{s>p(HXvN@5x6!R*;h)xM$W2x7?E$-970hzNreB_W$ z@;cr*=2nbI`33b}Mxs`5+7#Ofr1t*~P`HMZQO85`+Z=Vzd}SPe#Yw`}R4= z*l%RkC@M1VHAljpAFl!(N&f6#{yr$d8IR#6_IL&Q$!)oc$}0} zTT_D=5+vx*u-&!^Y)-Qo8Zr14dH{Ht!j+Yj3_KL4u0=^LP$Kk~wx6{*T+p-l$GMQ`-oFHS7cTDv3 z)kDrb4&wfafuLNtbxTD_sm3B;gC`;4uDi3^M<6;4X6WNX7fbAC3_Q6@$1g1GsArHk ziHHc=7Z9{v5qF#}Z|t+NmvghTbUSVVuH^P1O_mQ}XJE+4$(i{1^X^$Ww=-g5VmRlR z7&vK#DK&s*dDIL*d^=m~;mNE-B$<1WuEfhQ%*o$SAI?f zqh*&-mvg&wKjr&9i#-cPjdKWk8wlGrN@_#jvLTKl-jj&PRz~~J;O2#0b{nT7k#YLd z90;E>Ft7&2vY>7JcnZ2-Fd;-cyS%LIL0p_hfy-_>ItBJXKy0zFQx=tP>vnVFs4q{R zA(S!8Ah39jxC8d#(Z=aMjf$QH>WX&vO>;{z$HVV0v zEp&3h)fze)3nY%5f}#xIUs>7HoE#bNg$W3E%we5M{|zZ4J;aE`uU-k8l?7YSYo_WV z5-Z5bk#y{PLqX#DD9U7ZT1+UV#wp=8rdY6G>=fTUj)745~er6-C(ybPxgyv!>+0)U@3sgiG8BAFS;)Qq&8e!w^N$ib zwwr86;;)-kco&CHH**F*%g=`&vI%_wThLNhcZ=iB?CdOZ6orOGq=lO|=v+KJ^mTRN zc^^R37_4-`&CLz2I$~~lQOeAwyp2=}INjYK6D~a5cF<(pk&dRj_i+d&3@yWHho8Q) z(5<~lAb3`$9#(;xU8bkHIyGQx6R3fyu!Nl4_fMbDL103~>F&OWxEAqi1k2H3jQl<( zE-ox0f{6uP-QD%`u^?30OHFL3fJZjl9wrnRdC%ej03Ud`uxU$^?P~h^f3eCyI&i{~ zdEo!z46vG*M?i{nG5oH{ors958@<;$3#8em*_l9F;DIYRDA8#ftQ5KbNf1Tb~_czY+yc)j3?C%vK5 zGGlj$;M;Cq>5Bs6O4K+F4k#dmqM)E)XJ?0b6LLW;0nF(Iek;0fSJi=GIG3Z};cTNb z1A8oyp z;$_~pPd68P{QYT!acji>q7x?&Lo$Uspn#F+KVuvnZXH1r^z!V|5;GNf^!ZnBPF^+t z)ir)^Xpzf%X+~&wsPXTOiCxjb)^}hUqo!AiZ!q^mg&%GmS{(lv%`9m61mkqlTM=&} zfBVX+E-W^dp+N@6(AC}jS7%;40`RP?AMZo=q^G5Qtbn}MiyWUAl%G6MCWr!Lm+RLh z00k8pY8`6t=vW{!8EtLKCXfWsm=xCVYRuK~3k~X=Q|n5pm7Ao{VCp=yZicbyapB?N zj~?yYR4^}d%WcZ!0azi0rV**6f`WodRHZ?`ccm1e-2m>?i?0qRPLv+C{(z}KC8bZS zF|+!a(Mv>1aJJz^LXjgO_-@FVTf|^3p5X>f8r{}bPy!KHB|N!wbA0^YJ8$tj{|9eg zJ4qySQIS@y%-Bo(!)*r>|Ni=b^>BwU;{PqmIsaXC;1xbd_U|nlj3n`mLNmqx{*CHJ z@2&~zKn_HmDhFG;9jOTY%0OR?jaThUfL1H$bj}Z-xT%0hx~-)JkR+)>37k=!J=AMXEiV;i zkb1^-@MfuWVtV?(371j(lC-Pv!WedBmX)pk*YflehD(KkGQph5B|GG0XQLhV6PBv5 zKS%s7f!DL z-@rIf3?j&+X<)DfO)qK2K_`eA{BTJy(GiAeX{Nv5MV6Q*Xwi6I@-!=pf)gkdR|3@0 z!??K4o}Oh5m5N-uhkIt#o%|R!k4p@;CO*9_EMAzF7O0d8P%clUEIu9qYqX(YS9`m4 zks%i4%a<>5=(PaWfHD76fy=0(Nq_Rh8D%v%afqmpJR2dy(2~nGHgQo=AkQwr*bJ$p z^t|;fkwHwuf+mrL<)h^hQZlk@L(pu{0SGuhHZ>8WBo&{x<8pj@TDVI&HW)+D3hJvO_ zMP&0@UEXbiPH6)5J-9Rt4b8<>#N@cXI^BCjC2Nb*hv}%eBl!gdLEYv*|6^Ce9D1SQ zDct9{^X{EOFc^{dmF~R$aVQ05;dFNUwToRfqYW{BzP_`~umF$-?&}&KToHpNAGttU zY7b`{P}1@xS=ovcu0IA->a2=jjjF2T73uICz$hOZ3eJ4IMfxALaid^)v)-i9EAV~a z98>7_(y_6(jx6pxRB1^SSh#3;G&%>jAkTnU0GP(~*qA$FhaW#|gLPF^Z>w`pbr&9( zuNod1K{Dn~k?6jr&!6uKerjqG5*D6;-K9#!CZZke^4OdQbJO`z&*<8&33b<05 zmku;{&fU72)$PYo5rlLSAHxosR_<$(`?1ktV#TyCOIv=9%^Y(gzQtIGWmLETUAg~2;=H%eu=I#yv-J98-cxn_37M?GacmxJM z(@LCtMw@XR=)ouSQm(JB`)@27Pz2rF1D6tk29gcemT%QxEW$S>JbXBqvX}aH`oC96 z$#vWS0;=1fp4c4{3t`~6;Io-j|1XkziCsMdM>5VYE(qoS9-><^AI6#UZAa8yjJ zuKcp-zOQ3lfq(+RB~_XLL56b>S*dbPQSkzrGlAPamh&qM3R1?n+!rrg)Qo9x+czAS zHkO)mk6r0feJZp&KjPf^gjd23eBowgWgYVISqlyhMxz=$uG0^XC;}t{o+_z~1BtD5 zad81mgF(;hmr#iH59G#oT(q^VM3q6!t(|bBbaZeF{#e?XnHi+l_;`5{*?)zZLE)YJ zxne+~&;Zwg(Ib?WO1ifv;_ltF^mGJAu(BAHv_8`>eXOdo(jSLAzEKDXzM^4NZs=%f zeMTJxA_0&nT*s}7*>}AP7)I=~W7jUfl{p(k`zYo)fUrYma3}F03y0St#~H>h`Z}m94RbMz7>9y^ULcA(ShFoHpJVcjiOIJR+5^$D=jG(&;HAOy>qoGUYQdks ze$gvAh_9jQVxO2@Y(m0Uobj!d@dN*o7SLAZ<>iQ0pmAQloJZsh^NnXj9*~$hlMm3Q zd3`V#lbal{98OMXK{LetUAlD1rTdYXeMV*`yk|fu#xmzn49ra6`-`% z===)A)o*p-eq7u}Mw{I}@-Z1jHj9tZae6jwW$d3xS|X%2s)@CBEmcD+C$#ivtR(Rd zf^UlDLu%riCzpaeiE=`Ca@5+4y3DF`$>#7R>aUo{6a`P|qek%B=BjUGJ_S%Re+90;G#US>P|2&7N2%A;x{>c@5@Bn&Vj1CP7-bF%ySD1+!k$ONcW++$ggcE zNixH)YHM>1qp`}0-Zg`A;|y;se8Xnr@XE?f1Tj*6%kUOy5Di8A!s4{JlPktn<@)WL zpPCAdl^#!VJe-T7$N$s(k}vX;y~fMT8AK*2(zWlej;NA@>m$(oSdAVVhVVL6BH3Liq|~6 z%vZ~=-|AfVPTe1#mDQBimQm$VF1Po+tJ(12ARP-!4}kHJ54)V4oc8WbK#|`mTRJLo zQR7Qp86dpgBn^4R#li6o1b;d@ky_P<1sHau$ao=np@@Y0O#ipVu#*SrZzu+*bKM{Y0_4lD_wr4wiP=XlizuTHdBd7|nU!Bd zY1lem)|+e(%-NEWdh>u9j#W!bOMCkoK=%)k2M+Ar8@eg&P=<-v@LS=f1*0*qC@)VS zu?fD8hl|UwOX;%nef3w~i+19Pm@54OgsBaucqnxeA3Z|xRAG9$a&|jTC)yBETn0p! zUJ26z8FthmYh1?(=nLu$KY#*66#u!YscsUO9W(=!5^8c0pCBGaTA}G|Igq6EbnEGu z&eqmz9vxs6U`Y_`c>OX;e`>&C6@B zJ*let=+UFL$pvJBVd$aiFt@w0v5|-Z3k%c4>lzv&O`HQ(RuK_-Oc{nw7<`FD5*$10 zBP{UwZ{EC_)9GoCnJdsk6K-V)u~4&zz@TAgIbtxR?)d}+>@QzlUS0JVRgK}UH{oMA zrJz6@Vlp;53Spe>uSYW_(L=g;%x7^*4Eh>bBA58|^byof$mOCAhR~mx^_FwQUvIRb zBk^W)@?nPER!YhiddfQYt1}k+ENK=OJPT4&Z?1TWii-N$StGlk!0}GL{{4G^_J|me z-P?Xk3E4cR@Hj-Kv9ZDFypQLRuEDy((W!t}Xk#;mM8P+~ul@b9qM{1`YWCBN;~upR zomEpiEF-g@Gd3y7?93S#bU`wOczSzdvGDYAzROV@cTnt#>(8YjZXZP60>y7CD*ti- zX4Y^zfPDaY{pO&9@)7vUAN}j0*eNL~A-8kDuc|gzr;&4o*F&!aWlFSI9v&D>X91rO z^-tV8uUx)Ngom+a;mjf(ot-EU`HKr8xgr~|=?fbUFHn+V@$X+pJ3G{jfBg6n9~X&f zI7zj!x%L}n0f4hGc@{`%e!bzqTd(5)6%c(RiysiM1(S*ro1i{oCfmzv1$G~B1}f1b zsI{ao049Q}Xikw&5xo+fm}p{S!=sc_R^|;}E!ZtslnQJwL=9Pk24(cu-;a()TB~F7 z6cm&%KS@<7$4kLOqFgm1WB%_OpB_t&E_?er^+np##~l(f_QfNXZ;M&!$m#d&A*Mwk zq$3Qt15|wM{{y}kML{M?a`M4<@<)zDHQAzv9SIsXlsv$>M;xR~g#ZgQz~AzBHa9e^ zpsp4!4q)#{x~Xp^BHH!oc}P`^&bww{?lTqy;tS+DSXW*B4xH|jC*Q*drBhN$orUWQ zz=SFl$zwcpzI!G%j$HBbl`9&DR8>@tCVYlN22TZpouJsbKtuhASjD|5l^g%gTBQeV2WuF@mRg8CF+TcCpK_7%;Q27@j*9Y;TH0KM*Fw z2Eeh;V5t$nY4#NA-0No?PJ2g&#JJ8oGOc_INaI@k{n z{o_m?fIyHyGli?L*Nwxup9d5S4X1irfqvR{Trurm4kJEQ*2S7ZT8BmQb;YIy;8xi4=$p9w-q*I_zLDilC*D zRlt!KM8QveJ0LKW0333K_Ky?~s!!xUMMM6>_gXy~hjt;#Es?8IX1ii!>R)4%&l zU!s!*3Jd_aFY?F89ssb!dD_It14J^&o3%^|a4>~S`#Y$G4gc}HckiCiq43LgcEbl| zA389PpNEKDj>$1v|9hTMBJbI3-CCJl<=wll0{NBowSTNlN7)ZG*0}<~cXn}k1o%Wr z-NHg13Y~{%EWC3wA&OI58paTr7U)2%v++-e15&O)IaH}o{3q`<_r9<1tx7T=M*vHx zTafvFs%9eq2`Tpo*iA(1Nd3MUc?w==j1KGQcr`L^1GoCglc=~jp0Afwfi0~5DjCo( zGzT{8;G(2F&3+QrUB-{Z2SGr{Q&uUr9CdDf0RdJ_XPB-)k&5O6L8BKJ8<6<{bG?X6 zPCks^5b<>s1PLf$dVOac$={mV+U`IGOoPA!v1vClm|&cfN0b2I>b*dxkontXXnO!G^^pXM zZQD45d)E(~fp&wgM)X=}T6#uTH!3>%1;h;>!ae63yTd}DGz57+sM$vkA94h5E{{Z_ z_Xy4=k`xE|`F9*XWsHypBNCAPfP{Jhxj-f5GxLhov+*adI5=pgKpLV}Tr3GTndd{f!PWDO?)t_Noj%fIUotqmCC{| zf9B_jm7;ojXqoSYBu)Fj4`78j5es(zVd>uNsR|3?Rndt?`mttT@~-?}jJz79rb*tR!0@dxvCiA>+9|`rgm|yN~03j^pQ# z{*d>2jcc6ed0nsUfjnZ>MWZE;uRUtbufQpTv{Xu{h5p{X=>+%Jb2n~3GJ>iAv3g}u zfJLDF3D_$@3IN~J`gC(c&kRJWdJWehe~iPss-*Op)#F%5`0T}SgGc#WMa9@N4LPUZ z@8G7qe0<=9R5UbPTV7oO3I%znE=0D?&o}0Zk%e-A5j4B7g0Yr`v@Tiyt_O=Jxp2nCbwztB=w2Nz%Mw)0aMHgDMQB|c=ES*WSgU2=c% z6Ef+B1WYB5DBf6&GkNw5)#1hd(obHJFlXo@z5C)9JPifq_7l8n;t25vJ$r-CSZ78a z-)NT=uMcX<-gn(`7=AD}%TsU*`De43SDKHVZN#6LjIT|F25DV+5m}UbUm@=G(c)0c z0a8%klEg?txTQBrVn4Gi?5m+Y^NQ(B-WSD3@xk`P{eJ&I2|b*$6uq<;8A<1x-u7~Y z&6*kF8beC&x?7$G-#@1OiIB(;X|dh>ifUe=iXJx-aSeIj3kOlZ!bR|KYu+zM{+`?s zN?O)Vn9GXF$$E@f9_F)gUhLAO7ZjMnEIoaCRn!dPHe}&s z?g|}X0;U6_qk7fQAwaEIYYSpE$U0hETOrNNtj31O-o?cQwh<`fGOK9;4H1Gl)$C^V z(9Fox)jBTCz{8hi(3E>FQrd8EWKM_b!%&Y5x0IEmi+yHY!Qk`)$_wPrFW~stTIE{{6a6k}YF@R#}%&MuW>4lD6T|*l1 zk+7qT*pr|~;^Ja1kgf0Du>*e%r<6W2m6ZjAoj9x=XrSlKK7#H&bvmW6BSFwxUHuqT zetZ9vHEC18N+6Zw(A#gH0a^*7cvQeREt_|3%mzNi)eBfXXc-_$tngN6mjX)+2dVBg}kN{*fH~Vsb-30d`h!0rOFAbriyMI@A z;ysfdh3O{tl$%YU%dn(;yt8e(pZ>*B@5cWEEZ_k!VcTrQ0VWSqAOFs@xIA72O9IrZ&Z_GDS|s2bnM zIy!bnMibcTkS)N1gLPI{2$@TMLBWE2_q%u0fr`Mt0}czQBFKY~>X(d+$Q!MK?m#Ua zCG3H#9sxy|*L-SR9HEb%l#fqST$~C}EN^A=U%ze#gDC8A3x+*5GZP{=qfeT;x*4gd z4Zx~HfKEr312GuHegOB<27>(r{{%Jz7c`+{WT{BDp2t4Bv=oQt%e)=vvH(Q@024ZK z3nhWlDHHxr+?kM377l!eQo9SYHh?c@1E}Am>;{GZ6^|)UwoUUs6eyQsBe49P-?=*M?y?oJzE2x2n2qNcN}Cy5N3g)fm{^AX80VCy1}{Gw?zv< zHU|&cP24#?1#d|mh>lC?1?h14bFbxo3YfXT@4y5?hy_`umMXCEK{rWbK?@MG1|aZk zW4^?Eak%TltYmy2=09}0>Iu8?KbDX|mD-a2Xx zEf@UPZ{9Sj9EbD_EFeA_Zb50j{a<~yT1nMk& zQNRVPxEk7NKw=aV69X3G$h{&u8V}G+h>1aOLLC?=Iu9fh_RX7kNck}sL~Y4_dx#Ez z9>dH6Ga#EGko;|#VyFA4~!O}#>Bx< zS5aw829OK9Upr*+_%u#HBmmSmwZH>*2bjAB0oZ=c02vw?Ekb4Bgt_+1msyF4Bnas& z#m$+NXOIEFhE-%D3Tp>W5X8srD*@=(w7!4f?4sqRC267Yum5{O&k(Ew_$wzQs^rg{ z@q*hx!D!S~*NhcKLmLPv(|@P)Yf{N|Jy=x!co3-!4G&w#+!Yi|?^t+WSQyP55fK3j z5hVL4_~@+|Cd?VMHh|v@tn3372+ALrKbk-{febMCkfT16kpbWl6z#$j!lPqjOyg@3 zc!9OGwE$Te7|;f^Vq#)Ku?VnFz+dF2r%!{ANMh4`1W`C&IxLpvyNrxKJ-}XqK*a7k zgpZ)+hIyYXH^c~Q2N=P{&JHToiAc*hZifTQAF0C)KKFdP=olG}WM0@_LFm?p4yyhR z{hI<^vIs803Ew*r5cG)Woo^Y)+&2N43`FrH1O&A1?~IIwgwO*9?#VH9b)MRO#&|7i zPVuD1m*_kyX)(u^o-zvZInrCV?j}pQP}Mx2Ya18<3K#Mr;AZF<87YOlZWokkRxaH-x$-s&rxCqf=sHp4iL)3dq6&{#fS8lPfff%geVYD7*pY6F7JY?gL;) zOOP=DgrC#{QggcTC282XNiZtV&>j3UFcUO%bQ~bEgETB=M+dM!QbIJ8mgYc3YL8UC zF7KVD-^Rxm_oxe43cBBk22a%@wG(g<0yrKk;V77?OTjiD&I5XL3k$}(cVRdHKub;C z;V`|o3+EV0v5|CibS&(s6Kq}(hCD5?_ z#s(=y%~J-OB6dGP1YT};%A zRDaKYyD~CH;BrY{DKilX2mv5cl#?^`GsTf74Pe!u)mp$C_-w*Lm&q^(pcbiCn_!3e z#etY=rv}HhQ?0T1R@n7xurVh0()S~=?z}z?+B~K+BXY5wgv1rxD%7=rHuDA+7Eqc{ zjlToq*{q79>@|< z9qhRYbcumeOM}w!PoFktn=>;qgn*6(=>G2Af=$5(Q#Ftb1G@nq4`T!tPFqV0N@ive zj=?=kLda6*d^yNK1UE>c z{~qoixkWNQGiG^sRgPBoakKV0X3A4p26VZaNss$L5I|Qr;K2*zQcVmDD)d`Xg)*c5 zu0j|F6-jIJ^DjXN4Fz=ts+NFm19FZeH35f!f-yLM7GD%9pnzJ21uX_XT1(*;=FOYr z(9;)+vDoh2yY3H8BWRJ`(iPkYWW^uhC{`7f8`#*O7CbfE*ubC?Orh zr4WL~EkG5luR~mD8W#ebu(Gl;2x%OgoT_STZKq$3rvNVxXmA(4HBe*l^c}ZP_CRM* z37x`N0tQRB{Cw(@yCby!1gv`j8DbN9o==Z~?eLqJL#L_Y28c_vPH+sC%wVBIAM!8hg2aGr)IsIGZi)-v7kD4<5k18Cc+~I z(#%v~v?Wbj00M}jCJFg(KK8vCl88N(`w^L^q)kut*Jkzx`^(LPtwaLF3KI{Z{(qeFEr@UWKLR*UTYrv1Yq1J^x+t<0$BvY&ikXn%3fyzqVS zEBj--QT1OICH=mbEzEy!gfYyCNgu!qB~muWLEFo|=K}kaTX_p=dtsH3vUc5a9Qff( zRQTxQuTEFYpS+MS&INS4qju@zJnOvoVEKB}xLaw&Eywrls!K-t*=?>j|MNE%$JWi9 zg_~$AdiYQ9mTXr;E9cvFE+l5f1xBaBpHlg<{mwI;yE>@_`yNmY;$JO? z2nCcqP!obgK_T&kWE9kLQfp~|BteZM9Ah?o%VwUtIQ<4K9wtPn0RaIeA3g|KlEF5B zeF06IcN+Arpv+>ZG4@SJJ)Xaya;WA~Ry#uNl*NH1 zMfSGF*{#*%u)a56q?n#6E5DK1$PiXmmSS4h57q+`8Vo1Ef6oerAgCm#pnxhCK5rJ- z*C5RYZ5|XklLGGsAQr$~Gb@8ag!hv`BMo5C#5X9{<_9?B!BFlY@J0W>^Hgugy^F@D zkv&VG69z66?4%yWwqL%X(#}?#*t)jm<`+oV)x0mp-6LJ(ieV8Hq zM7{QiDWo)a9GO?(f`eotnrZT$oSgg%XlZ&euduM5ib`C#0EC(R8uH&5@G#A)Hc#)y zUgop5K-nSl+0dAnfksk^hZ6s#1@QcH`%(lAb_G(cvaBpH@gOVCg`OVQFff`yR@fEG zKpXQLf(T3+Dk>_dSptFpbjj{e1q&Fl1SSCe5N09j>ZH_xNfZF(As~OsFF#Sf+ImBh zy0iRE33{R-6^tnD9&52%s#o88m)9% zQO0@=U^{rpLD279K|@D^w4gL_vjwd=WQ%cKs)~ws09yUoq>%5R&{+PK2|&396k0sC zRDbb;LbP*e$PvyH1+I<=OI%Nn>arTw0j2!IhhB)1TJ^zs-=(L2T0sheJz%RqXsDv7 zcpK_zK{EH3m?rRx!43$FK;*UJR9{-U2{IphkN-*G$F7H2sOadBzZMM%2_Y5ossmRH zsJn{`mnhVXngKBiev}9)io6Q?m#TDR&TGB@FXttA7Wf0A7^tt4#020Qa&`!}!n%yK zoV>gvw^evt<6O4MmAUe_F|SxgzI9=4QMRaYEV7~<<1utQIU}#cOC|vSC;_1I}in+WrrU)^av8+Czuq19!`)d!S~%~ zW_CY4vJYE@lpNI2z@R|U#rpEHhPt}M=KmvUtx>@jH3McBZgmV`A(S;j;S6}(2Z7Ow zOyF3d>=ot#R^g@i;R!XK*S<2;v9Cbl1YwRU3o(W+EZY5@9a46E5%@D{>FYv&Tqcr} zl5SB_`T&##u@dBVP>>Vd_U?$U0f9hf4Kq-q11AAzKx-hVBl!Ir2-+V$lMupzin7C? zd^;bkOL;kj26o_&0VjeQ8pytavB`q)pinIqSR-5`_S;@U7cifg&>sW&4(2i|NZ-* zzb!p`Rt`cK$hiW)Luv!HTD{AAq&Lx_yN2@nMMTxCyq^djIr)eD{2&fkq>%lF0s2cP z`WuWoq$WV#U5*^Eez%v$VN-$#161F@U5v<2V%@j_RWF@#Sg#!bVgM~0Nf-q1d8MU3 zYa^glWC)A~Y7(STqGF(mMl$j{c-AoUHXHB|By!Q)E1%AX6#gbA*0^rzYG{l?mvO*j zpt>ri?F&@tfMwgzdkCx~Rr8Z0zJhG(z3Iu*q98uM59DfyBmp@RAL9UA|8s;qEmFZs zjsr@P;PqxuLmF3(yA|TlBZECBK#iObIZ zd|C$4ItVpgSbo~^Kw8P86&nwGHz^4gnH?|aFujB_*@`G23)b+%v)FT*uq}WhT4bXN z$Sc6(fNTg4S>6cJ0Wh1Qm=IEeP6uZ4mZ2F* zvr!iTU-}G~T+pk~1ll!1cnmujtSI~obAc3;xbH3kXYia&9dH8R4`9W2vOo_8fT$!N zKnuhwMhlW=Z?%Kp9{t0@afYHCSh}AII0`3%WQr!R@Ou3YTbFaoL#q1FWZ8u-FOrp^`78WkW7`2{#vP; z?I$rD0s8pr6P;$C>Cc~OA3odx%7MolToTkSV&IU2NrbHj5&y++yN^Xh77`NZ2zLlP zA%6nO8^X^(Ap7*3oc3W?K*awFPpi@60F;$l%F5ZfxnGtXAi{?Z46`KHpkG=~f4>dX zM1ybuN(rN5Vv?cJF&HwavWnyYdwS>g?W$Rbx}%@sJ+&4$L@L-k%#Ty~vP8b9=KdK} zi_iBF_P+0xRrrJ&I$aDI=PnxM8qcR2PGkQ>$SbR>*8ofdBK}ZfR{FLW(1CKLS{oQZ z!z1_!Z}<&S69}zj}e zD8k7ys{g+^cBFIt8;KlHXLNn$pOFVp5Xv!M2L^&30mLY9$Ax`>E&=?7>7+&4J;?$~ z>Oc@jtZr>7;9ZS;Z2ygP)42`6C3-YPtk?b>rr?4g*6J*Jh!gAx9a%o9he^=`R*6Xi zJb`;YoN0g@c_gliLi6JXlUJOEX0+xZUu|}|yhz-?Xxi2+@28DYhiy}jyT+6F$C;+ISEaoXDbY$>> z4qt#-0>L0BEp6}WS_?I8LSAmm^8HXa(AtWm6amIo$Pj=Lp&9Ss0yzxW0chp{?M6Vs z3K%N531(3Lr4NGi4H)od=u8F19(E(>qtkgE(P} zjZXlB$rSV?`4-rMRIjClfVKsaLDyWpA*h|`SO7X2)fS8k#HG-Y19)^O7XJX9bKbps zm3CGSG&x)aeMYQ+cLrh&zBMlKeD;F+zZ2>sA&Vb{&F55}u9Q?7n)h)|dH?nrjaW?& zDTiXA>gLj7C5peJeMd{p#FYBV%3AYA9)|D4;2QF-$Z- z*z#1m7i1>IOABEU_nhpIi=(!^D)MI|+siCMZ9}QPFf{?{5s=TF>vz-a+OWCFJ$`3F zf4p7j|5pv5KMFPG&+1X#y<;yBRq(Fl#*y6DIqGIDlU*)GlG~7ONAYjg+4}ySL^d-7 z0isPh^&9S4FGq-8k*{7Lbnt$!pTDfOmRqBYF9d2A&!Dqh-9jWkj?mGZ<2OO>q#bA^ zIOF|i8h91teK4rJw)2v7yZ27x|E%`&t$ir--mrvs6NT`;=Rvd1x;J#E3jsd@sLSl% znLiS@sJ!=;pip4xf$woRNB?us_S@`Pi6Ujz8ScM+(>Op?0oBD(hboKn&yc$iz#PG8 zt$!`c8o9I#%V9^Bc`dO*j_tD$!L94LQEltJrfn!ZjC?f!>4y}A1^;xwv3qgL#}9mV z!k~vpJ#=Yv41*?xyUYb?k9^Nh4Ki2)6|toQIVNYaS=I_&aYFC$jE3^?>*I}6x5Krdo?jf5Zk3+ z$y(c504ETkavlV~tNvqImAd>%@}$Iy%N%xh&ZvDW#ERXbGQz)jMxN z!*z0XrE(d2$Y7?L{^YOsH6(tl|wE8`r?blyc_Z5hz!Th{b*{AuNu5)!NG!-wY zpeUdu+X9!Pg$GluIqZIY;Y|%qK%GD%-EBt`7=6r;Gk#uU*O55?T|{(liSO2^z&E+1 zyuu-?gj}4&l-arO6o`IXJD%rk_Kyj^I%2{l58+c*!<}q#4{Ki!UiVvKat+8CkWaeD z-5;2c%N4}8GDo_wRrJ%(B%##}hb9m&g+y&wG$5quMOJ^wxf^?l`P}Zf$%FlvB|(io z4QY?nEDlyO0fg25`{4fGH=#_$Y;t^K-CK9msh)jx%rBW2F|*j#zC#lx(|&Ybqu4>> z`%(D*ZpCyvSKqxM#Hw4IYOK0|PetO4NJ+1%=3JR^WvYE6JE@ zR}zgoob_&tJD=p5>p~#B!eMkc|C=& z(9)WPna4sWQL>FEnuPc;T>R0$!v2+B z78>fmU>4?&d?}hRCAE8;Z+}k`uTHH-VQ}2ZC{|}Cm(=D7Uxp#llz5avF-EaD_7nH8 zLtM9J0bxL_$Exq);TmK5 z+Z|gulAOFbOE3QU=}_rN^#{*sk_0A=>cbtyd|y|X7dta{W-N#FFv|>$-w2j|ORCoj z|Gq{Mu|vx2TFN(u-$j2dF~{+sNZgwsZBz&=6D#m?_8uu24bR@%nk8Pfz^4C9>W`B2 zZPRk%0%ZHhp}88^|=7`at(Cqhkn5M^Topz-LnRR zFosPU-zKwG*YBM7Ru%qi;kcfg@(83U8&&uB^`!|gn2|OwJuY+R|LM^ZnlsF5LQV}g;O3&pq$=A`s z!!MUtmT2CB*TtsYC|7eccYgsxL!9~BB_p0wwMTxU@=E2n?2oX{@n{3_CUB*rgX^;e zCj-3yZM(tgIkUG*UmS%hCv!#loT)u441Dt&;)qPsO=?Xae zvs{RLLPNb@#VB2_pxmT4Mi?%^{Iw?mXZC(c6!JCZkzrqdRlR0DB_jTdLYH&7M$G~{ zdjcq8GB*6qr;+RIIdZ!@vAdOO#eY`#_kPInP+e0M$KJmS6VafJwxbwCjR_xH`CW1j zu^LYVCC>0v8st;6?&O(k3B;2kx6C7QN|{i9<>g-~%Lw!EyZHrUDylFp`MAhAE8_Li z>Wy%`y&7&5OKVyn7=hE@uX@r{bTuP8d$$d_-7Q|z7PkqO&!o44rGwV&%7HzmdwnhT zIA7aTR8>uot4J|n=yKv~U-Q)-wY5o$kE~8j^&V4Vr5eN&z>OR(w`q|&AI;60;D(xO zL7v&;RYsK@2OMc^{pjL_t8)sEMKRULq*V`{#64ZE{&hiDvCqh6c5N*2VT^Pv3>QWB zrQwwO_o&VY$KRK>ItqQTC>!+knm0btgCQeUnVTy!cp3i2sr%M9=KO%LrvHU z0rBshvkPR`Ylr{@HtQC;U7TT*@6_AlpddZzz5N)T{#GL_s#CQ(7D*OSu3Nuz){A#`UKD6B2$XK+Xot{8R@3vxBDl)X7( zd7g55)Bbcekye7Uc_Q2(Oxe$E)A!blL_T&ZjIp=TVya+S=&B(zP%`Ba%vpxd+OnwDIhWUGi>W1QtzTQ>DTCJ`BHPH z(n=up?(R5iq)S~L)(m>QuWu>L<=(HpW;o~S?x}X<0#E7ZZaBc1Q!bD zF{KQ(^*x`<`nd5XWQm`vkNb$Vt0&d<<{ya)L~!+wNd-Zxk$h`UiEns&>Fl8uS^;e@ z|1=DRbW?n@o~kQ{rh`>O@~nH#_@bSs$`5_s2~Hu}seVW8nRjg(t(x*`;;C zkh4jECh$9EOwy%oK|8aaS4}g$eQ8@>FOYwDiItZ`xY>9hUU4z}GoUfqE^bu$$DG}m z7k@fa!3XXO@h??-hX6|ONSv5wHBl@-6iV-=>x-r7I; zg%iI?X*1X(H3DF1b>I1x?$FJ=^q^S;lSXBL^B#Ub1cH3ECt?B8O3`aNRzo^)soK9w zO>(*hIGzf;tP12K`NVde@s0KN6d_Gucc4NT+D6RgNQ6{hBj* zsH^tRuVTY=!$F3fz=2*Ja?Y`=$ZQ7bYk9lYDwn2cu)CUK1>E{LrR>uRdht3hE3=ceMa@9BVu zOpI#5D3@bXaM5a0*^ns$Zoq%Ly^*`;rPTI#*1#1PbXDvM0;W57p(c@bI7s{UNUL;1 zYE-?s`9Z%aeQLn_%y}a@@|d^5;vG)%_juYGxr;vz%~gs8pz&bQV=L3D3cau)_ws&% zNn`ltGNyni$?`_Qf$@O-n!I z9OH#4xVpwQ@R()Kwz)iIX;u8g&p3MCJM_c3(hhMgTX2d8%NsUk&w58|N!0gD3ekZL zGrv;(tR=&ZrWxyljLtW>)ho>!-*m0SEe6WWeviNOL~#&@K>$5Vu{!lL>e^svHm~4R z_%+JVik9o|h&8KXI`%m(utJ7EXg@FzrIU8Rv8zawj!nIKISS=Qocs`RRNtH13cEoH zJLirGZ?ZjwUd(*ABCCZP*2I6V)qP+cn0b)bekYdgLV?q<1 zDklvqwzC8T8z-*89M}C!z!fywbJbA1r_7UjlIrtIkET2&Z%w?nrT^78lS6q2l>i8h zf=EM+HJa)VY&Wu|sFKKkxLs%le>ZInUrR@ z|Dv1Nr+Eb#0$(p4u7o@O${W~6T+*=mblxn`0lIgA3=u~4vL03gt*$Q=0+?Up1H^{ zmWg?{q7Cvp`+I#Y5g4iB>zJYEO{`d~Q)`28HabQCCw!j85WWC%vf}Xqhh$zVU$){e>4o`tC^k5& z6m#WQixLog{TUdsSt~+;;%+= zB5(=~Q84F>JLmYr9`^o?4aO_-7)mZ|HO*~}l=^nqqAy9Gj(0oJfqRV1l;an#MqdZZ z@sWB6ztZqRVT^q-*Bw>tM~@00`_%B^iw?=2e4zgigfVU7nzwb0#^{rq#HU|Nz8BUy z;@gXakBKxXHbV|JZys9VGUjL^vjE-YUzo*mOWg-o9=Z$psEyRh$Bo~qd%NKiuGS&i zi0y@=&lF9BXEemng>3Bq*&={9;Uj7tQO;L&PF{j)OT!z1sZ7;OXV&>y% zEuC#f22~JjF;T+ReBW6j*;&ZuB7F^tAI~wO2zUlN4P4#EqJJ$jJM{GY^nCK$xywSr zZ2k7nyv*YLMx-q%ibjQjgP7|OOt9}eVTil6DO7~pLR1jl`D1mJShV3@J7&gYb>Y4S z%^r4p+Wcs0BZ@(ct(E~27(CBWu-)3jr5yx4PfFeAzDD|OPEl>0uh88p(^VhWMnziD zgh$6uvH#0dpii`|)QND!H?+>M_n4pW*J-I=ySK&|BFQ?|V*L3oS4K?H`>gN?$`yLk zoF^mHbjkOn@3U@O`krjt&Unbx`uuGl)mZd#Li#MVuU`ls<5)!pto#wavucCQ*hYF8 zX;*)j)Ve2F%B9(8JiWMMc8#n~_UOy*@Sx(?F3|wAPh9#^cxoJnRL2|qWn~^GHq$@T zevOmaxGxS>-opD;D2CjSs-%Bqe|+a8DniM7cHVDC%4K>XsA zR&d)vBCc)I=%HZ$;D?zCn_agm{|L0ZUIuN<^TnCwK9(9SixD?F9N59XHc}w{>!8V< z!94ScXSU~mCL*F%M}!40-rcqJ_-OoVDs)P19y#&}QMAS9O>Vy0g$<7(kw$4*s($IA zGyGAec+u;SEK0t_uV-KG=nLh=$}gE|g>p=kTNv0l+heb2pTzei(Er)0DM{kn@t^uH zEkG%Pt8Fc6VzkWb=*t6gjTr3|)b+d2vd268NS%9{iw*Z zKzz~1G!)Ai6Lc>oPtRwbb1{tnOQi2^s`?j+`Q2OV9d{Y)<=0L8{X|ekIJbxMOp-|4 z{jioS(``v}`sAlrq?=KDBgbkgi-X2cF!(ZJ_A{D&#=E<_il(`)k{@kdc_@%Je{^!y z)Zh;f=jUx}cC;KZ%hz&@i$<-c7?~8$v7TO2&Xanb2ms_T`j5c`_1m~JQT!qI>Nq#qO%kWDXmQe5D3cv9xH) z7!cic7ZuX%|Kes8yq_T#@|H3f>!sD?{Cn}>U%fMxJxM2;@WPFn!lDfd>ce4^vq3+D*(b^ava_vLocDd=aHsb3w-n}Q! zYk686muqGifJl3;9!nHaqwf|q+k}}gyeRft&c^CboxU8){4YU*>N=lk=spAJ%N&ce&QHae1Ke^!ky{S{&OrfbmT90y5xRz->%=Gl{o z2>CtA8u{;nI7168xqR~1Bdqy#teniO4s|!aA5eA45K|(zo9(RoSC9_9jYl1%c=_?yOvV zoLrt|Bs`jhwE?5Bc3lqEo4htcMd%B)eeK3y%s$^e_$-VohOf(?!|!k~K^lZi_*Gwl zC5oFBq>U$t`?Of`FhYLlAd^g3XZVF}$EJOPn)knZvs~UgH0G+C)pvc2B;J!K`l0v3 zWShrBe{EMr6ix?Mg!z_Nzx9?rIMj>I?|d!SzjIKc&K86M4xk7#s?F&k`QqS$hauRc z%?%!%VJ8-68M6e!na??5hLwMc2%hY_+x9Xmjux)LNhNU)IbyTD$z=~MSa>9KF^Ww76aKjpI+vkwCVw z9d+-b-l^|#y?9EtkHcRTNve9c(}g~jBo@{p7S?wbjWPRHk)>AZoM5xmc-4kKi*@-O z0&?eT#FN*lm7bbD@H6CwgRSlD!+V+~Dbq@Q<7Gwk{ARm}%jeEx z1u2`tYun?xp1fNx*^nztD@4i#W*@xKB^aRI@#EVOy`a3*!e-b({NCkP-W2ywRZC*4 z>N}{QzY-I^uJFr*pJ^%0jzMNHr`coGwCqBr*5~I>hCjOA4d0gTEyk&Sy6^0CSe#1f z{_NDo^EX7pLdVl|EY;7DyKy*3Aq{pvj`(%S`pW_8cEWu~)7m)y^5I&ii3#|?zFjn|a# zrk$PGcrwKkJOnQ*7lup=Vaot|(`v-|3=g2GWww2McZWdxKi4*Hjrc{H#!}wDHWL&U z;KA=^-4ab*gxAxeuS4}(B!u;PeXvKF&)nD2R?6vtAQd#2B8u;Hd$ zO++OVr=OB#WA$Z!yNZj&d<)~|6_oqh?O$mOAkb$pPf5fyb$qE~#!jiKZ zjrUAA@0zXq;yZT?l7n$se-wQteP-$_M%ZrG{mtDP==PLsm6wRMhFjXNw8RG7A!8lg zxeh*xjWLw~W1>xP5)A-$D;XmmAP~%|hE(`#TBdIWVj+il!8U+iKO;)8MY6XHBN0{F zPc>rzCr*Q4(Spl)K-Z7Ay1~OmugOK6n&3x?aFtgdsot?xt6o}2^wp00dL_BBv@toJp{0jE6}B*|2TDcxL)&gy{huiFBdcE z+pkn5(}8uuzz?1DYEKPq+aw4v9@}T88fGpVYJ24tJrN!I7Q9?cf4gLy{6&ay-dVr6 zT)s*%_tYM&vcVEx+m&(F2Rg0gI#=|f5sUJw=BTPDPlBY-m1%RuqYopp9hb>sG?Qf| zJhnsI9ZmVlFUUoi9;hjyorM53s9{M>*=ttxYu|z6mK#$KPJ~2f8qD8gX=0^Ku2{`^ z4h}1L6WgL3W4SmY+Is{;%*SaTO*m$CRONi<;r{qIIJ6%_aMfF0lgd-uEjF=;I)>$234*PKIEMMc!+R5oA`1 zrnr9z$^TRdlzG?UpcJQy|9C`6gPdOl&mHwg{5v3=ZgsF(6{VWs)_A>m=Cnq&HQ}(5 zVp)M&<~eqvP04G&6T31cavUM3L`?j~goZ{`>#A<)emXG{VDDuhUVxZ+y2Nij1HwWF zoQWa*Wpd);WYNM^Vzp|mRuw5=H9o!_5>zQUZod+#}2j`Hyve*aOE}1OvdT zU2)Sx`%G3gN{sI2`b+I|mpVrCmQ;muwc@2R+Mk6nK`mV9oY)l(r4|WQWFB9*=XF$X zNeW#|-Ws|1wpWiqbudmxrE9NHSvJtg&y-hwx2OWk+&;Gs3U}?kI3Qg>?7sxG_H}(N z2I2folsY65?`_09=}Fu3@MEy`@#K6;?v*WiS>!%L-E1X`Ti|j!3rbSm+YY^L8w7ju|<@rV_)ZDGUH#pkx?k$|5R8Ba~S7;IDwMR zqPBLD!K=52snI;g5}PSXrSELZ_tUEt8*X@3Vfj~FfQI`cr>11Sy0E9EI1=iuZU-^WvcM^OuR?2 zC6Vtll{!+)%TSXe`~~N%gHOrwh{|gcrh@1mpAdU!t zfze4aQ+|lXHPLynIBGgT898{!++QQ3cnSfgUMY7oN zY^SkSUBDsCW?=bHsMccoWtfn5qBhg#BSv>k>B#)b8)O?-pQ!)&&({UgDaq6$A#y(ymNG4|nNUtIWiS{@gr+M_jFow)%96J+|4wfs7*mIx?dHccvinbBuSY4;h2#2 ziQS$5`wpFMMcL>W1l|y>sr$0MRU+DOX6RD>6_S_Y%@+i@1&G0JlwFEP1xo^gxP<6vVJQdPv_nyXGtMgJz#F@-GJ zm6m9&u&6xD&Nr+2va6U_XAkWaMERDb{>m!I1#><=Yo{|}lN&Pd+lPsET(fgyVz^#0 z-Nn`K^6=N+;n!@r+e0m9B*>BA5Ud$UN0di#b5-`;luR}eL#gA12zV0x=Jjl?$Q(7f zAzkmkf50H-XlHU8_6KQGzTmWd>6dBR{2DWly=Ki;nNBOXLJ+@Pm@#Om`?q0l&4RWM z(j%gH6YBGGU6GJr+2;Hh{WD-dAt52&J`?5L)nsd8fo@K+AoBOlcI+Z}Ej@^?&AjT$ zhK=27R{w!$o3pGX%l@P8(a;msV=Vk|#DG2H`U#nQTXS&kjGfCmUBvXxWA}zHUa*$U zRvqMC0hU~=hh6iGx3Gx4!^ve?& zpr%vcBL0CF;^c4;JRo5&ieai^}d$tlxNy`(TK9KI$u)>OG!uH99;QTX!7*U z*5pA_zD&b{<+)49@$)$n{70!egmWN^$e=JxL7|#!XKX2~2xSrasA!Vv9CNjf*Uau! z7+MO-6TihTN>wkx%N|qdHeD=7t&HIE&J8I{9koo6I_94yJHE!OZ@H5irtlbx$sa_gqRDVB&mv9d70N=zt@gEm&BnQzsM~ z`7|P-kPYSu2-``Q)e=|g|L9o}VCxy9`AdQ7!2^O3NX5NUmTg}!stq=C-E$M8;!{BO zZewAhNWZ>{d!165_Gx8z{>aNXa(k`37e51G(MTyQE@hRP0X#5Us?Wk0O*Fqd?$!5v z>D7lTVpWeSIp(Up2PH~>5Z0d`X8yU~V47?bla+kS#&@^y8>MFb+8`0)V;65zlk=_t zW++M`Y6{r%c$)a2TugKPFO9>)`FuaCoRpbi#v&9iRSdQ_oNLhu=0D_{%j0re`UQVs zY{673W9BZPzHVo)Xp4c1;j}W@iG3|tL%^YDByywvfb2otVXUo=NbHhZvVpmSQl(?= z1-Uf4>dd)g@5~n-@oTz4A|AOC&R)5eMRfAd?j}GaXpw$N6t*7P0f1}7!w?qQ*8aH9 zc|iT>iUg)y$Bz`1k3Xcyc=^##s5_&XHOY9DVkwW?Vo^J|))fV@Hy-g}gGXZ?+n&5mSH zT=qL29jgWMTZXSI9F1raDe+Vn7<;EqrgWCG(Jk`V;t)6$_DVg^`RgZ2pEn5HzOgn! zrPcHcz?KsFB(}jZQk`tn`J43Dq$128`^$owN!2=bU>%%A!|>Kt1TezC-hocyzD96R z^nmQJ;0T3gOMNl$HV4mU)= zXYe4t@T8!Kqdf_-Lsv%4WwiLuV;GLAc*gKorb)@oqCk!zM_B6d!9j$=r5%b-b}zn9_7{{yRV}TQ96Ndu_LOIIjh>o%RxPPYJtzC0}@;nOh!W zuW6n;EcHG(fd&oG;SX{I2|)gX!~_I2mwDg*1jr~E%Db;5ydJMNRr9M@qT|!t9&a%% zc%BlgHfJ0y^Ic-|V&n8%o@MF0xOenXZ%Gt|?_&8^y|UYc^k0|wz9xJ~r(~fBUyf#o zP~~06ajiWuYz;3mgYBGit(aU9k^Ip!F)x9JN{QP{O_f^79~+^_=CwzNjB7FK52(_e zyB^OX!t+^Cr(*P&=c8+)7-li~cc=M9^qyoB zp=|H1ptK0|667Zzed}YTY*ed#zI7`j=7XuYZy%)4F~w0OuZa5>`BRHA2@XEQA-fpK--V8N0^2Qc z78aMy)Z4!cS1`yGYo5^!$vmwH*qAT1_7m|<`zFQ3ug*)|Hn)hr#v(vve;TCo^}F2r zo0%{6J_j^=F5?0TOzAp7A^Zu^zsbI9@OogF`^(3j2dJ+czB)F;5%SQS$)lfl`ShU7 zHyvt(KqcfnZk)722}eCqhjXIJ&=VLpaI2b($0PUSI6nDmcrGDoo8l%q>__xT+dTUG zk%Ua8Z|?887a@4btkrEeOZIeL+cWLg_U)m==r3vUx%%wNGt?)qKGinSFpH9`k$u-) z3R{Lw@=%;%2R-7-w5nIzaD{bhtVnw*;E412v5qO%S#Q^AXN_^2>j}x7J)ZSBpeSfc z&w`B_o7-cG)Oo?+viNneGV~;CX_WXG&gcn2{X zNsY-R%cR!^_|qqJteb)xV=CdFl&?7Lkr@blxh54tJ$H)EiIZh+JdtCp=>kOs7pKd@ zj=u0ZIMbJ8n}OE=kKcN+C=Yt6O2XRlyCl#|v2>@-3Wo`&X)! zh+tz9{QM{Fk?B&wO}~zEeBQmSU#w;M2Z8h)HdjBulbhnICGyf^R;xSmJo z-`QhY#xpVhlg0DylBZlU)CAE4dnx~Q+-}8a2JLu#haGu`J+Y5Ow34b?*t+y#ExhVA z+BRlj*#71CEEuXJajG&Bg9h%(Yem(JIooBH`!SiR%V+Pjn^)929d&D6#Ujb3qd7LC zm4>P!$}VJcNNbLR*lRHE()QZ(gze-NQMWKnEt!G;Zb-V*eG7tyl3sC|ib!+Rhzi*f7 zBwMg!Gvg~8y#IxKfrl)!!t>6fFOYJ5WG}$k<9=7D1PEBp@Py;$Gg#qONOK84U!ubL zg{&!Zp`6bU|A(u$468Egwm>&1At^{HCEY0sNGaXj-QC?OUDDFh4bt7x4Fb|gN_Vs2 zF8t1S?>YC6KYSkc8*9CD%{k_nW9%J7R)grTH2EbVwik`$o8TO5A1mGc-WxCS1S%=# zdxt~APK#$Y)`PUZZ}H~@7_pF78muqw%7}MnD!BJzOWGY?OTE75l2cX`o4``aq4pDE9mr?O_lU~I4w39{Lw&TDR=%Gvfvisf=*z6rJ2&EeJhrmzw z={@cI598+bt_^bD8mt&*xqE6w5n2hsSF_iwU%tOILMG^=+eudcqci)LEO^~hqSedu zVezlS=-1Uszf^^T8u;&_tTEUxa;hwigtQ-1GfN*caUJ&nx_k|arWDV}AWb2W_-T;V z*44vL|7#@esoK{phzb+zd|(}UwbAuhR^rr+_c?i6AkF)B2ly+wb5?|iizH(C*t7t; zRV&Z82tzjPG~R_$I3i4NUprC`h@bxq;&AN7-%6JK+e(1#mf`-J9`bjgzHNF`mJzMx z!|}ZD+h3j3D{nU4)B;*z#@P&3T=*XPHZ4^C;;03A{Q*=4+y3o>vt%kNy3FSe&tVv& z9PI!DPI@L0tACMgx)j5xSO}`20#?}Hex@FWE=JUqo2b<0J^nwYKA;5xN}uW5vi_9r zo+i%^Z&nsaN(K(hv3S4enh$1{vx(_d_~{r_UX-=|K@q?Zskz>|*~b$4ZCbqi`8`(= zJi_nSZy~I)O$OB1OZ7P^v!nFp&XYau5(FrRY7fVQGo$HE7pZOS`)lt;sRm-(4~D}A z>pH(J2)kKgiG7lnz01}Yk>xPgs}6Wqs$TcoXHQh!^Q3k8WRLH9^8U7|YUWruQoYnh z2vGIZ>Aw;Ish@KM_EMU4~fTSPr$9zQir0qp8u4vY0K8&+bLW>YTb2?t|n-H z)|hX{R#1EWo4mrBaL_sM%W~njRVB#vu;sMg;t^E;v5c-(FJchl^EwAA+H(y67#9oO z26jM=q!($%-;Z>DQ$p~PR<^C9Qjo^lh)aQv`|T)?eWr2;#J^?C&!7$Vx98r+)Q6j- zJtD0<4a?(SeBi{)LLk!YH~B^h>zn6C0RwpscTaOY(r(}-$HH)UR)e4VQLVqd_Hdz; zI~l(49u!%x)~D8VO=@gRY`^oQMImDeGHUBtf3 zmujCowgU2D#a((Ph9LcLECfIz}Z;cwRg6%LTIT&Z(tpNO2MC$iY?0@1QgbY@{1bHy%a z%Mes+G+|^yLAcnp2fncXGy+k1dvOFnwU9dU=+Reg;Y7^kqdat*fKJSD1zB$k35~2F zO}qau7l80jhr~;90r@YE8O!Z?(&-x%n~(GUPlQVrrEZ3c%L?y&PM53~?IX9ObBn<( zwNrc_Uj7tzR1QATlp2cM7#y(=K`9`YvupU>JI4s`V1PlJCtuKz(2n>FLao1{IbCa$ zCGbb}se?#h)**q3av}C?`9Q0gvE9XuqdXJu5;W0dxGu4B+P-*F!>S^gA}M0KzJ@gu zMS{C{U@#kz5>{;T-+2(-3c*?NslB$BnYT?-xvVSezp?_9PRVF1^Yz)UW_sKz;ld*J zplF7L+VPUj?MFQE^^?U{QYii~3o4ef<~Af0xU=^S_@~|({w)43*;@TZD#oBhZN2E{ z?o%<+`M5)L39ZQVn7T@;lr+<@+@Q2$A*U7!vfGS7o+THW5;8`{-?M*=J6eb!4b|_f zAUW%HEw9@Uw!g4M-`{yKBv-(cVel-IkO1ZDbJ1cwGG!&D zrR!TJV)vaFOSj<5XgLhJ+x{^2VU5&H?zt`7_;Y}GuwGYx#Ue3CVYdF|y@D-yZ8alr zLmYJm@U{Uy95u9unW7i`%5QcfE)P&HkI)L%VLxLq5=U*YLeK=*8V9Y@rR^`m3L2yk zgaC?^iMsgV`#{Wh5fQ2&-Q7Pq5Ww%)i!psrV8f`Sz3Ym6jr zZ{++@v;WD8Fs>utWt!>l+@nnYCdb+LG0;bFV}#2?};>Bl#I5W7dv>1Dp1_3Oa z5rN{afL*qh8_7+D`PQm;C@k9)I1EKBjdayOUdzKekeK|4%%$yW?K2T<^$J?L zUC~U8FkMmq(YRkMc#GBde-g^lxt#XcA9Zhp3Vfo;B`$h16?{zWe9~ zcUJ;$cm)}r+FvdKVX*?XFL55&!{|Q6r3MTRYuuLDR?#b)mWmBV&KEtgvy zHI}UKfz6aSQD9AjsG_aCo#x>2oQRycJB_Zk0I{18&b zuNgC=iVXA^3od=|QFFXugUG?iCErp>0&c^2e+A_8hR*$x!sE41s#7%Q*_SDs_H*Ol z5#EcT4H1a#xhP(r#LIOOIS;+X!vC9sOh!!=O8u{q0w`ZoJknAo*IsEgGhNC5+YJP> z6@Rkg$@}X*)_Et!^?;)gNqMeJA*bA0QN@t!-6RiV5|PO-4umjrQ1R`xe}L}S-`b%e z8`qcW-1K*GBIkR>ym$$rhogskC;~i!%_IsAPTh+Z%;@5@atE(n_cWN{?&%F3` zO3e$v#-EWk;Et3zYB6hc#Tfn*FjVlF)V(H(Og2jF z)1xMs(I8(mtbC7JZzs*dL%ZS5>mx8(4`fPTV3n0 zcm^8cFN)#)VP6N>7p@ikwA!1sd{}*S+@m5s8#zjIHj68<){C1u)@8))-9)kpFcU@m ziiNTltRiJzEQ*|39YMQhak#gq0i2t`q%JTde4670)~#Rov%qM{-C8&k?^+0%xJ&r7 zm0{IxxvYMf|E5V)&Nvll(XFC1I(e7*YnyQC8)wlSLrc z&~}DjDu1XW4VVW3Gd>`2|%{6DZF&A7mJ-Fczq&1St^gKaD^!TtK#sr>3dTk}HnF|JMdQc%4W}<{K|Wcd zicM8QY8bNXQLQbiqmKag!rb51ZY2upQk%{PxST9};&!OczZ&Y}cCbpi7md_wV(RD! zC5q2-Bs8BQf^#8VY=bs(*xg(72H3Y#*I(sTiWctVk z68KPCX8>(4y+J(hyNNKYUN=-* zA5Aw?KE47!1U0;f3rA<+m2tP+YtTekeXg^4*6`Ku-&^f<$OP!aitBo0NqLj`em4Ek zBXs4_>wH2aX|=bMfpFWQr`W?iJ2|)iM||^g6xdq{ib`#2W7D+aVQYpp$&AGlV)Le~ zvvwmL2PJ+TyaXfngBhMe{3=vjP4j56R zlr!aa*(anPeOGpC$~Rk-uJvZY_zZK zGrPCUn9!fr9E)jy(Cl;i=V#@oR7;kRyXioVCncB|blSLyqAgN@f@i*&b-hP-5b9I0 zEMaGYlX6Az;?!2A6ikkqcrd>n!F(>a{U=QuKU9x^e^ZI@qKq6y8fTHf)#|H6)kx$9 zEAzhF`jJnY-jY>QkFX82x`gO)ziSN7B^`sTr}()jExAyL5lLuIaUtzDlVueQV0)T7 zwZr##Ge$^ASX@lxy6Oj{QJfkzDVpA$^*Q{TooLjbe#*@O{R#|JtCohz!X-PHo0A|y zs1O*PGc(9Q-k<(#NoC1L;K;V!+G`}*n(MA)g^e4`cMSSHm2il1M3~$-CE3OL8Ls6G z^<_Z)8>k2vhg$d0g7I8*3P6$pu$gl6baqjt}2+qu&B);06m&m1F5NAH%i4m zUkk}S4z>68RkRRLVGQbcyKFmL?abf~TdTF7#soUx;5p~D3R9JYv0lF;+p+sb7%cl* z5+@uOjePGoa1konLOnNh%-s%YXU_n1E0HIp#X%FiIP)oTD-Q~x694mBc?V{)W;NZIl9G@MeGAMd6z9~{{X z<&-Xf5y{cP0T0Np_@Fy7&pOJrn!PVdbinwd?p&48X2Vp~(0^D4qpPxjW$=KgSq4w%wSEt0=#(`4ywcmKzSO`AbwD)e+ZZwZ9eh0 zPz!p0s(+W?mnZl{aq(3hIXc8(tr%Eq1S$ol=Z_%s(azWg3es=h@a~{^Z>PHudF)qq zcX#JCx1YXpb1Qr|2_{b#uqAt3W68Auf)dC}uPj7O1@1viuEdf%fMlPof#Z0-qZ1b3 zM*g~vcm>6~y|X?y;}SA|XV5hq`w`olLT*Dsx;0k^mZt{-q{`LUJ$a`wL) z<91kbnvF!=f_yJ3+Nm01^Z=3+)~y#an2Q=}V%cj)kr(xWpc@_+6Or#fH8i5Rnnw-p zz?ArA{xVFwHqzuk^`Csi32rT26AwBa>PSAJH(Ln^^%|p-TcMGYF+z953HHc#O@-Pu4C8gUU-2h z1zz^DXR2)?(U@#$r5=HlujM&+d73Vp zhS&hBbrnVI^^rr&+Mz!0d-$6Ztqo)ViwZK_H)2Gh7`;J^1afKDxb4?HlZzTR=kKAJ<~AZ;EvI9*0Z#rptV8 zj&q1Kon3P3^}3={swVyv7sJ1Pk*yYj{1%Vh5QW6>JAZc)xa2M{AmQ6B%!%T?{TqPx z5fK7(!dHAAp+GYR=$cf;yQoq|ME2^UWx;NyRw`IjWAV*J8u*fmbT!CZYCmK zSqHFU0MdNkXCv&uL#{gBCFCV*&WnZ1nSOeqrL5vufFB zkNFY+Lxs$X|GO`qBc3$knJ?cxR0hJAGn)$PXuth=Z}Y2$Tub>X+6q64m4nV zk@cgz^8+KD5=b{#&p)>ucOkoOxkcr(!<*%Q4BATA{ zRQ@mKeb=Jde6ePPh?&l+1`dQqCcXqbiVRZKi;f>0uFlX~E)P>dpC!|_cUQv3{`Y>b zwsj5qkK)hD{vn*ZN@tPyMJFGAA!1up{mugdJLius`@ii5X$ne#o+hw&0z%i2mq>w6 zi}0jo6Un|zeW8`e&rP=F-#CHosSqM7^*WNA8gtA2ccS~{yAjQtxQspc*fdwXq|(CJ zY?@+Wx#t3y=kd3Z7XK?cqkrRh+(|%ZN~_kT)fvt;#k4fIh4i_Jh8piYOS4%NwW`Y! zHXTG-3U9icw~*nv_ywSG6URK@SPMEHsLx?%L4FH{Z6zE$D6qss0fC?3=}r#5VqN&c zJGVtc&r!;=qV%ZyL(Hie?j}>FK6I`NsU0BY>w8dXxE&04QJTmt#nwCRgF^Y#lr&#M z#|7%8b9XAH0R4DMiumIoy&~o1+t~L8#H*g`!sf-O@A;=xK)nFRj#hBej;ui*N}<(iZiVX2){9ebmrN5BUM#0%m_dT z@)x!wgSqpeOVTLu3nG`B*}e)L*LfG4hSfKTdIcxbk`Z~nIiH@bO7ZEuUulR@Hx-Ed z>W37$4OD}{H|DsRpt3u&;&~=jF>7(Il@PGdE7=fbgM?8mj`c#?Irk5u1YlJS87fcm z?|6|CK9NaYtZ|A>=&$Q%|6}KjzH%)rb{`2~Z-q`YH(hk&dO0tlUX59^wmEG7)nyb5 zJYI&kFBU^nKI><b(bT2(P0f4XhE z)W9nosfLGkpccd+v&8BBU&>Veb%JDAj&I(lXZ<07TG6tPx{;qFJTFV8C?DAC0K|@Q zp8v@TCc5n=emEXLm^x>uU#xPkZPSRQa3$D>nh<&qm1u|vd;}Y!SS<4DT%X3aYIUn) z1V+FQ{w>WbESMi`jfHcZ@@tU9aIF1a6NJmk%Kd)yn~5ZnLk<(hd{b0Whl z#1^-Crsj0^_%Faq)xAq;NY!w%KKK7|t&b3A~ z2C%S`o@gJ49Wdl3QknKzeo?)sn^h5*p)F{QiHo3ZZHSqa?N|7z&JfjJ z1l`2Nu|C~rA#k1e$NAq1UT3I!EL&T?xubye3@94eknOyyLeXl^X5dKT6@Erv0i{MF zP*DI&fD@lQ>Y0HSq1xj7y3)bLsgg8}&*U&pjm)F)AKVSU2<%YWMN){b0c!K&(k#nE z#lz)&KBbOWtPCC|2a+!!ICrxByoS0E6&2MpB4(xWuQxu4VeOVwXg4|TP$X&EFId%U zfi~`k)B{lR&jH`XL&re~E62XpP!Aoh?Mn%pH(bl}pHN;9pfb-RePgdU%kRLKqNkqA_%z>u%sdumZ%*@|uOdpvYNR{T-T`DiPH9OaLd1wn*Q=(eL#} z&d;&&qg`%wa&xB7YOTx4ud+<1HFoRf4dLJs?Xd8u;jL^y`ArEl#lcjtg0n2HXZ$u0 zEbE4KE3kRuYN!Sesb4s-<+#1ObJ$}{vT${6P;?3YYG?if)$6sp`|D@93Zr+*w=1?oPE z?DIkjMg_u(T8Hf?poUVv>B4Dt<*Jq`Q!zVy_rr$$Yx|%yvefM|WaCp3#Sb95;A+}- zf)teu5w_0`?2TD5s`U6hxi046l8QFN;k^^d=WY7oPO6Y9!W{4sJHt>HxQwy^2gGMcXe8uReDzvQO7 z=#OCB>Z&WLW0WzRaZjvH>- zf_f7Y--!NMXK&q+YJa$>Xg^CoLi9gQtZ#wac7Qlp6p4J+&uZ(G!Z>pD5}+7TM5Z6Q zJ#BxS+I}=snYjJkv74TBWEx%{zhh^TR9em~V9k@J>1qSgUsuaGq^0x%AWl!GzHqc+*6`{&aeM|hbXKU=6gIxc1Pze zd_@VSLBp28x88Ca&y!^zkME|?>q-NgyI)e3L8doE?#6?~Re!V4Y6nTc)4fLr6?c5c z@O@B7FgNK5cd~L|uPx!uK<4AMO}&nK&EGTEqjv9EmYlu8s|JD?4RUlD_?!swq8ur; zvRBgm8_x>efNHz$&0^R2ebCq7MTA%DhTRz&Ju2D@cSQ>owKYN_9<$YDGK(L4CA_MXEABMa!u-0L&G^>=jG7+K`tM@^q#reyZwapJV zl|D4;K6`crK9^m4U4F7^#7ksfHQt8HNvHCD6<|Vx6t?92bZ}X;>+8}vj?28ybxeiv z?J2&O9Ol>8?2tkwI&Bo&=qI0)l&`VpJ8gLY{!==YXSdlst_J(zvxfu+gp7LvX9R9S zm~N9O?hGPvNSph2E)WQZIJZj=whF;TH1!?>JcOVq_8kjys2vRZd)I+?B_|aOp>}XS zt~Y_mE}EC8ek$QJHf_gKK5p}Bo8H3qFE+44SYjQ;2ji7R-woaRLLee8@wmQEm2tux z0)$@P$XK5!8PDW*5}wM}q&%yugX^oMXza2~uX!C!mt}14ii*-`-X&Dkw@bOXY&;ny zhZ2O44w@*;F((%n6=Pz^4^gA^(4AK_fAfF5!(2zgGg!G^ZeMa;iORlcyUb{=Xlku! zEm*`aT(Itd$O_4#!^j$m^S*M(H_-ek!HfHXKus`3&*#_aBC+?`i3VfFuq1ZbQHy8a z!iRKiKUCM}r-+8k;>4D`@+wQdFyF&~<9i`%UP>s2Lg7_5^@7V$ZLdH&38RbwND@ul^3Mf*NjYD<~Fef*Q7s@7o9GSSFu zXF=z#*{7}9)XP%$Vsyx*rbmPJ2SWWPB0oGi?Yvw`1yf#F$QiTaJFcRQDRY79%s2%em1=3gIR*;2{cvhTv77YTSa{_wO=8e0UeUbg`{ z%&|D5xp(4D(iKwDn%>(^GLKuy*%u5x&=ce_UYVD)EF|X6W!(=1QUkf!H;51dKNd=( z+WlPpH^y(*2;B@ku1rg7D<;=9|o(b*sMO(E%*HW`%@&_%~f2bpbP8LJiMtWdNA~cNxggcnH|EWD@5>ypZ^qq6S?Uf6cpZR94lJ`)UOsq6O*B>K-0<2)xIBKwql;2Ocn)+c|H& zS`K$b>%id_@y3NiW-oqMCTyAB>6EL2)^a-lV!=VCk4}yENMlmQ-RKCmhrQ#;26iaM z=6i8*@Rhh|mkDh4HNbRO=Ia?zC3p&BJa5b5{BilSJgU>Qh36--gvDD~xA4gA^480F zphFBm0NT`%(Vq^2j=M!b8+A2ca}FOeEVV)7`okbiggnYYyd-8$QL6Q#Gaa4hVI=#a zp2+3agsFv*08z;ppCCqroL#1A^Slu)fnXh8wtmZV)=-T;Q`ugD)`0%kUwp30W(SU$ z$*EO!%@qih>i)YPpc2{&?5%)H@6e_(&^oOLs?O~w_|JUxwNG?QFxVT>>fXdS_EC6y zZHqj*ZQ}B3)%;$>YIoU7&uQ((24xIBXU}&P0>0TSRs^B3m;dDg7%W0|HBXxJDOX-- zNhxc;a~vYRL@Bk{(Z;qpvT@{Z-IZtfkO3?Z65scEJgVq;y~jgIbd-SDit4!v{3pDL zu7|cL?mz_mJwK@K(LGDKu5Mvzsr{z_CT3Y)~o5rKpm4VQnkJD{)IoAKwm?rKDdc;(UhCXJ+}(u&>*9ewEb6;7*}T` zvokKyDCD&9F!H?N(4wU}s|6sGdLQM|VgLYf!Sg3+F(!ahYy+hDY3omAGPbG0_->wr zVc9DDmiiowYQuqPu>a?Xr|O_hBYfs=-s9n6ckHUpNyYwM;0JpGkt*ps@)UW|lDZG} z6tCBVa`GuU30ahVpm+#L4M=*ogHcUFRenEE@I5X>kPG4=_QmmyW!z zx{#Uf$AftV1woC>i2@_@w z=8e8Xm}nA@h;HeVuUsi`Zk5IiS^Ylg=Gz>b6{KGR#@gd)Qu|`HNwkp~6bkJlaELI# zuY_=D{t>Qy+3O~_#>tu-5X4SkMw{Apd1Q0jIp&O8=5t-@z{q71zMwQg^>gQgJ$Dg2 zVgE#~B&(K-sX6ccjQk&H2sd_Anqj(jf~mN(K7Qk-+6G=d z=hOX&+xMYHWfuv5pcvv@T7R`p81rx<*r&@za50j`bHL%TpCXcx{$fY^O~jJ>rRq>xuP(Au}P}z&&9`8yrGau)|QK~s!9klHo zeY9K3A3W+K`zk`-olTP*%W70|Y3>Ar9AT${7nPEzx9PID`tm76ZF;I>3xW_O`2M5VuxD)=o`p*dMjiFOSjGM7R@ZcKM~w00G76>R2&#zG(2p)I>mOQnuU6xlnuYZlcu?2;S2{!5o%I{$ zaKg5MJYN zsd{g8T(60bJZfAQhf=aoi62u-x;lg4GlvW{DRlm7a=QtVl8WWz3MxdUjc>l>Fjvn= zShNe!!ZWa!9?IX~f3@0q!2nKKE2xyV4@3NW`UU>a(+kU&bx&E43?K9y7%%eP|3UY; zUngFvF%wFn&!(=cQT(_7{~gx2=|Nc{a@UgYdhSqWzX5pp9bNd`b{&+J1^04F4%{MF zY{RDn=-+JPxj(lLH&kb%Q4r6LP@r<;L;#CqHRrM@>sDN9qEJPOuiai^^}WbNDtkT^ zk~A)dHjt8%vV1#Jk2wKU5s$%Xd38Re@+(3Y=z#;VY3&LZVBZDY0FQQeX>VbbluTGJ zS(AswiIBlfjmbG72RA)@yce!rO?Xz}eR^5qeYd@WTV?}2&Lej3GZw0UI7%qWeq^KA zYZ~}j)p{wVQf8m~t%gY;4r!o4U5kz2{pT`P$9JjnxuvvCfu<5aY+CXReiRi^grMP9 zGh9xdwLk2&D_@J^vs>Q}s?Z`VjH-OM|J_%rM#5c8F<9PN&Lbd}(sYbPYdE zGOPIJ0}qQ7OotzyfxPliuHjIPKZeb$XsHF;^33dCVTXM<2CT6Y?lHSG`XTH3)a`B5 zU|bz^mIeHk>)xmD95@!8d3~mg1FHNX+a22F0a`xzEgLwY>-{yN?@D&gO~;0O?iUV{ zT5sos)-dW7!v184u+aV?e+8 zgz>&T9Cig4z3uom>uY)E_HKC6+i$66h?WM^yJ=Hc-p9?)7%*039^<=m>3zi~-@i+Z z%`4ry46Uq_U6~i`ldT~+6megSr9b~Ny|l!$-B-PNcH`LO8nK>M-mn%1*ia?S%^twH zA@gR~XaUv~=CkIt=D-EhL9I zFGbl}ejratd-cuQ!*rjEGn&vkpux(>?X1g|2g3pX^y>Ah{JsqtmAX;fLq|ub5zl0+f!!4 zb6B$pP0sG9Xi0IpES>h^Oo>0RLF8Ux3rsdgmmGwpeq~(gDLf)glV}$B#>*n=X#Y)U z?dAKXaXLFAT9>Tj<8E}7{YnTSPYO@cu=G`4wp{f5N+bd%oVMWj#5(F8*HjEt(wqE%)~5zVCOP`R-KGT5;C@p3dY3hH(<)4Q<7G75<9 zKQG~lDUCWw3Fq2>jCw3G_r|wmhz$l=-*#vGJJnJa5K>yaxfERY2Iatv%5e}oy=V6b zUN<(!?@=mg;vP62^3$J6(~$C;`_&y{@3k4aFdV4%BXoA9R?l!Tkzqu+LEY&^Zt}T% zhCJ&g!Q$`DLJ^v8@o?enCXZcB2X;9$!ju$rZcF&KU|(LASy>ZD1f_a9AC(*uP-J+l z`XSI(qx-5uG-PZuFB*4%4>DF}U7z&}mpV@7~~EVU_9J#SHOYU$)zIEl~NT zmQ%__?2vO#gTsJB+;1|a+DEVTqJaf0AI1hytiDL2N>B9xsiL2%)VsudjkRBisJ;^|TDt}#DfyC}Hs{+Y zKC{L|uM00JhtWK{89nSPZ`ljV?nyK~;{zu}u1S9)1K|K&ti}@@B1n^5Wj;;dzea6T zWSi!ucy_^5`iF=eVQQURpdJ=uZ1pxVV|v628c789d>U+f_NpeS3=A&Z;;&VTXi;vN zM5U!3)anDbn`obAXqAc%T{(5rW;Xt^!yp%-y$K7?ydPOlZtLrm_>v>y_KaxxM3}zh za2BvE>i=058oJm+)Q0)nRQFlRkHOiUK{+VCL4yL^2vO?{SnLfns;>^#!ZtSUBd@F< zqlx*nYaW)TR-6vpRIa(D-4fGYAG|e-k2jSsYJ)L_b8?NZ!sHm$j3B$iozafQpZdW{ z!%OeS*&Pn+zmBkb&~dfsKaC ztEO9idRI=IbCsidS+bySplSBVoY-_%BlRzypu46LKQ{t4=`oh0T*ni#d#=j@U_SG| z)KMYyLrq5-=*u_bd{|}C=w(Z8a|~sbI2z9HGx;Aep0L9<^|DCv9^#2Cg&30ccUX@kglw~$pPnBgZ&S06<7^xt?bfe{Vl6WH}%BEBc6@loU zd?ixhdpXt__DjsJ+mg@qHaN54A}qVdm&x|=!ljIusM<&Z8AL#ub7DDD{%pyFD}dSM ze5B`L#8_mGI&YW{c126fkq*N*2AIPC4J>@umsgy}YE{a2(U1;Lq;93^xW7ay(cog3 zzhvyXQG}G7xf{+v1ukFXy>();=-BC$^=Uj&i@`GgF+@J+>F(;X{}hA2$pn8RM?hb0bBW&WaZx^o#ZV`h`e?V8PR1ipXSq{|1Qo%Plg&HfxI*j{BZ{a) z>uXSF+$htq7_ot{Tn}jZOj~{%3yMmaP6*H?zhG|EllIVlScj|EY`VJe653m+_uS$s zXqif6UPq!RchU_vg=@RTw?u2!DSiKrMptPp z@vjqIb{nt6HpJeW+5}Nz$HtH&*vguXO=2yj5e{Qagp2Kjt`KoJNJ$t;?;!2iHPR%o z;6&Z_$(SF2gyj4!4_e5}F&KxVY;L>?<%o5frvnB4$J=Pgu>5H?o7lT> z%B-h55StvX>UEgfv7?zAm-PAl?nikZDD=zP2lhnV2?&40I_jb9uuBLtnb`d>`v@w?8LoO6&!$_82M~LXw@h%3nTxmchdKc2NVanmbW1i+$;rC zvLh}!+6k1;fQw2R7nIM{9t4lwH<&_O+OIn(Qu+QkCu~B?t*eU24nG$dYOyCb{8hn; z>L-g0r|Qn0J&TW}DM)b5guKroFfq$;L;Iy-Kh8@v^`k0IoVN^-bmbdjROaFoC-~-3 zPq-)7b+tpbcl|}a@rEHc4lrPf7_v?de@uC)`@eHA=<)CLq@_trsrZYD5jV8)Ee$4l zyh#e%+&4A20!L z`!?d3AUWdv4PkbZ@3W#=rsnne%*Vqd&{ujKS@FK-A;$R<*0$pGLNj1Y$#HXj)uHi= z+d60cCv86zlpR>rMAr1Yz?QXS3w835UnoNir`}g#=EhDV!{kPs6>cs1E$>*FmnV70 zu|jX6?+0sgr8a6JvV*k>tr?NqD%xw04vBb6n2M_uwM@8>9O-9P0RxM+yZ?<%+woc zDA@CmU}wh(R6X=nwq@C7h%%UXtdHV7FUZCoOveQOOvS+)aE%gKSbS1?P5^(RiT#QL zsexuS7`SR`J>*$S$6d%8VgpI`G+ytJk@>5BCV0so**aLr=SzjoM9QM7mF# zE}asyk2w7ZA~?nDPCe%L4Q1~{Wz4{H4kecR&n{!8EiP6LeY(GJH5J)D#7r3@IKVYu zNlI?8{d8c)Uu)d8H4P~aZV6n27j`E^kxP%xrsX19yg9xi0zI_5)MfiAIE{dZ?+nfA zw9%ie{Un7ISSct5bwzPMp|Sv2BKAyev+f}7% zEj}Pk%RMHf-!>6RnBHBvHOkyxis7Sov?#?Qa8@d?#LvCWK@hVdjMy<-{}uV>Qi8WMMyXGWTwzC5qAH>%oy` zDB&+O3$I&wMIK^H;*n*mj(bh&T3-E8DW^j1)emnj54`nr9i{oH<|Pc`Szuzj(=z7= zDlln&boqF--WNXecsp{`c-fug#-pv_T#Le((L&0SohB|8njhaoIgsE9Z!|!%_~l~( z$jqNoK;)*6@Ts>ml;B_3m`QFfq5DHZlW488{_19vX)soNi5I*5JtROIdpB-O2nIJ0 z*-Q92DQRm)P~m7W%jLMw!=6dIqsPRpuF4}|KP)fJn+=sG{txaLFDVvUB_S3|*M~AV zY46?eLYDHskmC}+f`o0itHic!4GRXf+iT_jALuCf$ocJAhO-s(l*z{UOC{1W?Yju9 zoA#B*T?2L>+PE>CvK1##A#)zGf#u?!O5bpul$y`fGLF^cG?q>Lde$xF8=K0LKu2&< z!If8QL7w>6`lUEek5gR;F$)0!+*;${NeC7jx0Y6iF zUK&-8&gSM>C;<^E%ugCHXPYu1-zOoyjUec(DrMrmO-R>iFEI7`|AOy52I^Fb^)8() zV_QSf5z>fsZ0c9)*1zP9H}MAWMlU$I7oSsy?i6Wqj;!NqxW9Q?q@e6SlvGhB9jZUv z!TCZTb{8=YjuxJ)*EFYmV-M$K>{^Z+w@Ee)ch{AXM((mBKcWbllwyDPgG!rxDmPwG z%*{;99+`RyWl&ztutBXJ?v>LWZUyQ)g+^CD3rn#tyKXju)@(rPZvkuQj9ERnz za+Aq94|HSGG$*C)H&Z{WVTQk8->cKjwtifjw!Ty>m(6h*IZ0p2smzhytRn37hsn@X zE*>`_-^jPk8bjn;I;|fC3qFCmj;zzZ{b1u$YYN>!wVAKn?CrG`pt#fpr)72-joPf# zhi$y_zyxM7Ydz`I&zuW#-6Ks5-wGGnU6mA!c;e!f=8l6Cxf3jcwAeH7kl{nN69=}l zzlZbxeP_=mbALX-P_Ly{gLjT_*nC)i(QS~h7|J=uvg5gTM&lN{D933CznO-E_H^f6 zoIZAoH$(|psdMqMW5w3dFRhR-qH7&dgz(oSQU{fE*CVOGW2`k&eA{_9xteZ$6V6L^ z=4SRt2Lf|XM$&_7jrWq9is$NZJENOVe$UIT0rzAZsHl*b{p(uC)DmOlFR4x%%zwVN za~yi&>Z;N6o+oUW4ACWo3e);~dATm_|b z@m{}sRIYirWN+QfN3Mg1e%5eSTE%RD&n)>nSlhX6|3V~mdoUdgni6PdYVb;5hp&&i zNJp?xRG7q8Wu^LsxLl(?RXG6Trb`O6__0F~`T-MD-;Z&V7t$=%ZuO>=@~s~}N^Q}0h8Zimd^6YBU1JX~y? zJ^Nxaw3+Wld*b$P`94X5&$DP&A?5S0&9_MRUDKt(y=93tahglTl3wM{UiDZqNji6> zS44sXR9LD2%ec}u&SwATVR?+IgiJs~=~0)y{d$`1dT6EY1Mp^y`ebvVgQ2E*j`6iSD;nthaEa~j|FzigEeEq~QaR-H}wk0Um~dAv4UJ95#D&13kSO^E!9P92UFD zzR*%xzTAo|n6Ju{{~W7XE0C?)8N)tWw{oK#`?QbK#>}mw@hs3UqA5URiTQ0mA4Omm z(`eUl@*JNeBOp-HIKRB{u9ukiEH3*Zx@}JY*QRZpLiuVex)QpYo)$p>+7zzuU`e(uvNJ1Vp8^9G$tF3y>_ZM?|c+?J$Iz zRx>oylKkfc2R$mx*bVWD*y$He8Pvie&324ad~L08)CdbvqCwUPbqD=vXJPvc3D8&xRXsb+wR%D1PBME_uk?b&asPr1bK$BwgcMm*yYlN3xbue6WZ2?|>_&;e7nOJ#?Ws!7YuwW&e;&pFh?23NxxAZC7Vhd}EJauvb zO6&%0SNZO9kJNzQC0*>J2{$+;RT*N^V5_KMAK}w|Ucm5u^HhqoG#qU*)ax{E=kei` z>G(V(9QiDG&^bHEDL-)t>Y3BY*=ZDr#O$%Z?0y+6IgWHtYwroNHm1U+$qBP2nZem5 zw%Nf8`|wj@%K7>CAd-v{jP*iwFe&;nQxBv6xb{hBI<|EGD0w{I$ZY(}reca=$#iRnnd0+)@kUxBIW> z$LFh?8oj=2T8Ti+@w`pUr_Owq9Xc;1E~#|r)K|c9;*xoarctLz2{OKL07btDWkrhJ zKr@ht`+ul=>#(f4=703Y06|4jPy__&R63+ZLJ*MdMnFQkTLq<&5NRX?=>}<#E)kFr zDe3OcGaH}h{r=wToO7M}>v&zyqj2AQ@3q%jGxM3x%$mvL&Xu-&ZM}O_b-z?)puFQb@~x)c7xCxq@|Zu+ zjA;rgHh5~#h~uO=H6hOY!Xkpo0JxG;;kon5rDn!=SY2WtuP!*QMnkwijB|WWz5Tz@ zeWVbYqK|$@;%((9Nva#ZaDvd1OJk+k`9!_zlAm5V(JoJ=fYW#nPtI}UCLmyK=kL_~ zJ1aI$qrMhS%1_2yAn7Y4MP4pRJjzz%+JldQ+u1r5LYdLlr2(`7HZ4X9rD8rM-sny0 zh_Y9~Y;jYO-TkikH@jLN+HJjxepb&aKuQt)40rxo^DX zTpon(#9!+`rqxNsgK!KKB_!BB-xJTdK)0EMz5P~|fzuRTFM0-M%f{%d!Xy#hFVU3i zT!wgjQ+AE7=L9hNuvUM@O&^{fY9~}4XCyUR-m@LEa|pbaop10IZyX004_#S_B+RIS zj1j^N(z){(lnPN+*m&mTH`dADzESgZ{EnkFyt@(cJ7;in~7&FGGnn4;H* z>ta)Qt&L%ZJtqv52BETw=;Kcy#O~P6{~hh6Fe(CVJvI(kv22>&;i!F=F2kuYB)Kceqe1uYrQlJ&bWSB&Q7srz$jM7Y})0N%WZr%)ZRc8T~V=5AQo?&A;x> zG@l&$CT-U^wf`E3b@3gL@1AYLn)Kl%E4$bu$^AY#T+(Sc3dI#*p!Vw@2I5~DDX_%b zOnfwOZv;pOo`S$jp|hx4o{l*I`1;z1EA^$kmSWupmb>FQ^cIUI^LYl!c=a|@c;e$v z*ylbFNwuYriDTD_1AVUaH0^miLMlX0@>D1{s=E*hSC}UKCUC9b$Q2{R@oWV7xm9y? zY(sK9Ol>1q{o;5v_uy#0Io=H3T70~P`i2#SF*1ch_;;|zX`=O>hZc~{SAVK-VH>ST zEwiCnu<7xpLZ%OMqD)TWGj;Chb`;6+hKFCjz)rl4z;<ec)5cpr=g8ycggpA#tQ#=g0?(cM4(c0J;I;tPE;nM|n=)PmTu7(Sj(^b9mO zsns0&TKeKRGQ`e7!`X&x$gDkwt^=}a?u{g2`i9<^E)qG`#(#2A1}%V@HrbF0ul@NS zsJ*4P$NFqzqIlk3Vo4rzNh7ElX13dz#|M|4|NCtprvS(M-UcQU0)Xn;kg)(|&sLOk^>Q$mZM5{RHDH z>|kKp=qXx(Sm4%NvHVF<_Aq@@LHxy+cuOXY5S}}QD*VZY)CNs7MB5fz+1WPWe*2AU z;eDFko*3ldrAkI_{OqK;zoHcHehFvk zh)w6%RlBQ$1(X#&yiOO%f;PP4YgwWUB1;K2{ETvpL)he58A@9YN1o(3uxW(+_GeCQ z1M0>&1EC!TO1HAi%}HKZlY3a<^n?PH#^Oi3Q>KT;M*mjrjS(7I((GyF?CUOf6OV=B zr0w7Q#mkJ+&J{4-A?o*n1#czWCQ|1WBvF(lZzKs8IFI`cKLF4tR}kI@NwcGOXn$t@ z4cD41#f9d&PyHh4B)C*Dxs+dmeso@Fc^sd9(SLixfF(jZZ-&%9#_GL^I35S3lkQ;K{ppVh{q7o(lTykf$9k8E_JzqnjHoE0!!ezf zEn!zOl00T*rB!V+CeDqVGsnk&228-?z^}J7LIPME9=Y4c+j*KO%sZ|?(Yxy1QJ3bX zCc2}qm&dstjDs^ZSQX+IJ&zfy2zlLG)-LDH*S4vi1vJIIC(GU%o&pmK$#41g!Q6QW(pS!#2*nGz* zmRXxOEh8gCy7_jLWa?}6OgFf3%;zP{E2#EQriLXlxeK?|4+##NZp1zA)_F6q;?|ey zGgbwg!Iap^emCo&U%iX?@dnY)&^D+yDsZ$0r*k%;Q842gJLI8_m1KWCCd|6t74nRt znwRetn$G$^iR|C3H1x^xX1sE8{-_k)_j2j8HZ@&?1$QS)Gx!g5C{7hxA8u!?ab0h` z?Ew?8>wMe!Jd%*v{-7dj&59~)erYMIWyK_-MLv-@Ckwg1?z@pp4o9)zm#bRdE`1XI zdpPxv?q|xJmRYzhs;@eAxm?gKr~1w&6*TD>udHZinE#~lpbMvabIe&(CR{DUA`aFk z{mC;ORAg9AR8$JXEL-r{hdIBkU}|o3t6VJ9XXQkPcTmyrz^03jb8}vdeYNuM4ko4a_i-w zgX5NGul<*Eena1$E(?=ea@y7AHA=xwj5G0n1>6^Nc^{*8usK#rx zkx`0h+%N|GXi4Q^$WaS~=Zxka`_NJAF63}{<+M8)?f1LkT_5hcszv0VM^6|Ol zF5Gc{tlqUSv*V6j+*eS)I4Su!Inf2m4Te;XV@03%y5EaRgw0_W-d5?rWChUkzMhVpuy(Dy}vQmBG_C- zlPDT`kselYarsWcLDr(gVn~`+_Xs1j5kq|v{qrlk5;A8+3h)iE_+IrL&^e&KF#T&w z!E)f-Q5ooA#=Xk9zchLqCFn#NPk$SDo{%eHR1^~8;n^dwAxrdcwHy6hN)Zb1);|f+ z|6MLR(HW~beiR!(he6sYOKb7yP5fHXGZ>VLU;RGKgSWesqnqCo zw&@oh$A0=d@#G0lc#(W~VCvt$wZ`z=V7f{VD;Kb^aVdYt@)U_RKq%;U6(b7eaxb19 z4R-322AbSnFJXBwV4>$}&Nm^jMIK9^0ip&1#o4B8e_;!1foP%(52i6z36cu}q)G4b6&2f_YU*pZy#vduUqa!6#tDkIWQILrGo3F}t;du@#qD+aP7;5c(W>YbF_cerx#F2cH z^!L87b#CY)=ppL;)sZV~pe`2YRPij9O>N6AR+OUK_*@)8CXK{>+PO!E;q5nERGJX4 zm~exSq(2Lt)RS=0XF8re5QYp3oko&aL3z9B`+`c%t25oL)*;2IacTagKft@Ow4%BV zg_8K*PCZ05BX?j+ymY87!zatDh!&1ssPZ8DIW=BT@)O=XXZgS0C!#%+-j$$_<#aAm zTdOH`Kh{!a@Hw$T1-*3)@_E8hmR|Y6XQ=9$=R%rNzKnbLRcXok$cPfS7y}k|MP95_>Y2|S_HQ- zK2v<4Q0bs2d=Pf$+(*pv-m5ESEe1ZWU6xnshGlgvZ=n>>Cms^+jR-mX)P@9uyW5A| z^d2}e5^{G~-;`Zxy5U=!8ySUJhLnBO?W`A@q-iJ;^iD(M$qI(+%~e ztnFMk6DpiAz9KRDQ~2{~$@(_wwz8rH>&y8&KWfYSVQ*8+2ppVZqEOP_j@TLEiQ!W% z2mM3UWe>zXZvE9_zgSeiww9iR$L9c-=5XOn846{Bg2Y;uZ6%3X~ZmpE@Sl&=B}IwpWUwPh@?>^odK_R3?ejj#wepk5w+0tn50Y)f|{ld>H(@0+=H?>o6=v z%Rt}pJzBmIa;sU+_fMY=A*6!+YSh=65F>||TEX(%C{LD0ycpvQa4Hl0>t8=Q1m8Gp zeGQ6NTrWAvFuuq6-)R{rl)-B_6-f(=PciMPwC&g^>`-4@j?gA~iERWe2DonDx0k?8 zLFHM)>zXy;gK;;LFbn_>c&=#&mc5c(fIYl|vWC%zUp`|x ze%C02FhlXy6hWg11hu}B$0$Nq?$A#bb7fGr{q%_x$)8VaC z9ga7)zZaSY>g=$7Es-JCUDrnr@G7T3Vgj4>r5|eZp=0&;-XyyrmS1)pU>NDb4r852AxhO7TPTZ<_v@Khm~8z* zpf2h+JY=C3Kg>pro0c`qJKA;e+5BI{BZFKC2is$%ke%7|+OhAC;2wnPgV)Qzjr=aj4po1RmG`f8v+nNyLD*kvk1a;dEPy=)vQRl4L?}QWUr|$%gbY-6?|IZ;d%QDWLV-NS8#<9xyIlu73R|{DB zk{`CVyv*hRe*doG9<3-ZD=wA2&W!A;PvLaV{Im8I80hFebI^#!30gGNta&pIyR23f z*3?d}JMzX$m}9op{Ub-g%92}b$f0h6AapVPf0s%c+wgKK|!1EZ7+=jGq=ZzZ}N?ud|uo(BASKmNd zMLnd%h_^{-?YAnruFd5+}eRdcSYTvLkv>&-rj za4{62$Qex!jhB`vH$f*GRcyA~$q6dmVfTArOAOQWg#b2ixUm}KCq1Qy{G`=O*Ro6@ z0sA81*^oXR+>6g-WQ`M(tjFTq?@#FIt)h#c6Pm?A?hF|MTKMHr;%#zDo9G&M-$;QS zihC^k_r7S5_DXaX5~cNK?uS&>w)=0kDeM+$$xb4_c+v{P~x=h1j_cB20G7xM(ZB6@SYFugK`*Sq?#|32uM&uj)U zcQD-aCnV|gWqjFeDGzgTR!T;uS&&Z%vQJ@}Q=Zc%J00chyh?qwE<9^_hQx@OsFVtCO;Xj0iS921#f@QcXGJhHZ~;A{$OY2BgNwm-pY}J(_~;E&z_IE=z|&S z|BsIAvH{Taw$~ZR*Q=dqL@h9@wPrrEu}?m1Z+T_Wissd^ZZz${vA37Ue=oLq%sYDz zFbVYs4K+MX*Gh6;$U6s0s`NE z&*UpjG5DF;vMB*DCl86X-|-?`0t%G@W#I@RKQt>sx-B5z@~20~otGn-(Qx1}UJNlb zCoiC-?;l&Hh0Wmw;DeGlNE&QDGml_7O5ltL!TiAOVSdck zhR%%B7dM|-C9l8nQI4yuNWqHq3Lu)2=)Ya&dJnJXi3I^JNyr)vwdPNDKGJjX0L1=u z;7P}A+cPEy$REh*Gc3omlrX&I-*A)+*|W-x`pYjaUV(>~z{M(s>S((GO^3}lVN&1> z4LAa*T0@`NprkK&YkRFDFcnS0sK37^z24RNR6el7E9=RDE&X^ga=h{HouuE)r3}_7 z)fU`aL$ou;Cp;#&KNrD7*<%IOXU|%qO)ii_>MjqWRS=1+JDVF6!-e(XBG-dci`CKB z(Okc|JZmm{d70e1CFB!%t_SV2A59Ro!VkG@nxt=$pUAL3^%4;I_bW9%P7>kK_t#Q* zneX#c)c3wxww`{UbKNI7-AJ6Fq}ZQon4icly^fr!Q0e@b)N<=L!_$)*di!02UCiLt zBe&i6_ClAAX>_7$GA%uC{>FpXMKQhR6}v=wBkHMuQMH5TV7oIKD=|f77L=A=yL{Qka;_?E=+#?kt8+sQm@jTpf0D{g+8w=yOfpJx+?5{r z`~P&(H4=(lcFip;EM5sR*)I)#`}XZ)Ku2q9B8|!S*oR7)R~hVnr=Q2bmbrD|+^cQ> z3se?gnwmsE%h7(2*mtc?NYK{OivQs6W&RuY)-BQFk&YV$+W`H8o*j zVUko&#l?+HO$)6Xh?_a=YD*k`dRRv zmsJeBfQ*8IaDrcUMn+qEyT6Z5o_)5)n>41~M^~?2MSt^%EF^LOVyjS)IJr0P=;)}U zqa!r*#-b9&X>*?Z$;rv#?&`HGS6tyejS}2AbiaAQ6g+x^u3D<{yD?8nQBiTWD?$6K zrLLBimWW8>#&kQ>ljg7(H5<`;dApt?3h&mfh=>S7L&LKP(T%yqpz`C#4<@S#;jq@N zsn#$ETv{9-Z1-n}yD$kDB}d1^OioPfEdQRJnQ5}W|08gHvYAnP_;+q?F%1`H17 z$Yp1V_Q3;w=dHPP`Lq)Akv4nTs=G6@2lqHRIbB>_s2Y7|)o^!W8JB?BUMN&ep__ z#K)$lrX&LHOLKECs?=T%3OI8X7ZpuSO_}{FXjJQ~lfUx2$ZE3b>({R-DHK92Yk%t1 z)zqNaWJGkdiP1apFAx4a>&1A;&5e$Mk-*~+q{T)MIQu=0P{6%%I+FD9Ta7B`;;E=# zg+|Y!SU$rEU#hTt*@8g5o^%Ae)Z6|pV|;g`}998$ zHOq@iO6+Sr(V&^;#fulw(9p7!UfM(!i9^KJwmdvMytY>G*|RR_v*~`c-i&;P@4oWk zuC;5`=NQ9L#%_^yMlc$8fcqI>Rk7QPI@TpYzq&F=VJDbpS%5EbpY6 zAgc50RVTzP_5A&Q_W#+BpH@H7NPL#7dhS_Tx*JOQG)tj#Y<~M7G7?`|S=leietAgb zQW=PCk#R357#hEWKkrCX(y>qn=)m3U)IkN9FGiqsLCIQM7ii_4-o7R)BlAfvoq&+= zw9(DJU5Duk5f@mZ-n3^9L*b#JNxk#n3nA*sVa)C0^&2E49?)c_sHo@-#`*`GcMW-BqO76?<^h{6c}`0+GNTi5mEXrISn#nHvZlr8!WtD)@>sP1ieiRhs+gOC<*lHOCxl zanVytcj0Hc*ZYM96QLGR;UMc!Fu8qpv#P3UAXj^Abkv;KX}ayhd~aGsS=qyf5BK-> zC@3f*IiqqDU1SGQOmt2v!!{L`H*)*N(Ko(31%NP2*}0_`=wz13;IHwH*J0#PsyE z$R*W6!>b~)qobpeL4*DMsdDL{cVTfA=;Amnw7?QdNd>AfPl>yT5LLiO~PMkGb;^hPw3KJ=MK?eVm`;UadNSshUVrNWs~9|wDaha z3H))_lLi)>0|~`s6=27yFz~w_*y`!&$;=MuUI~plIrRc z*xs;suw$g9rJ;VG5!ilG3R>D$-pJ~iB`C%WMQx<*YEBLoFGE>ksFA{Yya`=sE|G%q zk2qghSvfH|IiE0)t=>Gj4)p-V7)we^{e_dfye>F1GcyAg;9z5m^iWQe0acA?nC&FP z&S<&jD#NIhMuL72W;_KFBvDfujqO5I@N?B4=^7X7B?jCF7kF2cLFYns# zu4u+d8&&Tya&t!~eSsBaVo3c>J~J~@URIW^lK*X^l*Vu2mnnuPKl-dXnkRdO!|KlF zrj4cL`zI7&>9^w2IL(Li3JYDJVt;2nFE6h!S$7~I)Y?x>OoT#$CdJOMUb?!vHZvWt z){nYYtnr!k8s3vWE>e4`r$i)RiH!#4-!D09u`D1&K4GnZ}uSjL~!8-*I zJuCpTq{V8#q!K8atUwoq+q;ZIPfrg8**YCo&!JSliJeE~8FoZ6Yw|f{XGT%`B~?RD z0lo;!P=rMLvRO}nCdsC5}f+2PR#q>D-yys|Rdwcr}Hmw?Wx49pQ zTLe{FV}pZF#;!|1U8!NH$kx--gMF8~$nwv(*x1;VloaVhUF!#O4?br0EesE9_zL&@ z{Fx#{GqwOff(G8)Mu^J1gsulD4_3KNd z5zknelM{}2Hdf!^bKA}Vb|_ZMR?7S!@fkKu>cH>czs1DF05}2QQVU93<#iVjeVM2XUt~){oK`t8L6CB*t z(gN+7u3Wu(pMjy{`}cV0w;WC@e~A=)697_CJPtXzxfV7yo7HZIv2k(pmj=ZxEtyCu z*x3~mW#Fw^TAsA09Y(iKZ%D;(U|x9L&>-BN8?*va&KWTY?I6b+em*SByHN?WWuCHW@=}1WNRw zDjx`|twb`3hTeYVjUgzYJ%6npl(w|N+_p0~Kw+)GW4?RW3~(tfBxK#SSVTm`>pjR0 ze~quZkClXkpKsl!L^+=xfI|}#x?`jDwKX4K-}J1k6iz%`TtKjZns4xay--UfOXbgc z8^IQ}55Kzqzrz}E@&5%*S@v*hx^pTx%gBK|NnAu)I7dk5wanA=7jRK1V8Y&NxvAc{ zJ5{5Yh(aO%-G^_<80*{GSsU0eGBf=ze^}Yr&wgTI;d;y^#PU#xmHmOGxsk7owAfWF z0-zjGSH+(Q%b`%`MNp`7G?x%CMY}i91Ak#!K2fznp)TJ<{zF4W$KwBcy2mjVDq_dp zoIb`_TkV({VsOb@YO89eeceKOPv-qoIytjqk;d~Ecx5vkk7d&F^0FO2=@l!9TrAew zHdj>0qq!v_iz{RP%GaRm{w8U_$wJ@@3|)Wens#l^+D z&~O>DJ4Z7V>C<|Df!~58Jmyra9Du2mcVvW$=XaW|0BQtt@#{BT37Q0H2>W*E#{m#p znw*ofRJ+C)$gg;d^nk*mJSAr}>~MsDfM_6r9So)`hO=whnte5Acj;HX)i9Ly?yV%jXyGV< z$rBU+!wNPBw5C2lid5;iApq|B%|UKpO^~XNVAa9k#LuIr_JH39h3B3M15h}E;_byc zb+3_>OKrF95A}aq6vBv|rb3{A-ecTG5Mrq~Zgv5I)4lb{G55n|FziUz^IU*XE$>OA zOw_q6p@us2rHV2aadv~~!cd`mjR*890T&t3HLQIUo=aZ57^=@feSlK0T*%0T(*Jjs z1qWd~Zv5Klgb~e(7adHHj^G5gUif&?Rv7PUk_P(v9SRrda+zb zk?^GgP3v4W3SMXh z&To_D}f;OHooAuO_m`;0G6(2)w_x)+2=6q!{FMu2X@ghfBfm>*AZPjfZ zT-@eATB`@}$w))f(%HG(^SNE*wq_A*u(<>i%;lppX8oq{4>V*hbGr~p|&q@Pb)tX-_-vB;7~vPQJa|0Y63PXyo?Ei z+kP(-vpjD>`Y&$w$3tfVFqGvQIp5=Wx}sQ{7q>;V(v8#oV) zEBNon;o_HsfG6wTV89-60#rQE-+uy@6Hx}srDNZ7pmhT$KuC|Hy>*xxK+_)Z5%^4} zJHIUwpxcKq8^9;n9!Pg07^KoobzR**5QMA*3Ibf*j(EO`yu9~5Kd*hutvPZ2=7kBG z2KvpLLtRgh>&=aJMn>)GBVbt;`mh0ThHC zG07kyNS7xPe%C!9%T58PfhhOEM85YK#Mp#cM4X3yvz_ZcFF@bH!o`9jd>y50QN3>n zm<$*)m+b|-Rc;RT`h;ZIPrxLEkc-{I#g&ZVSZ)a+hjAW&7*rpw@NoQ)6oz*tVK?~+ zl~LLB8hk(#01E~B%LP$3lYyMyVU?Dvp2hPz0RotfwUGwMI*_C3I|u!WzC!D!Sm{~7 zGSbki1?k8EJ%kWsDR8*N%0a#Kj>LTrI#iNg`UY(Um6eo~R8`ABLXd7D&^hDrRx%HW zC&1M)h+jhC-e-p!70?7{AWO9ngb`W~nve{{SX4Vfp>1%pcn?yC&38fBA^j~85rmds z-p;NtD#SlyF~D-s1xM=`8Yvoq!huaaZ_B+4l55hJ0eR=!t78JAxu3idEUZ)O39YZP zJWfxR<_&@sWWymTeW_1bd-+%4?B|bK3zl3;St?f05XgMAQuUBMJ-x*2mo@08fV(_9 zr8UPd&COT9UD9@%{&0Q}jek09 zohtsU1-2`r_zj+orNXWo-9U3>YRy7dN6I8G&D5y;K145Yx^=bKGUb9 zB%!M4=1E!_8cXgtLJl(>F$!^HEpbL*ODwfymySvZLzmT@lJ%k6cohcQ3@%9#4>U8X z+@UjutgI|_g8ONtB^yp1@A%pW++(6uTD3B3N*tv7%+Q)`^U9*`Cs zG1(wLK${wh@e*GjRL!gw2y(^qMVD6<2Snj zKt$UXa*jHZSBOspqjnD89?%|Ly^dfqqYu2MW@eO>l{1wuT{s7=d_ZX$837idyYvlQIWqIv zT#sXV;2*|L4UK*ot-*SwRec9P2>)&*P~$H-)M0T3RU>BkPxdAqgSn%4(`eeDp_Gs? z5EKf*z_0z7x20;i5K3XUG?)*LjfqewMLJ{)fEIowC@6~?-27M=+@~K+4Tev|<6#?W zo12>hL$x#B6iDbh2U6ni&>lEb772ZSiogTfvl?U zPZ_IHI&JPd-A9`{Kbier6X}Tv3i%*8nEwFubItM2Z$u|rcpUzQvmv_&i@B%JZ-q1o z6zW@_B(dj3VC;**X+@wC7>I!fDO{H0p4>meDuDpH(G5l7$x?^%(x;I%q>i z+&1_Vn%#r&mV;untf25Y%s(96wBBf?Htj9zG&BXHsJ3P{Qf?PY0ns9#-@o$pF>qdv zly48)bSYkow`#gGwCD;XmN2fYdlnFtuo^Ht2<&`sZ?Bk3@&{o#`aO1H4=SqWXqr(h zkf0CXkRk820S%i@n3(eCtv4cA!A4X-+R6#io0X2vZsMIp$F1`YyLEv{%I_YCiu8 zg$%ivlJn%3QNn$#%Du(h8h-nwNE*MTPX}bV85u)WE)EI&Za}%G9j60am#<*>*hvd1 zDXio<$$Y;<2X1)szn{IgI5j=32~RUqi)@|*cX}o489!)eW$^dM{#fP(1zsTOfZy^? z2CzZ`P*c#|!$s{=7;VCRsXZtw9aH*b2e5`PZf^CPk{22P8NzCQfwU-Ujz#0g@RPVr zf*Da}d`W6QiGfY@gE*F1A3Y|b)P7lQSvY?x;r-klFOC?gP>SVcuw0@QdE_(8GC%8| zt;L#+Raa$X&@nPv0IEScD!J{B?6%S8=2e$M^Z|iAX6%w1(hsM@!C=(DT;t*4y&Nji zO>WAvVS8oVn~G#fo$fUYsKo0Ziw{j5HxXLomE`Zc0)_&+UkRFV*xVs3dO*m`%K^fE zLrXa(;!+KuI`m;(v(<{DnRJB!`VO0O(yylF#OT&Egh_MLPGFF`XD{6+u`2diESf65 z@abBXg?E;cjLaI8Vh7X)+tCcx2{(GC25h9Gzy@@Nis!P@1GGU8ma)=t9q<7U0BE1- ze5r3jzTD4mKB`z?m5RBVhfc)r$~D22N%lKH@pkuMk=ruexajY&j+>z!%MFCx`t{8j zKC>LHvr`?cT^iM{`@k{*9Jd2WF&`>2?nw~`8I~yU&Hxy)@5--~8!q(_D;61Pw z z_CtM)fl`0)aS@=h3!oZe=efj-mv7~f<2blYwS@SP1ndrsh5 z56u^&Ung*47{|n@|QC*xJ(SYIpFwm@QcAZtj8N&q+y{0x>}_8FU^~RMz|;NuDMZGqdfC zfJQ*7X{o7(z|}M7_JdlYhf3SP>{;|>^dWtzo|`}PhDSK>u2dPcM}%7(ZNrC%4+(71 zLI_B(NxiMRyF1_usD^zfzXtp_*F?VdTSuZq0bKu)Gk;zX_wI{>qp**`%Z9*o0oiTv zCP2hn7Wy(jGN>k1MMv8WUU~R(Bpu0jgPgCQT2Y;@L!}nl4Q`FR?xRk#A0i_7H(JP{ z+h9NOwF~E<)o+gxpqE#Ix_p*4uYxP#o(~FM~e;s<+ zPzFsFIjum%6eqV8(8Hc9KNQC|9~t^KZz^6spBl5Uu#i)Iu;63W3Yxz3`Dz8kb%Ait zxN8ip(xHo^e(#0?h}7ocF=Q16J5Pav@*V7b%@-KVyWuk=qO7R64LwCvUE(4tBT!qf z_HEvafIa4i@Ch-Wa{xYb5_rPkSRlP-VP)zzkKhJ?Z-4b^!7GEW1xlNpv1+RaSj;M| zRiw)S$cnOp!u4)YNr0HRoi?W6=;#-)v(VOC696*!h@i#KZwDdj2UuC8{iK<{O3edppF zMvaS3h;TGrmW$ch*^#zdz%2uQ;(zhu6HtTTHf5`q=4e$7nU@xtKO~d*b8`bG(HwL& zVA>^RRTY)5(4GJZYXSNKCPb1cj6p!a1I#M)BWwk{oF*A1Cnr~6J>3Rca|LLLy_(ZQ z0sA-%Vn?0648>&8z=fgW%=T$Dm>Y1whTw5yCp)Fg7B+ipe}E4~ata{M4sj8j5!n7i zvqs%XB47?8VRp8{b0fhhXZ|2P8xT=mo|_Pe%t1QkCGn zPyI3!NkG@$lojUoH3p&y9)N=Z-9N*p7Gi-5K$IEMXC|86v?-Wm4A4H10v2H1VOzU{ zVY_iVb+pJ>-nN`?I$VCGa`QV-t?Qs>hya*?(z)k1;fF_$D>4tAf=UcGVjtR!0@(v7 z{0OEU-W0@f3=nLWkAo=yx)sox;FW>9u$tumpa5DPR&6W6EC8-at?D(bi9p$g>MYZH zHUiw(uEQV!xZu&s@2UAf85Bs`vjk$z3yUzpg+^WA7RA*6(K&p~3j)6I8PYTenDvAq zmjPU6q`3pk{Dbm{W|%6mVB+kzq{X7GZ?5qVLj1j?M@D^Q0imsyeiZ^I4tslZa}ziX zw?0K>gos+eBg;t;v^_3+fnz|0D*|mH_9sbB9RUv&7TAD99zp9rGItX&QP3oc;Bxgs zFtxmgbTNQ%*sf(j-GRvjP!9Va$f8(Ii+HsKk-kc5iUTVk+7L7Q2K{PVXJ=pa*I zU<6O$h6Uxs5(a+b1*W((5jlG(d{4!u0GY_+=jI<4Nd^N3YG~L1&jgT zZ=OHU#m4u`?XV6p!Pme1mMG&St8UDITL4KAu74>;*hjxE*}XpCSxVK@t8q|`NN`?A zheic`)7GH(R{&n{0*SL_qa`bA)yX~pG5fC?Iba8?0Om4ZZe~y|NCA2Y`(3hpnsn)y zJI|uEzvHW7fC2B#V?!H0vZ7E==yL~t13wCu8TO(7Eb~otR5ZE=I|{{O0dy>Y6lfBB z{~HmC?fd}*?pfv`yeI%cQRq|^7ZXzf7=8xN2;Gz69WMszy*N?xujL(J%^)Xc5}fsR zTZmDI|H}v8gqxyJ|KWuLVrF4&GcvweBH4O^dQF`+usonB;QvwPK&7KR6Yp@ICAkT* z{Cki8Zxl1!^ZzCv-5D{DjuOOw7I&%=Skp$>(v^REmK$q0NU{_L7J%)9T`P#K&_A}` z-^6H7q;Dj)%~0)OU4!lYFzO{_7~>N)siOsalb;=U`;bhnYH~2n;^o%QebzxpGiKt4 zw1i|XrAheAa63r9*#vpFdpO8%zigoE5$6WkK!Ts=qxkboey$(+X4WgYnjr}dANc}} z`80lCA=kwCm-xoU?7Rke){V0-o-3U^X+16qF<0oCz@XZF+ z`UDx{Q?s*1<@Zqsy4$mGl85(W)mOX)m|ww384v7Q6|CVFILq^c4c`J%$5Bk2@I3fq z1F^odA3GA@@8di?0mV^4_n<1S+l3-%a_5otu(keFpj9Eh4rAJVwla{&L|vGD?ggfZ zELTvwExk-GWc%6vN#8s@>02e|pe61r+*^N&p7ar$(tHAe4Wgo0inh?f_fl&V4-M zm&Ix+plD~g{QT-4$q>AW*W^iNPeRGPC--F-CRMp6oq`-LRn~6uHs_O{>)H&wlG3lV zf275H+$A*$%Pc4mc{!nTLvtsxd2@mY!$uZYBqH30CSp8mj2_)}Nx=82hC~v>(*iR3 zL}?b02m@8U&2P9tK3qY#a!+J&C-!xy?>yB^?2YXteZe^4nA0t3col~K>1Ky_mvv({ zQL^)`+@NRyvBG|{E?M3pCk4EDi)M1 z(~RGBnJDco6Cp{5ZlXDB&}=~7c`&e-e6p@u0eyn(b5c}4+~xZYeG!2vW3 zUh71Jb+~4gQa0}?S%b(g6xbrWi%;hP?{(RC-(s5??>J^PX)j-$DqCvIE^zLMyDF0r zr=|Olfi5Ed^qjl+GQK`($7)!LAd_D@`3FCS%+>&@yYjetrv>uS)%iNu`Xf3Vgk3yB zh0X7qBrn3=-1012tHu4=8TaSs^@u$I_N4SjovU~v3HX;<$QJQ0+xe!GhZgL3rCfM( zn>JBgzwS`^-94vjU71i3W)9^nU2XwUxAM^{i72eL~jT>WO%b<5z!;J74u0PJW*M;Uu%ygSLw88KV zvKrqAZm7(Cbr!x`tU#~ogBIn@#0+8}{u?8;C1n{;9{01ZbYyDEMRl3hbywk@2}e5v zN|K0LCN|7F-k@cjYc(7fW!rN&gfo8_zr+puJlOmz%a!)tMWOB8&z?k=o)pkq}|zpSXc z{?sp|NpFU=n-Rvz@C4_*uPV7g)$2Vi|h%y+nH!w<_ zyJ=P#c)7yoB4hmQB{v_ z`CTYOA+3hqnwNbMGj8^m?wi7O;UbBipQ#?$$M;TA_m_zbwS2aJff?&8#gXx)iDBwK z>IwS)M%8z~bM?OcA2U09CE0t2?Cd?F?7er$$PQ(Oj6!6~-ZM(d7P4i8LRKWJkoaGp z@Ar9r&+q?wc|~X5=RW7$=f1A%Js{IZ;zpl|e5b*)#4hbmspRNpN}ltgFwbK={g7;k zvmozeU%;XfN1a4roTkW{QO#oPP{QhWJKtK4sc9w7o^yISN=~6Ui#gJUf@(;A8#6hx zPCnbrCCx=_jJS1%1PqPp@BAz;&n~4VBbGVwpXIGPkRy5$QdUcW;OR%;_3%Iw=X(7Wq3KPc$5)1 zG9)fulU5_CY}%0@Z+E}1HS5tPb{-*B*}7c(#}F5>GV1qELYwoHRjjY{KZo1HD~8A(crN&X%mowr_8od2DnzZ)A`;h!8KHye}e9VeVNce}H zz7LI$e~U@%b!3h_xpXgEluuZo1kaaOWGD&`EAJNj9gYvR7G+;>bL7_*yi}w$2+2xR zy_pFO*$Rvp)q<`WS5rDc&*Qq{C;3QI1c>Gg`bky{+^@Dfj~Cqs=Uz=Q+q-{W32O13O@>$b-QnoX zOS4QP_E|G6=Gm6}kL$a7UtdLs875+cfqIG3uhPItcyLy#Q1g$qC>ZkKoOe;v5`jw| zvgHRFGP-_q0nzU+vCLjc%Jy4Kh{Z&VFT-g64zs*{`2%nCRHo!hC2wJ2P0_pR4^+;;y+$VYP3#_`9)uIVZ9q0{<12z^i9FtZ)shNVNYAZpgsykte}Rb z#g#^BDF!|HRPlQ1nc?Kr3ADbR3O)v5V<(E@YhG%1XVPY`txF(Dgs34Zo^KJm8-1zP zR9KW5yWhe80t2DGIv*ysY~`%`k?~1-cCSM>Vhl4!HOh;%=M1+yFlQvB-s=wW5n=X8i& z_Qw7jjsbk6IEudzv9cGuq;H$HZqFJZn1_ovpbn5m;c-jEBEaJ5Di)I3>CcTA-Hwo( z^8Xf~n?i+X;yri+5K>Zt@?M^i$0=_RD+`!SSZU#6>lY3l6tM6k8MJHgeGp-#zmvf6 z?-nlqY~glG#HL?gvNUcVcA`Pu8Q0D{F2wHgA#84MeTxFA$ApeDqQTZjW4Hp}7^FyJ zXn_+!^x*o(iLN=*L|e)!ch6@t!Aud+7~kaw*oQe(5}H)1AvxdicgLem1QA02zYT3{ zmi+oBkfeL3RUYP$LVKS?!EHc11~vTB`E~_mmKjgZhgBcAjw$TaBNjM?#_5q-(Z6pC z)1N*qEkPxc_-aNqBOxLQS7w=f;1{(?|+6Aq^Ys7IHblm9#is}y|Q|bzF>;End0BYs(MX? zbT)FPT`}q}MaKPR%fr!Miz`Qp!nKV@H(oz!V4nM@!#FS=OymarXocjd-^M88X~F9s zZG&X>9!oNR=dsIrM9t#FVxBbmRQ!q?d?0nWZ1}CFX8!k+rl89KTkJX0i+sX9(Jem> zzYwbSx&FN*y}06gKKZfh`jJ~lhQd5N+b!IlbrUn$=*YOru17mSY@uKi3_0HnPAh`eOoGm|LN1 zPO5zX#F~J}Y?;**xPq;Rb%k$}(}IPRRq5)nYqQVq+~Thh6f|b_0cy^I0G=YUaGds(%0C`7FDc z4IIS|uU8t4hqWqMHJVYWL4|1u$oTQHIT*E>he}K#rz6C%LxXRc^3aA*!Cu5TRqW8> z1ME%PMUzp4(kepV7O~=}L{wnp)UC#_CZfLmDFV9|3HC-uMxU`>V%0Lor+tSG;{s1l zit&5(N(m0u7q+=#aEL?H3ODc1f!!Sb5M=^{ZMK(mlvLsGY(m(C~ zMU6a<^w35qlNq?}ilmK8$3)Qnv;15fd0eY!Ah5~vPWkmxr8GyZi6}w?FT52=+5q0^ z5W1#{otv%7mG@ zZ3$su))dvHMN;g>{|e70*>}I6{D`heN7IhB>0fn`*BA8WF`V;E+X6Sy=gm+{@aRXnnNXBW-NK^jdUi0^m{vp8;d1*!NL;u+rORAWz!ToRi#7l zJ}a0Q7Y0!@UC+dn&Wtr)(L%G*@Aocq9QTdPtJnL@rT&TSvUDb{(I%`=^S@C{@9;H) zw#~4CCQ#V6GYkFQanicp+E+Mpv9fE=*(VZR0=x4`du6b zZ?r)E%Zr+s6n?IlsAMg~2|Jj&D2LUxj9JrZ^Mbp1^)cS^`+hb=m}0u6*dihhgT`5B zkfwpn02{S-@$rZKH~)9ra+`L^kx{L*Uo}O~1i6VC9|^kJ*e9KL*nDpmya+_D|Kl;D;Fo&CrAQB2W*U_$PcRLSQ+4o+n z`S_px#2LrG)O!Zt$%@M6Je<7#hulBg_SUKL^Xv2_1R{*2{b##cNX#V|q4fnePIC%zXRwdAS2 z#TnGQX0ENdiG0X-XerqDSvP!I9kqr9)^yHTvQc~fWs;G27xLCBl+C6)U5wK zoYltU+YDE9q;$}!-emIZAIUIr9)w);e}&Fz{L(-p|C!)l$AA7#f zs71pTekj^f_rP5Ap5ixArWEoNiWG9Z7#8mCz*RBbugjn7KPIh*mD<}rIF@%Kg!Z$F z|6)MLUVa~T3j>F=cF%5ofHHaB&2A-jop!{%H~O+Uj?3aq?$KLfM|VrxA;J6MPyP;* zVeDDSW?Uj5|KR@KYuxT$mL^({W-Bi}^zUeV-Oa}#jCTVp3jRcbI@_$V;qrtY_y5*HTZ{COZt$`d#K$t>ocGGJ;Ej& zDh7JnX(WO&Zo|#?JE_rKGO^_@@2sa-a4PTM@i1#+*bV;=tts`TgwZ-GkD&#z$DU}U z0#<|!s-%6rYE$Q;!)=)Kt-Rv>-lI$gr}CdW-}a_;%dPlq_t1IY_{d}y)=i*~fm7f` zK0WI|CH&W&Zf~qri%pHKL*6URK@J11hlD$XQTuI;po67J!%E)K^i#x+_-!aP+KBV% zynj9JDtW&%^J_M^9J=JrY1V%7q=#e+c>zi5c`tbmBE<&Y_WFl757P%W&t#G!{qzxR zEp>c1417NEflleW)V3FQ*i!6MC{~+&R8*Y;8^+nv&q9ljI^+L%>$RR;kVOukp` z&m?*hj#_4qzXXm)eJ-Z-NFCs&vA$O67A|#ZG;i!}FJ_3dQfuNGp|q*97A}%u;xlHx z!)8d*nlR;YpusXw%)jV>22);Z(%&Mz-!%@fiyqR~Onkhk*O?Dv`Gc-S9oRe$trL*( z6)dZ&TXrYsYU9pwZ+OH5-{Misz0>hG1!pzah;EhYRQrZApUgM@vvuOkW3|XvO0xC& z8`Y5zZ3xQ^y=@#Xc%eYgFS+pMWm%f>ZFJ=HHWh2>Uw0x?jus^fH0#G|x|rR8@NLdy zXydPf*`}=X_itH5<$x(0zY`f_vzvj3%xX)vCMexVC;t5W&X<@zoAGT3o<@b|-U^4W z`_YvdzumNA2o5eN0~Y;l9cn~~du>(J!0Se!%1M+Gu8@HL?eXVDuEvx*PakTKL0kZz#I9R9)C|m>ADW#F zS$-ye^HXckLT_$Cx0TPq=$C?BRmnsfc<(xz`p=41sv-xlSl|&Q(Hy#+csTxd=Z1q- z;(n5fvrEpB^S7D_E8&R9yAN;B%0BX+D9$>sFR)$A5m(Okrt*?6(7Np0>+X9#8}(7N zAG>X>6-sf36CZ0FnK%?kuR^BjUrS- zE7(k5rw8~9U|)f(`7|2}G!=L66Cz2G@wG=W#CYyo3}p&9QKF1(qkPJ$Xqg%vQojMH zy9CS!>#2T5kKMnokXN@wqQC* zIa+jwR&QGwFNy2)TPuJp{{G#4&;jue;O<`o*(2+2+rU>(fL)pgWk=#u@fp?1wy@Ed zmCMYLkPLOk-_EY=Q{PRWyen<9a^?JXMN{3yqtYfEHR0?JOER1^j9 zJ!DPJSMoQ^nFxfYI5mv6|Bg>mQItf9<}`s(C32X+Y465AO?fXKzWMXr&N-gSHx$zKoE@8G;)K;uu=baKB$M)YE zLscpte@uuju|D!`j%=Hqk;iPNlzaK8yeYqg@Lm7mpf@1ZW}4lz0{sAr51hlcg&-SI z?E&9=ev2HhcVBK5F8GkhjfB}Z=1?ybOUOwT2X(OIIW)f3rN217q`qo4RAf^D)0rm7~Vt&Yiad?#e3qv=v2 zAy-(i6uTDKfkTHIJo7@-)JX+X@|vJ17cp)eTVwv}rLZHGBkN7S*Ff1s75vjaPXId& z5FFVMZ+?eDHVSdG-1FEph3K}%7xM6uFij~HDILBXv7i}Y66L=SOIZ>_@YM2If9oAv z4zVz6z+*8%MWVNuTWI(a)q<3u}M=T0zM&-(8N4SzN^Qg!O_BYutCMKy<X zrVSY>kpvP}hNbPk49P|g^2mq(# z3pB$jcOf1n##pA;p9{S5hx*Qm=iOG9W7avA$_`z3#j4sL{`E>DC$(2fd3LwQt|gf# zwLc|Sv4F`;rg5Q7njO+kzaPgLKGoPa>v~PGF7`-y*PQz*38U6kXNgNZwnTT=THVP0 zG*=vGgzEau__uU@?hzv3UQEB#!BO(-Z>O$;nXA})tUohu@}BsZETV{0tKESaz`>Ms zfvx|wGZNojG|P{ItIv!63A^<0b=GD&p1>D{y%pOsKMY6k=y0VRSHwGt#N6!2`tL$F z+FlI}kpEr4q^4{4Tr5#6aYfuhSGCwG`kF>4q3!Fh58qSJ0OY@e-}wSCZ(^J*fQCvvq!cxAM~ZGSDl+BFfmPCRH(7+$-YF|5lUm z?{8H%B#CrjtrZx+-gKXij~HaaF9)HsMzW|u$$`ULhI35^vyh+!Q}S#ktj3(7BtcB% z#JN@N*ghSNPMF(a|3K*KKh;>W)?s#u|EJ&@ZF4Pi z0#>CoMN_MG77Mp%PQ_lV`TS}zKVEIlAZ@PEH;UMeq`p7%A0SQ|R9@JmR9n_T?G!-LIm1)74AS7V=W*jr3WC zk&l_J3RK!b^6Nih&*v{#55V82;l)qzg6Wu-d0qmucP zy}7Q*W9r;r>m4`O5n7o{-sGQeZ|H)4i$=VQ?zAj5dQ&7kgsI;9u}kDz-<5l^>7uP_ zHxC_7ZTbWi^mzqipf88~8L35?wZ1&mAbfPIB=eof0d(9lvvp3pBFxXSNqpmx`MHaGw=)h#CIWP?y#Fm8%*=Bw#f~ z`q1gu_0+_Yr&_mdvnYQC+u7JENpI)3y1qvnE#-7A+A(Ba7JF+RN)+_ci_Vei)r#*v z{qUi|Gs`=4$8-2dRQmR{a?oPPh4HqY2atb0@DVKFAk_uBFbcQ=>>n7B__7lk$+O5~U>mMpIKrIs&`W#D;h{)PeS|Tw=uY_?1qB``9|s_p;j9?%L@25W{qxRVJ?`||i5LTgpOKNL9VWg((%l6UhYTQ#x zWori-_onj|YQw^^r&E4vp&8}9+}BF?@#*>wSUg|6BOCD&4R1Jjy5gi7z9(bS6cWDG zF=uV*it+WQ0Ju_n{5AK&M3;&vbx?00E{XuJd~-ZM&##;`yzW})yfr}#<}R7 zcZw#dQm<@HzgNP-O%=ub#u6=D(Ht?EZ6>v}CwETH;xf9(NLtN1j~tsNZy7HoU69|C zeDn)TG`#SOq9Uum{5;0wC`rG36y1kwisU(*Q`bH%5=ADKUe<4qNF)8#k#Sj4h`=lJ z;fpm1LY?HmNBDozORcln`gBWz=bM<-U4jb|*4^I6qM3yc8cg>(kjb}P3w;>Rg0ECP z?Hd}4FKwizdv9A_j%eh7@T*bQ6anco-;6~(BuQpqP24zb;qLvzJ%G}=xQ@x8hw3Jt zHww)Cc=6oDP9spIv-8%O4}<#tM`jV-`;3&|B>W5~>p3Ro+&wJ6klI`5*~W=-?i1=N z2XXf7irMk1*GHF(*%fj;&2zb>ewr+w{FI+(@TQTm<#$0Q_v;w{Co7t^>SRn@tkW7P@Q-P z2^(m2@dnit?-*a3@og;bQ^Vdu`mLCKH?HEUsw;x~@P|`b#59gLdneWU*{|4T zIEbv{KxjNL8oU4t2AH%^m>tD9!6YiK0I)7Vhj|QGD|JVFUM9JW(N%iL;dIWpx;2d1El%O8ZQHzI05T8WznoX zDuGO!C{`q_l_QRn7~@E$=F@uB@1S=0y?byPVlkW?qY)BnIYW}$vbbw&cyJPuLMM8( zS~h>}g=qeRV*2d3+q7k4PX&Qo11Kl>KHt1~bK!T>&cac|C+^v+o39^>rS9!0XWeu> zQ*M5gjFI{+HyEiEFixv*snEG&m{VF_Sy?Tm`%PTee6wutjzJJtg*1D)^mYN+)Uzn9 ztHaYLMMS18KRjC!>m2Ur#GbDI`mvC;TJ<;>TXCNu*GM*{V6R1J`_*z&m{b>L5Ya?~Vv-L$aUCH1#pH@2U^e*R? z+0-G?fiH^5*Oi~x7D)XD=zhf$j(J&{7v-_3*wof1ym0PwQejFsc7)N zueFvRBu{9hKhU=5rX_MBRnqml#9+riBbJ{k?$1yVPFA$)XbdA?6o^XWA}hJp80dI_|f zZr)q%2dM7Lnh?ae^LS9iMri+Ow;P-K^7>L$K+sgjP4nLY#q;RA;~%o;t2c^%_3X^0 zH-5kMxjMw_wV(T(ABS_0-gnXxjGnXWnosSFpQ;*sc=E~5a}Mvb^NYx(QoBzIK0iL6 zq?z7rg&>SM5yh}YMR)txcTybdj)+ecYGOAt_^#NW&?XkLCoVK@B<{Aj5BVrCh~ORI zwfSz3SJ|dlU;WVL$FVb>51!vwulfZQ&tqZtoZAedjk&Mvp5^{-Ox5_2`?*HJTDy2I z)vY}Ru(v<}-Bc^|%*0*-iN^*tr zR7$EN!f5ENgtq+DPny3FfA|+Kw6c;;Fm#9CyguMA&{_dd3#0X=A(l~mIDhnYu% zY}>!508|S+F%%M1%hHvBb=>e|*~q@fw&whAg3glb*PSrys=%$KoyS=}2??)@pfTY0 zRH_P;J9>Fl#Pe3VLCPWoUUGv69S*}$9&bO_{&HfS&NLdPDIqf1kM85S?exyaRSbCd z+6&rhM3}B*iCe~J?^Z);c#KmxM$El>Qm&4q{x24QV&F4opBE6G%;M%!Xf7?BD3@wpX*f4#lD z1W8cyMd-f}uok)rz+Imfp{hnniz3WsC-=HKbuedisszX#~5WdE*DT0cMk-EkA};K0y{d#lM!D8;eOAJd7-ab95tc%p8J;nJ*Huj9qHa+9&5+e{>QZPC4mx$ zGbf|YYH3QwY4$yLSN;iNkNN_%$uwJQv)qNF%AaUlL9@*jQIqIKHH{OR225R@3<2wt z{cnJaesJ7%jSXtuz+i!BhJaq`709_&X<-V~*V6SyqO1FxF~gjc)fiBs0iubnMv4%a1gc(sE}WbY4k% z8dgc(axZ7BNh`67Z4f%~qF$8HA0q{Tpt=D{3jnTR|K+}3j~_=`VpwbMueEK<$nPJ~ zITCeF=1(e?*7J~E4DUQk4D_aRH3{YDIEfKG?pZ0IxCZx8LwLb1bsA- zh~uXKflQv+K#}E#X7fvhFP+-n+cD`fK{Uw*|1yeC1{D8#Igt5~BzJT%tnsW*VeU=+ z-x!Y$6}teX=x8@j-%zzbs{-FBe0@VXLq;xh&rYYvzmdPQhW{OF(g$zu*ouze7rAH} zdKXh3+pht<{cA|~Gq;@YkPnO^yfU*13I?bg=fzY_DC^)pAlgHKVo*{QkeBLjihCqB zpjol*U(Hx8!qWWnyOWB*!xPQoFvSAeu^A)BEKIuZ&KiVKI!7P_N!Ieh1*w>q)+kuDltFKQbpJi1`T-oLFnTY9(KT$ zfIb8Wd4S|u11+oH>%S-_v?IRUW!z>`q5f4@J{N{~-zw*UOf?6YWX0#`LRdvsVyW_} z<1DOVq~#;g*=h&sHhT_lL{^Glc%6n-eY&Bkh^Kq|!Oq+ayJGxB)c&vQoxfyq;Qzd?zy-aXLsCymYgA$(-%9g=CpUsL3VIcrbV`}^*dg?Y!V_ZtK$ z$W5m5SPbFv8NDoO3W-Rqt`n+$8JGvm}t&+CYogqdr&F$tw*&((cjt; zHG%GHG6Lw$&yrZUi)v~AzUb;@Pn}^}&g97Q57au9d6<=M7(c+k++UX6n{J{^l)0H^ zmwU~0tAa3iZq<=0V&KWuPt!5e^4l1X_i$jwAYt7MtK zSs~?nZYvV16T)Db#%dv|Th-J(b4|`&mwV@$SkrlxVNsZ(jC-9~Qwi_j`OMeruhilN zBHU)=1)>Nu9g1oR4NC{=Mv6BNY@d(N$A$bds*q^JdSQ>HA@MGlcEB6hajMJQKw)F^ zO&FUG|8Od~ICtEWXxp-W5MnARm9k_e$;6T|OnH{dlFD+sT`@HFZ0@e;KqmKP6ZG8o zTF>@K?7Ao;1l>j(YgcV^{j6^ATsQ~*ne2HZnC{b0{S`~Wg=J&`=AH?Qn0+rRiz0KR zd_yVMCYgIblQ0I}V0kmp zA;8Dx9{;3q^Hk30r5di4Bh%v;IHD6YxcBJvEW*`4(#oAGXlRIvgl4e@vi`;hMa#YTE#o&5!TllwS4n8qLmw5GcFSX`5e+-z zM>dDCwS3KX;BfmDD65y|At44hx3KZ)lu8^a!z5dkI#MT5TWl?XJT`*esG50w!(Eq> zL&gL9s_nn8xI85xNZI|^B3hoz7pU?mM%;Z%QZd9sRp^9eziz5f&&a1s9<$+=W6dR& zZ&0x-Ep%v4|zXSGMlE5Z}k9ED0kN0BZs*FC_7Iq zg?<9dXL%wwPONUyxdlJ?uu)Wvu|`!U_RL1X3_s`HoXSDhHW-oe)hS{Zpg0h90vn z#w2F)W1H%E!s&HptvQ7?jYziDR$xE=g1V3esM;>=UI0B3gc9z9xB`eT?L){2NeX}#3kZYfxamd>Z^ZT|xS{@Gs$FgRvzdhR@1R5yl zGk8J%WJKlIQI$f#g_Y{<^uX&1BeHQ5a;fp$f?;?T%p{fT0IS-`M(zkFUp2<|EE&njvqarmlSD z7EdvGm#l^H8cG8|_~kWw1ws*^Anf!6u4NC1hR#mZ8|8D{%KSL8MI>Q{(wk zt3w59rg~jn&0s=P8@Sb5n9%wq^GwuX?QF5N>LTruHD+pn{cDbBOd#qT)bNW&{GyA0wD|9DB z$0(mxpcB7_JM)hO26F+RSRWjJjRqAO4O#u3W9Ml3@L0UMmK-BB~~u65>^n! z{RKsgh6zJ6uO3jX(Ne^~CU^y6NI<9+0{N6j;;vR#ES@!aRjAZ{1@2i`EX!7|w-}v_ zrDuD8z5O8YS8w`k+%h-83hau4tTeLrjAI0)kp<6_8z6k~@bF@sKr9IaKAr>&!-Pwk zw+iE`br(uoJ$3o%vCbji{lCka z6d%-B2Ja~`Ws17f_IYjlNLBU=WIQGL^+$gF7B=H320S1CCXEtTAegd=?t)ZByuaa! z7*W8-Nujq(R1(obgE-;z5V|vssjR_GMN!gAOWvmly;@4Y!4QD4UtSeG2*C48W8y^( z@s|P-#3^4fpt`b>XU(~4ZqDRMU+S`Q_*fa*Pfq*SN3% z;qOEQSMnD(x35sNxo zq0Ks6CJ>MLR0WW20Evk3S=`mgZt(42;pP1>dqrk7?jvKiHO7)#)YLbGGS4z6>*j-V zl%`q(f^IE#W)$Cfm)Gl`7ndvh??hI{yRZrwv%M~}3EK;Nm_tX0Ur zPxP$4-(`y_KCFmm$;Z>m`8yg4iO7X{tb=g$lvUj%3Xn8x%& zMzTzre(dI_R&PhRSGl>lKYsmx53Lp6a1LW4InLTLp(^0E$;~zB4%U&BJEq?bf_m`p z(yx8=c4%gO{=DLjkr9gby!*NJ`tqv@U`k&e?j5M7ij$;hYiZ%>^Pmkl`oiY$6zT7 zxZYi-O*}MMJ7I*z5CB^PN&f*5>DA!f0Et7W!-I%`sh-|{Zw)0$RREhntzgs75*aS0 zl$fS>^SKa&Mj>GYozaA{)S?P+DichlQ-%n<($JZSY^Y2i8*_XlbsmBLgmLFDif!U=_I$?!3oi~7<@!kL}3_x!{ z&rpi!yg}o98Ogvp{fUOajl2H!pPerOkcWXcQ;>`((gVp0_;~{zVK~aX@jw3s_!Od7 z6L9@&rr|j;f}j{CWuLa6dvXM0Aj4t6mq-faeUAGnem@#X`X+#?+XQCd0^<%+afqt) z&?Dd~f-WJPK!A)0@j($XlK4;?oW28U1q_F+|9Wy{{A)`}u&AYsq_|L^lBs6rM4 zXlJ0oD3-Su__Ivjzis~BGK;yKV`DBzc zC|c+7TB2i>%04>bzGUUEA5m+-Pp)Oas2dCf!6~ShU04%%6?CpHKcJidV{t4m6RzC#7rl`HmVbmqdQhCHTz`h`WeYuoL|?Cus~tQaii&>7=W7ngJY z$$dHOkfF%QYcxcKje#u8vn zuc8tdx&~vowO>fMCVB~M%^Rnxu_s9l-{r);x#L>?QvPMXqj)&W@v}>Lbzfd2aHi8V!cMO&mkqsOg>A_&_77psFq?|n53E_OtGp~nJ5Cq634@g-F zRf?50m^YbW61wLdtyN;=Er8M1GuhwS4lX8|1Pb(%qh~dg^|a@OZ~gSCTo)t`6ckKV zFf1RUIRP@{JvO-BF&nG# zSPM4V)2$Cof&+OZ0j%<@4z~kse24ghc}u>A`j3ucBTf;CpNGMecJyvp?Z%o!`9i{E zs`uj``}kf3v23rS^G$5;Pg!^TY@+iIBS9FvueN3p1~Y{FX*^fE=2qn`zN3Hls|uH3 z%TL?SsS(N{hTr=wk4?xME6@?U3g-I_-~ia@_>4(UD5Hz^k9igIgRid6qt!5KWY1=P``OEy>dLYYF88__QnUM$A{Ox{ zzZ`VB>%q(HbP4)70m<#&SMb`!LLDCw0>4Bj%wv|cYjHvRUjnS5U?6^sfk%rb6Zfou&Ow*Ny)Si7MTMFDcY!lTF;KTU z!D;Ii>O2^5p2Fc>C2wra%?u1h&_2M2P86nvgFF#^LnROo<8}XK@OMX?@OrKaz`S_w z8aQ|&TKTUqib15}55^uHlE+DY{~ffz>A@F%{{Q+PoB$EVB4CEj-p9!Cz(Ry|vo2?# zWSbxQ6CtBM0{(<>bPPD&EjO*Ke9&}|4T2kj;8luW7ly5zZhQ&ALCEz(t_$OETPZI2 z$^X}D5u40GqYuE`)0^+b{i3L!cK@f-O|M0_~a!BtnQnjhYF#l<8X%ZOo^Yop6s zu{I!$(SG_Yee6+@n_s`(_@>s02>6;Jc}a7BJ$bLb+1C%G!{{D+IpIV+94;ywN5i6a zo_--8wJS^iq@<=sM|dA!{Ytkt1Sw`vVFsaM2qtGwRW2com#=<}4JR@^;gU{7Tc#0e zYVtASdD$C!jy4)>L!y?Vs`Xf_WH8TzTP+3Z5s>o6VZ^|AsO&yJw}-0XgEB1mKz;hq zhlMm=|JjW&IK>ode3~BrdT(;RjVJFR>4a)s2FOLGsYyi>+ceDL+8Qk+sf6+sd3E<4cWO&@Cn^XQ?ZbQCr!_k3TUT*SCPZf2N7bI3WJ1obPNno zp55HqGO>&TQK6Bdg#P}KU03H-@f5nZboEy( zS_%t^e2gMXldR}dizY<_{;3wVY}1gp%`V?c2&QnwUOK$p@)?lwwXaBSSR5if`L3Pv z`DcTOT~+WDKhE;Ra|6RcMp901XOpx{if=Y7)s7sSBZ-f0rE>4P#4C<@9^uMx?9DP> z%?{GMxH~=M+~7+7uypTYt<>?F<%~!;sR!F}=+3ieX%*EUQ(czyDAV52Tp2R&ds%uN zL-#&?>GNl!>U(B@>j90!-Np930#%l{Cr>UwkRh()7H!6&W7kJW`DfLnFatQX8;03oE~1jwt2& zS~7KwSkb7C@%y^?1bNJ|^Jancy~?i-6s=(xVS>KzZm?C?C2 zW6Od-c1*dQ7o`>&Rh?zW7dRxCautiNQ@^I7^VGG8aTsaCiS?}_lIUKCGZ6c7vfS5e z-z?dP$s3b#-=8&}ip%@C=0l=j+`lI9%!p^ew^TnQ?#SYe|J%^6wwYHNpiVXQY2r8S z=G8ZL&(n&*QH}wJ)jp~`leCrIpDoktpq^!T}+gBVn=8fj^RYe3Io1)421H8Bb1q)gd_4u6ptR4lfQT#2`-_cLE z7gu5;ks}s1Dg5*PdWH|HXlhBJNp@cOd>P4Q&S|1e7q;NHJRxRA-jd}uucqm@X3T_S zDsQkJUNajO`ggXYQ5ej$*-8G;Ww;XA%A+_Eg%Vkcjf%umHMoj}6EZy#Q?X4443C@+%l&cq zr_*VoZ;6bLt;>-j;~bp4512U~uvgx)z22m6yv0??@4*}iK24O5K|G&TYVlEQtQv?V z4h;_jh=HDxGKx45z`@KzdLPtk;cDOkK)#ahA8~h-# z*;nDhl?{d&E-qUrMAzF8NhmLYBM=lu!SMpb2mz`^!bna`>NCNH7HQ_UMuOEOG zB3L&8_T;BF6EpJzkN|^J2MpvO9*2#E^;J6S`SalnL1u35@4)4r9vwBRv*`gbb7FZQ zEQ4K1Tzota7uWd21j_pc(o9^b8hEr=YthJ#%CJ%SIhB|{>EnSBdG7c?IfE%H#yjRy zx`o)5%R%!crOUUEH1)}zDGuGqj(Nx~k)X}K;X|7sH@ewa?i33*$k_*;?1>Em+HCDn zYTP6dpk;asZxSM>j!5K*>*!)EGlZ#@#ACvm- zuHD7Q$46yjLjMNR4OyR_o`UisxRpSmUk=9|D%$V^>WFXs_m<(aS5;XVb@>`S4NWT~ zFHjHq?xHk+#8_FeJWxFe(yp-Z3N398$fS04F^h;yjgONuf>&P~=!XI?#nssv5b7vR zap;m4624sWV6&v8s90&)LC?qn2JUopX`tI!TuezucHMcL^kW8PqX!5Rqftp(7&n?%W7fRPW*|eyxd!z zMg7pVe5wN1Fh!SCUlefbpUWpU3pgz2=WEQ)N3 zX&?Ktsbkx@`xzn|N$To@tPjN>-3ngI`qCfWp}9RZWYRV?q?y9v?&juFG(R%~o?7jp ze`y&fJ04to`C|1b>De=V8=GawhC+|$WMx&<)a-6;eXtYK($qZtwey%55~tFT%e;HH zIzOLL-U&Pq!0<~9(z1}zC6hiQBhGDnwd#C3{gKyN=_aF zwuDy>Ji+i;*n=K{vbR1MAJrLgadE+8(4=Dr>=8gO0q}#B&(XwW4y^1-{Xb4jcmoCm zCm#g-Ae+Ae^MdK=>DJa(aHfG=ECWvG&VhZvpWWy1~%h&OwQl8 zk1(+d8ZR-0GE&|?VWk`x*{YO@}0nk4oC+gvp$leRO0RGB1FV5pKZRjp1 ze$Xv=KxrGRCP?9c`o}jGri>|G)D)q*=KW{&n<1!$|vFEThA%oE^wy2`%D&r}w-Fk=`6{sI6td zVUm^(0l%FTFd*6lQzZ!ri6eLL0RqP>FMx~8%*?>s<1t(R4aPn6@G$KXc2-t386n8~ z{=^r};yp2M1f4$cn*xD;0R2qE>j-XMUZ?O(psEL8ItJGYdjB9}3$AfD4uqd;vK?hI z;M5t#6K{dpTHzsWZQy2|>AJZrFvQTT%W`|?&z{}@Y zyFq{r9kb#?C!jm_|0w$oaIF8gZAC~(sf^5shDu2GEE$oEvO@OE%t**6Np=fa$=8mTLiQ-}o_D|Je?0%^dEWPU-}mnL9mg--?(zM8KG$`f=XHLrQ*-A0t()9g zBHc3L2Z$1wRn^V9qMEa~uieto(ZTG>A$0X|5GDPjGv+X&9>z>jzD?R&zgKLJZQ(3d zdYv{VjQ@Qw)6@4rV+8|B^sxfZy}&3^@RN#8&R8oL-RL~k5h#}w%p|;*8}a1V+8SXp z1vz`379s24MB1<>Ru*T5M~%e6gE25lvV#5C=f=jVAdbsv>FL23qX?-JBI)wn+z}og zyvw7MZ<*w0$UJ-_wdyk(3{-YV;$nN12?;Zeh{MJ}n`m*`c|7jwMzl_n9+k$eU*c z8DUC+&4z6Z7k|aHEl4J{%V$4$CKpC>Xs0iyDz)_OvnerACj+>8rQ`Gmaxz8cd{bnJ zh}I6-Qd@^5yKIarXZ!IK77FuO*g#xu@O$~k`0Q-OjR6s>vb}I2+i>14bL8}C2SnD2 ziV8Tq5o(-^7b#_qh>7WO?!}bQ^t7}M{GyFue@BOgl2TJkiydw(VlQFtG14deKBuRr z)3mZkalOLA!jMuiUi=ATHPQl}7>P0Q9j&cB7^sXCgV^%%<1~&E;)R*0Q{}$GJ*fkt zM_m69pb?x!#N?IZUeA)YVRragUfv1FYlG!}1N|&7FQ*6CN?ZH7QM3C$dc?qEdT&m4 z$NsR-3<6g)|6I8_UHgJx+xfX#XI0RYV$0e-L(eB`>qgc4ukCgWqL^KXZlvhlP@n|m`pFQ!HkW{3g;Uca7*3xaqIzpAu5unU+V z{M*%>E9&a~6`rM~rJ^$T>ql+jpn<8Zhr&N}b**e|{@k*cEP)yqqg+qoH?S3OMuT9B z^YrOe&w!%b+zF_DFt67kUd#rQmZ6)=!7Dv@(1<$Xwx_3(qT*aeZ4lk>-@h?Me+Fsx z_NIBfC@>@j!Pa2LF6P4Ppd!KERNXDx5zsUSzX)M|{z#S7)yej8i~&`q-@99Y^|Srf zC&8uJ0a3WPzzp`xnZhR$S9i#N@c)g3Hy2v0WmgS8_Zpq2iGfJQc zD7J-i<3+~hg1H~o$9tT5_4OD(R?b0hY9ejRzJmv+#%W~a13zgPoqe-)j=#_X>kJ*N zYdegDTB)Uz)5hG%xC`m~XNz;%> z=W6ln+7*PW3H04)HIB(&I?zNDGoVV4qdDi`khc^gpy=hbiN9kuatK{|q$yt%62azt zJ?mYW#8)AQY3u6hpdv%n64o$?BIVY~w6^FUw4gr)I$V9Fm4|}MN^Ri#KVQq@whCqycYJ_1?O=g8hPyhJe0ehXavNs%Vt8+Sdiv4FzL!>pytf8$d=|S0 z4dug;#DV7y_!PWn&u$?hnrN~R2&1g5mjz;_ zQgdu?j{Gi6cv%q0>PRGiNMS)Xh+SbJXoo6lD>(g~ITL%v`blP{wT8yNj2nU&)m#q4 zz{0{aG85~IOJv20`#*r^xyuisj&={~o#)RoZ{QR`30RaJvZe>tr z_x1GH3o$Xh=ybP2`dM9B$@YAW*TWu!MI_>q&^4X|peP8Yl4kk6FzbZ_#Y@4!2M=Bs z6yWx`I5-gcV`&uU^&aBo5tjk!$Ka*+_%X)(_rTB&iR9?1C}p}=!`rCDXB_S?|@~vc;_Qtrly*oKfmMVXAB+x zg+ttR_4TkOJP8o7vIl4au8mC0%s+TqASgf(YB17NwqC-7cX$Z7p#TT9q>q!JnD*=O z=hsbtn)nu0Q5X2U+9@hF!V5D!MK^;UCOUn%Vu*6k`Hz2$a>BG>{6!LOHdw+db90ra zEes6}VH|$@_HBSU*pUe_QOj7s`xONpSgA{wF2ORry{jwx@_PWyTeohlOtzz>In2W| zjdOi?xuh<_Rz>5UK;^-#1kvtBAM$??6cj+s+=md4 z9SBG4Va#C0;!hHs{3m9EDvG|{+7h-varPJ{dKKK121%^GkvQG|=Z*5yb4r^R`@Bon zWVLnasE)+p`@?}4H#(eC!AFWMW_RsdauVNrN+Umi{u~{Zjd-cW6A~P(sivk==5|`8 zyS*Kp!Yz+2Oo2wBZInlU3hOqncN+U5g45E_Fc&^6&oN&4bGkZrnQR0nn!;i*iHqRm z=i{T1!R|N{;92bE@}9>swhK#>>i()&6DmMVR572BJxCNHijTqgXjcve6;)?@ zd#0xqUPFo;TSPIACsqaX;PGi>$Uj>YV7Wwa9^FR)LJ@aXVGIzC0Hzco^dMaa1W$8j zY8l=>Y6OGKQB7>6r1nV|PQB#Y4L2QhuQ?Tv^X~ckcN~d>RWh8KtT-3eZ~M1m9TA46|BQ-Q~%4bA*q=oJu6y>6sbp)R^e#*`7S&cXH$~KHdJV z&aM_jWF%(^@*j+Ets-&vIsCB`=8O~-DP&+npIR4pc&Mk%Zym?Gvc`iG#Ml>=gKO44 zo&|Q`bvkW9y?_7XC%YzJPIB#MX8ts65ByVOG!L1L?3uydzCN|itB4m^Y7yf7{xa8H zTwLI0tgjyz8A+>R!b=|#5@M1iH~8(FiAbyjBq)m zBgEh!J^enEG=tR$VtZs@gcT8Z^5jWK@3Ap(IE2iviXOh^GDmQ~3knE_&NPbPl7PaK zo$z(wN+6qz9eUN#j^{vAb2Ifj6=mi9f#+b6)X@j|-H8(?{9FGq-61e7SFd(M)$vss z9z17YGX-nFdJGir?j{%q7UtZ^&*zt>aYIG7x!vb0$_kXP%=eD7m$KEL-uViMjbGtqFmDuIt+DA{!AVlKSD!{VI+B5AX$%d>|V+LZ~1Q5w(LB z&l6+_lS{W7)OM0=CnF0$nJj-JEh&j(jD4>D9p&k$i&JN$X$m>y{b_Dgffb41NyR3- zdv}M-1SlQ^Z^9URFasf}#zsaDA3jWbUQC^H-9|9x!5fn8+hSENDJsGMTZ5EoH%`NR z8W<4g;`$CH6oI2gBL9y15yoLKl0Y&zDJbZIvpqgOK2Y-7F6_5xZl}LFtH?&<=HX%2 zSD?U`>f^J`%ctKY*_&8^@)sfGhDP({H#^_JmpVehH1h1(Gl4lRQv@x3ettxv6P#(8 zga_^k--jM{W+9c^w#yKzGncc=%@0W$BrBc z`x01DA)#+=W3vG#g?L;YRFF8AQ6C5x2YX*{l<)ZB-asFHSBYGiYJvg-1NBb6!BF)! z1E22`IOvS%`RU_F&PxFl^Dz5{En8}z=VmlIf4GyMzvq%_cWsQG`Jkp7LmZry@CW1W z5j$7r=N07Tzb>wWpCvdEXnCvRorh#8DzWMrpKokC+Nf)h0ncQ4AoHN=$ZUGGiiUcm;7;^&1{-tCQ^%yQ8tjOuW(#8j*- zh=}N$G(k)FyjtT{R8$mdj^jK$0;f;!q@d7w>zw|oF(meiA81mZ`I!~ zE~VQ$T`a6Q4-nL<4|w!Vg;_sd*Bw1&BKh5Q z$G15u7O9hOT-`V=v~ax)68o6C9)=HpdRTcww-ZsNiNC78Anjg~t5$U3`ceL#tj&Q_ zY-|a|#cL?<$P-~UwKUxe@n3A4-JrknzM!b6UZ6E>PE`+0RGb)|N^s}PF?e_2gshHE zbWDt{oZLO+2%A;PMcF$p=keC`3q9aalkNY0%sWdG6pcx%TO3Cs=2g!zQ5AI;3{nL+ zZ`-!bZN!}`($dI?4~8=!_fONmUiTNjIi*p}pRHf&@~O5qIV}xHU7;j!$AaQzoZ-M3*)qN5f$&a^v`H~Y!5Tp}Y1j8Gk57kpHLi* zLFXPl+Augc*wl1fQj(SZQAETDIKkoJd3^c%_wNHDfqyPjP*nvPlk$ES)w6&sy9 zM*?4WUtt^Ad7)}~{FpC$?+r!*m~>41H!vv`7eGql7*cC?Ec3&3K<$&FCrT)oV2s|; z;oS8~8;}ieGpmX9h`5PCmw@Hs6gcmOcf50+PFY znE}o(W@cO}yLay%pLau?F38Ipwigm&v0Y<=A{>ZbPwzQ!(}M?!@R}hMkJ$hMu@Mn6 zpaN(Jxg`DFvxoqC9zQubIbR|!02I{E1R_+#p!Ct=NeLMl9bJT_E4%;e z{Cv;bx0jZdgqR3X<|NElYfHl(J$e)yD-K_jvNcE@0r_#gMMXscE|CHWdGgj0Is3jn zd#;lXjlbc?%1R;A$#XiL%_> zIRrQZ9?`3 zd00NEw!%5Fq_i(zKBJ*-X*mh*j*z|4X#4U-FXLp!b@c6qP^|$|GEkCIm!W^dipm&d z7AO!rkcc__D=-)Yd@Je=;I`%20S}aNz^!h(QHqC$hZB~xiVB{S1K%=u%xacp;ERLS zMgNMN9m_bbX@UDE`rapk@&hvg$~Ky(A^@6qo{Mk!$Me zwCpcYlIG+X7*}H{;qv3E?q(8d9UR<50|W4@CRCfvAD{-)7Jf`j^xz{PxYg9wDmaCJ zqXi>ikC5x@=LgSDK)YTW!GP-Py!0S2@URj5O*pslbMOy%R%T{qpbR{@adaMSwZK*I zQ(nL+fGDVbz~+Ft8Nt~Cw@%a!FbH!9PAV_|gP`xRG;!V1l7P^hoSgK2^xnZGV_;-d z3nGyw`0k-M2S03WZFk%S^sri6TcyZLN=t`;W`K(hg%ik9wD6?KhZ!3|pGvqd)O`HN z!_QA(1?K1H8yX0u3JZu?GqL-d=k>FwCXOEuY8rC{lMs*uj%^=Bettf9SAekR&!5{1 zlKKr#OlbY4!TULjc)~Nf?ddUb@z^RuRgb!5&0?xO>@Q!uF#1oVC!c>w&-CtDY4Xkz zO-02AQf#elZ6g|^i|e>pZdovm3JIZp+}qM}ijVL0t5=ll&ah>|P>)s%0sk;5HaHvR z1qV}w){oi?VJ{iHivPVfpJbACPyvjS4`v`>&EdX)`(9pIsgsV0iRni(hVb?Oev#u~ zK>TSWvJt|aot@#B=ImU6q79WTDj!VC6T!a6E{cjO!KCgf8XLhXaYP3j=g6B z{Kb4?!4K);<6FDBR3bVre)*RcKv_BYK#pF?US{TN8XEp&68-S!vay+F_1^Gd_0$60 zh#kMUupl5HfDDfL-hGfEF^Yc4z3zuA;^$Y5O1V2rx88&gM`b)g4`F|eP$GMf* z;ExMVpMPFSe1{RK`veaUV{<#U$Nl@{&{*}2W-$K6dFHJN(&UMNb6>_^$+4i%g-`(I z>gv_24bFO7+!@+~y#ow_k@U3e7a_^)2_%j#w#S0e!?g$5)P91o)U&;e|y1&s# z>c(U5S2Rx=r&BkQc#a4D+1My3EJR}3yLa!}?M*aTkcL)AYIpg!qQ?)%L$~iAqkwz} zcH&4FE8qVw@Xi`ER!JbJ$k5OhTyMKC#o-YV3otZiWMEidTl+BgGVS&J`o_0!-vA;LKm9q)2#exB=Hds|SVMS&WEx zIUn&2O%z-eA8T6V>Mevaurdh##o#}LE~%(AV8s{+0mwy6H4dLAC{09tf?W9T;)Y6nW%dI#}v{O4%&YMfj2$*n zS;H1L5BCYc(goldT;I~wMGetyeKOSs1B#*v_tg@uGrnhA@FMsm8(ei7ED zI>TcL|3?-U7SKZg`0!ZcARhtY09QEJQ9pS6xD#Cq%wkAMO}#qw9k0;Y(ed%ahc(P! zOshcy6EynLkM5TK{{Df1a+kZNwy2&kXXu3v?s_3kny}H3-=k)pnwW3{i3vp6*WW){ zNRaXg*(W3=8DG5k5xrov5DvR8<6s6>8LIN(+ORO1MAZrKT-UGfp{Ku3i;@8SU^6SL zzGq6EYK9d!v7=|v-|%Vf^U%)Y9X%IqHJ?3^JzX%mULh4JetXRxi2{KSoxStBHT3mw zSX#O-OrOZ7)xhd?)lP>VLVh43IA@?P!RaeuAyT;}g zru*oRj;b0(^~-H{Xk^k}?-g&7-Js*!bbrFFEdMkNK%x)$#-U4_O*|65g}58J}&H8t26 zsZP`L{Z9O>dVa^=z=INwDk>p}+yqo)(;E>TeQWsr4oFw5x>mS8G&c*P^NSuB_%Oe! z){c&EjwQ;2F^7(wdOCkrGlG-Agn`>qJBm+)LJq@16%-X;gKS<{Xl!Xg<^1xc8;E^3 zH}pZ+4jnp#vPejX-fr){eI_O*kDfob0io_TZ}gmg&mM@Y;D5{EUX0^@{&1WxG8#LH zWpN}TqRp`(N^XzLe3YFp2dm5pW+F`sftrM-=>V?I)NjbJJAI2$E5pI{)vH%v@+xq) z5-sb|La0DMfiY2EP*x^1haqQsKUq971u{y2pI`mz)p!VX5TEwQ0J>tGfUiAF{{G`f zN_NiPK^;}quQM~B%<^IDd;8mmJq{XCSjpKr4+J5~+Mq}M z@}-H9(QC9BpTpB}5oc%T-NbMZiR^l{t_gyN|K7q1Y6;^CFwG>AULfW*PPUlLMMump-J zi*926VOl)+kX5WRXn>%V{u9MsI%c)^g8B*sV;>SyfiH|tvquIEE}eWcWxxs4c_@vp zj@sk$LmT$)*76hz%hl;#byZcVtY1JHyC^7{<0a!CJ?cP}aJ~8-nnQy2Z2qmN*a<$t z-~gb2!;YJpoMb0d-2dK#3#gu-n+r>MZv(XrU{0uIvQSHzgJFlQa;GZkB?_1R0vqYb+xtPZgZ6o;q>>5o;~|!`1N5< zPAzTi%bm{=?ZG3XgS9y~ENf~yh6b_o&6|+c(GVn)5wxjrRZUcV_UMs64R*%6+v~5j zcq*JHBVuEjWhTIHkW*3$2nuF92ptIOM0W7^_dlgCpzSlRyG@moS9m|s0vGCJ&IW+K zt`b3{D5!W_#z#XpfTRdO0r&zd&&s9+u9@0B3O?<{}W%mcVNzclf85!{sn1 zUjaP{s22Sf2-Dl${j_PU%|ZZmBUU1yIGaCiKEks*NLy?@OqR*f&L?F@&<{`&1-FET zf~Y9LowT;T9%@FkBPoWrIrXD%3DR7CS(cbMj2pmMVZ=wWjL5V1*>egaci9LN zVrz73gM)+9f5o67i*5ZyBY=jFpFhd!Atfax=kflj{)1Rto$};~xJx5CQvRy{9e_|V z9f2MWu;YSK1k~@SM2q!K4u+C#CA0Ml8VoAn zVG?zfSw2F@JGaj!JEm|@h11P3W344d@4DkLqQ0=?ZBt>6+Ev1074MdOF$iGN_`Dx#uckX!SD)Gti5$wK*L+~I!g1}c zHuNI$oKr}y$lk~^cwIzrq?$c4pc#vbiogXCh$ql4fHO$>h8Hf>r^G%-85|H$4`Kqx zmLnfM62Ldl2>FCjamWze-Kz-aD3p*z3FHLA%E6u(fV+spN?sfD^@wultblX+4IKeF zJJip%wzjOS@&5iK67d*mRERuQ?l%9z(o~S2A7CGB0fAUKe%#td7{Ci17SK5N0H!QmVMaePZ^oLB8=v)KPYH+L_1 zV2VB&_0azj+FZMK?Vxv6G&#`CzRE4Gch*i z$G7@2s{Ai(Wr9}_6cj|^x}V~%a(3oHezS*A0|EYpgfwIGG3qvhGechnIQ#bEr?VO( zI7oFyKmdj6ICPt{v-(L3uT=g6^)QD2?@^Chi`H{VZ!dVFqa1)R69FA1?&B|=IExNs zH9j_WmktDxzf2;iXiyYqCcfgWK_gyNRzB#I9(~uMn8W-aM)k$MeS1qmA@Jgq2UKVU z{C_)7qj`-P5yy_d6I!u@M*sdc&&WPMBpSk~2T@Vjk{3+)z)cQC4i>$lX7?FIW;>gs zl^$rYNO@ElR@O77g~rAXpgpv9yCN&gHi+fO*|V;Y;w$g^9!)v8hCU3@1kLvC+jWMI zpaqFXmOYz7E5vws{C9<1LglxWbP1y96iYix0$WdXgj4LGw6#h)iPZ5*JIjWn;xD(g z5cGPg@~~8^AH6J_GVHLmO;wLm0c7-neftpE8}>X*-u73CcRo2MCv++br=oY%j?T{= zEG3-SgBmZ5+?SV^mvGZ*Ew(32JiBOSZ2g`0pZ60Ki5)Bml_Kh+a$|v(@PB?pf{1US z-%m20j@&5a8;E(Vzh#my9?A_beWlGcr;eqTu%Imz}-aKad zK=I`V^^O~^^>~X>i!qNA@BUsxJl~Q)yx{SFkt{ZpzJD)+@Bx^}5_%R?f{&D{IYEz) zZb*Kw4J~aXBFST@iM%dL)B4}L7abLaC<1ltK)J`8W-)>o7t{hk4&o2myxon5N%)p( z!Kwdz2l`i4mhh;?2CaBQ66W2uVPy>23C1cw0@B$?YN8bFaZOK;2{g8$VFHkXscGjS z?*;|7A#{Nuvw?0Q7F_xD>!+bE?Q>UCR|nI?44m-zF}hvmmX^X0m2{mtX7LKbf_$x4 zD6t5<3v#9y%TK7I&Ma_pakWh@q0bC4AcQ);4JN29iWDrR`4yZ>-(ijoXkIiL(7qre zAwiMw4lz?%aaXi#v_~-L91e~o6otRm)(RZieJ;v7<)H3>s!Uv59Q0Dv_#)WyC(obr zEJjF)ad+cX5RD90PIVCOJ2&|V_+l!%nCX9~;vH ziK33q$i~3jPMz>Ml@Lb!%9m%X2hg672Hb?KZZa=L&L(#sz`C0&qsOh zobFfJNtv0VI5^XFf-Q{U=+B!P8jtexop9sg;`9jzpKN;A_6C~h)31GaYK_DWa=7Er zUv&HtifluI%=#7J9%|?l1|qFINJo1D&jGY)Jb-Ed)VY-jl-oJssl#W9!Y-)|-cTU4 z)&v9|J^bz?6SkmFkb5B4A(3V2im)lE4gSE|TZOC^*%e=sAbtbQb^d%U6j~;_^l9=;=VxF1Aj|Kb%GE$1y~Wa zg?tV2L+|7&n8=G<`G*yEnaJzv#;BwM&pl9dN26$laF%AP_Mgk0hoTP9ZGK^_3CgZ4 zO(`~h++3*Ep%q3YSa#$<&>k5|QYa#;zkDe>ql5+8IAl#sOw1LjklH@~A~;wXmjU!$ zP;JEZ>j_@j!DtaWXORWfI=Z+Zf2t@dzK;Tdeds_??DOYVKgUsvpzz~40Es3=MeA{r z13_b7ztYgr1<=(RIiL%P8yjo`;RjZQDlpN1tcpD{5a6I^Jp(;VT1dWB9(Du)G_Z1l5YTFK{jgZD9Kdo;YJc zVL4mK=~kiXpx~5)b`W+Ngez#dzDP=f#0q3R_uozZlW;oEVdNZoF<_%i8~06xipGP% zxmJGbF=qqH%&w4*_1j(t4;+-Ad}`o@1b#hF3wWyB^S7W1_~YDn?<60OLm7nX7fm`8 ztays8x+>c)gR%jHqBCCM7@X93C3(ju_D?y2pnmUieJZbTUra%|kBCr1nU2{$Lwon1 zgg%lld;YJ~oG6Q&AQQvmh~VGU_U~ze3iTD?@&7DYmpYC;#ZG=mOsp(x*LETcJ3=Ns zLL?C{Y2M5PK_<>{A>snz?I0yZr!qIIsgnmAZr9G8mOs=$KN3Itxr>PHCoUZBPKzNg z02)HKr9dC{v`VbV@^ml1M7)7VvwF$-2or5>hRBAO?UUq*z^_Or?^&-CNiCl4dy7xp z8ioar*3+}-Xz&UEZK{(51#Z6i?%=MzU`jCMP($1H6_H3ooY+((hTN8b@%(J#f_8%& zIOl}YPl42loE_RCyFoG3_+@M88KYW4iH2Y*Dk36x{`_TOkQE?AFJ9Cuun0%Z1^y6{ zX#ICyCraJ`w-AyRoS&M;LYRaXPzHD45ET&+Wo+!sb#;N{URF%m8a8^bTl+HjEoOx4rPRMf_nW9shKu!qH0=p zwgdn;gPtPBCF}sMCMr3=%nZVQ_}jM*sW@Cppzxs&AC3qKX=!RMV+BEI4tA5kpf7xk z6}>7eYYaUY5CW*U=ltd>&_(DkLk9ip_wUluQXu(sOmc!;tMbk^=xBNQ`KuXl5e5bZ z$SCP^Z~nM~n;OBnwfb%gOBq2u9mi8~0&j#cO$|{91Es&dM?U~iBuhJAPC)@l|M=u9&E_nlEZNY&gDWYV(NjU6rX9J})v&{YK zVR9ZJqOro8kJ!M!*T zFYbX^826j*_4f39b@p#XxZA2C$ugw&$}q!DZqYGJI1M-U$;W z82h5LLA0I>XD&m-xrxsl4d=c*J;}{Yc51}J5+_1&q0R`t$<0mBA7z)}gy7tE6AKlI zQYqV%SK^Pm1}c(GX&vByR#xxjsZI!9ao^9KJ4eYZvIH1hxJxw^AA(1(cn(^ErY9$U zgN;NPh897xm;g~iHG!UB>y`^)DnTm^q$qIMn`X*uZ=I#dq4b3anQMCJ%NHhsMB(_K z?+CldqYL9?Pd>@)IK7<9M_Zz}cDAD2JQwq*nAtkbN)DO%BR*wnrIqIzl2CIkiYOGMX z;G7d)9LF!@OG?oDljkImi0O~8*=R_h1t9lV1z~RT9h}o4e<-u9ev*Y6#7ZNabq1i;9Yw*YFN# zL{uWB&XWuHTBtR^4IBcj5BhyoT^)xdVgxMJKyz_le1_IrWK7IKTH5w^-rf!Ol_Nkq z1_d=CB;fQp;yN7moYB9BQtoR;1r8?F)Ys$6wBfjILV_VkCoCsMUPGywKSDx6Z2st} z;xOMyhPSA`)RdG6=h7j1@W(=lJjG0uKy2BbYK`eK#~`M`#(;zhU1=PiA-L*ci6I51 zQz8N(k#u!;oAX8e)%oayM5)P~b32SuJBe@992dR(Sk%buEUH92kd6qQ} z4H;k(ft))*}jhbihhJ99;)=A@IWkL8cZK@Li}u_h3ZxOx^MHSFb=A zWJ4Ko!|m~xt?Ayg$*0GVq2Ti(t&zV+1}MaK_AW7zGbOJ#K-LF>(I1PDJ)5MY!TIya zSxwuCREhq=;BP^yM>eonQS=g5F%d~A{`1rG($ZBx2Oxviu~b2qy}9Xt!)?Tb)E!2L zPl#d;wI^0`-R?TLuLvY;{p3eExxaam%nGq2Y{-ejUG%Rk~8r`^VY2$Rt`CtEg(*A~dpsLCR zDhfslJcUX@{v2w8Z4ZfvwiA&Pij@@4Oga4JkLpDYf-sblf|7=kdJh%NKH7csdk-+~ zqd$1?AQK}eJ0mLx6L?*YBWzqe9DkDy_esHHV3Ya9dC`;>mF5>$6g`idg%qJKqoOO1 zV~*-jK^R`tF;z9N(lBw-v3Aq9N7lzCxNYQ&n$FGD72QZ8lXOyxOiJslJvXxVJLEDs zzdmsxUhqOZuR{DOg@hwllKGVqgjHVfsU?Z4Cb7BZbGjEE_j<#B-osf<86>TY5Dor>7|MK67$vjShdd{CSimz)(|n)fiJC@iz^aVZYD zA-TTEKr=i4&70zPMP;ZL9^I{ca=+@?y{eeN_YaD?f{MF?OL`use~c{aO}bl^{Gd8L zxHcuME;GC?`*B0&v&Moab-7O(^5g1XKWi#^R9hBZ^){xdD5gYEO3FXys?k?{e6B}zX8$Tw!Z+h8SmDSmp z(_Wp|S(o4Qp|H29^h-x_U295Xdsu>!&&^|HL^P_oqrsLbs-tqbGmED^?gI~KQhX+ST`=+M`XEytXM@L7;h9{?n zXV5Ylomu)ZHa|PDI6k*BzO*(q4>{u6`pCrU_`=+e<;B^xwef|`**P3tSYBLPUi-Z{ zx3IqQ3o80g>N;>CA=+s#uZ=CdiKEv=%T|}u(uIWj>wKK6`AK&fy5VfG6&z}uy zmaQgw%kK@gdyqEApE*dLQ`JM=+f_p%?RDuAQqGw^L>A~YD)Br;51TW(R1cpW?zFpsa(`l_B^!1g}eDI z_ud?Ju}5akdqW-swz0+%Z=`(xMYl?AxpwnbV=0I7kkH7o=ds%N-$QQkv0L#LN&7R! zejPMjuW?=*eD=)uO3u9O_N;@utDf2%T4^9zR;TT1VcsdCq(0tmPwp1?yJRN^*CAHr zvVKuJ?(bzj+nWLlNR1C_eCRqyt09?HNzRVZZqO74?_(BvU)RadVBqE zw0mNn2}lSZ`%2@>J`%Xyp@Ep5ZPz#QM^(i1`Df_+x5*NT>IxTllE@xzeZlRPoCCjs z{e_%b`wE7fq`A}S`@D7~*AKH_VLmozyr=R*>vo^1$ZZehsOnZKi+Q)X6m91SdTnF& z;*6?#aG=7SI>G%*Zljg%F+`=8Pu*?SFqKoOLgmP2b3ms|ER%aSt?W|Xl6rMTyY;vFd(HKSvburFu@li>JuXTy;|VX!u?J*AD~8D9@MESq)r2c60LK*Vn7ploXGekG_v+oci>{IjQpDrm1S0xZ%YS zz1>2WvrUQ2%lpSF*@nvwbp>q?v79;Ms{h_e*wS@3<=Ja%YPWbk52wXs$_>8$*dkI{ zeMQ#6_vnC8#*wfe!y00Fx1t6u2A ztcN@5Of{yik@)q>UEd#ibDHDnqjOh94mUL2myS8YklT9Z+78k^cfW^+T(dcU$TI3c z+xg+UpU%5Uf2AnC7QUc&K<~4LNrmQ<7xFxp80Hy-wO+8B1vctUtH~%UKGVok7HHnQ zV#s;@d--RwB!AhD_7VFNIHEJ;+t1}$&{Z8Nk8V2}q_LexSxd>YP{z8LU{03OCriqWf}D+Km5ntqcVNX1csxUj`&vXNW9xZ-L>zg zrLq#2pqfMY3oG8%=Dqu?+POXomPhfEO8)R&rJ* zw=eA+E@`-ECaopRXhinu%dPiEjSYJohp#nCU&IvQDyP_{vX^n9!!{|yre(D$kv=B- zi)iLJ_8jImZ7{l_b@cw>kL_)#-wk_zMjU&pD|7$TP6q|*OOXek&wqNRD0DgQy}C9< z-=WBggs!@yOY>5o@jCXe8(=Br+@OX0K;S{bH|Z+*)j9t*yf<PoH8de%!{**yXd{4#d3Nt;g236g*?Hv02AFs6!5X+je>!qf=wbuRD z4)`CNqHZ>fp*e`Jd^z^_%ezY%if*s}!0hH5SKdpt8#Ejb+{N#?hp&3M$nHPw%02u( zhn4r-Bl9{K#he~2dTF^$u zie!dqG8gxADLaS@R`&EC`c!6-Om$Vxp^47Y$b$duDi6J&CD%!_XLojr1!jeo$0aMM zDf1TT>>1mkbX#WE?EV7derLgkCA}!QvN76^GBJ;-GNbS84lFpO7*3pYMnCT9q5Z-7 zMvT7f#z!RV0)@LGDX)CY(CSOE65f-peIV7;ad+m?&`en)E`ukFDZ#IT%ASv2%nwW0 z??6ULEb-lRu<5a_qMgo*s;`eenu|5>=sx}7$#@=}gZ2}#)sum$_ob|!UDYmhv)Z|% zvF3t=0*PPU?yDXL((e(GaP;~{p7-Ndf3(U=FLpfU!TGzKmZyJ2e5@%^2vTbg^SqmB z)&4~=DCMqM%VpWTE86E+R4yl2s5Kiap13dl=)%QE3YYf|n8aNqll>fBdy|_ZNVvc` zgr+ic$B492(5@j`84i&oi$^VQ1(c&DxN7!&V*W@Xy^{ za$S|eA(qS`mUWfQjt^4r)IQc2v08rOQ^Ol_@0$IkjB_GX*N#(PJG}2$(-D5gOPU40 zn$sTZX}2Uwjz8;g`@raAmzh4m%@8H)QeW7C<1x*Oq zfB*cLAeNjzeukcG$HT43Pm&AEj1P&o*Gc{gckPI9Ftn-bHpr|>qjICF^J>r8sLA>1 zm6%ihUEg!;F*x326b?%PTVpX>eas7g3a^IG8~kdctC;hM-}qK9`D;3V;KrMQ3W_Dy zA=gtr^TDngHSa3&_g)#C=h(8yv@wt_@*W#|`fjPVawYT~W{4A4xQbS;r5*^2d;6=S zGjqlzbzqY8?XT%_k~*@%jrffgSFM^XNv7_O@JR!?l&zpkUJJ&oe1_Os$HmgyuDj_ z2UN(SsHvFygo{=)eI|W=#Ll`|xzb%oobdNsJwR`~+V>-m(JfeH$0K0@dz)ca*4%?@ z%+4Zh@6|o;k)`-W^xhx+!zHOg`reyZ>eqO|Zhm@$tpU4-*7a#wK2@`!2G>mIpZe4r zY>d!VT5L9RU-srm_33`IQ~!Tm}HW87T}PKREfBfoj;LjS<$coAdC zE6HDM8{EeBf9s<0oOyh;;#XtS+ARk6HAhv-%7#;(lS3OZEN6W-cQ`IZ#&6hdEpF{u z-oYzqzoM<$`L4@bO@n2Bz-8?K?_nMkIvZGm(^}S?A^>E>xoV(JcROaIAPqwD(uk0ck+-@CSN`CIr^*3)CAGG?4 z#<2V3%oSZF2_ES!-Brgtu({s;)Nbgj$jl9MrXxY+D_Vs!*9Y_)q|D{3ru; z?thpm8~lcUq0e`4!sV%;Ds?Q2cmMuKI?*3glPQ|hw2R%n4@*xlNH6s3c5_!hNFG^w zBGlI#w{jz1`1guZOz-qSYN;Lnf!VY@H=2&wB&5)ZT8oO^nQu#4#>@}wR^W_8@{g@(I--Y_5zve8^} zr5n68^10A!A;alQNxe7M#_*}mJxfj>QHK#A){#N{DLEnJrOzZ%^U{d?cjik{b zmM*?Tvi|Yqx6RW=tP{1f@7rB3+0JHuYIV=}DX)A@jsqRY2pC{{)6K4$b4W^Qa>J!^_ zjwUyMxa0CWJb>ky15b^E>K|R}V;cyCjy6ZE}Sq`swj3`6qfhZfb0~ ztuAfM=k0ZwteFo|ilNM#o?Kh^`pxi5<(}*>TgM;M7V#1eDQCUHO<{Ulk|;d;86*}Lg+^3(%!6;{c9TLZlbiTtPrtD#+j#_bL-ZB;ro3zj|vl6Bub zM06?Vi}%PEHP+Ysi}fe3%_`>>#d}>c6*?gL!^3e#`Guptx!@@Et%tD=99M=vG^~&A z8ojmcYW7m^+aAwfA4{C-Lk)C-O~{jUjMppbX-CNF%qk<_{rR>YE7e9_VQ607Lbl*I z*^xBL;x3fCmuI~#iH*sp_s`n9eX!D<6N{k{C_j9F6B8pzua7w?TS#+;ci zE;g>g@nkF`x~#Wv31npLlG|F+-_1UFGv@R+pHtHoAr^Ta>shJ&Nyj|%0u;=H{1jrn zoUfNMdW-N&dOOgc_g_s^zxp=EHD*yTuH*;qdW=Zk6nm+5>lj?LHue9~-b{z2Q^QOtUv0A?#C+09R zvQo0McInuSH{FaWRxj*xQcZS;ZS%H{|7=}1b;Z^rwLgZ7v5sP<*-YBK2Ll9%O5-JV(BJbpzV!Rvi%kb#tDiee=f67Jwun2I)HgYe_i<2^E`FW& zvHj_sBjM5mt&XJ;sfKgbU$jv983NE}ZmHsQY){j+w| zdR#(uSId%Hh={d>GoNU+@ffj#Z}l#^_(5ky6NgBHOYfG|wtnyv({>K#B*d=xgg^Ar zpVb%fvY~&tVx>o3aVl2aWu&c*+@n(GR5s&?x=?U|*7>4%PZNvQ-Oa+TTT#lQT0zF| ze#Wy)9uYL|w32k19GU8n^*Ccnbo=X_?)9dmPnN?zwBz@9s);Scee=tlXM1Q~^|Xi! zdyhEzJ z8=4inJ++WQ<~Zq?ygh#M)!X_0(;tIkliL>;pT3baye;(SVWzQMM4z9#+Cycpx!XCB z%dP3$zo*PT>8-Y9aJ_XD^Y>XY54jiY@ocdFia%Lg|LRXyQ!cl~3@N@r*91=EYu3WT zTT)|+JhuB>TeI)+AINNIC#$+c!jr*vbXq^Q#BKd!3)vBuvt6XJ`?3cUr6>KFCZ*=? zzx$<2=GM2LWi@eh_uWf$r*58I@Ok>SJYc8F@cTKZkxBFK7&75)?ZGXyRL|6ZP-`Qf zTczmdK9bval6QN4gSp8-+4_hb>$I>vlkv5=XH%?w=J`9{kgv0s&hxmOdN&g;8sQ%kKRG;iXwzfMKPtIsxbyjk5C->jIEVXu#hSYG&amV|_u!o5y zCBgBV4e{P79#)$*WBlg1xhuLCG}MNOha%a#Ra`mz_>7)<%<> z&d_^Wd)k4_o~HJDqn}Wl5BGETui>*^?TohmzH{N$nZBxd-tO+i`);u8JG0zzGL3?% zUhC~r(S>SN>)$mS#HBAIew|z~bC~=gRV+v%b9kpN(eRzL^a1TXFH%pwubl0T9CztI zX5%Yuo)D}*ZJk84y&`+y%Ym7k==Z@I-6A8-d&1d+N*BM?{EF@6f&O-dz=&O=BuSuuAuzmpYuoPDwr$()_N{H(w%%IXc5B=1*0$TzlYdT5PR@r(CYet&lgX3$J=c9- zJud^3Shc^R-e$rCAndM=0^aA0F@A+s12x+hy2&EHm-VU;XhL9f=2n~I*L%?BY+pCDJ)8zS^nNatd8Q@XCH;B6M z&5aat^tv0BBW3>kYk8aMo!8ed3a5c|MfmO`ulIGi>R-Vc-DxKv?e{)Nq%B;7>FM?Lo^i<(wTy?~B(MSWp zR+8nT2I6t%KEK5c+HGK`?|x?*K9GY6w;1(18{o$}yf4}(B_k&8hZAQVFt5EY+xtTB zR(?A4jhywRWli@!t<`7xe>RNx->C#KD)8N`@NUE12Du-R61`kY2y~?m+{gqRIhlT- z#qm3R9L6IKWY%XM5e8h{=6s8ky4zE*9N$6?utHB>W6s7I=?r=iz@*pM5S62 zGGEu={Kms=1CDsNJ1bGVtG#xa7xb1L=%9B&J-6Pr&I0Wi!D#b5k9Y%I;OM%XNSQtl z?~3pP8WKVII1phh!8vQUtM#va;)*y^>$)BN?%lwFUM3%B;?tP^rC(PiS$UuLGK}5# z?b895E_p8hp5UEIz~@_l;W6ab=f;!Y^po#X z*4912_RYoiE9Vm?e8R9*rtPHp@61ydp02RR*Q~1x_D!ezgtP8cKeTl^mb+n>tM~R1 z2O*!DOnN3)?k;=%-kvcZ%i`--*St!FqKlToO5TToNok)gAz6dxo$2bbyw@#GwR^qp zUQWMdkM0xR?Pt5~+fYtl88HXXLA+T1b-dm?IS2235BPb!-nZ$GzPzt~A;E_r!H1&& zD~EnZo>^e)Y$yk~+DS{#EIylx;r89MM&9nu16FF?lfh!ZGA+6w`^-&`aodmG`ma=6bIa>p$K`NZ?Pv|7z#( zntS!OrS#fE^qh6|8e;Ga{RQ%=b`STp^KDK4#gstB`hjI#lctz1fYfnTGVT9Z^7LNC zudX6Bx)(!Edc15X;WPPV9%nSJ@U5j7ga&>aAZ(hyb8`a@eMCJE`qRB<4xjf5YWMTq z%L*U&PmgOmc`vNn0+w;xJWl@*B(`RXNOvDXNzt}%N;!K@Vzwh7hz8!iA4XZgp@qM< z>JR@{EWiOl*T7MlKK+fP`^_W2&xFA_!puXm1TO$_X*VX4KVUUrO5l16Vz`gRe zJEUEp-9gY5*z5Y0_wx4Zc)*K8ca?nYF1TY+3U}q#E!r_af`1I>^|DT6% zK>qhbxH2dqdf&l@oxCsEz8sx%2;<<59bQ2(G+iWz4c2C{oQz!L2av8{0J+7F9^(XV z9`iO-m`oGF>>!32K{bB011?_OpP}z9dOwa69@xG;iru;X*A8_>9v^#ULN0!87 z`C0j}0!X+Z4~rHWR%%0juN1kE1_B|{D1H}X)xiul3Kob;ah;sYU8y77PUA%ko7Zgz z{copMzc<3Z9OLZ7t0zJ^_K80GkRB(nR_Y@C4}*Gd`nNS@^3}dx-URpyq5OSxi#}Yp zU+Wran^zCcmh-I;Z9@GSJ>=kO7$B%}11>}I`5Z?6@m{wz{Gy9XejCX3utOU*=`6^6 z-8d3>Ld9lO{ZTOg@sd_QS?fp7DEKw?oeF(@AZGm(-d;j_P^^368#0ocxtgt2f*-7D zUM9lJIP^Nd5_ED=__#jkF@z6lIFipJHxDeSs`=F33TvQFDSHW(CwiUDntce=*Yo!;enDh* z^m1c6Va?-9hKIxCf!~)cl_D)m&DD=89%9zwV6cH`%THV8T+*D)IE=RC za5P51N3N9%_8$-+G@lxQKR#9?XencJa60=W%6ty!N4Bq2;J7L9Z5wa7$C8EYVa0K^sAqE*yKkw{Mt6i}CtpE0v7?N1+W`K$?=57D< z4LG^I=|8o}DH|L;lFz}5(dj#zjyXr30qRKXU9#0F~Y-ml(|;V8=lS{FrrRfmW6sU2o4&Z$VG7ct_|X4(DV4Zyj^a$3CpE^ZsEUS@-W{&^E6ZSR{EO9T}>4 z>FU8*QJOe_VyI3U$Z^bk)txz})41~Yl#PBWN^s0T3@#RNc_^iNX3l6E&)fJjPB*8eVq_%PEwZ#(tN8gI(PLQYOjw zg^#q3L7QXS=|6=^!x-r9J$=yb9krKfx$8DeK&ts_M_v_`oXZz4d==cii9t$6I}y3v zM!vg|%b%kT4eJKg&u+vx{f;X+6q>C>x(_Ezy!-bN>~KGIFBt55mIq7FMy9VkYYwLj z*%OyTOd$p~QM-vJ95^35?V|X;`bN=6gKDbq9-8>#ztNfhumH^?Jhsm*J>}0NuAh50IpFTMfCJ`P(f``nE0neXI3X3T3>_ zYZw02tQ!KpiOl9Jt(?xCo))nzvCDbBXTojW-+%ZKl${tiY7III>IwrBMpxr!3o&y1P?c_-GO#%AK*Rjk2%esa)-~3YL~Q|4FY@e zwvf7wOJCoklJAi4f#Yg)m5&7iXU6`Z+62)tV`dMn+xJYv*=WI(E+@;NQ)KE_8;-(7 z4km7Hh$byX&eqaMXQP*Wi_1RGR{&^Q_G)aa&&L`(yota|YgN@Q=b-T%;d#QM)m5w| z-%G2@nP%rlw;@ub>AeYp{d9JX8*aZ17k^xox0+aN9_-b*t$$Zr_TJyA7#SM}=L_V1 z;(8o7(o7Fp8sCOawbkBW-urtKvASITb;9Z=?jP!%_tzyC>oJbdHmz#su1j7yQS0~& zJ#Qu|a3XdvZ9SSBiOk3Lplw6HKn$=id|W>@+21-e>Cp&`J$WgQ+Im671CE9h9)^Y` zh04}9x3Ks7ak8}k$Qco?j%^0<_&nQs`YUQ|R%ONh6!1H=buh@hd&&cL4Lb)TFv;5m zd^>?{pO4SJ-`VL5)n$gpWwp(r}mS0P5 zK;Qdzj#*am6tRTaZrw7Q*Zqs(9vlnlYXzNeAV~uX>Xl=XwVEh;{i6F|VSaZ_=DRx7 zf4red=ELbJ$I~x|X}5>BXD0rImy4sQyFsniJ5giV6?a_*sTUFpT73KRG&5HgIr-7h z>)S?s0U4GH-TORx*IiwH8T+_urBJv&i?|b#qA&C*{`B$KU9%&`1a9^n>LRbD^B-2F~qh9*8+ zdSVtGR!5K&RJGWjv2oTNWxay#Qr3+?kl1|P`L8#kbiwD!mq;(K>!(|y_kN9D^PbnmMN)&8pt{fg@k5*IwpZM2 z0(}Dl^&1(nWtD_7#Ew9TOk-?Hh zR~;&b1;`ftkWag})4lJ_!^cH~ZrFt$9%;C*r>eT1TZ!*utm+x|OJ7H;qURo|?<`K= z?_x1+_lNHa7y{S+BW5&<9ks&>7yIJ=tFc38t3KT2NZ`g+BE#c|h~pNx83fmIVDBR? zB7Ce^T{@iuBI>?uW2*GEdZfJ2ulMWS|4NzqAF|b+sNT zuP6vlozk@MX%M`>uL|rRyjS(45AG#=NV@gESS_*0^Ls41`Z|^nd~AsOSfWhuM>>Wx zc;3V6eJ)}2dl@(IfBD{8y-oSP>y*9_0p3lb-q*4^;+n2Q4SSnUnp(dd@F3EN_Y$_L zf1Qlj2{5Tx>XPcmP-Ya2vbj=^PxqE6w2RxYJ?iT3HvYY2CL5&@AGP$-qL#B!3ORL| z*WU#nDsX|T&qN#>OgNx5cUp$m5&>sudC&hS1CE~jku=|i`c~>7zYTQyF3+l;kJVi+ z!lXXqUrj`>y8^g}0uDMElhP#ndlszZV|i+9rT_4Xk+V%tuTlniBW&eq-M2ei4L&>j zZbQnvy$k2{PTx7dhT=p_KL1eqA9?sg>o7MP{ky9QoPO)uvE!G1ChB_@e3MWXZw$ud z8F#6KyT~e$MavuqBmw}o$I1AHO!{wNtu`~5hA<*YpC7%?hk5s5!9DIaHJRQiFqG+P zSMH(K7hO!bE>*!jLm?XSGCgLP+iL+#OY_j5!@az8hAZ943n@V$!^DNmhCn^q_a%PN z;hIed@Hbe+9h%~N;utX!6i@Q|oW6m1MI=#FzVVJ@ttT{nY zg~yNW4A4haDeBScNqY>)-$@bpo)=BUhSw(4x4QqVw9P9gKw%LX!h_MA9pL&>$Z%$d zzVAqo@D|p6WEz_!!%J-?xFUO7VieMf)em$Pjxh8oW84k~=qMbO2dRY|N>TY226kyW zbE5ODm`3_~Ma7(}o6>gJ=Ic4{q7w8f>*zX9X-m2;oFmxAPDqdW1lw&cFmn$TA7QA% z1Vw3T*5gchpki!x3#NHT8pjSDl=7hdzSRFK4<3DTxmRFI<0ZubpHI-F#GwMR{USY_ zm#w=Z&-c#Y{N{E0Gv&)a8}xbe>wfafbGr|S@o8Uk(NpW$djQ&~69%+-i{<=UB*gw2 z$=ZIWHIaXA6TB7ab;cs!UmBx9r={%<*nJyAKGLw?zs5&pe~3Z4hnD@kuIn|a&VAiP z+E~M4de`W^7Q;`3ejQj=>}1+n7LzT=E9k~$BJvB@AtgPg-AS>$1l|ICAO&E)fyngv zr*hF?=qfEMt=V&V}a#9JET$3&t%!xKx zYjD9ViO!CsuwdOQaG3s+Tty+qD2(_(0N=P-f&~a{0!8mK**+x{!EauueLsbVQulQQ zKf2#W{nO$7ajDc|Oe`wMu!Ld1@?w8SCD_~xH#?-Tbk{*J!Kz%#o(qJ@yG07Ts z@MU4C{fZ7T8FKr;mipii>Y}aD6lE8$IwbVZd7>8^UXj7AHH;hFuLHt_Xg7|3lY;LK z9u{1t)p-pp|LlYNf}A+6myW%jYE9oeJ>JoJqY`(aTyVezNxNda18MgIwY>bKhi%?= zE#6Ole-`6r8-L)y{CbGQvH^1uPTsNHp|I~Dt;TG_Z=>BybrbKpB-?NCct`5(K{E8c z69oAfxqhX0o;V^ma5 z^caa=O@X_7pup*U8+7m=>G^##`SmRK{6y6ILi7oNm^{NuUi}m2*>MM?hquhio45!| zdT;Cvbr+{Q4g)f*h)fNO3&dr2bLS*Qpfe5)*X0;uK1H~Di)??1_j61@a#%VZ9yu!4 zG<;%BHvu4}T)qeBP%PFxD5Xm8jfXp)0nB>@{$)vver`0og?kD#{i|%T2Pk@~+3^jd zczv*7eKc|%t9>8k1m9iH3r4BP&dRo`2w@sPZ$}B)OT`nmlgdfkQF9b?l}foj1y}?F zCLRCG!R=&9GRDx!O<%dV2@P=cujDvS)JxR~X;u`8T%uy{lfP}bzPclZ*0AVQ2Jrf- zeQo3ye}W>XrQm)uqw6xaZv~~{byjIsBZk22jnr1hF+zR)jm^_AhBhCB(7O9GbJIp% zwCjzH1aIUaf)k>o?bS_-Dv#dABSYK3e|p^;mAtHEr-)bnW?u`ca?pRxZ40cJE!RRX z>jR~rK9DKgb$QhpDmG6Jz&zyDcvIy@g&2w*zquu8mWvkINqGhiZfbto+nm$L#DBP& ziC5@Ra3R;UR;?-qd_kR9%>3Ai1ycPiQFwQm#u8dWjm;U1=oY+Pfg6Sg(U;A{Qc`@Q z9?|6N?bED-oC{pF&Q}fTXDKJMmLwcD}0JL-KOWI5yZET&&@v_ z>2Y*UTZ>mcNl(fXdZ0`MrNq`Oq5Zs%KY*utw-dlb%~5llJM9I-bF36d&owQ=G^>Og z{H-JaIU7BxnF{8rDvEYcgMlb3W1+cz_{0xXjBESxIZD`#E8RW^twU?3$0%D-t4yqo z;>;AXBMxR7ii$&&aZ@rs(mQtSw`GgMl85WE?AhH-Z>enJ0U5^hI5ULdU&N_P-4)=! zj81yK3B~`xcAvPg@#LX-lWgzD)d7e;@>+rO&XoaFXGq5B&XZo<(yhQ?#^|Q;t~NA;&$F(L&MUwQ$q4CM+{iXdtW_$|c3dldXom zzzqLzjX|)?CXxl=MyB48DAkZ)h2%HbDwgLsr#Ad;>8p`ZO(JVFyvzj;YNWf#pu@4z z$~}rO4{0lxbKNsZLj?mfBIP1=!kO&em4p0rR6i6bY?pV73ZyZnAQmpUwvnNLDj`W| zpXjpp!k-x@MiJY20|3c%k81g8?&@EOhb}J+_5}RNBIe>K+haKWt*lCbaE#- zDN`lBgj(bBYn-BU*=m=XkwXe2 zr!iXsCE2AhQnYsc##|7~Uo}m;sP?15w@nb~Q_ zv0m#RoBh+8 zpCV}>WMXuHdkiBr7(>WRxUX{%LTr$YRh9)@Q2DBS#uFP+YcRSfl)CbYKdV7Znlmcw zuYm*(K^RE%B&&$-?#d?z9*rQusGqG_zzeeX(}O+)vOD@=0<0-l@x3x< zo~k%NtMz0-@sXBt^F(txO41aT9M75G8tS|^ETLm-^SraRY+$h`Z-$S)EZCbL_n8#y z605VgEa(xe<&3GiLI!nwrTA_sneLy8JKMD+9O_7zMY>~MT6(_~7yYS{nsK{abm`JjyT>u4jmSd|ez*H6u>e-viM_HaWSFYV^kxr+b^HFgP zUNGaeVqqdNQ~?e%(9O13Dw+Kpz22+C?6%#wG!fnpJ=c*TCCOJ=p`^UCaAR6LsWRi) zI8?4J(>YQuV|3+D(;Vbzy~M9g5XmIlxrx0$dfbo*JqvteMO>hxlFmFL=IA+QNx-J5 zjp`{2JeVBnGSIUk7P~_PFZ73Xc&o#o(lu<;nJ3kJ+OJyi(M#Elww1_9u4}T98J^M# z5#n32eo^?+Omw@gruu;>^-Bc>X4$NYdxk%<8LEpLt8GJvAAHf5OUSOlb73yx;A(L! zKj)Zm{BIp&D9aBEB%{uBt<9yys_B^;A>c!P#xie51BX&b$uJBNl9A9NQ>g}nRaFgh zbYZ$sLi1$$xpX11xW+=le2T!D;!98*eKV;g9G6g}0k=CIeq7}H470k8K4yWX-UQr! z_BJ_B7d~KZp?UN1*Uhv!A1l~LL_}iOHLQW>SgDI0|PWv)0cnb%^Y4s-! z-OjX6@bDs$UB!mTo9TT3W3B{df?z<$pZiNZ`Qres5+m@A!b`ko8%PG6#@Qys6lM4! zLC469?P#8Q_Ng@Rggq@rX;;N=x#7PE*z%3&nRSd!~*io=oFus3Mk@xE6QpWU9$fA;kov2}Wv2YAz;BQnX#| zayhc$c4R2n#V}z#I+2Zv*ZfUpeevmvo6_wM#^R~uy^rzitYN}ff3)~&bW%#+7g}6NZ?;JTT2FI zR4v^ai4imS%|TVMO0xn8E_QN~DQSHQ+(>6pvPLmfqO4F-wOJst)+J70Z8~hu_yYSc zZ=J#k)G4WXFGB9I{NLhArLgv#6iS*JGYDejYkuI@jm?i;%Xn zOk|LUZ-&t|6jURZ`i0lGxtA{rHQ_RED{B83j8| zXdDI9gGH*)1h$ z);vmo(S@~Ib&rV|kx?cy!xAb1*8Z@mk&1?& zin3XH-ie!&*JroMLd{WW=Qd%#ObR(G&n40$+rtw;{$i&`{fftIB#si@Sm?m!rVT|21#IL9F zbaG6luAT8Inot41D5+O_r_hD1C$0trO`FpV?TN~(>}vqM+fH8WcZi&I2NA4)sXN8~ zDuQJwT?pz7MS`w`eHWnS6ZZ}EW`7a~Y0Gz9oqiBvkG(0#+{?684N5yIAF!?o4c&)t z){admOO+|ehcyy&6tV-dpV}U$sfz7ahCG{0tGWFJC%>i;CZj3kums9k7r4@pL6sIl zcjbtcJ+7WK&2|*yr6@P7LV7rXNDY}AobiGXdIp3=q%;FQj^5sahZaDA0#)8>cr2X#7oz2GK>&hYk>($eAFdE`GVy%V zQOOoRO?SvCS74?qBqb3wq!@K(cH{m*8d_4L{xVLGaUFDiVMK2lVUM9lf6>wcT%BCCIBoaHnK#8-3>FvTTv`er6 zEfIL5NXx~-RhT*|nps>NW*~=yuVtz2V9w2@R$=#C3>immL2jl5nu{2*%Wo7T+^>~O z{w=_uIdtA9-Ou8ophpp7VRSNpK`xCpv&5FRoF_4I2@w;lw9=tD>`y{>nVA4(M>%6@ za;bod*nyG6y3R=jpb%DdfoRtI#fRT4^tXfIi*lz0vCcxoXXOGqS7~%KT??fUg{hqj z$3+-%#*801V^5@_PSy<@8_LIweS%4n}zjx3+}jlBg##r;_vT<2vm%;{vY zBCf;-I{RfbQo1GxwDOy=?77*HHbDtZYliHauulN=%*2uYYsVq?-(xcajRGQe?{BI8Ue{;o` zUQ8R-GgVu+E3p-|u4?fbS1Wely?_ovh!#v9@fbuaddMj$3EwF1dK z7!D1l%RiXWRKSuLD@7JCo4O6gV>CyzM7p>;7<`Q!b9g#_6$9+=6^uTBcNxBVA8LA; zaxuD@e`-YXOG}*%&=FZ5_ryzmwK|&rqWAwK$h5&ZDzP#KL2}Tlv@+MqoK3|PJ1I+= zkZ7Rf0`*LeKgoV$S$_X9h|OODmp$mFmD`Bklgwpgv6qeRRVi~?noOgbpk4W6LnxKT zJ=g~?A{d4{1w$V_lbn0#wc3NZ=5z+$_~$GnN#sx{B+V!hWfzd!lse)WM!5 zb(yKMY&*4p2ANeV2M(L7h2Pt4^gcN4VR;C9+DmPzjwW$kw&bhSSg>q(P zsLWl_bvN3){9?;cx{E8O0wU7ZNESm9?UBn?tTol%g@d#3^Ino$PH&^W_SYVr&C3bY zZ{{-!cA7zP+XuFs#I@;GzG={CvM6-@k+{a9Ir&j5W@>tv3csG!vC* zmpz=vIpoWU%`}cA>^?A`y&wB~)HDe}Hbi*9defXqNS|T5;_|_t|6u{ro#wG?@s8*@)86@fQ~itt?$T>0IuMm!{@lxFM3S z#M?sKn)#JZUfH%wVqcT0=J%#j=k2fl_nKKa-@hL_)E@)Y1X;LnL49EQkE5IRs^a)s zyDqD$@>k$eC%-o-^bA7j)^2Jx)uJ8<_(oWI+Pt-^hk=QaW9#?c}zOTJqlhjjMl&1{G@~vkKcpqmXnW%w@5>H%<(bMe{y=hcB?J|z&kE?GFzViQPJ zIp!q5z&=)P(nMreef3OYBsV#=E4;ZHR4sMTc2WEqco#Ey%0GasLN9*QrY@wGP&mU7wz*-km_eE}CmcK@XHFL@vI*DZ=(_El@Ogv~zFiI^n5SN()XXdrq>E8cH7Ly|}&7`CXLSmW3q(zlWIZ~)= z^^tlT0Ad@%3Cs;O~u=VmlRt+_g2&#-9I(`R4!bS zAjgC+<>^EmO5-e=W=vCP-pB^jETb~onmJ6zVx+!&a;r<;jC>VG3b@V6A(fx=4N6lJ`Cou-M(`neOj;UdV*0v+IFp7 z;!{?O*6Bt&8m2$~{Qx5W=bpwT2zP^H32{SDaBx=6uM6SIsyu6SC_PArOeUj=eEX%S ziWf%0Blrx59xhVwrc!V_l}Wx)KBj6T|wLg-|ALf6L5N za!>wTC!-Rpz{VOpl+Uk`I7m$j?rQ&{Ql*jc^#) zu?f+V?z;fue_-BvP&^&&b33|se?_2^01hQtuo}HT*|Dn<6Mm1JIthwii?t6w63(N( zudvYusX)m~L`S*RLvb1Z5O+iah1dJN9eD?n{;2_iyn>7=gT#Hv`5$fIcan z^a|E-oxwU{<;TI?H}Q+!ky!sUx9q1V`HSECM15Ure?5-2^cVcgPBmC zb%9LE2*W(RwNI0^9S%Tw;etjtGo2ICOFL3T z$W?18CP5LjXlxtc$w0`lUv~MTXA3iwMx4f!9P>UNwYkIIM75Q+uFgcTPF7II<_>I4 zj>Al);heK##@{1HwchyBpH3bibptG>#25?gni<}Z3K2HLui0$#L6F0yyOb)KJMur~ z#Yp#9yAAl`O zTJ=qhU{ls7GSVW8JDfLNGt=6WlOYgdI<$;$2 zlLzp5k1DW1Rb>#ywiJF#G};IF@;|4hv@;djah9lbyt2^;I;FBWCzCUk=Y2Cv*4IEy z@)nZ03$yz4J(I2YYyK(8nr4ztk~mBv3#vR4t_O4+-#|l`u=B(xqKa69$ zM=DX3Bcm>Y$F>WUV#9?*#P$}^~14RQ%r z*0bRmtwW8l4e|fZN$lgc2#-h zkQzg(U#j3pwiG+XX;fN9#j!0b_J-x#AK6vh5gmw?%)|;U$c{|1dYjPKjk`AxZcgpU z$gwdI{}-ZzySdL_xpXgj4OJV&SBS%`#Kkj zC>XP7i;Cd&bd?Zv)#5(45tdjy!r%f7y;rU_Zie4TEoI%XXt}0TxVi-Pa zYTTJ@O>x*`UD(vKKNQzK^P*y{9){)UPi@k`l8_i*VKgig)U+u6uK5Y3Xb=qLvc_;d z;^sc&Y1P9SKh@vSf0mL{=Ejm$#BoSLl5g@+ae;N&cE-PRNmZnrK zGZu2b{g$RM^IG3EbZ3}=UEd16C~T^6?OuR$IQ`w(kUwlk345X z<0;T+bm;Q?Yz!@ZWoaoTvXWN9<@YwK*#@~1=7y-6!JG}f0T!a5o?rfrKhS9Ibj6R$ z3?I#N0~O%yNK*Q8xSp8fZ2x-Enc&-zkjpR)V~q^RR>H1qM~-NZKupV1_k|G;en;CW#!;UnWmSve zjCF%g!hEb*B~jcF(M31LTx%V_)Bq>_ktV}sA8g{(fQfWWK@Qhzh__z zjLgY7QBEO*V}=qC5u_uyLRJUCJVNL5<@+A>k-D|4+(dHlCPt?a4A!T)J{J|WK||RWNHr5p_UN$Q z_Dek79@-+Lk+qmE$W{H=NcxN@(K}NPeQ$B9O(ySe!zS{m@tzNBe43(}9E7?ku5PTQYV$y1yP0*!As?UY&O6f!D&t#0TDf#BDs8W}2)sSuJc0)b z?b~x*Dn|RE2LZeow8Si=o+aG;51_eMV3Ba1~%}_$WOSAEhXNj37py8SW zQGgP>F21qUjJk-+PcpoeD^>nlpM(I1VgMufY(Xg-6S^!cw2g$iFREyVO*7%hEL6t} zOS8uk2#y3roigCY>=+0I^Z*x#{mTmH-!Lq<;Tqj3@v6xTmLrx)4WpklSsBwB_!Sa- z`LmV*%%6n;2%6)F7gUDKI^>Ksq)j0z#MumDKl;PhkRa&u2ZI@n*{}MfaX3eczL!D2 z7*baUDxj+r6rp7S#w7=XSFzLHV0iLwwy1LX4ukSGV7oiPB*<4cuV`NGF%3VQpz`ReViT95g+&~YS5`Vc}cqb{?lyogaE%}-GB;|A(y ztS2W>m=6L~;rAgckIigu110OIXCjx=lm^*;YiItm*84eRRyQL-vVJWCHKaD-LaB_j z%9?ViTd`MjI~(swUefV!mj39Og2UiYwDG4IR*Uv#500L0K9jnc3?| z8xK9v_NV2=@ORe~UP+}kZ5egFfQ4nLC6T(J?$a{{b#qMw=Pxg38T(-*Q=nS%>6htE ze(=3I@86Q@x9xW8_mkr3i#mbcC&MA_N78p3L*FF(t}Vxp9bj)g{1+!fUfh>0Q>^1} zr{7M&;L+gGr1*yTyCC}@`#+$uzt9YuKlg{**7C4AKSnb?G%I_jE>~!$SuYPBV{{ys z4c1k&SO_!gdZxAo_K(CsZn`AYRJ=SRxw41<2>4mt)zU3|gdh3(*OZi)0YPR|vQCej zC#_yp|E)|Ob>BBKp8CnD5V?M(ov}G>x;8Q|P1voS?djb0oGBW+Y$U@rRAvLH76r>M zRoGP@o1L(Wt&eKL3cSwr6k0I_WJ?(eUd{l`lee-C?Ww#3-fj&BsaqF%x$)C-oE*Hx zZnLk7cJ>rpJ)Pq!lb)Lu8*lb1i>qW?2QVAm4@+jBsqw=+X|^Vpv=~r>?hGz6rMhH! zku3DJkVLxeP1?#2teQICv&<`a_{A&rb{N;3rtDJWLkzv6Mm{cbqCJ)&;9r|Fca+1f zFjr}f55onH5MDP8OzP+Swj_4r{lEc^&Z>-Csm(HIHKOX3vPt?TUIpx*8ng1ZwUHk^ zTP9qmyoV-}Ja4&Wa$`Ox3Q--IGTnKLf6nSpd-NyRw^QDj&TPDAkgCdfXdFuH(##^} zdxDXw0^%*aX3cqhr0!Dh{29s|mtLlxk*Yf5<~d|sW{+;Kx+c|aJN;K``O3Tu46|JY zN7r)%JXnYd{qj3QqB7K!o@)JPh_142jvblTRgRxNRqMRBguTO&b_E{IN&~9jsO&vn zAMLO1BI3rJE7P3H959Ft*bZ;3&OB}eph296g&LkFB%;`hW1*sM*O;NkDz+f`IJ&s4 zYHwn(md1iQ$1Q9w7sEtzpy8)_;P|gxJoB46n)0IKG03+-huu7myfqFxy@}@aBuX_* zY9Fl`FBaSzY@rCChH9=ZOGIFVe3C z|1^28JiTekUoyxanabztqqbnKk68^#xSR38e_Bs_>z6_PZ1rJ4G#0N^;bAQEUH##2 zBJj$v5Zkb@WHU|VESLpno^;uY6BI_epD6H;SMW@RhKe}FhY{;vi`*MJ7mIw&_G(nF zyO-b0`SmT$ENNHobJHzl^e5M-+Dq6)fnWH#=}?EweNt`e6QuYoV$Fsjvy0T--A zqu-9UejST+Kate;DFngmWipL(dhq-Ujz_42H`o-M?wUs% z%ujF2=3t=MXA(kO<(oRokwPdCu@3x_siL!gn9e8j`&ZZNT(^w;-vu$1XLgQQ{SqSg+I=6^nFO6K$vc}|^ zUB`)Y_zp*?=|?;?=cQ+8n>$|OwgU3oM30^w4a?$-V{%RU@Iix~!CCRxTia|A=@1p$ z07Tk%RJv;}Yn53qThwLwr<8M+5u-8)~aWEpZpBebkvbc%eJ-6tQZMgve= zNum&KL~vH6vixg_KvC!ieLspSiFpv8%QY>3}+RM3<~ER>4sw!$q$4-T4-! zc(b#v@s|BL%08IKC#KGO7MG@`Tn78(%n5Td0|TYI!TsZblRo6>Gtl*?EnP0F#^Q>> z74)J^lb=okF0v@&S(1ZJync=H8DMV1c@HxU#yt` zo|P6=2{<)N-NxRdOxD}rtA^N5*Oo-m+kd(IU0<9GL4*9+Mo;F5`2_05RCOHE!Fsh9 zGAuZ(=v2qhVdBO>uGa%@Cpe=Ew+x=R94R$=|JbFzdb!ltJ2RQKu&*ww#ziZ?71vru z;HE)lD=@aq=GVG8R}`}5bwHd5U0ayZt58Igf6L8P8LhU;x4GAC47pX*65NqSlIfBi zU!_X$zE1@=G)0!YEKYkhwJj;51Y3!XkGT>o&6FOE&62&Xf%a7EVRaTD^>docN$dqP ze8x%k$){vBs_gE0=X=+i7kYmd=}00e+17Er+lI7Q%}IYcPoHavO<-l2pA8ds39^3s z0Ja!g&DfNOXnn^CJ&f|Yd>D&7sC)fN7M9V<{Nbem;`o|S?8xR^Pey0@hfmd&lV2R*ZSeBpyZIB#ZZ&Cejj z+EM}F37c@+h?f_POE>#Apt<$WkWtO%r0Gjj?P@L4&vcfc-$#*B)<7sP zRIr-DkzJkJtf`#4zAF#9BhCZ9lWW_@QKw{#IZYElm{FREP=3-v!0+HDmu5Qvm5$7g zUr#NrR&=@U>PiuHU1`}etUZtK#(t9eETyuOytV8yym1BjSrA!4b+Pknc4nMvxb>h2cU+>Ae}Jm?X|3Yf8=8C=t7E9TKM#a|#) zI=v#Xc&*BjVutU%@?qo(`SxU7lnXAVk3YK`92{_?^=cOvX7MG5Q2X@Ndq65`@#5t- zgEZ{Z&X@vu^U;WV+XuecK6%&fhj`fs&oyvo#t=&^r!w+F!-KcyB0rT6hS!hgiHTjB z>**wpF}4kaxdCye(br9DUp0lt8m;A|nxQ`p9#ja$o~*hGpDhY(V7)Nt{8`-#()L7n z2@@-%xfxm^2BUicV2v#g@lAY$H~tbW6Eu>VH6GWwr4Nf5>TBs51Y+bLsm>_( z3IySvRFRb6MvR@+kuZYmT)u3Lfo3A7OVEPg15oriH3#lc1R!WkHhJvWWdtC~2=d`)jW}B^;{_l@3t$FmSD;A0ojb+G>8&i2tB^Az~v zv;m}dSzeT2{dI7#%!~4K-f`)~M!G~vyt75W-^VTWjcj&{V5-Fu&R2xzkBHzhA!Fu@ zS}C4+UbGptDt-*&xQ+|YSb3-0mi8DBKF@`g?-hW2{_tIOnTrUp`tq(}4d1eG?j`|r zvZbhZ(M7Er*NUj&T2Pt89AuhB4VbLh@yO|9V3rl5at4d01EtANFK>?X4OTj+CHLwq zjJKO~hUT^kXhNDqXp-)7UAuU-sdL=w8lBp=k-`c3tB%aYGTO92%i)wO$n>g^G6>8q z+SpFueo2yGsSQUN2_zSIGabr<2))N-g*HrWXDo-)Kgl^$m%So~VDa>4eRT5~jO0T= zWQTr1=}fWm)qm)^7?3heln8gVe*s7k{>&Wwib%NYI|`Oj%1)7&o~q1@WQq~QjYa3p zN{kvHySfDdteHKx;AECk>sJnXvq_{9V$p``8$AE}vUe8d4r;;CZISi1BZ=z#6`aRq z?8TB&meVG5kb^46%icO)OWYN9o6Yqtu-AWew_}s#T(5!KRo;BgZTL6+7uno#T04V6 z5ox%A#R}76m79Hh=&ekJw;!>*ejnX=b|#Ni*J){?3MVA<@^OV%fOQwbzm+`1))jT{ z#sUWAc$ZY@iE|Dq%A?`T{@8m9j-r`00ocIB@k+?uZ8!s6=`=EN^|9(k>izdcXU($f zC9M`ZZqErUZ{N+Z>kdtO)t4Vnw5X?_bn9lBCbJ}UlaAMe#|%9RkVgxX3fA=4!n{xq zL@xHNsJ1ki!*q}zeH^Ym-F03_X3)-6;m4c= zTY?L8^pcAsG15s5k=%YDIC&Nm@hY5OTDQfqEhE_i(4}d3TDNW}LCf)^*Umg4?h-^7 z0>{i#m)sLi^(||h-8iFv%R{_Yw^}QLEqSXbQIf?$uQch*2e4s~$@6x;Qi!3Dc;wsl z;$_a3{#GV@P1jld9jpnpsmLNf11K#drSiy`)>?Ng!EPqRNXpC8$)Q{3#?Tag1|??0 zruL{zK+X@q{s6w*c0k(Rwx&+goG zWjCN4e$MFJ(v3mOGQ<$cJBj#m5svIp8>E-0L|Hlf2&h=b<5unEkc0@(Gw#uwv%@3J zZ<xFJkD9OEf-WmvyIr3r*sl` zUf5XNnJmAGFpn<<1^tJi~!gJ#-q>T@S9pc~hOKrYp9#x2x}N*GO15WcVj z(~!Or-S^yDB2En{O zR%CbaNLTeGNen%?%gV!RgAT8-vWX!^#@Ik%E?+0E*uad=f(5x1*fs}9#XM=Qc0C?g&4LAFCRc+N6i-!c(TESP3 z&3k_F!U6n&wI%F>1H~nAB5o`(kKTBkqaBNS=;lTnW2y=-n-aNgBI8Q4DnlT70B-!W5buuFnr=L?2TMI`lCnuio|NarMsLWxgVGK_1#2cNuwsq4Re3TW`j-R z=Yu9Tc!x3Hj1in=^OEdXlti_V)qA7a!}tuFGtpTWsLrNK<)@fnA0s!TNKP4fmD#Q zwYP`Dp_IGso^pRv+G8aBD#4WI?@De^#4S79zpL>5lAyF||DfXG?s3awPwKDU?2qg7 zpL9IkojjpPAQJe^QmFgX8a(P0L45#Z!=s zl^zrX(LT#k3I);L9f5)(e&o2{4HLMo&XFiXex(e#|Fw2sm@*_3W&0;b`+>0KAqFa{ zaFyR3O%N) z*7(s@)X-D}%b(Iz0IKaF%6^9OQ~In;j|y>(ifXU!m)6#$4ERTBMWxd}q!mC4%4(;T zl~mOKD9tN4Q*V+^MYUJ=OS@mBaN+(gtpEf8)fLXDE1v$7*S`bVe$C0@_cZ?%&-OF+ npF8J2)9K#z?N_0{O#A1nouMur{a&}d%!{UE;bLvd7NGh+ko=AL literal 0 HcmV?d00001 diff --git a/fall-2024/math/mat-206/00030/MAT-206:00030 - Thanawin Pattanaphol.pdf b/fall-2024/math/mat-206/00030/MAT-206:00030 - Thanawin Pattanaphol.pdf new file mode 100644 index 0000000000000000000000000000000000000000..07d140050bb393ac1e660feb8136737de10383b1 GIT binary patch literal 269591 zcmb??WmHwsx937J~h8`{zdS?Jmu3K;5J8yNENAllj68tPgiIwuz^i(9X=zHYu#-dXS+#N!cw z_5saTjM9|x`LdJ+2%;X56J)g-C6NSYJT))BqU?{Q;S6XKDU#WUU|ROYV9MP~oz=U! zy}Gb`x-3@n&=}VGD4$Tjs`4_!r69jR{?XGT-s3UbHN}$NTxFa&c(KKcm)digmxud! zImMG}7(3PT@rGQ#h3DXySj*T_y|@7#FLk$i#=cKY zteSqFcf3|cDXf0DsPSrEZduB#BAzC0=&L$(d9clCPDwgV5ohf=GZRP*F_8pONX5^S8-N~DA%(PtaS3HfM4p9se^e*x-{nBBvi;Qm@kV^AjBMCb#qFVv%SEGP{k}Ej z&A}@ZxYxA?uUnX?+HQKG1p=%=@Ax8GbqowHnyvC-?V-_@;1w9n3?Au`Mqly?6Lk^t zX+RBl=ONgwg4d7N-W zF*`k#4K?4c1wHY=)maKU0UluD5XtW8HlT#>phh5k?QoOSV? z0GMVUg$;2%2Wfp3TVIx{5|^+oM=BK;{#%fj{9?5+ z6A>WPbEXzb6WyA4WA$T#nEA_&dwV^LZASr}d?V?qln|kw7?MuXTSi~ol7UwSr!NZh z3^MmgjV=|izq^wC#4=#99izx)5`-s`QzKq8RQ<1NZKA${LSZ9R z!3iC!Q^~}*mob|`^V1_)VCj*)*j)dqNY8=2QCswhKwc8K?W1>~vuFZ#@O=%NY$=5} ze{Z<`(uc|!!n=I>X%j11CfsidZ2aelKRhRzkp$&IoT5>{c(Q#e&YL{ zU#GO__Ugeb_c>>F##o*FFqhrB#PeIv6kAxbf#^uozvc6^8 zLgMs`hH0&&P;A}JiN%`tukltem2RO+@2+{0yh(!l6Im#lqR$iRldsc;#fLPw;w$^I z(K!2@dof8#jXQ z6ey)UCW%gi)*#(N-+#-K9xG;Y8FuBDa~JnRXmI^yE)Gpl^weAi{91i5mwfxm+1w9% z<;1A3=bbkaR~^-?#GSH&+Hf=!iis=}#@JP->J` z`_N*sy&{Pa^)gv;+_mEM?a;oB=D;TTMZ>{&kb2D!wYVi=K+TX*2nTO#+ko zO-trx`ff^Y4ihI7_#29`qtcLTuhs1Wty3=InqROcbu8n;B46@X#2==$G3E*%T3_I%QJ>0BzZs*yuzIO^r?LNmy7I>G)0U?PLsXKU-VcSX&ud*^{vU z2bLMwo^cuR{{YN%pRFydZRKrr^$qC+3>{7N4dsOS5&tJ#A41?%Ft&-i1z%!f85cKB zsR|d@)F_$9)i_kw)F?JqnJrFvEjAv>8dqBhbovD%S_$&K7HDM$Q6PR?>-viHtMkdp zrTxqMw>XT)w9CimF3wT?n@Y3`6fM_HjRO)dKE3|`_16LI@|nnu&adr!H#c>wKW=zQ zTz7HjNQBL5VP~$|JXP3jF*&FSpUr(fPZ55HQG1ke?o|mrZ|Xi^oy3 z(=Cp;pChboZCzc>TaWXpIe8Ld*oR5RDh(zZW*%}mpR717x#S82p}$1Jrk2kc=qC2! zG9An6kE2UsQZ*G4-wvsQ7xgQK##6H*1t>07tG2bZz1@t{?g}TCz8e_Nm6l9m@sKo` zVrCg%vLYD)13XjRUTqIR#%E4@8e=h=*cs0qj%Uz!y*^qj)BTKJq1TCsG$ew^aovu} zDN4iUfAQs#_gjcDR~~JBMqx{F0V(8-xEE^w&z=e zC7O+~w3>-L`Q(y`J60HSs%oVT4*O&9oxwP{s8n2B8tl;O)w$BCVMLrYYSm_dJZx|$ z*MKbH=J2aFstipyq*J)iny+Wd^?C14VAOjU4f~j_7M%Ac^3~*x!V`MU{rtTyMulG@ zV%B*+G)(D@=Sq+g^0=!weI8}Rq*42Ut$3YXyX={ybpFd1?jnB5WGET@EF?6?TU$b@ z%H3f^`g(fy%Z4N_W)_o+qRyq6#4;Dfrc*_#<$%cG(B3b(9goVlS7J}rPfRGx74qI} zM4xT;b8>QyYtNZ9G?5=IHO&L`R~Yt>x$nZ9ou7{v+EFPLHcgHQqKhIH+pY}^zX80bx(Xp@uh2d_u zp8%O2P5*|{coC1n7Zen9FR>eXxj#)|mliaFxdSgqo9=XjyhB)wjIT1B$Hy83B-FAqh$Z`$ms5!Yig8TUJHKP?G7)ju z=f%b0Am=*dB1FME94|p?L^Fj#O_*;NZiaL&8ok3FncDz?lW^l-ZuStRDNxAIU@^Rk z-}-%6yF4a;+kcG3?0z^`&1^GQW!g5G+vHcnOXFfSA8@FHhKAPmHOq{-%x-(=z%*A1 zvO~E`ct}%4FwP%^wOuX$DaAhQ>O~^XoyH7e#i0bPuwCvdi}_U6gX2o;*CHi}q`B52 zK?hn!#wZ>u{I8x_BT{FBY|A6tiUkUk=~vOWQEOxNiL91lsiUPWk78?p3UJau^c~!8 zV=lH+y-?n8#q)FkchtnU2WI1*@f*qL?&|PjIQAg;aS-;!i-meS;bW5vj1(bK7&H_K zDXA@D?VrxFzsG=sp;E}>3;5_Ml7g?E%I&69ZKkMJu-+Yh4zsJwOO&(|--fEYi6R#a z012*^q$b4eVn=qd!NGJTk;Q!GH4P+**%ZA=434uIFA>{6EQU<%hx6}~beoEXO*(!1 zFzlo*G@72W4O8Ed^!v^JIE%pCTngm3x+~ppyZhrR^*4&uYej;z-40on`exqN>9+gZ z|J)LGJ6VCcc|WUWVL?s6Z}(O{gJE}M*#8wC*sO~G_X8=~9y_xInTTDJiu%GJj(XYW^-N4ilI6Z^i?W&%MRt+m#! zki_RtOq|buorN(pG{kS1J@P4HsoL>SZPmcRAuO!GcsOO!k`~jS#SXweW%iSfAPkHb ztA&JJ))DUnzenVskpd`~9M*r_d`IghHvj!q89gAn5*|9i7Y1a&=Rts$Vh76KYY+^V5Spc&T_vw z%fc=iOsqjKBsF!w7&NEOuzSWd>5nutlI--fv_m#uhpL+GtXm#fAFx+an{T#~E{aFh z9%E_L5qaUS)cqfs;Ja08tspZ05m@sLz<4${H~YdOn=SnWgI_(|(J17-ej;{WZS!Lm zn1K;v1F(eK?JBFCgUHU0+wXUZl*?E>8mUlO-^{mU059>7x1|Zwx~t8nS&d#^YULTM zbp+LG=6xf&-Ji(MWFfM)w#JtldzV~fn#;d43C>}2cZQ?)^o_VO84P?MFkK9+O`koQ zh(c9)0(pChk0ejM=y(GN*r<(CdC2$g@0tvX%d3h@w3-T7Dk3?A8Iz?)L|g%7a1}!` zHSsmFBx`1^^Lp}h72~D)jW$ zbek72@bUYE`i<=eWvrLM#qi;6y}iB6kH)DUIV>pZNX@%_gb={At2ZwYsFRYC`l0CD z!;W&F%G7D?PnWXM6LI8Jj?Nh8Dt6wkhx2|rUuzfI8l<77E^^qP`Z?M1^mx}6tryaA zL>MZHp^ID%I4~?moT*$cQ9^g8-Ndu%e|?DQb>Ke^4m^>$d-U5tIDupR#hpo$cGnRF`8jl?8)%BZ_`dIP)ZDuc~svVNh! zj@i#0yI=^92aEq1FG<=i=gRekdCDKJ66zNk-`4IC?#p#vQy7Sfi)Rk<2W#fZqywBi z-!{iBwX={PPGSqUFLXX#Yx9hU9RpmuMAC=%y4wv~NBTFR5(&Mf}jH*QGn` zzK*^7C`VfK>#0(0?K}=$UEK@&g}N_l$A^GXL!NGkg$BbQ6EYcvtol`@3>g|-LdMN# z4Z`}aA^OHo362hRZr4XxR7wMrlZyK*{TbPITNbZZT_eA-gTa8s891@Oc;j<<1!=V1 z{9bmPY&Ao!R%4N{L|JL->gu}J%s@)IUOlaq`7qMoAKaAyw#!*HG)mxfqD>+xB$7;E z>}>7XNX~NK?2BPC>T{J=2pHf3QKn|qAKNRa=Xq^2K?3b7G{rI`>CzA{e^t_Tzgcr zAHdP?V%M28KU+bCyb-{E@@of76#37B7)6ILqR|HX-L_hc&aSSp)e7K1e%4hqWLtgd zjhBDRSV>E&(d6o|7>x(`-&6}4027KY^|mvH5?RCxAE-Wl{BG?y;RbJHTr5=)gT<;i^g_Kml5%%+C{5%U9| zo$mD{x{`fW~GB z1l3s1zu|P0sMW@MFv@*8WJcjMIa7pJ197}4BY(U4Yi)0`kXhI@=zYZdbSVf2V6a}H zplk`36$}{`pt^fKJvaez>dfXA;GSkWbh>>9oL!=Rm0_>dPW{k{dI<-zZwn!d1!+3J zd^RkA5IXne)LvkU=^pH;W@%Lw^W4^Z{r5%&@)x6C*NaZ?$L=LRydv~zZ)-E*9GOb9 zm9qiYVQ&T#YJ|QNT_`r6HES&*a=(Y;=0I09ClIir-mZB4_n(HQd;@ zIgM&JyVu+Nez?1)kV@`3iswU;mYZmBFfV2b4xI)!={8m|aCBFgj_1%d|IRSzjjB3V zE>bzI9Og;lbSn9ZbX+F7i+s1xiylX#u2ibUefutsO8E%TgF279nj=;UWYRm=!|G`h z<~ih73s^oppXQW+m?wjnx@vysNarv9!25jQ0c-(TJsHbd>Gu#4z+}Mt^n4JHrS6TR zTfW#GKWzGYjYMRLQNJq$h-@(_<+3bhD~iI&o}VRwf0wxdj5Q*jEua}!v4P{ zNje@~F83yV;ZSYp^#4AS;J?V7(9+EDZ>3Vc?Y|io1EL+mKi2|_U?89WT#Ix_dye9P zzY3H;QTM0U0#jdy-u|VS<4>C5Inw~g5%8C+{r}&KbxZ6;hkR2H52IKVuX_l5Gw=50 znX--x;6rc&)pw>XE<#NVwm6x=#+b051sS{J93K zRHYI2sr|6YVxPoSgn*Lk{zDjdS$PPVnOssAZxLx1%#Is9c2_*bo()ryz_+)J_wo$%4GswmieC|#5Zx2I9M z3;M1xg;AlreCy+lQ_`Gux#bfp;nbiUn~U7yI!r<`Ssb$<*~`f~95Yp^gh`a4G(%^v9K?jtRikRL%8K^;a9 z7xa=I7W_SZExyVjy|TpP@8-K7x7hKVf&AOWIXQ&QYJETY0)%pP6PD(MypIZaXf{IQc-E;@r*5!Lc2W0)o! z8Xgu_VYl%=JYI1aA3pC@^wVd8wl@3)>GzA7Ehx0-MGjGyOJ2@&hmVKdl+$mPB*dCx zdmL7_2|h>*lXv@>-<}8`@epr0kvo%48(ZXd%SMq+g{CH`D5**;T3XnLS?S+vdx|I- zQa7ICMl%o#M=|UqBSQnIM)q=X1k?2hj5aW!})+tM6J+;`O&HTbp;&=tmVCD*OYXzcZ(Y1jy`YqTuT7D8gUZDC2V0 zT{3U$XlXckJavw?z0oV`e%wQVQwl?x;t67;P|cOwnkW-Z*Vx~v^8M-mrKxjE*y@4q zyMc9M4Ce`qI1~f}835!TnD)NHA+PokVpFap3h!eqwR5d0I&2?){YJz!4-A>JdmM3; ze7bKcWSK5q`L4s%&Ncu)p3DfQd|wD=oYA)*Ig9)XzV$^YG5jT!y+Lctz!4~f&8{+q z_k*e3!-)7yurW&?=I^I4vF&}8RpOn>3#I`P)S$Rm*ElX!SC;dm3D;N^U&KnC2tJ0v zZn}o%WRV+x-06i7)jNFpF`OJoC>aqwu}QboTtTG+)i$SmMW!Wea5+qj^V7^d>>Vyb ze63omN;mx!;cg4A1HBIRKk0V?q@N(b+SvV;ef<=sq{YKgUSDqSGWa^)-c*fX@{)Gy zl!yFctURrQ6iOqv)aI$uz1KXhTlTDk=A5*$NnHMNjbk{E)Yv{anBI31)jHyRCUTJV9Isw;vX%3_)b~{mTyShX^!G};;9R4_XyegWB zS!cxDizrE{R1;}3R33Kpl+Y~XgpQ7wO_@?B2~=UG{gD; zbl+naxJ?XWE7dZW2u3}~B9EiL$?y9*<}E>F|ggA1&yb_CtuNNT;+6c$f3lUjG1amBOcf3yba+Kf;f#b zLwcMF)_zYjQe-2G=BDqYXD6g&$0g+PZS-Wsl0{-aqzZsD=P8%qpL(WquW!C9)fk@U zG8o-VRuoBT6p2Q{o@I23sUP?Y6bW-{FY1+K?@p0@u=!LAieUeH=)rJouUKA}&|k`t z$V#V_KOVZfe82uMHOd_z2AP`3XHVjA4V}f@zkXvE!MT5;B9md}1x=>_SDS)z%8ga` z*6OJNSE(}N>HA}FW-V>t8N_KuShMC`@2CmZG8s={dW0s9&v9C(c6ACH)hf(aJ=3Eb z5yq~&$-WlV02fJ`U`(q;X72BT;++lFrqt#P)JUM#zj{_~ap2G{Gv(QBF6TN|nH$c; zF7Fzl`9-gygJoN@e^ne%b2CbLy#>js2H`1tsZLFDs>WBH9hC8f0_Cwhwz+{s+imwl z->kMclp=Xv7KP64JLp~a>2ppJ%{^e-au>1t$~jfcrCHteQ_A|BO)UE$PVOXs%vQ|p z^CYR0&0I;$)A(hE+4u-!PB@YLEk4sCyHIhjL^W|uQK{QG9t+eO#SEX-Ei{vU@#|(uj+2K+T9FT!fvCRL3A{@5+s3BC>cX9 zB;SHH&szg~-E$~^1$SZTsu1~qx$03|lem~w~dMph=MmFFV~GjIE#)S z5ton+Bd!yP$Rk7&Gbm}R_IjB&>-06t&!r#mnBp70-KCPbf$L&0a7%tx?kbcGi%RLU z+K^XzX};s$Q#N-unnsi|HMv$&M^?UhyE7tQ)X(_(KV~;pBYOymDV-% zb39K9Wxf~vjlTZuHLyW{Favda^x{vL*EQZSvnL}2)$J$1ZeU`)dqTbWm!9?)W ze5Ji}nAYa(pdCIXVo!4qR;iGNVNmr{{$b!`+{D9hy-{P(TU8pTM1G9%_svrq+|g8Q zr&tt{>RPdMmRP^h<;gV?pg^E31OVe|Ccx-e91=*nJS1XLaPU1=4*0Q)_gP>nOBL_5 zUP?X{-cbdG-vz;C_Zfalx%+57k$&svI5PuZT+WllIVH>^uZ*$0m>+`U8w}8T`Z$Z) z+Al;c8SxWVf2(IQ7g0pv4|Plo8ku=hSy(QzM*#6Pi_*U13Fdz_# z{2zpa>aWlRDj7RF49MkoasV?T=>DLNcju`l?j{Rco4yhIgPO`5J3AMm+Kd&3?3(B7S>+;Zx`*Ik2YQ} zc;o($i+Mv(B$9u(1_Hr&Y=a`m|7-}L8qT-|n&i{Jd)}{CB?EwTh7F7!=m6=Dkpp=v zqG`q82)zK&Ljj7FW(NZ8r%yTtU5SCb5&jXcg3x4)yvC!#SSMNs0{ueky|=- zf>;2ZpaHnQ%xonTP*?C%-h4g-9q9i&<&CWf@~-|51sGL%(4eAc@fZPvyl>J3u|PW9 z|KS0MukRo2Jw#2{Ss>5{*gqft4kgUo=o{Wjo3{N1^t~I(;V6`CsV9yJ$N{j?^Vmz_ ztppl5ouJLUOjbtnCSCF7Z~}@|1gZ$HUcFaDLO@`6eg^8_Ge`@VLNtBH{w<-ec6ZPs+#JoudHe{4SKlDXt22Lk>0O1iHhBqX#umYpk^lyfKN>U!&2 z^qzv^^Y%vAY9lq2`wQ1dYiZtM$3v^8hiz%(Nk)!9W{_B0q=OZZvwyDTIvyq-iDQsU zjO=N{L84hcAkQK#1u6}WYLiAC2$KMfYp(Ovy*nm%nF$1-?6n?_>q%vx&E#_0Rh!>I zN;hpiR`Yc+TEY#QN~tUPJ`s5>FKD>2qk_miufw6d2VIvFjHf7HlYI47+5R3T;r0bZC40Z@XSl*c{4{ulr?5KgfGgsp|;&S=60dXzFk3=po zwq<)~PXlUA|Kmi#d7G*X2U^H;`=UXCHlY6sheVgF(EIB>yt0pHO)r>1IsXLH)MpQG z1WAFI9q5q&qAU=IkGAK585<-4^H&J@B0p3J%1z-UK(!kDl`9?S?+P!;(kHM*Rkfk< zLD7Fjkxxsu;A0OGj8O3kwy46kxBg$f_U200QH((I4^{g$e8K(C$9piukaO? z7Em_F!9vE(B-~E`{TB||MO+&06fJ7yE6*FK4Zi@*p#9xKysvwqUCpOy-11Hk$mJQM z>-Py=S3q|@YVul<4%`?Z9UOqf$m*eVIFtzJ8PxL^1$H3sp8y|2-5pRA(O#y-uYIIV zjLfz4vo2XZ%nYG>3BrB>taGzR=(*lcgjr39?S3)C_!o&b3hj2jlA6n8e6f)ko@kUj z$p-N~<9m5_{mJ8QQ6d&eJ1Z_l+?en1kyNaL#)^U3~`)8ez zzX+=%ETi$#@l)a?7#3J!=O5~?n53y16%EjCa(L24VV#_v_xd@ zb9TU=nn(097&)EooiH<4_`JG1)8;b*UM{RBW)`VgbHkm=#)-Qkt z3Qcj;w%f+xNA!GJFbaMfdC3AhuPq5ZT^jKcSbT;3nGz>RC47{bUgcMD5i<`cdgOzy zzf1FNJF+hgy9=vpzpXIQgB5z0`Hl(nFD5y(`6lb>No2onAiXfL32 z7b=10ZW)UfS&g-mCtnMUB;a z&t3yf;CoCC!v3T0$)V*s?Wvfz=Ay(^?ojj3H)5Z)awnOl{P(cq#WecMNw5yi$>NJv zpFfyVNhX6dPdXS&*MxjjcR~#U?fiTEQ+ujrgj#>x(q`lwKeP_+{Vhnzur|P~CHJF2 z%-#sT;sl4{MqfKxKPtD&$pmc4yK%m43xoo@D}D|dZP!A-@kf-sC3Rae0YHITc)YVm zOyHVGzi z8iB(-=ozaSnJj=OtsWfyVCg%Q07x6P%*?RvIaTOc^)HRPAxiP-uRgLfEu=c}O<9&y zlXEpn4hBto9YT|{gULyzrt_1@b4H1kpSA}89~}F`?snNtj8J_o=RR!<+mOY}vrjIe zFLeUc=6#e3P>f8~L-^*S9I6hZCaaJ+jBV5GD)>Zs0|qs443niYYJX{Rv0Jc(QT8YyK?egoNc^idv7CRE$D>V-GFCuEf?v>jKDF0>OfD}x2GV>ZSW zLM!E=6v_ET*A&YWEv9kQi#m8BwTkfg9Cp=ez%yl?uHfA+XS)o|Y51GyjR@Zb=iTr!@z-Lt~b5$(S z^l%7(8_;{7qiRP#r<$>`n*N_Pv-A0Bc5*=RLL_40qiO#mg1+YNPaJ`ggzcR;Jy?(k z-XpWzXmHKx^jwq40u4Ih>p!Z+=d+`8k@@`8FwgmuVLIvys~&jG%TWv;6Bwj@yDU zq{IaEsX*T8wfgf3gSXc2!q3qTfb#+%gv5i|R_>#eACRpWZ5pBV@_NxuG@oV}1^ss! z9&82%jl372mzDFrje6>V%~Um}nkG0z^BeGgUq>3Srsy>M1{J~C#@S=8CembA6~S@l z=NNGUS0rUVcxAha>G8mNArG=_U!io3E z#_q+#byXin047aV*mJ-+0$yQX8BhXQNQd=TBS;I4)c2K~Y{9b!V8Z`(E(j4dgm6LT zW#cya$P}cY^S@pl2-GU#NVhFT!d)hYHMETPHg4ZDZ3341FWDdvJu%s$jeuP->!qYf zHC=hImSyW3z}M6Sa`e;MUNk_JKAqohZ@RQpF8@`?DNymdIwo2s6( zfu@W=LCLcNO7d>&p=?0y5Sxg|<8-al+uQrww-+$$p8@}{mGHgiSk)Fvmg@BMrZr({ zt&4(lG3$>xZ+ja)2m#pE04SS=5)(g%h+8Cn;`kMA?@l!5n2p1&w($8bHMDUCGx@C8 z(}pJV<&A+NHt*x_b@S4uDWFjU6%}>y%h>ohu>lzvjK={-h)m{S2kqEx#74LZ32j*u z9ssaIBU#e<>O-RN*M%>95IaTVi=9!RL=V(3U4YH~{Q0x0D}i2@zd8Af0i<#wlE|L~ zXJcki)aAqOo!;!;!W$yv;LBcHR>=5kmAD%5I&&@=4q(GT1D9kH>t-qnA^UTUc>*79 z68uJ-XjT{A_S4#8GT{q95ACxCdDEd!CklQ=Tep=#HKA+FFF=Gc+dvcI8PJ@3A{|Gq zDwodx5@wy#b{YKV-Hdr*4hLLHdplbj%o~qUtcg&hch|)$R@lQs1fgo(5H?pi8Uo;QI$Oex#IL(;`Dj47JBNFvR-RA zd$ZW8dA4(+RGb4H$RzV=2UT6xww0BujY)50Sup9kJL6g28Q`W9)sh- z%*KYn{D7php1v_u#xlmqQIKb=fv?zcW1@t!Lk zU6jiwDNy{Z_u741m|+yUe7BwI*>q=hIA?c0@{6;UI%I<8I!N!!=d!4Gb2FvyRUqqZ zbTlxek?!VY^Ive=mlZa3Ta*h zH*63~K3&n>**&fHVhvku4GD0TVDsJz4%eQK$&yA?pS$M${+?=x{7dYefqn~re-3H% zymbIpWt%CS3OAeHF0U??F|iuwaoOs_*I701+}p4daKCx3M|}mCS4N%^GA~{mthZbQ zWa#1X?s(BQoMkJI3&OcdL^c6_gHKygYY=mXKDo)`=qFZbEgZyG zYrzBEw_@m^M}Blz%#eBhF2;&T=;GwiB!1zuoSd@vsNk`6fD(jl425KY%=L1<#zohF zL|eUoaq1#=+9u-zD9rl+@DgQHh9Gm8O_sW4e{*H!58rWkd1IEor%q)f{Pqni+i~)7 zYH>)u^K?7K^3t#8F*KAXo*Y3V6UF=mf>l8jZ?Xb$6 zRx8N@k}SbqW^`Q6YK*gcx&5#QJ2Eo4V7ZKHe5n#V+oM>pUR#FoBSUl&I`$=;o6VwX zcoDbrDBVYe#cGxwQs?EdG|gb&8k$!NTwY$u(wJuEAn%2U%po!|vdi7^T%}?)pyQa` z`Gf>nR8$m?-DU-t5GZEg6x>??JA@v6bD9{vjJ%lkaR8gQHxhGV`n&ocXyR9;a^k~| zr_-CN+gsf_smgS)CrzHYNsR1=V}W3l1VZte_ov@9Lp+x+7Oi;>J(qqfQWTnd8%PJ1 zagtl(nOn$B35I&&kDz{AQB2PA%a^9okxZ?k>%6t02v1$kpcD&EwJkZS!fpZIW=T(+ zA}3mBC`~K90n($^#DMn!=&@8Pk0#L6hF%ZQzX@b@*xBQet%0ug@HgB=48qxa$&9aK z#+<)C;>kZWZV(e4d?B%MIcd)RN=iv)a&8PYt?U>#Bp9^4V*yUO7COVh}MR}&2p%Tjgn#zNLa{`1L$*ZG@C3~Z1&(JBkSz# z4Vr##gqbW-9mlu(HU!2r@ZaCE$-TY3Cn$4y^lW*$vR22f)0bUQUG91BkWS|k@c0?5 z?L1llXEublkTEu+qojCpGPeUmg?g;{rrfJ@_2EtAXV@E5+?DCv<*5{p8vEnwZ1ds4 z7W?bV2fBAUeqFDe=;Hc{mo0*p-p%6>HBAo&r&(4gAL`$6gZ;=OQF`SV(GNV{1PH&H zWp$jnLLhaLz-!W=amSajFj{OvIdZoG;QPXbko~~nB+Ba|#u7iS?w~aC^U#MH zTThWn&c=j7BEZ8|)hj}E%5T-*>q{3KjJ(u{p)@0Mq7~gxD~Z4@k1gbhJp5Kj^<6_& zR#W*s|Kztk^AI>&^Z}Iwq&?;8CG?CG%p`I)kIN7f$5pL`B2%b$6G)$f1^R`=MfzO~ znvBX#vBKQ!#t8bc_%qoa2&Q=5*xkzmi!pGN0aj#_%T?qUVzR3JWVKx}~qy$YbwQi2Eq3kuwz;nWR}b zOCBf|Ga$F`M{9*72Q&2ZF};HdR>5j;G95W0TX2DTOT|BA9kgXAv7@ghMjrgI&?@z= z`&ks--f}|jfYBjf8YL+~emjNN>k%05sx=+&!nae1AL`AZ>~2OfwM3?u0sUx0<5~i# zJMec=I`7kgD)-z;V?TndY zSFvMadF@wK0J}0F2vi?p1syqrRT~{GfgOwPiEPg-uXP4TPpg_bB94Pq>%LKAj~N`$ z7Iu*YFU0_lb@!Nf~oqQqk9=MB)_K9v;L2E?MYZ-f1q@pfyS`WvS4 zKp>Im%B1iP%aFh;M4meL>t;Xo+QHcsCXbluj_iJ+Cr+=P5Iirb_!0Asz!I;AQoB?w zBG2Qo8oO?~X7eY}B)TN`$1m+Uq5G@_+D%fSV%AF3>go2Ua#nr|h#PbfbjGpBNo1Um zN<&~@V@?S5)LCGW**MIWQz#JPR*1Fz#9ms{ljUj3UcJFavgyO)o2&U&t!0P9nX`F1 z-rq%EAVQN=O{#rOS<%t*Je}FLvxw-^_3tzFL+hy|wueOL$u_DZwn%2RZu@9Mf!e}$ zmbAghnx#1fO%m8)gM3$urYEW=(MM(2^|-OW8P1 zGCEdVV_St7tgiJ;Y)Kb06Rc3d5 z$}N1)Y0xnJjck6~nOLKl)97>Eq7zfnTO&6){Yz$0POQd*JX_H6LpMiQq`nZ`~*!9HZ$AFv^V#_On@7lK&er8@`F;|K0rE=8R6O@hNJ=mrZqyjTabYHwe@3n z{}P-_$H$unmqLUlA*10Ixuxq2789<2%0Xf#pGJEePjEeW`xG z^`VE3a8Z1OA?JCOcv>7ekU)q8#xUl)bscEU97c+sByX?A9ZO?ASRU(h>fN}@9CQ0= z>hfvjS_36U!4dAt%LavEi$g07VC+OUw0>T0`-*z5!D_*)zk5KN-h$le{KrzJ@B@$Y z$ne9h`|`uJBd^nK#pgTeIrmH5VCm(Dz_3navx!30Y}d_cswgWgK%UCHuNIxr8jZ!4 z%N?I`fS6r|b#@xkNV2;>)O6ZKp!kwfy{0IdBYQ$O+;k<$y4e)?uEh4%V3M)*U4(Y? zP2FY6%cR3cMQ8x{4gwF35Wn1B>;mn~z&Ir<8JQn)IvmhYo3D^R2DF6(2avS80L+b1 z7jpP%BE{I#$)-zy$CtD+R8AWvm-a3-m509|g%@+0TzjyTuABjd3?O$tyQ={Vc)4C3 zzDr;oI5IG}~3c60Jj(ef(Yj!aECq_4@jH8r2E`r{4fH2V+v|g@XCF4d7_C zUwJG38YTl}`2!{%kf~+&^U$Lc;5ZeFR7RhDmtGW&W?azz*Hm$k$m`kN1wfFKlauFw zX)jz{XHf_M2GJ{kho*hpq%nwUFXhO-wHXXmhWz~57eF8=+Z9T%y|GJo~jB88ijM8wZLYu>~5hFK3Gg*sSh_iCkM#H_bx%0K)KnL1l0LE|Nbq%QylC z`;^RqR1oepp!s}&^#2P2hAg5Tj*~IeQ9(onh0rClFFYNYuMIBsPJ#u3 zrG$@lFhjW7X7}yA2;BGAwY;h8^Dy`G|N< zRC3m;IyhGDg_Q1HkWcnX7Su@=s1Pd-2!*XL73iCVS*^$*uvhTFjoyyn3;%Xx{lxku zu^+*DkkEAM%U)-iU%Ft%OH!twSzH(Q_SNX5ck8tR+L$7{n?*G3tYJdJwFHLg%9S+SPB{b+tkzA_*B&`6#7| zf<>}^rLsg9a(*RBenoObD%pr?`G^|%bI19JD(Q3k>2vGpb4?o6=JjUVjFTugWxAdQ z*F5uT_dA1W-OS(o$JIs}4wOo9iWi%)3P93|X%w|nzo_abQB?;mzthuMRT8STTW0h) zEY#>JiK>U!ytNb^BJcpGlU0(nG{ujjm*Tz+aOI_&Ap!9@asUF@@a&dV8%7QtE;hy? zKLKD0jAk1>@6Q7Dh`0kI)zHL!aiH}R?;T$$Pv3YWJJq>j=Z($fhp6wqg_&DY3!EEt zPhY)mFArNB76LUnV}+vp8Q|t=*zPK*n~^fV(RLFMA=fTRfWAI3_8Nmno@vL${4?W;l>4XC+xwg9c>rM1Jps1?) zVgHM^w}7g0?ZQQuib_Z+(nt!@qI3z;t$>sW(y7FvQ&2*Yl5UWamTr&+L8LpRJ48T0 zz%v)R_y6B>#<}N=amU?bxE0n~-}>Tx=X~az&wOSNAK4sLZLa3cz)~w6wV${8U0E`y z?~A3D$4_=$cb5LDQTZ03XOV>pitG$8mRJbIsJIeZQ10B{9=|ej0%$@*Utb1b=%Cmnoqes(%hrXV;lj{S*3E;bB?~ zvz<9=xin9oz5`aiZ1Y@`*!=A8dnG?s7rQkmHxJt1n2{=}sP`?0m>2IWNUX{}ubq?^ z$*Qtobja#_agMn{@!crbr}!hOdos&@9T)AHw~cR1sASp!9Wu2+7M~rvmRWD}1})0l zi3ysUL?0aP=}ju73!i)C!I6Mpa!7jXXyy7n)#Dem$;1h9{Ps+2w7CdqMN_a@vfo9u-m4|2F{9V-*(=ps?>*8T$*N;0igmeGw#eH;TW&kOkW2Z3w~$Dh@GNa#wlt8j zJQDb@a4OWqE%j=dBpIV+=vu|^5$c@E{IOjtx2SlZFM7BQ&Xcmrroxf!`pXiZ6B+SG zWa{8~Qo2y**oOZKaz^rC^L09ItLTnNY`w1iDE!p%>~u9PraSppUX;EzJ>gu;pGy(u z3ztmx%yhfVt>>dK)M$(#_g*N?OH-j6xDN*vsKD`9m8<@E%@x-;VbsR3cI?RQZE@WO zUv6;e_SlIo$Ae3d0UD89Qcg0Yn{Xl6ps;svuc*l{q%V5;Z06MH=3*a{%gvlESwZ#C z&dnx=2ksQX2tUiKEz~2gSdFI_4LWqrNfsq$J+;eY*H>^D7IvVhUnkUYXRy;=D6lKR zHbK4+q#{a)V~zw-32=A$lS;q7++7U}ttM0)zg9#i?eJ6dc2AfB^8JV8_Q=#ns+9~B z(N}O9io}X2V+@6^nQA!=4qM}NIN!g#HcV76G0#7*-dlrZOGA`^yhC#bq!JiNx)z)g z!WP}}O5zo)l*-WTmAH=_?Zn;jxgFl$I_b3iL=)G+l0@Pw_OT|!QuI+#BF0-oB2UtS zBg-JMRkHHJ#Yv4lz8bAB)s@$e*iw3y5bY96Y-B_hU1MYXQPyktNWPTr(KTUopeAl~ zwI;b+yIdQ#P9D6SJ&xI#yU{@QlkL4{@A6iQW@>PxwflxPO4mQ~#u>&3Wf2!Vqj(z=4jR-WYEMt+mk z+ba^Wi5O7y8YOh_)HxNz8A=VVHV)8r2o~;DakNp#!9dYDw?ps13m7jn)FL90%7(kskwofvYPit zFZS5vVX|8fUsemZNtpwOlQFZ!jlo)BvfqPGf9CYX^SnXg&13NAUqBGNP;-QQVf^PM z<_E$J_!~^&xcnvyBL`JTBJLZqy8%Pv>48s@Sf7V2dRI-93J>rQr?Ur5*4KY>>#?Cg ze4|2-U{_T?Y|eJ8azC^_LY0xrYM7fD>*q{{C}i75(*q~b&JCL&(NOP35I5%hz#wz* zaX-AG9THQ2S!$o8dY_wZS^K$+f&$c^d`g$}w^YCc#*Y!8w}tgUaOa*t-986hq0&t+^PmoQ#0 z?9f6CyekCaDak8!gGKhf#%YI*iAeHtoZ&}x%$mdA(!0YG?oFGE8CMdZMcmrnJ`cPB zP}>0XMRz|GKH2S0@;K^1Ayi;aA~5OO><>%WTGl%w*4d719CNxhHp!GLZY8bT1(oEX z`eavD7#SJwC&cmE%$}iil;^)<@l0Fz?u5k+EiyQW^!W_8#%ininF;K*^3~6ZOA`|l zge)2&xDX%G4pc%1A_1HB2x2hywKLT0`A${m#Y|^23nVb>)Eq#Y zUtCry5|m)vp!M!7torgP0`3^%7V%Ihd-Ws7z%Rr4LX$F)!(AkJ%T86pR3>k=*d!_MO7Rqe!^Z5sk7sk27u$cGOf=I7@>8!vlO z{+wcEqQ?1$TCT=JNW<{(l#h&PoO#H*2i4kUGbq2?i6XK}dnI%heI3O9!mrNb)-n^) zGNW`uu+%F@gQ=mR0eVMmuckpiZAwatS}cWKw{h|r(KPx~tES(OJdXR$?a52|`nJ;P zcI-rMv&|T~y1JBQ4(+z0#7Gh%h9EtQp z-M3Lpczymlybk3;c%m&g1o-&Ao14S|CF9DbEl^{CJ_WBf`C`X$S)kNE4BCQ1QPsf> z4YtD8i4_aBMz0I+5lIXQ=>C4VUi{VD+uM>4f?n2!EIfoTF7U!2lZA>(EibXD zp8xg(mgjl+Ca%?w0iAgq#1>s}jd#x)aE~`$F7B zq0|k8#WN4e-P+1?ILmzhL$}O1J6$vc;@Vl|I@9vtR15f@Yrb{Js|cPAdkt$HJ_P;T z3w|EG##e6M1Nl$Jw-0*wjGEM!wCtyNJ)IniF^iImGAy2RP|9pzb2BvzfJDd#1MITP#z6~S9rh^M;N z%6AdQ;Cu|!F}U&O*lFeYmlhY*>f8=_Am9XfCK*}TJ_-gQp%YQHcVS^E$TycyN)aDv zE9R-rKKA1dTdTbJ*F+%@z$h#%1U9S%^zcF-D};d`xPsJv^DmQsBw8lNAwQ=I@!qw{ z<@g9&P|b35bW~DO%9{Zi2IEs(=G%05?O3}B7e2|8YcJgjB;&ckWghN@4~ur>Vi>OV zGA8;wXm2388XD|3dsC%AD?uJ?sc`2T)j`Qqglv}X)390Zj`4;Buho<3^B|2;7T;>idjcc+Q3>z5`*Zijzp?}+4!Y%gdT|6bsgm!uazax0Iw zSv#9&{X+mp4BUEA8v0GxH?B?QFRS&%gh=3d4KlM$132K?AYX9IjKj44Uy2Aq zx!gd`pB!dv5ww3#HiYcMLxctG7kBwsE-|UUUk}W~RK$>E(XVJU*ImB9r+WKxRzj%B z_fj$VitCJ92J7P+qSKp|n8yyCe;-TqTiRm}$5-}f`xk!^R&8(#uO$6t~j*qvCD`E!UDJAdx>3$rszU3Tt_VS~uf>#RfC@_DMU zbz=PcOmCBn$A>aR{WzU3ibo(u|K1kl$9)p#f8R>`=Prlbv0X`Fh+05{1OYq(NQ^I6 zT_Et)?oNv6v^|eF!&#JkQoqrD9(Al#aZ-bydzBGO3}%HU3WYF59B6wq=?8lsyJFT!TNZ_ma^y zf_}t*eLTnOP~>%bF-hKu=C@zx9lkN+&Z9`hZ+a^!K5$24<9zQMeH+Odx6GYA%Zu~x z%d&mItgSNOrf25Jw|^S?rQJYuvakB~jpClqmw30CiT_+j2J(}e`~!V*e3l}T(y8a6 zMKaI(H3hbAXCq&D={ATQ{dsQ2-utA?diXNkd7sN&o}&qKA^zF3U1+r*bNvpDu3d27 zexPy@5&e?&*T_E~vY?PAX(|d-;|8|+$iYvlvn}zIUY;0boy`yG4pqdK6mc|fbA{h1 zh%u41$H`RHAmsG9fM5yQ_+9w-DEFtQbxz8{+U?gizIqm{d_VHUU9wj;JuSX8l8r!g z>i-hvK6~6R4s(+{HI{8NPL#zcI$V+;LJNba<#gMh#eJJnbK)|fqZbk)_KMzK-RFK3 zwzG4^qxw~f5bjHKfZ}dbg6RP6J8*E7vFvc7gC#t&QnunFgh}HWuOL2NDq9bSls=HR zirUviEJJn8-w9n-(Mj^zEob<*ZKF>-=(2vmv2xfqzG&NH7Kh|948#Mxv-6`v$7${p ztxLLiL~|ZN@P`$S;eDadE@aEZ>#ol^#GA8aACK1HrNQ6+vpA%{|2*QwpSI0^KI`Ka z_xc<{hxUfI(Ov6BZ3ucl}hq`R&x0pt-IqGNTM23*uKmDcq zJuJopFzElV$)!m&%lF}HB>rx|@X)PFVt@;OO%RpQylXlE0`ZaHpB;r_0wVsHwzMlp z|M`Iq2gsHP-aie8h!Eilb8N(?&_6UZlo9-=$;aUKVI8E+5nX>g1LA%1PtyOK4)LX> zNTwU%I_Lg&E+TGU$v@7peBg5NpOyIOb_M%OZ_$8R6E0Se@^{vL+Dm#^3ynp|2oc7LMs9STYIm zY5xO_5;>pS@jzC;2}=|(r0QMvK401~FgEUr7ERm-@*K$xY=EM-5sHKefdMv0?d!;e z+0r=mt%)iJA_N(7?sLMLj3WRj{m?#bEv+%gWk&aoigraRg)z&{-Q^PHALG8^L&j%h= zm*{u*r5CrV)pLR*lPa9|f+mAkKIs+ucBiMOhjv5ecfh;9#Inj^gWt4=$|WSOJ3TY= zUc0QV?HxPl974pieEYWkeb#PssI=PQUd9E#7E*pG8U~|;@d_J*lcT-S*@X-ww9-Ha z5UPpjoORI)a5onm+IsCaK?KsMGcqtR&`1dd3~t43$OT)o@D&AWkZ&ll%x*s>Zuzb| zpr$W6PpDt#`vuze1-Cx38$55O*T?bux-LdujPuN}>&j31)83EJ+TXVOaqq3!<=6Jj zs@N8pcqz@X9p>~L_iOxLljktp#=*;JHTlj%>vWSt@#T_+B;L!@XXeCT(08A{{cLlnP0DOHk~Iv&dFi8C@Do=?ZUXAwsYY`Tjq;sQI@F^L)0jS zNw#x=@zVv_2;hC>R}+_W34TPV?}h0{Ti}*Go05B#;;2Oe5CvB)hBjNO>j{iezZ-*nb4jCt?&JgjzBvtK#SkQ_f>Tk2+yDJJ#q zqzVWHZPKWbkJr94fEHC(^(3l&(1a+br+@ma>(riOH|cK32%Z#l_+PXVBw0u9APQGh zmlyj5FPFy)SM1qEPm|D0{ARHMISH}xulV=^yf|9}c$L2dY0ZOumurcLrS=!-sJtFr zY)RrJbmh6Z_x)w&`Mzgz`?+5egr^sV^FfLV>EJ-`xi*~X+1HX2tdex~5tDihpF5%J zv2?&M7a3P4CBN!XK|I@~*MwPb38;fHjHxKOET+mGJp)4~T-=xsr$)nG$3Nh(_^iwr zXu3df+u+G&RqKhZy7-ApR$gjlMUK`x6(7%H-ygU)OoiHM_R2ohmNMA;I9iG|#v6Er zQSyd&3%MO^r%?gqJ_W7FWiPLCFb3_+qp{7HqPeF{SXZs2R_CfE18tq~!)T1fW3OWK zU1DzUaio)bRm38#!Zfod`AzUx#Ot>yozyozIzIDSj4s=_r-9?gU)&a7w3^TxnaM|f zGIW-UEbJQc$7IB0U zyc&rE?Fsh88vB)jyiSwn3<(O<`SEfx!k$a3KGn^o&91}jQ`I&r!Zts4-1)6P8lX|& zFOReZMXcJQIfkUqu{&zlby75seowgTb$LbUMnPf!Y(A9h{B!e(%N}$R z9)PSJt3VqOdqwc*D;`oL_j|9JK8y`ZKBw=>?O3fp$b0Itu{N5{54e`bUTN*O?CVc7 zOFfk|b&7A0HV~YhsT1YHGv{L;U$u&Vkm7989cfr6;<(0v?Y7tVPM1?=W5oC6-N#<< zdZbm=QeNlW$-;h9zD3ZIYeMNEAyl)kQI+nkWm%`%e0j}6H*>hT-OH`lAk}4>x zdvOM(5z;9%NIjF%l(>;0IjSQbB&94ar~U!5~VMo&{CDeq8b2$=+1k6rVWrxhd}=W~y9#t9=g=1t=vEw9`U(F~L{+syb* z-^AB7cjc)5%cz`WWOEx(KSc7h=Uy zD5O}=G=jS5&;5O4+GF5cHsY*Cu|0YJy8nU)4OC#V9+$JR;fX@7o*cu2`H8d5jak*JmiqjW8cXz4hkPeSa{Sft9Y+S%yI_x_W+CVnEAYU+O|XA3J8jQNwW704?9XK1BU zf=xA7qmbmTadTVSZ&<#D`k5Yod@Vx5W?({6|f# zx4%AWC=1f2Usc!Qi;M5p65!+8K)wzr>Cg?kmYA5h{)Anp=35d7!GqR3g+b^@;PY`g~HHC~-hoBjsnNFJbZj?g2S_-TUkaexIo;ja~9w><= z(qzVF=veXr#Eo!pahGcGIr#4M@j;`d%B9ga5rf;AZ3V9enF6(KF5Xnj)Dph)U{Wh; zl2%J8m|j%XOPyldv9(?OF#{KKO+ z>_UZA*PIEM`3v8mG#moOTc-7VGRQC42js8|)kJ0VGT8SMTj0DDp!PrPSVOIA-<}1h z)VuYPL?AJInZ?u7Gj9gE08(elpHI>dnNL=6-Kzo3HMriC%kX#Jqnsh2^1a%kDW&}d zsD<=i8ej|{mUOGGkt^J$r}y<-0kK^3-uD+>$?@=#ALY*V1HUmv%&(|T>-zPS?vtHP zc3qFdo4@^KFVia1&+1g$l^j})+ECZL$Xut@ z(m6Oa$gp1!fU(c#Y~8scHeNZUkSpDywX1==!K{Q)%5->4p%z_bf0Jur^@43SNR<@7 z8wm4T$-UvDPvCuv)>&xv=7dYyg6$R3=Zo)dC;R{jXi~O;N|2cQ-UMq$7ZRWHdq$K@ z>iOERnP7eOjVImnRJ`E0F{{YMN+aFieNn)EH9TvGkBEq9roI5$hCyR6sZtkcpOEWy z@WtUd=SBda-HlI zTNu^u=Smi8Fj%XVRUuEPb2QCW8iLPA}v$7h_p9GojPMtfNORr3jH9xuq0P;Q!UXfPll$Vt4+=sr8 z=#S^{^`QN#jfTIioXOZVs!FEU)z~2>fK!I{i6>T?T%N{n?9uVmRHa|s7GvdV{l2Mf z!DME^tqpZ7q7R?C!798bI`R1w6~p+y}`PcUQ?VMyj{!s?GZ8T^NOg60nbt)(SxOx#32=+u^(L;NeP?v>}-K`RV5s zg{5G6)(g)i%oSTr3&#=L`tfteQLm--x@I-j1Zv#O{)A>*SZR1t}h@5H#9pGz;X zxr*r)W6`g@8Q-uW_o!MZxR7+XAy2-FZGFn+=wvgF?B~ew^RKLdF3-$HT-OBL%ea@< z9BDGXgdK-Pl# zz7cp8a6?2oADSm8-GTIxW)5s3rU%K07^MuYui)fB-#sQen)mrc1*p7ES0epsxcYq0QBQ&T}+z0P7dzf0S06W(K2VcC=1K8&Z@P)vgf^8wKon z@nm!v)v6&t`%a>@owow)07C>=Uh9LQa897zdhZ;XO;Ygy<4ZY+55N^JGDOF9 zJ3BdXT8@N7CJns@GYp=K$5W2q3AO=)&<4qLT)>U-bmpi>kI#V)U^o#nUqGrpe5K%G zfq)-XBa zWd;HnXZnGXl6q1?XnGGvg0Rn27O#l^|M0V(2dHnJCTc^`ZUvN=BQne5wh5a^c%Gw{ z0}HQc<LCd0ddd{J5%Jvgr~zY_~b#45I*Cbd~>eV*FAyr_lY!O% z9;A0o_aqd9fIxgna;R!0o5QL@1y<`rKol^q;zwtzS{X=s!h)p`cB>!|KCcJBTC~%0 zQR)?qU9e;ubw}zo) znjS2blJ+!~=n3F#qDCb2zL%(KN-s8eOb04o56wp=mCi&Z1FMs$GNhaaKvsRwAjgOP zxsy!E`dTO06zGjRoKeYCWQBG+VC9;jGd_Uv2q@)wIAs8xx>a_sYklO6x4$)T)&O{E z^26O4E6tf|9opTsv(1DxS6NY^TA(x8-yg=svXcT~)WTG)>ys)w#)t34L7-NqsXOW3 zS6_G}vBu>fWD27&a->6P=q!f|bcd@Q;DoMe`3-%BXZaIcn|`oNYrBD&0@ih=fn?E_ z5R&{zeKuWJ3l&7DOD4JR$AG}FVy^oYydI?k;fW|`~@R1q}4_V zq$2>TS!m&t>Hu5;k<{YSUob}mZloA8ZKXh~lu0GCkPAvJFuWv_RSmol~J zxQvsQr;yYF^A!}wG934i{d{@`%wL|vFoS9LpA^pwwXSGUc$9!+?laD0)dp4*Om<)e z(xoSCav3=}E03d=e;6pWV7`7G z9^Rybbc&tBHyR(ydokDLyGNzCJ!J&CMajp_V=RhS@@&M@J6> z*y|o-slu~OwJ~+JQ{UK}tX5Q1gnF-wdZe}wc@`j-b;j4s9n_38tTz;rVBXUkU&vsE zE^=9pphhgfSQHqJ@#cO)Y80?Z3Gwko3xuKl5ODNvI3e#J*vyHakqpBcXq7S)q^^Nk zUjq4Pvu`iXT_EMQl+F>sBqD|mmA0U+cz(yd)kl5xFk}R@rH5c-M04;k_n0g+u|a_w zo{(m-uNw0A=}Fb&PtpmrZTtKCfS4O0+PQbsV^-a3t<^THJ9LrSrR_A1Q_YeYy`wSb{WJR2Qi2^_sw3*w@9_gSVNt za?1<$C1TU&rJ{Oq17NrZOaZYx0E$)zHVi{~6-eltQNZOm*{XKRO2@Q&HRdXr2LPJb z)Pe%5jIq?^o67Y2eZYS;duXp7nC35u()hME!h)5VCXKJ9;KB%f4-k5FsH)@0#N$v3 zcLmGn9R2uuum2@1Ip~{Aq7-&m*GTE^HBeUAKN|^f45HS@?O@~SDBfR2srhF`4b8g$ z_`(D0c$oCoKqat2(aZVr=qm{=`qK00Sb}O%62S3i_X;?#*bpiZJR;rcN<$Q(x`mB063+8uoBAWz2lnC6o@bIm%IOR&`Jc8vCR&P z#Tqt3jCnB4uUS7>r@f8K`J^i(3ddke8Y9vpsvz>=BNn1JF=$ds;FmDK9PWn22|n&= z4sAG_78BeF$+_}vhz&~U?{`jTsW7;h!RFho&@47a`A2;HxvkM+KePxti-YZ%no>;r zeDIaZ~^s$F>7Ud1pdwQOxqXOnwy^LP|HoBM=fFV%0-~9$%y=j3|+7zT=kuia- zhH?9Pd5mHp4IJw9|IlPTlmM?VW!--56@#idS0fxMYIpH|cUrc=+wP5#!lojA^%^G| zkBa*GdkW%?gVDCz7jNc8xE$^nLF!dVNNB}IRh1x+gp`y?TR?5-ZZ5L1W&8X06njC( z&3J1X7{&Copl<*s-)3b;}7eDVkeSPUOEAL_G@>o-o>vGk1=vR*|AbFzalC*fPWAeYJn|7@;_ zrlwTzIxfK$T7h{H%<4mfd_@EhB2Tss`TL{uYfk~}qSUV_j7Ug%n${iq5meH#o=8}v z*VNW_MleT3M(%IVh^ea&L(jyjqTzgdC~7VKM(N^Lu8>ADoan2HAx5J` zM(~t62`ntrZ4O%1EY`^5T%SkDQ)5FiTfPTe}6=M%2{QV1i*-N=6iH=_Fu}hhB{raxFvgMqx%r-eaCSLZpGU?w}YI zvpRK}<_xzDyo$%}a_G=wQ+}9lsMVfNkNj7#|e6t`FIi57JzYEFtP}yJ#7y!B*TEJO3<>Rvquf*KuZN%3W%bw>H$Xm(@S>GfdoNkd3=4w zPTjoqEeRcKZrBX8asc>N*pU=7b#TKf+J<>kfUTViaTV2<+PMKxDoILROX1q+NfFc5 zCdd8_77Y?riYm#B{iKEF^T6nbZX2;2$vg6L5=BulQCJbgSxBwS))LFnJN>)~ovK9A zX4gl2^ru|b@_-Fos7#$F97sq)k|iMZ?^+>sn5?`e^K+Sf)z-fQ5T;TQ^$8Wl&i;Pc z02++@$u1A=O+n!*KrzZ&a+u?Vf2MJH-CF;^un^B{bKfeHcdi&n+7MgQ(bMAwku%0u9d=P!uL=3MNj_*gs za(1#fWC7E>B0=V_su`&KO$i(Z#PA4xHb#2*`~q7xR{@yM)-FKDNFi3EaPb1(mDsN>-&S*7{$xz79j z1YG<@><&CiCMG7fuK_~DILBzG{0BPYU|^(ZPD84alIDnTF4g{b|HK`j2f-Y;HX0-+ zJ*+**g8|QFigroON(1iV{e7DqN?IIY0!AIv{Rz+szYH3 z!tF<3r64b{BeraYn#*Ni0AT`LnCCmrqi9nndHJ^i0a&kp0zL7*nAkKdYE)*c+zmkO zy_4N*fha$Am7BY#t!)XIg1xbmu!AAzYxP|~8rfuqhOBA-IygEhdX+TkP%wH= z>OGz~4!+`VtKqnHYq|F4RB9I2v$60=`*8Z3+Lv5pFUYW?Cd$ERHUeg~b=dz5?)ujZ zXUk!L+8EV*EksF~fj@Q@~Rl(4^OTAC7B2kZBJR@}SnE)Q6coDzU)t&zZWMBUWWS>Ip0~EEmM<0y4<7K?d z?bp;u6$!;L)6|zBu26*>#=U#>kk>6j2R7o4hzk(~+aHJ>8XKFvN2o;{%gBh0ah;FM z41-lNW2^x(arFnYSjx!&Z+m%51gml~a*ztpn}>}JwcK669TQOgB~6TsYMd#l%<%|MnBw(G&+k0l5w==sw4`sBoXub9DTr+f5# zH}XjHsDw^oDx|4b$L-75q~gJ5=nB;3Wlvz}o}`QJ9mpV|iOv)AO_f~;MZx8HT)InO z0f9AX@CPr;*ub4PB;v$zm2CnVE~Ifqg5fdWgTy&^d~+)J>MDMz##W-JSG~_H7pCvi zh_ioRx(H*?{1%tj*5YCwDa%PqKV@gtsfi|h2;WxjrX)z#IR znVCPtV3HTm_-wi9&E~<+9!8le$k>b;kYrYPGhIN5P*+0!L$T9_DRyH;^7*)7FR>~|e6Y7gq zy%086*n1FS%%WLD$Hf&9}5+0#hemM5nFd!mrQWoANs%fFXPC$(w<70T{*4F}PCYW*tEYHe7R@mmd=xeB8%Jwa} z)wq{5^}9a4zA||DA>-%*trlm{_$Pq(ijccmtHh~D0f+UEx!s|V13x)AF{3%#1;=kq zsf3Isf0x*8CV8Gx+w^Jm!)Bl4xI36cYc>e+ZGm>>eOZ~Q7T=$MuK*^^$3W_9*TIEo z+B-h3JCNjV2IP*9`yosAP9#M-MCM)PccqS>U_m1zBP9i{=5<0ORYK3}aqM)J&!q>t zj37`l$yV3{V7DY?I$5;`0jOP6bNrd5HF%I9CLfSyr?~a{gI1G}prC9dOV-bdjKL8t z*z`{lXl-c5VfhC7`zJRo0O#X?+L!DxkJVJXnb}zbJ^=hf$BpUwq%IYw2wY(o;GDn^ zMZUhSn7ckg)280XMj|(aT*T#=vymm{B|e9XmRFzl@wu?yyAO!V^r8JUs*>8zP2|Gv zv(MIdPtEihleo)PZRBVtv zZ!UmWfOiL8FsjIOZM&a*Ho7IUwD7$&e8vO~Ix7HQyD2|GP3r=q$#>efSj*d8c|tL6at zDkzjX+SpKYJT5iAPNsNYIbWMkIRFKY7u5i%gNrkRck150Yac|g=|}02?6btKx&txK zyFtwBOd*V+-l$aW`h7|l`%O4hiSq6gIE0zpd%us7T9z)qU})1TW}|O+8WZ^K;miqs zhm-H*6x7i?q9;RT)y}4CiC@cPeE^-CFb5Ugub2gfzt%%W7uGz4_i3-ejfa-RW5)}- z^FLFr4bW3Wh34%%`?b$5=esbp-8!Jx_3wBc7zl69{pd9)+tJ?s0SdDKEm(xlQXKvm z4Ue`ANqs2x@Z^lZ#lyZCO6&yd2s8hT0~wi7fR!3u|K+!A$DP2&AQyB<-cpdEOdGcM z5Ay{w)CXTlpb#*mtjN&RYs0Mm3x=YJTH>iL&Hta@bxnIuG2_1wFCJQ<=DO>kKy%4| zp8Wc4D2mPM?yv(;M7ZJm!UV^4hjCzEiyaVJ3os>Vc{C_STck!GbH=vi4J?krS@U*4dgwJ3R&y3PRyE-VG8m zkl;ec#&%!JD+kB%d1?m|pTBqel{h`%E2Kw8L?|hftm+OWEgY&HHkfqlj*(%q)u;@z zo3#`Z+DxkMQhNj2lTu<%E?T>M$oy0VTKwFaHo<-O?j5vk>jGkgc*=f#p>n%!nkiAH{vQkXVDY1}Z;ug-V;Lc9iqOH?M7Jw%9L)OSFd{JAWVRPe+3ZN z!pR9iwI}0fKkE=JCG&k}B>++_F2Dw`hr{rDukIkzZmvw#3J6I{ODDHMbtFA+tiopQ z(0NEHeb&R&OV8N;V$oQ&6d#C| zW?x!N(V$blUY-DN)FG6il$8JTQBkNbbY)si9WVE$Lgv*_VBUEBW>FMa64WgM!%0_g zOFe%AMp&CVnVYWyWrX=rwjC^FC?%LI4)7^U*(SEPOUFKiV5B|4$@Op+vUG=wWIK_N zuY}ReC8)H9MLYi6|%(q?qsByH{JVIbB~5 zm14I&UsXRzVcU7>j4>VPsycA#1>%4VV#MGMnp%{>j6IvMaH6Nc0(ivT@D;R<=;~@$ z@N2*G0S-dZWa86XQ~#VCW))sNxH_q9vBsvvckQ8^Ft^t8qFm1{zT0}0g?7jUcHH3WanA1K~$&~x~M6_TrL=Lb8jgy4k zU-gZHjRzmS!uA@ZC*eMz#&o$s5g!)KpO_gcPuFpv!qN=6_&bC9jil=us8B%m(~YGJ zBm}6;8XuD%n37W4RRb_F!GeCLau0D;+_gRTNqZ{CqNrJ4E=LKOTTQ8}C`jXQ% zTCVq*x%wIDNZ+VpD7Z9g9vmIPZi}y+W=L|oW7v+zeGG9Kq+3yTWcd;IMO)Q<<>&mv zU_rt3>?p~o!8)CWcpctCA>fb;)CK5ptMNGDceVcmJ@KVqngIWH4JzNMT%uY`eeD2c zQKOXOe?a{+EdX`_<-JBo==4FrJb4ozHUEcz5@p{Hq{Wx6@RX4b@ue)GU++ds03|(7 zX=%23c^Kg9MbgsJvNBi+83d2*hRa%EvI+`=sB1dd^yUmnEV|*Sh2-(zyE{n9@h{>e zi>V2~-U4R=ObzK2v+K(nyKHqF{5%O{ca7yCy?B@@Dk@6nb-#@&j1D=M^ll4A$Fj1r z2JUm{NrZoeiH|b#%c79|bby)GS=@t=L`=b&m>D$Fp1c5$46FYW*&kA?42tJ<>vtm z58(aB)*TN%O$baRgE*0k@_Ju+VyQeyLIAX1XV=kIT>^t5&)iZ@wKY=s(k^JKGx$M{ z8mpG-B+n^Wc}VecWVkeW{Msl#<^|Nav%5Qxkc?Vpvs5U@ zM5iK4#3Umx&jPb?s~>bgFlm+rEsLLaUmmAG(<79kzC%p$J~g#e(WgBJrXUU$f-VIt zOgNus5Ndidp?&dB>_fY7{=9S~4Gj%s6lqrjp{zsK0V#Zi`}gk~8q)O#gRvXP)%*c7 z2eGiQs$qz0))=sR!otEzhsLD;Cp231y|d#gG4b;1sus8>7^Jy$+c@J z2M-wtdDSIYVsq>3Zaecb`{9HcU<&EpaQYk^9Kc!k<{a~tfzf;u5CE(j0vTFV4W3Bx zOtP_zhslB=1mufE(EFF5igqChru5jDyz;;9{xG%Cr96PsV~xUFgs$Z1rN2?@X&1H&tNClRWdRt zTWRWD$ccCt8Y=qSZMlcKe+uVsW(`wdm72R9OzGV0Y_3ogSV6$HUGwFC5vMoRrGHrh zC)0c!KI>tud@t1ajzrU7;I=$Xj5vI2W z{Tnlbh5ySLkWjf#L&DT%T-13%W>MHya4tfejq+@2B>MaA3nbi{kg<68mW_*RaEgs3 z;Wgoux*Rd4u;Bg!H+eSbAt5(n;pExsaPfU;Af4}1Wm9&F(gom8rAeVyapn?MR zH~a~m@OE!Pee~Z$oV^i}dcbi?uHV3{qGb{=S+ zJ%M64YWyj5Q9!UN=&~!l#S0}=69`dZ#X|OL0q7TfYryfw@3uO6pk4jKcOmH364{*-@L)Z#VvT4+6qfOSD?Ei zi~&eBzrdf+(b1t@zTBU`1GKIYkB6Z(t!-_7bz?bddHf)h1J8RI-D7QtHO~gD4$KO^ zZ84O4*QEO`84pw#V}zeqv#{zLzdfv2DIbST0h4NNfanQMwl}x}0*^5xGkm0em&q4f zAeh0u@qipNDA%_}f8~eZ11N)^QSJ3Q% zoP_bg6KE(caTM}AojAhskG_7y$n*3QV*dc(C)`?qcD_Tr03XeV^C^Cpz_x_!VBsVU zO=JKEW%+G@wznYt4Nl#%$j<+!!MuqAr486EpiH4g%`V5w8+4h}f@uR`NEk)iwJ7H& zeG^bI-QZHvyOis<9(?-x_3L&us%IOF3Nt&Y{`2LZr0%h&r>DmuaCT)@(>fL-Vz}ho8dLwu zO0aaWNl-O#ToPe7-jkkw(l4WWFF25Xa3HRj-|Gl5fy>kGhg@uLFWg~zS`TkiHL7|Ie5P1xHR6G!R z3;2J2Yq&5L3Q9_W@AG#rBp^S`KU#wRA8@c8(99mkLZRP5{6q5|Ts7QJ*Zp-pr4;0y zz|iS6cmTi(i79CRk|0nHg|o89vd#3UtlFqHSi{iFR<)zwJ)pD0^}O8vwn!eioVnIB*iLjW=hqh*~_zm_e!3o>da!=R2n}NV_o3e=W z5l_Q&U}^?vHQEoV+!KmEP`hh@jKl#XYk_0YT-NCyed7rKCm^1pHUO_cLV7=?LJc#T zElwFp1fWIS4AwOxEOt9b$KbbbOE&tbBi}BYDBP=3!bE}AGSgn~8{hEQtBHTq!iL`k zIRMduqD%-H;Ak}pQCCAn;3iE%>I{mU0N$WgDXjiM2LxYG1pLBgBgQtICKCo!%Q%nG z$#zT^E!lf;*C9C!)z|qA$UCwD5(V;$nG?{>0Xep`zV`RO1!B~|G)Glj^%~K%KZw_H zEY6+6H2}{5cr%Tjp?f;!S3{lN9_IRp8sxaa%611{AGp@gJxEQWSVpkMfSOdgrcCS5 z4q=qc%o{>h*?S{^H@kmZ)!VHo!+HWhvCMHYxZxs2J7QCaPg@K@AUNS3{CJO92?>cp zFQA7pp13Zxec#&ymNH?W3RJkX-IRy$PbyXzYG4Wu`IL@aK=d_(x-sBJ6a{f4?E&oz zD!cb*)$_Et;z!^7-`Lgv(|hy-KgLz&>eP-+Vg0eq`fJ*-RG>r*B}SH9@Z$DIKes5! z$Sk%NK0hw8dk(dL3O}N=_XdRkUAC<;IO0klD}DD$NcH>j%rSQETVi z4puBt*!}Z#ekfYRdUsvGtFv>`-vGOb8m$ap0hB8u93Z3|dSAo>(v$w&g7fh~VLJWA zGq(I5*3{I%yV;M$lSLj>5L!|4Onwa8l!y$1qnWv3+GXuv3Ymyb}c2KyF3FJZL;8m3=1 zQJKyaTvASdU1HlBsKl@XpR*N};AF*hmHB}5!=*fh*m`B9D!1noz+`>_f$3V;C|z!l zwIF3+Vd=U$e)Z2;4>@mtJJ-?WIPK0r?gYLtJU1;py*C65N*&xJ@bZ>ueR+`DL2X4L zBmSQ)M7rA-OMp)m)|;M@(KiQZJG2H2a6r;2+;bV6L+aeO+~xzfJYIpL>J0&&*p3+Z zFsY(y&<1chhVY~>2l@$fQtg>uJvXp$a}&hY1diUlG%#vuQH_0nu#ErPck%J^EM<_Y0iW9K0xE(AA1}wmW%N0mK$Kn~RvcWd3)fw_B{z5XL&gK(_~1F{v$(oJ!FFc6 z{%DoCj;`H~jgj%Srz?E0;}WH?TRZOSw{O#I;O@77?e6dY0ZUdZhc+7-4u|7}ja4+m+7_5&2CBh1XSeP^99NXk075vxj+ujMo3Xk4mI(8*$imPpqx+xEbG(S*5wJn z0f%=TV9L29ZM=YE_c811KU=0CoLyH3R3bAZ(~!A$B$=*%xTYpzz@Mp{b@1~}LTdf4 z6GSz+7vhFoM{{B{Gw-9DJkwaZHE#tGBZTw$Dw#OgR?z8C&HI{z-w_&9K&Amo7`<~4 zq67J7q#66~B=Nvq;4jBB@bha~@D?Cp<-WgsJepd?k&9f{eu;7gQ~5c_s=z#muG|cA z)TFzXZ|*dK67Vl5x9;hDKxzL&#EBX_24(>EwC&^DX8;vXa~=|#P$Gu~QtkXB!}X1VU~2;vtOin$ zkjK|8vm|-_0L(i0ntGc#Nzxf;D}uT;%af{Ia5sX2f*JBLs8)tc*rXrJ$%gnoLx#*$ z8IXMvh>R(CLVXT0X5_b@B3vJ-FX@222Ubv6{T@uSfY1iGmw7-<@jTg6he#Z@BUGQ? zz?}xheIXc_brvnw1Op$)TvkCYA~6qLPEztx9#-u@h5}iqmBOD} zXKSSQ4D~N7eRE7q4j!u8RH%R5<>9!?_n%+${r$C|AiKQLa}zsLsynygSIX>?W|nqF zw(OFYdUi(QMg~@fM#93Fe-G*upP)AWW=;~%eOP@Ld1F3XSrQ?c>z1uf7>B>&vm>`?mD;027dG?9vyfGB$_}0kIS%EXr&WhVj+1S|&i3=SZerv= zRm^$!M6+dUlKb#D%vDA*mw$9%&-~=8?)YFqT;@{Lm(#;vaz#hGbHTMiCpD9T&mCp@ zE1pLS%@w=KR@u{#q(9n}-8YM=-b;O~ur5Avv}VP{A)|5>Ta+;yE4ZNgK<1p%iK;4R zeSxP;tNo7k0vEe7-3?>E*@O9zqU8@W4^&1CA7T4hOR(Ax7}PcXz8xIsl(b#=kbX5r zllL*^ntKmZ{)ORnv)Ono@%(Rj-`>4k{B*s1!shFRDapjxy(DPY`DIq`>^!l4=yZ1fvohQPD$v+i}(xY?_PI` zLvvQX$=X`8OF*;yZd|LO!qme4riapMTkH2WJ|hu5Z)}Sny(&NBSS-(_S6N7i+1lxyJbHO?~Lu@ zxcP}Dci~7ZbOO`M^SV-59Z#oD=lva4ksp`xx`f#psuAZ6zg1H7ld$;VhrYXcKj`3E zu5Gb6GY8w{Z68F}6IR2{3cSpj-{$AyeGfDR1WEfZv|`=3Jw%~_`{3#8L++gud9qau z%&P^d8t488Wp4pi*Usz@Z`_Kz6^CNQ-QC^Y-Q6iJ#oeKJad(#jMT={3iaW&%-==cj zbIyIg``mw?{jjoDW+t;HGrweq>|`f3=3EEj_LJuYQuGq+qGdwJo;j`A+XV{l+Llqf0fZ zl;)s6?Je5pA_*T#ll8T|hmM#9*G8{wU4yyC8A8xuCP%Y7aZGYVPOC4@+P9QLodvfh z)~Z$w$qyNKl{>CJCw)yl0Il#Xsu47EV<=KO$*?I@&?OgkOw*6_94noPHc9QqON%y7 zVe`q^hc{YWBaiu0yzNCEBu>7rC$j`8OP29@PNPQ~OzP0vo`mU4V<_Y-{#J_DHt2>4 zHg^jl(u^tPso6QcM~#DCz1|R>_Ele?)d51>JhwXRsewD8%ln7irRIy$zNT?)bZham zp?2798*LG}uUESGy)D)L3!eN$i5EO!pr>d53r?6A{sSk<9`+`5>T-sbCPvP5N-l=Z zFZU8Q24*I7Y8J*opkZfXBcu~Iu`n}tCS;>$C8QIyaCVY6aTKz%vA44|v2`Y7C!`ay zv$k_ovNtd?p%XT7wJA4qx3=P@~CISXR3;;z2 z0Ye6P?g!ujKmed%FY5l4AfbRdf`CE;OR<3kFX^u`;JLe?;2;psOMq8kKt?1mBme;9 z2k^w#KMBHFy%G~EgXl5ulkz2_WTZs`YZALI>@&bRz0AX5i3(*^E#9a#*diIWCL!L9 zkzFQRAbbi;JtrT1-aCP4a%$RYKTBB7`80OZaDCpSKiDn06`ui`&;6L1XUaFw1%?Wn z=}%REyMkzHc*jTAe)GO45Alr{Rl{2rqEx#wzxs>LbP8lgFj9u4W)N;K^zyqQ#0UBlsa z$6E_2XmZ@u5^Pot?!I}L+a}S$UJm&BWGfo zF2HyJs_Ff2-;);&4$l$%5dp;DV&!u)y!RfERy+}iJd)Qj`27Zqi{Fby%}hl|o%k|IBlOW@gjba<_SyWK!y=%92a zauTdUUe$Bo95sq;>x=H#BS1OZMXmvXa z7NL#Yp{;R%rRq*U#MNBJDf*Ym#axae;H|I^3d2#hT1zgkVy;LL#B}z|q_MyAjOXb2 zudRZ*01z{h(_7qkW(as+>?TYW$Kg@AfOG8szyGQFp87)mC%qy!W~G>HVkGOuhjH`B_gg5$hO%sB?!WH2Yj=v18)ET9QB6i*zxYW7K^f! zXdQveb)c>&Nj~onK7~nj16lr=EHc8F<%*K6MX|rnO5Y;9hxz~jR28#CcPIIo+il%2 zR6J?7o|Qc?u62xakj(52JcX+R564?SYNG%2Dx-OxbGwpe9M29xmLDjV809vo{V(w# z@>=Je*|Lo{gKK=^9ze0~p8j$c#C#~TN2v{Vm-D*7v&Ut?bl1m_PE~n`r~#J?GGwey zobC%ARXhNqAII&pF;(=#HJ=sQo!prq>kt!n`prP`J?9-=dQN&@m7BxE^kR3Qy0t~S-KS-q zl0zOxoZ|01YxYGvy|#7et%wjpI(v4^R#G`V0y93EoJSnyw%}aebgo?Ed0SPNc6w)~ zGtE`Iq&HoCaxxL+>ec24O8Zy!2yP-LawJbDLeY(p&Ql%;G3)o(N1k3&FBJpqS;!>& z$&7UsawXW#w+B`|FZuPy_P5`aHGMlj)Wt6!7cK|EJGR0l;Hf~cI<>yM$GagyzPmG5 zb3bBBDuVMGGn>dCu{`GWIX9d^iF!Pwx9#TJ~M3523iAR|zO*_U3rQ)gkPRsR`(<$&}1ooxh!&avaAT z>b6CfpP*s3eKYtfr5Dq(etKwq=g>c&)q&@L+v`>_Zjpn~u2r0^^MXiFSwGzk04}J9 zl;ZbG55$Ch%=db()`~4IN=?1@&RR!cy6Z=OhlaCJ*JMGXMZM7^n{V)>Soql#@T5w|>O^)$#xU_m%38eKoMEm`)BZ zywwz3raxkGN(wTC%e&BA$003f4yBr7p&}e!sj7InACoBAl?6wJ6 zGdbLzj8iMF>Ce*(!5$Bp_ocjF8Pqe2G{bfqps33NRXeZj9Xn}xj^%<)afk4pNP*|E z`I2`Ts;D0x;rV>H0tx@7Hn@QJ(@?+g3lxN}44Q3kIAj$NCbfxj1~xR;kziE5#iLwn zSaYMoebw0gqR!96U3G{H0h8geC;L%)c~~lAnxXnqtPT4{Yc+eOL~{Yx{>X#jlj^r` zmGiuVd+6KGfUhzSU4bd@Z`Wo9>H|G~2?4=QV2dWOzx*=Z`5zPoEow9j)_A8f7xv3z z#7g#$Ev}gs(N2Cb;jKAMd7P#Ly+h3@>6JoNwa4gw_U&u)8!O%eM-z32lgcOem6A8t z<#XR=!$A+_vS*nnSrL84b_ozgInzB4<T=<5ndL$i=^SRKiRbao^10|2k^ei&6Uy#yFA;$F{@^4e&eeKN2= z>GTD~0zhy%h>Y|2D{JmJaeOl&ZlvMW2PqW)IurAyQ(#g4ClA=ls+a%dV)7jq4GEYN_Nl~eOud5is{U3sJwrmF1Qod&@ou@bJX1=o&1QU|K@eftv^)+oL=O0 z7CYRo?*=6xpWj=;x`?ah0anQV)&08>`3uT`Hq~;M>&90Duua%Ug?z_O9LK?E_gctN zhh8)Trk@}VnMC5I$R~IQWx`M3%ZuB_R7`DDc2rVW7f1WB5d|=;(x|yhT2mUme4^#6 zrJ&(i%^t`ezs$+O4Etk_{uMIphfvx~d^rqKhnS)Fkin`irjwgNb0yHzIosDaH1Pj|ob31Ms-A4K^ zWWN*6oux%j30c+>rIoD#zU`)uR~$!-8hU{1NqXxb`YT2Np1yENMe zxC3v`HnE8hzzD3XW1)r4T!Zx9qxgj||ES@Y5hUZeD+p15i0CK&*9cGUY6f)x_@2%rR;A+y*s?yrCx^B8sS{hBXX1`@k63K zh%c>B(tuw17ynzf|Lhy?c(eAM9kiurLGxtp7Lae?I$PzVQ5$5O@c)e9tb*6~ELZ2%Ru^ z2h#7X>eoEoFc?olvOT|)JkY;qE82wrqWT*HFstPn{@)nF9Hhwpi2Wx6(q^*cKWhlp zKKiX86jTQ)YsrL!E%$g?t)8-Qu>LAphP7z2dtAb#2&U@#dA) z*njc-&)cZakXc%Guzd|I=yZa^NWKNJ0_?8MfffsS9rx8xYz6<54v2>=2P z3IGR#0tW*Cr?`O41Of^M0f0n8#-K+dWJPCSWM<))M?q!Mhaw^-p|EEI&V@k(XUISx zK%W8Y178=>eN+z#mP4J32;1;mi#}!*TSv#IpZcQF=Pw)8W_buYuW;L|xqrqf#DLOL&;Va%L!U*+}|#`0$IolhY6 z#Wg+(1`};(Qn@A4^1;yB^pogZc^UtgTnXyK;p9fMZ!J|1I#bXXP0a)AM~xd5;&ZAP zWhd05elh1+iM9mNxoWE^RU)MKg;;xJl#uG`C*PeC^dNSh0Wr^j*bHh@BntGJy*ZG% z`Gpj4tvc-(o8yGOrdk5o&jW&3ufS? zRKO)@0Oo@snIHqN>-h&!GGTAJnMsV&W2})xX?Sr6P+9m%QRMCM;iv+lx&72ddV~D- z#K0Y(aFW|8^Kr0>-p98>xtn{__x7TJE2?2~60<;|fS~9@607+!=YGaD(RW@~Yj3qj zOl+M*eE%j5To}OMhyj>Gj?sM+i@+@?=)%uxh0vkOq)m$GVSwN*2uhEf3Oz?3RXGdA zR(+T((SwycSb-$g`2kzPJeFSn08r@+CP?jj8?Kwd>m>axZHy`1jCtH5bDE>*|9bmw zD*U@;4QWo_VD@Y7v-9217;bKNg;~Gh_^_f|_sjo0M(yJ`YsB9CP2#b!HG%lr{qF?a z+<$u*-#WQc6YX?FRa8yBeZIl`pbOL1h0i`F@Lqzq!fw=nxYyXe59|DlssOc+s(@ss)K8}O z5R4}-6kJY$P|>6q5WZc3VpvoH9{0%1SLtaFYplQs{Sf3$kooqC|I8ycjLZ1Gf!Cb8eXGv&-V5qfp~z6P+|dx@c@dvbThdSwk%c@M0k?eJr<7$7f;Des4(~noJCM>*O`oY5 zsmo=l@12ugUgB|;KZD)+KsJjJKPOEV>@ZWWG`ncIA)_Ny(b-!q$;kxnytLR=P&yl< zmBuHnm+TZ5raC~wF0&uBOLxD18UoZUVQ;|#xcTI4kX)J8B|!<(_afi=er4UugMir1 zMFOZDxJEP@3e#liYzrwp>Q0=lqU+D!t$g*1NFsj}nH@8+6y@768j2^o9fkHmKRD2v zooGnZsOTih8}n|J61QbFi+tV#(eYPJj^m}?I@rUss6OLeBK}xgHHJrI z{iDvp`*gK-L7Hwr>oeC8pX<^=Wt)NZwX*Dw3|XK-<1)iS47j*udTrpCkUy^W{iTMX zjwy`EzByCjhv9qivfXa#{K|nz*nk+}IA$JIWOx~6_fP4;Wbrb_X1!zjrhV|v_Ua2( z`5K&_sW2Sr^)gTkwDGuO-d5K+BG?1|6>vJqF2h!lv+Hk__P$&ZSAv3M=)Sh%9NvL> zgudl_RVjLn?qQ$>2sGe=aoTDbdYb-A4+9C{fr)9G2_$Kx+H^)$uTo77kWC8fs2O2& zsNjvTMLk|yGo<kVf&Lq^>d&0u z(kvd3GNcpRW5C6g6@<$1K76G0XJggAM3~#)1jqW?NTO?iJnxcb%ZZhhPl+kK`y3_R z@zccPtstR)>kq%TrS)>A&QB%KpKa_8JT)hKk<=kEm5HHotG>P>&ktb$DJn^unmc~C z#}i;GQX{x`SXN4fGiE6Wo0m=ZuyPg?c+NP6_lm;QKUJnDc#{Qng8LYUuzZtc)y86Kru>1?!D3le1&H=0_GO=2M zFXd}@nY&0@j0ASDvY_&)q3HPGZ$Gm8Mo!GIAUgqPpWy`8Z%N^JPg!U}<2XQ6|4{*1 zGvLT#G2et1jL#9tXq0EbjOsbAPI8J3^r7h1W2> zERf#-iIbu%&=ug0|D+fU2M&+(wr7Lr%e)#P%(k)`nW1AP&;izlkc^3$vvR|O7BNgo z6goy6p$+<|SNM{}m#IPNvBU>@USXr1k0mU0GlzZLK4E$PsNWnG#qTQzY*OD#{S}Fd zdhjY7OrHx@@`Tzb3{+18j**OJDQ^2sDh}@UI}Zl9($ua+oMe0k|c|KS68POxssThv-qR>_;# zQ`#}_?Fk*Q5Y!Pb@CzBu&sdmk6Ew(UVPP{Wq6JEWY)RT-adLQHlM!}}h^)A4hlY$m zJc5@gX1l@|hZK;LB42k03^5^d_(WYPNe-*;M9Q&T)d}~cam=F4UPkeuD4gKwOC(U1 z?c%(nBCcds8K^10Sh8tw!D>>QS05u8kkG(2_-V0@8lqm1@}oJ(6^}3~WKG#g90S%O z%&-|dueF6YdGS3wi%!6;=I3QMg;~c5v%p8GUN0Ltod*&d60?0autitGZ$UOLD__>$ z@sUTXJ^TIMp_OP7?466w(oOFzCL{1iIv1E3eU8$F-FjrI5)E28Biz5 zKt?VxQVbO*+#|&Y?zj5tiW&!KzijuAu#O|X zl)o8L&^0tP#B%ske2SW&wbq6OxP_VF!lgk{!MyV%pcG7OggJ?H&vS#UnHY%3$!(8A zE=gANQzoezZB8gCr@d$l>C7LVTDWOdWy4eDG;0g|6IfqStU>Cta+_t+Og33?Z@>d# zJn(G7gJBgHq?w@2zk^qgGtKi$1O4HM5sD9Jlm7Tz1j?J5os`7~vQ^c67nP9^q}x@l zIdO+~b6&T1Dp|L*X(xW>-{ zS>f|F22-;Er7U5~64jQG6}wk$pKB?^Dw|1LPrZPu!a$gK^H8L=BG!rnownN#V>Crk zwKxU5ST%m;=$C+haYXZ75~Qp!ar&&Fmh;CQx24MqbtQ2Ld65VD8=9k`pq_0F{Q<$< zP3TnxAw2jIo{-jjREzrNf&EWQCNA_Ww43`lD-IITStlnyRW*Hdv}LVu?!p#&6)Mr_ z6Q|}M5p+}_l^{hVb$xh(rWoJ*6VAem2jGNhLqv9&Z+pyxtA`>R^jmZcL-RjHy8)fN zf54u8<8Uj*!@#jnw9h5U(?>-vZmOnvvu3L0k%X91XT_~g?P_%_iaxm#%RJC8NA+g7 z0XUX0_o{x0Cgd&;G8z=Qfq@o8aV>cIFS5Nx8-Kii!$>>y0|+7ggmB>~1UJiZSPP%a zxG3}SX1xZAPWmP2q(HQ~L8SYwM*5^!Swn1r)5;ULc#VLDsqg@XGi*}d#{oC|-w5m# zl*w)``(=fEwDue)>I6?N2&Z&Ti2Sr;9~Yu2sH8n!M*#1-;e>-4RQ|)pFH9Jy(Tl>w z#ntGYHZT9!-_h9O#N1+y2O*#2aOQku%U(Fhq0{%Z|5lH^K@j;>|J2a_a5>!A=P)yVc)k|QG;mByVPxL3L}Jx3^J%( zD3U{(gN>r+F9u#?-78&M(gGpF4Ck%5lprCt;CfSIz&3y!@eHtiL_fM5WU<sL;sa(_4;%XFy{stYZ8J4G7$bm)N5>eXdkX!|PUeeB)G6fp`*~7Ww%|3&Xc-{u_-bHWI%mobU0=h`@VU z-tjeiJrS5ge~#)o+jjmFU)`UM=tx2eJmI`E**r~(v=%x_%}CU7OU%&l-2^TW{OW#! zpC%r-B%zT1YpQ&Q{yd`{r(5m$ap~`0*bTT7RzG7)JWZeebl6eXWjS?~Z)+O*?GoSZ zP<*ueXUVM-4eg*)!@`V`Ma z-*tZfsqP4_iXy8A%pW0b4#saRGYuC>%Nv%36mS=k3 zqsdBQk|rJ%OUe1MA=l+UZrnA=`i>QFb9{QSX~u=ZGk{>_VmAu^FbcaQ%1Ucn?|U+C zhx}V1R;zYQVPq3L^Pq^p>^YOJlZBFBpd9dRoI@hkQvdApe zg`HTM^q-Cvm`p0^8R;}dt=S6a7Gt=y(Nw#ajx%NM-T-F=j?+K6GOHQA*s+Q>`;(4b zM8o1TE4+0^npH_ai5;fwz}Apc8zUlGWiN?_et9`DDwj!gaF33n-{))iXTZ=#!zFZ2 zLl043NndRc5@BUvt!Ohgz53+5)#(VPCTU_)_FxGahfVvh+K!fg8|EARdD&LNPfY9i ziD|M_zQCk~L6gt$}ky-o)-$hE5Rls~Sicbk|#ire7u}7bQf!!?;ZR=OI zUhUTzA||{p@MCjKQpr8tDllpUanlT`7kDS5-@l*|6SHtB4kU=8Q^AVarDQ{!P>Rl( zB|sD+@wEU0`q#VHF1$W6FNun(I3h45Gj_DC;(6+BYaQ;;tj!7PZ-g+K65VZkEu}<2 zopTFXv4LUALu&d5MmJX-xox~_>1~|F87f4JzoH(jl0PQC8{Dx%UzpTxo?J)`i#n2` zCXD>L2W_lsJ>QHFrOh2_WN3y0{sXwK;x!w3v}f0u=v1z-2#(Ne3E+%LcP}}09GayQ zY)?a&Mg~N@l}l?;AMFmXxp$N)carw*1WgVJ zXkNAl`NhhDEb}@_T`+Jgx}<1monu%U)e}HEimSF8F#ih0o*kM-zp@mgh^Y~YS{(SU zKPG?LxR?4FAS7yO$b!36-3(h8y%JuhGDmCcSf^cCd=ZOVkj&~E!s}W`z?HSLGcpG3 zI6@=qf@SpBr_W7dPcw#pepgtr8IDybkx48#>K%;VXvib$G4DrxTNRogUActocW_Lr z_ilTEdDFTA1hWU?M)_$AG{(20;A+(lCSC@!mzgkfG8jKIIJ|pP{?-`l zBiWBVce)4hHwBTEV+q^(%2lyxFMbnTQSLtq!%Jg}ch_u50@Kq_V=%x_(-iWlvhgmF zxgsC#s+g}E*gj;BRoN3xrR5VAM{XJj5w9*_NkK%uIp#a;7-d!+FK7=j$V)wZInQnd zH5L{v_FTUU&Te%>p#T*KYPVA7f-I*2TFy{^Q;@`cRfAT>w4#2(UT+;ZMnrj1`)uL~ zA?V_8y*Q$vSQkzGbZDAT3FJlAViY zjpcaJ{+{Td&Wje@tuKRkClU;9GNjZ{>`@xF%d znomNQAy*C=#TLVtkCDU35~^2-oW#?Ri@joqA=vq=_sLtga8TSY93*UAsNTX_Sl+H* z4lHHFP8H_M`3r@PXBFu6!3CM=s~lqDWD^*#mC$}^+KBfJi{3EA9(|@S`w}5-23{Mg@NPAh@Ag_*`_(o9?$>3!vD^lqG8wg|H$%jPV@Z#g@yKe za<%UNqV<1KjCfA#IQxHPx#%p#S!-ynzt(19t>n4Rz)@RtJF=w+>E<$@D4uJibcKG{ zw2>pbX{wp3t!~OB@Z6kUw4YgOzFGddsKVD}R5Qwefr;cVqvgWE%J;51m;=5d>^8b# zCQ<{n(;3p=OPtaLJrGhNr!tx7BcOMaQjtnq!PPtXOOO=QY4D7HSu z?GtWs?SameyQNE1lC8vwsoGqtME~>{<34 zzJNQ`y0n7sjnzyO;xk~45BT4(x5xlc5a5b$-~pW=5I=`-JN*V{X8Bw&0fP4oPIw~Q8^oU#rO5Tlnabu?wH@uD z`-4NKV#ViGa1}Nr&V;ayAw7Icn_G}q&`>BdpWk24tgaL?#9y+}D_m_3y1x&!xwY4> zefUDjSZl~j7baPmTwtx=(Q;0vTz16fFX7KMqQ!rtU4qx}@s{=&q`3_N$LrRYh>i zIRFu;H?yGCN;e;^b3o|X0@mc4v-2NAQaNq7Wt8GS5TFtHL&-yp#(PMoe;{;BObh!C zkF3o=<6)(klST`Q3JL-Tv8of@tB;u>VC5K`CicZ?a58>I{ilEiu|AmI<*&>E&) z^NPcvf`3%mM@rY@l{U+r6xHbIak5d1KmQU6I1Bh&X-|V=A8SMoCEI32{o+*sl-jVT z(W9Bz2!ZUm)_&6$Wr+6{hZA?`)R?>VB1+??P((apcc9Q#Z>)(*mUz7Am2Pk`M>xFl+FQo!=|!k_E#!$E30lATA)zrAD;?kqeh3HCK)K4cqm_Z zdD!H)P|+PQaFmzxB}zRa3mo@RARlQCvXA+}YycGIGfOLl0dS*(Gv5ieKdEK1K=xu% zh<0=^Fb>XkX%>CO@u3iqS08JJEj!IuV!`Mo!xIVj2LyNTydAXgl-neTxvJBrp1x@?j2!()UYEO`|L@@(c9roBXI4J5ewWKVGJXB0|Cop>T_n!sh}au(f9jVkL9eds<$1!C+z}hCz)y;81lMCk$hN;$-EL4xB>+Cq-JaWf+vkn)t#u zuIa0BM{0oo7CK38Ec6R$9zkFPSt}lL0&1q7g_0yvKCTsa|0ORW4)2K;#9m*%%^njJ zlR{eLVlQ34+Lv(?lUpvC0)ICYUGQDTyNHcz&h)HYLw5v^2%A|Na2779wOx5aFn3GW zptW^W^B3!FougYS0;aVdOFij_G>O+6H_0vm2-+L~n_PS1Z&(dCo8?i8Y09jO@rnH9 zw!SvJCHf@lnH4ad^-=E_+I#lzA31#(w+=8UG)una%3eg#k%1z9D*i$P{`MVX4h-vy z-Z|sNCH6#4_iy-L?92DK2*hF9-#85U*H3kR;xGd^3K9?uQGqBds6Z@FqG*8j8-_uD z!|+~feu#ks6}=lxUf=g%aZJ8i722>?yCcJC}YLrhZ)`h1YK6pO|a&YU;juiJIF@P6v{&C*Mm zZ4EiQws`X^L=a0C?J!AQ=2nWA&GK<~wf68tv!@Q1l4ys51ANtV+I|Ngd%fn{N#_IZ zFM#HC6+uu$G@Wl>B5)ls6#YPYvU0{C1kuXPOtlDXmE@r4*rUUEW-t}5F^DW#_fA4 zJ!Iz-rzu)+>_diSGFAYTMuSDHoQ8@rLI0Uyut+G53pX!hUYI2+OqNN+7317Kx<-2* z8SY)whXQa-;{a8l{U&KK&0Aft{U8P%0wBO&yA~-!(r1{y`;rU0Ty93e_zX}gZ}_0- z06}sJ!Gere#J&<qgXI-z&pf2F!UvyoWR_R* zH2ATvfYxJ96ZY*$E3BTw8*Pl&lNLG>-1j+ePNVyCPQ;Jmi9?%L?h zp2%EvJqkij)m#jznxWAmcS(NmhY3hofrVtx_vYPFHMTM}d-0+q#f69>zBly>K5hHb z9mn{vW&x~y?lNPyD3AuFJcTksU8y4@KA!{~An2OWUb)V`#|;~6UO5ALr)j|SnJuF3 z7x1klg&aHy3T_xMdKIbf86$Wj6m}aCIBRb9zpYEU@ajy|goS@3pxAM#8r$A4wE9yCg&4u5Q5pZ%>PYZun zV%H2cgBCst4FxVFzaTB`WJ9V~U#h(znS>Fy?uTr3 z@U_20KU(KHz)-1pQ&gvDFoc|><)f`fU^T86yb2~cYr&&g*iFXHqcfq zSm*7BwB1DXieTK4BlR};9x0~NZQL_!W=$lVmC`nH-;qn1wr}bexI=*ckYlc%dEVaM zw1$wp4?*k%3UP%745xKiYr^R2SSARa;~LI1jnaHH+w4$TekFIy7;{U8lui%2@0=qd zHKPsZKds7tE!emjiMA5npdqE_2fh`>qI!wza5g^nIHrTaG)vtM2UGH4MtsH29R_k! z0Y>E+kd@nT?+LyQRJ5PcT0rVVb0sWzEEMC7vbwz*WwgAt9aVtnGr*`ji3)&kq^$Be zs)P?2d$A59u!BinUk>})-EDs#MHlE3+tAWFJSlGMq(+USn4?CPVgoE{*4ciWzNI*bLRqMxFr}JXH3hKtszn zZ{xD!?zYYGMs37z2TD&9CW;G^Bv$9XYg)gCb&|>hmor5mdqm?;&*E0^URhXZ!@5(XXA`4vF;2=cfWgDzgE?6 zi7Fw$n#I0&r&H9kIXej~+bTXX=gi9(n0W>$U@u-i1IBWI7_SUmc?SHACv4l`-M}!vLkZ@IIX{jWL zi`i<)$jQ)D@zbTKhDSJ=>^r_N!0h&cK@{3C)#f`c71j-Qrgvw%N>`J)Pt}J0|@}37t5&GNhd(f$}_iW1Y2_H)n zaoxz4>y~T{C)3@?M{LdK@@tW8-sl(EX-i7h-8Z{#pt8mvvr$l>4Zj^J70+!kfSUWV3zn?_k)-7oTcLtTV1lL<5~+;8IwqSHLCBa$R15=phJ2?R+>Qo1BM zYPS}nj6|r|w@ErH;(D|uuZU|}Qu-g!H<4uylOa$R>WiQ;M;iH-+7N5K(S)Pq7{-!^ zHQEbx%UBegr3(lqe81NnHNrYBDX)=cF3Eo9io zau%McrHCb8hLs~tEOhSHEnK=54lcA9EyP?9%ye;APStXB;t)fkDw>H8R?hSBeWn%F0lu(o9jUT{WscUl#g@gOh7|Z)wRi!|PavIkR!1SpdA4lq@XD0Jr!m7c zH(xHTOxi?sq#UR|ig#czk1*M=kYCAmZpz`kN2^5Nis6c8M3V!y}0OYQFvjTz%yVcJk3gA zE+f^PJG@axzEe$Ua$1{Yo2ockioC5d2N`YVrks^W_Lq6y631(=-HH3 zGw8sCvDVx)Y^6Ll2icDqc#;m?A?fr^1@WP}1SPrQt~VKDIR)q{Q8mOvscRNCiKKk8 z>P3(Q>9KXw<~62l9SI(1Ul7XB@uBje@8pcfrC`XK`|3s+@j5}3;nxx0HR3)4_Aj0R z&j4hDt`zC=G9?v<8{A={1|r;|aQXq**Yf0B>E=55V0xO{R#_>D; zL=}OecAMa8ypqg#`t}&D)J)%buEzYcEEhFH`&82DXITNrW_(ekO9ZlS$y7-nX0WQ0 zFT*TwSB*FzH^3NON{=N^5v%2p8!rCOi7`<823s=T`Eg!+T|Ln37|6QOci&zE{4mpt!~i z9+H-rmgcpzxdcgK0oVHI6|6ckvj^x>fq zDViVT>5_6ga6|PWRUezn!V7osNw0e({S;-vU#Ch*Hzud^=gIr?lXx4)b-vxcXmYCD zFLdEgbCuNj?4LVZ4;xwpr$p04KY5Q(@J0x}NG2#Z(4!#a6E5d;nS%#L?3{whrxh8x zH~SQg|Dh8V2zO00I$Gw3S;W@xz&6D{te;YJ?W@c!Aey&G)Kn5|HLq;;kQtIty{I2Yt`4d5Gt8kZnua*6%mMtWR z#!C7@tNPh>7&2Bqh3-C{8{FW1kZIcYL6z&F%6w#i4_GzqmV5 zNni!ZWm++WZ+z`jQtL<;Jh)SE4JhTWrto#ok~;T@J{c>iM1OVYSWU5*cB zr7LGq3~uAV$=fIu7O#0xr#7IYQV zOiN8lanMfW+*Fjt7I5>1>}#_9fnuRI{1=HB5f@2pR_rEfg5uInA$#IYm{7PKi{V*& zM6to-FDbuB;)Z00{w4n31t5}wG8_5#RO6Q%IXJEMUq#=o*`8*0a1aQ|O}0r2=PN124Cmk4e5-8N)XW%Zal&UOk24*k{XWW^tUb&; zvwH0?dNgmz{4Gk~2<2F^WNg1((NIH!8wuCNm4z4%FxT|%P#wDLOL0DuIu?wM}0jYQV z*D7ZRjFysaz55Y9nqNMJ({b?7_fgfxF?b**&m5*ICs{B*1KjVpm+R_4niN=kWZ32P zB$YwYEEa`y7hdIA*pX|xTqiE3)3jb%ke>!khv1*}mG4xVQS?>bAD{^g79$r&5rlcY z%PT)+O1oJMenM_>xQ;zwp-~01A)@_YE-3XTO3P*RI~eG~>6@>CCDt zjSr2mUj(CVE=ed{^_prYnK(hCNtIfogRH@iv{Af0gm=Wz;xFXs#nF|(OvjYB-Hcl- zg?$~L;sPP!raC3w?woxqW%GeGXdSo#Ci~=VXw%^oT$;#t-2Oh>NYE+t0gY8NrqepO zM`FGKQoa*~`@!4(&>zEm>dyeI*k?eC*dauT#GOSkpk02XM4_mijlvY&?8D+k0`AvA zC58=Vf6txOulAQ9kJplco$zW}A4=Lw)Os+(7{vL>^pYA}(+6|%Z;gaMo4fW{6! zaZwnUVWV*1GzxqjCFj$Pjd^Nk+bp39n`nhYN8%4WIQRqyHPDzz>cTHx)QH5UrW?j8 zy|{|;(Y^eIUL+orv)JX+2||_%dG&aZ(F-WYd>)@r5;NYzXy6E{ND>HB(sJjazzky~ z;`Yg4N)=nn@b>LgkC3gDO^s_8Yw@>p<-SStjd(MRTT!B>G{=mc--$9^m6?|@Tu9qk z3?o|OjAe6;foIacDmncj%+`t`zP&J_p)wfl8Bi}ld-q}UTWn#yhJi0iVg+jWK9-PE z+h*-a#z#sCDuo%;qGmj<|Btn|fNE=t)`bZUEfjYs4him3!zFldcL`RsP$(_M2@VMk zMH1Y#XmN+)6nBajTBN0==cVnrMT_OqXB#sbhV?VXVMe z)L$5QXiaERKDfW}`To_=E!z(!`JapTk<|9=94Ir^15-W@&di#XH_w8aDPQ_(iBAO? z3k$ZoWBED7ywncvO-bRGT#BA10-E?Kj4&kUz=OQvYckMm%?-o=m??1oYKn^I{bJix zDZ6AOB|@$iSmZ_=%Q~2`7P!0kj4|z*F+b;7d)`y_6s^MQBHr&RDv~uEE7k*KTLR6` zRhYM&or>y!L#9sm;HkgU~v5~5q#^566}U)-I}k!TEHoeP4#ojDd>V!-yX ztZqrhH1wyh6q&T@5exAM z2*zfW;FeZGv#m3zE24w3V#+t?tF$XJKOfDMJ=RQ1Z|mT&bX(bQ2O0v81taS;%h{d? zU&&^~CeJU!M1k7Ufjm`ww9j_-IQICcg(V#Bk5(E6Yiv3D5U&>!&_&&>l`#`JaIZR0 zUW>ZHa0q;ypK5++_eP*AJkOAIsy?0oia2GYr)1y{Q*#VWXt>C0TbCLDh$ITmOQnZn z9*pe;U0J^hQ%a&!fRYx+ldHk4b>-#zYhMKTcmFa*CX)LdvznYh{z+Hg?7m}I=V8td z6LF7N@Hh7FlB54|yFxc>C#A)Qov58C(cbR+PAd)9h4U$?Wn3e);5(?`%wn8Z{O}5s zFIB9T&s837%Qm2lm7N3!-r6Y3Mu%&Nq}jJPa^8spKkSm#l+e`G@V#i|;VAW8x;s(NtAh5AN3@UV0&N16{8)?aLtTgk zlM|6u9oV_0F}{0quL6z7+m|)TbONe;0=_YhxzDr9KCDf&2bP5Dl+}KAc($j-$0t~jqbyu&tI7oZI2v>EHaYLf zoX-vGqN%2qKw#L8CBh@Z-WwpLaLZrYZNwDi-?>|uD7-K1TwlGyGtk(!ziX{h?}p7c zYtKH}HvW)a-hIBzq~AM5GuFDl^*;V{6=-$6E2*C0CmzjscvO?!pygoHY$Gb6<6`R())J`-J1V1NB!0zUPj*L5g}5 z@j;(PFMeM_4$VBB+x#AQIdbZGeF9!u%-aN*TWi)!Zmsz8JaQ9_B>8c?@`cB>F*ySQ zcF*15IY6J+DJ3D?B7+oWGD4sF4WIhnm!&?YuGRwd7ZY3xzhPwFlzYTT%6*oTsW8^6 z7yK32-jGZ{SO%SxW^p2ZxHL9WH2s-EplNe1vWXwKu<9{Z;P#YH?t6?XMHQVOW(cRF ztbu_wzTE36g*DWZS(_Jco0Wc~kxiJhVaF^9&SYD+Al5+gJT@oZV14lSnz7RCOoMA} zy*8BU9h;C0B$q*JugXg=XS=2wPRvz^i{3sBA%vrE*i(vHAT|Sa0(}%gF3Rb^VKKY| zH`1n_GMStW6pDGk-V9|8Z<^Z@B1E}F+JU8)Lhh&fODFp}XosG`)}_x(O}0oKG#c}?>I9P&tawPM!e z(f3u`uJvjoJ;kb6GT|0b*D1Y%g9LY6E{t5jY%R~bzg4L>xOX| zw-VvG3N}7@@i^-QSG$;SrUE-OOh~u|R`-)Hb=uJ1XM-hmdIPemq(kjl=KIrz6BP_G zPXo47PUCmQk3S&Z_#wZ1`2ghB%#_w5L&76Zwx3z0M?^S{r;OJt4bQFC975KMen0)0 zw7I7H#!v2<=fJ<^!D9ZsGj3GLVEVam3OL*Mur0zEBnD2YzWa#eOX|W;4X?N|HD3Jt z;M=K%ovZ%D)v9^(Zo9dGwFCW&&*(^)pYwyebAo#PW=f!tlv*Lv=AHFdo393P*L`ulOfOut|k5ZJIq;VXhmNSc9`&u?A)xbqFezX<48a68v!k z&UEX|krN!GBi^rrpe)o3rn3~uApEQ5+{DZZS&^CUzTqujpC()*ADTBHY_K@tMOGMo z1E5|8kwBq|7^>&GURMkgUxw@)OhIxfuTcV6=8TU7GfEGlqajO0jKoOnYR*P-Is5|( z(TFe23~-gEvf8)Psv~-- z?;XG8k@p<<9&i5BYAE`)koQ0Ig zN<*vVY^l9~hmDaRDGwI5)R^@_`cD_aY<{_)f5#b@->5&29yZ77AdAeUzky>WN;S(( z#;ppu^swa0&h7J7Z=hmf6;9gK4F9_8W4JHykws3Dssr?T^_H!-9Ti^{b{s3=RdmIP zdc>flAq##ax*v?(B4+dEEs#;VbEt+R9hh2E@q5$c z^a(%C+;XFrFI@Zp5Zpx8_*vUv>AY5k7IW4_I1vHGIr$&&=BWq|?{U2w;_dbfM;);E z4lEj4Y_vA|yrypMXu)Nf>d&*?AWqC-C7m4_+u!=>+xT za}UF|)aNN8+oz~jCJze4CWD2DhIaoR%GN-mVHFf>s+$D;^$KsHSoFdImTzUeE-jzT1;De9rIb{nti4ZzltmqNR1Z_V{ zR&epyqQJoyTqJ-@`4yUpq_wBX{K)4kOqR?FTV#*&ZTpu} z*JtU-dXD$)?NdyoTjaA(MU^nKtpU#9mvJn0ANfxovLax}gV-!?AV{>+k8nDy&=|>( zIo;|k%^qZ765K^eQfPa2FA`KtW4e#BQ9M`XQS1sTrVRfnAF0QBazs8jRcN1WVq z2jM}h^fs^M%%!ttngkejeG$>Cw2COod7DDgK@?F|2%>_e|8xAl1*8NwUv$OPX_p4F zLX87d;b&1TXqYEib@9=S>9Vd8n%MZq`y$`ie97!)tszVDWy8Ru;Yfi~BYgQuGc`A9 z)yr-ww<+uitfeQs3cif$7JtemGx*R61k2G|a(g5~5PYpZE)l)$Rcp-lB#0R!*j;SB z4d$JB#Ei~HicZ+?o<7u+Dr^$VT_a3w#Ab#<;xHoc`^*^rpx+a{#4n|IWkP~!sM&&P z%IAP7c_zkPUSFSIvnZmg69BX9iEnA+Dw(xw(c8l56mxy}+QVE>0^-r!3nOOHb+r zMczJMaO$$k6ht523(gfL90fk8P{hT=>^TL&rwE+rW{RUryU>qtrik@^i!+$5rV+{ozHJslOf!7 zi{GK02Je@I=PS0a3g3R7^TnF_KA>q17mP25=55-@Bw)uDM2K=G35f{u6TpDn)gQl| z|1n`-FB$zU4rA3J=2`E8)~6pn81eA+Axes10{y3mJOLP#JZ3t}C4uD@05<{+@}inZ zpjuBm2MGdUF>bKQ?FQsR60P9aO5R{Y_F;E%KThmr*gckzRS}e4OPw$p0p~DbC^QSgFs838`BY)H*APH5#1)y(|_96ud5cmeAoXlAMi{1 zanj)P*KkFZ;4ngVAGs*-NVP*5Ia~wmNfM$+hA_DGr(RLir=TI`(msjxZuUxOjW9iu zEW_tr^r~J;cr~Lz-h7piGr>A+dyJ~J$a(dyKww8=^c_?r_mxH$85E$bxhLs2pvu2y zX=eol402Lz0ZLR?P2rVOMnsjsf(FRle}s`QY`(;R$t#t(d-Mf;W67JOx_W%YZu(C^ z^FCiY2B{SlmDu_Wwxr}JmVPj!TvR4RWATcgZCQvUFcOX4xxCm<$QqTft$CUCZNl}o zLy)PVh^diN`aSoI<0n89ojhMc-jb6f?Zw4_Q-yWbDou}`L3XA_puebOROb?R$v=_& z+@xgEMM!~Muu|h^tj9^TcbEp&wz`_cTy)P4!aFf}ROm0XMC400&aIpu%0#)s$&i}z z#gUNM9Bm@P@-7@-_I*r&LhCJnxvDfq%>D;!o3z5oVl1d}q0E9~d&0rHNJsTGT(AkAClO-r$9NPrHDx5}I4+fBYTo z&p7__XMW8VDTG9=7;t}sOL{A1hQf0~XQoP^seE`9OfP}MVD0H@ye~gFdO{Fzo1A1MJi_r_)rbxA`{v;Kgfd7r)P$H8JFu*sW7p3dY?o`6oM~Dcf zNgobI=E5${yp*nR!_7%T!U>Db%yr75tLO{4!>Tg-w5=or(a>BcNDm_?R~@;x%O+(i z{Yc1^bA;>!z2hey8!!3~Sra~4eaq)_o1?o(;~-Fi%Gjy zFE>g`RQnAHggBf~#;4_FCXOV>b1-uze8!L6Y+|KHXgt389q<*;W~fok~iPNQaK>z_s6}ZESn4cGy)4nAwptXPIH=)uge%Z z3AKH&`sSSR>BcNn3F!tgeiIQ9{g;x_d}ncAi=web;(Tnu(;bNDJJMtRk~e(zZ&Mfb z-31x+Rgc?F81DR5H-Ep>ys*FBnsIuYXkePwO5aJ$2#50#_w21wFak(4Q)nh`zWeN) zP=5#2NH=>B>s@%4MN_h&DQruxP=<|#GmTFw+i9iFnP>gRK#0#Md1Nm8$lrVCoDqc6*e{? zXWm%Tx@}@1(TJZUP&Pt_rX1~O1o)9<$e#l5{~iL|Xq_OFtidlZQF8t_m*}9R@mElC z^IA-*OrIY@mK?S-i{8SwUyRwQfU8Nr<*j9n_0#H+ ztJXWHRMD<`)1&(+HZD-FD;tCyd}?DW>K3b&@Ea>U)>0dIkF;2q(;r9s67n)oga@+9 zXmIV`ojLU0>zQ_40k^KwiJkokc{U^+7+QijfOKbJrMQKMJev*Sm!-7YYkoxBENaI4 z>Ks<)c$Hy}bOV@KX+?XcwnZ?>+)ZS+Vzk2pDWv`Cxcj?xr_di3v)oP#d(-}eem@(7 z?NQo@+k$#T!>MhUbq*bLwX0KcO9La^VFmKS#)eB>^~uq1F24H#s87y4yp&O@OzV-kX6s8jH3IM zOMUf3#x5E~{Y3@{JN=Zk>qE*wC4yo%<-c2t^;5%QNXrjKO@f>Ek>xFkqL&I>Afa=!gXA$N-^agBl) zklb5>6~?hDCK|0bl>{#a5YZav7C67Tqlb7uGCLA;KQXiykcp+2QBaA+<6_okD>zlZ z!usf~(GZZSU#|}7ugiY^WRKHZr}+B;Y}ue}Mfn@lZ1&kJpM*?s({$^Ne#3TKQO8uo zQ)&d?NB{HRw)7rF=zhG)V%KkK(J}Zhj1tT5z<7uGVlIvU1sRyr|zO8KWroJ38q&&I3B@JZhH2(Wt-b!)1H6NG*?aGoX8=cv*OjXA^&_H- z-@Du*5=U+2=rwRpIYkuFmYFOu+zcEj+Uvp^u3EK;?+IedV-nI7NM=Tffg@$l6>x)f z47C)1b8l(!^=Ewa(o3Flch;xpav;G?8H>JJz{&R3*Kg(G`Zq(AzvIi8C$RT|j7Ioc zDr62s+v2y?o3o0TmMs6F43KePC@;gy&7$88=8mL>SJ(W8%*7sMWv!KN*rf_dIIq zIhj&e)p6^~D=s_zE(c0+j&6pH#(< zld=ddduvwe#x@9Ow#h!%tI7^+2C}YXE(2!-w~`@M8$?P&h~#&Op*+r8pwYkeW-Aj7 zo@^=2;qZ*0Ceq4&NR4qF`vTNAp605PU!OrZA>%+)iuv-m*YRRPJ9}42^Z-L9>&#lvB4qy%#uS+}?!CiON?YbaZiUI!p7^rZIaV_#_q(2pf z?t+06Z0w!o+xh$1{#42FYj3FjEwOr;0R5MIlu;3bS{Y{x|JlUB$4!ia=0j|@O+gatZ z{+R7`<@%JZ<#7-)7vtFRxNL?u-?#SmYMRH{#B?sS$Uy6^7&)3aPwp#IEBsdF$a8h! zu05MOL`WwgrbIgxeGw#^q76yVkY)x-hDNQJ!b?etR#c|6l`#*=%q;aWYxU8@xH||| zK^yMkeE|c=miVv!)3lvZVb;cB`xXK;|M#e`YrtOn|A_kdDqtlHBCOXYlU=GpnU6Sy z#BQSgldf9fHY(FnV94ZF*Dcnwnpb_~=<%bV{*LZPgRmZb-X2VNd9W_v9_oUFUrb#m zZ(;CX5^~><-F1!ETmz~;v*VlkQRIzST|5ZkU4Ez{?6FRs8Hj)X3*gA+`FGWE2_Dbd z{aYZdlmoprU1Fx87fkX@=yBBe_=-p4$Z>c$P|ZC@`m3tE!v@L)-*@buYG{gyp@uSS zIE{>Yt~%NV%7la9_C*B4#ybAOs6~^hXM7xZmYN3+)-~IX1%w=#!=cd!oLBhsNSd;`F7W@5FSsgFIX%XhrI7NM?IfmMDd59MtfI@c zT+k6;>GrjP{xw1UPj_+INQC_zumt_U+>}l3;2Ei0RR2d zT2tpaQ*>eiA5UhSY?`EEFSJI4OH_gj^3vJ9`2xi#{)FM zD&RX8y$X%C-_h~9JcLHv_xD#c=y-ctS*%U9R09+&K1Tu)E#Kg?E4e!mFb>Uf8yC+vRF6GFMKG`WnA<4cZXb}ZN@ z@eSPix%!+vNW5IY2PI$QW-+&JN-2eY*^0G(ZNh0wi{>XPc@zw!oiuKTPMw+4m=H{e zAV!dSv4!W|hFHDEOu#`fG7*`it*rhhTc;~4kbQfBo{Mv`EWwB96Ypwl_s!FfQuS9C zT>(=;M-bbJ&vD`}&*;%9XTQ=JW&1XBXtKrJS1hKmS&=#HUt!D2+&!rqZ-HRX59wnL zTLGt=ldLA5EMyw*Lp7f!&z7hZUu#g9 z^J{OFm00CGx}9RL$V4q9st`PjNQZXyrQW7n|Amn;W7VOrNKC;FN`<|5BTW((AZ2&{Gc+xw}v~_KG{N zE6D9nkO}zIsT%))JuFm$0o=Dxw-bMDn}`69vT zhJIPBCmWjZL@+yX#qt;zD62DM9x5v{Mk955#NXs24QRc5U36h89JN_0t)o!apsD`R zB4gu+DCbt^aDGQAC-dct-5{60`}?;?*=Mloqz)XU5Y-0smG*yDpeQQU-hTkMZj^qx z-|K2%jRws^@+MHkYfE$g^ghG5x8GHK=~8(BO^KG}&p=5M+D>EL;+M*`*uT>2w+ zzk@~fiVL8LdsOvln-+zqD1Qe3+kMztpaOtb~f#a|e5|B~zZLv;tS6fN@=)?Zjyo-gFv zz(FvZbj$c(1m)BV_B-2OrcCz{mySDFriA7PR(U>|+Oqu`Hk)MyIc}&4C~ih)4mN-_ z)K^FO5*v5C!=Y0u$-^ucD=Fz!7Uph2;yxCb?SDd;Q|VKLGfjG_N}5u$=y9-lMNj9? zxFm&O-27WMW7R!WR-0TJ$LI7T+_MPwWk_m7irUDu&EIPGCrG1?C*7chL>g_RSB%bm zkF);PPYdNfow?=vce|tChNYqX-wOR{j+sVnN^f4YM~}|Q{+9?g(V$C|OupbPs_0HQ4r zEEKFXA+O`lXZa;h*}vO0%LPuB3Hy{LZ(FvOQ@fD~Ft?5VS@`D}H$}g@_~tO{w^qF> zGx0sHGjjq0bp05u?EfINO$WDSWu7#D!uOpb!myT$n}+|fQ2&3n zCyZ9vjiJgs5&HPs*a+ue7&C|S|A+SeHwO9tb9;ml51c*;_A0)6^KP{4Q_v&B|ErqV z^I0uj|5oaGB;%rgrhmC2A8q8ikMN9s+jHgSLJX|}&h((T6A9kDH2OQ8LX_A{No2`x zwVf14C2n(Tc@EcH?FYT}eb{h#dUiUIeJaJNI)_-^KqR?*9l4Weil@ddKM&>u7XF=` z$thR-7`*+uVKW+}Gs$vK zGBsKM>YlxJAVPMq0Wy^ybS=*(X4(u73=qV=VTDG1Sex-0A@Hne+a}ePJs?T=A#FUL z6T~Z~T1QnrXrMJyT-e8@%g5}nl%%3J^0`^1=aLMV4NXvxf@-&pn2f}{Q}L18aX{(v zf3L$V3_4{ARI&tgJF@wp6By*a_ZgKcUP&C2=)@gZv4LiqxI}_Q_}D4l&ftW zs8XKlX}oV?^VLldkB!$CgCdLJ0R)vEq}*Skknk+93DI-Saw5j)>YH}CMRjD+jUo~t zpP_&hEq{%B=~;xaX_QgVk(9z)x2)c7R%E1Y@k6>pusNgtN$4;YKQQJ%N|`65Bv}db z?G+kKsf43OvDb&!CfceJ&7SuOf0%A83k^FOev_)pM<==QTtYigOMzwHOs$evpGUTY z?dIA17hlB;Asbb7)rKL+$DAR)q8L9>`q|P7@G`mZbZOli$U`!4-FUu3w2m}!QkbR+ z_<^Gu$Xpd{k^>rfq+t*b`gRJdM${h( z_!>W_)Ne#t^oB_|<{O$dn3K)ThQi+8$R@z4?AoH#Qk~7g;PW#a4%K3}87+ku=?+a! za(kw4;pn+3>b^EHSo}GXcW>`FgPMb0N#7d=1kWovg)JyQbv4fFk3cwSNjCKuv^Kjph~Yx_<4ed=h!f_f{Vu9oVP8Qp1hIBH>uTh$_JND8JG z16w3(dN?*#R#8NeK$x}YND``tjKh){xR1~^utBATdK2T=XVP^o9FSa$WaC8gUJP$} zA5s)rP7uYOr<|$U-)#*qmt>LoNN62=674&Trny(m+ID>>tbN+?+({kBhNw(4lFCfo zF6J7UVH7zbj3VR1VkTzls30-U+#%?})na;mx)rL4Iw6dUl5_=Ii*wlB0%GAMJ8Wpu z&x+pgYJk|(C)apIex*K0VJ}a%O_m;&Ot~r!mh>1fO)=@0#KN)TK5#kw4ZcSkxPb2h8}{Je}p%v-qMkr zIM>J|_ccQ`**Q1uar}kjoK-M56cm({N+rwL_Qf_JBxLf3x?7h|4ygGi~Bq!@BRCzod zR(ikdjiLbcUn+jA(M70~@Y&^6YZB$7b)Ihl&sk^I(CMAeTkM(zPi3k0C4wHCiAHyO4_& z`wov2gq?HyY=n0a#jTyre@9F0d*j9OLDxcBDZq@IorRD}bkbEZ@;zwZ_@Gf87uK`K zAcSM5n^^sRE`Cq~_=?taXUurIfJZt1w3hSKA^ViJ7%0>*90b&C!Z6}y=TKx}VKXSz zG$s>DQCrFlgl1koF!5mR7QUKjAl7?m7o|5=M=(yZ0S3?u@5GsSka73X4JF#s=9QRZ z^D;IXPP@s3#ztkZ8YO|yOC)dQH^3~eqDV#~st4gNgaXe%JNW|w$~y{3dbqULD`MGW zZtpDEy2PDGwt%F88C;|CyBe91eE5(03h27U`P>Bgldz_$Ti0dPHTBaSnU##WDPFi@ z-hm$|_pr!_iE>-Nwid*LfzsKdCE|guQJK*sgz~L5L-doHUlPr2h3+At@~pB$bvvlY zqFHlbNE<(?V6r@@&CZ?cz-lwLe+N z^x!{C>_$jN){=5mEf&ZaXqR$xc=YyU@6HEcG#+w89y%;h8C2dsmrrz^6%q12#(`bs z7`GT&faverRmgKz+v5~ZHOiO&g|YG>rfOxqUhXSjslD@FRsXNQ+a=P*h?A=4exBLq zL_ExAVKwWj6%E@sFXD(F4^$r0X|yjWUaj#mwlZp6xW%s}C`6y5Y?Y_oTo;b$zF&%jlj4nC@Vkze;)I7hd zj@-PKL%51uxZYk5H(oZ$cg%j`C57as7e}i5j!fxHo2}IU|vBn1s0acaUaT{ zpX^`tolwHdzYHQ~*7@Qq30x^+H@@<~rUkaglV0^d`ogL{Yh$q|5#+y49}s#2NWr4I z2;dNLAW*P(S+k`Xuw^p^vxn@Yftb2+!#Ov2!rm|s2*slRfxZxJzGbuAeD<=?uWs{X z05WQ^G>rtg%Hh5Yd}(s?xLHi!MS0oLB+oC6_2t z@R$$H)_*mBQ?h#8#+qK>qA{FwuzZ#w*vMyG zuJ{(j+g05r8!~`-!n%eyufdu$K~5;8#G12H^~02bSG+}1eFr*Yddl`>8$~(;^Q5>c za^D*qhVaiqy0^H8kfhiyc3@sW|d{S3EgMg%3r(Dg}DGfNa0@y1RNL_s+@| zb^Jx7Ugvqn#0fzhcJfjJ{%bqxd=aY|>dc#*HhI-E+P|m9zM~XES3Qe&oKMDJ z!wK4Zk8g&XQ|@ENJS*YU!?Xa<(XJ&+f4kLUF_nW8XDjwcMjB`t(MRwGJ|hegu}p=g zc+EkrOW6-MT-Ue_gPHMDB5-waN-o-jaalNSs=FzSWl2S3B(THZ>c5}TlTqN$c-%Yp;@no>qF--f#RJN)z z&T2MVCxLj<_gFDSJRw9+2)8rXOtNxnvPjy8#Y1c@j&7*dJg zKC0m`deU>)h;4TF`U!tSH4vay74&4MbdFyu@X`=z$ir2>e8%%h++Qbj=p>QIUMHHP z1Cv=5Utb=fA8=)S6St%h*5UHA@zs0g-!nQ$8`Mew476QP`^aGJNp%b(n<`98dTodD4nvLZQ_}S-@CVAxaNB9 zdaHDzMo4qw7xp^(omDF)aaI;}IH0kZjf|_AR4 zgl*fiLg{0vsQORO%u6PdQ^~yA5*&jE7@{R34cXvcdpKnnyQT74FsCYl)_E7wJuF-+ zcL7qbPy&h?vV5bvwQe@atwYSV!rd(yjdHIZrcN?3kUxz3#y}9kgyKHEP9r;)f{A9d4Ko zm*V*75~0{K_ptsbOD0L%!!N&a{GS)$yG8k5E!ay(E(CO+1>Fk=-73mo%UEIAc91}l z&)|Z9;$T^7?cD3G>h{GS;v;fyuXVo*|NMBVYnL#UcB#VhOn+fvSYr$q!-VAS^~+yi zuxX%2Rzo+_ORcrHQJORTs;j!ZNU}6?b~{VEOXCGEzH$DE?i&)VxL?Nb6@J|-+Pm)* z51sEEIG(=Qw>{&&iy{8Nw5x_b6aPUOff2Vup7#D!QzRE-3b(J5seEVx{jc8qyklRh z)Kh#7xQ$zP&gA$xRyud5#rK7(a-{f;=~}*BR#q zfNn%?_i^{OtcDtANi6+-HR7y7bbMIxnW@2qFFv(ibb}$S!DoW-Ez4IUyth)_ zkVo3L30JKpv-cHC006v1S+`)XTJSBu+*JK1`IldLbgsDYF_J$v9uBjH3YEdL!AjRg zP9?D-8^apG8b=yiMj^!e!6n`5=lH7oKTh5RMn57MiJw!G(d6refk0+@%4(UFq2T68sRRt%$kRxaw?QllANnHIi3u_10?v?e&Vb5Bth#9~lkfjxrF&AIi<1eATP6h|fV z4N5wgh?YW?_K@#AWRJUuP4F<8GnYR%nU=AM>|2Btc#zd_IXi>jH{&zCH?xt3 zODKhx0-erYJ-c(~2Hdi2k1?R6lwnyWD1!G6UDxW9i)899FD6?RdP7=Y*M&S3fBJB4 zI!}RQyM+$hD(zmE?vDs2mfK}TkRn6&cLf3BiL%A6H0zkYW0MH5=dV$%K+a=)Ej<;- z9qG~)OTt*W)N|wqJpOoyH1hr&IV3lvmN~7v(cjs0b;^3jPJ^|%TZ-l+Y>fP!Q=x(d zOc29}2n0Z;u>8_-OPn5nuZtxe2~$eu+JvWx5>cB+<;+oPST)U{=@_RJfwq%u@t*8O zO1|behpNPjT;wD=j_O_%JiP*HOF)S!T4j?yo~NQs0E9{@`}Rz)dj5<2UQ5zvJb4Pr zWsG!}Uz&Z7H)T4iPzITJ50{)wb54W zcdnQvc)PFnc4GJT&B>#~!Ja%pK<%y$P90~G=|*;}9w&QFnTzcUnUbSkQh}nJQR>;) ziAHLp?S|_VmGoHbr3>Ed{v(hQNk>($cFeefhb%fjg?Lz9#$iM{LgzsDs~Y1MoXu~Z z#_IKN)zjZqv=pl6H7zG!Nah~fdXfVXcN*t@qJ%5N`4)d!xtC01xs0@5W^0WoO8{aUK3>pM~rM%91f@KfA2L$L2 zN(;Y4@Dtvou2bCn+#W?6+vOIUo6xA~f+L3O1gc(ZY*9V+Bzn`jkG8%rFmIEOZc%nj zEr@CMU@yp1n{7mpD4l3Kd^%CAW&EDnvW`@RKpmX6t!?gvpn`U?O=fN{i>NV|>lbcq zD!57PiZv)uM)L(w*R(#yW>69`c=fGF(B$dCPAbrVrTEsUR11}na9Y&7G;^aZid~rAKI=eEHBe-jVRh9YOJu! zTGbWf19x+dk*C2h>~X%Fl_Y-;&1|hF+gDv$d8nVV?MF-I+Jfh5VBo%BFy!s)0AJP| zE2RPZzx#z#VS;B&nNe^ubs-teg06;#aar0g8$fc@-st6D=wPlT{k4(|?qK#)%r18) z=92~gC{-egd0yd-{9uj1XLzj+5ktwgrXQQlw^-Q4IK%m}fXS~KQ7z^S^1Gu{YR-(sX`hqOSm~zUAlckIbnCD1e z&l5%HUWV+`Grc8buMhkE50#ZF=_}3wZGvjH&zf$YXlS$Fneq!yXRNG67X5W`Be6uu^dcUOS*6?x`$>=y7D7X9QlgjU?f@ z@sQLww5}*A)Fw-Y$7ayM5Qi;0k;G<3+P9c*a!26jhq+Rmg>l8vsYT?*S~H$A7v95$ z_GZJ-J1qPzs#>8`H_OZ2GfbltERFB88}tH(dTM`vIAE{3PPN`BX> z8HCbEFm%U@dxDEqVDa|*;k{Z%=13cDZ}&djZXGd1mP;wka|tNWy_zqjTR8T}G`8*0 z;I9!}kJ&r4>0U$-@oHl;7?6_tG%d0bJjO}1x8kpq&OYe9C=D9Bp}a1|V+xYzjZN^qAe_fQzG+K00VFOUc5^P$kq=gK0%&sNXam(o*?Y8#zu7~({WLq7fo8N)!HTDdaFK>R$v=;|aW!%jk%HDS&>nrxU z_G}sL{#2$j8nu9@9juS0W2rueOEUBN7IJg+Ep(>`X-YNT#a`$l3r>TLye~|WcWp|8(7NpMaqwD(Z3y4}_FcX0|>&e{Y zhFs~#jd`m$MAll~W(X7cVpD(ot*f`60&b*e9}7F#BA$Y#oaN5QyXvp9%D2(ga}J5w zz%doxYY(Z;cyaeah!_93EGYZM%&92Fey8pU7kz$LZEO5 zHa*qV)zwzgyQL{Htr%S%sD|L<68UJj2F_< z?!y#x1cR;nXQQ{Tl;>IFOtOxgihHAz&v&xwUH;UIvgB_Xb~{mM8eU2-YaBlDT4ro2 z6xH@S1Cye_i#qby{cJytl$;s-XLI|{;mF|p-(qh zP4<(kvuE7F9S50z(GSUsG-7*s!UHXSa%m2G<hE4~^tuzN;Zvo~1_ z7oh|AW4gK^=m5Ak@z;gYZiX|~E-v7YZ!#*J@S)$<-A9`pL+`Q4`td*CrVxwep__1Cw zq`VeCYz#xAy_zGjdkpuFsMwZ|>tSM9j6ty?%E&SyEWGZ3B%+0OiCYZ~`KII4L?DAi zTCFN}NOv&$Yb{(unQ-$fq02H~@RkN)kByi!z**h;78;&4aCg?>n zqp^?ba~}D;KTbVM4&bsJjTWeXHN1AFVktjCalKh~m#^(JOG+6kLXlv}jk1@;hhL&w zZ9kWkI^{ihMafppb&96oTJ3bivduZYyHldIe;Y7MK@ZQ_EQ6T~hy+dumkAxVU6vb@ z1U~qyBdMy$Tuo*EF+BCsE@Xy#I<1FAMgTkOk3oN^Frq6tEZs*A&ezO2aIn|(HnXp| z2tL&8%G+eCHM)|(l~Q4SXfg%V5qP@fvWT0C45IpDU@|K_eGAgXrX;y0oz3&BwVt1L zzCX$NBNw!^rRt=OQ5cIT6;tZFvR$8?y&oheJD@Bom5yPkYN*CGc%;UMXXp~q&OJ}F$pjE&(lR)T(w{1UkUuoPbL9q` z@i9TPo|Xj_7Fg#2humah%}L&+6SV*@%jggNm-l`2r(&&!lV1k6X|Vb8cm<(}|GfT9 zUNs+eaT;6H2P6tm+K1f0-v#~TSjA;$xTA_s^RB{qgV?hmF-v;=ei6G1O zp_rc;f!ScEQC=q!Dv8g~reb;~4pwEh1o^|S=$b5rHyg_& z2bocLIS`YUFAie}crqiG$~0iTOnd6-PkrS#e*eR38&%O}H4YyF2 zga)gf{fv}fsuC>&>04u2W$!V425~!_TBa537j{eTnVpGbiSMz6|59t8f4M9fR7WVb;6`*eh<65uiA6{qJ;_+ z*`WYvFgbfrWn9*M)Ssf3; z+hu#XtH|7~tbLfcv{f|;K~aYl?3eQU1n?u4*+#zN=z6E(t&C+^+n@~i1oogR;Dx>{ z)G98c3!R6bC!quD|CoBn)lPv5D#LgErX% zqBRs}W8j#fh-XH)`tE3%Vz7X>CI(6_$CX%+YaM}o0;>Y}4A0O&V?`Du%58QfA2E)q z#MhU~gKuL1e&K;Zx`fT9oo71u^>M3Nk;!CBO2U5Pwh@$BJK$Lsi=mi$ZmzNg(%_$I zg!VQ^HO-do1u9t>v>2i3K6evEhRc~+$-pK zZ+WGq@DeO2fRPZ#?{;lFa%A9aonW}77W)>ZDHZAH6=S4;e8?fW^%?s<5gmv`oZOa+flU)+>T1T!NR1V z4YJo%6-m4^aJK_eZfXMjm}oa#ow|6qSjLO3#LS)^sP?RBI@gP-kazOaD5Ql(Y=1kFS24gy-JI;C>XU8N6>+R$cC|?6DC* zY>T?1@jLT`jPjTp9Jjtg@6(6eZ#s(AzJ}WueLv;CbR#uxtQL&L>pWcnVEKRS1_hbAv@NUT|SU$1JkzP)qxcSZI? z(h@c$Ub-?ezAsRD|6XVzC{0S}B7>GJX!vaGcd`z# zfW5p$e~ULFPoFp}aq&>UUjOFUrNSD0p;xI}&jNOW70vHcyyEWfqPU64;KEdc8c5I0 zlveMaOMERO_b5m|Gki$WA61hJU;`J=@XG84{9)?yDvQ&Is8(FW0;Oexl}aj+LM#&F z<)5~lNW$1>tbYJ6aLLsCW}=6NdsM1Fkp9FKi!f_K5Jja>{wwisc$%(K5$n15Z)$%b zMq+-mv{Mv35=_hKPAM!FKRX?I`s<*EE`OGs|`(T6hvlKc%%F0P3x@b`lPb zTv{#((Zt$=5*3vAZ0hTuxJs;+d4g5KwB_ zhZvNWqgz_833RyeQJc$OLgCrTdD;$;?*`Y6tfcIYGy-`JYTcQBuj-$Yz81xjIUN}nMyaMRFkY_(BOz{HyAWCZ6PNb89~>9(){O7tZ&%alS-`?#qNIr2yE*J zus5J@i@#gNN+2s@YzG^G&(grF++%dJCFgw=YFM1~Cb>zB*o7VCj^wC#-zjZ@V#;wE zFcCqh-zn8cMi9`JARRHt`~$ECKHQjMB-}e`$1%AM9T0su^PLG4+ce;S(!{0>r62nR zKPrTVbKcn$n!r3PwRKd(NU%Uz6(W#~ENF}nhuF$mAtP6|@ar$Y%c{E-01_k+0KS9{ zyxI=!Vv7IIXOevmnR!luxgUwUKbHUNIP(QE^FOhFqfIfK18FIQ8G=KQl1HJGA!rlg z@st(+A~MB)4g#P70Ayg=0D$U0ss2IulV*>gcMoj?=mmZr|KDO?5^_I)-{V+7MFvPz zDl$cO$FTniZ9L!UcP>Et+kQpVGU{1oNY_Arw3FkFKebK&oV ze(6KS-)Ou?l8@)Z zj~Bxo7bh=p)feRd{?Oc>@X!4M`2UXU0Ka<`|2q=@*jGJp)Y&h<9r)ibz;6!E2mc%5 z`>@m{6DB;ZIZk7h@;GQ>=(NP@kSp zUt<4ZkLQcS*!`}+zu1e92Nx}RPGEMKD^&$?`yr}+I( zz(4=&Om{+hf6|&lc3I=UnaaKu=kGav{TtYEG0FbI-{d{d3x(eeIVE&6S^O+(IWuJD zJw;6X3jnUbUx1e=)j|G4NuR%{f$PiX<`;l7yn!G7YscSEFpu?9Sm)q+dZ8#ZH^u*5 z_7~uy`$i#x<812bZ#-}-pAYk^_WXgz|L{AX6Q<{@+x$8Gn?G6kBeLUS3d|+opQN8R zO~O%APWU$c!3b=B!VftwrWj_S`5|BO<-eF<(b(*0vhUk33iJOH807!p@vom#P%pHmnC4#I z|9-$VDFhzezoiA+#d||=?A^(~5&jJS-PB+N?Fs(hL+yV+`=_C`pIyc}|1+Y199&=bzF1zhk2PEe-$g z0ro$$8-@ELF!wum2*nr5r{cfqPZIr!^IsT?<-b5+{saGiM)(7NjGt|a!TCSr@&C^D zf5w8>r8A&|H6#Q83KAX&{(I47Kma;93mTcQGP7|aNXaQMzkX)>wD;^^cebK|?`%De zvPv02>U>(xYr09Y6g$j>usj8BsOa8s?r=rcjV}?C043mDW8Q^s1@H2nUrrGNAuC|Q zIpYC9LytqqE3j-b*v1LbU=MMr3TozOQc`z9y!sq=07fqpkLHSYs!uUux(bktEm9*IBn>n??C zY?KTTc84Wl)u7QB*Y=<%a*nt6=-_TVtH@0H7~8i_!{H5$ip^XA>pXRY#>VpHhCl)? zxJWSIdhs-`dxOTeJV%&HIzCq3KJ>JFyBKH8 zZfr;wj|#WY{3sZYDW$MuiQ=vVGX-q7ajNp#8qwIOLsGV;FRK_hF4)$-pUg2N9YE}S z>ZCyEmg>Yb*`YDp=N&V(%X}sSpwL0rInW@JAXtjK=MWD2xQXBv2C)=X$S)xS(VJzy z*LwLd+>>s;e&!xNc8yUOwKYUm2m>B+Tb}9*b13@wIc+1_$Ek{|p9+6rE@-tv_p-W* zq;1g;_D7v8cCh-EzI25&^iXF%4PL`+cT*5?!Ko^ z8Mw}Mf@uN-`+4s<+I*-!3qu#jTef=g3Zm7)OANi6 zsBl+i)iPB%#$V_KN~6JD#N*)eBR66eU=qhmDosy&>hRxFFsbdUYH?G~U$Zf3D{2rn zdOdUW+fTr}x=pmzAp=U%Q}C}%f_gtUSr~Jo#ug6XLK(^gtyrP(r7B)c3TCAr3WmUh z3U?96O*|YSy&Y$aUNZyOMww2iCrCTry@RW!Xekre0~qb(wYcM6U*(jaK91jx3!5(o zdWx`TshL<3bC={zl+ZIFD65~bJGYkbZaA<;18QulK%tc^O3OXMvTKe(kw5J-AFSvVPlE>rr7r+rv=#bchh(TQE46X%PNy`k@kw~iW-*)n{Oa>r7De2ICD@~BD=Bu#@& z%G0(gVk0(-CX!f*QMM^ZN2LK46AnA8?p;54Z!Y{)gD*K^Cpp*Wn(SoD>;cN*?vGkO zK8{@NsNsx%K=}p0r2V$J1HiIsALo;UV2GTcVQhqi3i#2YkbBh*qaW)&ss$;o_w3SFL?-fGEni@@>u64ue z>Zzu|D_7brX5p1uOdWl{v9|F&f}o*^xIBQ-IPtXdt=`Vd#ws?=7@=!Ty*v|*L?)`0 zZ!Cp(^lYPb2@c@89|WKGiZjfNK1ddfsuMr2jq;s}(k@|~%GNxGBLS^darK_}tZn6* zWOV8XUd3g8Gnh*->>%d34iWC>j}x?jg0a2M4trRN{xHp=3xUBRzVD9f&4JSOv4%8@`p_>BNCv7K?2h9GQlRgUrMpK z9-9m)L(`MWVyIlR-dt4h1pD=(Jo&_|a=DzIE`1Yr0k!d$T}RDACm!|hckGA)7mr`V z+9VBp(25L6aRS=5z^#vR-?91|&1m^h6t+DYANG`g25n)(=q){w|*TFfi3;SVI z60@M$s4i;Mc*PJDBL9^&tu>8X7sG(++b4Sd>>b%yFCtRDFf;X!mIiSB*6wgqdW8aN zd)R0^i#pTg1_z}XVWX`;VZ=`4lBh}pp~T*c*8VXov?Ydx<&ts>vBnB#s0m~C3qD7R z@`$Yy6iisSp$?Z6XYxQbFxe1%x=ir>(XT2xQ@!(O-iUBdP@`%>=cAJ?Nch?XRpQZM z`a_^?Z@FQ%m@w0C3i%9GUt8q}6i_v9d#&ELqf+gG_tYFoN2XgDczr2NQD_R(;%uTN zs8|2!`iVHJZ=w0vneapkM#y9M+V#gU;p9qwnu~1I42SzX!5A;*8zo4o7#F!kOa-=m zh>3`W<{~a5JiB(XfG?#KJnpo#mN&S_P^B6x+oRK&P%6V%9A zh5~IBuOhR08y0YN)#dZlKeunS7{P383LO(S?0{!g@swKOUsJk4H1Bo&>_e-%B+wt& zm-{4h_}xAw%xn#ix6T?dSJzjxWc+#RlUj5cLG#F$%{&WDK66T}cTaZ_tF6jc6vf-$ zZUmEM(QMvW%3bLJ<{X#`sFS8TJ}xvXjH>(ydKGw+!U+BFbepk8jGUs$du1yUXl+0$ z!{7oebm8Bz2}PjByBffq-Mu) z4`E?QFA>f-Xm$1b)0keIua5~`^?LsMQGI};>s6NrZnZwoP_gJDz5R9Q>{IuYV(;A= znVm9A&?6>Bll#gpuFbfzTBi`=cSja_2Zv^sppJT7jc2CGb(D1xqs@+kB?ZH{ix#Ui zli#&!a_YWxgRSdNZe+uj`U~K4hBgVFj(8E<;4PeBTNwxe1r7aTD}x31-&;5X6TzD} z^Upv^^)shNz5m|A36|TZrWVk1lJxba3@NYAF~@pIU=A_3AZ^EW40a&sN*FNG%m%ev zGf^a3n5T*0jc5V7Wbrvih9K+NNJv9i_4`0piW2NalzW{RJMp=;xHWxiA^MhFS+ z-WAE$APCmb$e4O-5iE30=3sglF+VY^!xpciPXq2MN~4GDaU|vd{+2}}tO1lNJmF^g zp6NDQks!)bm;o!LMKXOmqqjuu{eDIibVETqTn%*C9OL>rB+IZL8wjAW4Goz z@5t&xA(EA0J+e9~OplzlJv6Y8{=9XqFBlt|*+fI$%Q|iHG?E(v$rDYUgL|G%N z=9KS3psUvfpm8b$a?;HIG#-t{9?!iovfST`NjtMfbzh}iNh--3!&VxiyFeog6 zqwuc7kQF`BF&D34C0idU-zTn`N(Vy82D|nQS-zzL_Sk5Xv*)Refdbo!VR5u;BI43a zs18D~$BZFOzQ7vfhSKb=!%1ODipH*NJCzIX?4%ajgo*=^T?>q?7TIFf-p>|Y_Xf#F zJ3a|=NB}(aFhKTMoOyJajs~*?)B@1&F(Tdv4aa;$Bv2t*z}X{@?4w_T1wrpPZ+~~U z?@NQjaA^c&)64WLfH3sw-w!CnYN{QDFn7T31cGk^Cd8u&Z5{l86`KDxBUpje;J^wc zs!r0xc<;4Lil|gXWVm{T%~~(|)`i;YHo=i92pPVkt{`YRGBsbS{newW#ELeiUWVH= zv@$eA8ySg#uyR7DVTj~;aT664L|zgh)f?2#&@Rq|H;W{DDfDWt0J_$!(P3|qTBGmM z3<=mNqec1vZm)9_@WpWmv?AN`?8fQLU%tD6TxJ(nrP3 zbB4@hI9OmkxeR&Og7-Gr0mOGgZ-rafHGW7CF%q+}RTP9Z_Cly*A14%#=Wr!&I1~lO z3gS^OTv&{LBp{r&Kp>mAC5Ue%)R7YeK!H}B8A1+HhNDBak$}81Z`FD+Q}H|Mo)+|G z_63C#;2ZMDv8(>KM6dlpqAxE#Vz|z2cMl z_(`@DzxHw=969vty-yuu=N6+!VBUjiL48VVYDgHmv{aPUwo`K1rtbtHt@n1FaSjxY zFuS~k@bGMbyzN8M*H?vIGkj4=pR4fnctrroytBq}+)PImzRqt$az)4*N|tQy&ytwc z>jvPdfjmmsptGsZ7Q2n-+II|(X@0Uo)VWFjPXKa27wV&4>21k5y9KUkwyCUk>yJP}Vgz6*=W%>LtGxsH9 zuXXVxRPtb!5bK=Z zLaJ+`frywRTYdphAd4fNs7d;N5KLE=n*pPrN?FZA9?F2rRJ^BoSF}Cy-=K}I&)O%rpMaClmam+61Z_Jf5vu};Nclfo4{%!8t|qt zMgSn7m|0+X=D83 zAQK3VLbzY*JBS7C6b>asCNHBeqDhin~<2GQHruZ-n& zDU-mhr=E5SMTSV`3fL8rVv-gu#I{6`jbng_hNgH#M3g3ytj2lAVC)hiU*^Q8hS1QSn)yUM>K*}Ea)jUx`NFtduOHi& z2DAEouTtC|2odb`XR|PQ+lU4&zQquTGSkS^ zF)Jh`3u$WzF)Yy-H?5zE7z>G6gD)75jb>d~q2$I;rV8?`8=?yazEgD-i~@=hnkLDf zvZIxkdB3vD+Gr{SZRzkjR;g*y+N{8VkBDLPl7WCnuMk&PYbYwlQr^XY!-2!N^6k?v!0o*;7n`EFqEVh@=n#0yDT;cv zqKh@C0OU+5ggn*nq-J^~q#Il*l$6m!<@O5z36x-pjqmu-$Y?yhQ8s;Lpj}t0XoL37 z2ml^w-@u00f3Ta+EqUSuf=Pr zst)z~%y7mrj+qT4B}%%M$bf=E~kNXjj_%60bvof*trxFC_ zB0TOUlrVvSpQEjH5hVM^G+OYfLyMEJTE$BCIMO)RH70{O)<%)X*O>so-n% z9-W@Pe~mxEeebAvvX%9$Btu~^Xw}84Pv1A@hDG`HRHoKXp1z0n5}~!y7%Hszotg&{ z)#dJFJuP}{n5sWxPxUkS7Hup8Nc?QE&pi7fj1!~Eq@lOu?TM&c($*R!Z6HvSO1KnY z6b`{9{u^~w1ud{3uYS~!1pqQ7o?lKGnW$VVyU>8uCCsERW_g`Z*cyk;f#7hfj#!^$ zX}Cg0tn~9!fl1s!8?O;!gA`$l1dRf(PxqsBlIqb!H!q3cTSKRB@#w1qUZ9&+q`@B0 zeYgL!V5_vSxQ5V!Mc5Q_NMr-ps@j%+u=I-L`c!EY$^b}#n1OZxNW+{Jtg#;>7jPhQ z=Ly>=K3BXU<0Svi`|-Bno#akoP} zPkqU0^aVVoL16|>7=3TPp&gO~dZfQpRk1>2 zN~J9PaQ9emU>BaY9L!`=CJ?1 zy;50q(C+GPmWP3^5^$!*Ch<;b_BC$QyC+oemq$`9s=Qh2qS@rN!S#m{&s=-(LqvWq z_y5mufuz5L1RX`kG@|Jm@BIAJ$Qg0(DV~Pab8)R%xwzye_x|%Ol}erQSgv_ZRa+p=Ly> zS&_hZNRQN2)T+C8`3t`e0CH@l@4d)V@acpYnu1;A-fg7z!4KHJD8k3lYDevz%yiW! zKC`Po?kRxS)DmNE-ozX+7a+vV-$M8o00%=g0iry>WMRhorTC@a#n4`gU;jt(L$Rx& zk;Lq|YEExKrL%srMI112>#rQ0?eJ2%bx*)YCq7C^tB~Fmr980J`7m4&Jj642w%ZpU zp;q@6`#_;a-R0FRc^pSKYYR3<`*Cgo<3Os>E6I4??zyjWVn*p>2>h?vZhVvzcr6on0^DpG%s9Lf4Eczy%{L(QX^nJA>0-7BR`%#x2c zu&4y)sAxYX8 zz!o}NGQ{l;ayUl53=*yyi~1%*&lf zKju>7%}8BPgNW;=a{bGg1=Wr9J;PVg-YSWi{3v-g=gjk#gX1mA%2R{R;Xi|l8~4EH z{hroY$4tk1RRW_4oyu>?wgm8uRN|++viY(|z`qtQ`{}WJkuAe3mn&Up^ysNXT}E2a z00``FxP1$WYCYIk)$tr~Q;pZLq*Z^Sq5GBccv5gI<~H>j4YR~|=(WXX(3x0CIVTm(CggMwT8PzGrk?A7IChC9EOw68$*f!0e6qTL zpI=`oareJ2TYn9I)016J)iaAs9?)YYU0_(+7M^%xY6{+-GP;En-UGUI_OiIs&utpb zwgbdb#Z6o;;StesQvis7muqEook$BlVX71$CEQ9EU;;#CZ-fDL*1Oj?m~YHyNZ)F6 z((PY7!vu5R8IjPY4BF4hKNxvqAf)7UFx&sJn8}KeQkeD}GxR`E2q4_vRn_w=@5pP(14FL1OWDZc~E}z@UKP6jtCh3;K#*JpZIaEf7(+b zY#EfD;XPyN#F>ZfrChypMyAOEhap{J<3Ung&^JaNvF7g95pcu!M_*``0Yp$1d2jE8 zuq_sZru&oe=m=%&8)dXJ)la*6wnE7vK=v)Kc@kN0ss(#T-$Sf2o6{(*wpA&m2`F3Y z^6UGFAs0BiHa6%6uxk#L&vd>9R=eDPVU+6d@sx3Q7;9@WHec08!DyR%B?B ziw^F&-)0_PHMspS@tgL>+wI8)Wbr0Cy|LLo1ktZQv9vHmeNuj%ocC?o7i)}Wy+dgH z7XS{6O)niZLqX=Ab#lH6Zx9QT%vvpxu?h-Hh+^kc$TsdIb?(v^5IN&{-Bt{g6 z^S<4RRA32qMaz;R%hFgvanY!wEr?#`FCUzUV{YFc&jM`5^cjEh3s3@Tsjr?ki`?X* zsX_ZN3zVAG)_0J}qh(yJpKt_@Ni?QJK>|NjUp`f+z;U7aBTsdVcDbtWk=|XJh(nqS z8Tr~1zuqGAONCSkpvVK{WOEK87sK;&M5ZZz@|?4hHqwXJ*kR?xSJG|24fnpoaHdKY zl}d<%1Qy#z3!3(rDwsF{a@-={Y*80W!nGNEK^;n->*aG>qm#3vfn!k}S;f_#ou zu7aNHkiBCc@I-h{H*LSa*am*n7#elh0N?FPw)~&C^PEhgya&U;FOnO*uPv+zeKxww zI0q9ot*KdEiQ19mV8r%l(BPM};P5(W7IT;sh-lGO<}E+ElrQ;{nK9!l4@LSq!bV^L zdq~A7t+q+R85M2j-Z6ta4iu_lV6do=9yY=y?-mG#P>t=4XR;jCUip_9@nf_ZcR4J~ zK((Vfa(2|n8t{@&HsQSsvB`SW850Z%xXq5V^WjV56`hM>6pBMAR-CrsQ6%fCn^bF$+t;nVzJo z4&hGzrQQ}r`NB8R-Hwa0w;dfd@zVFkU*1kQ?81*G$sv=?;vvDLWK!R^@3y|`)rj}1 zS@w^(kVf!W(YHR<_~fd`=bZv&siG#hSLG+fR$E-ws+|k;pMF1vG6}&P&Em^To#Ui-Dxy{ zBe9Tza_f*FHy#rFxB+eY6au{t0$#+LgZ}nupkn0VAwbFbC!FdgQXB0EV|;;NH|WX@ zK+EGE^7Lh$XdEuzkycOss#ad& zdt@sLBjUt7txE3R=uyX}JSbbqQZ4{0VuHGX(Y5&rl%yUx<$RNmSTwtH2fh~T{!%wy z7Qb+1wI{+^^kxWb> z;>hQj{l99AN0p&2jZlo77}t40B$&7mBn9=ahpA1Yj#-ZHTcz0RrY&pjokeN;0F57f z*L-4OSkzpB3zKHXvSssWgc#S{wE%);JWEgHnj`fXIY0Jh5lk|Rpj9l#0Dj1=L|S60 zciVM6w8-aq3>!i;2%RSFi%rB%V_UMd4uSU;x1jvY-FBErbjYSnpAX3?ybw|@oj;fi zUr!(b^>2P|Ldn?Pzl)x>6fj#yUcQQ@&sO5^B@cu-o!=0pSU zu?1Mq0no%W+wOrF72XgvDCjN1gdzI99_R6y2tOsO=O!CaI#@yLu-?2TekBWJ!d^3H zNC-up^Z`DgEfm150b6h35;lgQ%Vtbe&$voOZ5-RjzW1T26cU77q0=Hp2O3)I4M|yJ zyKj&}5vZ13yv9x=0yWl6KG}5n!PoJH2%O*P7uI^b3BB<@sBKXv9CU;ri^j$1^vc~0%L`}B`8zkn+louZ&D@oXt^kLp}nP~KG zlEPyIjvAk&js0Z5`T8dCcbSz42mK=LGT1Q7?A8`(Wl74K-h5!}mNX9*VY1u%&d8OZ znEc`pO~Vybu0ZP_TcO+HzHx%8r8cWSL8&dJ_wL2()Hl`7m=)Am8Ej3FGbh zsd9yX@Id$>(5tb*1qEO3D4$k!Pca7$!4negXCJ&8jg?y?sss%9mXC?)e(w;;EyUh~ z;C}&VjW41(Xw@QDnBapPavVT=zf{WQ=k+MfKu$Xd`@-MTscb z>UD`1qi{n?0YsIVYAqSJWxnSfH8hf$(3dVX)iwO#1_6^odf%}Sh)*5lt*nb{KjTGki?n3_2tdKVq z)!~CNIj!1@4fz=-4|GiLfiD0M>frS}-R$OWu31anIg|^Uf#zXG2F~u-f#}W)wPL)n z2SlNgtTNY!aM~f&$a+O>>KC6$1P;clJo@j5I5ck^PIzuJ=}=*C9Yj!|t9?49V)%HU zEPgYI4%KZFZ!e}KT=ikn%+M2Ku7}Vsq!?$IJ^&I*MB?1YpU4@2a*sOupU%{!%)bSA zp0xb5CWXN6*PoN}@3(iSRSPr?-ayuy52#WF{gMfAf{@lSn+d{{>tGOaMvY1rMue zg1(}-fYX($5-m476#dEl)XVG(h>{zx-+Z)V{0ISU*uDi_{bXI153n~Mh-jyx zI%rw#$O7!~ z+2igUEc$>uk#ZV8**9Cjj$gU-YTs1qSQsZA<8-6WNF;#m>Sb0fKz>kl)rrQCK~8|h zcE^fdiC5BJLLK$$fwYQ}NdlE)A`=;|v-zBdUy9=-iC9ebxz3T0xB4AkGmTaF>dq*; zN*{2Vm@F3TJ%41f<$d;f-M}sv==KMxJ7+by7A492 z-Gfh8a(!jyW=|{2NvPJ{5 zQLhg2c`}T~@vwHHMmES6+wvy!Cs+rtCzQ})&tzSEFABWE_^&g5&#|CN$kaiMcX{IQ z&~r8QIp{rD#c&E8Ms3@l1$rNV0RX@>v0%XNB!jW^d9ZK~0>vsE#Yjjh^_yGJ83shS z>>-ocL}idER!xdFrM(kqWqtc1f5YbE*h`fkd`&vl3kqL(3VxXAj;y;D>Nri7@M*8G ztKON0&xS?b+deZxpncOm!BdQ8A=3_E=R@2X)9RSj(Bf(nBpck~(TCB-Z2ko(y$U9C zfVu0~S=uM@`Ots@K${7_%iX3xaY)+FA_ExQ_;%$5n>a&I9-Hvkc)_(-yZVKu7K#W| zd}tdp9GuR$0ilN;u5VryCrBGVQ5>?xL|H}+iAq2!&x_%Xth zDDQ?_CxYk{)R?Q;MfUxZeNELnzzVUhs#5Qdl$C&fQIhUII#}N6wn!WBEZJ}9oVVK! z>^WGi(I1~+RaAaGZ^DV>uHXe6ek-*jzvQ3}8@MIX3`X*SCP3L**>|D|6!iYqM9vE1 zX+|yy2iYS?u4UKPe3#z%Fa{t!+BZr6P|?k*AeLllg@N8LXxxPJX>S51#NhN^gj($q zT91g*Hi!%EQ_#ubD@X_@%qXghq3j{7vwLFHP#0b$z`?QYCDB=D{y{~pC=Ph<5k-!{ zFF@t*A-eFDv~H=(Hu}PF5oEC2d}MkHLi6qN;B0kaZj?$4o7ipcA5);JKb*qa(1Wxa zLMyBeXW!6;0U@+hVz267oFfLNBRkM6d<7~gvRrr#YJmOT|McG!lann6GKY8DMV0BQ zXP?B!-hS!Mzz3{!;J4Y4deI7;e~-=ICnpKcd8_8#-#;y+|6A%7gg^@*#r$;hXNb9# zMfJF!EcRL2#QtpfA-?qpfg9G$V@TrxchO40{gu_1^sDct@qHw*A4%A>;7~H{52}N^ z1R*@xk%?Dhb>eDiT(&}4zLBRatouoFFnB3i9HI7@C291Qx5m|pMUj*ho^lS#hX8%J z0tlLVpwO|8eUgZqXqLFW$A2slE^JNT-LpAn&Tm4ZmTlRz0{9`X;njqej(ny+-@S*& zZFmZ%6!eUL`_N-#pt*_Dyn0c`747jF?1H_QQI^GDHb5gbpN{bzV%~QXUeaOtyi;jR zV)Op3?jmx0JXHWYaQcqSy*kMC*^vs{fyD-i?&0I|6!-MkYnt8meh^*Jv<1zpg+Rp9 ze~dz;7Gxuzgw=x&LI-XyJ(JpgWh0gRd+b=8wse0XHRnZC9miInOhnhGF4B6L{O9hs zTiE^KV~8gKw)|N)&OVdSz}r>hIV}jDI65duG2N;gNf{8> zQi#@UC8O#0#0|VYURw@6sX1HR>A*Mpb832@5I12}Xb@4iD0M0dlVGWMq@W-N`zkQE z8tSyOC7^W4`7$Im^yXR=M3uOWLgu5@_*kE1b5wt@N93rh+m|n;QRDHeyU)aik-kvm zOd=Dmsc?psz|SnpUy^0mHtLWMQ4s@&A*c#we7H)u``Uca435Dg3H zqtcYYlUEG6BzqYQ`l_$CwGmR_^^s!&2cWS{Sn={mfIM7pB;rdj>STGmVJXF5k)=K!PGwkc6*`~$nUox2y#OY6n5 zLb$A2kUMfjl~;H~mhb8rytT(ZVVY~nE*e17?8a!&&V*?b9YcfIK@0yhXWZ$eD(L60 zjOyK=;^nLO4MN)VSxUxDyA<_bBy9}hVF*jSX}+hhC4&cxdbwfH(;26^>2dVT99E76 zrZQm)LC8%J%Z1H_`JuJ(?Lr=EQ5O2`&tJ$ zw_M|Vf4$PD4^{LH9nJHjZfnKBBM4qA2TzL~-xv;Cv;bSM9KqYdYE3bU=3rpaAD-v< z81w5b_O$?L%tsJT0l1E)Rvr(p(T^jLJ}G0PJY#Fyx$Baz-+v^*2WZ#=rl((An~6B? zE1>#9tN;z-Wt@**0~1Ec_PXGY%6Zp3rl?L~TpPoQ<$PlrHPgof*gd1K)|TsE2d75D zWMSRY_0-oHmVc5LZn0d(f|reg`NA_65LE$hOnVko+&()21(CwZpS5Si4`UfznT-5h ze`=)$qSG@qBJgdu`9+Pc+chu-?RkKlh_GJ4tLOfnkqaP4JMWc26=~D+d29fHFuR3iOz}Es(`?by>UEtH!;_AT0DJpDhOm8DE=DGYki2 z^~w25hP~Z0Vo#N2B-OUI!oiu0tha7sr4|LnBL!O4gowx)Icx&5vPUSl9M*gY(7v8U zc8b~V(Sr;eEGS(dEYN!+SG+#w0>|2{Co0q6z%swlK}z2@=GMOMuKV_57Q^jG?^8H* ztnDi7u|J@;cdI&8;=6vqtp*BRYg>#Od`i$?)u3D3A3?s+r2F3T(aA)wV=0fzYkTRS z!yzGp!rcPZHCV_%Xj>d6zaAV}v26+Y)|u&`0!0@jJ(;bhzR`Mqv(u5Hpw{RBWPUMp zg7L%=$KA8OLU=!_EfU?J9(-l zWhTbnVZl_ZGbO1B(j$J{qK zL#`o23Gj6zYX03mi3>4~21Jli&)t}k2!EcDS zRgvy}nmmZZjj8=loJ;b3Lig#aniJyA(Q)6{XEyV2OMPc^w|vs3=!T>&7~gYI4a|jD zlpaL^9HE>;fUO9eQ^ROyiuXgjqcyT9t%pa2y5@(&g85x4DdAGcnr7r5d1wgG+EAat zELP?d@#fA5kmbKu2m3`F$ZN0X6lE<(d*0(TFeDuBpcEXek8!TN%SbQ6SpyW}!1pF$pDxIYTDa8W@^Sqgy&0<|~t9nBY_ z-3xw&p@O*gTn#dV*Ud--q66}ACC!Yyz#hM^X ztY$ET;4Z)YcDd|ixGtfiZtfr)f2~~wA`_O;-q!AO)WboaE3*f3905jR+hs<# zbSwPJyEuR@d0E2eIQGHS4~^&s2PjV&F3&5AcU~vLuD1CtbX*s=pH%)g^|Hz1*<)mY<;pO#+ z=hDqDPM5~S74QHxNxe1CcBDSntJ`?_ z^hW44bo=X76#+6#Z2X9Rm)YT}PLWyJaVhY8h7&k%|Aq;Pph=|eGRm~i?8FISvr>6o z@yE=&D6=dR78!3065_KN1Vc7xxBTOiM})8~g_!I@ydjXBMkOy&1VXc zXvYREQ34fg$Uf6I+`(y&OKc#Jlv{UzNZ%d(6!{MEQi?)aJNPfsie7ZMRBKCj4UY0-yFeIXj}D2fn$^j zA&kUklF&SYER~5B;&ZDCl2}nQbiJ|{BMS|4Xty9@!d{0WuaGCNKK#+GGR+#3MDke+ zLYGc$okw3|mQ+8$LZv#BgeM7h7-KJmKmfhNH3@^#P0tV1pzcMbq3;$U9~W=bbyniR z;zS!y>`L&l>KkSvR69hbHw7&7ftHn)b!!S$Zwjf)hfQ=t&>Jx?`Z8Z$YGK<`=3^@> zHd(1+ACPrSI6%RIY%>DSxy+?@tf=9*uv^WOM$^L~`{9ha$FNHlNwdex3revO6NiQ+ zs({ex;F|@MPsH~yeu)OJQ}WN(nSBId_3xE+h78~WE3Zk5;RR!2wO@qL<&{MOcvTCq zJ;E%UiH)(NlY@zY_0xa0h8A#e%*@0L#83b6@X*Vc*qAz*5i_#@hm`2W%&nYE9O%WY z44h0vOpI)eP5AiWe!JQ&b>WR{)I1wX^R4>UkAOtxTnbbMgg!kpcnC8Ea9#*rtHu;! zUaR?TOwmWLB?QVh`68A9nJ`M&$5fc2NT!P^?!w8esy?L$4V#Hkhlf61pIvM(iukFO zldD&1PDFOc6s7~OF0bv+C)uYbcR~~sP1#Z!Px*a#7VqsISJo!)2YZ(?)Li)=&Ido- zUF@&jcdngUG?usovoQ0G5~($whLyYtZm{SpNonBXS8*l(l2mkh>xw7*zBXbWyAiR9 zab&6|rKjpDL7u_;_VoI8`nbs>Wmxl;6~T5gPHpT#IffxT*2T3#Yc}k8<;; zw)UFm`%(0l^2nE?$aecF_pZSMR<+8H-Dxw!a|nylDJH^coY6u3k)LQ;4SW2`C|n#+ z9J>%shBOxQKBm)r<>FZxQp~Vrq~fJrJF6$onZk+m*X1O@=^F#pT0lNsDV;rM(_ftI zcCLJvdqS9|b4r#e-W7ma9Bb~5e0gKN&o1K`cXTq&@wI#9g+}-(OfEDOPmdwW^a;dU z4k?P|QevX;jz|W*2-~PuH?f~@2kU|hmU+`CqYn=Uo38j_ffw7&xFeSB_wCA%7aQJI zYZUViU~4npZJS(J>yW+$UMJ)cGDx^u=7NR{I;Fy_RZVe;Sq!Y6w*%QiaxFeUNa!39 zD~Z3?x5YPiz&-FD@wRg3e?PMiF^$Q+gG%mJaxP^z3wMAX5XOfSoVFKde4M_j!D$B~ z2OaoRyDs9k>*K>LQX}u{rdo&U5PS6>_6s%OQNb{p@J$u3vtqMlTP)|l_+0z<;eV^E zP2^?_`!vVW^2t|&6u%TBmdg;c`o@#Jx5}e~#Vy}drYo#?IgUIm&KskC(4U3LFP;{j zuV|3Z@&^lj2vM0Bx8a&)68S5GF0As28F1#9{bhGVq7Uj9_)f?k;!Ux)T#kyx9i~MW$aNyk8X2a1$ z&Sa=Op`~-OXSBXBn2@i{&Wl+O(%LwmarngzSOz;YOh6qQWDh%kQYsaF427l?rOxM* z#H{m)>(d|d*Atqh&rer;u{LHPjbGEUD1jOB^D{{db!up<*hnyH>^rwM4OT`wQ}nm` z(h>=F6+ecb+{tZ56@54PsG$}*GS7q8 zlp+mH(!D~ZG}(nBE_ud~9ek(M(04>!5;*kb3zhaKUwaSiQK*8cB*`26P@hWcvFwmM zeAu$})CvKo>g3nJN>^-(dB0GZw1rVB!_R)`mab>93R)@DpAD=}wqJDQiHW5t7Cq8^ z5!_y6E-CG+_4-m=myBLm%!axk$m_#I31Ty&>8b=tp*fKoR=c~BaZ}t<1V-&&zG2MH_L!JJJjxA%hUgl(VsP6b^hI-?G{%0+3{Qy}UG#?BadQekr6j3@VA zdD3)Tg&{SwQEfso_d_(CsL~S35$t)^xIvN(Xu>S?D_A|qliO;mNegIryWws#zPn*l z=g*9XTqY|UTG0WiP>Ch&NAviAq~PL;YU2XqRjo=doCnsJ!i+3~!zWG; zNph4K;4N~!4pgk*vu}~S#2yXBEo%uBXY{A)lE2aD-HziXV!TvK=F~b*jGY+W{<1kL zaAKqBe7Rw@QAoc`cc@=M${vnV2qQJk)J5oS`0UCoM-+BhFF@-i{pfEZuTM;#HDNcx8tBmniz2@CgrytS9g^tEa%LPJJU-kXA2bFd6J-$U@;zKQ)!jafX6U)??e+${MvVp!Zn*7F z3|;Z~aA+SQ8&6TH^lHv4>ku3+5gbB!k#Q}yJ{}iWWlLL+4ru%HQ5R8dsFd(LoRCwv zUT;6l3;X!EH6~R%kX!vIfZZ-EfQ=7D)2ZSwx-sm)K{KS9E-bRJ=U>)K?D5b>zUnJf z`!cN=%a&(Sa_$+n(P3&mok_i41~3D;Z*!-FPGb=*J8G_VJLh)wkF0XkHTMr2E87d5 zr`$;wvbVCXDv5)0-p9GBUP?LV69xve)JPMC$4K)o-$C@=c)p`CFV9^?b)M!Z`x$YL z-95u_;1pb5^p(DWuZSA8#>~F8y|A}3jV&p5b1fNnzyE|H-L9_F@yK3`**aZ3anxuy zG+~4^F}260qRYl<0Bxl-Pwm=F_lq08?hdDrQ};nnCE;42BbNw>iyZ6M5~dRur}MVT zRlZR%x0a8JouF-pDPo-Aq#$-uKe9f(wN(r{&UF6@$~}JawOFpYIK!pN2$f1Ju%n-j zHXBdG5k5m>vNJ`!7}jU-&Ab&}4cf?n!Jfe@?b81SpmCC* zuNlP@E}ELDOB>ZNn-^{`E>O5x%jyzvF0J$j*v6*&X`}NHIyecxzOag^n>;!0>6X;4 zL`9nOY`B$dj+E2-;kt1jGV&3XONpVoh*?dG8OqRDrCJ9Z0^v2ereEMHd*g>yGpCoq z67+&&1*YA}mI`F^73bfZ_30+dBf3wl;V4Ec8L(x+^Q)31-D1D22lxpF6v!Y1j8nTu z2>RR7^Jvcw$(4{8q9@g~Vn-*%>frE2*wrWAOKxrQt{*{)s#H8em}H9(xjibWnr0Sk zUJetFw-=D@7`)60A43&2Gj0<@VZmFq~c+De9{Q!)u%RC8EGk3nm0}liAVsa8rjIgq0Fp4GlkN zhdPwdkNR;o$5>~EW+r)3=`z^`nW`c6q{QAxVjHK|5k=4pG*=3nd7zf2HSz+bO+%B>ZOZ(*-U;YL_@8XZCE;{3NwpnRk}L-t5ET{ukDC*qf5&^Rj= zJrs>OCIY$0AIyqxpxgPWt9s7TEGnE@MDi7Fdo4Z?9HNaQR1BIC#Y$;>)tP8cnKKa6 zET0JR!_5;cUbL%_lKO77Q2vub;bG!+V~6j+mtg;;Y5g;SK!9+IboOeHA>LEsR%NGS~BENYS5+qlu$- ztOK^%xex>3#kZ1UAk~2FyW1ppKr0a5uMd$+xlg1b)KJR z8SC%4(0mJeXNu!a7MU0HbK~dhvY*Qa4k55iE@3jPF&b*1et0w$FX8T|;4PG6*VWjK zm#t9;c9$tF#a3IX`EXKv=6^8E^C|9JaRKX($qnj@C-uM62X08>8H>z?YxC&ACrIi* z9xH*i0Xxxj^O`rfOoW}|KMaB5Bl#QaT4ME^oCg&yP42O$eJ8HdJvTzzHe$1=Ta$45 zaKSiNynd8xFZ!yB6Z*4{Xn=^!m#R-y+W9V+3n<=d*%5^iD80&4`MeCmd&vdG@a?43 z__pfQ4Z@;KL-qXNW%CriF?-^Vf*gIBK+sC>ZF7s!wf-*Kb z=_CfYlx{sj-}L3aF}!k7u$DPA*`S3HVh(A`Rc^lG)vzIJrZ|b_r0N8*JNLdZSD>oy|2V zh54d38!|aYf>=1hha!V9j1CsjTpgQw+&^O+55EOhL{7e+;pA4EP+Pa|<3HLjz*e4- z(^P%zTso0?vkP(mrgZ~@sW0(S)b>8MS1!sWe2sTLZbMe56gT^{!AkHH@e=L4Y|E&L z_W`_NV{_zRFqLNl^2Ah_7@3&=U@GkY%v9L_8>W(`Dr-3}fYQ9HzE>Z7KD5UU<3}US z5+ooD!5K$5^&OV3OEO$|yY+BS>Z`S=i!f@!x5`S}pUuf{0z{6fQ{v|rZn7GeLa&|U zo8eH1{hG=`m^jes&X(p?T`nc9Dn2zMnVxvgJb1quZgGj)m95p{x2>4npO4b1^3ru4 zoMxkjW7I?FyR#yybWiyRh7)dAn8%#06ZR&+U!n?m$w45qV;f%ul>r(NiiYFpE>a#u z%hR^i*g0h(Tp=PpwT=ixav2mw1z9C?v>k(L9idM_p#z_45&7;7Ld~adi2VIwAQ&%S zd~r0WzWCV9VHb&u%VNgqpwIFF$!iD{Jb|MZ4y)-)Iptgiuhqnb%Qx$U1(*H_U3GPM zP|;)E*7VQzFM1g9z}~u}qK>|dVONTnQcgn2u~DQPzM+^2cys*TL|0X5(7)jRust{? zt=n|}^Uo--m%Rn6-T{5KB~lPIW0`k$pRi+_@7ptQdrE^bvLcRWjnFYRgK^KN^csfK z*<{COdL*nNAiqz#gtC72cc?O|`xs;KVj`Q2Im^VGis03Ru?MFISR#DEDAq_8zB3q( z8iyUj=rZ5ewWCZ>QJYeoif$Fdpn8@}(RP<>2r6xlt!Wb7XkqklF<^C;Uu^n}{QewrF$ zLnUX878bt$g!UF!F@$U%x+@Cn#jAF@e)L|6yqeNA;=-7HbFxK~v0M7gY&#~D0wMh2 zfHZVa)h6Y>n5jo*R2$qW=@$HgD&7^(db0=5@v0aD?W(9Hu|wOTxA#{yI{V!$s8NE{Jr1WaZjbWe{Kb$Udqqz?excL@O#=-fAJ8&@lN!(T3?M&!3x_BGEov2g8OT&a4!wEi9j^|arYGoED1^i*$bFZUm8-FaDVV@V*gCAmmxmJ_6G1q zFfTA6S#S}HIAl}=g1Z@ChWWzhw6!sW`4gi+LyCm>5|fa(6pzE+_j1pa zr?ZbTF{|5|fn7=KN4;!Dc`xxf9oA>GZ11y>z05B5W*2pz_PO%~UUY^)#COM>aV_(3 zetX!;@9y=z%s`a_LrGckquqCdVBl?sz#py@twq4;2)FI&FgySGlyYg~K?8MZlS40o zD?X3gk=NzI=05h*iAlM69gMyB%pPZ3&bu=vr5WBg+lOww+^^+QHG-5#tfTLI#_(ov)}S)lfR`t)^Z;5Z5-VJ`x*N@Zp-^fEvE6fJ6zZ(F|SJpDa-RZ|ERP7fJHxo z>v^|EM8s;LGWT1TUjkj0a9{R=j`40i%cF;kz<&}0p+d=Er6WlAJwp9{&3ppAUdwS0 z-jZD>qC=;W!9=cP05r1P;&9~s{h?0={=4&Ob#fm)msykkrBS|HtBV7mw+ZoZz(}On zwzwM_C`MN8E&;lJ!2|}}TLEWB6^{%M;}IJeIVA4AXdlg|;~=;qYE)!CKFi=lSAF7q zOu!gs2?x{ZG^p5UP~p3LH<-7s)p_`CGMMnHH{Ivqx_`+u)xIZFFyI8)(BuC6Tcr|7 z|6xblsP_dkEY6c*7b2X0K~w{*1Q045mv!fJL3$YGb4yA6iE!)-PLpK@ofiwPOF5BT zR9@_ApBa1}?$!@u<+!%_f^x&6e_7~&Le5-fQPJ+0FtRMq-LS1Un)Th2w8X$Y($doK zY@6&)Mzw64S-lcl?2kW+6B;bm)p_6F$g(e-U9Cm2*Mt5N2FCd_VnbtN6ktAGei;vE z1)!afz-@f-u9Zj(W{ThFT@R>Fh~r5v7{$fJ5OcHjFU%UnJzVwjPedu+oE7l%I&F=0 zAO^!@(aAje{$?u;Q&6EBx$Vy1bg)=7pM>I2qQHOyM*QI5AOMMr;xpoF*-uXU)!zu6 zrxXo4iJZ9}uGV7J<#>*})^+xyxL(bOg=5=a%$kzpJe~~FKYs7!tLetn%01MS4ob0U z*k1iW-?EkcA?9r;9@gdYgfxA3$dh707N2lsD499d^>W^}mB^|u41@Y*(DP3oS9$(> zjg`l#jw7>gQ>@wM%yQCP=C*hB9zEpccQ)p9^->%+|%ZBe)#V4z>3^cx-@ZUdl@pF{}KoPx@@nJTD? zGL?yhBjA5J_W#CT6$N0nK(ihX>Sj+J8vB{a^K@U|&|C==A+ksM`6t{0QGtwue)?qa z<9hBkqypj7*EWcqCm;bq7jS?206{B6d-_lS*?2xnCR6U|s{rW#4=>KlIIwX)pFU}Q zD6--ofc{&DJ>FD^9JIEg3)wVRYd2I`*-Ak@{hp*zZWy#hdYxmX2SNco1^c8L`h|s) z=EHbW@d3-y{rkpd!6!w&CME^(eNwc5*6G!n!}ZBStDcAC!~J2Nhcd>K=6zxNU_hRg zJC2ml|G|BTu{YIiHS~;x0vTk?f47|r3z8&0nr^<_^@)45c8v9m3e=rVNR!K@a+r>!t{?K>Z_69?MmAsnOxYF&l$r_oEx;K9 zfb4O>G(ht%;3bmsQFjNf8-pp$}YytP7?OS?yjm(+*s2KL{kT%1!!YX)RJweL`hu_=t z!*MizU+UF&K#bP=eOuGVroD!iKvtE#LWP zd21l-ZzJNit!jLIvSFIxbrA@Q_8yt2 zr4xzU^Z0|_-p)=oGTt`xlepDlWlmw59i2X!^S^uk(;2OaSVaWv;ljs9qsgj59%XftoYI51&JI2B66 zkmb{ibF8VGcH$TPnUp(2WQWfM;y?s;7{ac9d>GPmDAuIdfqa&Jv`6XkqmUR(u0Nl! zSRr~L8kGd)WTP09P`h8dcUhODk-}kIT1$vG>Fn~} zSDp9rLf@^~uXl>%bkr@9zdeN$z^Eef4oHK-Q6wO}-iIqtN|mC`-Kkgv>v7|>cdqPp zkbCahNaAGmrx?4ja8zdhnAN4n@k1+mVFK~iTFq?FJ>i|lIwE_YVvYx7U<6x?-gVgC zjv=8YuuKF?iXIuH@b!LW`IJ}goC-z}l3%z2Tr?_`=(aOhD@26b*CJ*gLmiFrU^|2t z-+l%aflO<i&w%k!s zVNM^+P|tKS|5-QKW4fuK$PjKiCFwf-V+j-3it3~>#NmBYoTOnqY6uVZYO8rn9UVn` zENT_K*qh2!E9droED8$OhpX`5#am6eq{uy>q7Msi!|{&|*AMgYMl#zBccJp=gXw}`7*@?nRf`PI zB+P4(yA>FfG_mGO>8aJs37At-q@Qxx!$~fu+zP) zoUs97gMjp{6{<54Wu>QK!pEVz7wkmw(vV(}t4ff)s>;Nq8oX663?o`(it56najdLy zNbbB3HAd_YRoj2Su zmnS}yEJXhmUc1@m)lQ(lQIOB4JpnPhPy2VgKWwhcd)E&d3*?0~T&EOeOgV&+W)0>r zffx?>0PRc9+#$FU!H;B5LacN2)6;V{tHi?H;CJW2MHb}?h?RMmz3TdOp|OtbV^%o#df!x3~3d!6MSXKF=qbbRW&Nn>ax z|4FOO!wf;*(!*yedevc!sTY+rWEaMQbo)h@xOMpXJIMQJ7bjxoo34 z=8t{Y1ye883gyaL)>z4S%^i)J`j*=VnZ3sS;d*h&5Sw3j(Y>Gsehz0OTG%D21_-rw z*9z1{n_^FFbhLa=V3SifT@9ZWdqt1zz|zTw}i+o8%Y z+6VbfwDCziCNR^oq5GwV;H1Be)S&l%zGFaS%)c>PaGZAYn$yc8!<2$_kF~?w17HnA z7KMA4t>agt@^3HzEhL{aUD3}y)3U%*ZZUHr3qA3rgW)9INK8!CO-f@+ew&^NMUZVh z$~rMiN#CquQ!d)-dsI`~pYf=DamJuy4gI@Ur7uRKas-$hJkIcTIlaR6hTFOjNevy; zvefIbWS>CflA5C_*74{{r94}0Xxrur+`?k=r{s9m2Lq2a0PG7VJJ5PhTkx+n#<=l8 zOgx4HdCOnHvMVk>c?Q_T{B>tBS?B&~#5=6{JLU(d)@$HRb4T)zWVX$!F0RaJRz&|< zuA$+jsn0G7|57g5cvLR#4P+mR+PN?6^vJkmrX%Z4g4~@r4t+?IH2~7cRgHGEOKjIp zvE_S?Z%Mq^0M$XUh+vTw)1R@uE5CgcvH{!6w^Zj^KFqsTq&^r-U zQK!-c-*El&F{uz%4-a9nWrT$KN3Bbg$$0&%zd!-Ik8;7B;9pIyU>7A@uMZ}F8EEIb zT8J~z-7+3K^ho;fp1;d`=JjZTd~1M;rG{wTswQi4A3`uH$)SXB1uM69pX+J0+4UHH z>3{M*EbGDOJ`qVDMV`>zT-S1IesLY06Yiyt^ETA%v$>b)l5HSN{?o$LBr{vvh&X=C z8b2Rw7ldWh{Z|TnZRERVokaVO!|Jb7xTcY$Qi7_bqmr0|bhWWKbb?Xtg~S*j3pklN zBqg&YAp^67H@dO3d{`-^2t$>`t7)TAebMYKTd9;SH`9p424KMyH|=(6>mDrOu}3sy zSUFpp*3Yu7x3O>xbMK6{8GAa6z}&Frr#Lkm)fU}yQaQ>WjUtcN*y~6@ll=ZkffoP@ zhf|n4#{S`=f7O>n#p#V}i!$Fmi?#NCM`QWYPkeU4DXc!2w$Qq2z4*`7r*bHy8xVel zjvVJ&+K<(c2&OdopHiPtW4z|<0|KMcL-`ptuZ(*wERV?iLj+bVgzKcN?cMs>jMkv7 zSJCA=L|^ECa@V?G0WpSovKL|7qJ1!P1{S>&H%uK3&JH7~#qEsd13yt;MO|5s*rSPf z{lmZ&d=UB5AFIVQwZz8M0!Y$1hEZDV4-K{6MXK@L7XL8I(FHXaN?O!&(5{c!hLZRv zrKI?$Hk&oPK;VaTdiQc9pIRzX{dcqfk^9f?7!iY-?x}Q88TG?s7sGM$gx0e0$Y!sW zvsV`7DPORAX|u0xVzJ+Z)+Lcf_d@nMd;C|BnZor8U*3c=ea}+JHdcGM{pP$#ulaZt ztCfPjwdt~!zz;yk-(ufPmC5z>KSF%UR|-yD#@`J7UkzYaBI-=>N4o-=!k&&&D^VcKh@Ci1JGgiPBDr} z2ljmiSOYJr=_JOhUh22FOwaTn%j^$&(11j8^TcfAjB!>zim%%=p8E_RkrI78{duh_ zqIeSWFHOw3K|+=O*{$YOd*e-x?n0@f>s?j2d!DpvEMj>hp zc&j1OJ%rV)is0w_fZ9nVOy(%#Rf61Y2i6h9`SKgDs<}IoGu1-8EpOI_!SvjHa`X28y_73Fc{78&)wQVN$msu2}Nrdg%siO ze5#^8kY0jl$~4+{&C$=`T8(MiWYGRqFJ(F-8pxMh<1Aw2+(U@%MwGM2?sxX?U8v3M zVv7zRKJ!`xX#6%pxV+6Iq;^n)KOSWTM|4?CYLAo!YROl%v5AcXg)*mL1%|Auvd}34jPZe6fVjmp>3X>3t!VU!Svu{OKhL25F-t^#M73i_y z^VID&oxYD1XDoPW-_wkjqXGl4?lHr;2+|qv@)`Yr83%y>cSgS&m!BlnPM5Ag1 z^PGnB9MnCK^N>ICuRw5`B8~s=Qlx}Or!FCTQK;TNQgnTRCR#sS!5sX_e6WC>Cj=9X zs+oQSx#}_9w#PMt8{U#oEm;;s0@fEwtGLM`A-0?dovIXEhzJL@eKNsq2*w0<8hw9x z*b2My-Do4@(aJh%ju`Vdd=!(n?Sn~eXDUKfj;_R#ou&Pa0#gpnC7Lf+;W@=s!HPDX zg>WiwbvyeN)rbDdPx>h_h)L1k)GHm736G9tVZky6s#7uiMM*+~Xe|OEX`H#c8kP(< znlrE4G2g=wlh=r(P4Y4Mv!yVTzScH|Xw@8_D*fG&geryA`0lH;YlLPY~|fnY1@uG*ljS+kt8ZD`L#p__BQFV+7L z0N+F;0Rd2Aug&k7xg<*%%(TdW7c6Av@6!Fjz9Et_SGUv74*V<+A9P-p3_m~Tw;E|{;02?QxIARqd z8iL}q?_|ZJSe~7|2NHD}0-v9J^!j7}N&%#qskOBCXPOM)e0Ody8&zXPrEqh2ihcXwqSgk$4!EYC6|9aC;TfH{|$hpdo$`s zr5&J=c%JE+2vWsGcX8KqLEvAT>sMQ4oRyW}jpg(Jfp%uQ^cJn?=~3Jf8@ z80ln_f>+?X%&GNV_G^vmE?$_G$=1M(n6F}Cf30WwVUW$U9LFVMt-#P%4uvDwO+iYd zM@L_udnwnq7D?KWnMN{~!^Ti=T`sHme+4;Vo;e78!p>2?nLO`tlD#JarWqKE1tkSyZ)a}_TLz?!nihH zu{LFClTsw%f)77X6&X}5lF{J^3gQr#nJZ!AxZSIC1xf|!Kd>}a{~mhs)<%D9zN!a@ zPJgC(FQMPu8mbxQ%T)(Vyhh)jApI$mh4l^c>(AHOaughDSLEd1YD2@z>QR<3vZX_6 zlNa8mBY8v~t9!)p`2RBK7bb*Er#Y8T`0!teKD&HkaBjir`1a5`8Zhfgxszai&$YyS z=ikNu!UmL?<}8Xz=$g-z&P!M=XPWrhe$+cc8V52675`opVCqL--xD?bU(5y?$6y;+ z9ATk1bAY*ORXIO2DLBgbAQcrOu0RzCf|I44JtX|r`%ITuP7AcsvX!8-I#D3NxR}l$ z(8z>5wu?OHCEJq)Sov_qfhd1=CDjnl;o@ca|1u;s;YY7YZ1Aq`H%tTFu(sJwoyHu) zTPJeXQGfGZiqq(1qGqg+Nwv1UIon>l{a0i9thFIM5s4hKcVGd1P3=+hwiqT|Av!A^`a~`OW3a$=eScV*!EyX}(n;3(zSLy}9di|* z(L7^rIWJKcSc5i3;QGVBI@I*H(&%qRoS*1V?BmaX&e=Eje?|P{`b7)cCEEz&z|UT| zLNV=$cRT8u+}{6tPm~V690H}3-}}Pa2XpV_I!JUcaZn-cLB0+~;&O!h+A+p*K8Gzc zna}G6Sc}svaWt11lV`@XsT3O zKmUfOia$x1`90`S3QBxutCu2I=A<**-`k)r+OYpI9wSl;yBoQaaX|dC{+yH6KNqLN z&_|g{OnL?f13>f->)HoXVyk+S%_?(J&*1*l^|^~eL>ORc1G!9+T{|R}9q!+w!r&0) z6GMK%ZTDND*de-_{_U$@1zMr;KMJ%WVFjC1#)0us{13h;J{X1^I5@HYons>|ylh&q z`Qa8i*+tI~f{%zJh{q@=FlAIkP5Q%8zSXzv`sc~&hgf{022XvLl?B3T(Dvrb#guUS zkyOsqp8rR>=lHm~T|YPTG|6ysGWhO2qV&Y21IYy`sgXm9`#;8mIQPDxsKvjBu`I2? z+W81Pdc|(kbGCvJNx$&S2yAlVopRM!R5iX+na6ov-Vj$kxo_*h=s0yM}L$5 z(#l_UPdZk6nFRI{B|hGbZi|Ds!ZZ5e!>{}sph;U~rG3<>&iDu05W&C_73=d2U&ci_ z|Gv`)0}Xr3P2y2ACq<_R6pTBADTKrde=m~!o&@{{D<0LPDl{;qvwIehz$DOQa2>0K z7+6@;8d&%9JzlX9$qyhx9X==0ztWU}R|7o8KgA1NWe54y_BVec1b=E$P>kVCjx@Yn z7YC?fREd9h+0Np-Z>^iW+nZRtz>Z6|2a`3y|Fa&`t5p;_N3@rp%+rE<046Q%M3`u2 zc#Y^bNxQ5K9mvy2bZQx*QU9}WDDP!t6ERam%(XPJ-qtg9a0k_~dx7|)SO#7tpipPL z8<`?x5?c6&6d+ky2FPj2T>c$9nNbo%9%8?0V4b?{y~ z+14(&Iya~IgX56o?qWhQ3BkK{3`NNueoF8uo*T989h(dHW~-KD;ChB45e#S?K>;zh z^XZ`xSs^lvz5)KnWM({ImtTT^NJN03Wn8@ouxQ*kHh|3oqh&{XTGj1a{fqN3f72@2 zxTRGT`z{nxO`e{#D49g_bC{SE2u|StQ3iEA9Kn(UstHq;=!5_!^_2M`mR($Zh zGO&yg6z^I8M@%pSl~1}J-`1HtiBi42-pAHV86VAOgB9zY-v{VN;VLm{h)XQ$!v(wh zN&h`RSp41P$EZH?bOo=qA+bIfXJDS~uVwhRa*U8~O4x}>lc4gR@&Qv?jHxnaERK&k z0F-`V>PQfxK`|^rVUA&wPCy}H{iPaK!_}_PAT(b06Jvn4KWT|g=-W}MNqj9z(Z%UJ zV-;IYhOG6A@JQv4!uZ$=u|Oz2ftr^P)2I{!2sJ%1zIWYSCy`8x{aaGwzy@GG>93g~ zb3u}S@eCeNGz*weQ}_po44FDoVrnsIBp&%hLU<8Cvqr1U!{sW|T7w;Fp6bd#7C71w z1iy)Fx8!yC3cLwen-+Qj)Kc2e=3tb?C^Y)!tm6^&jcSb!Wkq&Dg(FB4QGKl zfuk^8)cj=uF_`U!{8X=t*{21n^76>z&rT+U2b8ugfOQg3#(_=kmbAN)Ao8$Wkx(zIx(&Q#3O*yrUm%hCa4xqd%0L z8a_r?oPu6hueOVJ{Ne2yFxr=AiggMWzxSWR%CX-ZiO#h)?hdW4NMVg+C||3lxA+pP zb?m46f}VdC;HAd!Sj22~0TMMqAV@#61mk@G>RfahMw6&)fL(LzW4dU2H?hpP=z9Z{ z0^+H%XN(Mw3=T?S+x%t=)vb*W;XeQUQm?8zLD}7G!+P@;3{ZmZYWu|{$)|R&(R`qI zny89m(0E{gUAFIxh`(MqV{XcFB?k?nnk zIz>cg)#i87#?TDgu>Z@+$omA*dz6#&X04YL>t)9nMJ26tjVqd@&1Np_D9be;;5U`3 zhp>D*Wroe}mSIp20lm#7+!+>lrbf|sZ|3tWf|Y#9iSs&5CM_dfxM$cAyZ`bK9_@wk zS#R4Zbt#-~cE5U=K^wOQSvq}`s#Yb^a~yFsLa>jMzaG-{0We{$?d-q^lwmi5Yu`9M z&@CrpT9DN6QVkEZ{|Ok4MeaFRJPF>+)lQW87ji&deAHjM!hD*TNg{k}B#N@>A?WY_ zTh7JzE0Mhu_Gcn%n)XfOJM>LMxhz``qZSfS)_*LHwij0Iv`NV%K1XYtq3^`MJ;*#w zk224LU~%kzbjcyr%2n>$MFUb{VcX=OdAXwdg@lU+(=Q+Y=M(b%kN#j-a9En++_48) zVvK&CzeYb*9Ht{h(?#X-G@>h(Y=ru;Rl=&zufXAM41>{_%d~MOJoz(XY&AeqV`Egv z9|8VWNp9j&6sTyA6<$w_?_{YICOoDtm006UfWWbO58N-cjiGp!s`Fi zm1Z~m)pEcu_@h&G^fCe1>E~i!wmTBo4JZpOdD@X?zp?6Td;@7=YAjT&R0-! z1u7$-4mG4&mFA$c2QW_vHshn1XXdVz;4^t?4eRPO1-A|c? ztk$FJlnoe}N<{8Y5_(Z+e;zd%*f192Mu@W_`=&*^O!>7kqXI%=nypS;7IQOdkilL0 zGlToD3!txuJl`_EG1>EE^zxgWbGiUs&?g)G&%azA$!jViGI=gxW@mXkfbR26L-NEm zk&#);e|!BYT@=q;W``b6UyJ|J_TW*8*3NG?g6RNy7BTVIx)wp+s0Us|l!62vtfu#{ z5{dYBH}Ut&0y4=#Z5w?Q6pPa5d?m5jUKxp=CjFh7{5004p5cE>h4}YUF5l9p#RT@B z!OZN$+tU`An2YLq0I`2S$Ha>zlQahStj}o8%b)(&1r)wPzxB)2I=|+jHO3n(Mg#5z z4R~f%M3HI$!rt{Gss3cc`S2b0f8U4#SvDN?FX9Jj5Td-zH>{rfTa@kBWUS~2=zQM~9BCb;Uubk-hj))1$Z@YfO z<-r-TW&3B&TFviT{~tC6pyoW)uPp3e?(|P|Orsj)l5c4wLbvtdKP_*QTf-uW*ib@G*TBPl@)= z`-GMC3Nh#c#3K1FP0<3XeXr7PKmveSjpPtHZQVthE~k~mrEo)O=ZFNI!z~M>l>PS$ zeYYSo;y*-`E9|u|P*3=_lfI!j#_|oO)u`cYhq?6en8GHo)L1*X@baSK7QwoAHlcoB zBSbM(mXgy*eyw@dVpTkhU5I0rqVVZ3&SsjN&3x`VB-Xs|H`2TvFD2ejg{Ra~2~)X& zerKBa&+5#2C#%QjZx7Tt>ojeAu0>jX6pQ;t&9i6zNsgN{T9F@4!d!cPLMTRV7Cvhz z?hz*V>l{FeuDfx#i9bm1QPdZQLLn0bt!xHQAAH@u3p5E!EA8X{G{(kO8yZ`9 z!9P)M8t7PT-1KGKb$7hkjhpYmj@T1`;Lv`8+-7w*I@q9>F;5UN_9?U5(UXJwL;?>x zch@HgI_IQN*s5Hb~@ z21Xc8L}cXLXR6x{UR#Mmq2JEd9wD!sH6=(#Ob+vQ_V>N(XD;LRw+VzAf$a&Tmthiz zZyT;%_^@I@J4-QsI-75j8Zf*!EhJ2sulLIBi8FzWtC8P~x5yRbfG&Ub-I7NwzL-b- zL=*2SUT7sNNQjfd;fI@QJ>-Gu;L&tlvJ~0Usmbz(K0MyZKRQI1a|M0nuH`t#RrMkp zEAKq!Itn>X^@;%QnMl8n{FBS06OV+kc0WvhZ>m)D+(c9u$BoyL-S-z1tV>fE1sPB8 zKM4T;byb&OG>niYsIEcmvzCIz4~l`cfFNgf9Qyh7nzISe=I2g1uwgsD(vx%U6-DG z`;;2fR-8Hk{>+1aKJ5=A)EgTD83-t?g8y7n!Lqv%iJvV{o?5D^hR)6gg=$?Z>1WTn z5_4{3QZw?YmASXcu+9JJXtlsV!Wvl*X{_2FxIDmmc0{Rl`yqBaU&4Q0n^e2r)>aN4 zyyhUfKV54pa((Csi(mNs0TZP(t=^N0cXL$l+3@Kg_QlTG4cM$^s#8*MKRXD||LZGa zhzQ5dmKjW^y?*{Rauw9P_yf0QOxOwqq_uAFAm$4(%a z|6lj=fRPYJ>i)apcysseUu^HBr2k475`pRH(d@~1;vmopy<^+%Xp!F-oqRT$WbtZU z*6j%7Igsg#6XwVen&1P3ywy?g!l{G97nL;6KUS+qt#KP!zwhCu-3YNC-4t6|LM)Yx zo1?-x9IHEWZL=6>{h^-MDgdJ5iSxgL{iCcayb1@{Xu)@LOuof>9k92=^ik{hi#u-v zN%oYD1Lw)uPyX(hf?DLQGnUr~Cbo^&l?KSuWM?GTcekq9O}WN)JeplcxIXo zey-}deB6S{8un=brK9N_rFQe*g&W2gPpj@;LzBloGCGo3b-&jEH% zgH-tnXai&N=+H30N26k|g(5PC9A=cnO1amyv4IYc9YOIIj3#$TBtfa#+7W0#eDgzO z_L6aR`t)R`{9;#%Sb!WYjq-t{!_dt+eQeq8LWV*1+6y%1WV%m(khagG(q%)gz>VTl z%M{J12Mkb2>lOLepDbw4w7txK<#DmI_s@0`sH`Fec>k!`tG(R--6;mJ_Q;O6kAo~`6b8X!mwSQ)$h~U}o#k(uLv-l;!!)kNZR`qjjRZ5#!*PHpQ8y8%_j2BzS3*%*s>!hNzmkOW*# zy3xl63!|?8_>8v`x9uiI6+(XFNp9Drs(jIEqh$V`c>bTe$)Uriyy{+pA(zq|6-@^p zo6#$~XL8}p*=LiXa5$Q5BotvyY58pG%G}H*AV&UyWkY6p{EzM7@^Xs}_3x8e{I&op z?dNIj_PPdN4|J3g-1V_XByLBUU`^4&Et6O>q;W6^t8n~Xl?Z=pm82iN&pEL^qFzk5!%(R zE#t1H39SIainFcD{Iqk!n$k0OE-z)}quf@MlR&a%k+Kzx249>|Wpd_I)z)yT88tj; z^&v{l4!$9%EozDnIyU}LYB+|`&FLQTBo9OZZJMUD35FXBgOMaiG_RDWs7Holtwt3f z>91TI%~?56S|HQ>@0iPi_V-F6M}RZWilyh4fLGO1kVMHTRS# z;)Caf4i;}YgIIICC{7r%7VL$Khu=z9$Ax&h*P%!dYi+o0QwY>;U94Q<_S|kI(9UxM z`A$D+P!DSH(@Ou#8B=A3pC%n)b-F}bFGi%kIU$_ELIW@TMPwN%;Y(BkG;&NJw6^~i zVN^I*P!YSM!_Rh!hbzDzN`75Vnk$SS)D@!)PEA!=W<8SZwSbVaykD3yiUOLpiXUQ^ z%6RQMB5{ct_AiSsl`xKSyt|)(X0w^@aC>_Y9qZmuKY(i?{jWQx)oh30b_R9!aRWx~ z0n!n6iaBZIpBMPi&kH>Cbj5>yKZ=LdtRjcRv}&2Mr(N&Us*36Ht5W?1mW%+j67cZE zH)3^*Cz=t%MCUx!gE#Fb`AKx@Sv4$n1B48Rx{5PP(ce}cVy`OVW-(07Sdfmat+eCO zgy3ICSPeRCiOcAtNGT*~d$D9}K_+V*1WoGJBV00nBCIXS^?tFK^1tu-u^_I#vUk%{ zn4ontnKc|}xIFJ-xS1G!*?(9nk$^r5?cE5Gt?qam1U)aj(n9P$DSPRCe{0?ky-R&J zCn{D~yte8gvXQA%nj{i$K0(@cCC)FIe=|o-{th?pN}3pL7fCpT-OX73fL3_yF&wJP zgCcgeMF?}9%jZbz6LK>#{YVtt80q%A32)o-0M%nG@D5tU;3s>Sh z?IP*nyje1!;W=Fl8U=+`33Q;u1bq(n^@i2=WLnbokd6YVgTozoqWeZ?oTxCVuH2)m z(_RPFCk>qB-jl+QtXy?C|M58f?(W>zJ!!N}NmoaRb+T3pagqC5Y6AdsN|R4MW;z4P z%{4&LW&#xLxG&t~U~SCt1R_XzfrNKNFq(HDHxRb)e->UpNqr7|kmUMtJosF{&q3MC zjmQ+7E1a<%P~Hy1QLK!Qfhc}3^q^!v*$OHiKfJ3OHUmWepP$&QdjE1=gb?Ad2@Uf5 z4rdRz)g?;WvNu6m`r&8LF6=>yh2jm;SyN%ck@Z&^xW1)6sul}Bz?7#6P7vmWCPLKI zV=`PSIll3r9bq!T)edPI6@o=Y8fiPWuxY}hUczA#SuUhqlQU!cQ$F<1+x(kWC);t# z{Q^<5ja>vu&Th90>3>}y4V^VW$&29pAX#P4WOtkTVa5De9ElgNjk4#dHKM7a7jOPR zu`VQX+cWRGSip>Y*5!m_J7?#3j41k#2ziW9ebxrCmlb$M4)xVh>?6K2MsWH2vL4XM zz~_wk^#oIbLk%lLw{&*iyz%mx$Km(9th!q#Cz8^P{Ho zeIOBA`~^3ttK?qc+Un7KCs+jWZ}4eBT5@pBb3C$y_-KF!cc|CxJaU~eX>)ctag4to zo{M0*c06@B#zj(!&V9NW;j+KJ(vIRnXkM=KC!}QFFwQ?7V-DKyuH1b_lS^;8T8;W7 zf}pa(yDK|)rxY7Ki<`D^%=Vcy){0Fpx#Uc4s|!L!9=(yk_PH|ndPyX_ zGGYD=o&IK#1FAticZgb|c8@FAiH4fhUjHA}7s?TaVHoi$XLT$o3V#%E(FD@vGCv(!du2!E@MDA}y=3SIF(= zG3di44bbr?HXK?Kbam2jc;r&B*D)g<1nErcd>=E+6>w=$2#|RzyYEF_*?+~BmfGZ-v@+81IgwdT^imqr62wjFw+mxwjuTf zSu7$#2W~`dG2$~N2}wZO{*?ZY)yj+zydDMjHzsroJ&;X3<;H2aM8_+7>6jbprZnx? z9f8>_#K0~`I*Src$NyOISp$>~!aCZe3ebv4v4%{N0PPN2 z(UKaDvL2}Y8SyP;ID6MXn|kHTXIX~EF^;2?ycwdHBHbEOb#hR+-QT8esMG6dQq`&_ z3G4bmRjER@1Oj;r4LC^8=AV9JS;*HFyeA?dN&NMhs)mUK?7v_)MBV>^SLg~$Ar*#6&N)+62LJS zaj>PYf!VPqAA}K)!zbTq*#LXy@5}#O4qf}IM=Z<1au9%r>SuCdFV`hD2v2;G8j845 zC!Z{#fvk7A?K%pQlv4n-b>cK|aQc!~mno|u$Kx~Q;ret(MoTlli53)7@Sm;0zsC~U zC6iKgu69kY%Wn4%p%d|rvuc~|u@Td+PhtdG|8_R^dmvqnc&UK~OEC76!c&je=AKG@ zFMvi}t1O~iw6k#%(g0B6BdK*+f#gd()=uNhvg4vvFL&T)`I_#^#RB9)#mmE<=j6u* zM0Z^%VU6((@(e&jlYW$(mPhb;b0AMh(1{bsEQe&)(Kh#br2e)PkH$C ze`p$Cp-}>O;4iAy@yoZz%B5!U!1ma^yH=Rwl14-KMta%#44mT?RFs#Wk#umYt58Yp zYTZO&$s?FnGOZoFB_lC0@%iRMY~Mil>?u~o*J|@1@Ti_ykRr@Fan!iEepcnydmJF2 zCpZKo-`~DZ7z{O+vOoY3f0rL`@(n&l$MutOckD}p7V}EGTyu4>^Tz9Jr+%MroW~Mn zmAmQ04N4S`J8;1_Pa&=~%@O2ZaF^gSQR*%(Y5=v8*L)k7p>G$#1oH}dR zqG5e%xd5u!d~Tu#5{2a@k#&YQi(c`#y5uwJpIfPqa%KHob=xyLO;Ppqjrm*Af63ao z83VNTKwm$h*7XY``eX4l9Km;nOj`;!rCp2<>gqbKpL?m_afX!5%H@8`!I5vao^E z3>ZNlImsb8oxYYbCS37 z)Gwca|L{A2E5$t==}2xF!hGAg(NOY@xgs4N`9K;3IgoGcqv*YExlLKs*bo`t;rXkd~@yf-`aIcT`NA( z;MN(&3x}1NMO+0_YI?q>z(SuL>SCuoO>La#_{;19EXT zE>kYxX8=|dXWynH@5lUNkWU_{O++HiI2F>h%ADfR@=v@Y$o1QM8O;AU>s`ew{!o>% zm_fO>()yJ-!W(fnCgT9eKIEqX@P7S-@X0{&Lfp=?Anl-si57)tom)*Zjpl4^ZH=#_ zaNQ(`!ReUiVylKJlv02;*e|N*uar)~k9Hb$C_~Y_piR*LVXeGOEReZB<744c4jl7} z-iv4haQes<;VAI^%0n>yv~3ZXtH>8396V`ZT-8a$ZW?csc7Y&E`H%MA*0PV8pQJ|< zD3`Agd-jS%w1a-&<25rgDPfrFaw$TV)-jc2hDeB)<&1*|QKg2bl}{*i=}Q18=b@|O zM#K}15VHGEbZCfrIqJ0{b>H~|1A5UNtmQGB6W@8@N{j#N2T5c4n$Dy+lytI7_`%S! z^6^g9Mj7rY7Ge*=Kvhke?kr}`ml(Fgkx59DUJvK`4*8)*5vu_}B`Lf@N3GP%C+7)ud^6~FX64p#D=SYgX9?NvS**PqaoI1aSnD0^J9GMwlk)2;srMZ;0{G0`UPH2rT(6ejfTR)fQmB@`I85j5 zfPv3Mb(#;|o3$ces9ZXOvz}~GIDjK{Bxa}zm^geIN3W91-E3@t#DL)d-(j1JevJb2 z(pp2}o+V%1NbXRbt0K_LGQ@9+l)WT@RAXBZQ)24r=!~h^d6^pZ$h)(lP@ozQ4lxjH zdsH|4;*z;Wh0QDIB;LE?Gh~{UHRVIQ=FXs3^|$nG^-6*)`rfXC|jQ#+>-*;QkUsD(cc5_HZ*Bq)I96lKa}%C)4|I zCTv#_{$52nHt4;Fg$s&Sb=tsGjzd6WeKI!#Az6=WV8+@DXi=Lh?K~?^_VN4IArh2y z`zs7)Yz3-qGo!^ETY)^(Vox8eWAv|FT3oXC6%wLC0cD;<72uDkDKJ0kBwh}Hu$+J$kGw-7$0uQ z#^*LKsF)rTKceyG>7}o}0f}#UH6@`y00h;cM4shPO^fjQvJ}>R0;g8L^Gd|f6R;e1E+il_j}$I<0gK}d(2lUkC$Y`|+0ESt7%MU_LD z0313(u`BCqAA~1vM*RhY)*RI3dIqT2oy&~GdlH^bFpd|-fm&3kw-@z9k>74i`vbUP zLe`_U61F)=P)>OL{0w%}%h;ZwItB3KdZ*2SmmPhS!*p7YFve%kqTma+J9p=1scUKC=?=%wI5EV)kzvCIW64BW{Yw;hXbVAW zX@aGmyhNSE{q3RVFqOt4_sxE$Z=B}?iKEih2ChvS!u6}oExd0$Hmd?F;qe(D=i&Ft z0CCuuGLi1wp4l0y@e>LZw;uoO9m7xD>;T7C_0avl5ID_$ zlhYpipqSq~7X=J%?`iF(SIi4J_j~s1rzhfrZvG)r-lnFA+utA*kEZB^;VAxki+3zz znLdlswzJMye`1CVVVzGq0EfMA7@9?_1Y&YR#&10_$bFH>F2O9l6*B$}VzY%m6N5%I z_S*9ZO(t=}p#d)f_X{<$`X(fhs83jDf%dm)U$I7Hv{*!_WQG0*L>aVSNT?7fODGdu76rny6C-h*4WltR=Db`6d`Gs4_J#IZo~ z{v&GR*$=gu&ooOylpju~p#3dEs*PiZ6k;l}-vgM!xFYIBNDB?udwEK!{@!QKpO{k# zO!X8U{l4@x_wg?^YVAE*AF#W`{qSpc`44X`6Uh28cO>6x#=JAf+Sr?9CFe&{v21Ex zm@qbNTs+~&3qzkjbA!SWL+>i(ILn4_WXNhm`0Km!kLZH$rM_r{3~Py~l*p8Mww0y& zT!`_BD?S|r^*ujQXgi`GNY z-jri`UEyL;lxE#b?w5_WI_rUQ#2zNO{rcTgt87YEP<~n8lDXb-&Hj5wvgvdGyM7g_ zfwngjxgmf@eq3DwD3x`R$0(I_tW|I3uQyH^5*E0BeRtq^_Be2jg%smIb)c01#NBV~ z`9>)tLKLnW8|W$t)kyM=TgV`2`codnT7p9`S-z-xpXodEr7qUPL|GN4QwmUMwid(pM!R!+^EJ>g(AhvJXiB$!rg9B=zHa)L_ zXM7=QMWXe(;7at8`uy%H9Xs?H4nf?C3xcQ9&PrQdJDm#Gto2+Eew070I>|9 zBum>Uo%q|22uso3z4LsvvEuRf&$ovnxXmI~^AQ7XD&oOVatva@?zW{EKtmB!RLMO{ z5B%FbBeTO5J+lduUZUBQJewhll3KT0IG!x5)t-D+U#Q4Gly8|ldymRU5J*1oKY4`g zM02Oh_@b$|V~RwC$#0HWe1;kd`)J+SXSC^B_}@lC3KYly+2qK#zl z+}X*qta6AN->uF0nn8JL;Cvx%I{NKOxX1u^Vk3mAJh_2B_2BmrkOibjyuF@Ea*yIx z3Q&zq86zqIYBs4vXi1{;rY8wn5j=7YUXFchegncQ)lar>rKYi+hCF-B$S(OrtEl0RKt? zx$*8&S;>$PDarR!*VR2A*Eh#;1cc|{`oy%UH>!=hc6r94MMA~g176N{NfJrSKAl_Ys z=`;kyeBr)JUDxA8jHHgb>d(piR9Un)#kz}K(%#?6#{D&+G%i6-`!4-#L9>wcS6~f_ zopR|3_yu{~uSZ$A;<)91%0d3ESU#vN#dndVq7t`bE6%f&Av{;Xy`iNEx#yTQI~Bj2 z!ae&LhbluBK%PaTc7N(~OVL-W7|U+Nv2av7Xga}aEXKPu0C6#vZu4$syU1!toaIYi zj#_IoY8!Th#8C6Ket*-7>8fp{+AfFxe!5$s%v5HwmOY#O(%6o0!N%Dl*9Prjn=-A| z%yKBCZQvQl`I@k|vPG_|!z^9bGJRy`6exa?X@2!xZVGz8K6~;vnFhK_F^o$|CxZai zyX8YmAuIH#OQ){WuY2C)^5_L#b)|NgB<^=BOcQy2=-fT3mXN#O&9SS4?`pwnw(6Y% zOR(MXx~{{e0X>u&Zf)zV<|$0n|7yeeUEAY?#6UUaO@U(7 zyi@-Csm~Hb6%d%Hfb`rSRNrgxmlodFh>aRoow(iF8`w8B6=ANtrYW*nX)2tv=BU|| z3)6wJ)1ZJ+61i23&VgKK0-S-#lK5sMo5B-GvFG~OTcPCmCCIQQ?Y;NYpb&azy@?@# z{wpGNY?UCY@&Tr7`Rf#U;!pRV?rj#OMi;C9umnI5u(vx-`n80qKUK80*DlihsAXbF zP7TeA_yma}?w1+l28=5AzSfTfi()j_&gwQ2Qjnq9VturyORTCpv_}Bhl`YySu%>n< z%6XZec(L4P`gU`5jEh2avhsGa$LV7%^MeDR`w7zHq}Wg#?ovTqiI@Eh{r19D;AHw( z=h>H6(6&?xW4z!UVa796taY9I>+B3g4`gD>uUXFX1Jc2v-ppJFsG1H>@i(<%=hZNP zdCmBakrvs3Rw;$jiKgy-u;}Gba^9hemTQ6|8UWz?45{>x)on&55$}k@wo^2dc zA#X$zRj1vuJLKD&T>)$xzJ5mt)r;kiwTq(6aLX!GOiyMIXpYi-3A+y8O}r0&QUMhI zlp9G+7*u8XJ;uK0(pJmv#r@AfFHAx5oC}Ae;s)FB;zMkmz027PjwI7-h#}vAL2`w! ziQ=)Ps*oa6vpB(l-s>N-06Q18^)qk7bflSD*xelXEC!HENsgHrX#a=LDRH^_M!WA% zZbW{%Kzp{x4?r3bb|z!zXdI9}0S)^+y+&mu6tMorC?&1SBU5E>D`!xM?=ok~8f4q` zQ9IKGd-6s6{M~XFrE83J01g>w0GJhX^zbM9zHin^ZV(ZtO?TQA0Y_cK5g>f(Xk=F4 zfr;Yo+!3P@Wi!P}FsSP3Lv8fD&0*{RTuLe$1{B(0#0myYraJRJ($4KpOe1x|wjUBtjbXX%v$Ct&9gegPFn z8!c*aWW7feS$n3iQkJi5H1X}zpg7TN|Ck1BO2HqKdoOkEO%haiTEEw1M@Suzq1w^` z0C+=tuTb?~wVlTO4`*7}`I8=E+7)vB~08uncCiKHAb^>RP)9cSggI`xrwm(KJoeK$O+8t*(n~F4e?=hlwU+U^pc$)*W z0&@5^8IBT5>sF7GGa-Eup;eH>4Deg?i}cl`c=0qJLv_j0$DVocwWVf>_~69c9W}>J z$d-4x+T5Yq^^C~ztUh+yQ+(}o!X&<3DCKo{6xa66SdRrg8kN0a;(*;R1aobVKegUQ zv^u=T<#4cHs3l-E!th-E$5^@aPvlhrhrixIi^oW_xI5<2Z{K)Y?&bz?(7=VnZhL&m zaAT-@>=QLRHuPzpVYf%y2#6+KW_4XcvwQ{Daj_x~V9IiZ#OH|4s=(rR= zEFxZNKCKifC7mkE0uMTO|Ei(O;@xv4?VY7-H(Pn|2KUxVOusz1y!!(rEYiXTSku@| zB9NuP%Y0TTZ0G5*COkUFtW6pCT3-gQjCQ!;>i}Ef_cEC^wF-4lvO<;5z@> znJjfe%B%Ye{^|Ffcy@Xq;bDB>I&@wisqGpIoB4|_C%Xmo?(l0SIYN-CbLv5b? zuJ*5*-h5r$$YoDn$a@k$7AaAH|KnS`?qP7|)$yP8DIgiCoyGxf~xQ-%W4@WN8o@yMfiB_b=OBQViuINwF+p&Ul)m}pLhLCY?aT7`Y;~%oM=g&rlayz0d9NZ%Vp%JPwLxaG9BMkB=JzG)D8 zVX5(U!<84OUjhEnuC;E`basZ>EDQXc^M_YN53GTz()$hwW;uChDTmFmQ-Mrh7g{N+ zeLv~(HQT5klFB9OX5Fo^@t2(@NSD2N-&r%T3DVBsRrOTfwYpu=={)duEA7OhI?X=K z2U^wDafT0oiuDu>lhW`5H@}Mlp_wYG^TENTB`P3VzFRk}{`vgiW4SGgh}*qem~jsy z-0gD8mW>zdUFu^rpGBg0BS@Wu(`M~5gCD|2hL|)d@n>GW0Y5);G@13w$#J8TsoT-D zHs80}Q~*~RRHrf1z2&1D{AL^mDEfXMk^Zw^jbNe~oxoJ~zLPRN#b`_XlpYE25vT?| zs1%6^CrEHz-DT_7PF6zK8FyAhyx84_Sh>bdg+lZ1dYmy_c!=$AZs%YNN@TxjCEaDU zje5kt+_3NS`fO5n#iKG>Zo-fJw7TW8A5G7|$X~3c2fqFqon70;jN>PTM(wWk$!%}F znTU~!QcRU&W{`~#jr?Y= zk$OmbO2dI*2#Yv~_(t4nyf%l+2_qBDC(-uZbWUITK+VQDv4s2-3{_ci8jPRAsqXmJ z3kV)pX}eCzl1+8Jq}+RvzQeH3Gm;I49pGiIPXxH%@_1VHX27=3{?ZJg(|fxXQ9P*V z<1&0H+R;>+7BIPpPh%)bsOBL`Pgnb7x$F{{f>a7^!VcJ+VkuSj(LWa@pu==)PdBz2 zH_Ne<&Eieom=TLJIH{B1qz>p~!?y1SeFCXs+7GKQ$^2axVWQkiq2!sHW#?d`f-<7) zwe}OM_>g&r(4Ed4eL25|7nU$rMlodxWEiLMok8FoQO}ya)6MqI06Xn$5k8Lv1o%Q9 ze6BoM%QELY?g!4Vr&q@IkvGH|a;71hn(UVvBAly?-Gp#{e+}E@p54H&sub4+JIC3Mz`7~ax@5&DHKXx(}gNY)Y z*pXoVdXo}yg+f*XyBlXeC~|5vX?bfcWj-}@144-IH_pulNFr(@on-p~3)!`x{oSGP zXWC2gxwJR*vFSk$aN`H^77^d_XO86@{dRV5G<9%Mng=-mJ%E3Qnt0~fsB3LmMYIJ8 zqd`UcTRHomjAs?-9EPx9kF0|H^qKGJpXy`$ruFPGRqZ#z{l1Z2IW~$3weyvan*~Eh zcalF|Y$u7P3)@*Tri;G{lX`A0PLnHS(c-;c0QIE26UNiv`N(=WEkMPm1j_$7%UBLZ zqZ_ZL4qU)HrzYO08&`ohS&j`71g(fId&@@q8u8anq7)8e`Bz98kLIT^|1C@pc#1ECkm=rt!HpJ z$)@0bqme%pOiSsA&X4i&N4UVBEvpMpFpYxQf9OCNdRH!n;Zuw69`}BfGP(N$+;Nm6 z7z4(*XwHjLv25a-FdEX0Icd|RzwS3)@Ww`0^HBrc)TImFc3q_vmAA zVswB|jE_8EUN+W`M4CjQ--b`yfQVm)e*3w*OCUM{q&pI7=L90Sq-~nBiiW$7X-9r zVo2@=PVrp2=c2I)rWGYV|1Q%jAb1vN4|MK?aip+&-BR0>V)4^u1Vsl@lT5(L&BaBF z#_CP#l}N0_Pn!)eZH$27g`MAs_d(m5^t} z1R^j?UA@0c+8AO*D;^g8R_HqaJ-?>=}ZBt_vM7BW438oSrvV z_-j^a2OREX+9fZ!q`6uIiUkR17scpbAC|aNq?h%9!YY~ZhwcpKls| znY*Hc*4bNC>RSQS=p+6`%eN=Ia7KOvp_-bS+?;BY=TK@q`kufG&(L{y2K5EZdb}g} zoRBs{*^{s3q8z!TvzTSNApXlM`(1n6^IAsI`~Ai3_efGM(J6FO??3W0Qsf=b2)!|8 zd zZqwZWMn9I6+Gg$45IgKQ`?Bq3g#e|EngRB_-(O60@XMIp;G8taj^C*j(8o5#Tu>wN z=x^4qsO~W7zt*b$(xUQA;Q<0{#neRL^tO71UiunXP$sXsvE6x{kSyHv%yGS3JJ!C)zbOusuvtOFDpF6M7h8s^)ZfN8` zz`JNEG8pbFw1i7BY)I`+NFxy6|tw`Vo zm-N!tY-{I=IP%t>3aR$A_Z?5UQ?0w-dDaJ=*{l+jY}p>5qJJRe1+90VA#KuV+1+La zATm$5-HPZz-ydiPXwHv!or?M(Z8}YlREo)afY_kSU0F%ti0ky#R~lulSU_xb(Y&}A zpk9y1u^Cytetzu)Z4>A`jCq_L1#`$$EH>4yFL*sKlBIqSG^0$s8~qZY#;)q+cUcMF z3u)89>A2h`-c`hC=0hn^{H+sa7*$i<`raC^O0r6Qn2B{?ZV&HA16{@KYonS20t%iL z#q`%-4PoOmUk?EcoScsKnxS`mAsh+yt$>4L1g!f8`T}vN-itB2rc5qTOI|2oKDU~H z9Jtm&XnRu@$qT@XWed9N%@*@JMN|ADb9ulcB)rdea`wR%cgDKAADd=&`k;5!N6IMb zx~QsombJb06rKi)r|<3}zX?;s`%5b#VzNYsR8p&C$KZ2!nd;h|HDi5RCbdlBTyCq+ zU2(Z;*nIUOY5uTf3V5x`z^6j!q)*Ie6R-HwFA%9YH~`$`(YqYtq)Q}Y3c`|CW+_$% zBZ>IRXVc@*+L-1?e$wVRtBX2i%BseP)w9w~f>iD&&R3m6d^8(R^b_h|zYH3AR=Zvd zOR>R*-T}QEpE;U?Jmj{T_-C%pOh!?;k=ct_D3OZ%UN zY!$Rrd9ckS=w%X5fqJ_lKZYpb`Y-;H5pen{{DRyecdY+em4gC#jteKt{rhOMW@I*2 z2NlIVWIgalM+M;y_{0g4xrgB4FHW2|p%YJHdaY6^Tho|Jwp9Fbdo3%MQA3Qw7~Ucj zOQB*s_*&}H+m#+ype(q|nto~I^$W*FNYqDX1Twc+!i?l4FcXWg?M^sdjujF!r~v5q zRfZ1Ta>!dR9`@pe-N(76zxB{$27B%&7H~^p{;#X2TY|{FF9%v~tzeMxPhQE0r~ppI zm{@<&ewH*M$=xfGl(+ctJoy3x7&X8Qp)WF@`Qu3{ce?q!cq5sTcV;%*l3VVR{*b05 zt*S{H!0wPIt4P4uFZJ8M7oZf^JEVjHW>gEXE8nHji+iDR67;J@gV?x1P0zsfz1NyD zZtd%b21xp3#HELDfS!FZO)uGAKLwFOmEQ7vr7!UrV!C|u{)JRIr*C95MZ$bZgb#+X zd}rtVm#Ci~cB>;lVOap`6g&x2l^^TsPEOr(g3)k60Ok;$*zxO z_twY+0$uP%yn|u-(4*&<7kWdEtmhT@*!Hg}O`x}gv51ccx>h%}OBY|9t{JtQqo17< zOEkc)RsPOBUV@Q#l8l2-Lft;R;uXNPI5VC?qM z(B+!TR1Zn-Q0cEnksNlZ744suL-7kB>e*VN%VnQQuy zVlPm?P;dH;+G?ZLC#Ut@G?Koh1T%Ko!X#6y27f5vuCSJ!kXciNroa%w@ADS?<+_)s zhl|yQyDm5O zN_WN>#z)?#xV8h7=5Gec7=I*S#Mghvm5inSzJC|W|YJ0JG zkj2QVazYm->_r{nBl6r#np{ZOR?uI2;L^_{<6=j`Dwqk=B$JWsZgs3&0G%(;ZwR1Y z#~cPso93WJCj$7l$Eaff8nfV3E0&INE(3mWVgKgujxo79uFf$}z7s$2>A8O|wIe|@ zGS10p*$~vaLEe_11KfKs^bGZ{c4tPaTwh$trr@_GSYpOHp!FBAWTgu2`^R3b@9L!% z=-+yXnzhAYX((rpyHRhKCAdxh+`SuEqj{p^iWw&ldT@8sxa$kR(C5e$mFLIwVn2__ zFS;Vw=%CJ$L8g+Pl#=WV{7Ox+%`o0M0AU=r9_;KNyLUkF`z1;lRbe9S&BBmQ@=E|N zTu3~(BSq*gv20^)jVZ(EKYCuhh(Tc|-c^|eEV@sg8PTBG+f8`snM?4l-AQ>AB?WL9 zGj_x<4-wFe21F6eoHp(QN7@YE&p_oxA`$8I$v6Nmd7k;;$zD4JoU~k+oizW-TMO?C8v0c936dhQJa>S2fnj>H zjN;v@)e*bPyfpM{yP_^6tXn_cT{kxP3~4WN{j6-&;KsiDh%>dRHDLeA0H;{*at|bh zBg_T-j3OuIPF&%wR==f#F_lQ)i}qkDH)ks7|NkPs-8q^X@{9PEa?aL`iH>C4;)K~o?5(V;=ao%K8M(T(7!0df1Vgk^*Z6?Q~I@syDH1Kux6S9And^F8&p$*(#Jh`|yMq)mHn4&hsY=dp5T)ojUkI{kaPT zdreAf2}RuUj5nNUFMY<{y@Lg$6BkAg{NFAtPc&oLigI9JckK+%(9`7)6c#&KU{ukm zpOaaB^MaH<9D{heQgW>jnX}9+dtpjs#6tCXa;4&-_$l&de;Vk4Y5`pG?h+*tdy+d8 zEfi!xt_Yq2ld*8qcAICtdNP-MQ(J_?LwBX)xo5xlLt~t52R;gQ4TO#d?&k=seGQfq zRGtjlqZSg|K27of1*|*F)i%^KLT7K9nrV~YqW3!Ird~R5g+NN%K8_1WSPq~E)M96j z^QtG@x24JkP(_Gg>|@Wch;E&)_XERGszDEraOtOt^k{4qU^K8Je*=RBjPB8lb!6@r zYP;~lzGNx@{u)M2f0FOe-!;u5?HPvK6vqQZO|WcmC&VU5m4l&5Z8_7x-GTjm$L9_% z1uE1-`J3liLt?jrE^=O}JT+`fW6J>)FL;ag9a@)lkYBBziz2HQ6fYspY&^tfNehU> z<#@b`v2VE%)(VK`U{DfC3C3EdR;|o>ia~g@LC=>jWnly~#CB46DviOIafT?%+8^cf zG3QQGQc^~m6|2L+n4dqUh51&ep^s6WqX-vR5Id5dn6VQZ_m7}Ypa;T;mHiJLR9j;;u+J}^seN}{T5ni!V-?Sg6q<4Dx9M7T-?KAt z0fSb1FjKGrLoNHw_Xyx#pTr7guulV)X%%>$C|W_yaWDtx$jBaW3k^=c@=B+JXWs3$ zX`sv45{gvYE-qQDq@Cue1*0*##^^BeYwDvB2R5vvy>BqFZ_)?2VR;0i+y>jX=&jje zD@RNQKx-920+*Gh!=V5gX-Y;Vzc0ryI|2#T`h5Vx2%sUq;_x*)T(70KhR-z$Z#nNR zKdSTGi+wog;^knA_)~=7=)6<{m@J zOdd=X{kI);LtB1+%PQEA=y!i}XBoU_RYx2cE_*Pt+8D2JcPvty2g*Q&j0TZKt{mj5L8oUIduio?A z48>EZ{i+K_vpybn+%?%AbK~iRg(-&zzOeWT+;`?3RCAs!H1A(^*_2Wik*93`&c)?= z{t0js3sYd)n786VtQf*E9fsa+nd*)f&m|Glq;oJGV1qezY5H6ze;Sd5nb>T2omwGY z#4O-x9=C-BaB~otRf~~=zrG67>11`;j3bF;j@}|=JLG&cL{wnw1OKqGL(c;2gPBH0 zlnC)tdM^bjXau^pn6XT>tR;c5*e>Xh-h0&WU48V$r4ZrWwA&&r{KzEZcHY+ht3-SlYKWknRqns5EF7$VdUha(xv{6FfxJD%$P{r{w4C4?j^$qo^by|Pzi zuM%0IWN#rVM93Z~WJjdTlCnd#LRQ&y?ESmmNAteBKcD;a{qJ}GareOcoO7Mm>v~5EjgBB3_F#F^oroKcUs9WE83;8gw~VscVdFf80@X!zLY=|#VEsWctr^U3((s6!1hb{KXB30s?pvnmw9SP%V9{b_GBGS z8sWo^ekH+2suf4REv{Zc&{cF@IabxP5B0O|GO@HDYAFK8!dnB`T-$POCS--5_6Dd} zvXfr{II*)CC-VveB&Ai&h^=FyQ8d3ssYvSy#_I*F8KrRIXQV?kbXz@C5bNoza}&gy zUk-*oJpfeaC9^~za=x{&{Wi003Zq(im&qgcRPD&y0$k8q!yWxk(}^DMrx9|7s&$Vj zekJuwWER@yDF#TA(DUdvI%=zvvx2#DwW)uWckbN{`N4+S>ScVz(voNNZ84Bey*~cQ z-1>izpCAI6Co1ZyCsBzI7LH$#M`n%Ed`Q4c+JSpYlR)5}Fz}jxjq@VV-rLE}$T#TF zmA=p)_HIEul6Y(-tK6*lWc&Np*09Y4ef%%}M=|j>IJC!K>j_)k|LD-w|A8<>xO4Ud z=}ChrtJlW89UUQor{a(_Ink@u-t2@RF{x}rZmh)Mm-aW!f8j_2)S7RBs+64tR4$=8 zp>K9(yJDoz>H2#%fKoDy*{96&R9X&$A0LZXgut;PST+b(BL;6%QCye{D(zkrAgf1lXw&ImU$Q4Vukqw!xM5U!Zl*F`-rD5m?2`l2mkMy9xh%D+tbScgDA-TrfeXZD zie`boqJaTeQK22aEoPMTcofX4mpGK~ef#8M`J1hZToFE7^rlTkO1DJ5>FEmCPU^p+7?_enzs%vVkhj!3Tb;Q)l5;v=T87fP!+`nD9W z7Ophk7;Ro;SQwSikEh~y;uzqXyqZnEzE?2Kz+gI%Ue&xSs*VxnvLo>3S!aD=5NtET zGR;bdjq9HS8UZxD^o%jI7s+5+sm19GALYE{Vb&4m`zkF#NAZplQm6eszQS$NI7 z(90JdY4&^D7yNRy#Bb>@i%e$}Z}s7EA~2_h2Vq6s zV3yAq{cx?tfzh|vaaOlsao^4b;jXb;)t@$2sT!2c=v0OigO5@W+E(}B_1LiI@Wnq=+w7@nc%9%Wu&aW-{Eq_9KKo!Z zkF8y39<~@N9f94;nV1zl!`>_zpSGcwOa6(t*)us~V^FD-lJ2a>{f8&@)lEue948%a zFCHMmm>ft$S1t46edLsiBI-K65Bpf>Q79;b!=UyK`jogmdX8W@O8t&i3<)Md$T5l_e1bD zdi;$KFq8GgxM%#tW6~60@owuHIde@As>4MA(KAaHz~uGjrcv`?El%|`+iKqSf8T(s zZyGqa&7cc`gb7?=(~uj1r@k4@QgNBTyMk|l3P2|4Fqh58=P*LG82$kg!;jU8gd=I3x zq$zqZ(YYElH8pbg+c)5H@&v|gW}WaT?;sR~PyBZpty%z*FSRY5e#VsOJe24*(_>q? z$*33&2qkt!I)lV`$JAUteZA-^Ypv>>wbwI)&g1N6t~fW3C~bC%-)Y{*EZ(6|%PHnL z?sc82?J`AIpi3>zEjP&~JN46{pBr%O4No;$d%iF3pWY2@Ck5jlv=i3LWr=nl5e?`$W|Q!@M>zXO+< z?tKn}lAgUW#P=PV1gA;}k-TS3$WB3>A6 z8r(d&iwUVI_|&L18IE8?UNUr|xOjtz4=3N|6aFo}sprGeC7j03b>9sy$P)45)D0|< zWgUX0&dr0irOrXKU;|UX(=c2lK&doeKdk=;M173b)JmP87)*^CA(jDd6(C!u*^99{ z>&7!12-)9XB6IPKo;encM~;^dv9C6t{y$9ODpQw$o*Kjoi)N**_V zWzQN97Xou+Rn~1(DBJHkNqH@rYZ#RZXk~9%nuTnt&iOvUYL}(es zjbyGn^rtE}3O1_9U9T@Ei^pu`^~FYOP^1gZJ0B11Tni3R_ZK_Z4kq46n=%VIts{kuRPt_ z4~?4*q8sAVca-IH8#DEx+U$(G^*&`m+eGkx_cR>yT>@M zo5IZ4BLO{E1+2eTasWwXvk#~4$eE3+E^SH$=>fxJUcc)2KYR(mRJ>q0zThlod>3!| zvu5o!a#Nj-nRr+>Z2V!@AVG;A!}h;G0j=c>3^8U{Rf#Z z=5+p(y&r&TQz zrCzi$)--KIpQz{LC9>!(%$i5+hz%D+8Gek=^MQ9t+!`2qLMN__v*Z2(2J<~tb#Oo$ z@7m%^nZs?qKWAj%x=ax{hi&?Mxnc(aG9xX>+YBROA0+l^nx*GThd5S*6a$CD)ypo3 zyG~7N893Y^^3|{34GYNG98ZIr;t(X;mS&KUw2-rY8Z1D4=KolK4;ITyFb`T8 zY&P@pg=XHEcl6uCm=yRAbopO1EBE{D8WeUPsUncL^80db$0O=v2+_ zgKp=a|E#p12P`O3Pnn}$v3MaaqQOt1imXP1`RZ?xw0+zxAX2DYE}zmTdEI5B1Tdm< z(l{&_R1zl#xFBafcyiwu6YTTH75g%FL*d)^5qos0&87A2K*kBVy6wvWz1^(z(VjWJ zOScaMS_EMd#y_c~e&h_zPqiv}oRw9Psj0;0lHgOT(Aoe?_>HAqc@^3czt7NQo}iaS zBex_}7+TFK=msjTB7$$79$H&0Zx-&qR&!o#49xQ>|HJha-5@pwZV;N0a= zX)f8>&gW7TbaOU)7W;RT2|VicgeggkJJ@jv=Ji+4JZa!4ZJCCgv2fu*@@Y2a?cJ_3xZpU`B(Uuw{9Ux;|Vok!0 zWgTyx(ImdQZ&kHLwDBUff*?#aLkqjlfsDE|2Qm^L(?rPqX&`IoHuHk1^6w&{m*f0b zlBUR0X`RLX7okGqjVu8gsB*>sqg7sighz))^#ue-uEN3Nnu#AWjnP+oDU(36Fc^V; zJwIvd`1mW7zGNMqE$E)~SX+R>^&q(C*Qbj`2mMI4ww5citUI%H=GRc;%{O*X8NR6? zPkFXc5`PQyafOkrn=4Lx?8bA3y7>*mW`@>-J%1-|i8w0)UXkARo zY<<>pFf@2H3!@Wer=m7xLL#=8Y<~!?la~=L%I^f#CE2a$@7GpgWzU1R=|xGws(DxR zIBhroF^)h>#8u6c?7^@yf7|W{-3@Ij4Vy~}Sz+t`2ud-TE+pg#ZYxK{gzG*{LuL?T z;|gsve&7!Phv6@U0)7hd&2rJty(iooDwg|(eSlB%>g<%21b#i!uJ{4atsS1#A+$HnfV@vzVHKI#5k z=nK`03%kso07u*7u3MXY7U!j~CMh64(sGb)o_Ax;YY~R`R zhDNy@9d*u~HYa0fll*RxeoXcKXdmE^jprT~^zS|`IB|<u$ zCX`AAM91~IqKbn;J(rEBp*~5hCml-J|2EuHESsjG=afdnf{&Ctzf1?)ht7r%R|NzG zi@S~QfUg}VMftm9P<53qmuTpDwz!H4nl=m{;fMNN(oSP(N?~}-FFeVB4>PUF3Ox5e zD;xAMAHivU%J<2HQ{}qpz%qF*zV?fp;)QRSCUeu`K`|YSbAYwjdl=WwwJ$z33i7{bSxXO~3mw4b}DDmOO z_%m(o_rM{TY*3LtIt0mn9&IqjNl(q*3&ZGL{0S`|SC`3}YtYdR*@Xv^0X7h%*9|m_ zZVMqe@jo}-+=zlMrXy)pQ8&EoSasOQ-hy`jzPi^h1$<%*oqI4U_SQa#TS6}44tvjx@g3L ziA!Htvau7{c49Z#^X_quk3+&lQSGxu^s_TRLk9oskEbJvXG#=8XgRTGf1wG74Jc>224J!(g7hc5|$+^!F!%skA0 zNf=yuJ_6rM$erS0;nMfUQ_(?8_np;R#GAI?e3t~8pBxO}OLWGm9kT4Mf>8lpH2 zRjy3d^)Oc~Xsa0APLJzsN~Js-3P`zhPZn22I{Q=@jR`vU94I?=P;aUsx|@1 zW!XJRILg@`&2E`p$B@JJs}yRig|~uEDhE2$(6BvCa7pHGwaL*PXn!K;a#)QidPu)} zm5!bi>+FctFK87R2|);%$Mk+JCU;W898#LrPp26-(DX@kJ?vyvK7O!jM!?($r_&1;~st+^yD;l%)Yav2PXh9Ij}R5SU*GS zSx!`O)At4x%viFe2gQS@^Q3h5(@g6EL`*DUF1BOu6u;(wjdtRTN1F}z5Ymbh~c^$KyEgw}^i8&H?BYUP1 zAu;<)M&v67%DP=y`tiFyXt?6xXTjA~8Poe{5YWa?@!$!$$1x4Ud)tsu+?w6a956k( zI9Y5LQxxuq#4G^B->6Vc!hOR#=%mHfqe=&yAJfa?2So3NE~D8@ZPiB*rOVeb?^;nW8nB{jFrf{?pjM zSn}Ih8gPX6yO-o|dGB^SNy%lMvth@)LE18Xi=Vt;w~3!ba-e$-#I)bB1d76mO(3=I zQ^9h~CCWl(vHCT)aQwbH9D4t;HFVVI=QyXkw4yvt&)XggEBjbYKbpRy6Dcm8e2SA; zr4|Q^y9z~SkIN57@B4vMyH=DL1bDoQ>r?c3m7ZtKm@ZZq7I8PwReW(*j5gqz}_ofAQ1iIf{0gEtw2?@j5|z`r2O> zM?#wDGK~BjE0KA3CP&#aD_P+s*sUMc`rBElCVn+E;Ylmiw@n+??oLcSatr&M)1iC7 zLPnkla{_A*KxWA27`h0OLEnR%_Vd!A^(x1CUI>}Dl@c4ej$ffWWP(+tELcaob@l83 zsom}L0mpOp`=EKw4@?fHQFJ^e@d0{+rTmNK1?@dXpRLc*ENTQC&h1QAFtk(ZVi_F$ zOf!=TAa4)6H-+x#mo{zyu0}0l*$zAKxC!yEs(xvLjob z{FF-#-Zp{?|0|9s;KJj@0htE}JzI)M$}2g^CnYt7ii9;r(z0sv**bOs)UG!PY12PQ zx7WIvNO!4!(iOB=Ps!r$Y8-9V{+R#(cETH3ELBLZjdkqc)gRn9evn|Mxvp4w^XglQ zf>}nnjuU{9q$Dwgu{tT?TAv?vW@nIh?ajTcQ4(DzsJVh*>hDSKd56q66n#V0?*>%; zs}wOetLTql<&b^6q?;BnOh>=};Lz~+L&7z+>&?+zvmMs-mLmqIF3F1TMZnK<{wUD7 zg2dAo#ic`4MA-+{I{N`{xe0^1Q~eHrDtVX%TuhZMn_@9QO`559Vlbe|KhZV6;WmP1 zfr>|k@peX7o{~S@XW}>7ptb!8TZKSK>YPnc+!G_?!#-X*v9zl>&1)J>)oyIGV=gg3GKf?`L^@ zbSG*Pm%hq-_PJCxf7{_(U+r9ZVnzvxP;h0#p_i(2?e*($M2J4nf%LATpAYlMifr*; z|G$Wq6ZxxX&@ZQwo0ofsW9>H4!^1A>e-ddA#je7`m;-m~-eMtcRxq-{$ZS*7>B$bF z)4j6qqUo9jmU$urdzoYE4;!1^1SgC%p$r4`fq_NJdjCeTKfg*;2?!+kn;f@j-sNXc z@8oQC*?{Vyq4tQCd=UjhP()Bm&#DL=&BXdvRmJBw%C;UfR-*EMQ=#NHJN=ju+38B! z*2n0ln5);8%hI1Wxm!e=ntTI6IY;U;uR2Hv51Q<0G2XF*@||sr*^Z&a zH*vW{$$)w$^psis;-rDEG}7ER*YIFYU96aCNdNFrKSoy7_5$Szd8~UQei_VSVdi4FX$qb}bjjq8|pq4ON!SRA%Ee=X*hqoAW zeu{j9La*Kgw%m2Y)hc|?9SoC|QPmZejt1>z(dJx2usM>=@O zDJH_!RhBvw7n@?qz9emL?V_ia^L?j0o7{?kY5lynA!h(rrUMoc@PB6b3i*nS>Ad{+n?o)-_c8}2YMnRZ1|A7=vpc#@&TFrq!(*+* zQ5=@KWOZ`9QDKj~$6jtMu4Bi%JqNLl9{c6vJHTVz{t{0wC~z+&)oo$y5}DwiHb;U^ zb>g?yn8S$ix5{SexcqqZ%=M95OiK%?!y}cENvr$&!YuOJ^pa|N@2aVG7)XacD@!YR zl|=b{yM2b5q6Lc<@y7 zW5(!9KLcq0q-XQn6m3vlqG=(z1tzoaerX zEWZ#V%;7OUX2Ew+aQ<^$m*M30x(_x077VPv4jH*VT$JIH#Me<+MpP z(l6Kvjg+M%2o1XJWy0}vsqa{Q8S|<2_f6^0lU}J2?Sv(L`1JB*S6rDLK|+R9`w_0x zeV%7XJu$@${M|s|i36aZfxt%gqvOcb#4kfV-O{W=Q!dbXiIOXZcM1)=(0pp5uV92XHr=)e1&_%DACSAM%>`H)3$v|HuY5af`J{x_G5e+6 zJoKjg{i{IYO{0ta3oZTaWpts$=K*oIk@va_;q7-;nUo)O!0T>#Xq3pkNW;azr9@}# zqxQqj_jy^e(3fo#2yM(2+URUQD=tqMjIbo80) zX^y?=$7iJ}q6Ua0uBhFQ;)n!ThA?{IarIaVTmJaa5~pAkd^>so`u#95JJs%SD?P*h{>J~ z;S$#CP5S-5Df6)tH|}oukktd zMH%+lFT5QD)1{q%+c?DlsYdcYY#VC>j@+(Ol7WeIlJ_P?7j4}oDIL?aeBw_33qPkY zC@A^e2Cxb7=}Lau|LVhMX$i%HL!(o7{Gk7c(l)}XOL`%+|3=_a8pePnzeppys30fx zil{*RD`D$REss72uxHbIF7(nt!E3= z2bgZcpw8yPVN#~m%)HW&*rye`YSMw`GH&PppiDQot8nNpGo~sS?K))?*ugh&qKQwM zyBzOhA;9t0A6~@d$)G66Ya4rzYw++X&UI5Shkp>shlB9gL6>7WMw~{TXNu0~2a4ic z(=>MZI<(J4mYhk-O&t^5wCK0VSES0w-yS8r7I?aBVv+^;R80{vkJ39+k^OGPFcu;? z=<1i30Y?W&jPLC71#iKoB_!io=K&~g|G^LNk&2V;>q9^LFrqgQyHT7n`^fnOvlij_ zke|8jZ6tW0h_%wKD_)S5%io|o09)lMy!_gvzI{I+f1LY+7U9+7tmA#XK@?zPP6U}L zf?h7(cfFV@-S38o`o#viA-pvK#)s@r0kNc1v@FC#Uqqwardqejs+#zW&bU2mQ(IgL z-`E?73HfcV4u@~2R4l}IR4TkJYh7>$wp$`CL}JcXYK0l z-DqM~kD!(G+)z&RZ2y#ReRzXK z;p)J3_`-iOU&Rw0K0e$93%M)l)?GP;6bhu94*R$yXPxUT!GO_M*bPm5Q3_E@mG9dmyZ>3p{?9^`uPm^a;$n8Tm_a@hPxO&S z+o8w&7}p#(U)pTK&ctsozU#A(YIym&f%xHG90v0Gu{k@al_G-m5rMcc8&3Yy4;9aO?q8i&3Ug`-qLZ9|OlhF5Mh_>JD`A;&L(RACz!cx9@j8<7wc832 z=gB-}71G#MJ$|aBX;)|3~<67{$t$2Cq z(gn;YKK)sQ%l3yKn~N{Hz1nu4vt@|yXq>Pm^#6kRf}bz`psgDaue zb0e|CLfVP0neJcDrh%Te^WKbK>MakPwT$Taa*nSg?UD3~B$ctiY_Eav=Fq*4g5|Y> z-i14f>K0$75w*yilhoz5_L=yOoQ9^48Q7&%m)Shb-`ja(d?A@8^TxY?&YnOOg`T1)C$xI*{f_pK4htnS*%|0Z}E1b z5+W;DETG$RUA+CY*)U2({#yHEmHmY*Bbr0+uK;+$+Y94MQt^KZ1Y)r$9^jJpIS=k# z%}`ks+57~BDLs29w-0bc3@+7LG-M*@Vu`1Q}{Y9k$UhSTfY}F@f zu+j^&4xCfdSfO*kB{%2#c>rKK2GGfRT3ew+-kmSATpsCFZA@2uFzWI*ECib2DlRxRqP&!OGlDx#n_ViXTb^(vOj(IesH?_$C$AU|Z!aQHt2 zZ2O>ljqN_W+Zm)%)4yC{xG3_G(ZtVLx^RZqc-5_Y28U@BC`aBD9%~0OHD^CR$kTozAruYXY0P+)~SpUfaW({X1tvl%|qpmDF}1V z;~L0)I~SPTni`kuTPY(V#L1tSDZSLwX;U@W8U4qzv{okAgm-y(?%vHaYU+0#dIBCI zM}6WT$M;lN^^t@OsFK&E(Yqdt*f;eMnwZ_&z9nOqXG}(MAf@ z8MXdvG81o;yGi6qaRc-&{h}cfX*%@xD+832(Th);<0S?e2);0<)RauU{*!i`Gx0mC zBJ8mK(j&63bm|zbC;v9kRu(x!?06*N=SA&0ErsEP#pJs#^l-06=G8(5a~toq9MiR% zpL`ri4ivu)qDwD#DE_P?< z_8Y@haN9dLEU9vLqkp-CZ$K!+vJ;Ps-o>fzUX@QMaRIrK)(!D=@7Bb?r{lNp4U;|f zJcZzn{8_FGtvxKz`f8JZ7E&bZGiWo>hKhC~56C+VUj0R1ZyYLT#ji%r@>-9X@&nkK z>!dXo-YgF?XRvOBmiXa+&(|hCDbyko5z%+G(CuzKWK8G_KBz8d+P+ zm7Ej%O>@{i7I_!4U2MGh zp+8G{z%MAY+`QzVz3|@LHwTH$+Q=Ac*e-8go;WYa{L^Jw=)GkVB+n0Js3RpMBTg0c zHFu+o)^)epgoU9es*=t*xzF!)4%elziRhYM&flb=B>wVV#c2K(qCOU{Ykd*^4@`-% z_fnA-k*1&|g4&b#K+ZE47H+rl`oxBe{sZY2;JFB{vY+H+xvTm z;(BG(lP<&Y-9!>URQo~JB^s;Bg^sS4r=QDrz5mi@TYN<-UP08OiRo`^WO28{P`t%a z6EHCE5^hlWZhXQX9oSARhw{;fJFXGq@}c7wom*4i#yl@8T6&W`pqOBZZOTpxcNH?k ze8*6*6=AS$zXVO)YdV#N{r2HVg>HZ8VkcT}z;#%GVAqemYw6&+TV%90VKt^R-;Wxf zpDETmee7LoQpINy!~(v*8HTO#ozJ+i#xn0{5Tj z$9gTCEE`iBR@Cp;T{rHu#S9o6y8R6h&Z9vT^m!%nx%zcN zxy0Ws(f>gv;GN64>UpC2@Q1yEU%~#gMILQ?J(r>oeCnEu71Wsj*&z4oA{>7``A`Lu zxqCm#sDJ%K2nQzFh&l8n0-y7j6pTCwgsu81k9zcPIyOjGzgTGNa^GcX-|{+wN@uM)n6Ni@aj$m!w#HK8XFA84W5nq?>bbN5!BMw7N;?=<>-R0vn_jm znP55xNtsFKPaToesuAk+9M8&oVAkZe`%!c0fK5*zf0XB1tO~|&rIe;Ym_0DLrZ$?a z@*CZso|MkcYLO=O>9O?gT$OE<=4f`Dd)sYQN zxrZZVE>! zk0E&4*F%nT-ahs37U>t6fMk)cznk;ue#*{uu{V41&rvRRZ<6dkrD@FmAKvT|E^0QxX`4ci|oYTZyIe0_(5_g(d9P7&u{tzxtj z*>u;=?f!m^yDC#-)2nPrH&05`rNDiZEbpSr0lMnTqz$=T_Pk^NtjUa}yTkwt64O_# zb;Ilv_F1xO{dUaX->2uH6y)}iTJD>5!4VQ7O{*Wu-`9?{{$Z(d)8<&s$rm8Hmy$DcT8#mdf(67uR4sbSj(?#3N$;B7%vV6ED!YZnG=O+ytb&8dT&$J z@%2~ftiwfSX_hESzh5b_Q~OZ)%;n0TqLLf4f+7Hp(${Y#o9GU$>*MXdH+M!$96SMX z2*Kbi>-T@@8;LNaagKXm5joOEi`$xj zheJ(`_9Gd2+PrV=)AYsXP{w@dCVO17t5LfXW5u7zB`v@A)f88Wm5w-%IfsB-j8(bE z)X?-%yRNkM8Mmd^9;wP*l^Y7!&D?{~TnE!iMG!agF#q=zn(ve(T-<*oqTlbyS}px( z(l%AMTXFzdK2@LOvHX(DZwoYy=&5juGn6Wbr)yFK5_y7|GcxOJP(*j$Pww%=tuL#W z&By}Acm}h^F$w`57KeKz^J`s|2Pj?%Xv46Y!r_!&a9WN;Ji7;cWybGFk?w;DhpgXt zmsrY$=1woZ)l;~?P+92dv7B4lPgk9&B$U%pX%aX?7p4u34?0~P->vzgU~V2V2+zp>tq752_l~#N0`>7VxzqRFJ?kK3aRi*_@IKVhL#bW38wVp?BEyiDw+^^07VbB+ zKGfR&;&u7q1>MVrPe^8=ENg&!GYMhQ+;KbRdz;!b9904B`dgO4!6&OLr?>bQp5?R! z^vkyPja4hr`IwIJQ$+W+ZOVCFyB^SJzP0<05_!KKjWSAXd<-yRapvl-2`@RtW3(t( zppi=xM!}Xps?&It=|5KmH+%Yj(UmKfgAy)Vt9HY|>bnMuC9>CMw{4`lwrDgP|13@h zW5)mqO4em6zos8Lb!YQyXn?#>xNyjJdaiwWBOi~Hf%Jl`=j*PI!`|@?)v;LfwEjVP;KjlZku6) z)Yq2VzD19!fPQr}nhP2jlEu**^I9kLWzS<|G)>b|5ACpo37T89OuqVVEw?ps#V~ znN;i?fyDFSr$3U2l{>GFM%9E+uLI%kqwV&39GF7kBn=KFmbm(4DKc+CRM2&~53o~X zL%^qYUdMnJebbyp9S;D%bBylIhm@Yr6cX?k?skDu<0 z((M3yW9wcE>(>hVFm^7JfZcCSoNF>3EG@N4rX1xAZnELV#urhQ%dMYw-K!K75V$AW znP-$#^r{c%T2!2G(U-*VhthR3tG^z^U$rODAKkiL+tQ4?y11rJTlVF+7qbCzeY)Ih@BPo_1!9 zNre%|wm9IclTpwu(*?qe2B71kOD0XUqO3f9f?D=Kz8g^JbHtHl>O8+qe5X~g$rAn9 z$$-jMZA0HdW7}3+bWTjMfg?Ki>n$gx&G%991ZdGvfqEQ9{EhrM13Ok_V1v*Vh-Frg zzFPG9#bk0FH`ca+)$vVtn*$6pG#cH{GsRXB5E1nHK$PIjiZs^rRD@Nh_Fdl~)kA|J z8jj|pkgMZ0e=WSLJr<}O)R^-Rc5?QoC*GTNH`|_$!lrI_Q<0Esal4Zg^m6;z*>OKO z;R{QcV3`T1e_|k(6g89K7_!sE@qAzVaRMsjMeynL3{5+p?aeG@_GB z^|r=j?4k_Tu8+0K2vWn)D)>}Czj=`b1qEGdgv0r%!mO<2bGIq2+x0fCJc}tCyt%;i zxW0;hz3^Vp%XDa4t~u8)f0o{4&thz!J+DEaNnOLKl^luP#-D=YaIcB4?kbE>r?Gcx zNZOE^d8P-+iVjV*l~MREKF(Io(-Ei3OuU0yjvl2i+-Loq$-6V{4Se733tyKOYIhS( z<#~k&sa2rmd-{1zY%P*D@!-nKFDmaXcmtiPFvO8;%A795zc#kDr)2drdgxB7)@&$o zJ=6jKzq92?;b0<47oHjmvL5Hod%N-R#*$FReFkS58yv9)Lf-S4J?dr&BpRI<PQl`J3V;I&7O1hW#Rsm#I)Z!YvVEH78eJR_ud zAjCSU-IsAE2!%3-Eb7YKU9Z~Khi+NP;=Usg*J$Oi?!1^0UQFYueSqeKiipnEv~3tW zA@n<+Kwj(vuYG(plvwD@`0>?e#dSST8NC#XrC~rKq0f7f{*?LTsTMlR3o%3$OaMs3KK37`>cp9Y}`=`e#gueQH zber8Wlc%+l9ZtmFi@fpeKRr3PvFx?HMHNY8*Ur4!H#=0iA0F)u_~WC;OTQivti9_l z^)62985=w&rk-Kzf`YzDvS>n-x7uUdgchQE)co5EzW(^vNU%^S@6(Tv@4cr*^MVKp zCI6tpLBf4&*$ZZ?mObwb##+@oB9bxhd}T2`pH=w5f2|Y96HCq~I_hpeBxODsfg2z<37ugAq(tAI{n%{*| z#aqlF8JbJwT*Su_oIOG7oP5O=p7EA%F~-Q1xg*z`i9Kd8R50@7BDxBHbfUww6of~e z_dmpjyp!f$%sa7bGCgr#HFarVx81n@>IPaL+1MlRih&NfxP00=ZYh7ZV!a>gd!3TH z*@&RJWEepUwG%EpC>6{|9jOhot0h_;2{&~^^oPgSXk&=nsn4OyXnU>e%=ORigZM_> z<`09n;CgEdDAdL*Eh}be&GQ9(jNehMCN3|C;tm?jPHZy4JG6LS$$xW*uiu%zFYQhJ zZhcE1&Arzt;Y)+4V>-pkp3_z^!eO}UVz?4Co^-hBA>XRyGR!${K`D|#z<#VvMKq_P z6oar5E$C#!7K#159V-WLVNl7Wx<-(&aT#XxTdp*!STXLwD00*1I;NzLCgDo^2x){Y z+aH(0WYPzOLGKDlf}DGsV!>&nXjQ$2jxuY*vxwbAB-xbH83y$n3|8Y zTXO+`)p2!Uto1qNF7Hm%j?irMLJOfAo3k)1R7oRRgS_MsmHXVQa7Lw+53n5G3hXVJ z7i@NeBE6aLGZYXUH4|kM6c~ZVevPd9rG4=H<3rfg_ATimi!3EdcYgaa*~+2Y^P=b` z+ZnHe5^D5Cjn9$yH{yWllmS2*KnB*rRYYPo`dVARiprH7x5!7MqI8orUVYq$ijbIW z$IUBeR1tY$Bo=*A97uz9RwMFLgt~GJ|Ft22k*EoxxIXs^TaR~7kNl`O?Jw*2NI6L&z?aU^JWPO#t-Qt8AHL|a|en+CP1+Hf71+}wA&PS25^EiV`_r>x7WB$>I0s}-{ zb%RUpWAFRrp*-cWnfqEs?0h|sv?LFoRy4eJcGemfoG+{h+ zyP2zOy{~*5G1y{PEH!Dme{Q>Ky1-ymJCNCho2AvD^R(Z2?bX0`2oqxDQNd{w zqdxRMSA*4nX=BC-Tmje0H*;`BPUFEtEz;*pgsx)$+`hAuNH2E;OToj3T9VzaR)Ea9 zbKw*cld%)JzxtuJs&51a6WyRQcvH0IYCQ`Ypz0iP;2q65Gqq{<{Gxz%4propkd7)_ zZ9-S9?%RAhP>5aji|EfwNDGJ;OC{Xt4z3A8#yX%=TQs zazLa-;Ux=UevR9XIatizXyixK|F18;&#rgB9ryZ|cOKNp*C0qsPfwp}Y{nWzmZXJh zLXC1nj&%?6gLm4TtCGloj0^G{Pe4igK9`cx(r~qlJq4zwRwu2cbmIo;6YXBr864O3Pf*pa~gw2+Z_vys>UGe^`-cMT;;Vr%GT&Rusb5Q*F8Yr^|$397+RQEnP zn1y;LLG}{!a@2W(?0R@wb??P#UOT-vlMr@iH?TKIR`^9t^nAfTJe7>eUlc z$otO^BH!hI`_EhYDumAXbnisgrwXVoWYScUIP9i?(a6-TJ*^B~&xYWI!G(OrePs>_ z{+FhD;4hAf@%-nm)Q;4JH#p*XKifAdu9JNF@d0K+d2CqejuFV)xXs56l)*pA%FOOrt#~2?ZmBBiB)ON<3(Vj&im;Bkrn{88SE7oJl~H{BMR z%znBAdw6iu;`#yMg%4csF{JPr&=b!GYBnZHN+$q_0zDO0ZW$%k+2_@g^iB=z*We2QaRneS#sPTPqu< zBGMq)wY{*5CmgUEZOa!sCp&Z4J`kgNNh7c|088#xvJj$csK<=Yt@2O&^H{&BV22|@ zvn6?R|BHq93P}L}fp~X-y77D!ZY#%3>hYPG#FH1R_LA$XKBGr@d#chzU|IU!_C_Zk zLsp^y(Td>^K^V-xCK+%5u(+(lE5Eu`n|^ID+OmUvr9FM6JGXS^whUL)8(1ASKLj?T zCj^CBgFV7~Opv*|-k0^8N&Vl><^S;XrzbXjB?v5G_S1LumCkP|%*saDZFLIG&*>N< zmJT+65_voC&uf!;1K=LtKcRDPYaY%xrLgM)sG(La;>@9#@!JtM6?JrMVxkvN2rAY( z@)*5M?@DtQIv$gjmT#H^8jQ8!?nrvbl>?E^mY zH>g_QZQC83f}p9{Ohj`b z5-+Hz`1X=HwQtXz#K|ls)4HhX}q^um{btDy@=l>jiN%}5L zIq2@xB7}OI)U(bt)wf94G+0fju2mDu6+Q9XbhRBowkSE(u;>*WQUv)Z9zGRu13{fb z@8cB@c)H2R)PPk>sOawKD0*{9Pv4^8IVbvWPvbqTP~cx_G^HG4h1 z&=kuH9pXyzAz}0~G*E>EXMsHeFAwfIh#rL;r@BYxiYpd#Krfx17VDcLkQm1g<=w19?79(!@w`@=YOKc($b?|_$x?&TeN2*8 zVCu>1d!mSUi9#vSvyt7~0Q|JLw4_Od&bp?jC2Hw@axbU9bbfF!@e;0i&S8d6;QUDn3aq3;2HnS9G6wW`V=KV0AagLN^xQHA?(Fki*s zP0Ep*sa22U!XZ?TFN>pI2RK!cGfNX$dCFTA;C|ezM2It{`oMuW!A9ol>UtXNP<2%b zl|@(Odf)7E6=`R6Z%`?U10f%;v^2d<`t zq#YGa3*#gM@{cq)FVi5a47J1gHJfa;i(4D3bpvniYgJS;#BeB7?7qtLp&m}B6X&-- zl#-l0lj%A;Y*xVJ$BwHYD;rqALVWI!I1%UnBknz;n(mhNVSxw{L5PBc4o0O37-`a* z#7a@R^nidOz4sQ75}JyrbOGsInsf|Bx`2SxfE1-mkxu?Q=zY$4&U)7WeZRcxy+8Qj zUg5Xf%X~(GL5VIS zkHJm=$r>fvl%pe``3m67>;nf&*5|-2mz@wr*oguUWxHl`P+V4*n0=}4GU0Bq_)~JF z@;i7U#;2KHd$|5V93|0lynmDRk*#Y7e}&WzJ~02%cs#hRb+d0+Sr3gUAA-~Xrk zb9L1hII?+!xN&eo#+1Y;k+y~REQWTF&|w1<=ITje&;(T^hK*9hpivIK05lpePmGwF zj)O~@<39?P0Kaon19Izkl^8`f1QKINOsWd_mks!RCpf5xvF6%wq-l}`B+-u;CH(*O z>Ge|cE+%BdUg}ag2Qdhc^8wL7Bv?Z<`vNBH9SDbKo~@@W5a+p@s*=V1zx~9oJzFhV zFZKNeTCg$>*^>jOUS4nq>m&aEXF93x%R?q6CaN6gSBOu;q9Q!T7Y&ELeEBjtS*VkA zJQDhNq<{Y$+)uU#JHNnnwhtV#?TuuD*V1q?cp$tO?GAQ5>s`)feQY=^$H9051@=Ey zJyjr2LD?DxB9wg#&`9`T<40Q5(QvEG`{My}vUm>#kqS!p*-psKYGj?xRa4i)0n;qz zyf6@Sn&F`=@Uy>yLCr?XtY;JDWh-Q_Rz5r9>%_RP1z^Q4&HSSOt$Qkes1ZfsX zW!2Wz)d_W9Ps`7@9xgH&BoKo&!nKXLu5FTSt(Xwvv7w8E!XU(51eA-+Zvkfh0w*zk8 z2Et6Qk$R^1;jBEr6nB>P=x6tptOV z2arDELKXA0+|@cp8cc!19%tb4W}^pKa$nFySN)1AkYi1a*axW(ofYP+gfQJFqn4MnLK4(zn<1oo`Bk^U}PI1M5?I>>*5WJXgrS9{M%s+%=673tZXeAud9WXpEiNpYJoGu5TxNCU3qbUNK>pWo-0)F*jSP(}t;Fcvk(_X#*+4?d zDxh?7 zjl+>?ycwi_q}MOtO`_8AHYxX0p)q;D?Dz!~v)?>;UJV zK%Ppru@iRfN80*AuGrzm`*<_gisFC$UH7|x{_gp5-DY2Kk5|hA9T($ohq!QHap*ep z&Y3yiIjLw$Y?a;0It2H*>hZyADky+i|J0wETHOCTQ^ao<+d5sF;vny?@AK52RUJyi z(=;DERU(lQV2^A9ZPj{w4bQOK#6i|g*2$bIfjJe&K$FA)O+^189v zcSPY6T7>8(K4?sVn|wYi?qG(Ha|5N-(%U!#z1-CQ5&_ugVV5oFo*=3!R@p7`diU>K zu*=thA$ZA#V8QzwNKVGc9zOnlL-C-jjOpLHWxP97fAmPu^pLh9`|(@YNO}E%Qr*0C z*9nsj{#o()wt|8m7G+n#)uDE^{Cn1&Y&A5t=r@2_CjC8(msfq_e5~_>finNq!CPr) zNG=KczK)O_T&4!;-`63yn3vOhe7wc1&-$-sA_i?u4oxw>2Z}yF6kTrj^55w3CAj94 zm0kQhCk|A|Q&dAB$cikNTMbZwb9}9K-&2#Hc(c-h6@|b8#C}bOm(&`ZVSVzI>`*aS zpA)Bo6tiC9Graou8*MzOkZOeuQw&mJQ{N$UY1LN7W7Ha;^pVv$=WqU1TzgZ`Ex%OkY&&B{}JCL9_imS;0R9r^cUZe4xwh46Bu1$ub6{z`ApWwc9Xytkr5 zVEy;#xdKX}zL*j19-J6ycE8O}HeELTP$%R5iQ2pWeIoutqlcLt_5xCY>8}XOV`)dQ z`ztSOJ>yw9YOdg}EH+*j3H_JR`w;nQay*^|;kDag#CFXr1oWb?Sd6KxW@&eJoR@`^ z`NKJ>k9R4j^p-v|M5ZDbsh}O_)uG39^3!YNV$XHcyH5hI9Gl0-tT%(u81TSZ$Aw$u zx0}94*?z3r7%pC%?`BoRMvMIYN){S4`uX-)u>Z@KVsKX-#x5@UEMzOsHcD?3A10~W z1n-$>9oyp%z#bz5G|y78N(f&?6|t#mUe&kre`;j~fqn}9tgaeM*wfZw{%hfa4kW@M zRt5T4JY$|EJ-O}~t(OseytCSMeX>smSd4_SsQ*~t_s%Sup)i1VUhwt97x~0nu2KL> z2SV}sZ=LzMZXA^8O`QnplsxTAFdTw&wl;>n0$p)}7}~ANi=SPYn6o1PAJZd-F{I&; z_^na+ehql*eNJrlU^kvkx3c%p)8c&V?#6s|tGF6(I?;KhG;e{f@SPOaeqe`<{%+hn zVYvGuxh>Jv#&F}h_uj{N+uve=BOHG$;y{+tn|B&nGnSCtiGbqY32^(64`y@dp?1E+%DEdLBX zI%*kD0IiZW&gwfVBQ%E-JdDjs5G318k`Vl#ENu4j{_NE)p zl)`6zk9L6POYIF5-Trl(p}wBFrj)H_hvn$kKiC;i2hDw-l0!#r76nd?U3d`&DKuDl zA)`t3xw+w*Y}ZNLbe_Sjs;dUcbt6$lIYDVruecJ5e#RsvwVBf*%z};;Hs_pK*n`v^ zxcucKtva(%7V(l_$z^L{pe=#Ys|)r<)m~iQIe*Mij?`;e-@1>A*s^hbtH7soD7Rlq zpl-q8NAH|&9YO#&XwG_>gy z8bpG*p8Gr34;2-;k~p2wu4>U+^dp52FU@zxn6?N%yW)cI;3=??fImoYtJ^CankBz1$8qbig_CKy9Ttl@z7FO`d2;fBx7s(sCycsij zW`4VfaI~)K+c)V{?uamx{i)u3d~x4LDzG^s-0Fh$WEYL5Gac>5#1i^g*DaiHk6Lp9 zBJG5Sl_~F>T^I??XT$67jeY~~`NYY7G)8I;)mEkfjfCY*5a!}%SE|8$hU)9==>tnH zLSIfLGQlH`Loed=R|*CZ-x8VfEOcn@T^9{^`G$jn*T*Nf3g&(WCljO`(#~wTlUQhE&P_eqny&*4Ex2CV77N11)ZctDQC0hnwEOap<{xp($)eVV=>458 zpYD5eo8vkPkPI@Dc%RYOLZH^xL{`0H&to>o&EPaxCH}tuu{K1&z?*e3LpOG^@1E>( z+_o}woATlu9GR!fBjl~iDe58v%$PFdiIzUv2wUX#3!Rx3wLd0|REWuho9SSChq$)C zW!~p!aZf+!FcNm1M0~1(z4p;P{y5q@J5Lvz!cG4ncz0{FZPlm3ckH^PT%}P+S^c5) zjE%=bJuhsu`y-wE$KRjS4K6`LSYr^oTY@xWbfAN2K+QDe&kq}o6d5jM(J73@hSyOD zZg3OGy{=RoTckr|-94Efx%G*?oD5Tc`WO31_0PxrNCjP@;Yt-n227t(^I72K9=u2D zqAq&{*YdcZ>1&hw{Nt6p_eEy~22Zz+L5a5=E%%jnEhlN`FxWswz~I&TNrK_Z2lbwe zI0@FPNQEGx(NeHRLo5nTh$MavKqpok0T!LqlKxud;qUdFTwzx&BfMWSOgT*5@M5VTl4mSExc5nap34wn;7K#k;wSJ6-%y*xBViFq_zjBXMRf-c3 zb|mF~lpK}bi7Y5+i{+wq8$P$Wey^S-1RT`Ch0I-QFD++Nh$|tBDCbwK$;2M%)H^)F zyM)4cF+_)FJzgRk50`foR(K_Jip3F2_s(~?X!Ufl_d9upx2#V1_0N|dnD0H31=_zB zUh~rqUz)>==uDED| zwlRx?;^Fixi1eCy(lUQ`5I8`tO{q|e10%C>+Jz#=vn93O=x9A|9V?VTF(|WR96up| zTkr~n-63YqeTr>R_^ca5PvWOkhm67VHM+o;e1_gz9Gn7l(}tWLLDA}&?TZC3yuDW* zfn9oDYZoduP6^bP1503%aOQdt3U7SDxf4_{-$(&EOo**^ZMGraR^P*_5v3iU=_wRI za>O<{18+Rk_r#b?!&B!yCrfjKj_kkBxYqM|dK`4nu^@0BQ+>7{>4D61%Q?&Xj5}^f z$S!(4I-{4j32$V@LMU~5WRExj#R~ZJKfbKzmCod79-T+Ay$CSHm~HTCZ`+FK5r<<~ zOm`_mV?e8tkI8V;^mnG8g6AYas>PkNyDX{9>G5z07L_FdB;#b(N~U{i~FEB-2-x5`YN$^KX7vp??2H!Z~NY4Rjq>CjupYq#E1bE9gxz^n5dA zLpE?xOmp_0AXX~(FXdsHXH$ZwWNN$=%(8)+et982Ar<>*5*I4{c z7Q-#C;qL;SmKZtx4QRu?S)YZ=i|J-oEzl^b3sK@I7gw?5D$5xCYOT^Bpn5GIf3+|Z z6HvlGK(f=K+*X?Hch_BC!#Udm|?V?^fSs|LY#($6>QB^Q)VLF|@0JK=L>zISDA1Uq{FiWq zj!}*(-8&(k^4z!6ar6k>Lgm-RJaugEWn8hsl9XGB3;pzu8-l%i3|>pXk@+l$N9YtisVZU7;!%VBBDV-L_6zsTV? zimO%gqM#J#Gg&{csDK*_%QAaq(o;ba4%Ai3At_Ssv*6m~BX5E3Lw{Kfc_-IDkp452vX*Tz#-w0)(wkC_FS1us zD@KqKsZd3nX5*7{h@I--w>W4xgRRtW9dHA)%N%$r+=F^Ne)?vB{IN~@KVQDej|y@A zmSPus!nGklo$t<)l%gU2c`T;LSDdZ|AV-%P3lQo+p0_#w9U%NNe3 zaVyP}`zw6D`+7=Cw(2-o%>2o8RO>>v;(Fy#44jh&Sf0LIBP@QB;gc!G@5H3X;B<3W zvUdK%ZGW02iK6uC0-a)XkSG3~Ui*kKczwk`w@kNQx%}bbZ1!=e%0UCniQK; zw6y1QiyXz)gWZio8i~FEa&U`KA0LAa7GG~$g0{ZY0)3)#GcWRxU&y>u?Lf=hP>xq} zu&KcJBC3rH*t5+L*n!?>5#SCmRpJ2$7c>E@!P}1rS2<-*zis{f`*)F1XxIR`NryT! zF@BTtI8xRAWD4;e(zn6VYGEoX*j!@YC08Q^?1dFfELcMRW44>7ka-H{)%Ut=OIL0b z(mFIj+&^E65Zq|DVgrc?{pK8A4Ig=cP&|o62A3!!Y-tQfGf96FIkE>Qr zPcJ^RRU-kdmdvweN3pYzRbN{xohd1DJ)u1lkd~sVuLtp~S|0~-KQ)mkXs$J7IBZP3 z=AZAsuS|R=``eYBl8}?*Y-XfY@BJ6HDx;_HSA^pZGxDTO)D#VXi}k{NkJ%Q>#>- z0OeC&*C$um|2fECg6G{$0=PV*oWnSuURtnX%a>?8*3hRos3w59IHZM4A!3RElG9kD z(Q+!4u<2oA6~O7#R>7n!_?pf{&d;v3Lch7>CEbs4*C*VL(1bQ!%Z3#eotL z@5v#br%n~AGbHssZ!84%kOX)Fo9M5ncDVpt>vfREm zVYSqr+MogomDpSNxD_2}B;6ejU_3HpQ=j?mE z<1dH6NGql%l)L(=mzS3#G8hD3wX)kzj=9&;&Xco#k_!{3xEBK390FdQ1emBv2+Yg{ z8Q_tlcoT1l5n*zDavi+Z{gtH7F)?kQycY-M`Qsu2d7`bP-?n*@WV7@8n?=XB(%BH0 zOK{Pz*QW1-SUz1fah2odL-p!k?o$6N(D%NYLMon`LK6F$Hu7~drPg{PimJg=nqLkF z)E)5C^36(7fShpO=q_BB0AZu;B2&StnSy)2&*~ezaiemdEi!3*Kx(|m#f~<>Yp8k# zR5t$}H)@n#K`x10K(#&T7XisP4k~0orvR##F|YF5*iFH@O3*qnf-IvcILdddzdVpe z=DHoV#E{fkgjwZJEkL^Es6A^6=@J}i#zB)#Q;i?i%~@iEKoNj@1Ic!Q+(9g(#f!7k*-(CY2a)LN0v)Xt1BpCF=X9lJ^+GK7zST$D+ zuq1igyT?X7CHB!)_G?#cie=_~WI*x@f>n0}t&2KW7re2d3ML$9ztOov=k5sZQ=+6p z6|o!u^Mx6TLXx~_5*F-0tGD=az};#8^?mt7>bAA5N2=nGybwChn;xT54lj##ceX* z*vqKs0uwhC4-gzrE9(I&A}Y9OK52bWZ^+4+C-TYbHY>JJ*tIbyKH$4NWJCtkcb!5* zwj$!ki{*wBW5-Bs7iK1_fn)BGRQav!MZ2lxQ)~*nG!rmp+EcEL++Lmn|3tW=H(JR;hyIy70+7W4w=L!j0w#O1NQ6BBIZ22&jb zZNiepq}G*uX(p2hTRMz6?2!XDB}x859^_8__~zf$06F)KHNmcFajq~{`b_z!)T*;+ z&Y?o|laBF1IX-n?-Z>4fi#xQUQm9_`h~DAel1GA2q>PzK^BDA~mt*jL{tawOU9!@! zU+3m%5U>cn)54yHi6W5Sx7p%Jx!W{H^$tv9kYkZjC_7;uCP#tTapB4&> zw{_IP;t3ZDOUF+ieV3hCG_qCAzhYa}T+2zAAwOc($kW|Xkr)8phlvejn48A$<27E? zny+-v6C;NR7-{u=r9Z(TkvY=f{d0GU#uoODKP$#06HaOh`S~{g3;Hn6o$9~N-UO)t z-*y=n|8$G9U;W;)w(XzahC_L z+1OKnT?j`!wgCnnwr0#a}kT3Fpet%r3kTNNx0>IS$ zKHecPs$f&jA#@Te=c}w04sM4~5Bh?Kob}7EnjD|F1+Q(s)300eIo@^6s!i;H$!m-^Kh+ zWO7nL4qQXw1ysxd%(>8>0O!n$?=Uk0Y1a`<gA!&dv`&L zfxW!G+aRlH<$MfqKIs1*BG})e=^%!3s;Xycg#E$|eZo@vUM9Q=4M`+>1PqQqnAGEY zm#qWO5ck+23`WYH=M8jb(DDAnjz5)22JNDx#NZVpw#wKB9zQ2Eq{~124e%ak?*xay zazfTm9PeHNxYtjw0zxu1C{d1xUf#R;U9!iZ(k}Jz(^!?`c*JcXCe9WAJB%PkU6vZy z4Heoon;Q*cBJR}XR_O1wntQ)9ir|e8%|Si83Vg=`gpL9VUUx(6<86mzJsM?CMt29N zPYB-uBm3AJCEfx)1%SN==#c?>!AMZfv$4EOEyIDEr05p8cV=W7M02EtKU@c^-0VJ@ z&p#8fS3&MXc?FO?(!e%YLWDpH&^gu}OFNwE#x{V3-RRV{Z;yf{d8#CNJRz)2o%ZUe ztdMk^>ugK>iiMf=rsGze-(z7HG9CJSo%?FM7-cSH#(ua$JhaXz*rsf4L>LSwcVn&0 zKbO_^RMo3Shq*TvYv%Jr0h*!qAbl-lnZ18{7bT zDq3@B^7Z%gwb(L+RPFLVmo_?3Z-ExidEW_zr-l*j&jpm-#!HHBFZs`C$S5gi`GW(A z8S@|sWB`>!Gd{_->J>6zMui%6EGlbodE9P6&bLFJ?jp|xOl0I4i>aaqCRtnGcJgic zS#Qzg5soh6OysS?uW(68GV`I-Tz>#aa?2oV+VJt~o!O2x9`XG2M?~?7Rmb9ei$L6C z0Z-kamR82nik@jiEWN$yjO7rMZ6=agl`QeT>F>Zq+Eve*K~I&31K3>7pc%+fT&E#K5Zs1QxrgVbu?TeOJll2*5fr;xWg&d>?8~23ORQ<8j~9FZ=N$b4eL}(R zWj9<{lhI^cD6JI|;khDyH)LvRNF}U25@l?2{C&2v-CIat%BjeURFUzt2%Xw=4IC8E zWG5=EsHO!l*f7{Zruh@0!)wHZp4-5jP!0~>=>5j}?lRwobrZ@TF?g{Q+7>=yXO z`d9ppzdK6fyL*mshP9=^IOw&5JD)~gQkJ<3#s#dOSj+0V877WY&?&=98KOa-(IYR$ zzDI@CM|*XNu61H7Oo5fp9x>4)Aa`6~@&Q8vpE5aQ2Tu9jj7h#(8Pp*;>V>V!jWz6LpQ?^q`mgSi_eyj z?Fo1C`yuyCF;6M@<8eok;-+kG7mV5uRFFDzyH-Ma3eW-D;i*pu0sxgnSq0-IiW4_q{-Saub21?-92?k9Ez<`5Y#;f=oaoUA}?B_7u&TL?Gh5>^SU zQy&(}hCBez`~H2akTILfAho1Ip(9&eNC|t>0=>|m{Q{U403NP!prCqzDp`gtS3splHqj1?Q40Bdq{;D zP0l9me5GIo1_P&<>7uJlB)}Lq00zrbY6*~D{Q@=%M+J-F`spXpr0Ngt9tsa5FTim5e6x5pak7g{Uru zz?^UqFuFokM?^!!zc(4c-QNZWFHhfPN8oCAzNlx=B51)6h;l5CP5EYZ5rmo@xjmLQ z+kdN2hZ+dpSoPVjb;MgFGD`!XFq}b9YxQmwumkM3n-ZDuD4;&H2u!{_7ph329Z=y7 z>RnHdemJVD^v$S)7F*-%3s3#B=j@jKPGw<&hB!0#rTuF`MM3^ZV(wd^x`o@?+B)gX zLyM^O5Lm$;jw|6bn;tJJT3*Z{r>iR^2Bb6pY|~o+Fyr+m_q0;EKo$yg%V_P^;^M}A zXmrWh?*7#O#>K^DVTl#QXZ_z~PJRQVFe%{n>cQcNbe0IBVs;@wj?0(^PqS3g1z?ZY z%#BmxB8t{0X#N>s4;kPynJ;dKRL0u zirU$e^Xr`)ET8($o}4#f_uy@XIdtasS<>*ZB8$f@PzhgI95f^ds2DJGPqF5}?Gh>x zwF_Q*L_CK4{hzAIOj6@(>W`SgDuuqKMRo!hK%FW{Q5ow;BrCH4KgH^56G?)K2RwIEf7qm*d0RG{v;Z zNZ44X81@}~mBjoQ_w|*ObJGn`4}ur(qNES2=b1h^+(hi0j2z6e#73Ve^S=-BTv2_d zm^>ym5Jm4qs$`=v)XXz9J{%R3h7W_}ee1ykZ|zt{p+2d@ci{r-t9NID&JLD_VPWh0 zfn2D6j8+j6_XBOy^fP#ppTK?WP}BlAD}P`zfiCbOO71oo@7Nme zFqGHL2X8q&2{pwy4;gT|j&>DL&J)FY;Hh80lmNXgz z>3phr7ckU_>dtKHfW4|15~1+)I?y7Eq*J3=b7MCpO2S~E;ZyE#*gRcerz{Gv!bFR1 z=VK*O+1&IV0c8Iv^-)m%YE@X03a32QE{oQeMJm4+9<~<9E*yO620d|;Bk)J_Vf1_# zDn_T%U}vwEYV!Z!jmiztyqsVz=1pvD$#sN>Qv9+B$ogon_@zX zF$X}6tMV5Z!k6R^PBVxynJh0?h_zk<#J~ixLL^c_4Y3gplX?`qpByvVKZi)YSOJLq=x>>9z9q=)G_~pV0@huid&9w$iaMhh%0G;~II>;;*>`Zd`_f zlkEP}VF5FGfa_Q~V!91BxG*Fw^mL47?H_jOc}DB(8e-eu({k=h9| z1{3zrjs|W6we>7+Si{w)7Qs!xO|3#Tdtb?kh!aL|?IZtw_k?d$#D_m0vQ3`4t> z6GQ&767pxvpmjF=xovQh<#AWS*DAdIeB$g^?T!gU!X02?o3t#Ye-tQ=4N0}|(p;-i zCqt61D<-PZ)Z|~g0WR<74MB+90J$6=>v4(QW!nzx3Tv&C+6EcdFUQQ^IBOS2+1-gCE-Xri%rB|E(2EX2X!Yxw&$rWkWC%x_kQ1Nwt z;C(vZ!5VAiKBSx_F-D;5&i5zK@@&JWvNLC>#fD`c&Ng~t;NMSAWw>DR;)1l72b-~P zo8GH90E)r_Ibfw6PYjah+CPx34$6vEWkB8CAo~=tN~}|;hx=9LpQ&9FMTLBY16atkNj&q|cZOQc?{5*H?n}eM8dPs-8`_IKK+ZIH%bsLS3f3(wnO6vH zc)(e}C}dtqVBEcvfrVW&nah0kCO_wc4k%4%4}6ICei@nr{A^|rWxo^>``f@`=U3N> zsgyvF9_M>Ftgj_-EQ{Tst_7$=FeR42Y4YoPZ+%UA z1Pas)nawP022N>ay6OFjJe|JdC&G`qrPTl~lf)zKJ@bpb0Nq3FQHbwQGhdtOtEkfi zEah0pQ1I%@xlkI`BR&2bZ1WH&6arFr4+kY$s*it4FrN5t-@gp-obXF^>Vf;^Cl|Op zwjX^yySS)~kQ+9o*$p=u7P_3>LAGD*z6XGhB#7{q@i2W`js3Zj|CB&^lqD1OJ1@|Z%JmCu9g4iv(Xomv4_i{{MvqBMLD+!BqC7 z&lQ&n@Z>YhYHwkH!*7@Q)ZQRx1 zey~<>O`}vgN@ir=mT)=fI!8^AgoWZj1l9MN_AvWc2?U?i8NhVemX$7*4`%&mcAzXS zVILc)DOyRvwPXJ=6=Zm)pZtQ$j}wTtC{)k~IJhDH-3G;iF$_jGlFr$Sb#C+sgI#%l z(xN)4HNTu^0n=6w>G_U>-nus*aPzZq^GNpCep@Fw*J9A2YL6hQ*H+U^hPLu`i2FIn zqMl2M9*?u^ZaT=fdY-|sagKc2zGUN`;yZaMk%>b~z{F8CakId+Ha9o-?mP{LJvK#$ z3rX4}wcdvK6if}Cy59gbqMQB6M^2z+!Rhl?)UK#v)j%%OzRV4qvf?WUdJ8oexr4B* znn$}&=6b)waNP}+liBVcIY&Vb=$@H)>WhoC2)EbYau)ik@b|AVrMmEL%kb7VE~r!i zG#M(+&nB8=v~d~QeTvjukJ3Je7VsRb%>adt85GR-Z+39f&C2H$(;hLtMkJSPPk6T0 zvO6`V!GsA}19yC7_ZWxM-|i+8c9TJke-w+j14uRkScV^Dl?q+~L_}4Ldv8)$EZC(L z>PcyzOS{dh{f;dHFD!BxkqYQfCe8|Z%(6jUsdT$>wB@e(vc zfw0JMP^buFw!Ghp$y?G?(VM1!R?ru>e(QB$-xYXXhs|0b2YV;MEx-Q@WX-AgQDe90Rwt8 zT0|%RK~DsJZA|FG65N~(ab5kghfO2x_R$xASEsOpyUoryJ8a%?PddsKO){@XSdl@O%AK4Rj5todXiUVL(_cj z;C0E-n5+NZmOb);%czh9SMDN`B>KyB>YscGL%!bvX;&D~9y^YSUts)a5g<0t2zMry zF=Yj{*H+)PwW|fj&`Zu7$z-D32U4|80&Y~2S9Bv#McWq!Ut>T6g;8%|Cv!9vG3!Lz z(r~%#+5*Od19fZCZv+Q@o5?ISx?b4p`#F`%)K#p9RS(NBE#3c~XM{uFRpDt6+`kG& zgq%hGy)s?4^kn8n8@Yhe-N?3|arDnFdYJmFY% zb)8$>_WEF6(rrc!*gPp9L3+=|b)Envx4p2N1Sr?gc8 z!r;ATiSpTh#s{pipvs?EPq|^@(yq`qltg-m>jEEarP>C{sG_v{2EysYg8~;8veUV7m zwKvS1MVIU|Ikd6>Nq?-QQTFPm4cF-_Jo-a67x(YpD!NDN)DFGju0{rIg|_BCobwtx zRR79~^z*m13mt;VoH*?pPm5OuQgr&fj|`AENEfjE-!9HqApzOBQVyw=$Uo`?K52atR zwRM;cw?ANR=(Oeo{K7j(0gi?Yoc(9*V*$v3`Lidwl3Y~*C2ZP*bA=xLz0zKK@?Z`+ zbjPXtX5OiKbu*pkYQSTahL=l*HHHDGU@yG+t&8Nh!Em#`p$aVm_w@l%VLA-0tUa`k z*(rWUaVLj24d!ICb_478@SRi^2^w=xCQJ`dv#7{v$&4cC`JH@RXcE~)%|Zy5zr@@I zAsOFvWP>0d3aX!47MN5&1p?Z)5hyZY^r4P5woa5P8UG3fx<}xV&^eAz7gRbg!zv{NWmpxux zYQX!0vh=(h-qjFfr+dC%#z95mnMqK@un&!?q#G~xR5{wLV7arF2a@Vj`k0;1sv``d z1?S#L7wz9}^&RfQ!r&2puau6(_l*~wB+Z`SvqC_xCdBr8Ob;p~2;LxM-LF-kqVbAc z)d88O<>j0(gdIc%Ad6_{kLqMtg+C|8^U>5b5r2@Nj-|cMU>^en0{SVOMoO)`%=-Ei z=5w9tbD{_N7$kqUDwHj#`_2mOhn~%neF{Ef zK=_f?edk&gZ~!}fG|?Dg*C!k(xs3aN$2=+1EHs&-H&e7m6@MRCPH9#nV%)WI~3V3>obL@;?rJ-y@8W#$^A7E^gAyhnQa@EC=yV4 zVF|I?4Lz4Z>n*vwne8u5pD&UX73HZ1_RqN3L}*!s8Wb^?>`6jc22O2(nO1;tv-joa zyGcPaVej2k3x!~iT-41>csD$&TWX$d3JGfXa{34^@B7l=Cy0t$s1|3{2TlQHr8rjB zkm{U<%!`%AvX6woW%5!S2Yu*>(05JLyqd3DH>Ml7cLnRI2f{|IIO!xv`K~Gb5)Orv zh!6uCT}@tum%V~|%WlmLVxzJpv4R!RSJ@F!(5@L!;B8Kl}-&=AIJ8hs0M^}9#g&z3dj z!1zL>^$JLZfOS7O$>p>^!fd@Eo7?sUy3j$BD2JGYgN~yfL9glh$oFdkOV4(3hNJO$ zwF5gB*thpuA-+>4Td}2Ak)$dAvFjJ+QN8u}`@yb`ASLy)1L<;p+MIJnyPl~s3GnAA zR7z&5_Ed3L*d`4VGGGpkgSN4N;|3pkP!4oR+Jmzv_K2vMvB>7Yn#;irwQvt-X|Jyjx&6 zemE;Q$%ETc7~{hMiptS<_D?Rny`Vjqv^K&0=+=cOE?|wn%VGThr1KSfX|Mx;Zy{5v5A6j-lmQ2^e&;kA z!a)hTcv1eS4uuIPPfPufT`njE?_uC1nmN1=ADV%}Gjon6bo6#@PaW(NJLbBuSx}6B z12H+ofwDung2KQRgRy3Ap=j}A=OScOR0-&~l;9{_{=8deFbtF)+WE7Hbpymqa)LAN z$}d6l4SmcHK+2;I*iSx!HxiWf=_Hvr?E!B$7)}DpC{y%tP{6qC)~_yR%AUj$gG{6P z_coe1uN&UpC7GF3KURGwD@JW@@@c~vp&!c1`1Q&=4?{F>-H^FUb^Zhn8so{}ifpGc ziv&m-xG2k&0ViP*k{HWn89XO^2Y`5@oGP@_;*!!uN1orAXRRwfA00KAQxx=$KQE%h zIsQsh0dT06m4s#OCo2U&5f(s_F8Kd5tzwTUNY^cKCiyQpAu`+DlCz*CWNFXDz?^?Y zJvvCj-_HndkRY`*74mup$lG|%}@^h2cYj3?#yEcDtn~Z2 z@@hVjt70UFkpnbAT`z7;cR>Q&$Osr6@^?~}A}4XspOS#xQ)3EQwAhjhkRxFpsr;q4 z>f?%UTG$O~()uxxP0WMXoL=UV;8H%&<3xpcvV`f=cRHJT9r7S*g}@ZsJ$KQn8<)9Sm-GMNzjI*}!bE&zwCBn8#z^)n;;xBNq$nCk~I> zIDm#2^#`+p;ol^j6{<=+)cFLi0@%t+3tSB7P7|F^OrsKuSE@P$92x^!l#>+)ldZ7$ zD$#ykHmMDnuh&p&PveLg4=Kw>#Hn03w8R`&(T%lhI zX642mDzGd)?bx$jJELr}2%>r@v&@tLCtx@o(40jy=)9!hKyjdG?`Og_91-AcjVK9l zT;Kt$9vQteHF1ay5?^Lg2K82`i+k_j;GFxI0W&S)2e|ED+j@OxzNx$Vi^FxoeZI)# z6KLV5wrIUmntZqfj9Yg$^}wmwJB0UV_Sxc$%k{ck00FU&%9nyp-0oK_1$#}iz$wg* z@<91m9LtES`M}d)bf(m4z1*+a)*#8*TmK1UFNyoot?qQz(>6Dc;4*gq3@fkfw)k$} zU4K4pVIIJA;s5?d$fPZr697h1zB3>w8ETK^Q+)cPVP^Qxgn|fP*w6zKcw?YzMj;>Rw z6$=XY{+U}(vaHb;VILRG%ww#p!9mT3(k@gT+%V1qTtN@Ja`${8nn+zxb~<$BhGL{=(?Kw z@<R^n_E#gR{K@x|nEFIu0d}|&Z+!#%m<|oPOp{LWAjIg@ zua>UlStG}p6ZFnPbds~Wm4JF|r^p5hGmFnh%lp#DAW5Y~N)+7Hq#P&eiJO{~xnt4j z@QQ^87l+Y7s&RQ~6sq?xu{(Ph`T{~%-VZ}?JzhjZet3dDG23bEhn4`r39^onNbTdl zPZL<-6Yq2G$fevI%i;AxCH*PNn1b%riLnbfMXmaSTqAe3ZCk!kPsLnQ3~wahnE6rd zE4fnHzvRvcaJ8%e3|-*2Nsre@fD{6@#*3~1}PaHTsb;48YeaAuns-eacCZV)kl*k*^#C3l<59C`S zkUkVfY2N*e`3bQ7ef)qv_{NFiTr1Rne)F6#;=}gA`0C(lX-}gsG zrA^_Mdj3Qb-iKY#5gtNQY_+=LKjS}yfavL=0?|)N%KV{^Pj(jq!Pvy%?-vR+yttoa zLn1#uq()Y2l@N*TS@^E5!kP+`=dpV4|BCXi#zV! zj4Hny6w%6ZZugS(l|pWic$W{PACCgpa%TdK*Z?_jOhFj?p%X1=XU2N_!W-wG`TCKMbzneX9=nv_BX*7B>Vbskwt11^sP()c|;^ z-JDltswjxUzMLg^oTahZ{%|A4OE^y|`gnNit^Y9t)v|e;(2q3A{mq~N>4(Nilcpwrc$&=K z{_Ju^$It%6Q6W~TN;|yvx{g#~_B+IBz0P{GOK6Nf4cjL^xb^82ONNSJ0V3K%zq3iTg=l5hAT#2j6rd zOA55}s2=ZpvoRG68VY6IynC>C+v~fm>)nBjkguMXZR|kFb2q%XD3SUKJsP{`wqvsU ze|US#uqglaUvvm5K^X}_q#O_gDM<+_9guDjB$bd35$Q%!6af*Wk&y0ADJek^q>&a7 z>5hGm>$leWpL6Z~>g?7rdWm=5a}|B{c`1x=u*QS9*5=hLUm$78IPi<|L$EN|Ro3h!H{<`WodunQBp!*)G)(rj@E)m$y40H znKlBWVV33bjxR|}EtA=1iErpnvOMyQ5=cd=M;CsX?JS~6sl(AKH?y^W{Geil{s)0G z7{47~S_pzOkt(5@bgY5WLh=B?3FN<3Sp1FF*oZ>vU*z|M&y$+v~T&2j@-(g9RXQSl2j#dFQxYj&=TaK0j;#iJ-@Z(NRd^By)k95NJtDMG!eJV zlT)ShS5&zVqf3r2;>p7A`~O{CQne%8h!cCm&yFqE-(4%ZBXD9#CV2_O0v`J}iWSqT zCfTU0W_v}9;+^Uif<>yCIB=GiO>2hf_mfkNLT;z>LR(afoK(6xNI6c1S->jJ54U3T z;KTE|w|S&~Iil|N;+mYjHsq6%;DvdrDEQ^^s}T)4(WBfN4L}nN_O}OI*3YsDo9WoU ztPVq`5^%?JojZas4B{ZXB_mJ1Vqf3#bQjyFt5P1hXPq!BAQGVlI0^>85cacS{gVsL zZ{-y(&5XUI=ZvmNJBxnQ&)s8_K*b20v(hUN4Jo}_cM0H&4*?L(CxdE9pkYj=Za7L9 z_c~i(CKjB`(${A_8hP@-H;MxFgUkr{EhuH^VyIp^FxeOH|Kmjq5_E|GPhaceuw&7>`R2r`*!R;om1N-X+eAf( z_4fW}4^WGy`stW-^nt+aL||xiru@;#i%7s!swX~+gn-u3FKPcDl1H(Sm!f1p>B-WH zevbVxThWDdrN^>YWa5~riI@26!EHFM_%g{~x|SKZz8cpH!0|4>j)R1uo4U`#Nj;u> za|6hHo*cACEL`fSBzXjVd;17>LO+i9;pg)fj(lt(sJezmSg5nK829RCZ&NWgIoI*= zG{3yF&1h@8XpAY>vGu^2^(YkpyFmcTVK57=S-8~;?1V}#X2|yyeVYoi(0t1BI(igy zurgu?WG-ulfzr^lRe{UkeWv3Y${0~rSEE+qd+`FLt~)3k>gF~OVF{(YC!o)ZF7%)1 z{o*R>Fux30Rz@}0ogOXFt7#}%FZ*kEyRd6=q6t=SYPwt3`eKEwF3<0V~)RbZ;on%O)O)$-{B|1kB)LZc~Mn<>=dAqs`zol!|{aNLN9 zmo$6PlV*Ai`N9snz)$wud1vP?P#3em9O#qzho!|cxD%(xQ>#J~wAFItL`*)$g?!3V zOdt)tZTnFx6v-wo*gWCfrS}{V43Nq{{$6lJozs#}x}STmWbh&eb~5m3+wAIbI3t=s zxT-poK}K`@oYw*<4pU7HydUq%td$(f{I3bih1nOL*a|A z{(6xQAz3p>=+pj|3M=dNzkA~<>h2^RkEA-UXjk%k*(da5>!i<+do=Lu%~oTGQU3$Dk6?PVxe(nW;lzQ7j(5ZDo;Ah8LL5$T+3+p@|2LrmjR7f z4iZlBE~n^=ga}OJcS4_tu?PjqRIfqS8!c&4t2AcHT_MQMIGU925dQ>8Ci1@WTHQ;P zk(KKB5FKvWe`6UsHm#r^fNMrQc=7PhyC>=_5SI3Zapvo?wNN$H;kH`z()Hl*J7Lis zI{C9_fcja_?dygW>aZVq+oJ#Ig;#_7zR}{F?+|zuabM9G*HNuY>6oWzf5?Jn-Gtn0 zPLG`xAwqhv0J^rYweF2iD)sW({gztQv<0;KTK!=~2>zHq)z}baW&E=J<^R4LL|yf{ zNObDmtNzF9uc2kPT6wL6Oy;i2t+fxIt~qbg{xR=P+mE065kc-%&A2M$Mh6jHqzyS_ z#twJ|7JCR9^E~IVcziiN0}BX<;Au#JgWZXGrW}lf%a6)AK#^cP9&#JpPhe%DkND^% zj6|geBgqGypB2+j=>^5(FG{>lL+^lb`EI1}FaK1{gH{5hbFNZ948P>bnO7PhUTNZW zZT>Rq3BRDP7j^6CjDS#6{gJakJfP8Zj+)+t=xM&HfoRFbV_ZaQiCh5B<2Hyc*pHSz z#c0PzGRq(TOT4rrkvmB^3(D)%t{L;jxJQ!~HcHi#P;A8urGD^?gXZdnjKPXy> zRR^NIuy~=9+b{)aA^2ATI&Q8Fl2(QpTieroFq|p@hKr|;=N!u6>|{7sKktX4ZVwvO zq60#pSuZiriVR@tgZQ~8NQ%=x>yrfF%0qB?Fr)tZkWdnA9so?a61?LfKHULJi`Z@< zKI5@m(3%Wgzk#( zCiD-tNLHsm@a4`D2m-O#kEi{OHak;kuu`g4n2NV zaKBCjlnY9|MBql$8cs}ZY3KT}HS}`LWhM8tw#~=>@AMC=N%cT7^$(2N&HHBe6M_@? z1=C$fBU=eDU@j2X25(Ad;PS9hLSQU6psGBb|1s`~2tO>gQ!Dx`1@+Yj<_1%7`J7)f z9)BbY(far+4kp;8o3_o4SmxiTvsrI<8Md)R_EO--4c5%M?^SrJh(0I^ETm%G=x4u; z)-KKRYQ_cK0YKdz98Dd)Q+T~jPLI;&=$_+LitB=XZD#=F-$7?tAC&P!OoEU^mPYv; zK$$04$-EoFdjTMv!nB8@B5N;NZs!?lo;x`?jebFQWB(aoJZ2WLWf`o}Q|IDjaPGX} zTNEFR0(_~y*#u~Z)K7Zsy2u5k<>A*H zrWJFdjOZ_al}Q~Qs{q0n+a^$t*l0$x0pey`nYX8g$Ko1VCAa4T7QOVItd*B^?DZ*}u7&qJ&Q z(;zq4(S^*imjF@jyLS>l6=iK5PQyb?v+KcFe(}#l^D@caFT4cGODHBcPH*2|VVD`p z>=6f2>GJ(!Y#9e6z+TnCZia=+k{x?bjEHBZ$vIyD+kFrcAFJ|rc6GR8qohYH$9aR9glt<&0Awb*&E zCCE`>mom6C(FxEYG65)C`qJe5>_)jl{)rt70T&SlEZ zPYi}-E^tpIyu^czkcRDHNb2G}m)Az^>0Z}9mjqhCP7~o-s>%UzcuV>h5_Qf-mc0-P zcKap9D{k3F5CBn)gGb0qC`1sGh-&SQeMJnl*_3p)hc$c zn&}|;`=(4PNj({e3s!y082n|Ih|u)YJMkHhL)Bj8*UPHlu-$pl- zRCH?JmA-LXjMn>07MWZ&nFY`%?Pn6W(fh*Co%&e>%H4cjh%APe^sQ11eR zA0vDorN%O7YUAG$?7Rvz%;YrbSG1r(V(GP4Q<%Z_DojP|+^GzZL#e{ShD0Y%wC_D< zvMlU;U(hImDLov>zC$oh3nfh@{Ooh4c%AgVt3oL9*#aC7d|>7WXOUU84igG*t-92Y zvcp}C2_RK11T+F2^rtFom1!QPlHhtU3T_Fx*&!%Yl%~(wn-9hy7KBhC z0Oqv+OY0O8GlDq&PX_?@+)-a&c%cqhjf3*9vEwn##*KMPVltN+fB*-DJ{oJ@T{~>) z@h}|^!tB`xJ+`3G`3oG6zLo%-s^fJhw-pIAo7~-mY1WTQD$1=NT*9W4&NnYnHGLv^ zKAMeWP>5v!)40G#D=BN~WC(*+HXIic^%7M&pG5mUa3)8YE+SDKS?5Ka@&~xY z(M!LhALuc&DBDbKgGKZ9qh^&>DoH#|2sF&?uq6!7)(BoAGa)6FltIJ$ZuOda7yd5a)SZf489HYJn>$?g5g?&&1(L@AaAHU}AsLU!483^` ztzE6*xs&6ty<}>Xe3d$t46@uJJW`$WScAIof^X^6vDWi#1Q0WNZ6DS*F>#zypj?0Q z8&ut%e6XYt!!B@PLd%ZqTP0m+d@@KVz`Np)$%8G00@w#B<*pwDdTVi5zM52`>)wY| zK(w2yCqtz_qLZjA({W+wsiZGW!(8X5vYYC5W{mwm%A2^kJ-&jwh+Ld$Ur*4q5(6Hr zv42!JexGm_nL<998W4IMC56U746D=&BOfY~It=lZ?OVP1C*4XwJ=*;%lsW6$9*fUm zxANx527+d{=QBKWwpG~>c9u<>5`pdn?@~eDZEDA@ZJ&Z1m8Kl=MqmXz;l@iem+bPOoJL!tS;-n{BOzWI_~X?*^d*VHgI zk-1b@vWo*#CRJ0ZiwssQ*lHD0E?1-j=XC1NWh8`qm)cOTVudRsf9IOj9Xo87G&>8} ztpFgF^@379kMBUN#99}x*sbFglk{sCZ;8Lf9(jef^NO&sv=o^*6#jGTaU1bH7Uo;Q zNSg*d@G<3;5IVNYQF?t!b7z4J)*lh!b9ZuDAm=_OOUL8u<1Bg35PZ{`b+V=+tseVh z0D}z)BF_1X1NBQ(Ki`{ybKR&@vvTCFeH_4bfF3E3KGNJW?=x_O@1RWi+pFlA0D176 z5Cr*uJK$OGt<0<8hM5D%c1Mijce?vl{Jfs??O_3sM)P;tgS4RVTchh^a!e!?#`UU4dQUxFKrK6rSDaq}YVxanx?*D_&^viA^g{^`pQ zkd$D;F-vsGIQa}R2@}Y=8V42S^mQ5$394InJ(txtlg=~*F$!2GZ`7|X_Os=C;Z8q@ z-)x*nyXW~r>!YabfGoVWs)gWRVOMm5T_aZS-TNW551s|Y$=v)yl~TAVp+^I_Xo(vT zUxX;;(g%~>yW_p(q8>S0$~)Gy04JYyn_>q+?F5LsWEmV5hA#}VnLfswR*l$foazB} z0No;Y%}zhQ@SC1|&GEUL(?O^>KZ=SUQg9c&C3@A)R5xUd{yXSgOufm~X~op8yMT;O zJRjf(gJ$nPds^;H8v(bMuXz%OWXKAX=YWYmH`#{}F!OXFz0stS^C=4d>6M3&UYt1F z^BN}TH^cv{@~!lyE9S;%jOnvS*Li$jX$2vfP!w2qc^Z@eo;}c8SkfK0r$`z9-~z^j zZCd>*h&T-!7>615#$$UE5_4U=CSDwwpv1rUmb-yU(!yPOo0yQaUY%Hq3$493OF!mE zDsVdN_2pjZV4j={9te1BY4NBby?uW=`NF<5(c4%R^!@Rbi3&EL1Dvum07X$PKZy#< zoAIAV>y2CY0-lt|SHn|UgIH_ZN{ky##nCd_be|mV?I#)J;uWU{M1^4Hv zReIe*kUd8IL-muHwuP;&vv{kcm00fRZJO&6wbPKI1CMIT%F3LaoNoWdXg1W)?>#KbCVM7;Ib>0N ze1~rl2Ecb&GXkF-zpdoMN|*Bb8)zUtT_o5@Ck0pgisLhIR69wFX#4F2cb9Tc*naTX z>XbT`-PAe$EJb0kwSvt9gqe?(%1?N=rYd%g#B zCmT^#><)ZVKP>aK?+5(PYQ!zbXz6{u_2gSeBOH8f{CVOH21#%9e8KLi!D;dM&89&| z`cL^g|0wRzm4Ql@A^3-udhtUKuAIpb^dDsij$rxjgepH&cKOW@T1~r>m^@bPP)M{! zmQvpcE9`>CQTlXQzr3D&-;8TlxI#?@=TQ-UD~^@}Ded;sqq9?GRl22TeMXTJv=Cm8 z_;0UAO~ntU{kb5rTKI&9Lji+gjhinZekHLq<+{Q}$m3o}_F#~3_h|wEvpU|y0Fz~| z{e$2+1X+|W-ILhtw!>x2&<^JDZFRJjsi`s8>SW*j{_1&l;puA0cXbwK8;jxxfW!Xx z3xON(#u4k>s{r0b_5Lg>qfewc{y)IR%|IB~tUS*GFXKJJ;wfy#ylglQ=GiX7{2?em z=q3eVQtpAH{!3LeAt1Ve5sN0Yk1E^A=iC{*9~>XIsu?5_m?8xcLFg|{fIEpw)4q7> zcRMMBxt)NkVH|A23`Ex1Yd-vNup2aHSR^9&N(5+*B4H0SYOeEdjYv^UwjPv_R2=nx zVP}WiEFQ3*PAZL8Vbg2wkIT!Zfyp`}43jZc814#9b|Z=3%GTBaXd@^agCWQ7X2Y*d zRFb$Px9y(Lpjv)!1C!ywLhTJiY%y_QZ5a_Gz`p4!7-7X&J13xc&Kz?>QeuMnp?X znZ+$dF`Jw}d6&d=Qe{!x=&vQ>-l_c!GRGqeJ3nzotNX2DAel zFWPh$oGA)?FVEF*kqARHO7I6EZ@#2`uB|O|9YoxhS!>RY&8ij?pL;W8D!v^yI4gLk zU+ndf40RRui$oa+sRfI8Q1b;g-Ova^-m<;u9itf!l2CGWa>@x&_fdXFYwz?Ula3yp z6&h(JtT!%rS+ys&3@7hA3W&3?-i1LRY zw_vj=?MF>Eg%7Ol5$~ps5?6n{iB~SlS_=9MvK5z{4+Xx45iLI$s5`2f6lMc>KjM0h zOqij^!b^|udCy#4-$&JX>@9!av^03DYh{#VS*aKFE8ezCJRcP{QD|JBnUiU-8zHk} z%RIcm47E?bvi0uH&}U*MN5ig`T;OgDwm+JzD}6?%?^Gg$b!bz4ea&bFpuD#zyjwMb0;fF5)@ znTK~-JR=+#!x^1)pm6q@QA^X#y~7m{#K2_o{0NA9uY<^*MipXAmAcYI`_4Xm0o$c` zo%pT$+Rwu5ewT$Kj4CGPdIY;pJ-rk`?@8r&oWKQzxmi1fBSApMf}6r|6WH>S;6jil zGiF9b9o(EXoJu zG_tut^Z6l2?2+U5aLvcQ#MGMmAzTI*&;$_fgUdzkwV&r0(fB(Pz+)a)Ck|*OxOK{r zF4hyu@1!;fBVR+R%E`C4ISQ{B9_d#B?S58SZS(6 zCJfzCBZkn?0&yCz2(A9?x1u98R98u}EdK+aHEf-YFgRWRY~)dKmi%y{G*x~Fyd;8l zaxD}S?qcQ{0GK(tqYrD+wea`$XE(+EJdMINOUj$PJAIlFfoy41AQyhA=eSqm3Y%W~ z-+47mmBOaZ;^Ob|TkK?e!0Ew8yEq&#of~TGRsA-7?|M;V^Z~VS_95b^k^gsfVt|E{ za)GUoIZ-tYFtgy&yr70 zkYj1OG=`IG@|_=@CFe4ou|H~g08}W_!|reznqNMTd#}3eP4qSxgN}AT0a!VvA0-90 z6GYSG%3A-sa+-$ng9%P)es1#=V6o}Y614C>;BiFsS5dO6;Kq~iFl25LMNwc+cRxWn zk=`-Yu3_+RtiED^Mdffr9$FRcs*=Wb zU!&XTV$2UZ1V<>9WZmes?1o*UGnM0`KkxAAe&m9Wnq7p1T_^=AS9LPG>0$KI5;YCr zWEd46BO1|Rq$ACb&Xv!BA9ncCGzg2WH8dQ1ofX(uOS-|U;_skAc_^@O;_L3i;I7!e z1D_fWux0n)xX$o_tHJ9eM|3&M)SKH>;qkZh^#|Obsq58OHP}ps%GEBCx^fjY=wRdD zd<6#~fayBQZgC37&I_EMsf^&Hm$>_5;4T@83A0Q;X(3qtPI+HU&^M1qt>3k%?Ugky z0Z{8PW;pw)u4OkK`yXsAiVTaocH-oO6@^egevAtzHq4#nUxWP~(aJCw4xA-WoJH0V z!*2Qu&ny6ANv44?Bmfkv#rX`@i&j1T1dxP1UVk~?93Z@+0J2Q4lLAA@f#6-IX}{kB?BfwEUXNJ0-2 z+U^}+(ZY4M>u5WGd}O~p{!i%wR1J=Sr+oRkE(hSH_Y|eG5sjpnD#y%3sVi-4H}A@} z(kmq;8d|%w6VM%I9)(6AyWOj3!C{#glpaQ!o9CY4Uo-aqG)Ne!hULxkcTfdP)T-uB zjNA{h1%;~O3c-z0Y-a%w(areF9R}NJZc?D(ot8aDz7J5}=IJ?;9J| z&x7;@ev-cRja)4b($oh*ZUL22K{-=<^*cB8lhpv-^*%Ki zDGF60U-doDSva|madRK26`BF-0S5#-d43GcK!-Qe-<69PE;G*~Go%Yt`l2WQPH zhPe!=m*4eAb7PZ3wXIvv$2^YKKjR!dI;s!(k|iQ%#?S;=epHR8SJ?FXr5{GUI}sG0 z$e192^q3SCYy3-XWRkO>UgyGU*K42i)VB^Qp|l^Ss%6+h$RUh&FAnMrO-zKzUX9t* zOo032ANNI(U?g#wMfBf+UD!&A*=#|w#wT95N_j2wY+DOWyH^?iSD` zh2P$W>#GVIq9b}i_TEDPt1t8XS4P2+1fQ1aPlLfBMyZf7*N~uQ!G5IJ#7M9ZHb`7d z|IK1NA@6|OlGDl)S-`FgY>hIwDL}+hQY$~o;H+9~Ir%4-*BfQAd4tZ8%b5nC%5GQC zvfT2y`bB^?L?-i?i8v{`|KQ%BK+MU2s2&rVwg2BZ6t}e-wsmDZFTZ(%aO2+2`DF!$ zLQxf_ivSkEvcN%{+g}tvt2)^o6W?ed+ZD%=4}gTd%boAw1vm^Cnk`zu(4?`&3M$uG zVevHIyR1k4qajBVgtKSzqI}h`Bs@V+NzT~+5*)VDG-8ER_3Z=3EBjC4je)QTFJmYF zkhW|aYqraDLLK|hXq_I?wJj6RvEE&5*pV(+No)>7vuYS5)vgJHb?jDmGtCt1pIY^k zFl^wym6+bsI_IhRfrfEIOAdxA1Irr}#mD>el3lF?UWadwHzL4bZ&Cc+#Kh@GB2bcl zw9YDJjO%Q<_%*4(>+=neQoz(vyUumTKyMc;KFO4XnhqJQT)38_M+ zZ$N66gaQ^siH#tnT;YqN)z$IstzVg45A=h}d?BbweaFro+<(@pqH~i@es7TDJuka~ zXTy;qZlT&=Zk42&qVyU%j1H6NH+hH89|1Y5D_a~9v}0FuU(CJP+-P@7di=4b2ZY+HNlNQtGgl&D>bB3)JvYX6w2Sf{Y9bG1 zcKdnmwuJ^raoCC%gsc4Xv?x~2 z7o~Itoe`U~4dg4&s*k=c`@;dE;z^uP5fFdoIW`mB)bfjgyk`e0;22i? zvQHXrV>lI~{N5z{-c*As6R3d1eFykn$NG7?y!I1a2z`rPKzeh7&QwUfLQ!Jsia+QG zQ!}g)Zli+dAq9(mk1z(<$3L9@@FDa(u{gLy z^!W zZliQ+dk%PXPk6AKpv+Ra!?H!0aLhI&e+;~ASRetntVy+6 zZRtqbT-4rqFZ9+!OC!K9VZ#XkVHc&#!m7lY^+)*0iGWqw?IA+0de*VA`Mwl5-gS^3 ztbZP{HI`sD#$9QuEO=uKKo~?Lt7#j7y$o9?ILWNp0N~>I01~z@X|L0}Fn#`RMuRf9 zVYLT(VLIc`5a#RJ%tM6BWJIQ*dGPA%c$GtUES%sjx=Wm%{CSw~1@NJ%d&Tt1T4{p6SCX!tuC9M1P_#wu}>D_zyx2j#$-(=sA?tG$~z>2^0 zg)c8oIN|kdJSPq_Bv^N>~U|U z(*AE-8fWw6WsB325_Ov&uPp-XHCWNFdCa5bKU%<7L70g19o5e!e3}x@iVDc;^Xg`*k-!n-*E{ucpf@9k z3|GeqiiWNO?l;j(Kk>y(hOVftn4S@ccRT_Sj+S|92!zCDL)yy&kFklh(#qIBntlGg zS!aQl#{eoJ;ma_k0W4tJ*2%0F2O$@X*fCs9xH6N^p&8aU#nrIQ4BntH2zlC{IE5}g zfvm8oxCjQvBGChZpSu~jaVQE}ph1G^p>zE}>`5crC3JWsS6$Q-=4@zJSwPqZTK68` zKp=FhGHIU41^A*-?%QeMqYNv$qAUQh_+5f=S;{Z&^s`dt5dsJx+%4lQ=b~=(kdfHB zr`7&0H(t=)&5;Xx4PZ0s^4nXP2!s`+2-Rl&rSvhAk3L4>zlR8e>Xg5qUqs0@z{q0bp)auGKd`k z0H}fsC#^HzdB53+2rDC4&x<`M!ECBUQ_dw>{KP>L!xx;r6bSps)N#h68i6*lE!7k% z$?9IRhq+0P7N4qn-ix0@80NqMB{ZLm&gJguSOfppn^q;^$Ga6I)IQT-6vqLc8bLWx zn-W{5eZo1LLH){NC(qIZ?8fb1y6nT8_#wMQEiwM!El}W`o zBUS6NbtM49I&EQ@i)6Nco@I{NOfbV($I=GZQV_U(uc!w^hu7=(zIYv@`Z*W6fH+Wy zxlnpvfhv&-RBVlZb>QbL%T!7#67?h$OwDFGAy!c(|5yp4rL?)`C+=UE z9cq5VB*((iT(A?QajT4^tMzVzc|kdt7cdlEQWpFH`MB-H z=lQsh89f3LD8ihdItKrcmrm$bHVJvW4Vkf(uI}9X3j+ZD#&}9!V&8k_cN3@_ZZ?Z@ zpuzEXXha*iyiShjWkY9Kx~SM#lWK!#9700=27I+UUE@a~<48uhiB1@4RqaohiVXS0 zU4FPIypj;)vaoj1_$Y%N?30K-wN9}K2K5*s_6ME3U!w*xzU1fQ;xLBYgY};EavBou zHm^CLfU>#c10=WX!Gi9eBjDBrMQ{$7Rqisp3I8oog+V$8k`&j}kMi@I^TESffM!K_ zI{wGMvYmSNY{U_dh%QY>tW-c+UuKFJQ-qNd5@>tv~1Z1jkpA0{e~T z#-)~;fEVX^qV9tZJoL0gPYc!0QA?TumeF^D zYb9St$86+j!;w7P>>7nHfN9NNK;OOaEJ;PX zPDdYniGSU%E&t@K{kMgvFQaZgyap-I1=&{Xir*kz_{RP)`#(RFgF`31+iHx@r)1}b zlPfG&zUAd9fl(=h$Pk`wtppPj4&Tz-L_^FzFh0l+8&m$Cjad~CQTg4%KU*))e_`3X zNITj=3NiedV6}qBorVKc5bJ^hGooWzTMkQlEffL`YyR9B8KHL8{1Rhp4|YsYE|tgg zgM>K`1g}G{x6vi+volU+d8ubc#kVc|eKW-D<=-Wu?pAmZel8o%c&J%CuX`2Kws{|f ze;%&HzZ0zgZEfjwV!6}&FFpifKbjJ?z1*Q{7`fG z-w#L@{yFJ3e|pqK>%9Hd6Ra*U(PwXi+dR#Z`24s0gUQ_L&rVWCzT*K((tf0k;Ho1c zD`|Y??*R9(-MSQ5^q6J~b%XNNBi&p@X;7*}G!|4+{p^>S|D@TI1Tefr=fu^u-f{ui zLibRJ>mst|AF!<6Yzd6;Q20BzjXuxa$m}rbYNou7&f>cuf*4dl@-*{)?RXqvO-|^z zaQ7y4)u+n%Kn&4f;KnK%O-8b2*}wf9j6_m0ZP=UGpzipakVwpv{V@in|Ay~FS+Bw|4zZ50 z>qZz^XtBT#wk@>iRNf;HuT$c_!%rFN;-c|2t|JgnvP?1GmF0@qOuqX+KZyAI+!S~& zf)0#)Ffi5sJ`;{%Ffzap8cd7ex`7adLk2>E3eI|nzlO*dNG5!I5$uK#q=8U$1jYvj zfx!!52H5|PkM91YnUgCF4gg#HQ2CP6)6-%%PYz6l$kW)$eBw13VaTfl4YN6TCPA^h zjWs?3+-YS6hz*)KTG0tjrKB|iv*gNEFDMima|{XegRW`LhvCdiZoFWL^M25TTT66( zT9Z{x(*h@Ig`ZQ1A5q{-_=1AC={#VooKxYin4e+mpKIi+Wmo*yU!~Wj5Z9*@%;8hA zb+%aV2Uy%Bf8_r4*Cx_hQg6cl`D}#3z`y{n?WE|+nTcTf#|_L6{x{!(=KkOQA?-SM z`4NM^(C^ZLP8(VFI6>P)yOGBcVx2asp{@{nzO!2t5l$m$Gnl11kg0qI;*=WCLv?yV zFSm8UwD-fq=V{(CXcrYq3miukx+oaO+ykfxQJC2^s~`?INca)tf$MfhS3XL1z2oAl zxtC|&8bYDPvhzjRbMxm*di~lL8~>>7MonbJY=K*;h^;@&fc8&hYw&<#nscR`oqm^8 zX{dZRF)%o9ACO&nK4vYr!U6Q<`nSR<?SkCx6xhWJ&XW#+WB_|cPs|8a)5WS ziZ08iv8}aV>PwM-$H`H{C=r?}%1T@2!^nCuOv(ijJDqfPya=H}+Z~l%@oX}MLWlXz zyz8OH6lW#`hFTlz|T;#g5+)%A8Hb}_w!SF=od5wvF_ zzP)NuB@R55k5+L)_-rR@X`RRIK^@ve5Z4^MgfmhESdsHSw_)+%<*_Kb3AByNK--uS z2kW_uclM`iCU^1)$*$KPZ+4joewzP3%BZr|sODuA6xen~-2g#l^au%7AE3^N{*DG1 zRS0g7RD1XedLWpL-PKy*r3 z!@~#jD`!GD%74s!e_&7s8eIpA%CX!={i*ln%ZcFl888apVa+vY@LWuAK5Y}MH#(^` zZ1M&E6)2=hn+RgQ6NvdvmIpNA6lgbt#L6qxG&H!Xa+nChk{1>BuSe)s*no2G)mu+G zAe650To=~v1IPd%yhrWf^A5(BQ4{bmLuf(RRY0WM%>#VHZ`M%2+70aidx3(p^Il(y zbV0-EA+!?$5hj5tKRKQ25+h>^3`x!B((p9o-)A<1u8Z*V)gPFp_rKqTum9is%TQ>l3k`#oOe!FAVyNVm{PYqcS0c0yXQh6E`D<&t~3EDL(xs2 zH;M#u9cU?I7A7Bm(N!i-7oWQlm!vnbBTw^|V{YOQy8KD-I=y|yJ^QIz)5)^N=}(?p zj@#Tuzg}I3_b!SuctWHmFzLl|Fg{X>>zaSwL`{2uZNtGb2O@z1 z{|wJxBU%@Kch}le@4XLc1zt+$kaeA&ScP?^uXNV@R-epI0oETp4G%~Tk|ghxS}*Q@ zj1SxAeSIb}Coaf6I1# zu12f$ZtU&C&W5izDRIh~xK~t?WUT`U$OX0qY)RfKQ zI$;q={mgo~&S#}xQz%TQZ&4M&pQfP^a3}P_&*<|7X*qrJmGoj4^5|Qy$;nvSeQv(- z49i0A#g#UREaHiPwbtt`(%~2IFYEi!we^uK2_2r(k%;e`=#=i0XV(eEyPSx=oR&1L zxStxpHyDK1AH8I=jc}z*XcC;E4sb{zqe$j3C(kJ&F)Mt)B^nYEU0|N1v%lMXzXj_Q zr*9=GHY?Thry^6TIO}?|z-v63&X<1}TuEu~HMA)`Y8+x9lWW$dT~c4-j>mGek`Qbf zeKp&)VKh{_PMVuR;FRXE#8*%Ll^a|JIx8-7N^5BwTrzbqM-eZ^}hULTqL zBwuTxN3U$1JfxB6-clM;F9@%XOvv}1JF@gdwB%(~t2gHo^^DhZ+^9lQShMoqQ7SZTjPc~t;X-#UY zn6c$$`Eh*u$3MN~Nk!i}^_gX3WuN1CD(r1lz`@lm;w{<*T*t_r;)hlo zZsJF&%?10>Gh$A|ADmCC4k{?O&-Vu$2l$;&GI-%+6tgCE#m=4i6V}=&*5SI&Gtvp4 zdIX=>r4xdatNUx@CyA1_pXq8}YBnlz#;PLl?S)@8EpxWeY|yzQre4uEPqj8QnXMlY z8xt!a>K`gFmV{KrR>d8VZQaRv>}N&ccEj!Rk@_xuNL{Ds{+)bxxr6fMFyUO6jgzAV z{dk$JlP%}osR|WDZ5DQKiBC7PD*yU8+mCrVKI|#gQkvgbSM>16&qVEdjrf8SC8zLz zdtlcWq#6tyME+SRBs1&38rM#|nt91`n!QI1|9J*p!vo2D2y`|+nn<;Z{R&-U+FYiC58SzyiRqtIc)r*^YHq~|>#~k2y z6;Z~R4U7msXLm!nc_$bqJ@INgeS}oixN(JCgnUZ<7*}gD*-FDk>p8ov)}7?z$W7f& zde*P3mo+MK=rj~_PLqeS&wtNb7T8f-F33t!J=3X6zK`!|;X7i+sqR=Y8%j>Nz@TrK zVKgyi*fv6cE9rAYQYPWWMq<}KQ`0z)n1klb3&jm4Nrw4oSylO*2i}x!NDtb&Ecg3w zQjc*C>1NTkzITqVj zil+=Ln&!xMYw||3v6Sd)5{Wz`HYi*dyYBcif?=njX*lJ1X+c&WYiVb`fgSs%Ix8o$F?iykKyTWZ#sJf6C8v`jPz%cQ1}joaUMqoyMIE zceMkO`3Q}wCAHV1M~0WZLVKID8K-TMTWOYT8&|$Fi1EBmVvD_p^T7y5LFDM>rzRUd zVqtEa?dSY`hGeUARND^x)#v7Zb=d_TQ`LpvcIP?7b3Mn@j^!{(GHaQf^xa%+^^nSy zs&tnB1(BTV>x(8>38y}am9f+>H-ZxD$hKFByMGNY?Iqu)T&gv$Bpz;Fb4qJKJ`6+> zsj}a}HrrIyz-BSwIJ$PIOzt~ScIC-7qxmplt&xH7E`?($7{N;6XIxD9}{!5oLBBf&bwElqb zeSIg6qgzMi#@f01Q`fb$a#^|9Ic{*W$u2C;FEAC)7MW|AqFtG;65$;5`bjSOKTkIx48gvnaPLf75GG&rRS8S^dQH@FYB<1JHO2}7xu)I!|-@_3@_BYQhJFG2Mo~B*RWS3Z?pmMfpRsdll`E$tp8MDowD@<*;tKqC%R!FNSc~nJ(*PiY?Z)e0`Qi^KPf# zG%V{*-02cpQd-P;1%lc#a>5no$wm#G?8bb4ClvCp;gFgC);~)h=<}aNaKH%T@f$Y78+ztA269;eBA=x?ml@xh`M9wg$D&<@1 zb2L7T*Zpm~(-QVkKfC8tpwZx}XSZ`MUVz96U)W?c-$sOs<@;r> z?_c`-^Gs1IMo)q^3QH+tH)oiiM2?ups`&p*3c2OTlciaPysk9b|;$UgROZJ8|2e~nN4i8xQDbvO3Ab^L{^eF+a9T)eW>=yRB?;+4E5 zF}&S;$|31Z)anmHZ4Asw_9z0Sb&O)W4gQYsQDi}!)uaQi-5dPA)JuK(_U&N+_c zgSDq&=I>35h||`dqScq?z??OccpE6rB3&1?tfBdje{=>#tm2)G5WH4w-y z^+o~#z2LP3f_$kr90(=^Z$Th9y>O#ggS=@1&?h6!V^2%-pu$3g;$ENK>-8aA=uKmJ zurLY>VACUEZ<^JjL8z$M!@04$LU%%cO3&!s#nTHjqBhN!q!WVNeo>o}nk@G58HsFC zXCZajr?Z)v?339{wyUUk8n;dPSL}99kd&ns(z0YE5)2mj*^_vf$%vJQTxNZ0ZAomdT!QER?wosD zX}qvwKF1Vq&d@VZ8D+BYkJ&53DJH+O_x-E4CDX$I2b_KE?0Zqgi|^O&eW!8C$ly?rL4jb< zuQTbrI)~rsb?CKN%V@mXR7;9C6^C>vkUADLb3zdLIX~kMGXA)Qvs)}&kO}&k43pVz zGMSm(CT!AOX2E_ibrh*Vzs1BTup?*=gff5!F+RhIoS6lB=)edvr{dJ(_-Yiy*l&fkR#NA zJ8%^HVMAf>9I$n;ap2CUN*S`Z1rcekq*dNf{{o%F!YC5pNd4#qBMkr z=Gw^SUPn!7e6BQJ7IK^QTW+ej&=FCtng8s*A;0y#H_kD%BDM5_JMj?FSb2De*~?Ub zc65sd=2e8;O6*d6_0zxz+!^loDA6;Y3L7P=tkyi z%o8k|Zn%SGbb6g0Bc;cBDD}xyCN+&=99XBQ4W1Xvd=bymgfvT)PC>1}2vk&&)e6Mk4y7Q67>ux$W|CBXaM|8)kg){6^ zKu7R|@G8-z^{9ANSexlkJ3T2vO4ymHRcr7bjdvRBCaubJNTyUqt7DqgiD4v$B1t4h zvmweags5yqQUp)y5ZTMP)g0ghOn_jTZZ%?~XiG^NU9ormObGaHbhK%lx~1eQ)oicr=V4*LvDpCXDfkcYW9j-aF*cb z{fx?N;!KPx6buI$mENE;Xbl>JLY0zgPi0gtr`zdqvML6%Sb zBu^wpW#PziL1c)1sw6OW+lDP)ToLm}EAmf{@BUFv&HRfBUBp!!b%ot_b8&W_D@(;Z z{KJWX0~hpk)Q;TqrT;i~&zBy!@tI%ap0b;B1!wTc+*|Xfx2((&ig%G+T?4!NE!b5D zN=GL|t)0bvsk>7d-SooW#T2VOnZ<@uzL&yQYLo$|lUHgZDbF%L0L^^|n8R9p?^BTo zhm<^Q_LH13@N2^~{>>C}XF8{u7oIY^c{k%GyQ;U7Ew#Hcq%A!QyVNlYJJ$5>EZG4# zYiGIHGvtV+>`XT#+Y{E=LXk9&*Tbl+VN)cm3v9tYi+c+a%m4-TkuBI`Hv}!7I1{d?6;nJbzd;%t*XBJ zhl4*DyW(eiUd6Z1zo03|_Q$guYNCx9%57=cpFMGpPiy~==dM3}*-cn;-x++<>vMw# z!~^s5$?%Scu)V()sCjtdzwrC)w~!v_nRg7iKwG=4wxp^NsSS-*y_s#)#-2;TDK6(L zCnzO4KrxidTnJo3Ckpc{NEX_b!FWSmS63Z`+WM|7BxS!vvk>M+w@ASta=5$4CpjWi%KMoW_FK5Gi3%#V+XCZ*em?9+_xNdaS}?l`c49=nhFBvlAo{j}vJ zl*wf>nPl57W(Rh-<7OZBk^T3%V$1Ym6!hW<@WI*H4({xnr6l2U&z8d}Ug@5VM!C5& z+!CmwSHws_iq(qd|YkuJUzzK4*O7(I>`M-&|1g$dx~vf4L;1GP}y8 zxqsKDoBj*v8AV8ChcmbaSBln}0N6SLCwMi1fK#;UE1l#tHWj5+A}8lOZKmkocfTO#e!E&dI(wsuOkr5 zTb3TTDoAYu06{xPWjuGox>kidT)G6u&Gv+aaD=dh^@UNA_+!eK89aHWc8KvfM z6CD2UE@sf8p+#bA$!G#>0g$~8s@^)H=YcGzEC(zwq40;y0om$ZvXuQFD*0dwCdW}z z5}zw0CWA?z3NZ5>$$Y@4h{4Q!J60ZapEI5b%-k}6@iOc9Q|I9M{doVm-22y_gYiR) z=iSrn^T>$&xJ`6^&yCX!*m|MH6ft6?c0|-#jovFN=nm$&DivZRnlvl0!W|^1^y&hd ztdx>UnoO0fNRm_xWki!R!INNP2gP7#kbp`tct2RqW-D)Htl~*M){_R%FHNCqk{&gf zl6n{Mo%TPOUQj#&&Ii$^(P#$eLWv z9%%<#5zBT-FhJC@BcP(zwRF@K0yCsX@cd;z-PwED%P*aI{X~AF!=!J>j{DM$_DI;x zK7ZvO4t($W2XV&pFW~6Prr-TwN5{%luE2`T*#Fo*Zwk?dmW4CQN%j#GV=jEsiYz!r z4z)+%Py<0x=u`C$4sk4}P$%q()P$qbUYT0yXtB4Xwm3E_H(EFNb}IXHJ^F3d9jQAU zJ-$AEH+Px!iquaz#(aB)OVe-7zB~Gg>JRAmrZ-}LNAKv~(Z6eYFBVbhRC<+3!6_{Y zpP1d6-I=Y$n6X+dHXG7$dS2)Bxp=1{9j8Y#_;jS@z!Fzzc&)=Gz|3r^ydxrn`G`2Z zuzSkFGQ#x2nAp#wm=KM{>UqJ=^MVa&k&0)~CA<%^J_V~~F?)&ReSs(=rru%&*vctb zMxl-QY*vg^7QKM~D7+^yLNuL^3cQb8KP#{L)-`MQX&1C? zj#kvRYFVu-o;}TMnDT#f{W;frBi(Wrp~wIfJ=T{NlC{D zKo&>I4Na0OrzBqZi0Q)+0isd&a?dV$zJqt3pLYYNDc6)!|D_{}MyLhuTR1%h&M`N= zl>S}RSxQnh_7VpK$<%09Vm8PU(+#v%fUvL4mL8!wm6Rjrk(58^bI zN=`_)=~|sHp1`Myeco#?bw`SDN_Js%{vT<~*XGtT58sy%OyO{v)v|v6cD&QMIuqPQ z*5ycD4cXQPcX~(>4yy`2HRmFnz6Q>zU7)M#nP!n+$zZFM7j?cOjoF6EQ9W-1Rb8*b zg+;Cq52yFbPX^*4J_7*J9;gcO<-veC#M^>FF&zg&eEKx=%F{uy3>Ss?GJwUbV0DPE z4+hnNc%fg76~6MkK83GOr&Fj=y{fz{Bi(M(HHfg|4TMqF`vOVSaHwITVWvUR08C;s zn|U*1&T_lN6$LIa8c*Kudd_vi#fq+5U5x8>e;_M64pnhl6@M;%BF>8OTjNapb!0B$ ziMGK++Z#xBR-LY54pmK5%~Y`oh)!0qRj!o{)6BXlfAdvNiL2<1PDeSMSgN zd-ZM~HW(ACJRkNLd_FK1z!NTy!avZA@Ij4jdqpcRXtaXHm#*Zs{&XbxHEK-G%_ssK zP@kdBhSLp<$`CRn4PwJD^vV`xi>6uIqMvC{7BelX7Q;VO3Ud80GTKi0vVnMpUP|aG zE~Qchd^u$|NGTW!hUta3mr{#SDuwj3?J0Kd?5P4lM9{H?dQc8$f;E9Si=9;-d-jc$xv z998pa>2b3?;mPnP3ZTwc=CY($u#a5cR@1g&Q)~N8cg|lmkko`i%5+Z`zU_)ye`V#o zuGbw_ghEU(cP+kcpBPHvSI_IZD^;P8N=O}Gxa~Nhn^Km<46Pa?At*?1*qQ=C%c1vSPYUKtEZ zQsN8ofnZRnQtDj2TD?w>0s*_-rb4PL$&||Ssl>XKNfmIkO00oUQVN-zT!_*$APR&a z0!~+nJ{}^@l02cpW)&7xCsYhlaVkbNjh_*9A<d=5avS@Atn(T4lyA+4~|Ec*+j6QW11F~CTW_;r73h~q9&&|lziKS z6Q&u{NfT>w1&Lr$dyujQm8~UfgM7|*EYA^9n>}YIf)zrAqGN=J6Yv#+vmdlPmf3`Q zW)X=~{M6_p768q%FJ`QmzozE;buE`?rB~o9Y?+>rH=~%a$6RPffjV?WYh%~d58^Sh z-*Z>>l=^J$7JOFT{bsP>HiK3SqCbl}-%;U^7Po63_I-!>PVg1{2L3Ih)@g8z$+BO_ z_i4BCyS2M@qrSUrPuQLSC3)O_)OS4i9p8zt1>qDMVohl$(P^*?PvX;7$3qD(87H<{1%vD<}^NyNy}5qcqBav zHsMJ%rXGP7>^!wARQwsqTkas{9I@}H9&0)?N*%`85w4uxV0Mg@jL>^d`T7T_J310} zs3gN`(fyUL7>InP0NshN#EN|NcZQxh-FNvbpMAWpxU5O5aya;$K(ei|Xm#$!KRZ9Q z7rVdv+-DEpwyC7Hxu??Q%5S>=+CP^?v&orLkC37me4`jXbquK%-k#K#P&*;9x*(~n zXP8!U->z0FRjI0oN?|sl0E+QOF2Kc9*2AXfOpFI3TZlJJGp~x4KsphsfHuS%gTb^A z@1JIVC3XihLVPS3#2#phoP7#)!0$Jij5;uvur|wXBLZS0vStHWvw^JHh^*O&tl5aH z*@&3gh``y1tl6ln*|6D$1=|T5!`ZNnNSbvf8}r!{*-RpPIGf1^iOZHHE?btkY+1yz zWf9AkC6F%I1frIWq%F=yXG=9g&S8ScWroPZ zQDrdcw^uIq-%cg9V-yYmIH|DZ@Ogb@TcjS3pBG_zw1{EW_0ZvDL~QD2}7z#bN@h zYhAdWW2JV~c7Gay15IGCCE)u}j+{{o@ROj)xVPMWd# z7bii+e_=FQGY#_ntby`NIsQ=1^ET($#ZIe=mhe(0=6&3k&>T+PuYbHbHA)Cu-|wie(A}} z_pDlxT%l4JIEOc#Il$JN8<1-n9~E6#VYjm>*DzQm=yUXiLvTTUMO z05!;^;w)rQ<=mML@|1$e$k}pCRpST(J(-^pl+PH4q!S5&$m5*p*IqM6xT;d$1xMR2 zx9Bdr@<_E}ZvL_Ex#uoOc)L?)x>p45#Qz;^|Mp&TJJ14WO9z}SDM-Kt;zpHqwY|eW zWZ#z3>)dNshjouI-(_B~{Dk=l`-<_El)tinH|qAK-~hP?+raj*LxDZ)zQ8r?^`{N|eHM=o zJ5oH7c}y>7aR)U3MzCKxg^K7&MK1BIz@qBp;vtp7cFZkkH`R5OZz&F}ncjPH$A-Db zKJ$||gW;55(qD$(IX1eqRtsVT0Xy6YRb;e68rV zG6*~(WW|acU%R8-+3I`RaN75_PwgY#uCc&J)*eaYla;A0sT)+R+N9yt3I}$0oV-J_ z$FP!DrE)1ekpCueyBVbkp0u=jGiNuOIgHRHW)ncBG!sS&6(@jxV1Ag7e`CSO??vO=Fh&)%36+_855*H|ILran?CY^#;AGTXdtN zQ2=kqrf%{L%0++qqn?8;v$wAlX`O{ zUOY{dc+p2zf7mU?f1LkLiQtIiKPN2C*u9q*#7l5qthjjo`)SP2uL-)f;jksu7w(&X z04J_4#C!B?sujz3ZUbo{&VSNt!>Un%%~Tw9>7Q?IhEax@lfbo6QNK=&1V86U+*HHLgO z-d}N#;@VTe`TvnWo39_v$N6QN z>4g`?yR=$nyPRFQrtOVaX0SH8=fIrU7ojn6yxub-zvz5eP;!x)0UeIvmaMY0}JflZc z4doS=rUi8zt1ySX5r0@8DT$asHNl~*_2EFUlr8chF3sq}x&TDQ ziZY-4?1=g(QQ3J13%Uc15;X+-Z@3&x{@4#LCEju3n z%q824GQC!33LnkLty`1da83P4b=F<;cZhy2>|9l|`VL&O@`A#m?4XC7y{o}a8U#tm z#Ob0=AJLcS?FLS|JO)b>(*K(B@X092=O#(If08etS+7qjHghx;)9tBAE{gBeAB-}3 zml2#7FY=*G-pl#8OchQ^bvRJqK^}C@n@=DNz7RkaFLYM`=f*UQBvoW}(wld|M8M%kL0=2nJ5TV;XD3MvPX z9;KmI#Z=#Zi=)zPK~|K;TR1D1rgDUMDP0K>AUSp>WtWfa8I z{KHfF60Hiysmfhl&>F`|@G`?H_Ls~r*q^)E6jcHEpX@L2DGy^cn~)zxc@yX7qKD1T znKjsxW)JaZ$?J@Orx^_Bzzd~br$D^Ulpy$`(O}Ro2ymwBTz!OvJ=1ve)JgIJ&B9aS z24?{VBQUDcQ9m>##ZDYiJNTexI~MFG?2Mf_rFL*g?ZhFqiv@)cfgfon4ym2Ergq|$ z+KE?cCtfLM$9AG=&3t?!&LrZ)aV8FaXk7L~X$qahWq&j-`=4>yFOAE7DW!=SY|MBX zc_Iibm!2M3a!4aM5t)gcjIa^eA&tlmX+&~FL&=CMcFqx{ekixh5seb9ea;D`m#UoX ziJpy)%t{ZO==J6Yy-`8(MukOh)J%vbv1 z6z=){=!b6}pKrK!%|(~mx%7(p^a2NGjk-6iN-vmCmoFLjHm~emUGm`k=LV=V8g_N# zLu2Ls%jfm|#p?4e6M+veSUAJ{4EQjQc}%=mpOeB>DmY`No%3cYRQ6Q+cf;R}{E~Zv z`)^L2$%V6uxx%a)^mhdB2z^EWrQo#w$)H|oP#QIvDTbB$)drQQ7Y&Rxk4N`0Jf_AU z7WLN3`{`R+b)pU3XH7ssGV#}_lXu;uX{H+E0s9iq>5U+Q12R%Ilrw)!Gg zy;U;uMQchDUt|Se|MZhuyJ|fFM4i^ote0NZqb`KroRo3_dgE6LJ^>GIt=pW$iDXN1 zb8;xTFL^krN?J7n>4e10db5VtFd7jWOHja_nX%}BWZ;a&yQ>UWK6yAv*a*)2GoTxQ zRe%qk(g?7<{->DX1R|$dAmTg_nH&%qQzb<5G7uTa=ku8> z!Q%ey6gZwV1q_l-0y;&cc*l?uRDl(6l|DdJ`T$F5Uqs>lL{uZ@X3x$d?oafkFLOfF zSt=8v)(jD>g`g2635$#zj>FX8s6II*rLa^GiEtc*19C5kS^&avkeBfE!k?!cJW0(=N#7FTOD$y?aF8p&$+!^Eq>1 z#Whu#rFH>FI+{PTp=Q{p_ow=~K>Q2!IV;My-4n0AQ5QOM)U z{NBwQn(u7Q(&ypUYp*TK%Bf$uy?AZ+z~Qjj93<9y`ur+|8{{W|5_nv6SrZy^k%KJc zDu=VEYzc7P$o&nmBlPkej(ie=_Y=R?p|)7z)Ki5cyj}(8dM3^kJ#K5RWHpdvs%%9v zm)_)n4s6Xmnakwlin*=1!?}uFSvsV*pc^13 zz1tzQCA|Z!30>(UB#u6yq^P+PYOai$yA1VRU|n)D&Pt~vQHRtJS$w11a}gQBvKSh+G8B+)+SKHt8`zL;X%zRxx6{Zw!` zeP8rC`z^sc?RPov@!b=+FZ8heD}l#CN9|t^S!+`;Wd-Q3Jxnds<@(W|BE28A#2D$R zi*K_6i{QhKocg&x(nA{Gn490YVe3~mUi8)NO*MH%8@3b%lO++cw`%kJLk&r1IL!DR zo$RaR%)Y!qNL>A&*M8=Ymj~PrT~^Zer@yq9-6r3fDC(4Jz@Cib%f#T_#z&3Ej8CU3 ztkxn8@^L=K!N;{4Cs>!?37Xa5t`J^$57$LZ$i(w=8Uv*?~DhK<9v;lOa#L}DhP8aC~-?sn`8 z4rg8-zus{mez)D#9y9GX-(+FvK1+`Y6B1`8WX?>;oQb2-Q$34hE7KZss&81eBkT+(l5t1I z#%AT3_g>s-_X`St)8{r+9J>11yWYAiS%uv@QoU(ebJu^y&VT-aBacOF2c);Em=JIQ zhroEX5-YgViYKhttVAlr@k$Q-c$FT+pW4FY(HpgeK{aqh6{H5CrAnzoiIdMMD?L@rMkKsdHxSn)h}u8MEy7w-93%R-XV*?G*b6DrLScu1@#f z!!zzQu9UGp;=`rJOLLBuvR0FwkMMh#J5BfIzJO1aYd}3}I0xrcI2{@_v6XmrtNLy5 zpVTT>vLF)XLO2wn#(}vqR2Wo|HSf2%D(@{kUdUv}al-54jR~)bHm@qeI}$((KzV3Kk-C@xj1o4;_C@E z;l0cJMCsQ{*^5hWDgB$7z0iDv`TkPYTW>D4o6V(h`KA%l?~B)iN%FfmUKigVeu-eHMdiV)mdiRL;~-`Ts($)XvVnI|p_zeRm+* zvGiUFy-stKjEqEYFg0aIJIH55Iv4Q5Y4TVAlb1&vaVfQDNU7OJ(@BGD-?m@DeY*p! z0Q$QG=z?YueIWtDd6#m_W8Cr2YRvHIh)P!@qTTD%nUZD_nMmX#5t5B+`o_Z*i4JFZ z`D^6>e=5-tbpi->!w906eeQy2U6k35`t@6V+p{0RPw-C&$M_!_UpMM7d5Md>m}yI0 z{7D3y8tK%DmQNWlC5l+-br`k$(+Nk>va3I4@WHlRPh#$GE4;!5bqSTm=8w(aRy#7# z^gv5<4x{oUHA>di7-64}tHc z!pB(`3gX(MnR@gsjAPTdR!l_^F2ayVi0qFjBG)fIoUav)yf@*k^q%%AynoLD110#B zbuSD+|MEwrEXW@tPN({?-q--O*ENt-0iq8VLCK(BLp0EG!^Dn zw^Z$(Ja*0I2ewpieIHOZZw55!cVEn#Bxo8vYkAh7xXK-u$T7J{>hB;g5K;lfKJI-v67gXJ9A^tUl#G$c$agPK>RxKjBPj{H3c1rMgbjkjl|q-TVprbMFN?XtVw zE`!nN1i!!tbhjfT(K7yo+hsBukUAwjfkFhtN~JsWM)aW19D2i-Vh1}+sd6KIXYT3T zw{ux)%^K|)$y`uc=9EMVlQNB2(V@)D6w;IFwdrj73;rllo>VeQS5EG^2La9W-SUnz z;Gj#IYjo*BKodt^A0R45`u&Kb#9DHLCOaxU5HQIP1d#mWl7I30C=DmQH%DHZ>rmo< z`sN#>KF8Y*$*3qS!hf0nX>C%xo!;EKZR@tKOy;e?SfepJ zJsE`&=BY0Rr{ccY1C}y^bUl$01k+1w>49;7U|2^#b7SB zW}eJsax%rt*399|LzxqqGnwj4lL?t!yo+&VS*+rswKxOzqLOoEoaaw)k}1Z?rWp4D zf1)Ho?MaH7DWPV{sF}0%~0} zA787|ttrcI%q>i>-k@AFH+R{{$s6za$2B>Hy^1eiU`z8b;kk$AJNE_48cUxz{c>w5 z*-Z~Z$`RO24|ubB@nZLWtu7fP5l5mZiMHCdIk$%I&796qZngA7<}S^XMUUifZD)9W3cqmiZ@I5kLaww+vmf%QL2G}-EPdyibAflXNzjB;+P&0=Fz#Ny9N zXI1BNj4Cz7k>X5or6^RPaFmOLaTbY!Ziv!tX(Wn58K}iT7}0$?_roFb>lW!1#ry)| zt)J7F;J#Z^>?R^@tVK573oZ1QM4otArCCdL=jOkD?x|-kzU{dKE3VnZ**y7=Y`k=B zRbN9mETr^HTD1Ct`RNn4{`m`=-3GH|-Wb0<^C`tK?PTWB?6*Vj)arEk+5%OHs!V8BYQR~@)MoO$SK|bE8;ezmnXzheGX;^kGEt4q)qFKm z-Qed)Ax8^2Z02~5;ig%oXpbawperVc%}GAVBt?HD8YAQJP#P06GLtd#pv)W_irpGx zTVp3K(e~M>d`&AAA43(e?l91gC=@TB1bsrDrO67uL=Kh``tryKxio^)H`TFtDL^id zQuB-Q9Fk!|-_}bO7D~ zL*&)0>(<}w&&|CsC%e%lj@DhBlY6NDrWY!9P2Vvzc>h#Y&U=5h@CEtnR@JyHzEt`r z8&to%x8&~7OPkH*?`T{a`nQ1|{9Qr)xxW-NU$5S#8~|Lc{I~CjkA~F#`8ssr5)ww| zf5NH~oTmOX%2a+2amo#774sO%Qy>~vL0AL%!;tz_B`8YD01y0gn9gHpjbaQ{vY$rH zkk$iUHG~M{TL8}n;bMSSGbJdC)U#f60i@{=S{SLX1cWP~JQGq2lt-a&55P^(eIW+3 znYopDjBQqwC{8N{<@Z(JRX?Il)28Vj)jwj`V7$q++4OVsL)_g~uk|h4&Gr+iLylqR znDa00uX^%4kEA{1z1g>pf0V8`41Kb6z2ukU3A6zr&3(+bk&^sm46S3|KuD@*+!TwY zl=9IWOIvA}Vi{)9T1J#%1_aka zG)5Fzi+h8OmR1?Y$ZYM9VFoFz12W8_OzW@=E0EoKj|?l3!TMDhR-shuF&S2)GV2K$ z)*z=%C&OA)V++WzQFXhm7kb7D7REBU{w~7`l?Nx5xh=!wQs)OJk)H{OlYV2K;Pkk6Z*ldq9Q(KU*5h zL-sWLNg0Mc&He_3y<|Swe~@9APxhM>CXeED3A+pfe!@rL5ZTj2gABu-CfX>RMd*{* zFT+5eghazQk-Wr&3@a944W<7Q4D(OW`Dp065`U6mQcm~OK=E@jWEjeG3MowYC8tM* zVceVn^c5taJUHufQ9eLzXdCKIp{5EAz*j(P zp=>L(A4g*}*9&Pc{VROEsE1-2;oAVYEl}Ev_CQGs?R^l&T^wf(^u8DR-Ua;#(C-lR z*^jyb?gn@m>PDBw5te43LuVgZ$`zp)okJJ&Fbuc?jN1j{kUqN64jFe9bWwC<-f8d{=5 z=D*#31EtZ}(mD!Z&c&!;S$nDVxwfrn9f~iTdE3X1CGA}o-3h|?J(SL5r*_ai?fYNJ z%>T5-hw;wIOD)CR1DJ!rnM9)c;M*^A7x}&3I=ZWau;yN9C5<{tS4MgzaHTO~u?gx%tE`9%OUV|U%``@S1a@k(o=TXYF<8cZ;=N_sXo|CsW$}lAEY|4>z}SvqIB1JRF!nukQ_^^ zl3=1$hh^PLX1jZdbESR=Ceh&kdXJ1qN5i6A^-&2Qpz~d%*ZJBoMrqtd;U0NMKdfy( zs6jL6sY7N=u7MM@CYz42gX+{?x<6e|M%KC&Fc#|)a-W+&puscgOuC@$Fda?OMAF(9 zXY)TfBmd1aNl5!ZA8Qu-5WGu#xgE+RiZAYeFFnf#fo5F{&@5 z{n{e0{i9FOu79$tqe~PRlkKf>D#HVG2Bd!Z8U4TIg5_sj16WT4qXpGN?n1Dl*3yzj zC==*k|8D`yt`RK6ItT(v2aI)ceLCH-3+b8E0C?-^c_;O;7UE{ew^LnLj|7@0xz&K* z41JNdb!a0UqYipoM={sZzMG(Q4WxB49%)enCF>zi;FVMxO5-&{E6J;Al+QgWu}$l3B*B|Ji(4RQ_HBQn1=Xw9-!RZ$u=(Ak`$ zUk#+KFmuxXN~mq4Cq)aitfebmN2ymQ(~PWk4b7cfm9$eebTx#kga)+$H$hmrM7y;# zmgcf{S#Rgl?m}9B4og~Jl^oYl%C*p(v>P=v*GBh>)W+n!TuayS!BH=yoLEP(s_2T> zEpbRav~BAZnuZ34#`g~Q3N=Hc!$YH8$dSRVQueN@96H{ zo@~KrZ0OxG+Pg<+8SWiyBW>1n?H$@RE({E9?e7-4hlcl#k~RYAJ||y@kfbOktnC^Y z-X=734R#N8?|{-(L)!+0hFv{lWTduj{bRzw@_zb;MuqDBEd%}CT?2wVBH#?cpu*VD zuF>vZNczV2bdB~3y9RrDM}={+j>a}&O@DXq;8<^&FxJ~E^zPi!+tbtABMeBTLQn5l z_h|nxSs)#wr+2)oe_$-Tt$%0ln9vNPtR33fHCR0~(6dOC(ht-Lq*BOe>hB&MB6G<6 zsQL}Pqhn-@!tCM#S`XEccHZ{ERDAIKgPHuQIo0}a-6jrQ~ojtjXZ`FZU_yM&!x zdxc#K+&R2ZcS``n$I+ zYYS=rVE4c-vJ2xwLQntLFzmF@HP{2K`T?OEuweLXL0BAoXmDV!kkOwhZQt^~1{bkE za!S%}lQoa_j*XAP>VPQAhKJ@$eU;G}Wc0%*m|keNb+iiz z&=V8-MnMLFle@Qdjc$ci6H*TDB^w7F2t!*y_67-Ax~SeDnE$hNkSTSIjSY48cM&$| z8S37(6A0fWiFf}1&?bZQc;0%2b+Y1kDU;5qrx!Zxmv-VK@q|77?n;*`Wlr~CycO*>^NCrOxQWp)89wZUP_SRU9h0BZ80Ji(DjyG<4`z83S~Zl z6((TeW4)k@p$D?tGL=4ZsG2z0- zwuYAVZ31Adt!i#-7h39ts^)fKbz^gFOsLz~y0&iJI-zB)(Ad(|04bxn26ZP_p?lnHekAS0}6s9Ljz4pp@t zX1|usucoE7eQo2)hBl$0Wle1z6js;4%&Mx_)Ja3ZqH5MuH8#bB+N!3im36dL3-q#< zqRF$nu%V6?!FW~hucocBrI{?Frlq-UEo5V`%C&7vO)qR*R~Hki);6vq1gT%!0^JjG zLW>sK3AAgjlX@Yf7S7udKq2|{>*~(UrM9kW4fM5+G+vIJO>eumQlEl&D<5|cem?d% z+J%i!{`$wZJBQgvy{M1Fm$2&TIO89SE#t8_vd^;LW}k!j$j7xg5BHO2U!Oet`sCTy zC(phyu|+pFI2e!71{pm(8<*P-m=@0-rY zU+iZLN%vJl|Mtk|T5O=u$F-BN8mLa)O>fCQzRmgAtyHs)QY|g%;*Z~&MTMeFQKKkS6e~o<3dL$g$;b8ZPul#u_mAf=>;Em9Nm#21kpBvUSJATz|35H>?# zX^fGmuufi@FHS=;DkXzbvRz8r^2M(M;wqHCFr%_+OT`s3a%nza6@t6~L4+_2;V^`^A*f*X z7LeGqPia0tR_f=heT^PbizQ$xE1q|%N~b{REeMPPDKI#0wAEBbcHZ01K_0X7$c!;5W#6CT>@XTTH)Xcv ziB%l?->4M=gC^J`Xa)juiFSD1SJV+m9uS6b-_RC3=G|n$4GqUokbnGMSrzpx8 zJA#ss4zN2W^LXJI_94QL?4PEzdNRL1O>!xD&$6$xJCGf)&H$E!H$Te`q67r8lIba} zG4EiNft`kBP6JtZm?K8_(^zDGItd-Ycwb@nqg1Fn!Cr+@AbpIzdNPHdd4~NPMSGX@ z0^>ah97B>RqbYBuO3OY-IE4KRQ2Z}+w6jx@;yhFpVQ)b>5Evlp?*RH8`FR)nCO~h( zHoXa3^CoP~n=p$vfoTyt3pKNVlVD#%!|bc*AcXq?RzR0~CxL>;C=klXJH}qYehMhT zJp;7EP}Tjw4o*2eq`}W7wFV&F z<w<$1Tz8(0(fVE|M09I@wjBAWo!s(*b!k`3-CA%F5jpa*{t zBt)6!XJHKiJJ@r0d=63*aK;khaDnd>uMy=|_~VYx48L2xQNA;N%X}dM^gtu8BUfaD zWHO+lLYcc}r|*xxmZO&7RKlK0we;hJd{1rF;-^0AuZ2JHWUE>(3a$z>ITcL(13plL z+6WphK+XwA1Y?ox4dhgEsy(U$c@|tNf7Fn@4_lS%e?4J&6ZuhntL30(^OSmuX5S<1 zhTD%o;gLI#+6_d_Tp@JF|4LQ8vk9sN(Nl1_2!Hx`qIrvcuk}h>g7!Ks_)hQ>;xFc} zRF|tTQz2I^SGBKBsjZS*X|U?MD7Z+F8mUIUkZP?^>d{pl>VXpB1-SVa^i4h=#$Lx2!Mcz;LT|2G6ANc=%C!dU_j=q)&)FQmyZ0$#`< zLqEzgFed@Ss3QTvNCBb`caU7TTzFcV@BEQj#BI0(6i_r0 zg1Qh!5oewO!;2sd(~Df`*nYqHO>Rs;TnGsPDIcX|@kGj0ZhPk>4A|rsf*j+qc_Yb~ za0N+cDCTM2gjSIE+%Xg-fp9;xf47WOrRhw!k&B~$Z#qOmyF}I^c!TvPkJ`S zp|JEdn{vedJp$Smb%ytWH@tw^DHFvnnPp}QR#Y3RYEk1{vpD%@?KjKQi3u3EBudIm z63Nt9!@zH`_p_+jS8JBu{L%d4`%o6P==XyAzTnYYkl1*TSXC}FR4BpwEf&Ar(JfKs z@z?N#`);Ha-Z(`q=s{9c!Z&V$SHI9beo z(IW?Nb3dAFM&bizXg@k3aYgp081qt18d;2g6D5q~rin5tN!~%RvTRBC!9*DdiEy$kXu?%S%_}0wS2C)(#8T}m1lY}}FGcihi**xy z^e3jcCm}9Hu$q1hl*Jr1c{YUPg(SJEm<~C83ECP$H@x~0aSOU56E*le6Ww1H!?CeUBl8gbtiaonhV@AwDj`CD()C66JJzwnM)!Q^j!rUFhWf0dWe zzT;(=44xkB12FjgQuskD>QwkQh@5dd?(e%G{qvT2N~SuAa}r`}F><=)a1F!z#Nihp(ib%m|? zx`@W2wiFfG)9S-B2SiCJ0Wwnn_f7|wZGg@pUPHltNc<)O4`zko&_-r+V{P`*eG*Z0d1~=8ycThEc?v0eDvA|n_?F?;<7HfmRkKGV z+to$S8SR2*lcfk=@fhsFskU_>v53IaPprxzX) zFX(ud5Dg7k4vI%0LC8XjYLOJG(u^D4jj^Usg7sz=eJ^4$K$`{zLy-ism;_7_1)o-e zQ(z$%P|c2|31OSQX^ zdqcaM5rYObj%MRMaTR;g1?s>iv4yej)+jOd$nNF@>S0uufx7L7%A@KC@mZ|v(xS$Q zy03`2dg5%Yk@5; zUZ2-1mD>)WsJTpik5Y4vpo8&5zAe6k2sL>OLIkS!RUW97K#63kWE5;us*kj5=4b@<}l zv%W=&km#|Z)@*o|R#nc=Ye|2%Orq9z7oHhWVx@q^iXlcrRF#eSQ?Wk0RIR?}vcH>u z=aRXFX}ysX=9H;@!)Uzz7+}8{tSq{U|Ng7P2nV3~M1(nNF~UI#<5S|a$pVEdnw}*-2WYHx zLboYGh08rQq#)RZzlZvDCr%YQ8~D6%{ufy79edz^BEG6uqFcv8kO40S6}|6#c)G{%g=OF|t9?3mZB}m|B`!xcqZug`!t>F|}1A;P~_WxpVIsW_8{1@+*nS=R%fZhJTcw5~hX}e$s1c8^F!6_HS zK-flPNWxMQ37U6BOLzeTiNq+uFq#fuUS>;bS3s|}vqu{FjP&xwXX)3A(Xt>>mtVHH z(?>I`1auD9wgjmbA7-8P=X)?uC?S09T4$hPi*CkQUJW<*lOkFungDHI?r7F>oh~!x*FF`03KdgwnC7B1iN=PzK{yH3P@0M3P@Bx+ z5@4IfcA4=L;inlN5-)EP@grRWbC9uveGc_h9;X?X+xIha%`xx!R#UF(8_P`mW8sp% zVBe*m*HWgw!;IGTk9z|EZ*^kG58TZs1 z{RO$Cer6wb_jgga$~Ta8ePRDo@RB}MKC-zkkI4D@l4~S0k5y`c!dpHT_SokfF2bKP~+KD$~-**+tmG(CMGxWDNhy zX8zHbx}}MWg|jvT0VfMH0Xq{D0UH||0W&i*0qc)m|Ig$9wAtC&|I_zx91|-80mr{_ ztZYy$KfXW5|M>kI`=9oI`Tw(-{`viTorCi~$A9*J`u_JAsQ>i;vw!;kz4yQK>i%z) z|MxT`;P^L9m7wTV>{ab7|IwNWIQ~if|08}*hX4NF{!9FvjQ~O^8JKyH|b~7h$v~z#Rm@zR=m}DbNz)G$Ikq8BV#F7XEKqMiciIxtd z4uD$i*oL;kl_TD<*$N*U9&pp2N==JgY z)vGgeeth%YKJwkZY}}j%((+0~gCRx_r>eWYIR7;jyL%B1X|Oz5oe?^-7t(9U7m{$a za{ZfC-TUBz8=PQ;LimLo_tDISvtmrfK!oUB1 z%e$dhc#eZl&g=&3K*)Y$En6z!%S`9;kZXqrA*;*f8A-PLQ`aLv6@Se0p$M5fPEw8@LHgGA>#^owZQ%baHNR9T1cjd@r@8#-6g}KA#31d{L2>cH3f>S>ht$=maoJk@lFyT!mo(MZaCNI+qTvuPX zcQ}76$bxOtCoF~{$~~W+2&o&{%kK$ig(XBikNo-*KK)Qk=fbT%d!45fURFqaZr*`u z^SHpa!Cggc!CUf9)^@Nk@j~t&uXoIF5tw5q(k>VqzCe*|gl+PX7(jH6)B@lteC~R# zYcpC}!-1Kb!}vz<$`|-ONRqLp3A#)icv^6BF89YZV07!8<(+zUAL^6!6Xw$|<}Zae z_{C~WTYU_n;&qC1L`{!SEL`z(<^HKSN-{I z2ZmptS?};wh7Q-;@v(g&oz$`L%DGYt%u`|Qxz!)o^A+{^>hrl*W-(C4y<@#(U21M- zPxgMcATxm-ZGvZ_@ejB2QbQJ?zV^aYF&Y8ts(YXwg!%#RJ6{iwzUV#EIb1t!4{O-P`p_^UvpwTIdtb$O0N!BUpf_U7u!Qd{=UIN$g;_y^Pn+6U#B zgCyO|ij#B)>$dE6_I7-yd&is!pJuX6?G@q%wNrYJPOpYv=_lYD;2ZdZGgN1hYNL?j zuS43A5+<1Ci|+XwV)VqGmQUFpNws0!p&t07!P)02x5E(tM$VsrvstFTGn$UrH-xbc`lGW9zP7+b z<*s+-*})x>4*A}_A!3Ll@(uDk9x>=&ti$IHs4~9f8vK6Is>N_h;y8vh9jTl{G-mn< z`6kp1U{v?WF0^KjU=HPX?160k5FO!>K(f|ARu9TLVOQsV1uy30dITui&v937{mu2w zk}U|P3gnN#D!@M|wmWO__97-19EUr$6hl0LHF>y0Re_f?;4hPTh+d@9MzD%f*o!vc zQ)p^r0Id!jsW0yNzqi0E_M`qH>c)U#s}xa=B*$=dkQB=3^Ltwd?LT#cFRRb(-VitB z6`|V*har*U0n+{==>j^>`U}3vsX#wzhxN{q7Ony*oW>>`RwFkjLiA}bz%vB53Fnp% zaoC@j0iXP`e~_{;q@PxNG?4QFev;db$11o*liOwSWBgz~ z4s-_r5Te#klj!B%MS#7}+im^%wmb)jymj;fD` zXTrAb;1oj{fzDXrHf#BDft+slTa>V8{Y^i^iu`k2+=MX% z(gwU`><6^k z8zJdA6^zz}^WoJV2dKJ?WeN`Pc|!>eN&(r;;Q2DEq9>K&9qMXAtWQ@13Dy><_hNU6 zmHF1}dO-iY68xmlw}OU`dWd&^j_3Okz8z0|&y2s+L~22#$`N1(pdSiEj4C=Z2qFsr zyil$=ayzJ`6Sc(C3Jv+_{Q!4`Y5}(H;<8u)KXm7tU%nzD)crqUqL$sqX!B5O3`k3n zafD^jAu(t|G|`gd281S5p6Up9uMDZGG{TeP%YA|ES=pB@wg80pf?KwrJzRAz@4>PS5u4LL{tsuDwy5->as3{DgFTDO(BSA2c{H7!b6a+hJvSjDxcn*3tp4m?^*n4}NWvhL3t}6P?U0vmy zHYh8!78@Ht2x-MfMnI~h7xsxHcZ3)Qe8h{1G8B_M>W+(qfL&CG^HO-3M2xA(Z`u!E zm_!tNI4TVyY9T-*+e#(QK_Nmja^5db`2;InZ}hPt4Y?yZ<^Xz+w6KG@@tA!-HMh%+!=m@=go-k9k6%i z^cGm^T=_Xblt1+wK1)VyngLL`VB7=>MC^`TMEH+pjantckrS0HRT`$@E<$UWs915o zxksY;TjGRrc&wNiqsA;A8wSagVlEs_{IEEgxM**kP>eBQ+{>8!NM=W8go)w(2QwfK zRzD!^9CI`C*zp|_8Q5-HgZyG{=+MFVv_)IkZCw zjw39ig>ogj2hO2Xa3Ru|jY3;Y z)Wl-XR#s3}Od|3is34G}itf?j$)sG1q8eAB_Tmv?7fNt5d7xd8CbDeZhU0Ei*5{5j zJR8yzwM`QK-PqNr4hSsM$r88``KMzcW$ITdN8r+afddY%FMXm%s{f^kC0U|Fq%YRX z4UMsuN~CNMJ-fzB$wfsLE2+%Z!t+(_x!cS&s#E-g*3cU4sw344&jycY@;pk0I`QiD z1I3D0XaJD2L$g<$nVhJzs_;yXbeh$wg`MI~O|Pc0Mf0wSsgLW_Wd@xoTIyQaA?eAS zG5R9W_3^o)svP#xaZAbdY!;N>R+Xv9d{;}2Ky0m+oVGPN1@hXl*45OtuN#}~o}u}b z{=TD{Nh_4*Lfuq8} z1C)dvuVB9cLuJ$&9K@co2kk=gPELFT}@eu)hSn`#BSgr0LAnQ zCm_eq8M_lFZ0>$XfUzIO0#`H_`gY8M5M#TO%>%?-4VBI-^^YqL@vz2SII9A+#C)*V|Co_LxaptX&8YXeLup(`z=d-()9tm>$Mv zm!VR+w646c`hmKyawX|@ZcI%;#Um1Wf{A@AJ(s^Z+Fv3}6xG`uGbHiIkVKdM@WUX4>(EbpK!}pW+y4%&AXEe;!}pV0PVfP#Ce~eL@ecWlrI@zT zrb*)XJHyX%FE8=3s|UhyG($TZ1&oM zUCMZaqtsd9sfr*ng6(5u7nffQKK0B#AuhuPePL!YegT<+r9$Qed>qF$T=$M1?U!qZ zhs=Lo6B!5YGkgSc3@~J!kgB3hBG+us>5BShKQ{Go(}ib?EuD`*4T#k zp#hO?Xb>fL4h{U5S&(QB-VP3~zTTPc4n@rREc(+!MpC5^b6QO)F0!2EDpn{?a^>kP z&8)_)Wn8xGWcIL6Ou!dtVIW{6_fU(9sB)yj3mMd#daNp=s)&5o@5T4|9?#yl+Q-a+ zH}5lM3qJn*O!$y*i^NtRKXvahh~}$=zxTM$h&>l+B1Qw6LQIs%L;0Xnua*-Py7S9R zuiX0&NB-sx+~6AA3z@b!VN~{Lyy3n3N{7npyf}V?B$atJGkRH>6=@CYL%pVPW!bDs3`S zj4W>PG}6+|R4%>a+EE0ilVZTHXA+50r|m22^mLqgLe@@)P}8R{ISL+C>*?kvRhwQV zA3h`nTIx- zvQ`wWgtcEm%**PWlDeqfL_i8b0c?>lk7htN4v!7}XNz7M8xlV{VHA~(Dj`Un0SZY* z33&<;2|nYeP`M>kgU?@1A<_<|Sg=u#pqQoEE=DdAE^h9zaRh&Q#w^;knwi25L&s;cnt>ZniCUG|r)ku_unbs{j|wzua=*|~%O`c6!mD{o3rlw2r33SGNZ=&5_n zIf@mWGzz;j4OPd;cEBk)- z#W+iOtLc6+TMbG$Dh=3>lKbuG0c;@}Jh;_EnAD&vt1vqrPSSAGeA8ZNb4Cu|DZ@Dj zlh98%nC`P9@8dYOQivIPw?if4Df}v0Ms+xYQC~FOHC{9{FE@&c1W9KpUZ^r-oZ=sR zNvEhqNn1oXOL$6CsPk8~Ia;FkQL|BGF@IIquQW@{U4rs@i^V^ckWmGc_6}^#(@e1U zYs}#9X-olcfds+vgKZ=8gZZ)uC{Qs1sH8eD_@eC_Ac^4cY(chwXi#iNR#h*I%5Bg4 zX~YRwZLJGx(osplC_stMv^S`s*KcSd&JQ?|JHC`_ zK1LyMIZgud2k}D1U}PG7y^&v4KOZPnW^Imuj9VnPV04C=WD91Hvy;rfb{%ffE$&Hb z`LqH`eT-OCY!Ei!ZcGHTo$Bb2g-onCM6v-cf>S2wi2MNl)R${r#VJ>)TBRDr%2g~+ zIpdF;vmErKs93s^D%>dnW8eo43O|5!X%!K#`pQ6Sb)Lcm@k0nxWu&F?X$JERRh+0a z^$DlBr&(H$;zCX4wN-LE^=2yWg_~`6Gw+hxCbfR4M!n{x&ZSoR&ZKRsy{e6>esQOq zckUzBn%fKOVA>zrZQRM7o2|umQ@7OJS`URs)JOFzcrJX09pr9yU-?tXlclP1R(bAx z7v2-U%}0^mD~lhw2vCC8Pzr(M3iFr+&1g<_p* zqioejpJwA3%etXf7GKLSTh$h-bW07nz~vgTqqef>9Y_62qH;yl2ofgQYDZHQJ2~SN zf=eb!RID1s(;~7knRM4&20cAu|InYT52R$OcI`@~${oA(u}f7VP6#72^Ta6}=`mf# zWHhHpFXB3jx|YpU?940vD`h-;^=9lca7S#(MryE}(+UMW+8 zWV%U{#Zm_2Bn0;|l$=sCWfrul6PbvGiWR9+A=YceH{;TI^C2TqN=zQsWdvf<%mLx;a~R@AfPf(+iZtdnsTh^}eN-E4(l<~%qJ6myDsLk4 zhrKQQ)l|QG*CPEy@v#NRWP9UZmIUXMBMIn_5N*s*RX-!mN&uWOXSckt2oV8C?4ap4 z7)RxZILJo=>?#9Pii6EAUWoY9-H)su)F9%6vPEs?5sif0K1$}t;7G*cs2bT;VTtuU ztf!beoTWbo60L0R#xd;}2Ctf)ZUDzD8PDnzX`{!XgxB-de72E#);n7JokWWS7tS2G zpFWB@JsUVRNo1BQNeN!>;WpM0|91W!LtC~Sj;N5SHILHN9WV)!@hLUVh!WKMh|oJw zQVbL`YfruyxF=`wv#>l{1>r9P0)(mwMy#k3!cQ<@@V20cq+QyKOc*{4G-Yo=!yPI2 z^Y`SMm?TY?;CN{D@b>ZcuK8O4Um=T*GcB3~t#D;75#|`M6SMSk7Yy!5g#2&bunEZn zH9q;Px;}Xg`#7YBl-xWd*`VTUrQ8GO_I6JD@|rZ-f}$#^KFuU!(rr3(i9!g7zkngx z%!i0eatf6yMMd#pa2z2_Slk0niD{CC0r?>|BmtiaU&EI0K#z~WFlOY3fC>=@AuU{j z6B(|UU7`$z_)g0Qf!!Cr+b1t#Ih`*lIgE+&0s3N}rHnVJXp1l8wD|NV=mzmeJ7Vv+v@erJZgR z#x=V!-1o9kC~l)CIO(442}aB_DJgq{r0y}hYP6(We=QooA~|x1>IlkH)RnB)lr%LY zO%6&~N02mgNd~A&JIrVy%+!X0@-=)a#w47p9T!IOvJk`13?jED(;RvwamayzNg|VD z2o?Q=x%uUcKUpOa#cj(_2;b?cQdLR#PPx!G^$GG+08}tQLShP;LYXHOI=OJo#K-!6 zGXB*Isv$jrQu^auEbp{P?^$4SW+TUTVhdH zg4Db?i9k>N)I=4TzM`cV$HP(aLWMB5fqO30JGqMk@2^k`4g%7f>5aLsDYzo4x>et<8)Ee+g zS?yS37{n4WCct|MI|WN|toO5un6VX60;AR)%4`Lk7kn)-z zsxB!(N_-|Hf2f+Eklp9!{^&JOwU#oQkzt0`Y*pv?y`s(PMHGTIL&N$C#dN+-JtJ*Z zpTFL=d=?Oh8jGQIx3a~)%W?3##Yk|>>-;lLB~ z^!>y8*$*|{*J+0s`g68(i~N1?QOzIo)(=|!Z~}HD7GHk*WpfMMjsG5D*^ot%n95*RG`n}!B;ZPG0dTkwk&KKhm5MWWro{!Un5db`p!pq1j|w;eWqisz z-TTFx^VX3ptR@*>n%c~B60j2=NzGL$Mj{7v;soOXXktYr0Va$!%;|h>*s|9xhh{6u zK`~TB7PLZW{+2=$7u==)6Z;ceW&Zc@DS;_LQ2rJap*5 z5q&akqCH)F>YS>G$3{=2`lb-8YJM)QjlYA|FVC+N53Yk#R{_Dl*j{Z(8_DGbc~(+_ zo~??qmD!telEpij`5k}tGCJfVQ+hTj2b#stgNW}VUZ<#wNZ02OvChgpU!^H*X#f}9 zGhWkBA`B%1$AeCc7X*^h=Rc(y`Y|t71VCkxNJSVG6jkIxVxSa3Evcy#m(L}gLYR_D z+lDbn?l6_oJpOx+TpMIYFB?G~NPUutU0j4-7(Nj`X)W7T_3#Db$foWCLk+m!!u!(|K zysJA4FBUG6S8Rmhw5z+TJ|fdKVnIn80L3B!(uRL6bOO3=PXP-fyoiwiX&}n3qnm&CQm1~F5P*5MHb?#^s`mN$Yr!zo|jh5l?BJdTX-{6s6 z?(cGK7nNU8)e``8_~y&LN`L-Sq2nTkgK>u_tx{9pxa`klXWI63WR`T0s9Ql`S_@vb ziF<5)N1Nru$>9<*Jq_wr3e*F%!;!Cg$&@zPw#(N{O`YDL-b3q#9N)V9*wnG*hT$__ zii!Mj>0ZR1^)j<0Q|x6Tm65trV}rb10x@S*bui{uTDQV;D#9&Bl#Cw%n-YrCl4SaY zTbE#Iii@|%NFm0Ik2VtdLK*{{b=$Cm4Dm^xOxo*LB~lRos7_Xj>YAo_hLIKqBFyhA z`BQ)7odB0LRgGdGdW<1O!d9M@>I->ajBkeLm%BYGRL^&sW!Bzw~JQ?_RY6WS5UiXy|hdjP1h~27xCgCr9hQRAx4cw9o}QiFFCLjtDsV* zQgx5qG=wZ45VdmQz=Sfni6`#dM2H8$b;sg_C=2uR#Q*HHJ{-owzcma<=`NxQF2L@IZMQ4kp&1)Dlte zS_ypNzH7&|=h}5|i0c-%{D5%dCC3=d2$v(j>J`(*^TT_j2%_z;>T1M z;hxIVOg*<7pP1?u?rihwFS*4o`u#yC3w1e@o_!3JrK6j*0t4nGmPz5rH(xn}kX@ zIQ8eKx;}Ngcx~(JosE6s!|{~p0?spito$d%_f}+I7`fj;Wu56Qq_bW-J?FRiXKijP z8!t9oGaH|V3Fcqu?;0fr?@R}cHSZf@v)NZ?8fNlp;v^4%*Bp=&=cLyxV+v5>2WnQ- z-^*wpW@~0IPmSNpzwAcXKAa1W8vnX{m4BcUb`npP8zt&+py#4Zm86M!7k^a_q@22j z5$_J8OOl9wR1= zsk0+4CmT#F-sGGv9rM{~Icaiz%`Pfs=}wt7gj1W9oIi@0fee1E=f z5}o6y*||f0{I7}Kzn^-)1$;+@<~Bdf_qNk)P3yAPna-udhE{rKuDpz_@p_-{lixM1 zp4Py(ZtdBCPbjiJnU$x0#prnO%teRt7C{#LMudE2(V7&oq&1^qR<6!$k~#&FHzS)y z0j$fkfm2S%W}Pe<&>9Bh#UxYDyO4{?=Sjr#W}PGa#Xi}WCzsRVV7y{j{7{&Bkp_KL zmpB1WA%8@pfn)NwBVzrXRm0f9P}&|bPdUWWu?Tyr&?Xjoio&0yc(5quL7b_X1aHbx zmeL<2&0pbr+~&E1en0-)Pj=^ZVs=*X8|1H*xnU?^7wVl5IBLb(Y1+{VjPjZ1{A6G*;;utvG2p|0J$uR9E+K$t;(~kZ%fu-h^BDXcD)~yNSLX^%2qxHnG^^_R~*iJ(I?XC8=i6JeoXdONgY=QNAWd2K->gkx5~Z8Z#cq!Ps4tu^lW5IeqHe}VvwA1F>Sa&ra>7QHzqbX*8;$aPZQeypWk{y zX;-8oMEw`)DnO6Qp=Z5cZfvLdb}?Y!*vi)<`gNNsM$yhc0XQzFul_DF@ndQ=({%b1 zHBZ{!=Hgxfc`|-njOo0ycmTVcV;~P6sQF^@?5UN}k%AdIgJ;>e5(Yj?)br0o1T~c!&M^Wgm2)L*M8}82sa)Z

    Qwbc;bLkn?-7nYePkgo+1ldUYNb<(o+@HL1ewu#L z5xZL>$xE-wTFdFB^(=arIwd=0J8D0eoft>Kr{-6=WLjQt#63Kny7y#Tfv8n$&_0N zn!mVxVGj0-`Rwr@=fB|po&MHsrDsV;fGUr94afv696kP?ZEN)vyYgs4pNk|)s9QKs zIdp<(OM+adkOIk33rt&Gh2l_2MoPfq`W(l!EAYhy__pq_sw4^jTO(?m5ibJv3) z3$UCvxx+~a_c8kv#!bxZ+H%A9ZFK8BKTjKzy7?rF97J4o+2$Zv&l@AX`j0xT7VFpI z)X1|8*YGLW?(XWZ@6+~Cyj?@a6d4~6(N%0XHg zq3}c(u23RlKg73Bv(~7PWDmKdbT>cxi;3ro+#d8a=#aE(qm>eZ=ixxXC| zh}Q1Ok={fR($`I}TK36n#B1vh*j4Jic2y^2`_zv%s>m*trf6T`R_KPh=|bgcs`t;$ z9{KS7b{@i#5q&-4niQ~+#mja>B$d|&4HJjRBX=iV9ly5q>>`q#@snW(xD>nPr!2~! zH79IXm-?mZ5{XE9SXdWiBB-5ggv7tB-0AxP#I0} z9rL^B?t>hzB-$ewXp%l>48B7kyNNFwdJbDqASHlvgW9MD&eQ>9YmPy$j|7=5tb-gU z1d5?Y&e`WJK3et91Dc0pZ;BqFnMHqUJ+;1D%dTm(ueW!k=Hm80B=VxCX0xB_6wri( zFU>!i*cku6Qz&FbN6xoCa zOc{cbfg~-19>|~rG^Ry-f!tY6Qq~!k)?R;@Pl`p1Dko0v;}TL-eYPdYky3y%Av<2u z5m{r6qS+T*WrnDDORAc%EG-#%2a6`^;$mjENUS1Bs7{QdWa+dyF)mn5hI+4hq*iOY^m^@P zQPndFL;-SW`I{ZWixc*f9h5g#~)A#SL)|27+% z9Zud(*4!1 z$CodC&3jweXA&146;-&;`bku)mamX@)fo|$^;nQ6E`djF63keX>Qs})3-|=%g9yW9 zuVB19mL4@)FYyMJdD8Q1-}`f2X_>bva8Z7HUVY7Pac$lHS_gNf6YItXaQNo8f`(+t`2)3zU57Q($SSc2Q~7+n z>HN7DGtLF&qRgf|xhzFXBJy2XP>1oA{nbGyG&?G6p-?rIyLf5VAis2PBrjN@oQlpM z3}sWTQvB#0fxOT=2D$vMjz0aGT6B2c^$rI|4ojhaS0GobScAms;zMl_s8dSAswqWP zr%}+A4g@7H>XY*(T&O6250t2gflxt0I{gN*8WuT)K^jq67bZiK%9Aa#I38p!E4X*@ zkGCiWp}Z8JD5A05@m}O?gTf(=9uaDx-o(d^ayrSP(vM}>V%JXKOg%*#%zW4GIj~T` z9C?DOZ&I8O;hjX>Cdpc%z;WZS@cv^Jt5tjt9YVTNObD}FiGLf+IBnR)VB^FgOr~7z zS)YjsVmm&KL?|&HEl2<&s<)xY!A_t15z?rVU7p`+G9sZxMZ}t4bjM)gk-lZ%f}LYG zjIG-<7JEL)5OE_yMxXH2M3qgWp_mXI@Jdbf>1jD3k!H1?3f8xRz9RqGXma@^`^ZkV zquT7~E3SK3b-K;;oOhppoqfUv#@@@sQG669_-Wvq2^~I$k7rYxGe&`?!f3e9j7=^N z?Ai;4}mADAb$nQ1c|i0H^Ky@LrXt6LeBATy<5g!z z%7g+#&7|d>+kv8TXb{zWu%-nKN;l<>XOisuJ2uuwIStwPx|N@y$!#p?m`LB1 z5IcY#kP%Ov#2>Qs|;M zT&)S?AwvgB2U>1lSbak#<1U+R<(g z@EQ0mJqKPxk7)HR*s`K{^wkafxwBh6GBT7eoeBH}cbzWZ1v9sIBY(Vbk0LZ{C4Sf0 zG8&p3$_7yy|1SV)K$X7|O)?=_zHB>Q(g&^(^?hl>{vO&L%uAtf|xv)`j z)&`A}C=K5kyVYp01$U|E- z(DC7JC5%`3uuNtlhEC@k!3NQ!a-xVBVZ=yRWPjvTgo_x7w|+V5Lp#tOv>(ZkBYYft zG0t;u^T!qd5I&hdc3wuEheN?oAjHTS%wk5a2m|No^14{LIbsNFB6f$(!N~obaRu_p zohxvW9&A=E*g{xXfn7?_OuS_Ua;QO@l3a_aDlWdkTyCnO{FAYWp*&U~CJuZ&arEBb zzWld|4-VejJ@72feem!mV9*y$d=*CV8H89lK+KBn7mGxDmwmtel$}F%(avl|w<1Pg zZ^pg29;xtt6hJJsE5Q!9jsK1exEEQ$2jRbndJLGPVz5l5)G{nOj{gSH=ZGe~-XIz) zGKL+7y@ve;&fu^eXF~XN9=HU<#!mCnfP|?58>jAQ&@&zzJIxX~v%wIZ&P*NiI)mr> z&9#?LFkRJFwIb{c&)~lM_0M(=RFfSL##4GN^UHgR1+S0rhl>C!mOvZJ@VsM4J$Y(a zn^Td2Qmf6?tD4j^HO&F;O%;yEtK(vMSNWUer^^4PR-kfRui6p3HuZGqSm=1_jnwW#(rn!<8*lPfrUlUz{)vA;{vjY2co)uJf$O{eR8sH7I zPX^G&M8Z6^sAr`sd;Y1*cvhP=zfMArn2>&>CydtC9K89POJ^M4KG=Wv#7DbUru`15 z@fusWc=i23r!R5e0->IisUdzqhb?=oe%kFuk^yqa%H$2%G^(2+DI=SYN^)1cS zo>;wCeZ|c!Yj!+NdN&Ce{0#K27q1m>RM<5+o85g$xm^U!K{SKcYK<#u6>}6%DdeJX z8MjP%nQfVUopQ5rv+1jvujwB&KC5|F|Ay=h+xP76+TOLF5D$mDhk2s5V}foiB!Vv)9PkVuPcR@Cw` z=N<>%=Q!YC9LL!#42wGtVMgm6!FP%}B>zo|dAYgIyu-|yN3cRPlUw&rB#3}1Y!}58 z$Mg78#3CIQ#iHd*AG3qm!@R`2$-K|}iBU2R-*J4`d1`gKR-#v(^XVo5VLAw_TsOW^ zV(p&Wqrxw#-c&I_l{*rriR?+o9Wc%eFGV@L-EpS_!aMY}J9*jmSM}roELqR(#B`$s zv;GQ%XrF@UM-NpH1OSZnmsJvpZ~3`XxEl+PY*@7~5_Y`#@MG^~=05)Ebi88y(wR;y zoA@k@XW$2(y5aFH8;`yI*4{O1zHwyYOf_Fx0yG@>9rhUXryA+d&&8NkhYhGnCmLAM zfQz-*q5y)6S(QwVIju&AIIWJ8!<;sP-J(gMEK(?xN|uA!O^JLuta~1R70HnX?-O-0 zELSPza;1#ZYPsj}9Dt}2uNE~bm4U_k*aIxXj^MwEc3ek0z<|4eUY#hx-LdoB3+tcI8cGwMw}s&P-FvqIQ4OE@Qo64k={E@k(UJ;^8Q{ zf(%qiRHegxVW5=AOQuG>3?36riX=kFI#qEze(DUI3)A9hEA z5ueV#0(lH%npA>K(0F04G=dgTg;x+Rcxr+72D-P}X(Q`oRfU_u5;0;F@*vLdqtcZM zphW9$JoV%F*LLjr;p*#Nf8y%9fA#v;Uu3eT8QbP}+}csUJoP1anAw6u2YTLnZus`6 zc0cpkZzi_ga3yo>#s%HKzGnX;KfQWM5_+K>W|4!?3w9Jk=fvVIs;%m)^*5^C4Sxtc zIE%Nl*K*fdZ?SQ;%9vcn1|2bnoE4TUF^IwqM}-KEL<|7sI}h2BjIbq#3_6Sm6oZ5* z(Ku1DSj>pUUB&y0PZe{;4$==U5+upN8M6pt@qV+y?1-OdPR@1CA3vSvPAJib!7c&2 zu&k6H&>Fc*P6jjudeR+MnLKW*no>dgaJmF4^<)%<&784mGPxuM!+52vO;+yM2d%t}957%7(!`r)Gyc-+-zHa=7 zrdczybC&M9ZF^*?Y;9QA@{RBAT6t>d={ugj{1EmW#j_{c#~XJp>iYGJ^rH_v^A7>W z;+H2+<398X(x8OsMxtE9iYl?DLM7H!ELY)ussk!Ub&K}OYss1_Jy4Dan-;$CDiTVI z^zP9s(ha1vNX8Wp{P~b<9daWdW6#UvChYSvUJnB3Ade3NjEY{AR(y~Gl$u;AP%>^W zYf!qa9^~uCgP6fsX<(EnT}NPl;^c{Rnt+}k8~fwOI4%A0+jqYDDi4Y*skoGSgF(lu zy((X;Uv4p&d8g6oa=Gmuxt|=H3Re*0P^P_{nji#I@3`bGL?mygSMs(|?_moy#QS-3 zxz3=0%yWjhhMD{vZ;QXfu#{h1)b72~u!djj-O3MgJN3H_JNccaUEbS#4;volA2dGf zJ!Uw@f7^M?`vb%G`R{qY@BL51JN!q65BLwfpBnzof9mQ_^B6)B;70Hf zQLE$)ti@_oDpgAN2>yqtGC&&UF}-LUVKRqWyx2R!d@Sk(a`*3yp4C4gkn21AC!G%G zc;}d%oEYjHo4UC}cEy1pll4^cg2~QKax7>k%wqrgRM1X-`>VBzTKFgPT<6p#5(q6F z*iVIL!hX`-@+_8k(MrPKXc+dX@&CR&Fm1)e;>C{abo^crzmw}+H2&eGx!8u^eT-j! zyCv#NE5c!eJ@Xar^3NW)?NV7d%%%Lv3iz@Gqj1tN zO~i;svt{`;p;smIRdSQIlPLbxS3B$YSLy2(^xUCKjH{B4Bx5qAL`^Ok)8y<$9ol7) zhxvO#GPOb-Q^&iq{n^2++>jl?g1A%HS@{Fq5A?5wUJd^|_;%>sBydmnpJ7#Zgui|fj5FmH)}02!AN(+UC9Sk z52_y)z7qUONMlOqV#&G5mhAHEHSuebx9Xn^9>{*c{?4t9D@(oT+l&|caGD}`Vig?&_y5Vy`bXFzQPWTOm41-1Si=ae6dh5gBjtnHC%G?*$;$0u zlog_xC=)%71(1Y+QH}?xM&Xptof-ZC8%`eC?QQn?pWL>@J6}9XY{+VJg#&j zLOPHlCUawH0f7h|nC?`3ruc;a#Q0f^gHbs^w<+31$3DD|*~jkFJfz!e+3Vcv+UtHW zaDQ-LiMF$YT-`@7A3!usI+zaKo_sj;a8lOULAE!HF~N~j#T+>-s&fn|mvlwfN$+o| zb1CpjQl-jid9SHXFA$9!_jBc_;mC!gi_SsG(2{41%(-O#*6FZG%F6)EwP=DOOu3|B zB5BTu1_MMh*KTXGD_@%F#g_P%O9bEYyMOTQEp6-l7MsrRcR#YCX=(SwuS!ZDzOHh9*2tT* z?172zedWrzCDpNbYSzkcY=6+JcH&ug+;wTL>59EIxuqK)uo?7r>C`{-9MG^BK2mrw zpqSDyxzA>d(zUy&-G}p!pj`N7h_7&9-&Z)o?;~e#jD)WF=#wTsdMM2|wR_{kJZrZ) zo`?C^jv{0)rX|`J-4SJ@F@;^rDp1`C@-_%C;-mj`r-|I?<1aq4A0*jDAZ?#&2XGRQ zfn5$YrOVewy2MTD_z!w4$VYbJ$vQW&JV(NOzT)`#(`Ar9umLAdbWR<*cZq!*F*1gHKA(UGg}nj@OuR58j0z_Ona~w~e8a`NBm<{64&;wH4vcjg^Sn2@ z;CkJ_Mv6ohiK8P7Q~tdQ+tgwBstdQo=WW_nHM=|%Txu~{N-}2MjOi1JnE{7drUMy1 zs>T-fz>j{^kc?I~6~(WZm@_Zx3WY*e`Vz&;{g=4O^&heyGBKA!fG-}9Cf~|qj59*l zCLaC(>UEH0tXrU>?EYY8Kk43<0^ z+h4+EoEd*zado1F7oDQNrFeFt-O%dn@V5Gw6)#Wp@hhAw{C&mO^BbKzyc_*H61O<- zOnlXFpYyBU`}_|SKazOT`ndBM_qP(qtS>?hev$Y%@mZo+DA^R=6x(CI-+X`3Xo+Hx z83&a5xK|O)pM!AO4PGA`bjC4hRxs?bD-?3Q%Y}SCJ=vT{BOl(2nJ(b24q!IFhxk#X zl()26n3pVX(ldzkI)J4iS=gl@bHI3_lN>K3s7&!?tZsaOo+Qk#^x8u)vn^zc2qGHtFf$9Vyxry@!DzegTiu^tWqHm~FvBrXcMhFtS&Yqn+QD(08 z6xlDkZO$z}#zo)Bbwz3_Zi=p|>)-#)P17!C4}7+|z04gB^P1d3ynB7iUw-f*4hw=i zG@i!)(Y&Pg#g~tbW(hYn6Qt$2fLVV0*I^}x3vaM7&WjejDW=J-VS`H1MUKb$>3bxA zRDRFMDlCAzv97U zO$vx6+2x}9T%9n{574{uhY@cl^XeIxVr4v^!(@u($?IaH2l-rn5gq8*Mx1{u0~P35 zG?HI3r^p7>jGY^P=cccIfbrp-|52Kp<~3@9!Rf0mx%BJ1RxGG0$Cn@Z4wk?F4%Y9P zA4x|nTYcWSE582dXALRx4*DWI$h0#y#G*RDDcPWBRpkyDNaG9|0z%F3xD|K70NjsH zVmUB>CYLVr1i=F}C~3soKxTNkrLQ$cjSvClb~k z^vVch&l9|r6={*3ZVB6g(fD2AOxU@?Q84K&t#;}xtyXKdA&ya*$wsho>KvFWtkU>9 zq`SX#C-|bHv-z{zg_$t|S+I}=q$6oaTCYqN38Va7HR<-6mh8sSvtKZ8(>YPAjf5|L zCg()Hyc5PeH@}UK;78?0(r8oLXM~1^3a_>`Nr+fv_7`P zAlTi-dTcJqUX{D-YhPPcQ4wQ4IrirtpS^dmriMN8Rk}4h9vlB> zjSjxe*k+bH3?7fyw}|2L<1k%mrzb3cQB_AP07lmXV|X2Kh-$ebs?|c#`5UA3sVaYp z&z0iY*3^Bk*7DLyqs zF9gY2Q+P17H^rp7s&gawnnQlV@+KCX-8evAu^r>b7VraPX`Y)cp-eqD&(D|3)0 zldC>}IDBm_y)#CylPU8S1QG0c_LwdXN%~F__Nqcb-fkHf*hr?Pf&3#bAc;!v+w$b{ zib+%Fi-E`o$|C~e#SG+$+Ry8%=5&;yR)$#1sI`oY zY?L3_AH%OMeWH^N>hrUZSCv4XA|rEc87@O6Ig$sjC1n_jih$oM&rV%eeXsM?x;lDW zbyO0)hWO^T_HQHC=rqrQprq8 zhtjD^6geZRkSXMhB&ujo(+FAy+>7 z)qhg6>g{!^7S(bUtJ&spqd%;*DhPOVF#3()t9w`X zNKT(Jl3(zKD_NST!qO{7TKtTqq{RRJ38O+8NZ{gd%&u}w++KO$(rNRmGX7jl?VS~> zpLovTcks3>drvs(i8f7?;eW(qCY44P4s&+DzV6(HTW)Ji7H6%7=^gu+L%vi{%WHvm zy9BWJKS4&AhUTCS_I~k3leP8!$b*$ED&a3| zzJHi6qLyFL8LCZspd6;Cwy-aT$@OBu zL@POcYJRW|*Og}2R+edHF=BbL6%3$sc*@!QU1_%P;uNtwN7~5tF1zeFz6Rt>^}$`_ zH8JUk*}&MqIJJx=22S&djr4i-jfnyB_F!TofBGyq2gv0;=}E%z-;oCj>v*y~n&>3E zq$EB>?rdm3Ocr>V&W^;u*)g&yL43mRhrwrnjL!Vd{nYM#VNdni=A|`Fp$fOhX2-y+ zmz8Eq%S%~#eWWFl3KvI~gxlQMJ8t99cA=}X;cQT$Q?HQ5^6l>JQ%x+U^j@U;?lPUwje#_qGF zR)<(%0>hE;EYyzsn7+_;_&R2jZnZhxnx+u!N@?e79-2&2)I>l{cY zh!p5>@?%poohj#pu`Mxz^ejwi#!mJvN=m&!U$`Wg&f-!pXsJLli-MtyP)6=s5Ue3iWJsV&<_A`{o$+OB2p!B5_}W1pG6aXxvP9RsdUU|ue~)Tu&F;P%KKxe=5A ziYc&kV;_H92fX%$yj-bWt#T<HTX^QBRVMS)Sk*>BHO>&0%Fjy{7i$L-@kvRV^ zk-GGICwO{VTvVABsoU+BIamk%C`3hoU{bfGqR3I?45|WZzfmxS?1DpZ)~Iso8em&0 z95v3l$~me=b(6ixF~`}f{HpRn)z_R4x%LH~LQg6mQ+>nn4d;`t7nMg;N7YB|&pD1e zpLdN0erEqf{fYfEXURSl4$yb>y2`1UD3wfaTry|PlFVpSGJ`?MG#aTXiVkeSK?J5^p zF6KpfdcX3R@<&Qmxn1Sh;v^qi5ReM$YcQ3o@{=HyRmv)e@tn2-sYX?dY6QP@ln>y+ zfCLSQMa-iHbGe^fS9icXwh_i1!Di>U{dW!!$MUa#bPm|ZQ2s+BF!sou^__YCa_UXZ zFW@evM>97TCK7sqBZ0~EaYQXxb#=;-$q$|bQx(#Xrw30Bn{#UNq?Fp6Qwrvs3sin= z;lleIU%-?~&ufwu!>AD-a7W{opS^8UY69grQC<{uPdp!=IA)FcjAg)bMucEyLeA)_ zJ$jWv11zV}JM-KhSy^S8S1FMU&7S<8e5Gt1@S8>yK&7Z2H;F+gpJkqsKdya>e=7WV z@~O-*`BCjL{#f{E@>oWDw~}Q*Jc^1%7=aXxFypfzc6z02rrI=9J%T%qax90+W(L73 zI%{SY7X$f4EY?J;r~jj}8f0TWC4y``!T^gnLs9MfhoxHYm_b$`fhNu$|748Zh6DqF zs6@d(J_ceirGPlkOpxB#&gThTzpTDIoQZ_PVx&5f4A+MFh(BVp+N};NE7yiS;cRK8 z2i1qBdvGoRwrO#&nT-|?3dnpO?9_nGtpZy`y3B*?BA`{3)OgS(G0=((CJz?mpjmY; z5ArHOo7(fl7cvcnKYDM6yngC0Y*rO6=USwb`uW@Ac~QvH@-~L z#uwe@l9O#N75f`etqg^|HiQgu19_0cBqyhk#zy(kx)W1ZeMiZ{?yLOk|b=%EX6boaAxIeq%= z!h@CvBWxqvsGaS&g}p^9dx*p7k{$lN^1X_E%6+Ow_(zOGB`RLdE12cQ%M*-SsXy#h z-W|Y)y^0Z5Df)umecqS6jMo?n+i;?l$9$$ZZZgW13N`P-K*Sav+Eao{Mwm~AadBb< z^P(;m$0mc3zuREIA@V@@p{}lSYSz?9W?h|RhDxa^THXHgy?RWZ6<@CJ*N^H?>g9Sz z@;EDJ75Oub(nH|$$7=brly236@w?8`(%x!q?f5`#-MBH=nJ&D@7>*WMBVkJl~5 zv?%1ppW_JV-Lt7_o$QbWE3yPvrDKc~b?Fxcr!N|RFCLrW7#?mvvaz?l zrrc}G&h_~sDbf8gJ8%5)!9X$;iZ!lamd&o+_2QPsl4@^-|0=V&bj{l{W|P@Fju7`8 zaF+ra5?wsv$r2qF1524T%+<_p;X&ak;h3NWdXDcBv-(w)iSH-mTi!PhM6h*l;HT6|fZcY7&zq|81tHw(Y z7}9s3$R(50ojK_>9z2kMA#Yr79#{w#x@OkNewwFT3 zD<{zL28_m5(_Rx}FtwN%au|1qY0|`*IC={ec!1OSi>b`tMUA?)HG&NhA9=eAqs37m^pQ~5 z;5Sagf{!;U66zA93xdWA`e{fNm6u>mSYMJqDVpE>D3%WC(s`O};%$^(oD2$t5}OKl zDkkDlEor}j{JZR9%#}GGp>X6wrT}D`j1XvtOEMtpRGmxn3((TuMAHTu8gWq9J z=`>D+H5lnc9m@c(HG;n)I$5TOWf_ju$;4R|vfp4i81mm>@(3t?@aTRG);P4X#Pc-#&R9wR7I^in=`Bn>znZ%_$J*g`lk@!Lk(_5&3I01Ile4m&-ebJa^sx2u$hV^3%8qbHl^<&Up#4z) zVf4eYxI(9j)}S1&E|WDXk=7aIsK(pq?Jl{jgcxR>r(T5(NQFhJGGOQNYLQ13Vg*Cq z`Q2Y}s)DNsz5oF%o{oyKK~!gKqHV8@wK>X<<3HjLr_QgR9V2I|$4;M>b_3})lTBJ( zDNCebY+5;`CG3|4S0JClvjQiJidUeNDYF6xIAI0$k_%o5Ysm_fHkL?7sHg7TOGnqq z98g%^pi-Q5>fjdmg)8%CsL2|KIsX+aiLcr9_0AtY_2~E3KQok@_ltusuV1namtG@o zUA=m+qO@{R>z!AvzcDh4dFJN*OKyH?cwpWm>uy`HdgGoSZ0p{%?BLt$x3~0Oy|tx$ zZF=JOGau`^;o)nS&dyy4Bf$?dgAYbR2`)YuOOIf$SQTDXsp3@Xp)~tI;&|fq#JlWI z6CZLPsz2jCQ>*%A{qh}(9m+x3pnQ*Fj}j(hRWYORYqcXdBI=Ybg@;hTfZPw`wpXpJ%GTvL>0nhDDLBrcG@+v=QLEu<3>Ked(85|q zVBXXC49g9S!D0XEqj^*x@1zGjP0~WYv}$jbwwUOSbYXR#VCRN48&wL0CTuDyt!b{D zv1ZT2Gs(c7Rd~({vD|?Zgb}Q(s?a5db)A)BqBXHM z@udDq&;Ep50LNg0<-zAx{q(0$l+anfxor2INlt zaB>nHGAiJOWTS=xw z{*tBiM1tF^H+aHsgU^kgm7;4N2g~5gJn9!((uwRGk4sd@aJFQFP{80YXo`} zL?4RNnoM}Pd3h1D%GPhYMf;3lG%PdOaV9K=8K+XZV(y`r%dK`dZ*?%3$rOo24BhHr z)khpLoyy}T2RI3(a2K`_-1KXD1eM&to@SJya*uMK@_@!K`3vTMAP*9f z_x$O)qci+Ih#;pz;Sr|vkpI*-NN=3(qLWhvGug;C+tzs%u7oMVUy3|^y);$et z)Gm!1G{_x~V(o^7B`k@;7Sobbq)(al$^cleV+HfjsG()1>}EJ{hm zc<+NR-q~4O>hKj`Rym`MeI$Pyou#jU{tjU3MF~{RY!@@j&@%5Xbenfq_Ce>@qR%>? zjeh9-L-hA)Z8f?!x-I)q*@M}~LQiMkalR9MC#L3VMws6pGOVerA(E3jP)C%5s4=|D`7VAt^o#6o!wN2h!@4q_wa8u0BCj=Mjaf3OvZm17 z@};=lu`GHYV+47mW-(qC>Z<9l8LZh~qjYARWvz(i70!@1=16mLhV|OKE!o>b4~5>% zDuf!brnP1zvy$zSb;-LFU74-&P0mfOe(&bcrs%b?o8`B{fqQRp?`!N z9ZCcFGH-yVGf_5#ST2bw621@{h*u}GY$_0|s8CtsF`LcGq+;Yg%3ks$5dG{7HD(ZF z@K9ZSIdL9pm`P2s2>jrIqbcva+2ZZ}t(Pm2NsE2F_pHC%1v=wvkOD1-1fm)~CyZF}oKloGyopk;{SM zXTsS?%pS?&w4yYNgWgD%Eytxas{#{hLf*rndX7}Lxza1aUE)Lr~MAV!6 z=*s&Zxqke*@bcW?V@l~yxHy(L$$t!!Nx4W3b-WiwQ(sOKaxH34vuK$uh8McR> zyL$E44GKlwjq|U5()wAS>zmiK+}*~>$h`V8+k^iCvY->Sh#r*#S|#IEMd+wbEMnb2 zxMej4o6j~#-Y~<(hj@p}{Q@qAe)$Q$MCunZpPt`FHx+I=lDEAot1g~Ys|p9g{cFzg@t8g3|NJYhwNiKWF^xJuZk}n?t^_1tj42>^-QO`G{99Gw=qZA?f3NMqe_nj@!~T zYM>LUWtFWph0{?XsQ0#NTumCXHI37$NV#3jp%iI@H|6on$?yoD%^xLBvq;ziw$n<_CcSdQ=~(@$YeBt9M)NKuC6n&aqMj2LS1K~uuxClu;J;0OXM+Q;E%~uv-yY1=$End z`A=kFyD7IlZU2}*-ASN+nu6Yx>r8io4^N%^^&f*xq2z1zwLA5E?eZHpDh2vG4$uq-ha*FEj`YavKNiACNDKTgZV$mD^aS6J30ro%n)-n4;OH zual7j5DM}stx94e6W4QK#$yJO+nJ+=Tv#xW&4PD^4dfGjr@$y9+jBYy&`}?9izgxw zWduJXNk_gxPBs{ZO_E`hwi{f!91j36g0hLG9M2naMo>x7LOxth-U_!$hKXLGDW#KD5KI!&WAx})?8dPg0kewh=P)Bq;ycG3l5I`^WW!h4&jRe=;lY^ z!Vo=WR@nPcn5Rya0kMi+boH@{FnKO~Anp%pto6;a0})(V8Y*49{dC*x+(c^$u*0{0 zrLm-B;%6aOWZCF{%)Rsy_MWiYW-sFdYuB!HT0G$}YYz-OF)^~OlnsT7^fp`PtFK;W zv`3jxNLJ*zdh*=*D#Xwgxodz5Yk_JV6ie?nJ*jv~{S?n#jkhUw;@cElgHjhmtR*H_ z*=v1lnq|n54S~(DA}eF(c<6(Wbrpg~^e`S{Ew2((j6vm7F{(N4RV(xBx%0>7^BV!@ z2QGZqr3|~s`z_9hIilAZOOOlOOK_0_Y*rcAc(twsI~dSRN=pf{ah8&c-yMbdt`iI7 zF&jV8tLVmqkv`sHGV&nRj$tLfY2w<6k0w5txapTK{q5+6U3Xn|=%r70ZIG>-=$m+J z;s+CJ@m;tUH~jG6oSjcjyfAV2&~3OF*W=5dxsA+FD<(f+$(urckkK0+<*=#4+w0vS z+acfKxr4jYqo`mi{EOMe!czY__g2|9_fBTFbGQ4O?2{_;7LbA5Hs_5dvjxQKA|1oB z2azaRTaCZb9Z`Tab@I|9e?z4--})1Bm)W+yq2NuMo|UI`!< z4C!Mf*qAGvIg?4}F$=fYMIG5Q9T0BBH!?R0^85l={ux)zIJi&6jT4c5PoO=!~YD=WjXq$n96XfH~Q`r;kP- zxou?K(ZOidqB3`a_m>~saox{qN)(KN^aVMs@ipj+CVaItr#?4}ZsVZv$mA#VGD*0c zTv{^`YdKwqD5qRrxtV+h&P<8oBulce5J=>@{~5~Jkio4B!m*8W*1XPuhG znP)xX7Asr9%9wmEjXw||=Q{%BK3B>gX!5zH`vZ*6rS=ESK9|cM4EtOq{$PdAb%{R+ z5D11suIZOtqS2_CR7r{3?NXY|0Y(hq_XAi6WCHzx{ehE#QvrEkgb_q1KdWoj=qy&4 zg=aN|0~M|1UFA&qBQwb}UGw>~LeI-{ zR|D$}?4?M-Mv)p!4PwE@fDIuf*i`JLM>QJMCBw3BgC_?J9_VcJIozeh%ID=8vW@JN zbwP2@3rvO)nSSOZBNISAzFgZbeNk)US@JgB=}wd$J545M5E{nl|M=-n=@VOFBQTQ2 ztkG}r8yVY#9{;5kpPkU&iT`^c{_})k;e-y_Gx?{9nVf0jA>c{{i7VA11B)tUOo1`| zYpwJsQJyh15yo_4W*amGs)vyL-G`P0JzdKUwSQGQl*AW(EqL7f4$2vic30P0du z?NH8_Ar8-a&?<~xJ|VAeq|p-S@^bDY@FQJO!@P*d3Iz#v(pW4_=cO)|rqVOj zc{>Ymotd|D5a*G+U54z;3wgU7VDnbqu0UIvPx5vp%CPJ6b``pn{c7H>(?z&I0e`U0 zI6H60$Y5HWw=+m#T9vo6C}~=kw{sBZ{=8j=w5G@Nb~(&k!+E;`O*4HbZ&xC_X(De| zp$4-xZ`aAcV(x&PF~>q#TF1xKP9VfP{!Z=WgrL@`q;>`IcNS5*lG;Pmt|BmWmgnsN zL-&Hb9bo8QpSJ@H-Ph*r07Lgr@^*ls`%K;rF!U(%c7UO$IBy3SdiLk-07K8oyd7ZZ zT|(_@QqRQo)UF|QOWa27TI&A*wd<+9Q{qKxFQRdz{4F$}UsAi3 z`b+R}(6kbKTqI6XPVF8NCuya2AGHUlJw)OsQ`BBe?X}cSUYnLg+G$&o8_-ioKxHU{NpfvIwYsoG~~?ITmJDwL#k=!P8nA+7-Bc0)NNkCkX$KJHv_ ztp#5ax&`XEX{t>G4!yJ;>;GkaR#R9AXa=}fKnU^erjWR}jZ!{+`IZW_lr0dtlD3z) zRzu!bL)roAvjt+UqL357ztA6ZpiTrjy)@kh3fpNkeGiS%gRX)y38Yt1UC7s{5Lcl7 zo4|*_uYals&$okwZ-!d*Lds15g*LEVMbijqLB1^uA?{TalB9pvKwa0_urM2suf=T@UkjoMZrA<>Usf1crqlybsNomffXhn;loVNdC?W8{IraeIL zeHDc-sp&e}m#hDu#>)R~ihquGew;MYm{&v04FE?nl2*g7H;+{%pcc{I+yD^nfmBkd z1GHr%S28}9(D^8#Ax7N& zv|p}*(9Q6ZuyF-VTfpZgv>3{(zX1CRA^j8sRzWE%X^y?LKdz=_t)wIQi^`SUy>x`H zr(;EWmUec-h2)#^La_FCp19#r}hNNRhbHvczs62Y z2U1@buyO-U-=Ci^q!RidS82Z6FoiAM=scfM$n*b){V@flZrXMNyIxBFB`B|=K3nKa zwSm_4!dbhQQua+0Kl63`*ZoW9gNrx~=<)akFe1Gy)v))XG4a37k5cJgnywK0i)mHz zbF``e`_HFdPv_{~&$YWyuk&2s`H{0_YK#~9FiEL*A1!6|l)L8w3?WoV>Y+`LTXJf) zkZQex)GP1dn!@p_ z|HpnT(00P5ZpcIC;`y`>Nu29>xLgS_R$ed@Z2li;vP8#M(H0cuubO|N=G~BMAEi8B z%==56QDNRV52M1|bRJF@(v^!-ZKCu->aP{~wtw*~+WjwjbzlktoAUhDW;%w~(;ATQ z3+L$nS1h=2uA2?q6N%A+W`b)ea8V1X&m8a*fSN9ZkR{-11m8yRi9(D;`S2+1v88lQ znho(5)A>%yVH*>ht@;hb7+2~ z{-pew)V^Sma^0i$FJd|75x0M=MDmQ6il#0UaTOoUvMAj>b!Pps@ zQQ4xhwC8G3bfr>B3x$Lb?UybkOA5CXQfVVG;X7w$+{`@3)M#MSDVM%^aSz+0=QBsV=a^4Bw8^ZMD+I}1NLCCREp8Ff)) z9~P(E_sUPs^$q;xBLniG(^sLxxkB*(1WJ7*@MC(+I{~x#Z=5106{hfLEiLG=V zNg_*P@;wMmPcv@rfxaw_7eE}mkr<7^= z!JN);9lj=-WP*O`ebpd#w!Imh-ZwCmU-7P6dKt&zvUqD@ls{!kZo$PSBXd9JXT@f} zM$>gKa3;qpmMp99yZmkg=9NV(HOe|O=RC9W<{wH}2WDweMEa`6t91M7n4DvI9&1vu z*_#>F@s>KZv6ebI2G#ba^A zbkRdsb3SBsOG`!62ROCrSjSjA?ARU`d0j5GwKydGz!TM>LN$x<$>iS*mfF_+LY!jY zqxbeyf8dE~nRWG=0ZN@4>R9%DH+j+McP01NZo~#FAR3& z_^|rodv%_n-{@gtwAD4q%R_voC2rU%HLt`_kO7>UG$w{Y&DyhlYAfVvMYpgMUkW zRhz=TQzu?|R4v49HFpbRDBB&+EA#fR4xdezKdW%SQ7n6piH7fnWp8#^%2$eR5IL%3 zTHuvFS0rbt`bDLfPm)J(gar28oZ~|heH|Z|(S{a3$(*#eSXx4(`H)xQ(c#VS(e_;} zdFPo7CPjaTeblmo^^;;g9EsobAw0%%@2f3qBjSw1PJODSUV4o-@rG4Z@G-Vb#~y6=ZED;Ud)Z1`70ckS~F4 z5>cn@#;c0jld-)e7;`q%9o?lsHIuS`?FKTQZ{FIK5Jr$_DZ@N-JN`Cx}xP^ z$Hqm0nMK!|U1OfjG;G zE;%}JdT=QFqgM%T33r6Y~qS z0@mf3`Z%do9cx|ATr>0AL#G-nb7R}_Nx89#i9z~Os|hSOZG*FcnqunM6LrVW8ms2^ zTT0FK+L62U?(r~I)AFQ>Dq5hFX&OPLHvDA%R{FE!lhaR1#ns=Da(13Y(*LwC@%?t1 zl$TblO-egO)5k*p{9j9mnxY9gKAQ$_gym%p+_C1wnX&%qIqh}T$4JPq_i zA0MZhYjVfUd|p>vJD*|Eq2Xta>XquySRit&FlW-$C4a@rYZ7Og7Nnc~5f`)WdgdxL zY9nUD6LzWAKFi)O=xk%vPjSE5-YoA~yDKyG507OvSlzjRk@fGa>IPx zbT4Ih*{iKyu418k!FN(PA9PMfe^5LL{stqeJ6j`6hFb^&eQA%%`t}Z$c=zx={^>_$ zO@tyJo%S0gsedZC%71;k=jCt5zE>QcV>W~HQoF%6s9lWG@!Gu5D`?i{shx#;%o|1e zhc2w26;paRq-TcZ`aKCB8=Q=Md&<^)xwDBJO{tJAj4F54snPsuRaKBE+26SGsz>Im zsw?!udz6Z;kvlcN*3~&T)@JS*lzZ-@r@RT%<*q`N@wYQ+!Ec`bxNgdP8x0@^Zdml8VS2C{%FZ|%q=sB z7Q2&E=H4o)yZh{Nd5goppKsVE=~WgxZT3Rtrs~p!cs-n{XY@ujdG%*~GdPA*hIKiU ziN{nUJbv}o*fFiFQa53B&5hIVev7>Sn_;+zVpi+zmR;C6lLl2YZPWjZd1hpiu;yRol~u+qr7mlh@RDsF7bRxdCA16Io}(m{~nc8GGh|@{rq=2 z_r==ZzjMs&S39}}TP8ZR0b3>$iwdnj@%9XdiW|HL^;$N0NkO&S` z{wnFK9Jtbxb?CihVvuAFQ}TWw_+2$m!o_tbt3>`>Y>Cp#^|Bi;Cr}&2?eOmwt1)NN z%w(6#nv2{KdrlF3PI<(96|ntVDq8nbnPN{#`q!BX5u}?qnf#_Z8));sh$da49hzC$ zmFDdzo@uDhAIB zZp?BFJwIT-W9gCSn1`80_7}|S?{&NNs}NiD9?QpMY!D~kRuStsjy+BM zwuinb`nB0(J@|U{IgdB@sID~%U++X7*cj11|7hRi81iDxD=`Czbg+-81o} zbL@?n?#hJe!%@V&jiyxATB?+E^rq{JpV_QbHti0v=IC8X?8}uK(%7f@RK|K(rN(OQ z@R7*xgHKu|!&Rg$YUS_+8rdAZx^3%ZvQ8{=ENJmeu8_ZS=#^}dtldgzPn#6KAGvCA zj9LD{sojaJ-es<->zQAn;fY_`AD;F|Y;otugLcs|UB#IjR`n)kp18pAyxe`Ku*kWi z>y#Va9sA(zM;*JqJt^VMFT!0cO0+g)?|2??{{VY$Tvy1cwgZ`^F{|!i)aE}- zFG}vx0!Nqg$iz8`U18r9{&HeZQ@Xs5V=~)FTAQ}sS@!Pj;P)EXy9xfvqHW5z@?Afb z#H_r-cE5FETEZGmm*zK(v|H2rqB|b0Y@>B5Vyj~cCs*BDt0}Xizccu~wCWH=Wzg`i zp~)yUv+vob9a4gn(+mg8j#%~8y?BLE>wWR!6ybtb#BN8*>(-}jkUo^8Gfph_Wl+B!cBel zTANCRV7dIqFC%a1H<`+!9&0>TGhO!HfbQ3IWt+o>1hFS}GLp=g^{*0cor{XT5S2!p zH~7okc;!!n4N^6wi~jm9oksY+_rtw=Q?AEHF&D22{+9V+Re48LcAUw_Bzmh)h|yG0 z%%WAZBX4h(i_w*5Y?6CHfoV-$;^V$redf1r_=k2o&o1a<#KwWW> z&8$cFmORM6wSZS_sIaH#LT8!)?pD#W{y;?onwsJka-94x@!v&%PHw+eD`t37He|nJ~6U3Uhz_d+64jW#}xB+dbKb9O(y=9+#&3Sj2+Fyo?^ zO?}(Tw!Dk&afD!&KSzI2ihilMX1mrwN6f3w@4@=K)%es| zre1+j$L3ePD7skGBJ!PLa!-F)H`6s{Ks+-#Cg}_na! zXzNZ`oZaFk*8MPb#?(Bs@JW(}3W>?ix_#SaDpIeZMJBPQ%$D0V5VYXIHM!i6lA=BD zlZRzLZ@S!rVgz}z*dYvhAbiJk_d}s*I5ZXw-w}v-3gw3w&lhWJW9-6$85k305Zj2s z@(A$_W-~*$*){Y)2F6ey{w%Ze4P>y^FgDvT1L;B5ww87%j7b39n}sHVH=wG40dtG9 zCW%Z%YZ9bFu)&*n6rU&?X=m&WRFwj^OMxW)u2x6nDG#m;8^}&oL9!ExD z4C%q93}0^_HmFFTp)j^=MxXi!rA;m1H$GlIO?K4>D1 ziUGyh3^0rUI-6m{@L+l}KppJ-N6KVJIzc%wj#qTAju5w;$m?xkq39 zQ&+^`ZQ@=%IZPzyy=_9X0DODK|(Kvq~=+CXI4O!Dz;oSq9Pz5h^Nh&&V z77a_{%${97mb@&AdAawf=asMDu0MPc-dTMs{CCflZ6(jNbsnFyTyeZ2S(T%kPwyJA z80hhj*xPWAL){wh-`PR5%32zDi}tmD-GSCF|ND7e{WW)=HGki-f6=hmhXc3_lWeIh zqT$>ikLK9(-53?8j54i!q||yQy{tB^ry%8ASsiO&&(>LklfI~TVww&Px!>$jxOAq>$7*2D zo`6m!c4lssvX1niPWYUGh#q23U&_g{+A4gs_CmwxbN!5=Y`1|3>g<6PRrMNQ8ng#X ziXOGP>BbMOseZ%6IiD;uRz6v#R_pq4Ufj^Ee1quI`FmDwU1<<~;YO9Ru2}Rzh2SH< zD7HFwe#l=rsF_x*@g*U*rqwTgXfjJ~AbI`n*9`}HZw?JP73URN*{-L#gfx=^oEj3! zhQ-^kr_5c;MCl?!fBwuah(B=iw*g>mL*3cX8tg(s8Cv4Cc9I`DI4rqf!*q1IrMoG+upB7WReP7NQ=R%xjwp+U55L zCD1ng)$n(5y*6 zmd6AK=mHkNm;eTV>n2!~{C82FDl`pN1`2+)a`$6+umQ!H1>(qP@CzF;3nbvs;FtHF zibsQA@E-63#yW)QVas4UW2}u#Fm{YBY*3i)%`oI8X1v6}Wi3r*woz>?wVONWFB*^G?CqbW4J3&xJ_&cfJ2-U|u!VDp+_K};C} z{DJ0J=#hSoa666)>O*dyDCK~o|5lFUF2N|~CBW`Xq;~u$?EsLxH5wT^X%s-Xmik{$ zJh0!t#|~gGsGTy=+JRgBTRR1*9f#D;gN$(iBM`s`_&)E@5C%Xqnr{cz-e@k|f%ioN zs8|7(3S)+{G1dWe4@Mw>7RD?nz&8j~;W8GQrbVNG$>)1xvKEN~+%wn1lgL_tg>V!t z$U`LXN+y!Ea9o4HSU3X%6R?ec?xro99^^?6@q``a88znLJ8BTX^zeuF2h?G~sJK&M zgBH{a=W8@D1*hl#trst-jWV&?2w-vqW)*4l|MBQZg4&?fPvBgV(G)>_zynUGLMlQX zlE44s*`$GB7NHSIoBy#!91fvxRDjGS%Kus)!W?kO!0Nx&M?eD=!0rW%0za;Ggr)@I zg#V2d1<6KG-?&zB4Ek`u+Y4$O*E)_tBLSgrTKhd);m747#-WJt&*b?dFu?O0hYt5&^!!t3K-D7RK#ce!G{9kLAVA=S1|$Mj3s2&% zFpLclG|272m>tW%^mVksf;fe{S%8QQ@Z)l5W6(=Q(*$8n7!Rzu!S(p4i7*~mk42vl zH4(;x@3Ck^P!jLch#-b5HO~ijTm_NNg;SXKzLEG@iDQ`!6C3p9FH3v(;$U|A+Yy4!Gi>wDTuh8IN_{AMT0E}fq;QH z(Y%94I4$Bt6AuVu!B(B%ASar7@Cd|${k@4r51t4%5d{ZHnrQ9;v7W%Jk|vsaK+Fe1 z91v{?s-0;10WpuD!ilCIxR;7RENMJe!rjjsU%*2ekA;jy9}IX9MnWEsk&Hzr3_*l8 zN66zbld))pK>^ZDlgDE!V^NCSu>c1LV<(_7DMSF4JRTz%lfs|wS&+x$rpKffL3-e{ zW`ZY{0v{)lZkjwEH$9edBHc7Ng`U`P^4v7iagryRhk)Z0Aa}|{lMryzz;OasCa89z zSqL~zL4^~|K)_8S9Vca?NeDPj!9h+m2>~|^PSFH){tIG*=|S*xh63#g_-3$M#69>D za?|jX93CLq`uKXW(O4}kxZS}!qd_n&^Dr)C+#Od~p0AF(>j(1Oy*QZiJH_3( zf_Z*9?miF5bN63h%I_CXQT^|)as$a4cfnDXm!LnN5z*W-o~FwYwoitBP=o#b|DOg4U-9Bz`gbW^Jp4ZF$!bD3}9H&gTblu$etC( znokXURRV;>t;SceCNz-cjKZRwdB@oNSKa`5)69G24UsotyjMP|c%VY@u?2R5AY}N+ z;+|509Iq2232!xBP&lBJ4>>;KMiSn70Y?nm8cBH7_*mmZjhCSKd(bW@JZO@SK0f$H z65c5I2pmax1L4C^AVKjl$%o`f!s{3xmm>+UV|79fy}m;>J$ z5D9P0e9J&2yuR?P1l)w;t~%dV_@=^7Tu?+XX1>{sB>a|n6EPy><@nT#5OURl8&fW$ z4v(l1Yoo0WUUXpr%R<~L0*veH$#Ul1^x&WBz(;ckR9-O6citcb0C!75!M#h;C^aEPlf(;FByP>1IB0`fb^S%NED7<(4ODwGYKKIn^8Fe6CcgYC-1^dL;THxyqJJ4;9G_#8r+3~H#bLh z6bJ6C{oPYTaMu-FSJgH#HZj3sNfa!Wg2!UXG>{TO3htj#@Vt9no}nI$k#a;sUKuhd z%PkMe5kY-2ng0jslL_Dt$UzY-0lW}Edw64zQu!(PoSO%q!7_LtCxJisIRUgo0`0++ zTMx9yEdyjQ9jksK>lPE+;0`LbN#FN4I@G2Pm z`60s*prMYI;mM#Oq>MzxL;4XYN1_s-u_9zdcqQv<%D&0bV2&kP)b4XgH%~U{1lT3d#UzC|HDEa0Qwo zJYE_B+yX_kMjpGHr-&#=g#HL2 z!y$11#`cpnq5$g^tcwN3ko^PZkAqPxLI=DRiQqVWF#bpKzrn$^hJ2C$T%8|bOqbPgJ~6#;UM)R%Hf6Q z1y2ydDH%_M0Ux3+=%J8|f?OkjaVoNZU`Fv+1g>ycJV3cndsG;(AoS8mLgffp=!pf( z5peMP4hR`RcrC$~A%x432tqg@02UK!k0QiZWCE2c)Mo-sh?~fOl7+@W#KRy_u+PMw zV2DVBQ4pfsPcTFz3(WzELW6PJ=(=F;iAWv?-@CxU=fKhB0FMJ;A!S5BfI>2wuzirQ z@Z#?1_J9uHnh-J?72YHlD2FGLDKOj

  • r~8E=2ul24yy!K1+78SIy$7F`{+lofuBUZ(<4xj*HKniSC+@i zKUg)H306)?Uaw-U9M)^m7t2k8Xaj)D6I6YVk$_~jZ%lXOi-zyY`Vt9q@zUvG1BTlk zM)KGg$_ba-x9A`%NX&!j0RWjnC9lBJ7-wNZhzc41L9#UUrvAvR%_FL?ILU%lcakn{ zeh+o+f09T{GT$Wtw)+}-NML?aF2;I~^ziuGn@3)_909TnY0OeN$fIoBQ`shgk^5Wz zF1|<^CfZaCPZ=yD)c;tYKs#qra4L@Z=EH#wzW(Q9GTWQ9NK!s_crYtzkq~R3ierB1n%S(`j17_l2@D~2#K8VvQ!d6^Uje;aaL4!S)~hYtlf1{o=kiLis` z)B`w5UHBDU58nHZ;(IyY`0(|VRV^8S3xWECeX)6Bzf%SwC77rE<3ws354LCe?2eEZ^uykKO`kLuDDCM)%eTYD?Qv^AW6MEYltB^J$0Ml zuHHPAYgJyQrgTAJj+d*VdZt9xCF80TI}Le!u=FN2e}<~c#ztS>ZsWC~Fnjw+Ik zNiu>eTsFk~13pJ!AdX6cfNVzUKzdh%Kq&;4o`--M2!%kzsn5xqw~ONHu(KP&o`O>B zSAw{JMHo0|_2izPJp^4HY%ie!9Wx^l;KZ5B#wO%XjFsP$SSll+&7}jRpd@h)#R4ia zPRbEQeSsSzvuN%Unam-?CgpQgg_@>~U!Gi{Z^LnI={GNi2R~|X#Ox+7U$IH*O0glO z+fY+S+p2r4q^CluO5q+o#U$F3*{j+H(jb{z@bB;!Lzfnvd z{8^)y?hj9H>Ki0@+CA{szg=0r5~h1|HUX+u3QQ(W2{p>2MA>=B&KK&q%kdc$Kq(zy zwt|i_JwPKCU#le=K&xa3PC@d!IYIKLg+2ia;XZj4L4iMUI=~YN_IKOi@<{sx_TZGX zqgkDILt2O(ek*L0xJ)?6%NOKIFhEgA<4#!=?N_0}z!$?0H$-F+lgCg$A5IJ(sxXiBi1AeIwQC zbX&eo5A#mKU;923_TqTnG}mjtK&J1iDYu`Bn5@UPTB$oXyFc49`kW9~z051JSm#^( z^Z0eNJA~N&b?)ClLXupBPH+$KVJq^Wr}$?_Otx$4JFN}!w1ZMjsFe8WQv*iB$J<=d}YWM zmFv&?Ov5%#Ge^nL(rwtK^3+ogfhlq*!s zT@vMTPeeRu8FQ_acxh3_jv;#~;Qk$w zVl>@UMu|*OnrNK4o1$?qEKuj!Xja=UF+12$w$5NR)ikjekM(Lc2=vHy%(nDiW3|cj z$~4G4vv_RIu*_ENbZM(aYb~)owmErjvz6Y-SkrbW-3NNqF6q30XTNsc!tEsYc0Gpt zqC8SOE6tK^%W>j6a_9C|vrqF?VY%Q=c=b6}{8D^$pDo?rbpCfW)se6zQM2CMzj3~y zHsws+@#-wmqRuhP#%A$Q3^Dcp+-rVqqB;H;l zn!3=*(LxZef$nF=W5|*ljfKgiz3klQ=AQh4YBEtJDM7Vmqf@TbzC{8 zW*kv`P?IJP(k|4EsLHIVa5(`d`+)0GuG|OtC~*u^i@;*x+y`2&Ez`PDsZ@SS6g&wF zbk!7k0+Qauktm+p7bR}6nU3T}!-!c}uf}RA6s1wT?;h;1PJAaSnKv6!6oJI#W>H2g z9052={|P?jO==}M9+5DU!24#`acBjpdk6Flek9O*UZ&_BfEbVbEvSIZc$*Zm#H|Cc zPHW$<^Zms0B)SzJJ;e;Q8=;HJ2C;_`*~HMt4f_p-FdlBuX;eN$w-uw>*DQN`;~r}R zzDIc}hA})a_H9M|TbmZ1FIa9vCPexR-g(YH78#O&A%O#}(c-*o2nnF~dLiPBD;;M> z4x9>#0n-i)&iJ87^k;?n&qTexA~V+bXUXq<34|1}FayzHm|6}-A4#hZ(F1b9164H3 zDe1pA(OozJ`^H?OUQ?ng##W3v=puiNE&3J4u6|J=>)lZkj><#4 z%?Q4L6{bKjX!K@_f%|a9V}6ivRg!!#B0?k?VMdY2BYpV^1)h+Pidhsd%LL&hKymjL zmS2!?{A^8HV-l2H;^W{oBYRhR|IWUFbpJ8uJW`{JR|-<$lVpkmKO{@4@q}iNO2i%L zkhM;jjXyr_D(&GtiN{e^z9UV*A$|qo5QGvI zdjLlvTj-J{VRKh3hXHL?@|t4`>Yr1{32dSvM_Ubl5g`(TNQS?7l4GF9N3bUw^(LS~ z%$lNwi?bl}!?=Rpn~~Es(>?ujY9;nV2Mb0CRUr_D6c-;YR@aQTGbEH@!zijsaAX}l zwXHC-wROb!#L?_=-8p2y zz}(4Y7=lQm(SLui$Db=7MzcEr@?rWtjl+vb9%+|)`o7>G^?>yTNXUxdlc}=ALnh|` zH8F6$-Hr})LN=r%(TdGqCm8oqHZ=YTGBrR9cXy!hqO>M0llVidt03^%1Welg@kp3M z#3DPNRf+_#H5Q9Y22*!OGHO;yB8Hd#mk)%8^)DZmH2-!WEex4IqbO{Ydg5Ntf7xlG zj^Lx8A}V~d0fQeeRY{Q$Rrv;0=xJK1NySO!LHVLG4%Jbu;0wqNt11p&C96UYjM|R; zca%~c-Zs|rS*Uuq5ya5J_T1(#{O7Y{FdlnbgdjsoRGM(KCDSg_Xd4t7+Co}5&_IuF z8RNzfly^7oF+(1PhWA%Cw-|hr9_sde;~cqo`faT1sORB!|CgQ@y)0pS!kM{XZ&HZP z+ZhK0M|~?fNY|)_`XSmWDWSA!6Y^m-sv)dPIF*@T+^XqlV~5Tubp(C>fXmh2-w-2k z`V_Z((6t4t`K-R5Gsmz6%B6JajJ(q%$>nWtud3FH=V1sIIX^kbP>ts1 zQ!`VSb=Z2m(`SJ|sIlf-cPm}2I`lXH>OcA=aagkGe4JXD+GNq<KJ z#$u;wGIzp8o%s|4ZN*CWnO7vqo&s0@u>+fm>=gJ*tZVBCG!WXy5u+Q8M;EK<2ryzOT22-0C7Xe0 zHZ)pG8IqJBDW~p3DcCMGa)y}$g06+GRpc)P$qY#Hhw!nX4ysZfL*++)cJ>yszN^;$ zD4siqWEP#IK|x~c4xG}@i{iTm$`iTkuf$*Y|bJbQ#LIFf*fzq}$^jQt#; zaekVIznId-Vjz7-NN90^7#0_ZEOG*;+P|f1(MiSPWgfgYD0<9a>$fqX^5&Q zSyNFmsG{UfWv4-Q8f4exCi&_r?5Dwg8tkXR{^9}+1kYb7UjUx-lrJbQuCDsu5<{1i zt_E7DswT8hAJ#_(s`piMgViI|r>fb69Jf|?R`-!0sTzwsumOe~0W6MtqjLkQxK{v% zAnuLi2w+7tRbTF{XvAW)646!yN*N4-%3%*F_o?up3hPyUs{N`rRGf+sz;H40hf==c z*5c0MzG7~mcwaFySd3AzP&`t6s+cS8tjZC;j{iOJGdtZfU_o6Gx6I+j3f`&kOkKev z8y1*w_dxv&U$A(Wr+;+qZjzsXr@%-K!>KF96OgdFY8lP^FN>!|{F;jBITuXN5 zc+Dk2vmI!lC9T6o*&SmmuW4F(x%AZd^UFj#rGml&+<5Po(&a7VZo2+vQdKWyFZtSR zrx5I;<7MKE>R`sUWv9x%ImA1T zA`>4-jTD94bke1^oo-O^IolplawtYK-=4%tv^9*w>a8&xQ|EF|CX4<4R58IHLpDvy zs_UpDOffBt2!?d_C-c9NZa}*0Dy&ga5Dnp|m|BtQQTC-i41XB=d-(4$4M{L$s-Wq9 z;PRFGQ>pmsN{_?ga|MMIr;2zY$w)S`#P+!Dar@&DULCFqRYhCSJUm}9ho2Ri8J!=S zAHP*GAPgA3623KdYkVN}pl~-y9DYtX9zGs>G4+G+4`T0x--(?{`H+lL$Ss^r8CFD< zF?qbg)*v((T4f6rOYIBeyVZMzTkX3YyMwoeZ;cG3Y`c`V*mgx&t+E|oC0u3TluAAl ziH5@}tYExYuo=9981#EZ6i<4QUZwNueGaeJH#~96VLlcGA$Nx)*~1}`SMW+jC>}G% z<1wJ8;b?|ent5Jnx7Zz)kSc6eslvffC}Ve+?RG~z5_H&Y4U#=K;aTYXqrC(0zZ#kl1fA|JP_92S8E&(#4+Ju z#JB{^%t-uHToLaqetLJFy&okj^$zFg*qL*q9h>auoTCnb1UVr9qU~p#qry32M)PCb zDbNLbu!O>PXwDBdK|vys6R~@j4&-m1cw_}nA>@B8krR2G%Ho^ol-N(@3?hghjR_6H}CMuSLP!6&?eWpS= zea1nSNb-@W77tYT4X?afZjV}P@sZhHGk@wOb2N+n%i`ldiT{55Z{hJ@da7&LyThE< z?MsgR1%G>2txd;mmRnk{30#h+D*CNC2XYkSUr#LO9cmSyIYX^A8r06r%{`J5!a z`Z!9#h`g(&BAwc5-{RWhzAo06y2q{9Zhtm(BK9lSuiU>3$sJK46^mrU+32)bCbc}; z6YWb4q|~n=>~zQ7&F)_~e&v!q5yL+Wy<_`j=$+`>v5!J>w-oe%@b7c+{s8v56#k&z z=d$>N$Rj3;Jh8f9OOOc$6_%oy)oNj2M+bLs2&?=km7=(Mc{F#&dk(5$vUY?DT&1-@g zWYWRka!2Nuk3CnmG;DT7=a=EX9Q%)bzxqK*e|^P5&$|0&-?X@_mAQ6&>wqsA4p;lO zup5Z4dFYzQPU&W;R9_!xyRX>9Ht;QsrjVdYUY5R43R5ObtlJ8olK9ulIM`#9T8qjCr(b? zSasN_d}yV%Ws2W5Jn;eLX`BU*gX|xhiLXzM)p{4U^qBD+Gp5B!ZY+ng)h;Zf{E>_b zi!#a|$xJ!%SWat7`6KZBgYrivlgB-UKcf3Jbz`SGI!1((!Ydtx6$a>5zzZ!@pk9+* zfmbk0o#z3=1CAFhFItBkA2<~IJ$Sbhw`f|lD>N&#f3t(6WwA%?tQBazlf}d`yAEL1 zlF8SW%`gm>Ybr>kt#4S~v;5h@TDr}yA0su8SScxLuqKuE40;$3!kFV^A#7Jyfge4-sj&mJ^D4rwdM8?k4QQ`7LvzcSx zX`ddCtz1>MVimK_Z|#{K=>~c-@#*+n_5^znc;_q=$m3Of8a>@qswyH5VR8wdZ*m}! zjhiUPZW8I?CXsOLg}r}@WFpyo)6zo%Y%F2qbaLkj;LL5n{;2H^dn&A}Y?mvdbX5b< zRSkrJLkI30xb#uFfI%0n(>Vrx1TYYIa(Fs4^BB*Sq?6+!K4b+Yz zkcpy{Nz926a#E>3NiMqaFG8xATo*;yp@Yh(No`04h#Xocu;=1 zAbaVQD2nL{g_aMOM>LU4xI$4X;hC)6>&Y0hA0WY*r6J(q8~weP99m9bJ=ws~B1R7Fh|A?US- zak)}=<)YQoFTGr9%cMhWw*Rf|T^nwCbM&E|7Jc#fhhHl5hQrvZE?Ld4Y|q$rJI9~u z4c4?RSabY8HZ8Cl$=uj9afUq(xU5GWMw7>7w^<`6=%}Hyi-t})8i5?y(>OUo5lJNR zNG1}<(PW%0%&Ubk%AHQ3$e3S5zOY%XB=IDjlf3LAc;@8H6#vW`fekPWH(^xQwQyMC@F`-qa-Ccsw~rg-4(CHt|^Z|yxQ{(0xYY<9%EP+VZ!c+DlCr}^kxxxuv5fVCHU+L@R_uN zh+QmL7PU=84jEW|QGxS>rlY-P5}uTfp2yT*96b*p`=o9}1`mXGYY zDBXe~>jGmTJe-=IKWiro%>-ZN6kjXKD=TdQ!p#}!9371?=+u|jZ+m0s8`rGe@#94m z>u2o0q3g>%v)F@=>^gYu`GH4o`}UVVy{f+Mk?Vdi{+k2eJ9m30k@PMBgwxCJ0EYXk zh5ZoQ#3#A^5I{Msz?4v8x)6-%5-`>fai7pl4LQX{f;5FK4-MHEp?Eqx@tdO*Rb}4= z!pVbCAQK^?N1}w+rmS8>O?2JDOs8NIyoQhhQ~bn~K9Z`* zX{B%0`bt$LL zXLrU7*dV*(v-+jg9=dP9N)OE{Nb#xhxy(|!o|%A``Z2U{f_4AWUGss z*W5XN)z8O&IF2`ln?AzpU;X*up2x^)=D@^nIhkxds%Dl+4&yyZtjBsr%_2P)LvdN6 z1-CFtL(MRrDV?gUu5_|4ZiRh?V})~tOD@yObf{>ghTEdvqTQm~rtkCi`TEj*nce&? z>RsAhx|{U75>IeXlnF*{nYLV8;VJW!dn(d6%@lK@SM#bwj+bf%8WI5OUhFXO+Y z{E~{<+Sx^m)l0R@gr)JN36Br^7+0CE!d1E0zSyzY*u-jhLAi~!UkhzCG!lH zyn%9zeGv?@Z%`7_h8GRYdj>2T4jSGwu!dn~*R#H7ya_>xl_Y_0e+s{t`g3Xm#1m;& zg_L>&9$1tTQyCCixYYA_Cd%TO*p6~XeLE7H`sa`KpBp91S!4Y$I&#M+YI7njrgE(= zC)a}L`tdmsPe(x_CcX|VYyy9dG=?$?Q!JuRD$7t@PXrSaSc(ihs){vbNUcdGq5_C1 zdR@FIYy?q-Ps__NP&6u%2)Sdu`S}?*L%LeLO1(zAR#=tbfFcr-i8kfvqDF1kXSs|% zTLy*_MQjMBnB2~?)#hcW+>$$qq6iwwyi87hiAF+^!l_)sZ?aE^jUCTizV6n<^bcRS zt@+Q-Pb>F*&*|_e!eM9I(G5GkT2&Jr|JGgePJesD_G+8cuad1FPwYDIrJa{fFKgbh z=E}P-eegY{tj?RpKfUv-oi{BnU6b^FZ_DkA@BCSX!mH*per7r4SYVf5qtesXTPc;wy0)Wzauiri5rmRG4owOtnq z+aT9mmTJsXimS>|TuOsQC#AnmdLY%QqWpuA=OZGOghYAn1Zu=c<_wa=SlB}*9!j2# z#%N^f8B?$Xy1z%P5rUL;AQVxSw(i~BIkpNMC5y#kv@_Zl9gK42>MCE2INLW{lsS1* z3*k)tE#7c6$VYL#!pk>`>ad3&#!Zq*g~DNngSJPfQmfQzzere89U8&<{bDuDlYV-87maG`%mWoKtCn-D( z8Nub&8{B%Q8wm!N;Bh0mG7O?Sk;w~WzqHCG3sw~5A|U>X3V&W&GLWSjc9q_5^+k2# ze=6Q~UDNzcNq5z3T;E=oxUxCBoV|PO=lf^54Z%$>56o!4eE>gDU+Ti)v4;j)E9Wta z1yxKK_{_$MGeDj1Kt5E=H0QB2lBQC4Ty7^gCgTE;aY-;qN*zdEX6Of{BAI0AZ4V+j0ge{<0D_YO z-RqqqFG&lH@D>u)EK6Q>_j$17=>$R5r-p3QR*H{Siic1`$}Wf$H$^6ggy~eArlF0K zFOkdBsk~g2N52ukID&8Qc67jKAt$;Bp8yhg8m9GGv&z$CTAz_fm3OAEvK9G@5Z`YYn0xQ(zkhFgi(a%l6IyI22F!L9tH;l#~iqGEtI>qnT@!O4k*_L%b_~9>r>XrdFdo^8Ed`ar{ zQ%v^Ln+|>{R^jk>8CF;FJ{RK;*nKXeKj84Wus^8uxeWfG(ZDd6w>#(!0tdx=2S;9Y z1eAUJ0DqciC&;1DR-lgT3Vwt?1tcvtIK)PMeN>L;>g5Fy!ifRGjWF)OvJU24xQ!ac&z z1=%)Xn|YUTzv%(X>#o;5ZwkEKU^IKYtipnKIdAncF<$O-A%8&Ob7}oSo8RG!>2zAg z5wltm@2+hzVq_GIqA_EXj4~kZzoFLyjdOzeHB>2x#USnr9tfTevO&L%uAtf|xv)`j z)&`BsQ5qU3r(l&o5+G}*xjTXvubn13fPpCx+EGI`TUaM`di53|Y>s&K?xomi0n20X zEyXUAW9gK2(hk7aj!k73FMWy}@VW}QKMI(M3<3gx2g{a*tnTRiGA4#I_>z~Nd1-v> zuXZl|0GE#cDmPY9{>flwD34VoE~Zbr0S8vz0Gjf8{Gp*-e#Oys1nm8?R}sm|f01@&RsHSik?(@q-_aAG_!G zFa7uU2Z!$I>VF1jKX_;}FzAcMABItU79my+5VNBDB(r4iv>&jawsXiX*_mzV7R2c4 zO}GcwBPBk70*Ix49{hmY`0q%Mdyo}E5dN#A!+=Rj2FsMZhGEeO{NIp#j%3v7^pc?> zqu;6Dr$3&f>X# zQ|;yBOlP%Kr3gF2Gq~@6{j**D)no^R@swP{{QB-9(d#4p;Ud6_rO?JwJnuMCO`IOm zWR+x~)M~Qz$|luJb#s7wLy6<@>bO+iS^h@(>GJ zIlK;;k&^jON!=wpdSRIW^o`3Q(p4Dc}uanRtCZyl!38Qs2hi>}jvKc3K4D{VO{?YDLX}`m1 zxY`yjT615}=}X+ZKy2AR`})p@)^T%p-*ZLF^1B}?Id<*f^-nZLJxN|xCs#kRp{2Rn z6RY>CzI0Q|+MSP)-c14qKMlR>#p|RS6n1siW_MpwZkNDv5KHg1TH}gZ#T>qCbv^Sm^ke)R70th%$m9ZA}z9Il17j@ z_d4)?$3X|}JGd$z)oxpcopjKyUbM&fXKHVfBOb20=>&7vvuR6;~{+Rj`0WangRBP^S3i!A6r3YwM#+1eF7k2Ls6`e%C3#RBl|_* zohY}C+b-L|U!%NAbG3H6=_>Iy{zj8Z$?uIb(|B3b?vL7KtT)Udh3o`gh3r^55+zrV zfhtMLbhtMRloEN#)TonTAZJHxHl($mz|)Zv>z~ar7_4y^cS}YTm*N9)R*HAViOvBo zj!$3-xElSllIlejqjJP9qDP}Sf;4s}$1%`bQKP_w<*qB|?-x*_ROAZr22Df=yCcDf zPwQWaJbE%s^57HIUYIKlUWY5a;(%=}HAq zq765k{%QPcJNN#0&9$#Re$}17dF|^jFlELW+vm66(q6wJ^<{UM*@{C4yWf3w=(Z>K zJpI}4#2LBf=% zov27EVx*$Zq60;zi?|{O=?52y%E`eQlLTV%0h7Yyh+kk%&UefoJCo;5DA9+(o&$Da zSt&oD)pD1d3}_1Uq&uuMdfZ+&BR7P#k+3odv|eznM1CFkLaNA0>^6!kQ9vV31$$AR z_+yKXRTRcN;Z6+Y#!zJ$CNf5z@Dtdx_ulmQH`j;uef72ANlL)KL3fpSFHwD8ocNGL7Q zyGJkQZXl&4GIQvGKR*ckc^#X~N#sWioWkw`$@z%9rYaVuB6P&yM=37isAeLJgO~I4 zSQLRQIfFGKoS(dcBy2ZetwR~9!B?ZJ{4%4DoM+VOfhw4@LcNrb>e+h2b?o&8%eSGc z4c7$v64w+z73wfPo|#>J{Nv2a-#ZJ-4BFUU9XBi$d1(i-1u|x zQ}x+;w=pe<#()?~#8T<>B|^rS5vTbpqnX4kq&1>?u|89Os-AnT7;h=QE`4)icbaQR zv}@Y^tTN~bTBq05H#-}ma-%tgL#b~6qy9%zTwdT0aL#%uZiu891M;UhSD1jp<&-;l z0t#28IzlcA(Mv*khXA1?e^sbCC8lw)UrY-DgAgzR1uZt#$pwW=?i3-HXmQLH&DPbp zvNFuMWFQ~89FYLYHC^SZE)EDn02iAvE>71OjpRDebTMrviwJ%L;;4lK+3MXj(x%)}EWPWa%U}BWUmYi!Y6Gp;w-f%A+%yEp5M2rIhc`8} z9ZTbQAU&P!Xs4^MJ^s~+-gIX@S$$35ewbXz+N*v|w5OUWvRk!vK|xD&oO~deG}$0< zHz_c|+16|%Vo*uGh%|!izI%^kvzclFFFHB3KLsG!50*vi1r`MW(K_rF0#-25qx%cWlY*LA&iYXC6TJWu8QjWe$`Mmj2lGx_zYd z*T8h1Djl``(f&ur>C#WoKWzV<3D3rJY%|l#al374`U>0Cj@Rt3X5O;DmHEB>_Zgj@ zXc!8JM8i-Z<#WaS0frpA3JN}#6}Wq!E9wv0?Dhb{W@L9D?6BMEs3Ldn?6yqWp2lgY zJ20>g8>8fTgff|EjL%#K?1m$q3W%crK>nz}X}{e6h*XM8G1XM074)Lsz%0=}QbHG3 zgmYx2fGiUbc4({?IG^-5n!G=k8&_m5%I@NGDuuwcQ;$7|T)6{y@P{_heFs;XoV~+2 zOUT;o28zyzx06$Lr;ggPwv0K8^Jt0a%{bKI|AO;X&XnJE3ad5nymx2Q?pL3 z#_J9OYQofAmL3IXQ(|PaG(Gl8?sO6k8goicpz>wb+^kDlHRcr+N8(g?|aVL|o=y@7^Zc?%u`haqe+{lYK%-R+03CPa)c@Emj+E)-o(h7;b~;H;XJM z`kgK}tFUu22;F}eu*Y-)Bo;esl7KVEzeCLL{C>ot98WXrD7k_U(k=cQNVh>O1v`UG z5X9zBj|t2HKlYPMB&8?`2LwiN1Ww?4@Q0M$Inyy8*y|3$V^e`Q$6pc-lZv^3WOOGj zk7(!u|08MpaX-^9-hgjlZV=^^5uzL4JHOx$M zHbCz%yM4j=4A7pIu?E8*5UQX2BKAq zO5F*;Uw&xkwLh;ZRxo;^%j`Pni#@45&=X4H)5#8%+TqL-Ilfv&(k%-YBm(RF3l;_IT@lGl~(<@U-36a)MXh8v7~&3mo) zbNBLh8}2neWPL31?dZ45hPh+>hw49SKGb~}{jfBy&?=)fD2uC0WsN-2IHMf31RGsp zlgo;UW72x+l_0GtfvY7Z1AYM{ECE$W6%4s+b)e#O1y>P#9wJ!4g(Bc@RT-OP+h=2K zj`9=uPx+1}GQ>IB$)jh^<<{Nub2DXNOA~2tz+mNgOV}?9u0%eCXC+RWi&mnPF$3ZP zC$7X^vdEUO7OzBULvfCco!tA(i4XAKkMmoVq_-7Tn>D|u31Q*NJReJDHd9`c5S_{J z?yqMh3%BM5I8uwj^8Et!#CPR{W#f?3e& zWRM}BYQUL2Dk7@0!U8BrqM)My4H}$ zW~mf0)Fo4Kmm@*p$Ozt!c7ahN5;2Yx;-+XEOgS)=>m^*my z;pe~HeG_~4opavX@y)kz`t>`0*?Q+a`=1;i``(^k5lu-T&yGS%Mdqc#eSal#8s%nk zRnY)O1jDeuJ47x#kPA3gAGFLSUCs#>lhK)~E(sW3at&Y&`&@*6~B$SyiW zXN@wesxgwuy~a70pQCJ4HQAdSbDTZ=!~6rvuQ?xd?GHSOp5PxVYkjio#Oq}@8}V+HK$EV5^L??TpE8_L`7O z^dh6m;06Bg7AdK8Iz+p}kx{D5N~Ox>bcU2X_^6^@j%U2sWHf@PDR(;5_F?Rij4M=F zP=!?cRmW6ss${AiN*CD?6C`>10DqkS3D5F7l#Z=VqOwgyN~o{iSWebj4?8^69V)FL z&a;{dq#OaUZ5Y3J40!*6Kn@y^inz!0rgA?y^y&~2iB0|II>@kfj@jRL0AY!{raw8vO z&+i-?vCqqRJqToYGGU3i z&3lD@t+39!O&H*I>GtS%3A>EDy|?-v(my0TV0g%TTz_2nuJgF}NBSQMKk)p}`z!t1 z!bkcKgb%!*>i;f$>iN{0RO*{ujL(Y+kdVjgbt`o$m(uFCxvV^+aPhzkx-3_F^@1pP z-EI(A&4xZ8rGj3kBP_0g@tPUN>+?K{P!4dz_^71e1wCuAT6tc{yNB^VB&8nSVII{< zhG8aixW$XT!_3E$P9z#?&gxj*<06qXg-<#h&asYBJGs}=F?vDVJV!Kc)DlsXGQ}NK z)|Bn|LZr>vyM!ID)GBJ>pE56#(i!dtuEnpIB7#-nvVx38kW$UCPmcZ9<$-A{$CoT| zlugI)2Jze3jzwc1UYd<+PAlxXVAg|JF-E$^yYVxdLmM(AclZ zD&*|(UfFiQLksXMV^X{cw<+$ytXzkefo~1ohHt_9(7pWk^}k0-PA{Pum|e=V_i@9_ zDJjicV*-o3&+t6a)6|CsfE!%M^IA3$sP&oBCg#E_m&`OLMvwH>RfsVu#>AYpf>zWr zdaX~(Xy-&%=e8)xhU9!<6G-ylIYZb#kmW~f>&R6i$|Ok2h!}Q9)EbqBk=w(eU^vLg zeU?Bm_9&gj$fgG?Vt_}#*;@>)a%sR(@(!J~7}#yF5_tuP`MtTKME*uchm62BLhknE zZXf$aWPmvr_;CZ>r^{{AMc7-`jNZ3r{I&5vtl78tnq7Dg2H_FkJpR%6HOG2yzhmRk z=Qr<~oBghS@G*@j>pt9FQ{RPMFX0TnbNtHjlb?>?%Kh<%Z;lU+KRdL0_cw6ue?2y^ zy|Ami4*2*ODrXpJC`46fgy}Z!t^hXP9CxDP#$T26r7@4k&A@1csfRaG zveA|!8%-@0$bZn!w19ZZ_>T&eSgP!+JXOh7mh*Ivo2PK#=^i&9uv+LIw}l2;=pMJ_ zk&3S4*nvK`%`J5FQx!1ehEO_pLnxiUA(S7lqabG(vmO2E1i6FZfZc<=F`~Txu^I1B__A>4H|*SRBC9Jzd)%XdpKA2dal}oWK5TMLmyszn0UigBWo(gh29mU$ z+5_4j;@6qC@!QO4t=fsO8Y8WwWf|Z-hVfmJlV!{-%W$k#Ce5ml{SM2)k^c^ptM&MS zV+Yh&?a;_hFdrb6`GcfEoWPM|>jyX)_dN4H(&Sgk$vN9IRHQgZ_QIf_5_OY$eF_Kj zx5&20Z<5_4=klTPmI0 zsSYa;>;3>dZ8gW`=V(ntWiO9##mMbTrpcOeu}NU6!E+21dkwkEyfEX^Rphb!{o340 z@-AbO3h&kK)$KLxitH+XOZ}GZm(gFADfOv{Dy$A^`c+%i@0TjvH7Wh_N-k9=s}t%B z)sebbwmefaN8KW{7-o9sMCQes%cYv7j-}z&nyreR>Yc()!%pi?+dYc?!hXZ!_U9sA zolGz24f>={@ELr`xGHW-*QkV=CCcTMtu=*};Skh&do`{m4cV5)=~SfLuHsONw85M5 zc(SQfO}21pIGxU~j+0x%BRQM2>H3J>?yy;{(em;Nm0F`I0~TJPa74;0%F8Ok#=X`w z%%&AEZmk;64o54@rs;5RaA%MS?hWFgBb-WQ%ZmRRk4MW|0opq%aD_~!2s;#tP(|2W zQ4!WyqtQ&6##~mW0Tj0@HMX*7*rBdYN9-zAQ?96R6Z(-X+n^__VOD0RUlDA}I8FMxc#=u+22@uH4nvF{aFqUj7F;KFNln#cxe#r38YvEH@ z#4r5eiz294kUuAFtD-bFFBK?EIle4+$tijf(^f^K2NymV_XpM1`sUez2(By%l`PqD zX7TLocx$o4B;9gXV{!5L&qJ=r@{#Y%z4Q_gAKW&3sSsGVZk5yG35QvGp#Sml;q4`C zC}h^zY#pz>a+$#%WkMmD*>lyz`3+S$O~sr>b_c3rU(D00gp*E`4r+^Z_B7;f+EN=r zAlzpqc7)v3B!R>uC35OHDx)bM&MW4i=k)ya_KH76ual;%f~wSLseUl_cZXDR zdh{icSKl#~7#SJ4a62%sA>%dSmDk8Mak9LT?>(1vT%Yx28KYdl@PC)`9@ReeKFve= z2MrGyAN1|d9#*Ncj;wQqu)?syw?XJN^!grRlplFVeawLJdfjX6Yx)nF5A~ylKO6Zv z7#wxJYOyXmQxC*i&!?FpK@5wLbQb8Sps)x_@Iqm+$OVOEc$xlv;ctR$j$yX%W#!AN z|5V9rN~_@W_*d%x8Jsz)b5mTVk=}J3Y z?Z5)7iULNV>oiz%Eiiv7xg)C4K+$=s_eP@u6{Ga3h>nnGuriviukcnjqBK&Q z1R*5)%pzt)pI#6$m@#7ztwbdHOqh!@dX*s9RaFSt$lcg^cFm8~YLy&@gu`K1sWX}Z z4Rcn5PianTm_E&jhS8*Lw*7W&clxq8>kp++D4j+rAvH*^jmuh7cp$Ye#iTl`v%~o6 z!~VxM(p%v$vy&5N!sr5_pX^wW+Zi33YNzmd-0HCnR7H#h*1G$sX{;l)jgb7CqT&y-6beUezO6E2g; z%}EB+v+J0OFj(($@=*;5kNWjQogazQlhf~|Bwk;l;G=p!XH3ZOb{XCv!?JK1V_c+g zT;;{9fMW=YPTcA2b23h&8r8kh(J|W5kp>r>4syVp(14Ta#K|{L3U4MZzN231*GGA- z$m%twWK2qcJ6^v&on`Yd5!RmPZ~E z?heUR3RO%M?=0&p8z__O%Z9Ni?b3Es{z&^H-7BG2!oLW<6?!N6KKFj`{m_R=wXrVQ zk=$6kBe@svW%jZI7P5;l;ND%lH>D-F!BnhLBX_HkKM1@Yaj<_rNfbs#= zL*iY*yFzMXLK{oYO}3P+D7!j-b@CS76TyRJAF%JcHF3Vgi@wWvu@9%|qDW#0eK$3X zosyx*?sa_E<#qa;Sa6B}ITGpku9ZXvjK)wd3tK`zVzzDgiMTfa?4*jBoM{ z2D3Fy0L%Q?h_Uev|9k#F`&s`mYnIe~jv%4MvE zHc1r<218o4S*ukSu4c98?q+$ zRW=1dNotf?jR5SOj_`Uq!Zo?F)Ny1(ITg;qoTDKhWHDuvd40OTkXT!jPF<_Fw zyAgFMk{(zwyFSYbS|~?LGB_(4wNQ>0(txoWsQEnq^iSLr`RW6?a5j02%Qm?=L(YjC z$_nZ-LeZ(0&6s`u$W@omTq^oj-1(#LZe6^=Z?S3pe)l6Qo0fHr|E9S3p=&GWml*`3 zhCMj`gS)PnTU;HBr)I7C#*PQPDkq+G`yH2No4&NKCcA9Y{WiVMp3`T>JPR}|hL09> zp%+maCimG4QOfN^?LM6Uyu;M5A@~Z6j<3M__=r{k1EFg^`mqKd<&S)m_tJbYciXKF z!tmHpgxoS~iS|Z!M%idgVb`z-j= z$MTe~2p1tk$mjEkctG4IGB9AoL2*PpCCbFk_+uL{zW>#KW>bG&flL2rharEe5KU1W z+P{e+ktM&s7Yr0M@!KZVd|fmt&fC1bYIb=jxXfa-6lYA@8PmrTGXoBlOdE9iqAF}* z5B}sQ4asO_lR5sS@j3INu23jsr8@Rk9k|3z6dMA*v>?P@BfA|X7`~u$rI_B1DW;ld zi|HL1R{{$sXCjSY8yGZ)};hYQ1PL#*M^Wjt|zKjjB>J) zKRP0e)SaBX)IIVp=_cVd^1Db==W(Q`?;xU>#1of?ASXVazg0-p%;oQQlWM%3(>$P~ z;qd%RiVZqlak6lAi{cx_hJqS`>9>gwSRRP5jclW4w&P~@W{vDY4yTKE`uEBADfaXG zm5&II7zT@#f?QBAD~eVm7&osw;^prQ;3HneFw0B6pm)FbMVMX7j_Nfg@^Zoa6Zg@GK7l~!&s2Cu{bvB4Z@vzJq{67@P|7)%c)yalXL6pa&D-E zx{}rHFW;xbM1lMYU7v15cSISj7+x-uP7^I=XnM|r|paNh4Ylf$*z+OhuH zx-kPt+Xda5;i%af30opzYs`(J=8zkIZe5SwGMrqTBiGA=6=if6wKPxD==Z0HegR9F z1wZBvPhT|lZag-_F*MY6bW=}TO}W=rHrMBiq$Kyp?7XqZ1_H@YDAu@=Sw6dV_X}Ga zi>tjA{wqzUlC^Kmm`!kS%lJ%g4tqC>qd!Te>v`-(W{%P5y&jJR3Jg;{zecsTJQNB9 zqH1T7Q6qOaO@p;QfBDYPfzV)RB*f7WlaeI#aWbn(snqLDUZ2N3Jn{Eq1WDW>AQ!*O zePh8#KcFD`u-@0_+wXhB$N78~tJ$igcLhVH!Z($`^B2iXHmX}q_<(67xA?!$#G2A{ zXKs{yeu!*ICld6NNQSa>8Cl@Sf+x`dLLEKmN&*XOCw1hwHPzrBCNl(?E(%9K$p9~0 zhoc^Hf`&vfZy&v7>0Gy1lSr03y^s1@O55*vER<+8hfLpYUiH|^Gb%3cSnE&K&MXOi zY28Zpwy}fD7gt=voEV$a)^PKGb`vPaL5_Y_HV=ttP;v=KAi@lm0?U}S%vH=D@d5Ek z@wlkLfnj`yRHj>9xrDjg%P4&=)*rA|xeS*CR79U>Q1lhPUGWFEL15fLhUL*Scmp%c zydtHoUvzm(sZ>!>T}4AxbY)xhh`+1j!m_rIQwU1+s*y`uXF9Su?N+!yfjh8`{oG2i zB_fyS^&%1^ZFRb?yKAnWuCM@lX)(4x`JQo=#%#;cJe!w1M&gIUVg7q z8S=S2{y^C0O8A33rIfs1r}HUYx$k%QNr=MFFh03U;TBvB4(jxJPZ@eNks^vC8K4M1 zll;kKg0Yw%^|(H8yFI+}8J?FvQ%7#mkPle2C|JnreW{h^wJr5bGT|#u!>b#d&xkI` z^`47$Eo!akt2j`>Rv>{wT%fQOD8z+8I79&+qJbd_@X#aWr;p=ZD5sh=QJddLAj^Cm zXU0BBfc#NQ?_UTX!+ZtKINkCC8d^J6OC~E}^kbN=U?#}9`5R9i*x)BKQ<)*Bq18{Z zm)`!WD$DoUg>EwiDe=J1;G!+ja(Otc(-{{o8GlQNRlmP^U1oZHZ0lzqWikoT<_s;) za29>kQdS!4mN8==1XEkaW2@Z3*m(W&s7*{y-!cA7*d|D;*iF}aW8v{%tZ%jG37*fL z_^nJYTaQARk!C2pMD0VGP5bWEKj8hQ{+q^Q`e%)5-ixg^yo0^ga<%m<>>lga*n6GN zu+M?O!Rk21Gn;K^Woce8gj_HO$&NCvyxxXm;)Al7o5jP-dq)k4K_L3WZ2i%_+WlHa zJItn~G||t1K+G!@o;hg1K0}>>F*v0NjwowIJJ#EMcE(Qo$UY~W-x{Qs6&FBH^lzF! zdTtYR!PusA9p~P!8!c#7AX;#VLL-Yyu2F=Y5p~2Gmb;Y2NMiwucgTvd%BC&;oI)c? z&57b%LaYJVjQMYKa6yqUp~g^-3x$5-e(Lj0fB);dez{}Y=>0eSaJz5K_}S;i4<6rh z4A*`4uDwM@m)WV7tsgIYpMF~hP}uJoo_LdfTL(NpJVuxcPYJmM zPCl*EQTIw-O%d7cKV+nLM>iK0m!lxj6lBvblQC}7Vs4Rak$kbD&DG{std(t(4WI%4 z5!b80l$}Pumnp08EWFgd#JwWeY43Dzv-i9A81FFcGwicJhQGxe3?9ZW;qNQH@A!~E zlBB(UdASEr`ASK=1oty4%5F{j|yOEIY?(S}+ySwwh z!E^38`ty43`@iq&$IZ-Mvt~X0tY^M!_RO+L{kPT+3scF>I7{n9VtDWYW=khubw zbf0nToxon8r4|dNp*UXOTxY}!vTaXXP1w(Yrkq`m7fLPS_Oz{$S)>_iBco@X-A`sV zk;m5QqzfdUlp&m^xah+LCXWaRK1Dql)m;x1%NYA~&O+Upi{51)NxX})!YoTpf))%*t$qbkUR{qWBep`I}jFOQj0n`JQImixj4h&9{HLTGy1s;N*W+pT2 z%30o*ZfDLrFnK&<2}$eskRU*KRy@l{gCE>7iRbgt`0guuA#|MiT@B^e#wI?z%WdEq zKDq`v3**gMAgr7FVTkHHiJ;gq`e@U_$yk)i)#)rLicG|EPmn8Y&%6`H_E~>W8eXIc z`~FOX`u(^bbk;7_tO^Z#*e#OA1RdS;vXXN_M%28#b6%{kIv;Y?+Kox4%Y8X{kHVc7 zP2R}Mk69|3jg1S;16EcR0?XreoJh|^8j1|ej>*Z-C-;gt25EXRqcDpwiyGAK9FIEz znG`H8Q&T-EVnb4dGSQ?iQC(Q;>vH2&!4Y{U12(w)EnfQ`q@si+q1Z39wWEpK8K2fm zA*BOTKZ0Q?3u_=YhwGL3%k9Q&j}Kn~J!Ujjw#kXxy% z-i#tq*mSv%KpDX*Ob4phgkGC=DBN&s^-v6p6};2CAedv&9m9L-mEdx8ju4A^j&@@c zQ+?0P^H5MocI+{(aG`v26+cQ*!qa1Q4O(}3wZam8_P7vdF7R_;>2anv8Ia(-{5BJX zLpnsX2-N>jYnY)}3_1}T3%+;s7^54Wyx%1Qi7B;BQypq#8CEW?#Mun0qV-A(uSlAj zA_I>^8!Uu|4_^=u7kF{M1c>QL>wy931w=`f)f$Rk0;=oI`&((VmgZv!QjxavT*eu5 zb0f%17GA+j`N zSJ8Fqr8B(*@fdD(7jJOXhRZJYm&75SdonLt^E_&Fpsqpzt( zCa+g$MQxr|;q$Haxqe9VX~l##;qTOf8yQO6;9wMjsS6H1aMFCSNjWo>+^cy9qrIp* zMc>zB7|VrZ8r1h05Mpj1s3_?0lC&VGlt*eYwR8ADi_up6xLVSx%^AM0(dJDxkK8(6 zUfc1kzNS`@FUBtIti7Oh3r5W?VR`(!QMg`EWRGuIZMga22JphO|XiUL0J&v}!7rmP;KW0~HU722hD4*i;zzgXAv>w-dz)VB)rk!+Tz2)XIqMYL|&`d8`) z!oB$>6RgF?eE0O%Q3FhFE{e)b2(k56wpC-@U0sY!?i2~2o9Wh4HED`jB8WvBTg0Co z11xD(=^4Tjut85lVR7)uwoMP!&dUYX7j!3mmbRFU=* zhVSe+TA)vZs+&^rmT;I#d%I)DqL!5dd`Z$eG6%TVTARr{Z~mtSypC4Im5+B)FE3#! z*z@pjzY5PF=!vY7Y;SdA02q7F(xr4)Fl(h_s95m2gQ-^n@Utz_i<;?sD#fbA#+DV9 zRaTXvYGdc~r}rwmtJ-XAEGrBvmR+qIj@Z}hKCKUC9nJT63K1j;;QRZ@L?;ed2XiNM z4d0~nzo2{<-!Br<4fQhg(=)dI7-A23zjz_BHlik*ui>oNz1TYe!v%2fO}=bujDMl5 zn2LwtLQ{2;y5nmduwZ?#8^K8W&7#Rd$5mZo7Shx2GD?x~ZcY zD)_FuI|(1#03UqGi97Tp< zSyX5H-C+TY#xO$k5y`v{LA(-DzYDIQXHq#L@DWlh1`-D!o>4$_>QL|0)klL=dmo0MZ7AbV>L$p(_p6Lii)R1c#8|?-{c&DkS1L`8tK+rn zS|KIU=nM45xxi)dT%nAg25T8em`K)`14MtT0=ax#K z6cl=>IwcH~T)h&9Sax9DNZp>f=6X^{VpzF%mraL%n@nMCT$z1_1CB9aD)km|t8hp~ zYD9%udw1?IGwefM9%0^aZY~LFOqE01G&hgkwjR%X`VNc^nCTsd<(KVXc|HckXEeGx zy3obaZQQodQ`o&mSgh(2Owl8g*)gM&*+Y{izS`l0mh!_?Stf%>a@n`LRg}FFF5D<2 z`h7+(C<2;Z=rnO5A7DB7)NV&S>EgSje6vy?l8pOK{i`=;^yP+MI3L1G^&9H;u*;(( zl*_)w`t~VbGknohJOlHV;DE6q&4AiKFKNwwjSaQ~gdNM^JJvnDq z411MioD{Gb4&4dUtuV!pP6~WPEbxUj%4IIoE=r~#xt!$wr7OW&;I(+u(n?;D@gKhC z4cdCE_q#=yTh10I8`*@5ID;#nc|asbbL))x`F1+;?#N8dc52ES&9JgwGBx;O8b)C_ ztWZ$95k>Wr$<%cdiojZ)taBWM#=U$q1UYXGyulg;#;xnHG!FZw+s%2oJX0B4H5+Aj z?+qpcQj}^;-HwsEvZ^G!HaqiOR8nG%UUG&v+ZB~82puxUwT;0PtlI0F{2nM3E6|!q z)n`Y^NJw8W(op%{^_xQ0I2VDKNpz$&Qpa&h0UvaOTx5Vl?07Y1++2+$=qTU! z$-5-e_Z?dT(V;oaFQ8)ZBCy((VXjdq2Zn+!zi9JBVr_SZeXhQ2t{Q5_JepBSy3h3j zSgMi6S*|nQv^Cl5eq)W0$`M6hj_S=boHVDkQmjamGa3~%x(U4;qs_16EoVnjjV(NgOlVkhcC!Un>;^tT&W0!D60gQ1=M_9k^zOZ(x`c z!b+(w@Fxj7Z-k(SHyAcUeN)BaN&-t*W+Xo{*CkO7PX-|g z;@W(EA3j=Tq~u>zKPk^D(Tgk%g5`d>>4YNrxy6w`L+9R#73`*tVo`5J$RW7a_%KH^#Mu9}z z*E56wdCy&ENl9JWGvG{!T+bw;p{;mI%$c2Vf#4cJOZ6`JJ!=Pi3m*Xzml&E_PhYHw z_=^U09A}T=<4=4dZeB^W&Sw-Ttp)v@G;~f&&yQr??Z{}7LEdtnRtiE8N_YSg!#Oe> zr0i*K6pp%jEiS41EEerA6prlqtcV6^8ej1c(DLa3$h^d z5z+&1B4swxMMk2ADy&z)%uBor>fRbhM3$2B6NIM4G47R+xxUlP8fVspd*70r$Z^(1 zJVXHjv!J*4rg`$KL>vqGyO#&5Bs4{b<=7W*)bY5_e%&3&B>d(pQ|n zlwi5uJ{Go}J#Hrx>4mi&hDP%(GOyi0P zP%pp3#w<2VyxX!`W*qBu&<2CaIq)#r~B(vc!) z8|>`m6vyII*5i77+3OCgUO$~00|njfV~yGf7>o$^Z4(l|>Mm-In^zqQDG`$KQM*%q zA`_OFZ{7*Q>Xr#%ZBvZE3|1YQe9(ESrcGrW)$uLR(2F8-pCxnj&;w!?KHGpbbH}Mw zmd92^g;yuia;Qc?tZt-6M#F;ocBfoFs2rL0RlurQ8w{cqnqIrQyi9^VJbvbi8A)t{ z{z%2UZ*_ThtGuMI>Y9bth1|@BY?=wz#r6sB`&;|^3-GbV=eM0FoeJ*nQu$wrD_~o( z@7~!iRi1)E*%K6(=2exX8nz?Ol&weJt zJ_v6%TQ9DBtE%9EOgwpq;ZC1(%?t$C1<&Zd?c^I`sW%ErTi@aHvN4ZZEO1g7Cd?+ zMn3t8Q_PFCHG`;<=N!r-a$7JyU^ce6b0sOO1sqp!KDpizlqXE*6Z$z5n*ngK5|r)1|N&EqF3q-Ud8g_n#gpL?AUk% zA(m38ggG#2lqu@pmKrrW+PWN~mued)N)g42hNkX>lG&p(JmU^^-c@KEofS#<%3Q72 z9U0cJ$Ts>?MkwRdx=u|Th5I!8*#;;(r7G^}@Ow(klR19$xWtaK&Y=_kI!V#u2g9~Z!Dk6$tw`^NFzfWWBa6|NJGS;S)xQ( zs5xj(HAt8eSD?Plk=V0;`*MVu$7{sUd2f2345OwzqgRGHF--_YTANZt(v=A>LhNd1 zEsu$PR#s-K#Z9zdjd8#+oS7xRpR)$F^nKJ>kN{qtvmsr}PPA zR9kI1j%2?&!1?-&@%m;T5?LipDqW+nsyuV}1{(8hbI$RKAB<-Ta{g!R6O z(`1=qKLc@!jVKvdG^6EM^0wGdIq#Gcxihxe3*bnwL(uWi&InRgI^-{Axhs-6L*&v) z!^3x5ZyH5A+kkM{oqtb9l(KEgC@z9T>Q+5s7@F`+|e2#5P5%MGlmQN0H@O*4_pzv`Z6q^Tgn1>2yij~K*4 z7e>?>LQ{01;n{E+jx$Ii8dczd3b=vif)5&80$9llkyimP)}*LRB>LrX1JxFBM|W%d?VK!*!peu@mb%+qfN$#>Qa*kAO%GR_^gswlkhAm>W z-)3Md(TvlVx0O4+=36(M5Im1!Wf(|iT%f&RM>0EL1dD$ERtC`&k^@~4dlvmx`{pWD z9-$^|ACXdwL-t6`!G+gpm0K1vdoIhBxu#@|rR+X>j{WviHMY=ky4YsW=@DA2xAAgS z#*#B^-}{~qKD{9O@AqUfhNL#`EcftU;LS?4)VjmvQESDQq9|S^MzO^w*L9JMy)oOF<3Evz<)AI+9~u7Iba5O)1m$>bv>qWMcB=#pdC zfRlCt2M$lf_Av(z|IqeR2ae|kdp*|x0c~fp{U|(73*vqGWP|qo)mzqLjE-Yh0z)dr zW7oVJ3Tc*=0A}RwVJ7wr*QdBmhjv?0Vdg~Qw-B%P=%hL7vbLZk8$ufg6%)@vp=KeE zT-{TgxaVN0tkuIF8ty|L{^}hAn|%hZpLi#x)?#aHFb4x$*)ktG+mW2+2(TecNH)Zd zl3S3T8tGr$juw2mGm~t1zZHp^=8A9;_zC6fyvWGPQN^IMtLUv9dZK5LXMLP!kbjzB zch)@jFn-?X{+BzDQy+mV9ltC8uMLq`pUzmqITLo!baI#yOiyP|1g)GX-|oPr?)>ocl<@YkYmA-z(DwPDrbQ3zJd2 z{8M9!Pq}tWL+$`N1SGsZH*BdsDD-Y>aAjp+m9yh9Ig$a1GOjI>38jM)sDnD#{@F-y zUa%p(SNw}bue)ean>T}-Df=dAg$aD~`xzwFLlF{$A5IJn{V&mxhW+TAX+OeUoQj?; zc-aPDkW2Vu*;~=R*QCD4Puus^=d34(#NCZR3{7*J;8JBAbacZ~H@t&2^G|ZZMs@1^ z;xnFa_lofFo|{6LB%DFKJnfaCYT(<9+6brhW{f<2`0$d8dxaX6B%2{DoQwL{=BQC? zw%s23dvWd6`?EkdF+0t8y5Vqn&h9`Eewxtn#sZ=s*)|R2p}CnCaC_brmg#3Bks&Hw z7YafnW?kp^tkd;lh}tjmqms!2vZY4F4rSAJ=fw_beZ-XsJ37&0mysc;k7oFwlr7P8sAN_s%jnUT{GigQ9Nlx zX`lwfr~RHFKnNGWram{(87Ak*VO2?7-~B?Id_R3~My#mpd7;(T*K7IH=?ig(`~4I; z8xfSNswAylWTj)-u;`<mq2_krPOHn%;I zYdEtu@G@3(xr}D(N)g8hhSO1*S!w0p2&oyPU6!BdOc(|o)lgAT zq?_=)EKp7h`p-8wq^Aa?`%x221OkoR&xJ>#5y`dL($i;4-Kuc{N^Qu~h+ET-9r7<; zuYMkhwQj0$DJ^|X&|Ow15qBR~b?C;7@@a2imAW9-FuuADHxd^;9EU2qL*YAuBm3g&{6<45;QCi4iZj62wGw+){Y1)L<=1c6K2rW3+@Y zUG8cE>-wJ6BDfu}gBdY{SrPnUy`xd6O_cX)E3<^7d_DReGsr{XkOp(dxYk&eqL`Ea`mmXjBs_j*|L{o9VK!f z1Oa-rVqYMucER=Iq^OoK?POqt$pbRqfe!Ngoj@5@2 z=*n_dw%UB*9J!_~fE{wx$9G<%{oK>10#lkFpA^` z{i-IP5=#)fs=jP~Cc3`S3z?Tt=uI5hy}5#uPqwInsAVh`2>w@4i@lLN2?(2kfbg(0NEZL>{YP_QqSzmbgC;tf>|6?b{Gt;TL z337&$v-8t4JCn`L+2~i>jK**%XSu2sfRf5WCo8-A^1U$<$()4Qy5ffGw?*j%PRm+H z{k8eKb;=dK7>*NXxv%6;&rJ4-_I>fMMPg8K#bl*aCd*RH5}0a?mb2$%w{fja_p1Y! zcJguVb|D9LtOUfVNRTH7-%y6%pc&5^e&KxSOwY8#u4lRrH_2>~Cbk+U<~ z+?pz6E~{Mc-s@X>N(|84k5I)xu`QUbPRVHiiHaTI^}n>IW@ylpb)(D@ys;9Dv^_T? z^peTQCe=r59rPXNJw|b3XVF)Ts!VS%vN?}Xz1?n`qrb0~zmsj%LEQ~&zst{YWXMNS z9?$*Y?ccVPO0J5*Xl>>rf9(XaB4}YSkWD^#=b(C2&%kkrn#vSO+lhZ5bMe5dH!6rq5ouwWUZmwa99V_k zayGQGAgu8wlKi>xo~Ige4MV*<5VzRnNne7m?E*6uOj=T zCAqFn0&!Bg;^aw2{@xs)JEXz5joHSviht?bJin8%*g0qnM+5a0Nh*^3ooOhfty!i| z#b7G|dEbiD3kVbT=Ax^!^<2c&&$kluWz6oU=^TW(yOA7LJ`=U&*VjX{x${W81HJ-) ze;Fk(^}aJRnqTTBpz+90?JJXk+j;pOG*vUP2qjj*Gc}Yzh2dJc;pcHAk)X98RI>+j z({~ggjazAz8QAUE8b{eSs<%cdW6#1dD#AW{Lbc9CQ0+0iDzui2<&?UcFY}biGCE$H zlVwwV1}%4cjwItcBm&Ok8tetNhD)08$nCqpoU{Dw`VH>HF{CO^}DI=J`yqx~vnvEb08P0Zu za>e@v-B-~a2>P1n==D_?8&oUr9a&)0DRbYtd_V-g{L?{TL`bD9|GfJ?CGgp|iZip1 z-76gilyLG&QKZ%KCM3y|U?SkJ)n~aoEbt0 zn*iHYnsOO}+l?I_b(Q+i_r9Y1^joyJ$0bK zq1|80?Efunsh8OwC74x@E8|ql=(f4d3f45k~n?1aCz8!X#e$6GMqkreZ@k1Tvo!A z2uKw1`fB6;)QmKR2J`+mPlID1m2sS&irIhh(tQe)t9zB}J-ON_Uhqd&O2tv@6pBF6 z(_@?h-j&s?PtuJ|CsLoj`gd!S4%y~{O)WtLi?XL#O5)}hTGqa+c+<RPanF!N}xO|sT$craP8cMyxaO_S^*x10Uhyn#`Qa zOi2t1WdYI1Y&!9ng7gOMWCvT^{?y0br1s(I!QSr9Z0FNGlO5I3TjWYH^M)sjYUT|v z1Ff@3Zmus>UfpZ3-#oD|_i%EXtAlM;U6_L$Xssi(lD;Ma8n)4`qN5Vs7ue%AlujF%tEjr0(Kx9b|5RZ z!2dWfsrjU7RTNPf(RDDxD$fn_J?SQ%$k6QQ5}VO73&NH^{MPm93?t}_;04Yko`%@a zL0se9^ED6$t%9da?J06KQ>5Nn?C*=qd`hGYX03M6LCRY5nRgDt_v#MPWZ-$8$w%3p z;+rrA?y~2O1`qDFh>7=m$!u@i?7X!mM+J{*g84x5eB_06{nm z1`*67n`p`x(pVaZNJ{g`xb%ijgzrjYOTcFHk7kY*b6)!1gx{3jzX9bMl?8EkPCS({hju*j{$3*NygIAN_Zt z8gt#}6rLnsy!wb&2+#UbL+rynT_uhEF!wvQv=Q#FSX`%YevO3Gc^dDUPFA&7!>GON z1g=W(!9@_YfR~e|Hu2!sWQQMOAjOsJhnvHYr4qFIxuL-dd8zU=6wqzap){Z;y(&f6 z>k$It+mq4_AS_-vL@`s^@bWL&Q+*IOku>(7A7h~+Up9()W`T}CdTYaY?1FN| zgG)cp0PBUIqOo88_OaG|x2GfI;Fj+5g#fFSBr7Deo9@?)+;ms=;29*1Gfz$2eLb8z zwAgp+ECMaho7hELl#e!H2hFi3z3ddOU~sK^j>}<1Fr$$)t`sb7wxMm&MBsY_?li6& zPd+dM9V4p646P>MlHn#%Gf^`vw7hkRTaL7siw~4?6fyvuiqk(S`RsOdPIUL3p%4D7 z$}W*r8D;O-9F05%7%YOPpql@FM!CAwgi+9_k@8mAp(FWO_c-J@W%s~CvAnLMImffTd znZqN+n$B}t&9KHd@ZOPU{wsg?`hoffy&)R=uMB$_x^OlJtr8||Ov~J5C5>np*)GrG z-Jr(iR-Lfi{5D&?InW>y4#$)am|1=B2JR#5?mgC%Gn?2T_ms@BxyzWK_A0y$3y3xw zUhZ?e7?^+mBr)y&oniX^Zikir#l+D*8*8}A%XD_S@EMqNcHhv_(QEHeJ)D#LloeC+ zz1KpfAbR@}(J}{qDbsJ%>z)+w;(Dj4dNo63b=5k5D#2ZcUg+TS^? zQTQyLIBWHo$ydq1qCN%3B<(qv0kSD#T7+#1m5q&pIB5azldU7}rfpo5%a8-KdAA96 ze)P|G-lyC_7k9@F`twruH<*dEC#CzD9WN`roz3ulEH0w=iJI1(3%tD#hjHfxETesV zQNmiF*tb}oy~p}k3dO$060Nd*Z5!Oqj{Z?$W9zo8t=`9@#|8G|qC=;h%aMZ=v^7Dg zJqb?*QRem982fG<8df_T`52dGXtzAV&N%?L(h+rl`KGi0pH3t@^aE=m`x>doD?Co6 z2m)E6Xo$2%<@7Wyf30+_tR<;7I^LL61>Co+5Eae67!DsM4$;-xj%(xB?Y;SHV_dWS zRaoeHz?M3hwX8-dsaka{8Q-Gy(o)%iivpjiQmYS+MaS@Et&J8u=T%>e-zP86u}^E9 z^{2(<+^F+IFyfxQc`c~qrl8LVI2mie16Qn!P&3W${QN5?W^W?SY-d=RiXrF=5TA1> zKHHU0t#+0`j@RTLH?cW;w`|RAtGkS%kl^6t_nH2h_wDL#Vv|!GN*Of!ssT0`LE=ks zr{jfO-lbKOju=r9GwEfEj3B06la53B-i!<{{MYIulk722VA1RX-iDvJLoxZDghGKG zXvP|2iGu5+>l?BnzF2ux7qA}8&74BscaIe0;$(vOeB1@|3lzicL^mjScpj95?81y`&B z1+)eyJ9G^-OW{r#=_dBDAY>xKD5fqa4C77T+8cwBXpHOySONrH>HMmjN;(yh@e zT$tjJ{)n7$_=+5-gNdfS_NK8WzC($LY)W4>-qae8K%c?vj5ZS=IlB5|% z+XHPDj9ALIM&~+;&@2r&B?@9CkL^D0LW9RPx6E9(!O4G$kVGTWK!OJuRWGq}P*gkm- z38q@Z}9poJ0wcV!%U$8XfR}}Nx}j0g^^(zz!VJSu4_3mFO4A%9Zn^;t2p|Ut8>}f?>3^$7GZEAH%04tu=%o;cpiFgX3QM>!SIivpKF(_XunG78 zakrNBdK&M8wY(SapI|oQXQqY2LL?j5B1o`tA>jP#Zkd|@83Xt{?-CG@9a68 zd9eV-dl=@G`HB5nQ_|DmjiMMd4lHV&K21B|3p%eCGxs(kPgn!$>?$_*SfUbV0H|Tj zX}5#q7U}o1WeH(qD_GbSZK|-#4oZ2UJ9_rE$~Sl}((hPl$#?3YpCNL z*Q{>UIT%rN;^W(;cIy)BMl5bd1r#H>>)hB_uszGnX*ZDeZoL%r)f8WcMeAz%OxB%Q z)KrSQk8P@__a{DKT;C_kHiwT?UF*BNAm`Fg{8nM3@kIqm19!hMQpH0UFy&4P2=g>r zEe3C(x&s95l(u5OUdFYCw9F1<^<_NBC>IfJ~CcQQXQYdm2zC*Dwp zh`yuWlNxLojy9IpEn!i2L*?yA)yKF`{Tq2HR(bTBDke?V`DLy<%$8pL zNd2#DBFV4Fh7@DiD$J3ult@zK~9vaVkK|#+~c)H3PoLJ6F&sg}b$1 z#s>3Wj`Ob=pp>@JvVI5%8A}_$V=I@Y72v@Ge-{b{mR8o>`kIyx9xkH!$36ovHslR- zto5ywsc;x+XmIH0XmJ=B86USaz%30u6%I47?O~suiVBC8mKKMBn(A@?p+7w^dV$9v z9*#YH9{N4>d1(K$?cw`l-#_~N+5WdJ!~>m&K1@sx694N6E%U!9Jsf3V_-oXMKD5Bz zz|kQdDbg}La`wR8L%#<}{v79F^oRY2wm;jM9=HUy0mp@S;9B*25dW26fRX%=futZP zWz1wv4IaW1*z^#|KL$4g)n7LHBet2PzN5lZ)xTFzLwT$@PF7!v<^VPd+TFsJ$k+czTxzjE65+4ux; zFvg%Ufa@GU=vUEH5pAgugaI4ld-V6J@FqJ#Z!{0CxCoYnednWk z_0=0-oDAXJU=OdXDJYWM#o=?W;WD=ZZcc9!B4;-m_9lEsa^odkZxbpIh^Jpjd|9)~ zj&#>11yL5Ga;;BZ@lj8_f?q0l;+q-FchG@#!kG(&!gJwvD--`wluBX<%(nCRGK1e4 zy1Wt19VznO=J<3mV*W;*Pm@;7?b*C1;{tvyWKe7X&PN=u5&^~g8#q@#nX``?PwRmI z7}Yg88SZ?re-orJL4^y~fr-M$hWaky7c>Wm?MImh6b3%n+Bqu=cv_xj%|U}(`~ocY zEYe(TVk58P)%b6jYu~)~0d1y)XKrEg5I1jBZ&o})RT?)>AexY?-M8XP^2xNo^2G1O z?M?E_zrRA0$-9A&Kc#!^KJR%Otd?oIf z<~`6}(=?Sq61Cl`2dCU0;(4chrt=q-uwltB1l^f%!?VtHCYyUc2B%h4E~Jd6bQwXc zKA=QMZYOW8c(>Q%tk3{_IVwZ0v-xe-_9s7Xr1=)Z1ki(X>=<9Z=4I_KKHPXdFfg!~ zsINC*!LJ;h&aP{)cc#x9=h$l8^d|bx7?LW=0N1zQV)w%KY--RM8JKoXZRp2j%Y}@* zcoAQeN+h&Ct)Aq;@F+$MUimPNjIJ+oR#yHjO+zG;X6z6!MFecd`*?6iwn9>F9!F zk-ouu*nR@x52)<|-SlI1QUy}8(@$5o(4QH>4Oa+X(oEgqEV>u66;_bB=Y6hfivVBw zi1qIE%M<3=J$<8|WHriD3*-~au?X=-s3E}_mK9&1Uy z*-%vCh{OpDR>zXjOh%5&9zK<-)CvKYC$lZNFoF4(Xw{3M8%UxspCZ|xsC>3wZHXf( z7A#_5W`6>{#Z@52hi7`m$y0O4L_OS8DC%ebAF!_78vYL8(h-Cgn+aK^@^3bU2DeNu8;M;(9y^uFuIewx&}=3 zD?TJVCrgXIAEcu#>tS4zh_WH6+ZEMTjUi~oEFwxWu)+$SSV78 zY1&}|yh2_(-e!tb$V?BuKfg#-iPVzu{De40TCN!?VO00@3|g9mnMvwC>#%x>=lM5u zhC#Mhv6{9|rEqlb`Uo(FK-zd?go+~R|1E^p}T z53;@vrDFKz^hWx@vd^qNKGEKFM)A%qdro|2UT%Rv=~ z%Pf~jsUFrLgpuTKWI^VGBw7e=IBxGS@f!w;ediHai4_${B6HSy9`_OB9J;561Wn1z zQ2gI2@i<;|7NNer&n^WsVDOY%p}PzJklw4Vx>#|Ub5q8Zut0{u=ZHzd(dcB1^r1~j zia#DOioUu+AVnsBnc&R>PjJKcv7?z$#fRvPf7!+SRF|IhXbYBcR69O0#(my1eGmF> z#?&q;vTgHzFoeb!a(H-;A@T zA&fuae`7imdXkULBK(;&S4xsqM(8uF61Da*DYoCcInD~MChW@0qM~e0#01$?|GBD{ z3|W#amG8f{ZCBg$MAodQD(8+n(#IB1$U&YNN~xO6E@eI=t`h08Be}!I_ht7RKoEa# zm$^U0&o(%@YcL7ogzgd+#I|MN-tP^)($5B+uro2o_m07AT0dg1PJO4=iga^lvdqdS zO5j{h2zpO+&s%lH)6MCA1a{7`2>keDbZ@_QgM->`Wii@(uVi8*bvdu%{!A6NYMX0$ z9HnR8URV8#`C9L(#m$>0dN$zC5)|FtKA`KLOt_CJDHF-nS@P6^Dv;^G9?!JSn0~9$ zme=dhEry#c!h_q{fnpzKry86?gF4zr((H-3v`e&i9IoF-Fh{dnZP>i-;+U&^nO8eN z+d(nxA;?uHbbboLT1&`dT9>MLz7U1pSPPO{nI`6ZL4kTTV(cO(c*EeE?t%1CIok|@ZP5n#j@(u3Md3^B zc?BK>hIb+Ze^4)952I2~l%9ZXWKawtL_wXW=H=X(MBIJA2kh+>S zk2O0X-5WI17k)b%AXI@2k{OFO$9$cqbSewWlI=Pj6)R|vMHKN&v@=#@x$1@smp*KC zwHc+9Qm)NCxE`b6WE*xP>?Y0zMV9HOJt`a#P`cjDS2GqVNC}`}nmCv(KK$ z;W6RaBw+X%#dJHE$HT$7B#MFEQ_nEfrC-M+inSq$1(1S?@-4BD%}MxWLx`n-{E zFViWhVy0uxEY+A90pk_TD5jMG2s4yrMTXOtZv>$ffPN$1ljOs$G(~aBnC2E9h)k97UhYX zDo;Q~^}EJxLd4gL(X-dS#tSSoQ!7_p7<-Ss9LdcCC+dJ?URfO}_Lif`X3R3UtYe?Q zxv7ReO|9psB@Do|JXfq@ zc*B6jKe$Y{)!{%OPp~}0u>GRN5@srs{?j0wrc=3zjMVi3`GvDO>h>>j%j~e0 z?^eelCjcwP@%$m&Z+qHU`I>JCnaPfw2`d@4i*mD=y;S)dMq%k~03{TPd)oa0 zp_`@Amx*g7-M6|!&sPu8Wb3CGR~yK!RnZ%9T3 ztmgTQ1?Mnn3i7nZm6k~r`sABcNc`UokmSKFxHO&BXsw-SvJ!cl84YzVT+Qjw3m)5# z*_4;CPPa~@2O866m2P$^Si~mr2NjIz#h%B73_YtDzXD@UTB{loDPYEueCo#67C6_P zvPV|nQB1R;zGD_3rHWh+U<@XlX6+FqZoI zZo-i)pLJm2>Q++0pTLtECa#8~rhHp>Vt0N_C}0tdu6Mw{c8Y_O*6IWq(s*LVQMde< z_IOPebvBwyW%=+cYm{2OH`+>2vX7>%4}*~@V{fH;LPM*Wh`EcLBA> zXemh{dalA;4FqjLVlMbM9c8)`mqsWBFY)Aw3KARMma7t+<+Os!zn15c*OEVyuXk!w zGPw^PZEgtjKBwHby-nSgx=^o~gKQyCnMyAgP7!VszDoBK=7DM;GPPxn+_d~==~`8J z6SmsZGZAUhRv}hLaMK2s)Z^M@!)Z?bnT)-JxV<0#nt6g5_e5w1X>n9hi(~uUHVbLJ zbNlwYk%qC;-Kae~RoBgF;pXA)qa|S*=q5;=k5JqwYX^g=l}qm$+z^<3dy1ELnipGu z??>=i277(c=eb1jnw@56o?NV6z)*}u+)0eX=IUb8@5ZWaU5t$gIf?Bw*W7h)DL&ad zR<$a(BVzYH)<{@SyRujsN_hy{@f=o+-UPOt@HSr%@g2?3TI`0I?d(t$uF40<^5kSy z>rb;wzR?KkaFl)#EsKW^oW1!yt-z#3DL6SQAsyyCa5hXOZ8fhG{#FpvK+$ z5Ls_iV>To3zX5RF;au%>g$-H_1kX_;4{4wC_?$d@>I#ksZ$2YE2gN2SJH~p0iv`+DH!sV!I;zRu;syd6O%`3VknOFvXe zkN9kr6~p1ghE32*zHO1#wgO2!C?>^@Z1jM!&HnBJJtR~jvj*~)>-~ZCCTMP7rb3s% zeTbHyJ8Rq!pa+bLnqM%TwqDbJq>LXTfD;j-Vv_2Y^@@uPL76C`r7JgJ30)OGs0aI4 zePCFSTGvEC94J}!QjzrI$1}?isDw*KBijzDEpa44#SkgqHOW``koifprnY24?WzeQ zN7WqUoCVZUEtX+YiZUe~9o%u)gPv)&HQGV$Tbbl%AUv~cug!pgG|4RUo_HX#% z1Df`Lv^{)&fu=n=;E!k;!-Fw@vhM?W{@}ep)Sr(U2)I444@A-)fb|Dx5V#9;H-^X7 zA244Z;zNB&|fGeEX}l~ z0oKZt58k20QdKe;P(xe>JN1PMfLk4g#@rarG%#C!=eE--FJ?q09Ix; zmf8R-AWIKiN>PdebPO~f)*~LULk4OZ97bkf?8siT<4fU<&xZ=78q!9MC z`@8mdjR7V=O#*ePX{w`XsRJ}F&UdGwl+eR@glB;(Jvcz05C_8H4rVsiloH08+5i)v zo+-JE&9sdktV}5kw9t?C{#o1~$%)$nER79J0T1MWW(C?Bxc6`9Jvi9Ivd{M{`^fvh zPXA7u`X|~C0{jshzY^74)AT=~`>5F8o`I$A~u%0HI+s3_>Dng8VK(WE#(@$&OR<&RpD z{?javq5tpQ;WuWX|B2wwLH{GcUz+8QRQTVTg${@MF$3V>F#N>R@5AuFHwe?O4f3ee zpAGW26`5beiOhpb;5?@0e{YSyeBj_56f47 zONrDE!~SD*d|%4?x9RCG4g5Yj=xOQx%pQ;N_On+0=Q)Jte<_DB{iv14VgE0+@^=^g zn^u0AGyZl*!2hy~KDrbR&UYpLWQ>3Ciw6&Vh>ic)Grq?LB{0Ql12}bo*&7Eqn*a-j z?|GDtf{Bs-Z(+;K04x_DZ^NKxrU2f3!9Ybz0lZrRcmY8HT-&9mreJ*ZV&J3;T*H0L z`qYn{{3OIbsO~ZKKPIXFB)Wg}Z8{2OroT9*rl4Z{)3^W7>JMQ?^LtMIO#C$ez|3zF zKTr=pQvCf?^Q+8H^AFR`Ut#`-F(1m3Urfl%IFI52r($3d{E?}Dn2sI|Lh~O_KtEc9 znu3AmFN^$rF8;38pL~P%_jSRaCZT=wuYd0!zca~CmB`~zzsV}U$oe#o&h+o8|EDGa z7MPFnKG=lrC!733r2p480p1Pui~8uhUVpa9e^#~v@5lIUwe~xk{8WrQ4)s5?3GHK+ z{$H>OFrWQVvH~lmAL8VZ#BaFzzp}|6mGlq1Jci?MczG<5XdVUm&vo+sqUC$S0Zu@F zq|EP{{n;n}=ZWm`QujZq=6|2afOEte+b)O zBoo^I>16$H@;k6*{825xpWMC|^#6@o{+>bprj|dv<_BKrexKEUHSN*;Lx%rPb1bl^ z|B;o4aeosy|FyULS}l(n0Ot80czM+RZ+Q7Hg7|x|0WZ5By$c8DyE=cO|Ck?sL;ufm zlI9;W`~PE$-_(qG0^9o}{Ozc_=G?C@8;|A3%A2dExfJ-*4o2wCO(- zaevA1WBu~~)poT#a@;of`~Hgk5+p&%wV(wuV0#_SrS!+y!?& zpvbT9LsHruQ5wzc%Ne=sEpJBRP}D<;A~obu?s*=2l!C5Gq%*L{BYL1iC#dYlQHDZw zI^(~EVLZ?p_(j058En0C7DNDk5zzCPRU6wOU$omGv$SimE?^zUB7h~XSmns=^iZ7~ z?Zc`mnqut&*{BE@7B)pcX0It_JB57Lm=$Vw`q2fDB|5sqWXEcXwO2Jpo@VI%qMjw7 zk%vR(1zs|Cs$D#RX2hcWZ*I513QykS#nMek#m}dBgvySt#GN=^et;Vz(^r%VIGmdl z-QngDTQuiUQnl{jc4tR}ZT#s<+J&$+3qb2=H-qXK9qrDv2!OST6ocD+KB+`Hx)(~$ z@8=z<0w-)>j#E)lsr6cfsBwG2U_c=b-J(e&Pp|+F-(KE*r2RL9l`LX%H+LU*gti7j zqEoS9s$i!v)g?MbhN&|MWd+03Az;<)43nSAEsNjNPF|mftc%DR01*nu;ssrZ0r}*D z$@q6B-e9~b z4G52WffqK*zOZx>u=K)0JVz;FgIV^*O7tB2x4D(DEqjtdG3<=@SW*lXs^z8%Po9C! z{&?v0h6{^J1OoVBHEwd_1%7y%qK0^(_q^1QiA0rF*ac3LT723wd9a91Mi!3SeJ-&~ zn-i9R9wLMbO6Zlt5_@RuVj@V2a9AvsnHAqj+AJEoicP3~>2s0k0C63{-Vwr|kmVh22cQ~}V zGeIkY4zXC4K(9|Uw~4=y1|w1bDg4=y27WeCSj)1v5vK9n)P~hpLLBZ;x&ITyFSQX;n zq^zR%wjY$^qjEZc?#r63uM;tju>Yj{C**Dpb%gp30 zO%`Pb431ALdh(gcVz8G|oU8@7if2oYamjfj(!=wOOHcblnUJ?gLyrq%Wq}#?jfMkd zBDO<-f4vs`LGGuhJpID$X$|3`g=toH8X`&8(*~uaAu0f1xUK0vbN0+s$K&Zfu7@2V z6RI>6n3TO2iT9f7==JB6jT2dD{V-hMbfARhD$175A?(t`vf+jc%&?_7S~kT>I0y{bAH8aq^ST-thVYuM}GpDM}B;aohtk$(pX&fU&ynH$8KU?Pm$4;CaN~BrD?Meev@wnFhnmihBw?_sbcxX^_w3 zR~Oke#7vdj-kQz$@QF3U>dAME-L&Z0&B9tfGgnSm=o2Xbai84Qi~^}GcO!L?ON>`J zl?xGH6AI{%4RnTo{S{Fy65Omw-zDfJ>PBn8B3 z!gYw#BXgEMwQZUyNjgWL*w0nZSyqITw+WDhf}MRCLYj^UK!p-dY|db(%7m&SYFI;M}1x>t>9`$}bzBu*7%Ui?UTVagF| zsF~ouapldMwI96r!)M+5oOPd_>=UNtaI}!E>r*0qmZr}H^qFsx>9z8yJwDsWXSDbX z4xh2$HAa1iQi%4fyb^gG3fo^{OD=4?gw3E3?hl&~A-wCO&MOJ*Vz7MtP9k>r?#Cp= zNsM2G%etHXE}I&`%kr+^YX4n?yZ?BV>jFCQP#pPxR0GRC6| z&M3UPf1)~}apOq>@YQ>~9_aov005nU^{~Rh*H?Ha$i**@x38bR(fMIu;q~vgcP~EB zshMx3(~E!o`#|e-e-%2F)c1fadszJ2`@7FS+}{29m!E%JUA%h#@axOFPxrtU z`t|nX8ixYX`+>&1j+3Xa@Kz^( zy^?EsT+7$vx)%5Mz5l`eeS;s+aY@zSe+}BJZ}92-C;rag@i)4r2ED@%{k=gu9onN$ zz7Os3HK5Vwq5ZeS3-Na?KNfuT;3Yh#9q^1S3Jk$D-mCP(^E(+>mfI?})OozUoa3Q*9$J*^%H!pAg& zH%ZYlKcd;HrjuLf8MPtB;X>~)<4@F~Oh-r9YSdN%hSqgqAT2IcGqP4W&tY{s9 zR7^vJH|YadnOs*5WL4sO>x%XXV;YY61W+j&Qmqo2Bkfn$S+e^vtsThiP&Av;nx4{k z&+&C#N0|qTHc&`V z(JVOuF|D_BmW84<Sc;W_%ssU)@XgAdxfRG#Mi|kUOgSb>!N{ zw4q7yV5rIAQrGq5!YW#u>f|txGp(+JpcM_`OYqrMEjcsMy{>AKx#cQDKB&6R(sqNQ zb(G^8)8Lb89e0(Z3NCeBo#?K^K4o&R0XNCLgSKVH)m1Vcu4bn#?$`E-4&mfKDvOA( z>mB8;C>n^G)>vBb#n;uTt~rF%6Is9?seybQ@4bWKmovzX^5 zwF`LdTw)ttXHx!fdVBJ0aJ-Ud!#nVje%m&&=dP_&xwJOb=eDDq>-agydDOHvwOi0g zS_rCpyJW5cO49Z^IB3beF2O|C^%))FMV0C|wY3gzPBOlIO{>rNUJExfq1EYpvsHpG z&hiQ&ZV!_t86yPB5?(Bh!q@$x(pt+NzP;`j-t?g75w3Dn?WuTyTb|JR)Ms@GPEvcR z4^kl%9=BJ)3)4K)A|&x0@v_InmvRp1soQHST6IOwF~F(U^TWVl*VomsgZgURRgq+G729eO=X8uD-tPZn~@Hg>yGIe_hRA zf=K)YB9T}Bz5Vd(W1ONa4 literal 0 HcmV?d00001 diff --git a/fall-2024/math/mat-206/00010/UnM49.csv b/fall-2024/math/mat-206/00010/UnM49.csv new file mode 100644 index 0000000..46a9d58 --- /dev/null +++ b/fall-2024/math/mat-206/00010/UnM49.csv @@ -0,0 +1,249 @@ +Global Code;Global Name;Region Code;Region Name;Sub-region Code;Sub-region Name;Intermediate Region Code;Intermediate Region Name;Country or Area;M49 Code;ISO-alpha2 Code;ISO-alpha3 Code;Least Developed Countries (LDC);Land Locked Developing Countries (LLDC);Small Island Developing States (SIDS) +001;World;002;Africa;015;Northern Africa;;;Algeria;012;DZ;DZA;;; +001;World;002;Africa;015;Northern Africa;;;Egypt;818;EG;EGY;;; +001;World;002;Africa;015;Northern Africa;;;Libya;434;LY;LBY;;; +001;World;002;Africa;015;Northern Africa;;;Morocco;504;MA;MAR;;; +001;World;002;Africa;015;Northern Africa;;;Sudan;729;SD;SDN;x;; +001;World;002;Africa;015;Northern Africa;;;Tunisia;788;TN;TUN;;; +001;World;002;Africa;015;Northern Africa;;;Western Sahara;732;EH;ESH;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;British Indian Ocean Territory;086;IO;IOT;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Burundi;108;BI;BDI;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Comoros;174;KM;COM;x;;x +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Djibouti;262;DJ;DJI;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Eritrea;232;ER;ERI;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Ethiopia;231;ET;ETH;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;French Southern Territories;260;TF;ATF;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Kenya;404;KE;KEN;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Madagascar;450;MG;MDG;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Malawi;454;MW;MWI;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Mauritius;480;MU;MUS;;;x +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Mayotte;175;YT;MYT;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Mozambique;508;MZ;MOZ;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Réunion;638;RE;REU;;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Rwanda;646;RW;RWA;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Seychelles;690;SC;SYC;;;x +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Somalia;706;SO;SOM;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;South Sudan;728;SS;SSD;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Uganda;800;UG;UGA;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;United Republic of Tanzania;834;TZ;TZA;x;; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Zambia;894;ZM;ZMB;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;014;Eastern Africa;Zimbabwe;716;ZW;ZWE;;x; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Angola;024;AO;AGO;x;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Cameroon;120;CM;CMR;;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Central African Republic;140;CF;CAF;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Chad;148;TD;TCD;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Congo;178;CG;COG;;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Democratic Republic of the Congo;180;CD;COD;x;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Equatorial Guinea;226;GQ;GNQ;;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Gabon;266;GA;GAB;;; +001;World;002;Africa;202;Sub-Saharan Africa;017;Middle Africa;Sao Tome and Principe;678;ST;STP;x;;x +001;World;002;Africa;202;Sub-Saharan Africa;018;Southern Africa;Botswana;072;BW;BWA;;x; +001;World;002;Africa;202;Sub-Saharan Africa;018;Southern Africa;Eswatini;748;SZ;SWZ;;x; +001;World;002;Africa;202;Sub-Saharan Africa;018;Southern Africa;Lesotho;426;LS;LSO;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;018;Southern Africa;Namibia;516;NA;NAM;;; +001;World;002;Africa;202;Sub-Saharan Africa;018;Southern Africa;South Africa;710;ZA;ZAF;;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Benin;204;BJ;BEN;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Burkina Faso;854;BF;BFA;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Cabo Verde;132;CV;CPV;;;x +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Côte d’Ivoire;384;CI;CIV;;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Gambia;270;GM;GMB;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Ghana;288;GH;GHA;;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Guinea;324;GN;GIN;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Guinea-Bissau;624;GW;GNB;x;;x +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Liberia;430;LR;LBR;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Mali;466;ML;MLI;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Mauritania;478;MR;MRT;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Niger;562;NE;NER;x;x; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Nigeria;566;NG;NGA;;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Saint Helena;654;SH;SHN;;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Senegal;686;SN;SEN;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Sierra Leone;694;SL;SLE;x;; +001;World;002;Africa;202;Sub-Saharan Africa;011;Western Africa;Togo;768;TG;TGO;x;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Anguilla;660;AI;AIA;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Antigua and Barbuda;028;AG;ATG;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Aruba;533;AW;ABW;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Bahamas;044;BS;BHS;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Barbados;052;BB;BRB;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Bonaire, Sint Eustatius and Saba;535;BQ;BES;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;British Virgin Islands;092;VG;VGB;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Cayman Islands;136;KY;CYM;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Cuba;192;CU;CUB;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Curaçao;531;CW;CUW;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Dominica;212;DM;DMA;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Dominican Republic;214;DO;DOM;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Grenada;308;GD;GRD;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Guadeloupe;312;GP;GLP;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Haiti;332;HT;HTI;x;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Jamaica;388;JM;JAM;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Martinique;474;MQ;MTQ;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Montserrat;500;MS;MSR;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Puerto Rico;630;PR;PRI;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Saint Barthélemy;652;BL;BLM;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Saint Kitts and Nevis;659;KN;KNA;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Saint Lucia;662;LC;LCA;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Saint Martin (French Part);663;MF;MAF;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Saint Vincent and the Grenadines;670;VC;VCT;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Sint Maarten (Dutch part);534;SX;SXM;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Trinidad and Tobago;780;TT;TTO;;;x +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;Turks and Caicos Islands;796;TC;TCA;;; +001;World;019;Americas;419;Latin America and the Caribbean;029;Caribbean;United States Virgin Islands;850;VI;VIR;;;x +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Belize;084;BZ;BLZ;;;x +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Costa Rica;188;CR;CRI;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;El Salvador;222;SV;SLV;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Guatemala;320;GT;GTM;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Honduras;340;HN;HND;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Mexico;484;MX;MEX;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Nicaragua;558;NI;NIC;;; +001;World;019;Americas;419;Latin America and the Caribbean;013;Central America;Panama;591;PA;PAN;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Argentina;032;AR;ARG;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Bolivia (Plurinational State of);068;BO;BOL;;x; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Bouvet Island;074;BV;BVT;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Brazil;076;BR;BRA;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Chile;152;CL;CHL;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Colombia;170;CO;COL;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Ecuador;218;EC;ECU;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Falkland Islands (Malvinas);238;FK;FLK;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;French Guiana;254;GF;GUF;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Guyana;328;GY;GUY;;;x +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Paraguay;600;PY;PRY;;x; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Peru;604;PE;PER;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;South Georgia and the South Sandwich Islands;239;GS;SGS;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Suriname;740;SR;SUR;;;x +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Uruguay;858;UY;URY;;; +001;World;019;Americas;419;Latin America and the Caribbean;005;South America;Venezuela (Bolivarian Republic of);862;VE;VEN;;; +001;World;019;Americas;021;Northern America;;;Bermuda;060;BM;BMU;;; +001;World;019;Americas;021;Northern America;;;Canada;124;CA;CAN;;; +001;World;019;Americas;021;Northern America;;;Greenland;304;GL;GRL;;; +001;World;019;Americas;021;Northern America;;;Saint Pierre and Miquelon;666;PM;SPM;;; +001;World;019;Americas;021;Northern America;;;United States of America;840;US;USA;;; +001;World;;;;;;;Antarctica;010;AQ;ATA;;; +001;World;142;Asia;143;Central Asia;;;Kazakhstan;398;KZ;KAZ;;x; +001;World;142;Asia;143;Central Asia;;;Kyrgyzstan;417;KG;KGZ;;x; +001;World;142;Asia;143;Central Asia;;;Tajikistan;762;TJ;TJK;;x; +001;World;142;Asia;143;Central Asia;;;Turkmenistan;795;TM;TKM;;x; +001;World;142;Asia;143;Central Asia;;;Uzbekistan;860;UZ;UZB;;x; +001;World;142;Asia;030;Eastern Asia;;;China;156;CN;CHN;;; +001;World;142;Asia;030;Eastern Asia;;;China, Hong Kong Special Administrative Region;344;HK;HKG;;; +001;World;142;Asia;030;Eastern Asia;;;China, Macao Special Administrative Region;446;MO;MAC;;; +001;World;142;Asia;030;Eastern Asia;;;Democratic People's Republic of Korea;408;KP;PRK;;; +001;World;142;Asia;030;Eastern Asia;;;Japan;392;JP;JPN;;; +001;World;142;Asia;030;Eastern Asia;;;Mongolia;496;MN;MNG;;x; +001;World;142;Asia;030;Eastern Asia;;;Republic of Korea;410;KR;KOR;;; +001;World;142;Asia;035;South-eastern Asia;;;Brunei Darussalam;096;BN;BRN;;; +001;World;142;Asia;035;South-eastern Asia;;;Cambodia;116;KH;KHM;x;; +001;World;142;Asia;035;South-eastern Asia;;;Indonesia;360;ID;IDN;;; +001;World;142;Asia;035;South-eastern Asia;;;Lao People's Democratic Republic;418;LA;LAO;x;x; +001;World;142;Asia;035;South-eastern Asia;;;Malaysia;458;MY;MYS;;; +001;World;142;Asia;035;South-eastern Asia;;;Myanmar;104;MM;MMR;x;; +001;World;142;Asia;035;South-eastern Asia;;;Philippines;608;PH;PHL;;; +001;World;142;Asia;035;South-eastern Asia;;;Singapore;702;SG;SGP;;;x +001;World;142;Asia;035;South-eastern Asia;;;Thailand;764;TH;THA;;; +001;World;142;Asia;035;South-eastern Asia;;;Timor-Leste;626;TL;TLS;x;;x +001;World;142;Asia;035;South-eastern Asia;;;Viet Nam;704;VN;VNM;;; +001;World;142;Asia;034;Southern Asia;;;Afghanistan;004;AF;AFG;x;x; +001;World;142;Asia;034;Southern Asia;;;Bangladesh;050;BD;BGD;x;; +001;World;142;Asia;034;Southern Asia;;;Bhutan;064;BT;BTN;;x; +001;World;142;Asia;034;Southern Asia;;;India;356;IN;IND;;; +001;World;142;Asia;034;Southern Asia;;;Iran (Islamic Republic of);364;IR;IRN;;; +001;World;142;Asia;034;Southern Asia;;;Maldives;462;MV;MDV;;;x +001;World;142;Asia;034;Southern Asia;;;Nepal;524;NP;NPL;x;x; +001;World;142;Asia;034;Southern Asia;;;Pakistan;586;PK;PAK;;; +001;World;142;Asia;034;Southern Asia;;;Sri Lanka;144;LK;LKA;;; +001;World;142;Asia;145;Western Asia;;;Armenia;051;AM;ARM;;x; +001;World;142;Asia;145;Western Asia;;;Azerbaijan;031;AZ;AZE;;x; +001;World;142;Asia;145;Western Asia;;;Bahrain;048;BH;BHR;;; +001;World;142;Asia;145;Western Asia;;;Cyprus;196;CY;CYP;;; +001;World;142;Asia;145;Western Asia;;;Georgia;268;GE;GEO;;; +001;World;142;Asia;145;Western Asia;;;Iraq;368;IQ;IRQ;;; +001;World;142;Asia;145;Western Asia;;;Israel;376;IL;ISR;;; +001;World;142;Asia;145;Western Asia;;;Jordan;400;JO;JOR;;; +001;World;142;Asia;145;Western Asia;;;Kuwait;414;KW;KWT;;; +001;World;142;Asia;145;Western Asia;;;Lebanon;422;LB;LBN;;; +001;World;142;Asia;145;Western Asia;;;Oman;512;OM;OMN;;; +001;World;142;Asia;145;Western Asia;;;Qatar;634;QA;QAT;;; +001;World;142;Asia;145;Western Asia;;;Saudi Arabia;682;SA;SAU;;; +001;World;142;Asia;145;Western Asia;;;State of Palestine;275;PS;PSE;;; +001;World;142;Asia;145;Western Asia;;;Syrian Arab Republic;760;SY;SYR;;; +001;World;142;Asia;145;Western Asia;;;Türkiye;792;TR;TUR;;; +001;World;142;Asia;145;Western Asia;;;United Arab Emirates;784;AE;ARE;;; +001;World;142;Asia;145;Western Asia;;;Yemen;887;YE;YEM;x;; +001;World;150;Europe;151;Eastern Europe;;;Belarus;112;BY;BLR;;; +001;World;150;Europe;151;Eastern Europe;;;Bulgaria;100;BG;BGR;;; +001;World;150;Europe;151;Eastern Europe;;;Czechia;203;CZ;CZE;;; +001;World;150;Europe;151;Eastern Europe;;;Hungary;348;HU;HUN;;; +001;World;150;Europe;151;Eastern Europe;;;Poland;616;PL;POL;;; +001;World;150;Europe;151;Eastern Europe;;;Republic of Moldova;498;MD;MDA;;x; +001;World;150;Europe;151;Eastern Europe;;;Romania;642;RO;ROU;;; +001;World;150;Europe;151;Eastern Europe;;;Russian Federation;643;RU;RUS;;; +001;World;150;Europe;151;Eastern Europe;;;Slovakia;703;SK;SVK;;; +001;World;150;Europe;151;Eastern Europe;;;Ukraine;804;UA;UKR;;; +001;World;150;Europe;154;Northern Europe;;;Åland Islands;248;AX;ALA;;; +001;World;150;Europe;154;Northern Europe;;;Denmark;208;DK;DNK;;; +001;World;150;Europe;154;Northern Europe;;;Estonia;233;EE;EST;;; +001;World;150;Europe;154;Northern Europe;;;Faroe Islands;234;FO;FRO;;; +001;World;150;Europe;154;Northern Europe;;;Finland;246;FI;FIN;;; +001;World;150;Europe;154;Northern Europe;;;Guernsey;831;GG;GGY;;; +001;World;150;Europe;154;Northern Europe;;;Iceland;352;IS;ISL;;; +001;World;150;Europe;154;Northern Europe;;;Ireland;372;IE;IRL;;; +001;World;150;Europe;154;Northern Europe;;;Isle of Man;833;IM;IMN;;; +001;World;150;Europe;154;Northern Europe;;;Jersey;832;JE;JEY;;; +001;World;150;Europe;154;Northern Europe;;;Latvia;428;LV;LVA;;; +001;World;150;Europe;154;Northern Europe;;;Lithuania;440;LT;LTU;;; +001;World;150;Europe;154;Northern Europe;;;Norway;578;NO;NOR;;; +001;World;150;Europe;154;Northern Europe;;;Svalbard and Jan Mayen Islands;744;SJ;SJM;;; +001;World;150;Europe;154;Northern Europe;;;Sweden;752;SE;SWE;;; +001;World;150;Europe;154;Northern Europe;;;United Kingdom of Great Britain and Northern Ireland;826;GB;GBR;;; +001;World;150;Europe;039;Southern Europe;;;Albania;008;AL;ALB;;; +001;World;150;Europe;039;Southern Europe;;;Andorra;020;AD;AND;;; +001;World;150;Europe;039;Southern Europe;;;Bosnia and Herzegovina;070;BA;BIH;;; +001;World;150;Europe;039;Southern Europe;;;Croatia;191;HR;HRV;;; +001;World;150;Europe;039;Southern Europe;;;Gibraltar;292;GI;GIB;;; +001;World;150;Europe;039;Southern Europe;;;Greece;300;GR;GRC;;; +001;World;150;Europe;039;Southern Europe;;;Holy See;336;VA;VAT;;; +001;World;150;Europe;039;Southern Europe;;;Italy;380;IT;ITA;;; +001;World;150;Europe;039;Southern Europe;;;Malta;470;MT;MLT;;; +001;World;150;Europe;039;Southern Europe;;;Montenegro;499;ME;MNE;;; +001;World;150;Europe;039;Southern Europe;;;North Macedonia;807;MK;MKD;;x; +001;World;150;Europe;039;Southern Europe;;;Portugal;620;PT;PRT;;; +001;World;150;Europe;039;Southern Europe;;;San Marino;674;SM;SMR;;; +001;World;150;Europe;039;Southern Europe;;;Serbia;688;RS;SRB;;; +001;World;150;Europe;039;Southern Europe;;;Slovenia;705;SI;SVN;;; +001;World;150;Europe;039;Southern Europe;;;Spain;724;ES;ESP;;; +001;World;150;Europe;155;Western Europe;;;Austria;040;AT;AUT;;; +001;World;150;Europe;155;Western Europe;;;Belgium;056;BE;BEL;;; +001;World;150;Europe;155;Western Europe;;;France;250;FR;FRA;;; +001;World;150;Europe;155;Western Europe;;;Germany;276;DE;DEU;;; +001;World;150;Europe;155;Western Europe;;;Liechtenstein;438;LI;LIE;;; +001;World;150;Europe;155;Western Europe;;;Luxembourg;442;LU;LUX;;; +001;World;150;Europe;155;Western Europe;;;Monaco;492;MC;MCO;;; +001;World;150;Europe;155;Western Europe;;;Netherlands (Kingdom of the);528;NL;NLD;;; +001;World;150;Europe;155;Western Europe;;;Switzerland;756;CH;CHE;;; +001;World;009;Oceania;053;Australia and New Zealand;;;Australia;036;AU;AUS;;; +001;World;009;Oceania;053;Australia and New Zealand;;;Christmas Island;162;CX;CXR;;; +001;World;009;Oceania;053;Australia and New Zealand;;;Cocos (Keeling) Islands;166;CC;CCK;;; +001;World;009;Oceania;053;Australia and New Zealand;;;Heard Island and McDonald Islands;334;HM;HMD;;; +001;World;009;Oceania;053;Australia and New Zealand;;;New Zealand;554;NZ;NZL;;; +001;World;009;Oceania;053;Australia and New Zealand;;;Norfolk Island;574;NF;NFK;;; +001;World;009;Oceania;054;Melanesia;;;Fiji;242;FJ;FJI;;;x +001;World;009;Oceania;054;Melanesia;;;New Caledonia;540;NC;NCL;;;x +001;World;009;Oceania;054;Melanesia;;;Papua New Guinea;598;PG;PNG;;;x +001;World;009;Oceania;054;Melanesia;;;Solomon Islands;090;SB;SLB;x;;x +001;World;009;Oceania;054;Melanesia;;;Vanuatu;548;VU;VUT;;;x +001;World;009;Oceania;057;Micronesia;;;Guam;316;GU;GUM;;;x +001;World;009;Oceania;057;Micronesia;;;Kiribati;296;KI;KIR;x;;x +001;World;009;Oceania;057;Micronesia;;;Marshall Islands;584;MH;MHL;;;x +001;World;009;Oceania;057;Micronesia;;;Micronesia (Federated States of);583;FM;FSM;;;x +001;World;009;Oceania;057;Micronesia;;;Nauru;520;NR;NRU;;;x +001;World;009;Oceania;057;Micronesia;;;Northern Mariana Islands;580;MP;MNP;;;x +001;World;009;Oceania;057;Micronesia;;;Palau;585;PW;PLW;;;x +001;World;009;Oceania;057;Micronesia;;;United States Minor Outlying Islands;581;UM;UMI;;; +001;World;009;Oceania;061;Polynesia;;;American Samoa;016;AS;ASM;;;x +001;World;009;Oceania;061;Polynesia;;;Cook Islands;184;CK;COK;;;x +001;World;009;Oceania;061;Polynesia;;;French Polynesia;258;PF;PYF;;;x +001;World;009;Oceania;061;Polynesia;;;Niue;570;NU;NIU;;;x +001;World;009;Oceania;061;Polynesia;;;Pitcairn;612;PN;PCN;;; +001;World;009;Oceania;061;Polynesia;;;Samoa;882;WS;WSM;;;x +001;World;009;Oceania;061;Polynesia;;;Tokelau;772;TK;TKL;;; +001;World;009;Oceania;061;Polynesia;;;Tonga;776;TO;TON;;;x +001;World;009;Oceania;061;Polynesia;;;Tuvalu;798;TV;TUV;x;;x +001;World;009;Oceania;061;Polynesia;;;Wallis and Futuna Islands;876;WF;WLF;;; \ No newline at end of file diff --git a/fall-2024/math/mat-206/00020/DataWhr2024.csv b/fall-2024/math/mat-206/00020/DataWhr2024.csv new file mode 100644 index 0000000..f8d857c --- /dev/null +++ b/fall-2024/math/mat-206/00020/DataWhr2024.csv @@ -0,0 +1,2364 @@ +Country name,year,Life Ladder,Log GDP per capita,Social support,Healthy life expectancy at birth,Freedom to make life choices,Generosity,Perceptions of corruption,Positive affect,Negative affect +Afghanistan,2008,3.724,7.350,0.451,50.500,0.718,0.164,0.882,0.414,0.258 +Afghanistan,2009,4.402,7.509,0.552,50.800,0.679,0.187,0.850,0.481,0.237 +Afghanistan,2010,4.758,7.614,0.539,51.100,0.600,0.118,0.707,0.517,0.275 +Afghanistan,2011,3.832,7.581,0.521,51.400,0.496,0.160,0.731,0.480,0.267 +Afghanistan,2012,3.783,7.661,0.521,51.700,0.531,0.234,0.776,0.614,0.268 +Afghanistan,2013,3.572,7.680,0.484,52.000,0.578,0.059,0.823,0.547,0.273 +Afghanistan,2014,3.131,7.671,0.526,52.300,0.509,0.102,0.871,0.492,0.375 +Afghanistan,2015,3.983,7.654,0.529,52.600,0.389,0.078,0.881,0.491,0.339 +Afghanistan,2016,4.220,7.650,0.559,52.925,0.523,0.040,0.793,0.501,0.348 +Afghanistan,2017,2.662,7.648,0.491,53.250,0.427,-0.123,0.954,0.435,0.371 +Afghanistan,2018,2.694,7.631,0.508,53.575,0.374,-0.095,0.928,0.385,0.405 +Afghanistan,2019,2.375,7.640,0.420,53.900,0.394,-0.109,0.924,0.324,0.502 +Afghanistan,2021,2.436,7.325,0.454,54.550,0.394,-0.085,0.946,0.179,0.607 +Afghanistan,2022,1.281,,0.228,54.875,0.368,,0.733,0.206,0.576 +Afghanistan,2023,1.446,,0.368,55.200,0.228,,0.738,0.261,0.460 +Albania,2007,4.634,9.122,0.821,66.760,0.529,-0.013,0.875,0.489,0.246 +Albania,2009,5.485,9.241,0.833,67.320,0.525,-0.162,0.864,0.564,0.279 +Albania,2010,5.269,9.283,0.733,67.600,0.569,-0.176,0.726,0.576,0.300 +Albania,2011,5.867,9.310,0.759,67.880,0.487,-0.209,0.877,0.566,0.257 +Albania,2012,5.510,9.326,0.785,68.160,0.602,-0.173,0.848,0.553,0.271 +Albania,2013,4.551,9.338,0.759,68.440,0.632,-0.131,0.863,0.541,0.338 +Albania,2014,4.814,9.358,0.626,68.720,0.735,-0.029,0.883,0.573,0.335 +Albania,2015,4.607,9.382,0.639,69.000,0.704,-0.085,0.885,0.579,0.350 +Albania,2016,4.511,9.417,0.638,69.025,0.730,-0.021,0.901,0.567,0.322 +Albania,2017,4.640,9.455,0.638,69.050,0.750,-0.033,0.876,0.547,0.334 +Albania,2018,5.004,9.497,0.684,69.075,0.824,0.005,0.899,0.592,0.319 +Albania,2019,4.995,9.522,0.686,69.100,0.777,-0.103,0.914,0.548,0.274 +Albania,2020,5.365,9.494,0.710,69.125,0.754,0.002,0.891,0.563,0.265 +Albania,2021,5.255,9.588,0.702,69.150,0.827,0.039,0.896,0.554,0.254 +Albania,2022,5.212,9.649,0.724,69.175,0.802,-0.070,0.846,0.547,0.255 +Albania,2023,5.445,9.689,0.691,69.200,0.872,0.068,0.855,0.597,0.314 +Algeria,2010,5.464,9.306,,65.500,0.593,-0.212,0.618,, +Algeria,2011,5.317,9.316,0.810,65.600,0.530,-0.188,0.638,0.503,0.255 +Algeria,2012,5.605,9.330,0.839,65.700,0.587,-0.179,0.690,0.540,0.230 +Algeria,2014,6.355,9.355,0.818,65.900,,,,0.558,0.177 +Algeria,2016,5.341,9.383,0.749,66.100,,,,0.565,0.377 +Algeria,2017,5.249,9.377,0.807,66.200,0.437,-0.174,0.700,0.555,0.289 +Algeria,2018,5.043,9.370,0.799,66.300,0.583,-0.153,0.759,0.534,0.293 +Algeria,2019,4.745,9.361,0.803,66.400,0.385,-0.002,0.741,0.544,0.215 +Algeria,2020,5.438,9.291,0.868,66.500,0.574,-0.124,0.724,0.524,0.311 +Algeria,2021,5.217,9.308,0.841,66.600,0.558,-0.116,0.712,0.498,0.258 +Algeria,2022,5.538,9.323,0.783,66.700,0.440,-0.045,0.611,0.583,0.259 +Angola,2011,5.589,8.944,0.723,51.220,0.584,0.050,0.911,0.667,0.361 +Angola,2012,4.360,8.989,0.753,51.840,0.456,-0.141,0.906,0.591,0.305 +Angola,2013,3.937,9.000,0.722,52.460,0.410,-0.109,0.816,0.650,0.371 +Angola,2014,3.795,9.010,0.755,53.080,0.375,-0.173,0.834,0.595,0.368 +Argentina,2006,6.313,9.937,0.938,65.820,0.733,-0.162,0.852,0.748,0.328 +Argentina,2007,6.073,10.013,0.862,65.940,0.653,-0.146,0.881,0.750,0.279 +Argentina,2008,5.961,10.043,0.892,66.060,0.678,-0.137,0.865,0.720,0.318 +Argentina,2009,6.424,9.972,0.919,66.180,0.637,-0.135,0.885,0.762,0.237 +Argentina,2010,6.441,10.066,0.927,66.300,0.730,-0.132,0.855,0.765,0.211 +Argentina,2011,6.776,10.112,0.889,66.420,0.816,-0.180,0.755,0.769,0.232 +Argentina,2012,6.468,10.091,0.902,66.540,0.747,-0.153,0.817,0.744,0.272 +Argentina,2013,6.582,10.103,0.910,66.660,0.737,-0.136,0.823,0.766,0.254 +Argentina,2014,6.671,10.067,0.918,66.780,0.745,-0.170,0.854,0.769,0.238 +Argentina,2015,6.697,10.083,0.926,66.900,0.881,-0.180,0.851,0.768,0.305 +Argentina,2016,6.427,10.051,0.883,66.950,0.848,-0.198,0.851,0.732,0.312 +Argentina,2017,6.039,10.069,0.907,67.000,0.832,-0.192,0.841,0.715,0.292 +Argentina,2018,5.793,10.032,0.900,67.050,0.846,-0.216,0.855,0.732,0.321 +Argentina,2019,6.086,10.002,0.896,67.100,0.817,-0.217,0.830,0.735,0.319 +Argentina,2020,5.901,9.888,0.897,67.150,0.823,-0.131,0.816,0.679,0.342 +Argentina,2021,5.908,9.977,0.882,67.200,0.819,-0.014,0.816,0.685,0.345 +Argentina,2022,6.261,10.019,0.893,67.250,0.825,-0.130,0.810,0.724,0.284 +Argentina,2023,6.393,9.994,0.892,67.300,0.832,-0.129,0.846,0.720,0.301 +Armenia,2006,4.289,9.021,0.682,63.840,0.520,-0.235,0.850,0.453,0.469 +Armenia,2007,4.882,9.157,0.760,64.080,0.605,-0.255,0.817,0.454,0.412 +Armenia,2008,4.652,9.230,0.709,64.320,0.462,-0.219,0.876,0.486,0.385 +Armenia,2009,4.178,9.085,0.680,64.560,0.441,-0.218,0.882,0.479,0.411 +Armenia,2010,4.368,9.113,0.660,64.800,0.459,-0.180,0.891,0.437,0.426 +Armenia,2011,4.260,9.164,0.705,65.040,0.465,-0.230,0.875,0.411,0.459 +Armenia,2012,4.320,9.239,0.676,65.280,0.502,-0.220,0.893,0.470,0.464 +Armenia,2013,4.277,9.276,0.723,65.520,0.504,-0.201,0.900,0.503,0.450 +Armenia,2014,4.453,9.315,0.739,65.760,0.506,-0.225,0.920,0.510,0.404 +Armenia,2015,4.348,9.351,0.723,66.000,0.551,-0.209,0.901,0.527,0.438 +Armenia,2016,4.325,9.357,0.709,66.275,0.611,-0.178,0.921,0.516,0.437 +Armenia,2017,4.288,9.434,0.698,66.550,0.614,-0.155,0.865,0.552,0.437 +Armenia,2018,5.062,9.490,0.814,66.825,0.808,-0.171,0.677,0.535,0.455 +Armenia,2019,5.488,9.569,0.782,67.100,0.844,-0.181,0.583,0.537,0.430 +Armenia,2021,5.301,9.561,0.762,67.650,0.795,-0.159,0.705,0.566,0.478 +Armenia,2022,5.382,9.683,0.811,67.925,0.790,-0.158,0.705,0.531,0.549 +Armenia,2023,5.679,9.730,0.819,68.200,0.819,-0.179,0.681,0.575,0.423 +Australia,2005,7.341,10.662,0.968,69.800,0.935,,0.390,0.770,0.238 +Australia,2007,7.285,10.694,0.965,69.960,0.891,0.342,0.513,0.762,0.215 +Australia,2008,7.254,10.709,0.947,70.040,0.916,0.300,0.431,0.729,0.218 +Australia,2010,7.450,10.714,0.955,70.200,0.932,0.311,0.366,0.762,0.220 +Australia,2011,7.406,10.723,0.967,70.280,0.945,0.364,0.382,0.724,0.195 +Australia,2012,7.196,10.744,0.945,70.360,0.935,0.268,0.368,0.728,0.214 +Australia,2013,7.364,10.752,0.928,70.440,0.933,0.263,0.432,0.770,0.177 +Australia,2014,7.289,10.763,0.924,70.520,0.923,0.313,0.442,0.740,0.245 +Australia,2015,7.309,10.770,0.952,70.600,0.922,0.327,0.357,0.750,0.210 +Australia,2016,7.250,10.781,0.942,70.675,0.922,0.233,0.399,0.736,0.236 +Australia,2017,7.257,10.787,0.950,70.750,0.911,0.312,0.411,0.728,0.225 +Australia,2018,7.177,10.801,0.940,70.825,0.916,0.141,0.405,0.706,0.187 +Australia,2019,7.234,10.807,0.943,70.900,0.918,0.115,0.430,0.727,0.202 +Australia,2020,7.137,10.794,0.937,70.975,0.905,0.202,0.491,0.726,0.205 +Australia,2021,7.112,10.815,0.920,71.050,0.912,0.234,0.454,0.740,0.235 +Australia,2022,7.035,10.840,0.942,71.125,0.854,0.153,0.545,0.711,0.244 +Australia,2023,7.025,10.846,0.896,71.200,0.876,0.187,0.482,0.731,0.248 +Austria,2006,7.122,10.836,0.936,69.500,0.941,0.297,0.490,0.746,0.174 +Austria,2008,7.181,10.881,0.935,69.700,0.879,0.286,0.614,0.716,0.173 +Austria,2010,7.303,10.856,0.914,69.900,0.896,0.125,0.546,0.710,0.156 +Austria,2011,7.471,10.881,0.944,70.000,0.939,0.126,0.703,0.672,0.145 +Austria,2012,7.401,10.884,0.945,70.100,0.920,0.112,0.771,0.712,0.157 +Austria,2013,7.499,10.878,0.950,70.200,0.922,0.163,0.679,0.725,0.163 +Austria,2014,6.950,10.877,0.899,70.300,0.885,0.112,0.567,0.721,0.170 +Austria,2015,7.076,10.876,0.928,70.400,0.900,0.093,0.557,0.748,0.164 +Austria,2016,7.048,10.885,0.926,70.525,0.889,0.074,0.524,0.713,0.197 +Austria,2017,7.294,10.900,0.906,70.650,0.890,0.128,0.518,0.699,0.180 +Austria,2018,7.396,10.919,0.912,70.775,0.904,0.048,0.523,0.695,0.226 +Austria,2019,7.195,10.930,0.964,70.900,0.903,0.054,0.457,0.727,0.205 +Austria,2020,7.213,10.859,0.925,71.025,0.912,0.004,0.464,0.716,0.206 +Austria,2021,7.080,10.899,0.863,71.150,0.795,0.158,0.501,0.722,0.259 +Austria,2022,6.999,10.938,0.876,71.275,0.856,0.137,0.524,0.718,0.226 +Austria,2023,6.636,10.930,0.874,71.400,0.874,0.209,0.529,0.712,0.240 +Azerbaijan,2006,4.728,9.154,0.854,60.580,0.772,-0.239,0.774,0.469,0.276 +Azerbaijan,2007,4.568,9.366,0.753,60.860,0.522,-0.211,0.871,0.474,0.284 +Azerbaijan,2008,4.817,9.447,0.684,61.140,0.601,-0.034,0.715,0.561,0.227 +Azerbaijan,2009,4.574,9.515,0.736,61.420,0.498,-0.091,0.754,0.522,0.234 +Azerbaijan,2010,4.219,9.553,0.687,61.700,0.501,-0.128,0.858,0.516,0.272 +Azerbaijan,2011,4.680,9.541,0.725,61.980,0.537,-0.110,0.795,0.522,0.258 +Azerbaijan,2012,4.911,9.549,0.762,62.260,0.599,-0.146,0.763,0.523,0.266 +Azerbaijan,2013,5.481,9.592,0.770,62.540,0.672,-0.173,0.699,0.516,0.242 +Azerbaijan,2014,5.252,9.607,0.799,62.820,0.733,-0.214,0.654,0.502,0.220 +Azerbaijan,2015,5.147,9.606,0.786,63.100,0.764,-0.203,0.616,0.520,0.206 +Azerbaijan,2016,5.304,9.563,0.777,63.225,0.713,-0.210,0.607,0.509,0.191 +Azerbaijan,2017,5.152,9.555,0.787,63.350,0.731,-0.231,0.653,0.512,0.198 +Azerbaijan,2018,5.168,9.562,0.781,63.475,0.772,-0.237,0.561,0.527,0.191 +Azerbaijan,2019,5.173,9.578,0.887,63.600,0.854,-0.220,0.457,0.577,0.164 +Azerbaijan,2022,4.576,9.619,0.665,63.975,0.800,0.075,0.696,0.533,0.401 +Azerbaijan,2023,5.214,9.637,0.713,64.100,0.829,-0.160,0.627,0.509,0.221 +Bahrain,2009,5.701,10.714,0.904,64.760,0.896,0.031,0.506,0.707,0.422 +Bahrain,2010,5.937,10.728,0.877,65.000,0.862,-0.008,0.715,0.641,0.423 +Bahrain,2011,4.824,10.749,0.908,65.240,0.870,-0.061,0.583,0.506,0.514 +Bahrain,2012,5.027,10.775,0.911,65.480,0.682,,0.438,0.559,0.381 +Bahrain,2013,6.690,10.798,0.884,65.720,0.809,,0.525,0.711,0.306 +Bahrain,2014,6.165,10.802,,65.960,,,,, +Bahrain,2015,6.007,10.788,0.853,66.200,0.850,0.106,,0.653,0.303 +Bahrain,2016,6.170,10.789,0.863,66.125,0.889,0.082,,0.736,0.283 +Bahrain,2017,6.227,10.798,0.876,66.050,0.906,0.128,,0.754,0.290 +Bahrain,2019,7.098,10.815,0.878,65.900,0.907,0.035,,0.711,0.317 +Bahrain,2020,6.173,10.779,0.848,65.825,0.945,0.115,,0.730,0.297 +Bahrain,2023,5.959,10.877,0.817,65.600,0.869,0.155,,0.671,0.336 +Bangladesh,2006,4.319,7.940,0.672,59.120,0.612,0.052,0.786,0.459,0.321 +Bangladesh,2007,4.607,7.997,0.514,59.640,0.605,0.024,0.806,0.484,0.313 +Bangladesh,2008,5.052,8.047,0.467,60.160,0.606,-0.060,0.802,0.545,0.232 +Bangladesh,2009,5.083,8.087,0.528,60.680,0.631,-0.091,0.776,0.506,0.223 +Bangladesh,2010,4.858,8.130,0.549,61.200,0.659,-0.033,0.774,0.496,0.292 +Bangladesh,2011,4.986,8.181,0.606,61.720,0.838,-0.086,0.757,0.501,0.235 +Bangladesh,2012,4.724,8.231,0.582,62.240,0.668,-0.051,0.765,0.537,0.183 +Bangladesh,2013,4.660,8.277,0.530,62.760,0.742,-0.032,0.743,0.492,0.246 +Bangladesh,2014,4.636,8.323,0.577,63.280,0.736,-0.115,0.789,,0.231 +Bangladesh,2015,4.633,8.375,0.601,63.800,0.815,-0.085,0.721,0.543,0.226 +Bangladesh,2016,4.556,8.431,0.649,63.925,0.875,-0.105,0.688,0.437,0.235 +Bangladesh,2017,4.310,8.483,0.713,64.050,0.896,-0.004,0.635,0.436,0.214 +Bangladesh,2018,4.499,8.542,0.706,64.175,0.901,-0.059,0.701,0.433,0.361 +Bangladesh,2019,5.114,8.607,0.673,64.300,0.902,-0.067,0.656,0.433,0.369 +Bangladesh,2020,5.280,8.629,0.739,64.425,0.777,-0.025,0.742,0.485,0.332 +Bangladesh,2021,4.123,8.685,0.485,64.550,0.893,0.089,0.746,0.504,0.448 +Bangladesh,2022,3.408,8.742,0.404,64.675,0.865,-0.058,0.617,0.394,0.448 +Bangladesh,2023,4.114,8.783,0.450,64.800,0.919,0.019,0.756,0.435,0.435 +Belarus,2006,5.658,9.489,0.918,60.060,0.707,-0.252,0.708,0.535,0.269 +Belarus,2007,5.617,9.576,0.858,60.620,0.667,-0.230,0.695,0.502,0.235 +Belarus,2008,5.463,9.677,0.904,61.180,0.640,-0.226,0.696,,0.246 +Belarus,2009,5.564,9.681,0.908,61.740,0.679,-0.209,0.676,0.544,0.223 +Belarus,2010,5.526,9.759,0.918,62.300,0.700,-0.168,0.706,0.532,0.208 +Belarus,2011,5.225,9.813,0.910,62.860,0.656,-0.174,0.672,0.493,0.249 +Belarus,2012,5.749,9.832,0.902,63.420,0.645,-0.223,0.657,0.515,0.181 +Belarus,2013,5.876,9.842,0.923,63.980,0.723,-0.183,0.653,0.545,0.206 +Belarus,2014,5.812,9.858,0.880,64.540,0.647,-0.054,0.682,0.575,0.209 +Belarus,2015,5.719,9.818,0.924,65.100,0.623,-0.097,0.669,0.546,0.184 +Belarus,2016,5.178,9.792,0.927,65.325,0.658,-0.131,0.664,0.503,0.182 +Belarus,2017,5.553,9.818,0.900,65.550,0.621,-0.128,0.654,0.502,0.233 +Belarus,2018,5.234,9.851,0.905,65.775,0.644,-0.181,0.718,0.409,0.236 +Belarus,2019,5.821,9.867,0.917,66.000,0.657,-0.192,0.546,0.559,0.190 +Belgium,2005,7.262,10.744,0.935,68.400,0.924,,0.598,0.677,0.260 +Belgium,2007,7.219,10.791,0.922,68.720,0.901,0.064,0.721,0.744,0.218 +Belgium,2008,7.117,10.788,0.923,68.880,0.887,0.001,0.652,0.709,0.242 +Belgium,2010,6.854,10.778,0.931,69.200,0.807,0.016,0.697,0.793,0.240 +Belgium,2011,7.111,10.782,0.937,69.360,0.880,-0.020,0.711,0.752,0.225 +Belgium,2012,6.935,10.783,0.927,69.520,0.855,-0.056,0.758,0.718,0.238 +Belgium,2013,7.104,10.783,0.909,69.680,0.891,0.011,0.574,0.738,0.217 +Belgium,2014,6.855,10.794,0.944,69.840,0.861,-0.005,0.512,0.744,0.252 +Belgium,2015,6.904,10.809,0.885,70.000,0.869,0.056,0.469,0.747,0.240 +Belgium,2016,6.949,10.816,0.929,70.150,0.866,-0.062,0.497,0.701,0.260 +Belgium,2017,6.928,10.829,0.922,70.300,0.857,0.049,0.543,0.713,0.234 +Belgium,2018,6.892,10.842,0.930,70.450,0.808,-0.130,0.630,0.682,0.250 +Belgium,2019,6.772,10.859,0.884,70.600,0.776,-0.178,0.672,0.699,0.244 +Belgium,2020,6.839,10.799,0.904,70.750,0.767,-0.172,0.634,0.619,0.260 +Belgium,2021,6.882,10.856,0.915,70.900,0.823,0.077,0.523,0.687,0.260 +Belgium,2022,6.857,10.881,0.923,71.050,0.890,0.095,0.483,0.718,0.235 +Belgium,2023,6.944,10.883,0.896,71.200,0.870,0.065,0.522,0.725,0.245 +Belize,2007,6.451,9.192,0.872,64.300,0.705,0.006,0.769,0.732,0.251 +Belize,2014,5.956,9.135,0.757,65.000,0.874,-0.002,0.782,0.735,0.282 +Benin,2006,3.330,7.844,0.445,51.960,0.580,-0.015,0.790,0.521,0.309 +Benin,2008,3.667,7.891,0.382,52.480,0.709,-0.008,0.825,0.574,0.303 +Benin,2011,3.870,7.876,0.477,53.260,0.773,-0.145,0.849,0.574,0.219 +Benin,2012,3.193,7.894,0.523,53.520,0.769,-0.114,0.806,0.563,0.231 +Benin,2013,3.479,7.935,0.577,53.780,0.783,-0.088,0.856,0.646,0.216 +Benin,2014,3.347,7.967,0.506,54.040,0.776,-0.099,0.855,0.558,0.273 +Benin,2015,3.625,7.955,0.434,54.300,0.733,-0.029,0.850,0.555,0.373 +Benin,2016,4.007,7.958,0.493,54.600,0.780,-0.068,0.838,0.578,0.456 +Benin,2017,4.853,7.984,0.436,54.900,0.727,-0.068,0.767,0.598,0.458 +Benin,2018,5.820,8.020,0.504,55.200,0.713,0.000,0.747,0.625,0.468 +Benin,2019,4.976,8.057,0.442,55.500,0.770,-0.018,0.698,0.638,0.441 +Benin,2020,4.408,8.067,0.507,55.800,0.783,-0.086,0.532,0.557,0.305 +Benin,2021,4.493,8.108,0.436,56.100,0.724,-0.016,0.613,0.597,0.435 +Benin,2022,4.217,8.142,0.366,56.400,0.714,-0.033,0.580,0.571,0.444 +Benin,2023,4.420,8.174,0.398,56.700,0.786,-0.073,0.575,0.573,0.428 +Bhutan,2013,5.569,9.097,0.819,62.240,0.810,0.349,0.802,0.664,0.217 +Bhutan,2014,4.939,9.143,0.880,62.420,0.834,0.264,0.650,0.775,0.324 +Bhutan,2015,5.082,9.198,0.848,62.600,0.830,0.273,0.634,0.723,0.312 +Bolivia,2006,5.374,8.671,0.834,60.900,0.770,-0.048,0.794,0.708,0.432 +Bolivia,2007,5.628,8.698,0.796,61.100,0.780,-0.004,0.817,0.746,0.388 +Bolivia,2008,5.298,8.740,0.785,61.300,0.726,-0.096,0.801,0.723,0.392 +Bolivia,2009,6.086,8.756,0.831,61.500,0.779,-0.040,0.763,0.742,0.372 +Bolivia,2010,5.781,8.780,0.807,61.700,0.703,-0.073,0.781,0.720,0.350 +Bolivia,2011,5.779,8.813,0.817,61.900,0.782,-0.043,0.825,0.689,0.361 +Bolivia,2012,6.019,8.847,0.781,62.100,0.862,-0.019,0.840,0.699,0.409 +Bolivia,2013,5.767,8.896,0.803,62.300,0.846,-0.071,0.812,0.721,0.410 +Bolivia,2014,5.865,8.933,0.821,62.500,0.881,0.014,0.832,0.769,0.398 +Bolivia,2015,5.834,8.965,0.829,62.700,0.884,-0.034,0.862,0.749,0.393 +Bolivia,2016,5.770,8.991,0.796,62.850,0.882,-0.051,0.853,0.736,0.376 +Bolivia,2017,5.651,9.017,0.779,63.000,0.884,-0.124,0.819,0.655,0.434 +Bolivia,2018,5.916,9.044,0.827,63.150,0.863,-0.097,0.786,0.705,0.387 +Bolivia,2019,5.674,9.051,0.784,63.300,0.881,-0.090,0.857,0.701,0.419 +Bolivia,2020,5.559,8.946,0.805,63.450,0.877,-0.056,0.868,0.729,0.382 +Bolivia,2021,5.569,8.994,0.798,63.600,0.862,-0.058,0.812,0.721,0.403 +Bolivia,2022,5.929,9.012,0.824,63.750,0.865,-0.083,0.840,0.738,0.426 +Bolivia,2023,5.860,9.025,0.786,63.900,0.832,-0.059,0.877,0.753,0.401 +Bosnia and Herzegovina,2007,4.900,9.191,0.766,67.000,0.342,0.006,0.926,0.570,0.296 +Bosnia and Herzegovina,2009,4.963,9.246,0.735,67.000,0.258,-0.027,0.959,0.507,0.390 +Bosnia and Herzegovina,2010,4.669,9.272,0.773,67.000,0.365,-0.131,0.933,0.465,0.409 +Bosnia and Herzegovina,2011,4.995,9.300,0.725,67.000,0.333,-0.038,0.925,0.551,0.326 +Bosnia and Herzegovina,2012,4.773,9.310,0.779,67.000,0.420,-0.016,0.953,0.469,0.338 +Bosnia and Herzegovina,2013,5.124,9.349,0.767,67.000,0.390,0.039,0.970,0.489,0.315 +Bosnia and Herzegovina,2014,5.249,9.373,0.788,67.000,0.412,0.229,0.976,0.491,0.262 +Bosnia and Herzegovina,2015,5.117,9.428,0.656,67.000,0.631,-0.058,0.960,0.486,0.286 +Bosnia and Herzegovina,2016,5.181,9.473,0.808,67.050,0.633,0.130,0.957,0.566,0.304 +Bosnia and Herzegovina,2017,5.090,9.517,0.775,67.100,0.564,0.087,0.923,0.527,0.271 +Bosnia and Herzegovina,2018,5.887,9.566,0.836,67.150,0.659,0.118,0.913,0.568,0.277 +Bosnia and Herzegovina,2019,6.016,9.606,0.873,67.200,0.722,0.074,0.963,0.545,0.238 +Bosnia and Herzegovina,2020,5.516,9.588,0.899,67.250,0.740,0.132,0.916,0.602,0.325 +Bosnia and Herzegovina,2021,5.749,9.674,0.860,67.300,0.759,0.274,0.921,0.604,0.305 +Bosnia and Herzegovina,2022,5.872,9.723,0.856,67.350,0.743,0.191,0.933,0.543,0.285 +Bosnia and Herzegovina,2023,6.009,9.759,0.879,67.400,0.847,0.241,0.948,0.579,0.249 +Botswana,2006,4.739,9.495,0.883,48.840,0.824,-0.201,0.723,0.643,0.226 +Botswana,2008,5.451,9.543,0.832,49.720,0.858,-0.167,0.806,0.677,0.218 +Botswana,2010,3.553,9.446,0.866,50.600,0.826,-0.141,0.814,0.617,0.172 +Botswana,2011,3.520,9.492,0.860,51.040,0.813,-0.248,0.816,0.647,0.160 +Botswana,2012,4.836,9.471,0.837,51.480,0.799,-0.197,0.814,0.695,0.171 +Botswana,2013,4.128,9.557,0.856,51.920,0.767,-0.148,0.749,0.671,0.244 +Botswana,2014,4.031,9.593,0.859,52.360,0.791,-0.099,0.743,0.626,0.245 +Botswana,2015,3.762,9.524,0.816,52.800,0.857,-0.108,0.860,0.676,0.261 +Botswana,2016,3.499,9.573,0.768,53.075,0.852,-0.246,0.729,0.657,0.252 +Botswana,2017,3.505,9.593,0.768,53.350,0.817,-0.242,0.731,0.612,0.276 +Botswana,2018,3.461,9.613,0.795,53.625,0.818,-0.248,0.807,0.688,0.267 +Botswana,2019,3.471,9.624,0.774,53.900,0.833,-0.233,0.792,0.665,0.273 +Botswana,2022,3.435,9.650,0.750,54.725,0.739,-0.218,0.831,0.623,0.287 +Botswana,2023,3.332,9.673,0.701,55.000,0.741,-0.264,0.814,0.657,0.247 +Brazil,2005,6.637,9.435,0.883,63.100,0.882,,0.745,0.770,0.302 +Brazil,2007,6.321,9.512,0.886,63.420,0.777,-0.022,0.728,0.775,0.299 +Brazil,2008,6.691,9.552,0.878,63.580,0.782,-0.083,0.688,0.718,0.265 +Brazil,2009,7.001,9.541,0.913,63.740,0.767,-0.061,0.723,0.744,0.274 +Brazil,2010,6.837,9.604,0.906,63.900,0.806,-0.059,0.656,0.726,0.250 +Brazil,2011,7.038,9.634,0.916,64.060,0.834,-0.078,0.662,0.698,0.268 +Brazil,2012,6.660,9.644,0.890,64.220,0.849,,0.623,0.685,0.350 +Brazil,2013,7.140,9.665,0.910,64.380,0.785,-0.100,0.707,0.725,0.276 +Brazil,2014,6.981,9.661,0.898,64.540,0.714,-0.121,0.710,0.718,0.274 +Brazil,2015,6.547,9.617,0.907,64.700,0.799,-0.021,0.771,0.687,0.325 +Brazil,2016,6.375,9.575,0.912,64.875,0.807,-0.106,0.781,0.711,0.302 +Brazil,2017,6.333,9.580,0.905,65.050,0.765,-0.181,0.794,0.669,0.308 +Brazil,2018,6.191,9.590,0.882,65.225,0.751,-0.123,0.763,0.677,0.350 +Brazil,2019,6.451,9.595,0.899,65.400,0.830,-0.068,0.762,0.701,0.337 +Brazil,2020,6.110,9.555,0.831,65.575,0.786,-0.061,0.729,0.653,0.389 +Brazil,2021,6.010,9.598,0.814,65.750,0.792,0.086,0.739,0.662,0.407 +Brazil,2022,6.257,9.622,0.866,65.925,0.830,-0.064,0.742,0.681,0.341 +Brazil,2023,6.553,9.635,0.856,66.100,0.870,-0.036,0.733,0.694,0.313 +Bulgaria,2007,3.844,9.746,0.832,64.780,0.566,-0.146,0.976,0.500,0.226 +Bulgaria,2010,3.912,9.807,0.843,65.200,0.545,-0.153,0.941,0.513,0.238 +Bulgaria,2011,3.875,9.834,0.860,65.340,0.664,-0.236,0.948,0.490,0.271 +Bulgaria,2012,4.222,9.848,0.838,65.480,0.641,-0.181,0.938,0.510,0.237 +Bulgaria,2013,3.993,9.848,0.829,65.620,0.603,-0.199,0.962,0.537,0.278 +Bulgaria,2014,4.438,9.863,0.886,65.760,0.576,-0.062,0.955,0.542,0.236 +Bulgaria,2015,4.865,9.903,0.908,65.900,0.637,-0.207,0.941,0.556,0.214 +Bulgaria,2016,4.838,9.940,0.926,66.000,0.700,-0.177,0.936,0.545,0.172 +Bulgaria,2017,5.097,9.974,0.942,66.100,0.689,-0.160,0.911,0.542,0.189 +Bulgaria,2018,5.099,10.008,0.924,66.200,0.724,-0.182,0.952,0.554,0.189 +Bulgaria,2019,5.108,10.055,0.948,66.300,0.822,-0.115,0.943,0.577,0.200 +Bulgaria,2020,5.598,10.020,0.916,66.400,0.818,-0.012,0.901,0.642,0.221 +Bulgaria,2021,5.422,10.102,0.884,66.500,0.841,-0.018,0.891,0.647,0.253 +Bulgaria,2022,5.378,10.197,0.953,66.600,0.741,-0.152,0.942,0.582,0.165 +Bulgaria,2023,5.590,10.273,0.935,66.700,0.754,-0.131,0.948,0.539,0.192 +Burkina Faso,2006,3.801,7.327,0.796,49.440,0.588,0.026,0.798,0.678,0.266 +Burkina Faso,2007,4.017,7.337,0.771,49.880,0.582,-0.062,0.833,0.609,0.281 +Burkina Faso,2008,3.846,7.364,0.727,50.320,0.612,-0.103,0.887,0.538,0.304 +Burkina Faso,2010,4.036,7.416,0.773,51.200,0.587,-0.038,0.767,0.565,0.217 +Burkina Faso,2011,4.785,7.450,0.710,51.640,0.725,-0.107,0.707,0.578,0.205 +Burkina Faso,2012,3.955,7.482,0.744,52.080,0.622,-0.072,0.726,0.487,0.300 +Burkina Faso,2013,3.326,7.509,0.745,52.520,0.741,-0.018,0.765,0.592,0.287 +Burkina Faso,2014,3.481,7.521,0.742,52.960,0.710,-0.006,0.801,0.604,0.256 +Burkina Faso,2015,4.419,7.530,0.705,53.400,0.659,0.001,0.693,0.555,0.359 +Burkina Faso,2016,4.206,7.558,0.764,53.775,0.645,-0.003,0.721,0.590,0.337 +Burkina Faso,2017,4.647,7.590,0.785,54.150,0.614,-0.066,0.727,0.580,0.354 +Burkina Faso,2018,4.927,7.626,0.665,54.525,0.721,-0.016,0.757,0.656,0.343 +Burkina Faso,2019,4.741,7.654,0.683,54.900,0.678,-0.007,0.729,0.656,0.365 +Burkina Faso,2020,4.640,7.647,0.668,55.275,0.750,0.120,0.809,0.605,0.388 +Burkina Faso,2021,4.636,7.687,0.658,55.650,0.644,0.064,0.736,0.620,0.363 +Burkina Faso,2023,4.462,7.693,0.580,56.400,0.715,0.105,0.650,0.639,0.346 +Burundi,2008,3.563,6.700,0.291,49.660,0.260,-0.022,0.860,0.415,0.253 +Burundi,2009,3.792,6.687,0.326,50.280,0.427,-0.021,0.718,0.607,0.164 +Burundi,2011,3.706,6.694,0.422,51.520,0.490,-0.063,0.677,0.572,0.190 +Burundi,2014,2.905,6.723,0.565,53.380,0.431,-0.059,0.808,0.622,0.251 +Burundi,2018,3.775,6.607,0.485,55.200,0.646,-0.027,0.599,0.636,0.363 +Cambodia,2006,3.569,7.746,0.793,57.640,,0.250,0.829,,0.341 +Cambodia,2007,4.156,7.826,0.675,57.980,0.819,0.111,0.879,,0.320 +Cambodia,2008,4.462,7.874,0.619,58.320,0.914,0.041,0.888,0.600,0.335 +Cambodia,2009,4.111,7.860,0.818,58.660,0.937,0.148,0.965,0.691,0.188 +Cambodia,2010,4.141,7.904,0.697,59.000,0.940,0.345,0.896,0.662,0.422 +Cambodia,2011,4.161,7.957,0.716,59.340,0.927,0.413,0.775,0.637,0.308 +Cambodia,2012,3.899,8.013,0.606,59.680,0.956,0.242,0.890,0.713,0.352 +Cambodia,2013,3.674,8.070,0.651,60.020,0.941,0.159,0.812,0.670,0.440 +Cambodia,2014,3.883,8.125,0.693,60.360,0.938,0.234,0.843,0.682,0.482 +Cambodia,2015,4.162,8.179,0.729,60.700,0.956,0.204,0.825,0.731,0.399 +Cambodia,2016,4.461,8.233,0.746,60.900,0.958,0.070,0.840,0.713,0.398 +Cambodia,2017,4.586,8.287,0.765,61.100,0.964,0.082,0.821,0.669,0.408 +Cambodia,2018,5.122,8.347,0.795,61.300,0.958,0.029,,0.723,0.414 +Cambodia,2019,4.998,8.404,0.759,61.500,0.957,0.007,0.828,0.704,0.390 +Cambodia,2020,4.377,8.361,0.724,61.700,0.963,0.047,0.863,0.771,0.390 +Cambodia,2021,4.555,8.379,0.713,61.900,0.965,0.012,0.844,0.759,0.391 +Cambodia,2022,4.250,8.419,0.784,62.100,0.946,0.151,0.860,0.756,0.388 +Cambodia,2023,4.221,8.462,0.738,62.300,0.961,0.070,0.799,0.683,0.394 +Cameroon,2006,3.851,8.090,0.690,47.840,0.653,-0.020,0.907,0.588,0.271 +Cameroon,2007,4.350,8.104,0.717,48.280,0.644,-0.042,0.910,0.630,0.249 +Cameroon,2008,4.292,8.104,0.697,48.720,0.580,-0.079,0.945,0.613,0.312 +Cameroon,2009,4.741,8.101,0.729,49.160,0.698,-0.027,0.925,0.592,0.250 +Cameroon,2010,4.554,8.101,0.759,49.600,0.792,-0.008,0.875,0.594,0.274 +Cameroon,2011,4.434,8.106,0.738,50.040,0.817,-0.038,0.870,0.608,0.272 +Cameroon,2012,4.245,8.123,0.743,50.480,0.766,-0.041,0.898,0.617,0.284 +Cameroon,2013,4.271,8.144,0.760,50.920,0.794,-0.039,0.867,0.640,0.268 +Cameroon,2014,4.240,8.169,0.778,51.360,0.795,-0.080,0.856,0.604,0.216 +Cameroon,2015,5.038,8.193,0.646,51.800,0.791,0.041,0.868,0.624,0.346 +Cameroon,2016,4.816,8.207,0.659,52.475,0.713,-0.012,0.879,0.635,0.367 +Cameroon,2017,5.074,8.214,0.695,53.150,0.767,-0.036,0.844,0.632,0.377 +Cameroon,2018,5.251,8.225,0.677,53.825,0.816,0.028,0.884,0.630,0.356 +Cameroon,2019,4.937,8.231,0.711,54.500,0.712,-0.015,0.817,0.606,0.326 +Cameroon,2020,5.241,8.207,0.720,55.175,0.675,0.042,0.837,0.626,0.386 +Cameroon,2021,4.963,8.216,0.695,55.850,0.715,-0.029,0.849,0.612,0.347 +Cameroon,2022,4.712,8.225,0.629,56.525,0.675,0.022,0.849,0.586,0.362 +Cameroon,2023,4.946,8.238,0.716,57.200,0.739,-0.028,0.855,0.588,0.356 +Canada,2005,7.418,10.707,0.962,70.500,0.957,0.246,0.503,0.783,0.233 +Canada,2007,7.482,10.734,,70.620,0.930,0.244,0.406,0.812,0.257 +Canada,2008,7.486,10.733,0.939,70.680,0.926,0.256,0.370,0.802,0.202 +Canada,2009,7.488,10.692,0.943,70.740,0.915,0.241,0.413,0.793,0.248 +Canada,2010,7.650,10.711,0.954,70.800,0.934,0.225,0.413,0.791,0.233 +Canada,2011,7.426,10.733,0.922,70.860,0.951,0.247,0.433,0.803,0.248 +Canada,2012,7.415,10.739,0.948,70.920,0.918,0.284,0.466,0.776,0.229 +Canada,2013,7.594,10.752,0.936,70.980,0.916,0.310,0.406,0.801,0.263 +Canada,2014,7.304,10.770,0.918,71.040,0.939,0.264,0.442,0.791,0.259 +Canada,2015,7.413,10.769,0.939,71.100,0.931,0.247,0.427,0.792,0.286 +Canada,2016,7.245,10.768,0.924,71.150,0.912,0.205,0.385,0.768,0.237 +Canada,2017,7.415,10.786,0.934,71.200,0.945,0.157,0.362,0.799,0.218 +Canada,2018,7.175,10.799,0.923,71.250,0.946,0.100,0.372,0.773,0.259 +Canada,2019,7.109,10.803,0.925,71.300,0.912,0.105,0.436,0.781,0.285 +Canada,2020,7.025,10.740,0.931,71.350,0.887,0.043,0.434,0.738,0.307 +Canada,2021,6.939,10.783,0.926,71.400,0.898,0.189,0.384,0.763,0.276 +Canada,2022,6.918,10.799,0.929,71.450,0.838,0.220,0.442,0.719,0.287 +Canada,2023,6.841,10.794,0.902,71.500,0.847,0.196,0.468,0.726,0.304 +Central African Republic,2007,4.160,6.946,0.532,41.480,0.663,0.079,0.782,0.567,0.330 +Central African Republic,2010,3.568,7.031,0.483,42.500,0.690,-0.037,0.845,0.478,0.257 +Central African Republic,2011,3.678,7.057,0.387,42.840,0.780,-0.016,0.834,0.502,0.277 +Central African Republic,2016,2.693,6.707,0.290,44.750,0.624,0.033,0.859,0.551,0.494 +Central African Republic,2017,3.476,6.733,0.320,45.300,0.645,0.074,0.890,0.602,0.599 +Chad,2006,3.435,7.369,0.724,47.080,0.306,0.022,0.961,0.571,0.263 +Chad,2007,4.141,7.368,0.479,47.460,0.295,-0.017,0.874,0.598,0.245 +Chad,2008,4.632,7.363,0.571,47.840,0.527,0.057,0.944,0.569,0.225 +Chad,2009,3.639,7.369,0.646,48.220,0.401,0.016,0.931,0.601,0.221 +Chad,2010,3.743,7.462,0.734,48.600,0.505,0.020,0.858,0.560,0.287 +Chad,2011,4.393,7.428,0.819,48.980,0.540,0.025,0.876,0.579,0.289 +Chad,2012,4.033,7.478,0.673,49.360,0.563,-0.039,0.884,0.498,0.316 +Chad,2013,3.508,7.498,0.714,49.740,0.488,-0.051,0.882,0.437,0.314 +Chad,2014,3.460,7.529,0.733,50.120,0.567,-0.075,0.881,0.524,0.329 +Chad,2015,4.323,7.525,0.751,50.500,0.474,-0.034,0.889,0.593,0.358 +Chad,2016,4.029,7.429,0.616,50.875,0.525,0.047,0.820,0.564,0.468 +Chad,2017,4.559,7.365,0.661,51.250,0.615,0.003,0.792,0.584,0.538 +Chad,2018,4.486,7.355,0.577,51.625,0.650,0.020,0.763,0.532,0.544 +Chad,2019,4.251,7.354,0.640,52.000,0.537,0.051,0.832,0.556,0.460 +Chad,2022,4.397,7.253,0.720,53.125,0.679,0.218,0.805,0.588,0.499 +Chad,2023,4.544,7.254,0.609,53.500,0.586,0.138,0.755,0.541,0.467 +Chile,2006,6.063,9.870,0.836,67.780,0.744,0.161,0.634,0.752,0.348 +Chile,2007,5.698,9.910,0.815,67.960,0.662,0.236,0.723,0.708,0.342 +Chile,2008,5.789,9.938,0.804,68.140,0.640,0.076,0.741,0.706,0.330 +Chile,2009,6.494,9.916,0.832,68.320,0.747,0.141,0.734,0.756,0.300 +Chile,2010,6.636,9.963,0.857,68.500,0.786,0.100,0.702,0.760,0.300 +Chile,2011,6.526,10.013,0.819,68.680,0.701,0.104,0.753,0.758,0.317 +Chile,2012,6.599,10.063,0.855,68.860,0.734,0.186,0.782,0.736,0.288 +Chile,2013,6.740,10.086,0.862,69.040,0.737,0.077,0.741,0.791,0.285 +Chile,2014,6.844,10.094,0.862,69.220,0.733,0.209,0.758,0.800,0.276 +Chile,2015,6.533,10.105,0.827,69.400,0.769,0.032,0.812,0.752,0.333 +Chile,2016,6.579,10.110,0.841,69.550,0.652,0.094,0.858,0.792,0.283 +Chile,2017,6.320,10.108,0.880,69.700,0.790,-0.028,0.836,0.765,0.291 +Chile,2018,6.436,10.130,0.890,69.850,0.789,-0.068,0.816,0.755,0.276 +Chile,2019,5.942,10.119,0.869,70.000,0.659,-0.110,0.860,0.741,0.337 +Chile,2020,6.151,10.042,0.888,70.150,0.781,0.026,0.812,0.753,0.336 +Chile,2021,6.436,10.143,0.891,70.300,0.803,-0.052,0.859,0.735,0.221 +Chile,2022,6.415,10.161,0.887,70.450,0.793,-0.014,0.796,0.775,0.253 +Chile,2023,6.230,10.155,0.874,70.600,0.815,-0.027,0.836,0.779,0.263 +China,2006,4.560,8.696,0.747,65.660,,,,0.658,0.170 +China,2007,4.863,8.824,0.811,65.920,,-0.182,,0.664,0.159 +China,2008,4.846,8.911,0.748,66.180,0.853,-0.098,,0.705,0.147 +China,2009,4.454,8.996,0.798,66.440,0.771,-0.166,,0.670,0.162 +China,2010,4.653,9.092,0.768,66.700,0.805,-0.139,,0.658,0.158 +China,2011,5.037,9.178,0.787,66.960,0.824,-0.192,,0.710,0.134 +China,2012,5.095,9.247,0.788,67.220,0.808,-0.190,,0.689,0.159 +China,2013,5.241,9.315,0.778,67.480,0.805,-0.163,,0.717,0.142 +China,2014,5.196,9.380,0.820,67.740,,-0.222,,0.710,0.112 +China,2015,5.304,9.442,0.794,68.000,,-0.250,,0.667,0.171 +China,2016,5.325,9.503,0.742,68.125,,-0.233,,0.683,0.146 +China,2017,5.099,9.564,0.772,68.250,0.878,-0.180,,0.682,0.214 +China,2018,5.131,9.625,0.788,68.375,0.895,-0.164,,0.722,0.190 +China,2019,5.144,9.679,0.822,68.500,0.927,-0.178,,0.760,0.147 +China,2020,5.771,9.699,0.808,68.625,0.891,-0.109,,0.663,0.245 +China,2021,5.863,9.779,0.856,68.750,0.875,0.020,,0.698,0.240 +China,2023,6.145,9.861,0.797,69.000,0.793,-0.032,,0.708,0.210 +Colombia,2006,6.025,9.277,0.910,66.320,0.805,-0.021,0.808,0.776,0.326 +Colombia,2007,6.138,9.330,0.894,66.540,0.786,-0.046,0.860,0.774,0.287 +Colombia,2008,6.168,9.351,0.880,66.760,0.795,-0.047,0.763,0.768,0.307 +Colombia,2009,6.272,9.351,0.886,66.980,0.757,-0.060,0.837,0.786,0.273 +Colombia,2010,6.408,9.383,0.893,67.200,0.816,-0.055,0.815,0.792,0.265 +Colombia,2011,6.464,9.440,0.904,67.420,0.811,-0.079,0.847,0.785,0.286 +Colombia,2012,6.375,9.468,0.914,67.640,0.828,-0.015,0.868,0.829,0.294 +Colombia,2013,6.607,9.508,0.901,67.860,0.841,-0.076,0.898,0.815,0.278 +Colombia,2014,6.449,9.542,0.907,68.080,0.801,-0.096,0.887,0.825,0.278 +Colombia,2015,6.388,9.562,0.890,68.300,0.791,-0.106,0.843,0.803,0.292 +Colombia,2016,6.234,9.572,0.882,68.475,0.835,-0.106,0.898,0.770,0.294 +Colombia,2017,6.157,9.570,0.909,68.650,0.838,-0.163,0.875,0.790,0.299 +Colombia,2018,5.984,9.577,0.871,68.825,0.851,-0.154,0.855,0.775,0.301 +Colombia,2019,6.350,9.590,0.873,69.000,0.822,-0.177,0.854,0.791,0.322 +Colombia,2020,5.709,9.500,0.797,69.175,0.840,-0.091,0.808,0.759,0.340 +Colombia,2021,5.290,9.593,0.793,69.350,0.775,-0.065,0.831,0.752,0.348 +Colombia,2022,5.892,9.658,0.877,69.525,0.799,-0.164,0.863,0.762,0.306 +Colombia,2023,5.904,9.667,0.833,69.700,0.823,-0.142,0.870,0.754,0.285 +Comoros,2009,3.476,7.999,0.629,56.760,0.508,-0.082,0.838,0.626,0.167 +Comoros,2010,3.812,8.015,0.721,57.000,0.529,-0.003,0.741,0.664,0.178 +Comoros,2011,3.838,8.034,0.722,57.240,0.500,-0.084,0.732,0.622,0.173 +Comoros,2012,3.956,8.044,0.719,57.480,0.534,-0.130,0.651,0.616,0.212 +Comoros,2018,3.973,8.100,0.621,58.725,0.560,0.075,0.794,0.688,0.337 +Comoros,2019,4.609,8.099,0.632,58.900,0.538,0.067,0.762,0.665,0.336 +Comoros,2022,3.545,8.085,0.472,59.425,0.481,-0.018,0.732,0.603,0.352 +Comoros,2023,3.588,8.095,0.483,59.600,0.452,0.004,0.704,0.535,0.405 +Congo (Brazzaville),2008,3.820,8.390,0.555,52.240,0.526,-0.125,,0.603,0.298 +Congo (Brazzaville),2011,4.510,8.502,0.637,53.380,0.745,-0.137,0.833,0.601,0.288 +Congo (Brazzaville),2012,3.919,8.569,0.622,53.760,0.773,-0.144,0.800,0.547,0.323 +Congo (Brazzaville),2013,3.955,8.538,0.680,54.140,0.726,-0.107,0.752,0.599,0.291 +Congo (Brazzaville),2014,4.056,8.579,0.686,54.520,0.662,-0.140,0.808,0.558,0.400 +Congo (Brazzaville),2015,4.691,8.519,0.642,54.900,0.850,-0.129,0.841,0.555,0.261 +Congo (Brazzaville),2016,4.119,8.381,0.615,55.225,0.786,-0.091,0.790,0.586,0.304 +Congo (Brazzaville),2017,4.884,8.312,0.655,55.550,0.778,-0.148,0.763,0.574,0.382 +Congo (Brazzaville),2018,5.490,8.239,0.621,55.875,0.699,-0.105,0.738,0.571,0.448 +Congo (Brazzaville),2019,5.213,8.215,0.625,56.200,0.686,-0.059,0.741,0.594,0.405 +Congo (Brazzaville),2020,5.079,8.127,0.597,56.525,0.761,-0.024,0.728,0.572,0.435 +Congo (Brazzaville),2021,4.921,8.082,0.568,56.850,0.738,-0.023,0.733,0.568,0.420 +Congo (Brazzaville),2022,5.805,8.074,0.646,57.175,0.698,0.025,0.760,0.583,0.477 +Congo (Brazzaville),2023,4.954,8.086,0.561,57.500,0.702,-0.051,0.745,0.585,0.409 +Congo (Kinshasa),2009,3.984,6.699,0.733,49.400,0.556,-0.025,0.824,0.487,0.283 +Congo (Kinshasa),2011,4.517,6.769,0.744,50.400,0.631,-0.028,0.856,0.565,0.208 +Congo (Kinshasa),2012,4.639,6.803,0.770,50.900,0.557,-0.037,0.807,0.626,0.230 +Congo (Kinshasa),2013,4.497,6.851,0.830,51.400,0.480,0.009,0.913,0.556,0.187 +Congo (Kinshasa),2014,4.414,6.907,0.822,51.900,0.556,0.006,0.814,0.519,0.305 +Congo (Kinshasa),2015,3.903,6.940,0.767,52.400,0.574,-0.050,0.866,0.538,0.301 +Congo (Kinshasa),2016,4.522,6.929,0.864,52.825,0.637,-0.027,0.875,0.610,0.222 +Congo (Kinshasa),2017,4.311,6.931,0.670,53.250,0.704,0.066,0.809,0.541,0.404 +Congo (Kinshasa),2022,3.207,7.032,0.654,55.375,0.664,0.080,0.836,0.563,0.461 +Congo (Kinshasa),2023,3.383,7.076,0.572,55.800,0.687,0.152,0.837,0.546,0.497 +Costa Rica,2006,7.082,9.607,0.937,68.560,0.882,0.052,0.798,0.815,0.236 +Costa Rica,2007,7.432,9.672,0.918,68.720,0.923,0.089,0.820,0.826,0.240 +Costa Rica,2008,6.851,9.704,0.916,68.880,0.912,0.087,0.816,0.838,0.233 +Costa Rica,2009,7.615,9.682,0.900,69.040,0.886,0.057,0.787,0.840,0.217 +Costa Rica,2010,7.271,9.721,0.915,69.200,0.881,0.038,0.763,0.827,0.221 +Costa Rica,2011,7.229,9.752,0.892,69.360,0.926,-0.042,0.837,0.794,0.269 +Costa Rica,2012,7.272,9.788,0.902,69.520,0.929,0.037,0.794,0.837,0.263 +Costa Rica,2013,7.158,9.801,0.902,69.680,0.898,0.009,0.813,0.809,0.278 +Costa Rica,2014,7.247,9.824,0.914,69.840,0.927,0.000,0.788,0.797,0.290 +Costa Rica,2015,6.854,9.850,0.878,70.000,0.907,-0.068,0.761,0.811,0.286 +Costa Rica,2016,7.136,9.881,0.901,70.000,0.873,-0.042,0.781,0.830,0.281 +Costa Rica,2017,7.225,9.912,0.922,70.000,0.936,-0.086,0.742,0.791,0.275 +Costa Rica,2018,7.141,9.928,0.876,70.000,0.942,-0.117,0.781,0.802,0.326 +Costa Rica,2019,6.998,9.944,0.906,70.000,0.927,-0.156,0.836,0.791,0.303 +Costa Rica,2020,6.338,9.892,0.834,70.000,0.889,-0.139,0.772,0.759,0.350 +Costa Rica,2021,6.408,9.961,0.876,70.000,0.887,-0.029,0.782,0.774,0.318 +Costa Rica,2022,7.077,9.998,0.902,70.000,0.910,-0.049,0.751,0.793,0.272 +Costa Rica,2023,7.384,10.021,0.875,70.000,0.933,-0.067,0.767,0.806,0.282 +Croatia,2007,5.821,10.174,0.910,66.940,0.662,-0.099,0.934,0.550,0.337 +Croatia,2009,5.433,10.120,0.861,67.180,0.549,-0.278,0.958,0.557,0.272 +Croatia,2010,5.596,10.110,0.796,67.300,0.564,-0.244,0.973,0.554,0.259 +Croatia,2011,5.385,10.113,0.790,67.420,0.517,-0.205,0.977,0.552,0.273 +Croatia,2012,6.028,10.092,0.776,67.540,0.542,-0.250,0.924,0.572,0.271 +Croatia,2013,5.885,10.091,0.751,67.660,0.627,-0.211,0.936,0.554,0.285 +Croatia,2014,5.381,10.091,0.646,67.780,0.519,0.125,0.918,0.545,0.286 +Croatia,2015,5.205,10.124,0.768,67.900,0.694,-0.104,0.849,0.570,0.294 +Croatia,2016,5.417,10.166,0.798,68.075,0.672,-0.072,0.884,0.569,0.337 +Croatia,2017,5.343,10.211,0.770,68.250,0.716,-0.112,0.892,0.618,0.316 +Croatia,2018,5.536,10.248,0.910,68.425,0.691,-0.158,0.925,0.512,0.290 +Croatia,2019,5.626,10.287,0.936,68.600,0.739,-0.145,0.932,0.504,0.269 +Croatia,2020,6.508,10.202,0.923,68.775,0.837,-0.071,0.961,0.681,0.286 +Croatia,2021,6.287,10.367,0.918,68.950,0.842,0.001,0.934,0.640,0.274 +Croatia,2022,5.579,10.435,0.910,69.125,0.593,-0.213,0.875,0.573,0.267 +Croatia,2023,5.958,10.462,0.909,69.300,0.573,-0.205,0.810,0.610,0.230 +Cuba,2006,5.418,,0.970,68.000,0.281,,,0.596,0.277 +Cyprus,2006,6.238,10.567,0.878,70.160,0.836,0.012,0.712,0.704,0.253 +Cyprus,2009,6.833,10.559,0.812,70.640,0.775,0.048,0.801,0.668,0.329 +Cyprus,2010,6.387,10.556,0.822,70.800,0.755,0.066,0.833,0.699,0.296 +Cyprus,2011,6.690,10.534,0.844,70.960,0.745,0.173,0.841,0.682,0.272 +Cyprus,2012,6.181,10.484,0.767,71.120,0.725,0.092,0.871,0.687,0.369 +Cyprus,2013,5.439,10.418,0.744,71.280,0.656,0.096,0.867,0.657,0.420 +Cyprus,2014,5.627,10.411,0.770,71.440,0.715,0.054,0.868,0.661,0.397 +Cyprus,2015,5.439,10.451,0.770,71.600,0.628,0.107,0.893,0.660,0.383 +Cyprus,2016,5.795,10.510,0.786,71.800,0.756,-0.036,0.898,0.631,0.336 +Cyprus,2017,6.062,10.556,0.819,72.000,0.812,0.036,0.851,0.670,0.301 +Cyprus,2018,6.276,10.599,0.826,72.200,0.794,-0.031,0.848,0.663,0.298 +Cyprus,2019,6.137,10.639,0.776,72.400,0.740,-0.018,0.865,0.663,0.290 +Cyprus,2020,6.260,10.583,0.806,72.600,0.763,-0.086,0.816,0.671,0.284 +Cyprus,2021,6.269,10.638,0.855,72.800,0.718,-0.038,0.876,0.641,0.275 +Cyprus,2022,5.865,10.683,0.820,73.000,0.698,0.008,0.887,0.659,0.297 +Cyprus,2023,6.071,,0.803,73.200,0.730,,0.840,0.682,0.297 +Czechia,2005,6.439,10.322,0.919,67.100,0.865,,0.901,0.639,0.258 +Czechia,2007,6.500,10.433,0.900,67.340,0.799,-0.069,0.928,0.660,0.277 +Czechia,2010,6.250,10.419,0.934,67.700,0.779,-0.048,0.926,0.648,0.244 +Czechia,2011,6.331,10.434,0.914,67.820,0.787,-0.112,0.950,0.623,0.253 +Czechia,2012,6.334,10.425,0.912,67.940,0.740,-0.160,0.957,0.635,0.257 +Czechia,2013,6.698,10.424,0.888,68.060,0.726,-0.162,0.916,0.656,0.253 +Czechia,2014,6.484,10.445,0.878,68.180,0.800,-0.174,0.897,0.638,0.235 +Czechia,2015,6.608,10.496,0.911,68.300,0.808,-0.152,0.886,0.689,0.206 +Czechia,2016,6.736,10.519,0.931,68.425,0.850,-0.204,0.900,0.710,0.201 +Czechia,2017,6.790,10.567,0.901,68.550,0.832,-0.183,0.867,0.672,0.227 +Czechia,2018,7.034,10.595,0.929,68.675,0.790,-0.299,0.851,0.674,0.178 +Czechia,2020,6.897,10.562,0.964,68.925,0.906,-0.135,0.884,0.748,0.290 +Czechia,2021,6.942,10.615,0.950,69.050,0.891,0.157,0.863,0.716,0.240 +Czechia,2022,6.695,10.637,0.944,69.175,0.908,0.093,0.831,0.743,0.246 +Czechia,2023,6.827,10.639,0.927,69.300,0.906,0.025,0.832,0.750,0.254 +Denmark,2005,8.019,10.849,0.972,68.300,0.971,,0.237,0.777,0.154 +Denmark,2007,7.834,10.889,0.954,68.740,0.932,0.234,0.206,0.778,0.194 +Denmark,2008,7.971,10.878,0.954,68.960,0.970,0.266,0.248,0.759,0.163 +Denmark,2009,7.683,10.822,0.939,69.180,0.949,0.258,0.206,0.782,0.234 +Denmark,2010,7.771,10.836,0.975,69.400,0.944,0.237,0.175,0.796,0.155 +Denmark,2011,7.788,10.845,0.962,69.620,0.935,0.292,0.220,0.778,0.175 +Denmark,2012,7.520,10.844,0.951,69.840,0.933,0.133,0.187,0.783,0.209 +Denmark,2013,7.589,10.849,0.965,70.060,0.920,0.209,0.170,0.826,0.195 +Denmark,2014,7.508,10.860,0.956,70.280,0.942,0.112,0.237,0.780,0.233 +Denmark,2015,7.514,10.876,0.960,70.500,0.941,0.216,0.191,0.801,0.218 +Denmark,2016,7.558,10.900,0.954,70.625,0.948,0.132,0.210,0.786,0.208 +Denmark,2017,7.594,10.922,0.952,70.750,0.955,0.149,0.181,0.779,0.206 +Denmark,2018,7.649,10.936,0.958,70.875,0.935,0.012,0.151,0.773,0.206 +Denmark,2019,7.693,10.948,0.958,71.000,0.963,0.015,0.174,0.797,0.181 +Denmark,2020,7.515,10.924,0.947,71.125,0.938,0.045,0.214,0.753,0.227 +Denmark,2021,7.699,10.968,0.945,71.250,0.933,0.130,0.173,0.792,0.206 +Denmark,2022,7.545,10.997,0.970,71.375,0.930,0.222,0.203,0.787,0.205 +Denmark,2023,7.504,10.996,0.916,71.500,0.923,0.089,0.184,0.757,0.229 +Djibouti,2008,5.009,8.115,0.690,53.640,0.773,0.123,0.576,0.740,0.120 +Djibouti,2009,4.906,8.014,0.901,54.120,0.649,-0.007,0.634,0.630,0.232 +Djibouti,2010,5.006,7.934,,54.600,0.764,-0.072,0.597,, +Djibouti,2011,4.369,8.150,0.633,55.080,0.746,-0.082,0.519,0.543,0.181 +Dominican Republic,2006,5.088,9.306,0.919,65.360,0.858,0.033,0.755,0.733,0.274 +Dominican Republic,2007,5.081,9.365,0.848,65.120,0.886,-0.013,0.772,0.723,0.260 +Dominican Republic,2008,4.842,9.384,0.850,64.880,0.848,-0.050,0.728,0.654,0.329 +Dominican Republic,2009,5.432,9.381,0.878,64.640,0.863,-0.058,0.806,0.709,0.280 +Dominican Republic,2010,4.735,9.448,0.860,64.400,0.824,-0.080,0.780,0.707,0.282 +Dominican Republic,2011,5.397,9.465,0.872,64.160,0.848,0.009,0.788,0.738,0.300 +Dominican Republic,2012,4.753,9.479,0.879,63.920,0.840,-0.067,0.727,0.725,0.297 +Dominican Republic,2013,5.016,9.515,0.878,63.680,0.889,0.016,0.752,0.766,0.295 +Dominican Republic,2014,5.387,9.570,0.891,63.440,0.905,-0.025,0.760,0.772,0.300 +Dominican Republic,2015,5.062,9.625,0.893,63.200,0.856,-0.070,0.755,0.695,0.295 +Dominican Republic,2016,5.239,9.678,0.895,63.400,0.873,-0.085,0.737,0.725,0.278 +Dominican Republic,2017,5.605,9.713,0.894,63.600,0.855,-0.126,0.760,0.710,0.275 +Dominican Republic,2018,5.433,9.769,0.862,63.800,0.867,-0.155,0.762,0.719,0.291 +Dominican Republic,2019,6.004,9.808,0.884,64.000,0.877,-0.127,0.746,0.747,0.264 +Dominican Republic,2020,5.168,9.727,0.806,64.200,0.835,-0.128,0.636,0.724,0.314 +Dominican Republic,2021,6.031,9.832,0.857,64.400,0.859,-0.088,0.677,0.734,0.275 +Dominican Republic,2022,5.518,9.870,0.820,64.600,0.853,-0.086,0.656,0.723,0.306 +Dominican Republic,2023,5.921,9.900,0.860,64.800,0.867,-0.107,0.667,0.730,0.256 +Ecuador,2006,5.024,9.189,0.910,64.440,0.671,-0.097,0.901,0.785,0.357 +Ecuador,2007,4.996,9.194,0.839,64.780,0.670,-0.069,0.830,0.803,0.286 +Ecuador,2008,5.297,9.238,0.829,65.120,0.640,-0.100,0.801,0.811,0.283 +Ecuador,2009,6.022,9.227,0.779,65.460,0.737,-0.114,0.774,0.796,0.256 +Ecuador,2010,5.838,9.245,0.839,65.800,0.723,-0.069,0.806,0.771,0.220 +Ecuador,2011,5.795,9.305,0.818,66.140,0.788,-0.161,0.702,0.806,0.271 +Ecuador,2012,5.961,9.343,0.785,66.480,0.825,-0.089,0.730,0.767,0.333 +Ecuador,2013,6.019,9.376,0.801,66.820,0.787,-0.196,0.646,0.824,0.267 +Ecuador,2014,5.946,9.399,0.831,67.160,0.719,-0.173,0.661,0.841,0.306 +Ecuador,2015,5.964,9.385,0.856,67.500,0.801,-0.120,0.666,0.816,0.323 +Ecuador,2016,6.115,9.358,0.842,67.750,0.846,-0.021,0.774,0.807,0.365 +Ecuador,2017,5.840,9.366,0.849,68.000,0.879,-0.173,0.734,0.793,0.314 +Ecuador,2018,6.128,9.359,0.851,68.250,0.869,-0.105,0.831,0.817,0.328 +Ecuador,2019,5.809,9.341,0.808,68.500,0.830,-0.121,0.839,0.750,0.374 +Ecuador,2020,5.354,9.245,0.804,68.750,0.829,-0.163,0.855,0.755,0.416 +Ecuador,2021,5.435,9.275,0.786,69.000,0.821,-0.086,0.775,0.742,0.403 +Ecuador,2022,5.887,9.293,0.825,69.250,0.759,-0.083,0.866,0.777,0.356 +Ecuador,2023,5.852,9.307,0.782,69.500,0.731,-0.106,0.840,0.763,0.359 +Egypt,2005,5.168,9.042,0.848,61.400,0.817,,,0.689,0.346 +Egypt,2007,5.541,9.138,0.686,61.520,0.609,-0.126,,0.600,0.355 +Egypt,2008,4.632,9.187,0.738,61.580,,-0.093,0.914,0.627,0.301 +Egypt,2009,5.066,9.213,0.744,61.640,0.611,-0.105,0.801,0.549,0.339 +Egypt,2010,4.669,9.243,0.769,61.700,0.486,-0.081,0.826,0.491,0.276 +Egypt,2011,4.174,9.239,0.753,61.760,0.590,-0.157,0.859,0.456,0.353 +Egypt,2012,4.204,9.238,0.737,61.820,0.452,-0.143,0.880,0.458,0.398 +Egypt,2013,3.559,9.236,0.675,61.880,0.474,-0.147,0.913,0.487,0.483 +Egypt,2014,4.885,9.242,0.619,61.940,0.578,-0.132,0.749,0.477,0.327 +Egypt,2015,4.763,9.262,0.730,62.000,0.659,-0.094,0.684,0.554,0.344 +Egypt,2016,4.557,9.284,0.809,62.250,0.656,-0.147,0.818,0.538,0.370 +Egypt,2017,3.929,9.305,0.638,62.500,0.593,-0.158,,0.458,0.414 +Egypt,2018,4.005,9.338,0.759,62.750,0.682,-0.221,,0.407,0.285 +Egypt,2019,4.328,9.374,0.772,63.000,0.774,-0.204,,0.420,0.313 +Egypt,2020,4.472,9.392,0.673,63.250,0.770,-0.119,,0.543,0.442 +Egypt,2021,4.026,9.408,0.717,63.500,0.704,-0.233,0.580,0.387,0.325 +Egypt,2022,4.024,9.456,0.769,63.750,0.733,-0.214,,0.486,0.307 +Egypt,2023,3.881,9.480,0.730,64.000,0.625,-0.210,,0.436,0.352 +El Salvador,2006,5.701,8.885,0.878,65.120,0.683,-0.062,0.807,0.813,0.233 +El Salvador,2007,5.296,8.902,0.717,64.940,0.639,-0.021,0.785,0.833,0.220 +El Salvador,2008,5.191,8.919,0.747,64.760,0.636,-0.084,0.735,0.827,0.232 +El Salvador,2009,6.839,8.894,0.734,64.580,0.671,-0.110,0.648,0.841,0.243 +El Salvador,2010,6.740,8.911,0.757,64.400,0.669,-0.070,0.694,0.823,0.302 +El Salvador,2011,4.741,8.945,0.731,64.220,0.747,-0.133,0.707,0.830,0.336 +El Salvador,2012,5.934,8.968,0.806,64.040,0.683,-0.161,0.786,0.784,0.365 +El Salvador,2013,6.325,8.987,0.827,63.860,0.716,-0.156,0.772,0.801,0.317 +El Salvador,2014,5.857,9.000,0.798,63.680,0.778,-0.201,0.781,0.801,0.330 +El Salvador,2015,6.018,9.020,0.791,63.500,0.733,-0.163,0.805,0.816,0.333 +El Salvador,2016,6.140,9.042,0.794,63.850,0.800,-0.192,0.797,0.742,0.346 +El Salvador,2017,6.339,9.062,0.829,64.200,0.758,-0.179,0.778,0.800,0.268 +El Salvador,2018,6.241,9.084,0.820,64.550,0.863,-0.102,0.801,0.817,0.270 +El Salvador,2019,6.455,9.108,0.764,64.900,0.877,-0.116,0.682,0.826,0.271 +El Salvador,2020,5.462,9.023,0.696,65.250,0.924,-0.132,0.583,0.811,0.329 +El Salvador,2021,6.431,9.126,0.796,65.600,0.915,-0.085,0.663,0.826,0.290 +El Salvador,2022,6.492,9.148,0.772,65.950,0.914,-0.116,0.621,0.823,0.296 +El Salvador,2023,6.482,9.167,0.744,66.300,0.942,-0.104,0.496,0.812,0.318 +Estonia,2006,5.371,10.269,0.910,65.780,0.749,-0.270,0.797,0.589,0.215 +Estonia,2007,5.332,10.346,0.896,66.060,0.712,-0.252,0.743,0.589,0.176 +Estonia,2008,5.452,10.296,0.904,66.340,0.642,-0.223,0.663,0.595,0.218 +Estonia,2009,5.138,10.140,0.874,66.620,0.611,-0.235,0.793,0.591,0.243 +Estonia,2011,5.487,10.240,0.909,67.180,0.735,-0.173,0.687,0.641,0.205 +Estonia,2012,5.364,10.275,0.889,67.460,0.697,-0.197,0.793,0.627,0.199 +Estonia,2013,5.367,10.293,0.901,67.740,0.754,-0.206,0.726,0.651,0.199 +Estonia,2014,5.556,10.325,0.917,68.020,0.773,-0.158,0.652,0.620,0.203 +Estonia,2015,5.629,10.343,0.918,68.300,0.815,-0.169,0.569,0.649,0.183 +Estonia,2016,5.650,10.374,0.938,68.525,0.843,-0.155,0.639,0.657,0.177 +Estonia,2017,5.938,10.429,0.936,68.750,0.862,-0.107,0.668,0.740,0.160 +Estonia,2018,6.091,10.463,0.933,68.975,0.886,-0.147,0.621,0.730,0.163 +Estonia,2019,6.035,10.496,0.934,69.200,0.887,-0.101,0.576,0.738,0.156 +Estonia,2020,6.453,10.488,0.958,69.425,0.954,-0.090,0.398,0.762,0.188 +Estonia,2021,6.554,10.564,0.946,69.650,0.926,0.046,0.441,0.761,0.176 +Estonia,2022,6.357,10.541,0.933,69.875,0.904,0.136,0.390,0.767,0.187 +Estonia,2023,6.430,10.517,0.958,70.100,0.915,0.032,0.334,0.765,0.182 +Eswatini,2011,4.867,8.902,0.837,42.500,0.607,-0.069,0.917,0.756,0.251 +Eswatini,2018,4.212,9.029,0.779,49.300,0.710,-0.182,0.692,0.739,0.252 +Eswatini,2019,4.396,9.048,0.759,50.100,0.597,-0.195,0.724,0.726,0.280 +Eswatini,2022,3.502,9.119,0.712,52.500,0.539,-0.149,0.774,0.661,0.394 +Ethiopia,2012,4.561,7.252,0.659,56.320,0.776,-0.047,,0.556,0.137 +Ethiopia,2013,4.445,7.325,0.602,56.980,0.707,-0.011,0.750,0.570,0.213 +Ethiopia,2014,4.507,7.396,0.640,57.640,0.694,0.076,0.702,0.644,0.303 +Ethiopia,2015,4.573,7.468,0.626,58.300,0.803,0.109,0.567,0.623,0.237 +Ethiopia,2016,4.298,7.531,0.719,58.700,0.744,0.035,0.703,0.627,0.254 +Ethiopia,2017,4.180,7.595,0.734,59.100,0.717,-0.002,0.757,0.514,0.304 +Ethiopia,2018,4.379,7.634,0.740,59.500,0.740,0.036,0.799,0.562,0.272 +Ethiopia,2019,4.100,7.688,0.748,59.900,0.754,0.049,0.732,0.519,0.283 +Ethiopia,2020,4.549,7.720,0.823,60.300,0.769,0.183,0.784,0.615,0.252 +Ethiopia,2022,3.628,7.775,0.740,61.100,0.674,0.357,0.793,0.560,0.335 +Ethiopia,2023,4.093,7.809,0.670,61.500,0.631,0.212,0.800,0.538,0.299 +Finland,2006,7.672,10.745,0.965,68.720,0.969,-0.011,0.132,0.683,0.172 +Finland,2008,7.671,10.796,0.951,69.160,0.934,0.022,0.217,0.691,0.144 +Finland,2010,7.393,10.734,0.935,69.600,0.916,0.085,0.413,0.758,0.202 +Finland,2011,7.354,10.754,0.938,69.820,0.936,0.095,0.320,0.709,0.205 +Finland,2012,7.420,10.735,0.928,70.040,0.921,-0.007,0.361,0.742,0.202 +Finland,2013,7.445,10.722,0.941,70.260,0.919,0.034,0.306,0.752,0.195 +Finland,2014,7.385,10.714,0.952,70.480,0.933,-0.007,0.265,0.766,0.199 +Finland,2015,7.448,10.716,0.948,70.700,0.930,0.105,0.223,0.736,0.191 +Finland,2016,7.660,10.741,0.954,70.775,0.948,-0.033,0.250,0.769,0.182 +Finland,2017,7.788,10.770,0.964,70.850,0.962,-0.008,0.192,0.756,0.176 +Finland,2018,7.858,10.780,0.962,70.925,0.938,-0.133,0.199,0.749,0.182 +Finland,2019,7.780,10.791,0.937,71.000,0.948,-0.058,0.195,0.732,0.181 +Finland,2020,7.889,10.766,0.962,71.075,0.962,-0.123,0.164,0.748,0.193 +Finland,2021,7.794,10.794,0.970,71.150,0.963,-0.039,0.192,0.752,0.175 +Finland,2022,7.729,10.811,0.974,71.225,0.959,0.101,0.190,0.741,0.191 +Finland,2023,7.699,10.808,0.947,71.300,0.943,-0.001,0.185,0.717,0.173 +France,2005,7.093,10.637,0.940,70.700,0.895,,0.688,0.681,0.225 +France,2006,6.583,10.654,0.944,70.800,0.789,0.120,0.699,0.694,0.289 +France,2008,7.008,10.669,0.935,71.000,0.833,-0.037,0.669,0.702,0.281 +France,2009,6.283,10.635,0.918,71.100,0.798,-0.088,0.654,0.691,0.303 +France,2010,6.798,10.649,0.943,71.200,0.850,-0.109,0.623,0.729,0.261 +France,2011,6.959,10.666,0.921,71.300,0.903,-0.108,0.627,0.718,0.281 +France,2012,6.649,10.664,0.937,71.400,0.841,-0.155,0.608,0.705,0.253 +France,2013,6.667,10.665,0.908,71.500,0.878,-0.130,0.699,0.741,0.205 +France,2014,6.467,10.669,0.878,71.600,0.803,-0.124,0.656,0.759,0.216 +France,2015,6.358,10.677,0.896,71.700,0.817,-0.145,0.641,0.740,0.215 +France,2016,6.475,10.685,0.885,71.800,0.787,-0.097,0.623,0.715,0.270 +France,2017,6.635,10.705,0.931,71.900,0.834,-0.129,0.601,0.716,0.242 +France,2018,6.666,10.720,0.921,72.000,0.816,-0.143,0.582,0.705,0.282 +France,2019,6.690,10.735,0.958,72.100,0.827,-0.139,0.568,0.693,0.250 +France,2020,6.714,10.651,0.947,72.200,0.823,-0.176,0.565,0.690,0.231 +France,2021,6.656,10.714,0.915,72.300,0.837,-0.104,0.561,0.685,0.268 +France,2022,6.614,10.737,0.866,72.400,0.798,-0.027,0.533,0.688,0.249 +France,2023,6.557,10.742,0.850,72.500,0.776,0.010,0.558,0.676,0.228 +Gabon,2011,4.255,9.557,0.653,54.460,0.772,-0.213,0.851,0.564,0.264 +Gabon,2012,3.972,9.573,0.736,54.920,0.566,-0.197,0.810,0.504,0.266 +Gabon,2013,3.800,9.593,0.733,55.380,0.682,-0.148,0.780,0.519,0.287 +Gabon,2014,3.918,9.601,0.829,55.840,0.607,-0.201,0.782,0.533,0.293 +Gabon,2015,4.661,9.609,0.756,56.300,0.671,-0.196,0.867,0.600,0.372 +Gabon,2016,4.832,9.601,0.780,56.625,0.699,-0.207,0.817,0.625,0.432 +Gabon,2017,4.782,9.580,0.807,56.950,0.652,-0.231,0.868,0.638,0.446 +Gabon,2018,4.783,9.565,0.785,57.275,0.719,-0.200,0.823,0.614,0.418 +Gabon,2019,4.914,9.580,0.763,57.600,0.736,-0.206,0.846,0.638,0.413 +Gabon,2020,4.887,9.540,0.701,57.925,0.528,-0.194,0.789,0.568,0.416 +Gabon,2021,5.075,9.533,0.754,58.250,0.699,-0.207,0.766,0.620,0.362 +Gabon,2022,5.140,9.543,0.775,58.575,0.699,-0.167,0.803,0.661,0.414 +Gabon,2023,5.104,9.554,0.735,58.900,0.722,-0.160,0.822,0.620,0.424 +Gambia,2017,4.118,7.564,0.697,56.400,0.812,0.111,0.572,0.770,0.277 +Gambia,2018,4.922,7.607,0.685,56.700,0.719,0.440,0.691,0.759,0.379 +Gambia,2019,5.164,7.642,0.694,57.000,0.677,0.409,0.798,0.718,0.401 +Gambia,2022,4.279,7.662,0.588,57.900,0.599,0.360,0.884,0.722,0.438 +Gambia,2023,4.691,7.686,0.651,58.200,0.727,0.430,0.852,0.719,0.291 +Georgia,2006,3.675,8.993,0.647,63.300,0.553,-0.273,0.752,0.353,0.269 +Georgia,2007,3.707,9.117,0.548,63.400,0.464,-0.272,0.697,0.351,0.236 +Georgia,2008,4.156,9.144,0.608,63.500,0.614,-0.230,0.498,0.371,0.262 +Georgia,2009,3.801,9.116,0.544,63.600,0.495,-0.238,0.535,0.391,0.242 +Georgia,2010,4.102,9.184,0.540,63.700,0.558,-0.253,0.460,0.402,0.243 +Georgia,2011,4.203,9.263,0.503,63.800,0.632,-0.260,0.353,0.421,0.247 +Georgia,2012,4.254,9.332,0.533,63.900,0.659,-0.275,0.321,0.443,0.250 +Georgia,2013,4.349,9.371,0.559,64.000,0.722,-0.260,0.349,0.467,0.200 +Georgia,2014,4.288,9.414,0.558,64.100,0.720,-0.239,0.416,0.458,0.204 +Georgia,2015,4.122,9.442,0.517,64.200,0.640,-0.210,0.502,0.448,0.233 +Georgia,2016,4.448,9.470,0.533,64.325,0.606,-0.255,0.561,0.475,0.223 +Georgia,2017,4.451,9.517,0.590,64.450,0.821,-0.250,0.590,0.496,0.210 +Georgia,2018,4.659,9.565,0.617,64.575,0.775,-0.238,0.755,0.479,0.244 +Georgia,2019,4.892,9.615,0.675,64.700,0.811,-0.265,0.647,0.503,0.244 +Georgia,2020,5.123,9.544,0.718,64.825,0.764,-0.225,0.583,0.573,0.295 +Georgia,2021,4.911,9.648,0.671,64.950,0.777,-0.290,0.723,0.510,0.240 +Georgia,2022,5.293,9.743,0.754,65.075,0.821,-0.255,0.655,0.503,0.233 +Georgia,2023,5.351,9.785,0.779,65.200,0.877,-0.268,0.706,0.542,0.231 +Germany,2005,6.620,10.691,0.963,69.900,0.847,,0.781,0.685,0.197 +Germany,2007,6.417,10.760,0.926,69.940,0.801,0.161,0.792,0.647,0.231 +Germany,2008,6.522,10.771,0.923,69.960,0.766,,0.758,0.672,0.220 +Germany,2009,6.641,10.715,0.935,69.980,0.844,0.121,0.690,0.684,0.206 +Germany,2010,6.725,10.758,0.939,70.000,0.843,0.089,0.688,0.698,0.182 +Germany,2011,6.621,10.815,0.947,70.020,0.906,0.027,0.677,0.686,0.165 +Germany,2012,6.702,10.817,0.926,70.040,0.904,0.065,0.679,0.699,0.170 +Germany,2013,6.965,10.819,0.931,70.060,0.894,0.018,0.566,0.693,0.205 +Germany,2014,6.984,10.837,0.938,70.080,0.899,0.082,0.474,0.739,0.188 +Germany,2015,7.037,10.843,0.926,70.100,0.889,0.172,0.412,0.722,0.203 +Germany,2016,6.874,10.857,0.906,70.300,0.871,0.142,0.446,0.709,0.187 +Germany,2017,7.074,10.879,0.892,70.500,0.841,0.139,0.414,0.707,0.196 +Germany,2018,7.118,10.886,0.920,70.700,0.877,0.028,0.496,0.740,0.243 +Germany,2019,7.035,10.894,0.886,70.900,0.885,0.051,0.462,0.712,0.226 +Germany,2020,7.312,10.856,0.905,71.100,0.864,-0.068,0.424,0.698,0.206 +Germany,2021,6.755,10.881,0.868,71.300,0.778,0.074,0.418,0.703,0.251 +Germany,2022,6.608,10.889,0.916,71.500,0.895,0.080,0.417,0.668,0.201 +Germany,2023,6.792,10.878,0.895,71.700,0.845,0.106,0.460,0.706,0.231 +Ghana,2006,4.535,8.067,0.728,52.540,0.849,0.208,0.814,0.637,0.198 +Ghana,2007,5.220,8.084,0.730,52.980,0.891,0.133,0.771,0.658,0.217 +Ghana,2008,4.965,8.145,0.622,53.420,0.838,0.115,0.863,0.674,0.172 +Ghana,2009,4.198,8.167,0.633,53.860,0.757,0.000,0.890,0.714,0.198 +Ghana,2010,4.606,8.219,0.739,54.300,0.891,0.069,0.875,0.693,0.184 +Ghana,2011,5.608,8.326,0.724,54.740,0.852,0.006,0.790,0.658,0.209 +Ghana,2012,5.057,8.390,0.685,55.180,0.679,0.035,0.898,0.709,0.152 +Ghana,2013,4.965,8.436,0.676,55.620,0.794,-0.070,0.880,0.660,0.211 +Ghana,2014,3.860,8.440,0.651,56.060,0.677,-0.004,0.913,0.682,0.280 +Ghana,2015,3.986,8.437,0.687,56.500,0.852,-0.043,0.945,0.675,0.265 +Ghana,2016,4.514,8.447,0.647,56.875,0.751,0.085,0.894,0.659,0.305 +Ghana,2017,5.481,8.503,0.669,57.250,0.783,0.074,0.839,0.715,0.248 +Ghana,2018,5.004,8.542,0.761,57.625,0.817,0.058,0.846,0.716,0.250 +Ghana,2019,4.967,8.584,0.746,58.000,0.787,0.111,0.857,0.645,0.270 +Ghana,2020,5.319,8.569,0.643,58.375,0.824,0.196,0.847,0.675,0.253 +Ghana,2021,4.378,8.601,0.633,58.750,0.730,0.105,0.888,0.588,0.295 +Ghana,2022,4.191,8.613,0.628,59.125,0.786,0.114,0.909,0.620,0.292 +Ghana,2023,4.298,8.610,0.661,59.500,0.834,0.093,0.892,0.638,0.254 +Greece,2005,6.006,10.454,0.837,69.600,0.734,,0.861,0.598,0.264 +Greece,2007,6.647,10.535,0.808,69.760,0.575,-0.196,0.845,0.629,0.222 +Greece,2009,6.039,10.483,0.793,69.920,0.443,-0.298,0.959,0.614,0.254 +Greece,2010,5.840,10.425,0.868,70.000,0.484,-0.308,0.954,0.581,0.292 +Greece,2011,5.372,10.320,0.852,70.080,0.528,-0.321,0.941,0.552,0.323 +Greece,2012,5.096,10.251,0.812,70.160,0.373,-0.310,0.959,0.544,0.352 +Greece,2013,4.720,10.233,0.687,70.240,0.426,-0.277,0.941,0.571,0.482 +Greece,2014,4.756,10.245,0.832,70.320,0.369,-0.293,0.930,0.597,0.385 +Greece,2015,5.623,10.249,0.835,70.400,0.532,-0.277,0.824,0.637,0.277 +Greece,2016,5.303,10.248,0.803,70.525,0.482,-0.265,0.898,0.594,0.336 +Greece,2017,5.148,10.261,0.753,70.650,0.438,-0.295,0.872,0.516,0.333 +Greece,2018,5.409,10.280,0.794,70.775,0.564,-0.340,0.860,0.564,0.255 +Greece,2019,5.952,10.300,0.891,70.900,0.614,-0.293,0.848,0.560,0.236 +Greece,2020,5.788,10.207,0.779,71.025,0.565,-0.246,0.764,0.629,0.322 +Greece,2021,6.104,10.294,0.850,71.150,0.574,-0.161,0.752,0.624,0.311 +Greece,2022,5.900,10.358,0.875,71.275,0.563,-0.318,0.874,0.589,0.183 +Greece,2023,5.796,10.387,0.818,71.400,0.589,-0.223,0.805,0.608,0.311 +Guatemala,2006,5.901,8.850,0.830,58.980,0.663,0.167,0.706,0.789,0.287 +Guatemala,2007,6.330,8.891,0.866,59.260,0.628,0.130,0.810,0.790,0.224 +Guatemala,2008,6.414,8.905,0.866,59.540,0.630,0.200,0.796,0.800,0.234 +Guatemala,2009,6.452,8.890,0.834,59.820,0.643,0.191,0.755,0.814,0.240 +Guatemala,2010,6.290,8.901,0.859,60.100,0.696,0.161,0.795,0.805,0.236 +Guatemala,2011,5.743,8.923,0.768,60.380,0.763,0.003,0.863,0.792,0.289 +Guatemala,2012,5.856,8.935,0.802,60.660,0.865,0.015,0.821,0.808,0.349 +Guatemala,2013,5.985,8.953,0.830,60.940,0.884,0.039,0.817,0.822,0.333 +Guatemala,2014,6.536,8.980,0.834,61.220,0.843,0.102,0.804,0.816,0.305 +Guatemala,2015,6.465,9.003,0.823,61.500,0.869,0.046,0.822,0.826,0.311 +Guatemala,2016,6.359,9.013,0.811,61.700,0.863,0.006,0.812,0.815,0.321 +Guatemala,2017,6.325,9.027,0.826,61.900,0.915,-0.064,0.800,0.819,0.308 +Guatemala,2018,6.627,9.044,0.841,62.100,0.910,-0.016,0.765,0.827,0.262 +Guatemala,2019,6.262,9.068,0.774,62.300,0.901,-0.068,0.773,0.820,0.311 +Guatemala,2022,6.150,9.123,0.806,62.900,0.856,-0.060,0.835,0.835,0.263 +Guatemala,2023,6.421,9.140,0.796,63.100,0.873,-0.049,0.812,0.843,0.303 +Guinea,2011,4.045,7.556,0.598,51.020,0.797,0.036,0.743,0.670,0.260 +Guinea,2012,3.652,7.589,0.542,51.140,0.646,-0.003,0.794,0.657,0.285 +Guinea,2013,3.902,7.604,0.567,51.260,0.693,0.087,0.815,0.606,0.348 +Guinea,2014,3.412,7.615,0.638,51.380,0.684,0.002,0.705,0.643,0.351 +Guinea,2015,3.505,7.627,0.579,51.500,0.666,0.003,0.762,0.658,0.268 +Guinea,2016,3.603,7.704,0.675,51.950,0.726,-0.060,0.803,0.676,0.374 +Guinea,2017,4.874,7.776,0.634,52.400,0.738,0.034,0.750,0.702,0.422 +Guinea,2018,5.252,7.813,0.630,52.850,0.731,0.088,0.778,0.727,0.440 +Guinea,2019,4.768,7.842,0.655,53.300,0.691,0.092,0.756,0.670,0.473 +Guinea,2020,4.972,7.865,0.732,53.750,0.598,0.075,0.790,0.706,0.346 +Guinea,2021,4.945,7.879,0.627,54.200,0.676,0.157,0.784,0.672,0.450 +Guinea,2022,5.317,7.901,0.582,54.650,0.729,0.136,0.770,0.699,0.492 +Guinea,2023,4.827,7.932,0.577,55.100,0.743,0.187,0.791,0.652,0.516 +Guyana,2007,5.993,9.089,0.849,56.240,0.694,0.082,0.836,0.761,0.296 +Haiti,2006,3.754,7.976,0.694,6.720,0.449,0.355,0.854,0.583,0.332 +Haiti,2008,3.846,8.016,0.679,17.360,0.465,0.213,0.812,0.573,0.256 +Haiti,2010,3.766,7.987,0.554,28.000,0.373,0.167,0.848,0.495,0.293 +Haiti,2011,4.845,8.026,0.567,33.320,0.413,0.194,0.682,0.550,0.245 +Haiti,2012,4.413,8.015,0.749,38.640,0.482,0.243,0.717,0.557,0.284 +Haiti,2013,4.622,8.043,0.648,43.960,0.610,0.243,0.669,0.528,0.327 +Haiti,2014,3.889,8.057,0.554,49.280,0.509,0.238,0.708,0.573,0.327 +Haiti,2015,3.570,8.056,0.564,54.600,0.398,0.259,0.777,0.598,0.333 +Haiti,2016,3.352,8.060,0.584,54.900,0.304,0.244,0.839,0.532,0.367 +Haiti,2017,3.824,8.071,0.647,55.200,0.484,0.333,0.647,0.570,0.322 +Haiti,2018,3.615,8.074,0.538,55.500,0.591,0.374,0.720,0.581,0.359 +Honduras,2006,5.397,8.448,0.933,63.100,0.650,0.085,0.844,0.837,0.155 +Honduras,2007,5.097,8.485,0.819,62.900,0.676,0.226,0.826,0.712,0.199 +Honduras,2008,5.420,8.504,0.828,62.700,0.687,0.219,0.863,0.719,0.206 +Honduras,2009,6.033,8.458,0.824,62.500,0.661,0.114,0.857,0.745,0.261 +Honduras,2010,5.866,8.474,0.803,62.300,0.646,0.101,0.820,0.745,0.260 +Honduras,2011,4.961,8.492,0.766,62.100,0.783,0.091,0.884,0.757,0.307 +Honduras,2012,4.602,8.513,0.779,61.900,0.700,-0.007,0.871,0.796,0.294 +Honduras,2013,4.713,8.521,0.792,61.700,0.698,-0.031,0.868,0.795,0.283 +Honduras,2014,5.056,8.533,0.790,61.500,0.696,0.011,0.834,0.794,0.299 +Honduras,2015,4.845,8.553,0.772,61.300,0.534,-0.101,0.848,0.829,0.311 +Honduras,2016,5.648,8.573,0.774,61.725,0.850,0.076,0.793,0.790,0.297 +Honduras,2017,6.020,8.603,0.843,62.150,0.898,0.068,0.783,0.796,0.248 +Honduras,2018,5.908,8.624,0.827,62.575,0.872,0.095,0.804,0.822,0.287 +Honduras,2019,5.930,8.633,0.797,63.000,0.846,0.059,0.815,0.789,0.279 +Honduras,2021,6.114,8.626,0.806,63.850,0.835,0.111,0.847,0.808,0.269 +Honduras,2022,5.932,8.650,0.729,64.275,0.851,0.078,0.834,0.775,0.289 +Honduras,2023,5.861,8.670,0.731,64.700,0.878,0.079,0.784,0.767,0.285 +Hong Kong S.A.R. of China,2006,5.511,10.746,0.812,,0.910,0.150,0.356,0.591,0.236 +Hong Kong S.A.R. of China,2008,5.137,10.816,0.840,,0.922,0.290,0.274,0.575,0.237 +Hong Kong S.A.R. of China,2009,5.397,10.788,0.835,,0.918,0.302,0.272,0.606,0.210 +Hong Kong S.A.R. of China,2010,5.643,10.847,0.857,,0.890,0.326,0.256,0.601,0.183 +Hong Kong S.A.R. of China,2011,5.474,10.887,0.846,,0.894,0.228,0.245,0.582,0.196 +Hong Kong S.A.R. of China,2012,5.484,10.893,0.826,,0.880,0.216,0.380,0.580,0.183 +Hong Kong S.A.R. of China,2014,5.458,10.939,0.834,,0.843,0.218,0.423,0.602,0.243 +Hong Kong S.A.R. of China,2016,5.498,10.970,0.832,,0.800,0.094,0.403,0.569,0.213 +Hong Kong S.A.R. of China,2017,5.362,10.999,0.831,,0.831,0.134,0.416,0.536,0.201 +Hong Kong S.A.R. of China,2019,5.659,10.995,0.856,,0.727,0.062,0.432,0.519,0.358 +Hong Kong S.A.R. of China,2020,5.295,10.931,0.813,,0.705,-0.076,0.380,0.522,0.210 +Hong Kong S.A.R. of China,2021,5.322,11.003,0.821,,0.669,0.021,0.390,0.534,0.224 +Hong Kong S.A.R. of China,2022,5.311,10.976,0.803,,0.697,0.040,0.383,0.549,0.204 +Hungary,2005,5.194,10.103,0.930,65.000,0.697,,0.903,0.578,0.290 +Hungary,2007,4.954,10.147,0.931,65.320,0.538,-0.166,0.895,0.600,0.230 +Hungary,2009,4.895,10.092,0.901,65.640,0.464,-0.131,0.915,0.575,0.228 +Hungary,2010,4.725,10.105,0.896,65.800,0.514,-0.151,0.983,0.574,0.235 +Hungary,2011,4.918,10.127,0.894,65.960,0.631,-0.095,0.940,0.586,0.305 +Hungary,2012,4.683,10.119,0.906,66.120,0.569,-0.142,0.930,0.582,0.315 +Hungary,2013,4.914,10.140,0.877,66.280,0.674,-0.119,0.912,0.647,0.307 +Hungary,2014,5.181,10.184,0.845,66.440,0.494,-0.156,0.855,0.578,0.238 +Hungary,2015,5.344,10.223,0.859,66.600,0.558,-0.204,0.908,0.650,0.245 +Hungary,2016,5.449,10.248,0.900,66.750,0.554,-0.193,0.924,0.590,0.243 +Hungary,2017,6.065,10.292,0.877,66.900,0.661,-0.145,0.886,0.644,0.181 +Hungary,2018,5.936,10.346,0.941,67.050,0.693,-0.249,0.911,0.595,0.201 +Hungary,2019,6.000,10.393,0.947,67.200,0.798,-0.201,0.884,0.653,0.180 +Hungary,2020,6.038,10.349,0.943,67.350,0.771,-0.127,0.836,0.662,0.240 +Hungary,2021,6.227,10.423,0.948,67.500,0.727,-0.046,0.832,0.668,0.192 +Hungary,2022,5.861,10.470,0.937,67.650,0.776,-0.009,0.848,0.628,0.250 +Hungary,2023,5.965,10.473,0.954,67.800,0.755,-0.002,0.847,0.673,0.189 +Iceland,2008,6.888,10.878,0.977,71.200,0.885,0.265,0.708,0.851,0.153 +Iceland,2012,7.591,10.788,0.979,71.600,0.905,0.235,0.759,0.817,0.157 +Iceland,2013,7.501,10.823,0.967,71.700,0.923,0.299,0.713,0.802,0.156 +Iceland,2015,7.498,10.862,0.980,71.900,0.940,0.294,0.639,0.794,0.180 +Iceland,2016,7.510,10.909,0.985,71.925,0.952,0.274,0.719,0.808,0.158 +Iceland,2017,7.476,10.927,0.967,71.950,0.939,0.240,0.727,0.823,0.148 +Iceland,2019,7.533,10.943,0.982,72.000,0.959,,0.699,0.787,0.178 +Iceland,2020,7.575,10.852,0.983,72.025,0.949,0.152,0.644,0.808,0.172 +Iceland,2021,7.565,10.878,0.980,72.050,0.923,0.257,0.664,0.806,0.159 +Iceland,2022,7.449,10.916,0.985,72.075,0.936,0.222,0.692,0.768,0.178 +Iceland,2023,7.562,10.934,0.979,72.100,0.918,0.299,0.697,0.793,0.185 +India,2006,5.348,8.141,0.707,55.860,0.774,,0.855,0.576,0.199 +India,2007,5.027,8.200,0.569,56.220,0.729,-0.056,0.862,0.541,0.253 +India,2008,5.146,8.216,0.684,56.580,0.756,-0.077,0.891,0.573,0.259 +India,2009,4.522,8.278,0.653,56.940,0.679,-0.031,0.895,0.639,0.301 +India,2010,4.989,8.346,0.605,57.300,0.783,0.053,0.863,0.579,0.267 +India,2011,4.635,8.383,0.553,57.660,0.838,-0.043,0.908,0.480,0.232 +India,2012,4.720,8.423,0.511,58.020,0.609,0.062,0.830,0.544,0.295 +India,2013,4.428,8.472,0.553,58.380,0.740,0.079,0.832,0.608,0.330 +India,2014,4.424,8.531,0.621,58.740,0.809,-0.031,0.832,0.651,0.285 +India,2015,4.342,8.596,0.610,59.100,0.777,-0.010,0.776,0.657,0.322 +India,2016,4.179,8.664,0.614,59.400,0.820,0.041,0.765,0.646,0.346 +India,2017,4.046,8.718,0.607,59.700,0.886,-0.046,0.781,0.579,0.318 +India,2018,3.818,8.770,0.638,60.000,0.890,0.080,0.805,0.591,0.357 +India,2019,3.249,8.797,0.561,60.300,0.876,0.108,0.752,0.560,0.466 +India,2020,4.224,8.728,0.616,60.600,0.906,0.068,0.780,0.686,0.383 +India,2021,3.558,8.806,0.570,60.900,0.866,0.052,0.757,0.547,0.429 +India,2022,3.930,8.867,0.608,61.200,0.893,0.085,0.771,0.596,0.432 +India,2023,4.676,8.919,0.633,61.500,0.900,0.121,0.770,0.699,0.389 +Indonesia,2006,4.947,8.839,0.771,60.320,0.713,0.343,0.915,0.715,0.266 +Indonesia,2007,5.101,8.888,0.704,60.540,0.603,0.307,0.960,0.696,0.242 +Indonesia,2008,4.815,8.933,0.675,60.760,0.596,0.160,0.968,0.675,0.239 +Indonesia,2009,5.472,8.966,0.779,60.980,0.784,0.186,0.911,0.768,0.193 +Indonesia,2010,5.457,9.013,0.816,61.200,0.700,0.443,0.954,0.717,0.218 +Indonesia,2011,5.173,9.061,0.825,61.420,0.878,0.433,0.962,0.748,0.273 +Indonesia,2012,5.368,9.107,0.834,61.640,0.770,0.349,0.962,0.764,0.229 +Indonesia,2013,5.292,9.149,0.794,61.860,0.781,0.371,0.973,0.777,0.249 +Indonesia,2014,5.597,9.186,0.905,62.080,0.719,0.403,0.970,0.757,0.242 +Indonesia,2015,5.043,9.222,0.809,62.300,0.779,0.466,0.946,0.796,0.274 +Indonesia,2016,5.136,9.261,0.792,62.425,0.830,0.494,0.890,0.748,0.342 +Indonesia,2017,5.098,9.300,0.796,62.550,0.865,0.482,0.900,0.781,0.319 +Indonesia,2018,5.340,9.341,0.809,62.675,0.879,0.506,0.868,0.796,0.296 +Indonesia,2019,5.347,9.381,0.802,62.800,0.866,0.549,0.861,0.800,0.302 +Indonesia,2020,4.828,9.351,0.751,62.925,0.853,0.529,0.914,0.742,0.351 +Indonesia,2021,5.433,9.381,0.817,63.050,0.885,0.540,0.845,0.799,0.273 +Indonesia,2022,5.585,9.426,0.834,63.175,0.903,0.516,0.862,0.818,0.269 +Indonesia,2023,5.695,9.466,0.781,63.300,0.900,0.590,0.866,0.814,0.289 +Iran,2005,5.308,9.498,0.766,64.300,0.651,,0.636,0.515,0.456 +Iran,2007,5.336,9.595,0.718,64.580,0.533,0.043,0.872,0.553,0.361 +Iran,2008,5.129,9.584,0.633,64.720,0.601,0.040,0.868,0.541,0.345 +Iran,2011,4.768,9.636,0.582,65.140,0.798,0.188,0.665,0.513,0.359 +Iran,2012,4.609,9.585,0.600,65.280,0.764,,0.678,0.529,0.525 +Iran,2013,5.140,9.555,0.664,65.420,0.730,0.202,0.685,0.575,0.552 +Iran,2014,4.682,9.585,0.644,65.560,0.767,0.227,0.640,0.550,0.512 +Iran,2015,4.750,9.548,0.572,65.700,0.780,0.164,0.699,0.548,0.520 +Iran,2016,4.653,9.614,0.566,65.850,0.773,0.176,0.713,0.592,0.526 +Iran,2017,4.717,9.627,0.714,66.000,0.731,0.210,0.715,0.590,0.439 +Iran,2018,4.278,9.591,0.674,66.150,0.603,0.073,0.703,0.482,0.493 +Iran,2019,5.006,9.553,0.698,66.300,0.623,0.128,0.728,0.525,0.449 +Iran,2020,4.865,9.577,0.757,66.450,0.600,0.130,0.710,0.505,0.470 +Iran,2021,4.788,9.616,0.771,66.600,0.609,0.172,0.761,0.518,0.427 +Iran,2022,4.977,9.636,0.800,66.750,0.570,0.209,0.766,0.521,0.466 +Iran,2023,5.004,9.651,0.809,66.900,0.615,0.254,0.764,0.533,0.425 +Iraq,2008,4.590,8.982,0.744,60.940,0.386,-0.061,0.910,0.532,0.448 +Iraq,2009,4.775,8.979,0.862,60.920,0.431,-0.198,0.854,0.504,0.404 +Iraq,2010,5.065,9.009,0.854,60.900,0.419,-0.123,0.859,0.497,0.431 +Iraq,2011,4.725,9.047,0.751,60.880,0.347,-0.068,0.780,0.473,0.557 +Iraq,2012,4.660,9.133,0.730,60.860,0.315,-0.018,0.789,0.410,0.449 +Iraq,2013,4.725,9.159,0.728,60.840,,-0.047,0.710,,0.554 +Iraq,2014,4.542,9.126,0.725,60.820,0.646,0.002,0.726,0.539,0.564 +Iraq,2015,4.493,9.145,0.684,60.800,0.599,0.021,0.762,0.478,0.581 +Iraq,2016,4.413,9.250,0.719,61.275,0.666,-0.050,0.799,0.471,0.570 +Iraq,2017,4.462,9.208,0.695,61.750,0.628,0.001,0.757,0.487,0.591 +Iraq,2018,4.886,9.210,0.764,62.225,0.598,-0.069,0.887,0.552,0.482 +Iraq,2020,4.785,9.088,0.708,63.175,0.700,-0.021,0.849,0.585,0.532 +Iraq,2021,5.094,9.081,0.730,63.650,0.594,0.006,0.901,0.577,0.474 +Iraq,2022,4.928,9.127,0.753,64.125,0.661,0.068,0.855,0.565,0.499 +Iraq,2023,5.475,9.093,0.734,64.600,0.658,-0.017,0.851,0.587,0.469 +Ireland,2006,7.144,10.985,0.967,69.620,0.943,0.235,0.473,0.815,0.209 +Ireland,2008,7.568,10.941,0.983,69.860,0.894,0.315,0.487,0.745,0.148 +Ireland,2009,7.046,10.879,0.959,69.980,0.835,0.308,0.580,0.745,0.233 +Ireland,2010,7.257,10.890,0.973,70.100,0.856,0.341,0.618,0.763,0.201 +Ireland,2011,7.007,10.894,0.977,70.220,0.952,0.376,0.590,0.786,0.190 +Ireland,2012,6.965,10.890,0.962,70.340,0.902,0.295,0.573,0.721,0.237 +Ireland,2013,6.760,10.896,0.955,70.460,0.884,0.325,0.558,0.744,0.245 +Ireland,2014,7.018,10.971,0.968,70.580,0.922,0.257,0.406,0.736,0.229 +Ireland,2015,6.830,11.180,0.953,70.700,0.892,0.226,0.409,0.748,0.225 +Ireland,2016,7.041,11.189,0.958,70.800,0.875,0.169,0.399,0.744,0.211 +Ireland,2017,7.060,11.264,0.943,70.900,0.905,0.210,0.337,0.771,0.213 +Ireland,2018,6.962,11.334,0.938,71.000,0.861,0.138,0.362,0.754,0.213 +Ireland,2019,7.255,11.373,0.944,71.100,0.892,0.067,0.373,0.758,0.223 +Ireland,2020,7.035,11.423,0.960,71.200,0.882,0.000,0.356,0.753,0.246 +Ireland,2021,6.828,11.540,0.850,71.300,0.846,0.131,0.360,0.733,0.245 +Ireland,2022,6.870,11.643,0.906,71.400,0.895,0.138,0.358,0.738,0.234 +Ireland,2023,6.817,11.676,0.921,71.500,0.903,0.182,0.373,0.742,0.245 +Israel,2006,7.173,10.368,0.927,71.080,0.817,,0.905,0.639,0.308 +Israel,2007,6.841,10.408,0.868,71.160,0.683,0.215,0.868,0.642,0.320 +Israel,2008,7.261,10.423,0.859,71.240,0.663,0.134,0.898,0.635,0.349 +Israel,2009,7.353,10.408,0.937,71.320,0.593,0.167,0.923,0.620,0.327 +Israel,2010,7.359,10.444,0.882,71.400,0.561,0.145,0.902,0.628,0.362 +Israel,2011,7.433,10.480,0.893,71.480,0.722,0.136,0.891,0.654,0.384 +Israel,2012,7.111,10.487,0.903,71.560,0.681,0.147,0.862,0.611,0.319 +Israel,2013,7.321,10.512,0.909,71.640,0.739,0.145,0.849,0.649,0.409 +Israel,2014,7.401,10.531,0.889,71.720,0.707,0.088,0.818,0.567,0.271 +Israel,2015,7.079,10.536,0.864,71.800,0.753,0.103,0.789,0.652,0.256 +Israel,2016,7.159,10.560,0.890,71.950,0.772,0.147,0.804,0.602,0.263 +Israel,2017,7.331,10.583,0.916,72.100,0.768,0.138,0.793,0.621,0.276 +Israel,2018,6.927,10.603,0.910,72.250,0.725,0.048,0.770,0.612,0.282 +Israel,2019,7.332,10.625,0.946,72.400,0.834,0.078,0.743,0.598,0.266 +Israel,2020,7.195,10.589,0.959,72.550,0.831,-0.059,0.748,0.564,0.243 +Israel,2021,7.578,10.655,0.917,72.700,0.820,-0.008,0.726,0.558,0.217 +Israel,2022,7.662,10.698,0.954,72.850,0.775,-0.007,0.655,0.583,0.183 +Israel,2023,6.783,10.707,0.952,73.000,0.797,0.146,0.636,0.484,0.516 +Italy,2005,6.854,10.698,0.928,70.600,0.802,,0.944,0.606,0.295 +Italy,2007,6.574,10.722,0.912,70.800,0.684,0.108,0.922,0.650,0.303 +Italy,2008,6.780,10.706,0.880,70.900,0.543,0.044,0.946,0.588,0.268 +Italy,2009,6.334,10.647,0.880,71.000,0.701,0.235,0.890,0.715,0.279 +Italy,2010,6.354,10.661,0.872,71.100,0.738,-0.065,0.921,0.535,0.236 +Italy,2011,6.057,10.666,0.913,71.200,0.568,-0.023,0.933,0.610,0.266 +Italy,2012,5.839,10.633,0.869,71.300,0.570,0.107,0.908,0.651,0.388 +Italy,2013,6.009,10.603,0.916,71.400,0.499,-0.108,0.943,0.702,0.357 +Italy,2014,6.027,10.594,0.898,71.500,0.624,-0.071,0.920,0.659,0.356 +Italy,2015,5.848,10.603,0.909,71.600,0.575,-0.070,0.913,0.646,0.329 +Italy,2016,5.955,10.617,0.927,71.675,0.624,-0.086,0.903,0.632,0.339 +Italy,2017,6.199,10.635,0.920,71.750,0.633,-0.041,0.867,0.613,0.323 +Italy,2018,6.517,10.647,0.913,71.825,0.650,-0.027,0.888,0.598,0.403 +Italy,2019,6.445,10.663,0.838,71.900,0.709,-0.088,0.866,0.569,0.328 +Italy,2020,6.488,10.574,0.890,71.975,0.718,-0.157,0.844,0.614,0.311 +Italy,2021,6.467,10.647,0.886,72.050,0.703,-0.096,0.862,0.634,0.318 +Italy,2022,6.258,10.687,0.869,72.125,0.711,0.026,0.819,0.624,0.298 +Italy,2023,6.245,10.703,0.851,72.200,0.699,-0.053,0.819,0.636,0.293 +Ivory Coast,2009,4.197,8.181,0.667,48.900,0.760,-0.157,0.902,0.555,0.186 +Ivory Coast,2013,3.739,8.285,0.709,51.300,0.739,-0.037,0.691,0.661,0.306 +Ivory Coast,2014,3.570,8.351,0.711,51.900,0.781,-0.087,0.671,0.603,0.291 +Ivory Coast,2015,4.445,8.395,0.704,52.500,0.800,-0.059,0.744,0.614,0.347 +Ivory Coast,2016,4.543,8.438,0.617,53.075,0.769,-0.048,0.757,0.693,0.378 +Ivory Coast,2017,5.038,8.484,0.661,53.650,0.732,-0.116,0.771,0.662,0.357 +Ivory Coast,2018,5.268,8.505,0.621,54.225,0.713,-0.054,0.791,0.659,0.386 +Ivory Coast,2019,5.392,8.543,0.679,54.800,0.736,-0.021,0.799,0.663,0.425 +Ivory Coast,2020,5.257,8.535,0.613,55.375,0.770,0.012,0.777,0.655,0.340 +Ivory Coast,2021,5.056,8.579,0.554,55.950,0.717,-0.004,0.716,0.626,0.345 +Ivory Coast,2022,4.849,8.619,0.536,56.525,0.713,-0.009,0.743,0.629,0.399 +Ivory Coast,2023,5.337,8.656,0.623,57.100,0.753,-0.057,0.676,0.670,0.307 +Jamaica,2006,6.208,9.249,0.909,66.600,0.738,-0.011,0.946,0.753,0.201 +Jamaica,2011,5.374,9.193,0.855,66.600,0.796,-0.071,0.909,0.764,0.237 +Jamaica,2013,5.709,9.182,0.865,66.600,0.793,-0.029,0.931,0.694,0.312 +Jamaica,2014,5.311,9.185,0.874,66.600,0.809,-0.008,0.861,0.708,0.310 +Jamaica,2017,5.890,9.209,0.913,66.600,0.861,-0.138,0.883,0.700,0.243 +Jamaica,2019,6.309,9.234,0.878,66.600,0.891,-0.146,0.885,0.722,0.195 +Jamaica,2020,5.425,9.128,0.870,66.600,0.865,-0.152,0.836,0.712,0.266 +Jamaica,2021,5.814,9.170,0.857,66.600,0.731,-0.084,0.883,0.689,0.308 +Jamaica,2022,5.870,9.212,0.868,66.600,0.874,-0.091,0.910,0.718,0.269 +Japan,2005,6.516,10.552,0.928,72.400,0.868,,0.699,0.686,0.153 +Japan,2007,6.238,10.578,0.938,72.640,0.796,-0.097,0.809,0.683,0.207 +Japan,2008,5.911,10.566,0.887,72.760,0.772,-0.142,0.816,0.705,0.191 +Japan,2009,5.845,10.507,0.888,72.880,0.730,-0.217,0.740,0.713,0.169 +Japan,2010,6.057,10.547,0.902,73.000,0.772,-0.147,0.770,0.779,0.188 +Japan,2011,6.263,10.549,0.917,73.120,0.814,-0.059,0.734,0.714,0.181 +Japan,2012,5.968,10.565,0.905,73.240,0.753,,0.692,0.708,0.171 +Japan,2013,5.959,10.586,0.924,73.360,0.821,-0.154,0.650,0.719,0.175 +Japan,2014,5.923,10.590,0.900,73.480,0.838,-0.146,0.617,0.687,0.189 +Japan,2015,5.880,10.607,0.923,73.600,0.832,-0.162,0.654,0.702,0.176 +Japan,2016,5.955,10.615,0.900,73.725,0.836,-0.069,0.698,0.690,0.192 +Japan,2017,5.911,10.632,0.882,73.850,0.849,-0.213,0.659,0.692,0.176 +Japan,2018,5.794,10.640,0.886,73.975,0.773,-0.268,0.687,0.649,0.185 +Japan,2019,5.908,10.637,0.878,74.100,0.806,-0.261,0.617,0.693,0.194 +Japan,2020,6.118,10.596,0.887,74.225,0.806,-0.266,0.609,0.681,0.186 +Japan,2021,6.091,10.622,0.896,74.350,0.801,-0.213,0.670,0.674,0.189 +Japan,2022,6.178,10.637,0.899,74.475,0.789,-0.237,0.643,0.670,0.165 +Japan,2023,5.910,10.654,0.842,74.600,0.777,-0.222,0.594,0.638,0.178 +Jordan,2005,6.295,9.283,0.920,65.800,,,0.670,0.630,0.240 +Jordan,2007,5.598,9.308,0.841,66.160,0.646,-0.117,0.664,,0.240 +Jordan,2008,4.930,9.354,0.766,66.340,,-0.134,0.709,0.656,0.331 +Jordan,2009,6.000,9.381,0.899,66.520,0.771,-0.083,0.739,0.587,0.265 +Jordan,2010,5.570,9.382,0.918,66.700,0.788,-0.057,,0.564,0.343 +Jordan,2011,5.539,9.383,0.878,66.880,0.760,-0.155,,0.551,0.260 +Jordan,2012,5.132,9.393,0.829,67.060,0.693,-0.175,,0.469,0.345 +Jordan,2013,5.172,9.354,0.840,67.240,0.692,-0.131,,0.597,0.286 +Jordan,2014,5.333,9.269,0.816,67.420,0.729,-0.113,,0.602,0.313 +Jordan,2015,5.405,9.202,0.830,67.600,0.767,-0.051,,0.617,0.305 +Jordan,2016,5.271,9.173,0.820,67.600,0.771,-0.042,,0.598,0.312 +Jordan,2017,4.808,9.173,0.815,67.600,0.766,-0.156,,0.554,0.392 +Jordan,2018,4.639,9.168,0.800,67.600,0.762,-0.189,,, +Jordan,2019,4.453,9.163,0.793,67.600,0.726,-0.168,,, +Jordan,2020,4.094,9.125,0.709,67.600,0.779,-0.154,,, +Jordan,2021,3.909,9.127,0.703,67.600,0.773,-0.148,0.656,0.480,0.429 +Jordan,2022,4.356,9.140,0.774,67.600,0.759,-0.156,0.715,0.521,0.435 +Jordan,2023,4.292,9.151,0.721,67.600,0.754,-0.143,0.651,0.518,0.442 +Kazakhstan,2006,5.476,9.804,0.872,58.000,0.731,-0.280,0.865,0.602,0.185 +Kazakhstan,2007,5.719,9.878,0.861,58.600,0.806,-0.251,0.865,0.557,0.179 +Kazakhstan,2008,5.886,9.892,0.839,59.200,0.727,-0.226,0.899,0.613,0.160 +Kazakhstan,2009,5.383,9.884,0.893,59.800,0.856,-0.255,0.845,0.595,0.129 +Kazakhstan,2010,5.514,9.940,0.904,60.400,0.785,-0.221,0.823,0.655,0.149 +Kazakhstan,2011,5.736,9.997,0.905,61.000,0.878,-0.241,0.802,0.622,0.154 +Kazakhstan,2012,5.759,10.030,0.892,61.600,0.840,-0.177,0.877,0.667,0.184 +Kazakhstan,2013,5.835,10.074,0.889,62.200,0.782,-0.235,0.820,0.629,0.164 +Kazakhstan,2014,5.970,10.101,0.795,62.800,0.799,-0.002,0.805,0.671,0.169 +Kazakhstan,2015,5.950,10.098,0.931,63.400,0.740,-0.043,0.714,0.682,0.174 +Kazakhstan,2016,5.534,10.095,0.928,63.800,0.783,-0.042,0.702,0.641,0.155 +Kazakhstan,2017,5.882,10.121,0.914,64.200,0.745,-0.041,0.755,0.698,0.171 +Kazakhstan,2018,6.008,10.148,0.937,64.600,0.840,-0.104,0.824,0.611,0.162 +Kazakhstan,2019,6.272,10.179,0.951,65.000,0.852,-0.061,0.708,0.711,0.139 +Kazakhstan,2020,6.168,10.141,0.966,65.400,0.872,-0.062,0.661,0.620,0.150 +Kazakhstan,2021,6.260,10.170,0.906,65.800,0.807,0.034,0.782,0.663,0.122 +Kazakhstan,2022,6.006,10.169,0.923,66.200,0.883,0.022,0.720,0.652,0.132 +Kazakhstan,2023,6.299,10.172,0.929,66.600,0.901,0.050,0.812,0.626,0.114 +Kenya,2006,4.223,8.164,0.909,51.420,0.616,-0.034,0.860,0.657,0.198 +Kenya,2007,4.576,8.201,0.841,51.940,0.750,0.040,0.799,0.698,0.162 +Kenya,2008,4.015,8.173,0.827,52.460,0.620,-0.026,0.909,0.733,0.149 +Kenya,2009,4.270,8.176,0.789,52.980,0.584,0.086,0.913,0.679,0.183 +Kenya,2010,4.256,8.226,0.805,53.500,0.635,0.005,0.918,0.758,0.123 +Kenya,2011,4.405,8.249,0.846,54.020,0.709,0.009,0.923,0.706,0.228 +Kenya,2012,4.547,8.269,0.831,54.540,0.628,0.053,0.911,0.667,0.194 +Kenya,2013,3.795,8.282,0.825,55.060,0.708,0.201,0.861,0.729,0.161 +Kenya,2014,4.905,8.308,0.765,55.580,0.819,0.161,0.849,0.779,0.221 +Kenya,2015,4.358,8.334,0.777,56.100,0.793,0.209,0.853,0.673,0.172 +Kenya,2016,4.396,8.353,0.706,56.500,0.749,0.288,0.828,0.730,0.226 +Kenya,2017,4.476,8.369,0.715,56.900,0.853,0.225,0.854,0.754,0.230 +Kenya,2018,4.656,8.404,0.707,57.300,0.821,0.282,0.844,0.747,0.237 +Kenya,2019,4.619,8.434,0.676,57.700,0.818,0.300,0.794,0.728,0.251 +Kenya,2020,4.547,8.411,0.674,58.100,0.702,0.251,0.837,0.738,0.297 +Kenya,2021,4.465,8.465,0.702,58.500,0.678,0.313,0.841,0.745,0.253 +Kenya,2022,4.448,8.493,0.691,58.900,0.706,0.292,0.878,0.725,0.281 +Kenya,2023,4.496,8.523,0.703,59.300,0.736,0.316,0.800,0.756,0.245 +Kosovo,2007,5.104,,0.848,,0.381,,0.894,0.614,0.237 +Kosovo,2008,5.522,8.858,0.884,,,0.094,0.849,0.500,0.318 +Kosovo,2009,5.891,8.899,0.830,,0.506,0.203,0.968,0.528,0.169 +Kosovo,2010,5.177,8.940,0.708,,0.451,0.171,0.967,0.673,0.118 +Kosovo,2011,4.860,8.992,0.759,,0.589,0.004,0.919,0.604,0.124 +Kosovo,2012,5.640,9.000,0.757,,0.636,0.028,0.950,0.562,0.100 +Kosovo,2013,6.126,9.046,0.721,,0.568,0.114,0.935,0.650,0.203 +Kosovo,2014,5.000,9.082,0.706,,0.441,0.010,0.775,0.552,0.206 +Kosovo,2015,5.077,9.153,0.805,,0.561,0.177,0.851,0.685,0.180 +Kosovo,2016,5.759,9.213,0.824,,0.827,0.120,0.941,0.588,0.150 +Kosovo,2017,6.149,9.253,0.792,,0.858,0.112,0.925,0.617,0.186 +Kosovo,2018,6.392,9.283,0.822,,0.890,0.264,0.922,0.642,0.170 +Kosovo,2019,6.425,9.334,0.843,,0.841,0.242,0.920,0.612,0.141 +Kosovo,2020,6.294,9.279,0.792,,0.880,0.302,0.910,0.593,0.201 +Kosovo,2021,6.648,9.383,0.849,,0.840,0.258,0.842,0.578,0.116 +Kosovo,2022,6.160,9.431,0.888,,0.865,0.208,0.846,0.549,0.142 +Kosovo,2023,6.878,9.480,0.807,,0.900,0.285,0.811,0.682,0.140 +Kuwait,2006,6.076,11.233,0.919,68.400,0.769,-0.242,0.328,0.788,0.182 +Kuwait,2009,6.585,11.074,0.926,69.000,0.819,0.000,0.675,0.694,0.252 +Kuwait,2010,6.798,10.998,0.893,69.200,0.703,-0.039,0.486,0.687,0.203 +Kuwait,2011,6.378,11.024,0.882,69.400,0.769,,0.560,0.726,0.177 +Kuwait,2012,6.221,11.012,0.889,69.600,0.934,,,0.794,0.095 +Kuwait,2013,6.480,10.952,0.862,69.800,0.751,,,0.686,0.283 +Kuwait,2014,6.180,10.926,,70.000,,,,, +Kuwait,2015,6.146,10.893,0.823,70.200,0.822,0.077,,0.678,0.324 +Kuwait,2016,5.947,10.887,0.845,70.175,0.841,-0.080,,0.643,0.315 +Kuwait,2017,6.094,10.820,0.853,70.150,0.884,-0.010,,0.649,0.307 +Kuwait,2019,6.106,10.765,0.842,70.100,0.867,-0.106,,0.643,0.303 +Kuwait,2022,6.758,10.803,0.874,70.025,0.969,0.142,,0.738,0.156 +Kuwait,2023,7.130,10.812,0.890,70.000,0.898,0.136,,0.729,0.207 +Kyrgyzstan,2006,4.641,8.185,0.844,59.920,0.678,-0.145,0.879,0.555,0.159 +Kyrgyzstan,2007,4.698,8.258,0.833,60.340,0.684,-0.097,0.929,0.590,0.130 +Kyrgyzstan,2008,4.737,8.329,0.792,60.760,0.719,-0.105,0.923,0.594,0.147 +Kyrgyzstan,2009,5.069,8.345,0.855,61.180,0.699,-0.145,0.896,0.554,0.165 +Kyrgyzstan,2010,4.996,8.329,0.885,61.600,0.720,-0.077,0.926,0.516,0.123 +Kyrgyzstan,2011,4.921,8.374,0.891,62.020,0.748,-0.160,0.932,0.579,0.151 +Kyrgyzstan,2012,5.208,8.357,0.856,62.440,0.703,-0.084,0.892,0.580,0.182 +Kyrgyzstan,2013,5.402,8.441,0.851,62.860,0.755,-0.090,0.900,0.595,0.135 +Kyrgyzstan,2014,5.252,8.460,0.898,63.280,0.736,0.350,0.897,0.617,0.185 +Kyrgyzstan,2015,4.905,8.477,0.857,63.700,0.813,0.194,0.858,0.658,0.173 +Kyrgyzstan,2016,4.857,8.500,0.914,64.225,0.814,0.051,0.917,0.668,0.126 +Kyrgyzstan,2017,5.630,8.526,0.883,64.750,0.859,0.138,0.874,0.640,0.160 +Kyrgyzstan,2018,5.297,8.543,0.898,65.275,0.945,0.262,0.907,0.617,0.203 +Kyrgyzstan,2019,5.685,8.568,0.877,65.800,0.920,-0.008,0.885,0.625,0.207 +Kyrgyzstan,2020,6.250,8.461,0.902,66.325,0.935,0.101,0.931,0.672,0.258 +Kyrgyzstan,2021,5.564,8.504,0.904,66.850,0.918,0.199,0.903,0.660,0.226 +Kyrgyzstan,2022,5.668,8.555,0.927,67.375,0.948,0.230,0.876,0.646,0.204 +Kyrgyzstan,2023,5.910,8.573,0.946,67.900,0.943,0.145,0.899,0.681,0.165 +Laos,2006,5.076,8.234,0.807,55.880,0.925,0.435,0.688,0.790,0.163 +Laos,2007,5.364,8.291,0.790,56.260,0.867,0.474,0.580,0.752,0.136 +Laos,2008,5.044,8.351,0.807,56.640,0.886,0.412,0.637,0.728,0.202 +Laos,2011,4.704,8.538,0.691,57.780,0.882,0.454,0.587,0.746,0.225 +Laos,2012,4.876,8.601,0.693,58.160,,0.227,,0.741,0.387 +Laos,2017,4.623,8.883,0.707,59.900,0.891,0.068,0.592,0.712,0.344 +Laos,2018,4.859,8.929,0.705,60.200,0.907,0.136,0.634,0.711,0.332 +Laos,2019,5.197,8.967,0.729,60.500,0.906,0.055,0.620,0.718,0.306 +Laos,2020,5.284,8.957,0.660,60.800,0.915,0.136,0.748,0.714,0.358 +Laos,2021,4.927,8.968,0.650,61.100,0.927,0.037,0.668,0.702,0.292 +Laos,2022,4.962,8.981,0.659,61.400,0.891,0.091,0.706,0.675,0.334 +Laos,2023,5.486,9.005,0.678,61.700,0.904,0.099,0.724,0.679,0.335 +Latvia,2006,4.710,10.042,0.884,63.100,0.641,-0.236,0.937,0.590,0.234 +Latvia,2007,4.667,10.145,0.836,63.400,0.700,-0.173,0.924,0.594,0.247 +Latvia,2008,5.145,10.123,0.855,63.700,0.630,-0.210,0.926,0.633,0.215 +Latvia,2009,4.669,9.985,0.807,64.000,0.437,-0.187,0.942,0.537,0.242 +Latvia,2011,4.967,10.004,0.836,64.600,0.564,-0.006,0.934,0.563,0.222 +Latvia,2012,5.125,10.085,0.851,64.900,0.564,-0.044,0.895,0.588,0.232 +Latvia,2013,5.070,10.115,0.834,65.200,0.631,-0.079,0.837,0.605,0.227 +Latvia,2014,5.729,10.143,0.881,65.500,0.671,-0.049,0.804,0.605,0.226 +Latvia,2015,5.881,10.190,0.879,65.800,0.656,-0.084,0.808,0.559,0.228 +Latvia,2016,5.940,10.222,0.917,65.900,0.685,-0.163,0.868,0.583,0.231 +Latvia,2017,5.978,10.264,0.895,66.000,0.700,-0.161,0.798,0.565,0.232 +Latvia,2018,5.901,10.311,0.913,66.100,0.608,-0.218,0.799,0.521,0.192 +Latvia,2019,5.970,10.343,0.936,66.200,0.698,-0.200,0.789,0.537,0.212 +Latvia,2020,6.229,10.328,0.928,66.300,0.820,-0.086,0.809,0.674,0.202 +Latvia,2021,6.353,10.376,0.954,66.400,0.815,-0.104,0.840,0.716,0.186 +Latvia,2022,6.055,10.396,0.928,66.500,0.817,0.018,0.844,0.632,0.161 +Latvia,2023,6.296,10.408,0.932,66.600,0.816,0.059,0.800,0.671,0.257 +Lebanon,2005,5.491,9.571,0.796,65.100,0.703,,0.945,0.558,0.292 +Lebanon,2006,4.653,9.570,0.853,65.160,0.670,0.064,0.902,0.501,0.320 +Lebanon,2008,4.595,9.711,0.717,65.280,0.524,0.031,0.927,0.475,0.365 +Lebanon,2009,5.206,9.796,0.736,65.340,0.665,0.067,0.937,0.472,0.401 +Lebanon,2010,5.032,9.864,0.721,65.400,0.678,0.068,0.949,0.457,0.341 +Lebanon,2011,5.188,9.862,0.733,65.460,0.657,-0.002,0.911,0.506,0.320 +Lebanon,2012,4.573,9.862,0.713,65.520,0.621,-0.016,0.856,0.442,0.339 +Lebanon,2013,4.983,9.807,0.708,65.580,0.655,-0.012,0.921,0.446,0.409 +Lebanon,2014,5.233,9.732,0.759,65.640,0.657,-0.017,0.939,0.525,0.267 +Lebanon,2015,5.172,9.717,0.742,65.700,0.597,0.066,0.889,0.524,0.243 +Lebanon,2016,5.271,9.754,0.828,65.775,0.657,0.021,0.853,0.513,0.263 +Lebanon,2017,5.154,9.787,0.777,65.850,0.605,-0.088,0.911,0.469,0.244 +Lebanon,2018,5.167,9.795,0.829,65.925,0.607,-0.081,0.907,0.415,0.271 +Lebanon,2019,4.024,9.752,0.866,66.000,0.447,-0.098,0.890,0.308,0.494 +Lebanon,2020,2.634,9.532,0.547,66.075,0.552,-0.139,0.884,0.352,0.482 +Lebanon,2021,2.179,9.472,0.507,66.150,0.423,-0.164,0.905,0.263,0.569 +Lebanon,2022,2.352,9.458,0.535,66.225,0.450,-0.130,0.883,0.298,0.430 +Lebanon,2023,3.588,9.471,0.686,66.300,0.499,-0.102,0.895,0.373,0.385 +Lesotho,2011,4.898,7.785,0.824,41.520,0.618,-0.093,0.768,0.754,0.170 +Lesotho,2016,3.808,7.897,0.798,42.250,0.729,-0.100,0.743,0.685,0.270 +Lesotho,2017,3.795,7.852,0.769,42.900,0.757,-0.144,0.797,0.706,0.255 +Lesotho,2019,3.512,7.805,0.790,44.200,0.716,-0.127,0.915,0.707,0.273 +Lesotho,2022,3.186,7.733,0.680,46.150,0.709,-0.102,0.815,0.709,0.288 +Liberia,2007,3.701,7.179,0.594,51.860,0.790,0.111,0.776,0.600,0.435 +Liberia,2008,4.221,7.207,0.619,51.940,0.724,-0.038,0.840,0.629,0.261 +Liberia,2010,4.196,7.257,0.827,52.100,0.819,-0.043,0.818,0.549,0.217 +Liberia,2014,4.571,7.386,0.708,52.420,0.590,-0.035,0.869,0.565,0.443 +Liberia,2015,2.702,7.366,0.638,52.500,0.671,-0.067,0.903,0.519,0.388 +Liberia,2016,3.355,7.330,0.643,53.100,0.763,0.028,0.901,0.625,0.509 +Liberia,2017,4.424,7.335,0.685,53.700,0.733,-0.018,0.867,0.674,0.391 +Liberia,2018,4.135,7.328,0.727,54.300,0.766,0.044,0.868,0.664,0.436 +Liberia,2019,5.121,7.283,0.712,54.900,0.706,0.044,0.828,0.645,0.389 +Liberia,2022,4.042,7.287,0.597,56.700,0.732,0.150,0.828,0.637,0.439 +Liberia,2023,4.494,7.309,0.630,57.300,0.720,0.039,0.834,0.608,0.428 +Libya,2012,5.754,10.380,0.855,65.140,0.712,-0.076,0.791,0.633,0.316 +Libya,2015,5.615,9.858,0.868,64.300,0.775,-0.089,,0.652,0.369 +Libya,2016,5.434,9.828,0.876,64.525,0.822,-0.135,,0.645,0.383 +Libya,2017,5.647,10.095,0.823,64.750,0.779,-0.068,0.673,0.643,0.379 +Libya,2018,5.494,10.156,0.824,64.975,0.781,-0.146,0.646,0.635,0.399 +Libya,2019,5.330,10.023,0.827,65.200,0.762,-0.107,0.686,0.629,0.401 +Libya,2022,5.760,9.893,0.813,65.875,0.761,-0.043,0.668,0.627,0.399 +Libya,2023,5.970,,0.748,66.100,0.762,,0.644,0.585,0.372 +Lithuania,2006,5.954,10.042,0.930,63.500,0.567,-0.301,0.967,0.567,0.254 +Lithuania,2007,5.808,10.160,0.941,63.700,0.590,-0.287,0.966,0.523,0.279 +Lithuania,2008,5.554,10.196,0.914,63.900,0.621,-0.265,0.961,0.501,0.276 +Lithuania,2009,5.467,10.046,0.933,64.100,0.496,-0.309,0.979,0.525,0.271 +Lithuania,2010,5.066,10.083,0.882,64.300,0.519,-0.281,0.962,0.463,0.272 +Lithuania,2011,5.432,10.165,0.911,64.500,0.566,-0.154,0.964,0.556,0.275 +Lithuania,2012,5.771,10.216,0.919,64.700,0.503,-0.279,0.957,0.557,0.277 +Lithuania,2013,5.596,10.261,0.913,64.900,0.556,-0.242,0.936,0.540,0.294 +Lithuania,2014,6.126,10.304,0.908,65.100,0.508,-0.269,0.956,0.565,0.287 +Lithuania,2015,5.711,10.334,0.929,65.300,0.641,-0.259,0.924,0.534,0.276 +Lithuania,2016,5.866,10.371,0.938,65.650,0.614,-0.272,0.949,0.553,0.250 +Lithuania,2017,6.273,10.427,0.926,66.000,0.749,-0.179,0.790,0.590,0.195 +Lithuania,2018,6.309,10.476,0.929,66.350,0.699,-0.243,0.852,0.518,0.214 +Lithuania,2019,6.064,10.524,0.918,66.700,0.780,-0.258,0.783,0.568,0.276 +Lithuania,2020,6.391,10.523,0.953,67.050,0.824,-0.129,0.829,0.626,0.202 +Lithuania,2021,6.865,10.579,0.928,67.400,0.707,-0.121,0.878,0.667,0.191 +Lithuania,2022,7.038,10.586,0.937,67.750,0.710,-0.192,0.685,0.471,0.132 +Lithuania,2023,6.553,10.575,0.881,68.100,0.734,-0.232,0.751,0.493,0.201 +Luxembourg,2009,6.958,11.628,0.939,70.300,0.939,0.116,0.432,0.713,0.238 +Luxembourg,2010,7.097,11.647,0.952,70.500,0.908,0.086,0.423,0.718,0.216 +Luxembourg,2011,7.101,11.635,0.934,70.700,0.962,0.097,0.388,0.744,0.200 +Luxembourg,2012,6.964,11.627,0.914,70.900,0.917,0.048,0.403,0.726,0.227 +Luxembourg,2013,7.131,11.636,0.917,71.100,0.790,-0.065,0.301,0.601,0.185 +Luxembourg,2014,6.891,11.638,0.875,71.300,0.938,0.097,0.366,0.760,0.170 +Luxembourg,2015,6.702,11.637,0.934,71.500,0.932,0.044,0.375,0.728,0.193 +Luxembourg,2016,6.967,11.664,0.941,71.525,0.882,0.011,0.356,0.706,0.192 +Luxembourg,2017,7.061,11.653,0.905,71.550,0.903,0.036,0.330,0.726,0.184 +Luxembourg,2018,7.243,11.645,0.902,71.575,0.884,-0.028,0.385,0.715,0.202 +Luxembourg,2019,7.404,11.649,0.912,71.600,0.930,-0.051,0.390,0.742,0.212 +Luxembourg,2022,7.228,11.657,0.878,71.675,0.915,0.023,0.345,0.718,0.218 +Luxembourg,2023,7.016,11.649,0.879,71.700,0.911,0.033,0.343,0.751,0.194 +Madagascar,2006,3.980,7.351,0.711,54.140,,-0.042,,0.563,0.161 +Madagascar,2008,4.640,7.413,0.776,54.620,0.332,-0.103,0.773,0.583,0.215 +Madagascar,2011,4.381,7.309,0.818,55.340,0.546,-0.065,0.897,0.516,0.235 +Madagascar,2012,3.551,7.311,0.673,55.580,0.487,-0.058,0.854,0.588,0.194 +Madagascar,2013,3.816,7.307,0.673,55.820,0.480,-0.022,0.868,0.600,0.241 +Madagascar,2014,3.676,7.314,0.655,56.060,0.529,-0.026,0.791,0.641,0.192 +Madagascar,2015,3.593,7.319,0.647,56.300,0.545,-0.044,0.861,0.674,0.226 +Madagascar,2016,3.663,7.332,0.746,56.550,0.570,-0.072,0.864,0.670,0.204 +Madagascar,2017,4.079,7.345,0.626,56.800,0.570,-0.037,0.847,0.701,0.375 +Madagascar,2018,4.071,7.351,0.666,57.050,0.551,0.000,0.889,0.723,0.362 +Madagascar,2019,4.339,7.369,0.701,57.300,0.550,-0.015,0.720,0.699,0.304 +Madagascar,2022,4.019,7.315,0.642,58.050,0.523,0.070,0.740,0.687,0.345 +Madagascar,2023,4.433,7.333,0.692,58.300,0.504,0.096,0.784,0.718,0.389 +Malawi,2006,3.830,7.015,0.554,45.360,0.767,0.171,0.676,0.609,0.222 +Malawi,2007,4.891,7.078,0.600,46.420,0.910,0.173,0.691,0.691,0.176 +Malawi,2009,5.148,7.174,0.718,48.540,0.879,0.147,0.689,0.694,0.130 +Malawi,2011,3.946,7.231,0.613,50.660,0.733,0.070,0.853,0.620,0.268 +Malawi,2012,4.279,7.221,0.604,51.720,0.637,0.140,0.886,0.717,0.200 +Malawi,2013,4.035,7.246,0.563,52.780,0.752,0.049,0.857,0.699,0.248 +Malawi,2014,4.563,7.273,0.512,53.840,0.786,0.032,0.824,0.653,0.263 +Malawi,2015,3.868,7.273,0.494,54.900,0.801,0.029,0.835,0.602,0.260 +Malawi,2016,3.476,7.270,0.524,55.450,0.810,0.037,0.824,0.584,0.325 +Malawi,2017,3.417,7.283,0.555,56.000,0.848,-0.004,0.735,0.592,0.312 +Malawi,2018,3.335,7.299,0.528,56.550,0.799,0.043,0.766,0.548,0.365 +Malawi,2019,3.869,7.325,0.549,57.100,0.765,-0.027,0.680,0.517,0.348 +Malawi,2021,3.635,7.307,0.558,58.200,0.757,-0.014,0.740,0.551,0.326 +Malawi,2022,3.356,7.291,0.503,58.750,0.744,0.017,0.755,0.536,0.329 +Malawi,2023,3.272,7.279,0.470,59.300,0.738,0.014,0.745,0.520,0.338 +Malaysia,2006,6.012,9.827,0.866,65.080,0.837,0.196,0.740,0.687,0.243 +Malaysia,2007,6.239,9.867,0.871,65.160,0.844,0.085,0.799,0.719,0.162 +Malaysia,2008,5.807,9.893,0.803,65.240,0.780,0.040,0.884,0.728,0.186 +Malaysia,2009,5.385,9.858,0.792,65.320,0.874,-0.013,0.858,0.740,0.164 +Malaysia,2010,5.580,9.912,0.839,65.400,0.769,0.028,0.844,0.752,0.192 +Malaysia,2011,5.786,9.948,0.770,65.480,0.840,-0.021,0.842,0.785,0.155 +Malaysia,2012,5.914,9.985,0.841,65.560,0.848,0.013,0.847,0.744,0.177 +Malaysia,2013,5.770,10.015,0.831,65.640,0.791,0.260,0.755,0.664,0.317 +Malaysia,2014,5.963,10.057,0.863,65.720,0.808,0.235,0.845,0.711,0.261 +Malaysia,2015,6.322,10.092,0.818,65.800,0.675,0.218,0.838,0.733,0.314 +Malaysia,2018,5.339,10.197,0.789,65.725,0.875,0.123,0.894,0.716,0.200 +Malaysia,2019,5.428,10.228,0.842,65.700,0.916,0.119,0.782,0.735,0.176 +Malaysia,2020,6.014,10.159,0.797,65.675,0.878,0.096,0.747,0.721,0.288 +Malaysia,2021,6.010,10.179,0.794,65.650,0.878,0.218,0.769,0.728,0.183 +Malaysia,2022,6.048,10.251,0.815,65.625,0.957,0.208,0.789,0.767,0.191 +Malaysia,2023,5.868,10.283,0.779,65.600,0.965,0.154,0.754,0.761,0.195 +Maldives,2018,5.198,9.893,0.913,69.775,0.855,0.013,,, +Mali,2006,4.014,7.561,0.761,49.940,0.555,-0.075,0.761,0.748,0.209 +Mali,2008,4.115,7.576,0.747,50.620,0.495,-0.015,0.918,0.717,0.164 +Mali,2009,3.977,7.591,0.733,50.960,0.634,0.005,0.819,0.729,0.150 +Mali,2010,3.762,7.610,0.751,51.300,0.749,-0.031,0.811,0.764,0.162 +Mali,2011,4.667,7.609,0.796,51.640,0.823,-0.103,0.726,0.752,0.132 +Mali,2012,4.313,7.572,0.823,51.980,0.704,-0.091,0.787,0.647,0.109 +Mali,2013,3.676,7.565,0.820,52.320,0.665,-0.056,0.755,0.717,0.193 +Mali,2014,3.975,7.602,0.843,52.660,0.652,-0.040,0.658,0.722,0.186 +Mali,2015,4.582,7.631,0.830,53.000,0.634,-0.070,0.800,0.696,0.243 +Mali,2016,4.016,7.655,0.836,53.400,0.696,-0.072,0.862,0.738,0.305 +Mali,2017,4.742,7.675,0.741,53.800,0.753,-0.072,0.863,0.665,0.393 +Mali,2018,4.416,7.690,0.692,54.200,0.737,-0.036,0.793,0.689,0.370 +Mali,2019,4.988,7.705,0.755,54.600,0.670,-0.040,0.846,0.646,0.358 +Mali,2020,4.269,7.661,0.568,55.000,0.645,-0.069,0.895,0.648,0.440 +Mali,2021,4.113,7.659,0.573,55.400,0.673,-0.004,0.902,0.640,0.438 +Mali,2022,4.211,7.665,0.642,55.800,0.818,-0.024,0.746,0.655,0.408 +Mali,2023,4.370,7.673,0.641,56.200,0.776,-0.043,0.790,0.660,0.324 +Malta,2009,6.328,10.353,0.916,70.220,0.803,0.456,,0.626,0.358 +Malta,2010,5.774,10.402,0.908,70.400,0.802,0.278,,0.624,0.375 +Malta,2011,6.155,10.402,0.923,70.580,0.882,0.288,,0.638,0.340 +Malta,2012,5.963,10.433,0.922,70.760,0.861,0.343,,0.639,0.391 +Malta,2013,6.380,10.473,0.942,70.940,0.909,0.400,,0.629,0.370 +Malta,2014,6.452,10.526,0.941,71.120,0.904,0.395,0.670,0.606,0.352 +Malta,2015,6.613,10.594,0.919,71.300,0.912,0.339,0.664,0.641,0.355 +Malta,2016,6.591,10.604,0.930,71.350,0.916,0.339,0.696,0.645,0.355 +Malta,2017,6.676,10.681,0.937,71.400,0.924,0.244,0.690,0.666,0.302 +Malta,2018,6.910,10.705,0.932,71.450,0.927,0.170,0.595,0.666,0.296 +Malta,2019,6.733,10.734,0.922,71.500,0.924,0.077,0.689,0.642,0.356 +Malta,2020,6.157,10.622,0.938,71.550,0.931,-0.005,0.675,0.576,0.411 +Malta,2021,6.444,10.727,0.897,71.600,0.889,0.239,0.753,0.635,0.375 +Malta,2022,6.299,10.784,0.932,71.650,0.838,0.246,0.758,0.671,0.370 +Malta,2023,6.295,,0.912,71.700,0.851,,0.780,0.644,0.361 +Mauritania,2007,4.149,8.528,0.682,56.500,0.573,-0.077,0.586,0.732,0.174 +Mauritania,2008,4.248,8.500,0.670,56.800,0.593,-0.023,0.841,0.747,0.176 +Mauritania,2009,4.500,8.474,0.819,57.100,0.735,0.034,0.848,0.717,0.170 +Mauritania,2010,4.772,8.471,0.857,57.400,0.669,0.050,0.727,0.737,0.129 +Mauritania,2011,4.785,8.482,0.750,57.700,0.567,0.047,0.747,0.729,0.175 +Mauritania,2012,4.673,8.494,0.763,58.000,0.487,-0.026,0.707,0.749,0.164 +Mauritania,2013,4.199,8.506,0.741,58.300,0.603,-0.084,0.676,0.743,0.196 +Mauritania,2014,4.483,8.521,0.853,58.600,0.468,-0.060,0.589,0.743,0.163 +Mauritania,2015,3.923,8.547,0.875,58.900,0.447,0.050,0.715,0.798,0.194 +Mauritania,2016,4.472,8.533,0.785,59.125,0.467,-0.181,0.842,0.710,0.222 +Mauritania,2017,4.678,8.568,0.779,59.350,0.527,-0.161,0.777,0.631,0.272 +Mauritania,2018,4.314,8.588,0.802,59.575,0.467,-0.121,0.711,0.665,0.276 +Mauritania,2019,4.153,8.614,0.798,59.800,0.628,-0.111,0.743,0.686,0.260 +Mauritania,2022,4.724,8.602,0.648,60.475,0.624,-0.016,0.657,0.631,0.389 +Mauritania,2023,4.292,8.620,0.606,60.700,0.540,0.018,0.669,0.708,0.329 +Mauritius,2011,5.477,9.797,0.800,63.520,0.848,0.184,0.847,0.653,0.253 +Mauritius,2014,5.648,9.895,0.785,63.880,0.824,0.168,0.879,0.741,0.222 +Mauritius,2016,5.610,9.968,0.836,63.975,0.819,0.131,0.891,0.706,0.246 +Mauritius,2017,6.174,10.005,0.910,63.950,0.912,0.079,0.818,0.682,0.169 +Mauritius,2018,5.882,10.044,0.909,63.925,0.867,-0.081,0.785,0.710,0.158 +Mauritius,2019,6.241,10.072,0.913,63.900,0.893,-0.061,0.810,0.735,0.149 +Mauritius,2020,6.015,9.914,0.893,63.875,0.843,-0.038,0.772,0.700,0.138 +Mauritius,2021,5.949,9.948,0.887,63.850,0.802,-0.013,0.784,0.666,0.136 +Mauritius,2022,5.741,10.034,0.887,63.825,0.798,-0.042,0.769,0.725,0.168 +Mauritius,2023,5.759,10.083,0.868,63.800,0.797,-0.002,0.769,0.664,0.160 +Mexico,2005,6.581,9.792,0.903,64.400,0.814,,0.764,0.763,0.219 +Mexico,2007,6.525,9.831,0.879,64.680,0.670,-0.101,0.747,0.754,0.248 +Mexico,2008,6.829,9.830,0.876,64.820,0.677,-0.134,0.785,0.774,0.201 +Mexico,2009,6.963,9.764,0.868,64.960,0.682,-0.082,0.764,0.763,0.196 +Mexico,2010,6.802,9.800,0.876,65.100,0.778,-0.055,0.693,0.745,0.215 +Mexico,2011,6.910,9.822,0.824,65.240,0.831,-0.106,0.698,0.700,0.228 +Mexico,2012,7.320,9.844,0.767,65.380,0.788,-0.099,0.633,0.722,0.278 +Mexico,2013,7.443,9.844,0.759,65.520,0.739,-0.171,0.615,0.750,0.223 +Mexico,2014,6.680,9.860,0.782,65.660,0.779,-0.101,0.630,0.760,0.229 +Mexico,2015,6.236,9.880,0.761,65.800,0.719,-0.158,0.708,0.706,0.237 +Mexico,2016,6.824,9.895,0.893,65.800,0.752,-0.160,0.809,0.802,0.220 +Mexico,2017,6.410,9.905,0.800,65.800,0.861,-0.208,0.801,0.775,0.231 +Mexico,2018,6.550,9.917,0.858,65.800,0.816,-0.186,0.809,0.815,0.213 +Mexico,2019,6.432,9.907,0.852,65.800,0.903,-0.148,0.809,0.803,0.252 +Mexico,2020,5.964,9.816,0.779,65.800,0.873,-0.128,0.778,0.745,0.292 +Mexico,2021,5.991,9.857,0.779,65.800,0.837,-0.037,0.745,0.750,0.305 +Mexico,2022,7.038,9.881,0.858,65.800,0.861,-0.123,0.780,0.818,0.205 +Mexico,2023,7.006,9.900,0.868,65.800,0.870,-0.124,0.756,0.809,0.233 +Moldova,2006,5.102,8.922,0.812,59.480,0.554,-0.169,0.926,0.553,0.255 +Moldova,2007,4.775,8.954,0.804,59.860,0.696,-0.190,0.930,0.519,0.306 +Moldova,2008,5.503,9.031,0.872,60.240,0.641,-0.060,0.926,0.565,0.284 +Moldova,2009,5.554,8.970,0.856,60.620,0.551,-0.103,0.925,0.539,0.306 +Moldova,2010,5.590,9.040,0.847,61.000,0.598,-0.093,0.929,0.564,0.278 +Moldova,2011,5.792,9.097,0.869,61.380,0.628,-0.086,0.957,0.553,0.285 +Moldova,2012,5.996,9.091,0.826,61.760,0.602,-0.054,0.955,0.564,0.314 +Moldova,2013,5.756,9.178,0.803,62.140,0.658,-0.073,0.941,0.548,0.261 +Moldova,2014,5.917,9.227,0.805,62.520,0.623,-0.118,0.925,0.547,0.260 +Moldova,2015,6.017,9.232,0.840,62.900,0.595,-0.094,0.943,0.556,0.281 +Moldova,2016,5.578,9.289,0.837,63.300,0.557,-0.052,0.969,0.586,0.275 +Moldova,2017,5.326,9.347,0.831,63.700,0.553,-0.057,0.926,0.563,0.259 +Moldova,2018,5.682,9.404,0.892,64.100,0.824,-0.089,0.929,0.584,0.270 +Moldova,2019,5.803,9.455,0.809,64.500,0.784,-0.097,0.884,0.600,0.262 +Moldova,2020,5.812,9.380,0.874,64.900,0.859,-0.058,0.941,0.698,0.268 +Moldova,2021,5.959,9.518,0.880,65.300,0.833,-0.096,0.875,0.630,0.270 +Moldova,2022,5.687,9.465,0.817,65.700,0.829,-0.084,0.885,0.552,0.276 +Moldova,2023,5.801,9.492,0.842,66.100,0.844,-0.157,0.860,0.578,0.251 +Mongolia,2007,4.609,8.827,0.881,56.540,0.781,0.059,0.918,0.483,0.203 +Mongolia,2008,4.493,8.902,0.920,56.960,0.484,0.062,0.962,0.514,0.173 +Mongolia,2010,4.586,8.925,0.904,57.800,0.631,0.093,0.928,0.559,0.150 +Mongolia,2011,5.031,9.069,0.948,58.220,0.700,0.145,0.931,0.561,0.153 +Mongolia,2012,4.885,9.168,0.919,58.640,0.688,0.100,0.932,0.524,0.181 +Mongolia,2013,4.913,9.260,0.935,59.060,0.748,0.130,0.928,0.549,0.179 +Mongolia,2014,4.825,9.315,0.943,59.480,0.752,0.140,0.909,0.512,0.170 +Mongolia,2015,4.983,9.318,0.906,59.900,0.686,0.167,0.900,0.533,0.208 +Mongolia,2016,5.057,9.311,0.947,60.000,0.760,0.083,0.900,0.555,0.171 +Mongolia,2017,5.334,9.344,0.924,60.100,0.675,0.112,0.865,0.552,0.214 +Mongolia,2018,5.465,9.397,0.942,60.200,0.696,0.048,0.849,0.525,0.192 +Mongolia,2019,5.563,9.430,0.946,60.300,0.711,0.142,0.873,0.562,0.167 +Mongolia,2020,6.011,9.365,0.918,60.400,0.718,0.138,0.843,0.575,0.260 +Mongolia,2021,5.721,9.365,0.927,60.500,0.667,0.215,0.851,0.560,0.202 +Mongolia,2022,5.788,9.397,0.951,60.600,0.717,0.211,0.847,0.550,0.209 +Mongolia,2023,5.580,9.433,0.938,60.700,0.699,0.220,0.871,0.545,0.197 +Montenegro,2007,5.196,9.696,0.832,65.960,0.512,-0.139,0.815,0.536,0.340 +Montenegro,2009,4.801,9.702,0.816,66.120,0.556,-0.107,0.838,0.533,0.423 +Montenegro,2010,5.455,9.727,0.805,66.200,0.552,-0.212,0.757,0.510,0.410 +Montenegro,2011,5.223,9.758,0.818,66.280,0.546,-0.232,0.762,0.510,0.378 +Montenegro,2012,5.219,9.729,0.704,66.360,0.462,-0.198,0.755,0.468,0.379 +Montenegro,2013,5.074,9.763,0.736,66.440,0.502,-0.182,0.693,0.493,0.331 +Montenegro,2014,5.283,9.780,0.863,66.520,0.503,0.091,0.768,0.545,0.368 +Montenegro,2015,5.125,9.813,0.740,66.600,0.583,-0.150,0.781,0.534,0.337 +Montenegro,2016,5.304,9.842,0.866,66.700,0.569,-0.093,0.849,0.547,0.337 +Montenegro,2017,5.615,9.887,0.881,66.800,0.626,-0.089,0.756,0.493,0.350 +Montenegro,2018,5.650,9.937,0.856,66.900,0.626,-0.057,0.769,0.527,0.355 +Montenegro,2019,5.386,9.977,0.832,67.000,0.694,-0.111,0.820,0.547,0.366 +Montenegro,2020,5.722,9.812,0.887,67.100,0.802,0.061,0.845,0.560,0.411 +Montenegro,2022,5.600,10.002,0.875,67.300,0.778,-0.022,0.802,0.485,0.317 +Montenegro,2023,5.813,10.041,0.853,67.400,0.799,-0.066,0.706,0.481,0.318 +Morocco,2010,4.383,8.821,,62.500,0.663,-0.173,0.900,, +Morocco,2011,5.085,8.861,0.833,62.660,0.579,-0.229,0.875,0.687,0.187 +Morocco,2012,4.970,8.877,0.676,62.820,0.757,-0.198,0.845,0.641,0.281 +Morocco,2013,5.142,8.904,0.597,62.980,0.572,-0.221,0.771,0.707,0.239 +Morocco,2015,5.163,8.947,0.606,63.300,0.713,-0.239,0.842,0.596,0.262 +Morocco,2016,5.386,8.940,0.655,63.400,0.817,-0.248,0.717,0.658,0.205 +Morocco,2017,5.312,8.977,0.641,63.500,0.814,-0.227,0.841,0.501,0.323 +Morocco,2018,4.897,8.996,0.554,63.600,0.773,-0.246,0.843,0.575,0.416 +Morocco,2019,5.057,9.014,0.535,63.700,0.757,-0.256,0.757,0.535,0.410 +Morocco,2020,4.803,8.929,0.553,63.800,0.819,-0.238,0.803,0.548,0.256 +Morocco,2021,5.326,8.994,0.505,63.900,0.762,-0.204,0.817,0.554,0.341 +Morocco,2022,4.596,8.995,0.564,64.000,0.795,-0.257,0.802,0.573,0.414 +Morocco,2023,4.487,9.009,0.500,64.100,0.821,-0.094,0.831,0.549,0.415 +Mozambique,2006,4.595,6.792,0.879,44.820,0.684,0.035,0.758,0.602,0.327 +Mozambique,2007,4.833,6.840,0.748,45.240,0.643,0.068,0.854,0.627,0.240 +Mozambique,2008,4.654,6.885,0.756,45.660,0.514,0.000,0.864,0.611,0.280 +Mozambique,2011,4.971,6.996,0.818,46.920,0.639,-0.030,0.719,0.565,0.243 +Mozambique,2015,4.550,7.148,0.666,48.600,0.813,0.083,0.632,0.560,0.340 +Mozambique,2017,4.280,7.160,0.678,49.500,0.823,-0.035,0.682,0.642,0.353 +Mozambique,2018,4.654,7.165,0.738,49.950,0.897,0.043,0.691,0.620,0.397 +Mozambique,2019,4.932,7.159,0.742,50.400,0.870,0.068,0.682,0.588,0.384 +Mozambique,2021,5.178,7.112,0.664,51.300,0.838,0.042,0.627,0.576,0.383 +Mozambique,2022,4.740,7.125,0.711,51.750,0.884,0.043,0.688,0.629,0.351 +Mozambique,2023,5.704,7.147,0.701,52.200,0.867,0.071,0.678,0.625,0.335 +Myanmar,2012,4.439,8.067,0.612,58.160,0.691,0.646,0.695,0.574,0.205 +Myanmar,2013,4.176,8.134,0.757,58.640,0.775,0.691,0.638,0.675,0.217 +Myanmar,2014,4.786,8.205,0.774,59.120,0.870,0.700,0.592,0.713,0.112 +Myanmar,2015,4.224,8.229,0.752,59.600,0.808,0.692,0.633,0.729,0.272 +Myanmar,2016,4.623,8.321,0.793,59.925,0.877,0.680,0.607,0.671,0.302 +Myanmar,2017,4.154,8.369,0.795,60.250,0.886,0.651,0.619,0.617,0.282 +Myanmar,2018,4.411,8.424,0.774,60.575,0.906,0.492,0.647,0.640,0.300 +Myanmar,2019,4.434,8.483,0.763,60.900,0.899,0.560,0.682,0.638,0.286 +Myanmar,2020,4.431,8.507,0.796,61.225,0.825,0.468,0.647,0.700,0.289 +Myanmar,2021,4.314,8.302,0.780,61.550,0.631,0.508,0.671,0.636,0.268 +Myanmar,2022,4.359,8.325,0.746,61.875,0.646,0.600,0.729,0.669,0.353 +Myanmar,2023,4.391,8.347,0.685,62.200,0.695,0.548,0.686,0.634,0.358 +Namibia,2007,4.886,9.073,0.828,51.880,0.781,-0.107,0.839,0.769,0.160 +Namibia,2014,4.574,9.264,0.763,54.260,0.849,-0.191,0.790,0.723,0.239 +Namibia,2017,4.441,9.243,0.828,55.350,0.810,-0.198,0.831,0.697,0.277 +Namibia,2018,4.834,9.237,0.864,55.725,0.754,-0.177,0.846,0.696,0.240 +Namibia,2019,4.436,9.211,0.845,56.100,0.739,-0.182,0.879,0.644,0.256 +Namibia,2020,4.451,9.110,0.741,56.475,0.666,-0.110,0.810,0.652,0.248 +Namibia,2021,4.491,9.128,0.808,56.850,0.659,-0.153,0.829,0.644,0.230 +Namibia,2022,4.949,9.158,0.808,57.225,0.683,-0.124,0.849,0.676,0.261 +Namibia,2023,5.055,9.167,0.852,57.600,0.674,-0.113,0.873,0.635,0.208 +Nepal,2006,4.567,7.734,0.874,59.660,0.689,,0.897,0.583,0.171 +Nepal,2007,4.748,7.761,0.787,59.720,0.413,0.303,0.891,0.502,0.152 +Nepal,2008,4.441,7.814,0.818,59.780,0.618,0.276,0.900,0.589,0.153 +Nepal,2009,4.917,7.853,0.813,59.840,0.616,0.029,0.950,0.484,0.215 +Nepal,2010,4.350,7.895,0.779,59.900,0.519,0.077,0.911,0.538,0.226 +Nepal,2011,3.809,7.924,0.741,59.960,0.525,-0.024,0.935,0.530,0.207 +Nepal,2012,4.233,7.968,0.734,60.020,0.638,0.056,0.883,0.538,0.231 +Nepal,2013,4.605,8.000,0.740,60.080,0.722,0.137,0.877,0.496,0.279 +Nepal,2014,4.975,8.056,0.786,60.140,0.712,0.108,0.841,0.492,0.287 +Nepal,2015,4.812,8.089,0.748,60.200,0.763,0.214,0.824,0.444,0.358 +Nepal,2016,5.100,8.085,0.837,60.475,0.839,0.155,0.817,0.523,0.370 +Nepal,2017,4.737,8.159,0.816,60.750,0.845,0.120,0.770,0.463,0.376 +Nepal,2018,4.910,8.221,0.768,61.025,0.770,0.107,0.742,0.457,0.387 +Nepal,2019,5.449,8.274,0.772,61.300,0.790,0.152,0.712,0.444,0.357 +Nepal,2020,5.982,8.233,0.787,61.575,0.772,0.135,0.812,0.480,0.337 +Nepal,2021,4.622,8.257,0.699,61.850,0.818,0.144,0.770,0.414,0.354 +Nepal,2022,5.474,8.294,0.753,62.125,0.844,0.149,0.760,0.473,0.342 +Nepal,2023,5.389,8.318,0.749,62.400,0.765,0.184,0.792,0.461,0.350 +Netherlands,2005,7.464,10.809,0.947,70.700,0.901,,0.571,0.701,0.233 +Netherlands,2007,7.452,10.876,0.944,70.780,0.896,0.339,0.445,0.718,0.213 +Netherlands,2008,7.631,10.894,0.944,70.820,0.883,0.359,0.419,0.679,0.182 +Netherlands,2010,7.502,10.860,0.957,70.900,0.921,0.344,0.399,0.745,0.206 +Netherlands,2011,7.564,10.870,0.938,70.940,0.925,0.330,0.359,0.770,0.181 +Netherlands,2012,7.471,10.856,0.939,70.980,0.877,0.282,0.434,0.753,0.226 +Netherlands,2013,7.407,10.852,0.925,71.020,0.919,0.299,0.505,0.765,0.235 +Netherlands,2014,7.321,10.863,0.909,71.060,0.910,0.326,0.457,0.776,0.221 +Netherlands,2015,7.324,10.878,0.879,71.100,0.904,0.256,0.412,0.742,0.202 +Netherlands,2016,7.541,10.894,0.926,71.175,0.907,0.233,0.433,0.737,0.215 +Netherlands,2017,7.459,10.917,0.937,71.250,0.920,0.245,0.363,0.729,0.185 +Netherlands,2018,7.463,10.934,0.939,71.325,0.920,0.156,0.371,0.748,0.205 +Netherlands,2019,7.425,10.947,0.941,71.400,0.886,0.207,0.360,0.728,0.231 +Netherlands,2020,7.504,10.902,0.944,71.475,0.935,0.145,0.281,0.691,0.247 +Netherlands,2021,7.314,10.944,0.919,71.550,0.856,0.266,0.397,0.714,0.201 +Netherlands,2022,7.390,10.978,0.929,71.625,0.868,0.223,0.459,0.711,0.198 +Netherlands,2023,7.255,10.977,0.915,71.700,0.847,0.223,0.424,0.693,0.202 +New Zealand,2006,7.305,10.541,0.946,69.720,0.932,0.304,0.224,0.825,0.219 +New Zealand,2007,7.604,10.562,0.967,69.740,0.878,0.272,0.295,0.803,0.238 +New Zealand,2008,7.381,10.541,0.944,69.760,0.893,0.291,0.334,0.784,0.232 +New Zealand,2010,7.224,10.534,0.976,69.800,0.918,0.247,0.321,0.783,0.235 +New Zealand,2011,7.191,10.548,0.954,69.820,0.935,0.278,0.269,0.784,0.210 +New Zealand,2012,7.250,10.565,0.930,69.840,0.902,0.280,0.289,0.786,0.207 +New Zealand,2013,7.280,10.585,0.958,69.860,0.944,0.230,0.312,0.778,0.151 +New Zealand,2014,7.306,10.605,0.942,69.880,0.932,0.341,0.273,0.807,0.199 +New Zealand,2015,7.418,10.622,0.987,69.900,0.942,0.322,0.186,0.795,0.160 +New Zealand,2016,7.226,10.637,0.937,69.975,0.927,0.259,0.278,0.777,0.207 +New Zealand,2017,7.327,10.650,0.955,70.050,0.942,0.287,0.222,0.763,0.172 +New Zealand,2018,7.370,10.667,0.954,70.125,0.949,0.113,0.207,0.785,0.168 +New Zealand,2019,7.205,10.675,0.939,70.200,0.912,0.150,0.234,0.765,0.191 +New Zealand,2020,7.257,10.647,0.952,70.275,0.918,0.116,0.283,0.796,0.209 +New Zealand,2021,7.137,10.693,0.950,70.350,0.910,0.216,0.252,0.747,0.206 +New Zealand,2022,6.975,10.712,0.956,70.425,0.831,0.183,0.281,0.706,0.210 +New Zealand,2023,6.976,10.720,0.933,70.500,0.877,0.181,0.304,0.738,0.229 +Nicaragua,2006,4.460,8.395,0.877,64.300,0.745,0.005,0.844,0.780,0.294 +Nicaragua,2007,4.944,8.431,0.866,64.400,0.836,0.135,0.826,0.787,0.287 +Nicaragua,2008,5.104,8.450,0.857,64.500,0.791,0.070,0.819,0.770,0.289 +Nicaragua,2009,5.353,8.402,0.835,64.600,0.746,0.065,0.794,0.740,0.299 +Nicaragua,2010,5.687,8.431,0.863,64.700,0.792,0.013,0.802,0.749,0.268 +Nicaragua,2011,5.386,8.478,0.800,64.800,0.779,-0.024,0.760,0.747,0.309 +Nicaragua,2012,5.448,8.526,0.894,64.900,0.850,0.012,0.644,0.762,0.255 +Nicaragua,2013,5.772,8.559,0.868,65.000,0.859,0.034,0.636,0.800,0.271 +Nicaragua,2014,6.275,8.591,0.839,65.100,0.817,0.099,0.699,0.782,0.334 +Nicaragua,2015,5.924,8.624,0.827,65.200,0.809,0.073,0.728,0.771,0.346 +Nicaragua,2016,6.013,8.654,0.853,65.275,0.717,0.035,0.731,0.787,0.380 +Nicaragua,2017,6.476,8.685,0.838,65.350,0.922,0.006,0.673,0.793,0.308 +Nicaragua,2018,5.819,8.637,0.854,65.425,0.797,0.004,0.713,0.743,0.408 +Nicaragua,2019,6.113,8.594,0.874,65.500,0.883,0.024,0.622,0.790,0.337 +Nicaragua,2020,6.287,8.562,0.856,65.575,0.818,0.037,0.631,0.775,0.316 +Nicaragua,2021,6.095,8.647,0.848,65.650,0.905,0.020,0.675,0.799,0.293 +Nicaragua,2022,6.392,8.669,0.844,65.725,0.914,-0.004,0.570,0.787,0.339 +Nicaragua,2023,6.362,8.685,0.836,65.800,0.906,-0.008,0.532,0.772,0.340 +Niger,2006,3.737,6.872,0.677,50.140,0.750,0.073,0.755,0.746,0.179 +Niger,2007,4.277,6.867,0.726,50.580,0.584,-0.060,0.748,0.723,0.158 +Niger,2008,4.236,6.905,0.607,51.020,0.649,-0.059,0.749,0.689,0.194 +Niger,2009,4.267,6.887,0.771,51.460,0.880,-0.013,0.483,0.714,0.115 +Niger,2010,4.101,6.932,0.655,51.900,0.817,-0.027,0.529,0.715,0.126 +Niger,2011,4.556,6.918,0.818,52.340,0.780,-0.060,0.549,0.710,0.166 +Niger,2012,3.798,6.980,0.700,52.780,0.734,-0.068,0.777,0.582,0.142 +Niger,2013,3.716,6.994,0.696,53.220,0.825,-0.082,0.711,0.639,0.208 +Niger,2014,4.181,7.020,0.753,53.660,0.688,-0.051,0.605,0.629,0.205 +Niger,2015,3.671,7.025,0.713,54.100,0.728,-0.037,0.703,0.665,0.218 +Niger,2016,4.235,7.042,0.683,54.450,0.702,-0.020,0.814,0.646,0.325 +Niger,2017,4.616,7.053,0.582,54.800,0.684,-0.035,0.778,0.699,0.427 +Niger,2018,5.164,7.084,0.612,55.150,0.791,0.004,0.637,0.759,0.503 +Niger,2019,5.004,7.105,0.677,55.500,0.831,0.021,0.729,0.794,0.304 +Niger,2022,4.501,7.151,0.587,56.550,0.793,0.024,0.740,0.787,0.366 +Niger,2023,4.609,7.181,0.638,56.900,0.767,0.029,,0.747,0.417 +Nigeria,2006,4.710,8.314,0.735,50.220,0.649,0.080,0.871,0.772,0.178 +Nigeria,2007,4.890,8.350,0.718,50.540,0.635,0.132,0.918,0.815,0.141 +Nigeria,2008,4.939,8.389,0.780,50.860,0.584,0.115,0.892,0.755,0.244 +Nigeria,2009,4.980,8.439,0.722,51.180,0.537,0.063,0.913,0.730,0.225 +Nigeria,2010,4.760,8.488,0.824,51.500,0.565,0.062,0.911,0.759,0.190 +Nigeria,2012,5.493,8.526,0.818,52.140,0.652,0.062,0.900,0.782,0.209 +Nigeria,2013,4.818,8.564,0.663,52.460,0.622,0.046,0.905,0.652,0.286 +Nigeria,2015,4.933,8.600,0.812,53.100,0.680,-0.040,0.926,0.715,0.251 +Nigeria,2016,5.220,8.558,0.805,53.425,0.798,0.039,0.905,0.745,0.252 +Nigeria,2017,5.322,8.541,0.733,53.750,0.826,0.120,0.835,0.682,0.236 +Nigeria,2018,5.252,8.535,0.741,54.075,0.790,-0.015,0.866,0.762,0.256 +Nigeria,2019,4.266,8.532,0.735,54.400,0.746,0.019,0.873,0.698,0.229 +Nigeria,2020,5.503,8.490,0.739,54.725,0.713,0.094,0.913,0.737,0.316 +Nigeria,2021,4.479,8.502,0.742,55.050,0.726,0.047,0.912,0.666,0.188 +Nigeria,2022,5.294,8.510,0.785,55.375,0.776,0.172,0.935,0.760,0.253 +Nigeria,2023,4.869,8.514,0.781,55.700,0.720,0.209,0.877,0.721,0.266 +North Macedonia,2007,4.494,9.434,0.811,64.660,0.439,0.073,0.870,0.558,0.251 +North Macedonia,2009,4.428,9.481,0.734,64.820,0.552,-0.049,0.844,0.488,0.370 +North Macedonia,2010,4.180,9.512,0.687,64.900,0.513,-0.065,0.856,0.473,0.314 +North Macedonia,2011,4.898,9.533,0.784,64.980,0.607,-0.094,0.865,0.503,0.363 +North Macedonia,2012,4.640,9.527,0.798,65.060,0.613,-0.091,0.920,0.551,0.422 +North Macedonia,2013,5.186,9.555,0.832,65.140,0.641,0.018,0.861,0.521,0.331 +North Macedonia,2014,5.204,9.589,0.793,65.220,0.645,0.028,0.861,0.583,0.307 +North Macedonia,2015,4.976,9.625,0.766,65.300,0.660,-0.053,0.824,0.551,0.299 +North Macedonia,2016,5.346,9.652,0.871,65.500,0.706,0.073,0.870,0.587,0.292 +North Macedonia,2017,5.234,9.662,0.800,65.700,0.752,-0.065,0.856,0.447,0.299 +North Macedonia,2018,5.240,9.689,0.849,65.900,0.745,-0.048,0.910,0.512,0.298 +North Macedonia,2019,5.015,9.728,0.815,66.100,0.725,0.018,0.923,0.515,0.304 +North Macedonia,2020,5.054,9.666,0.750,66.300,0.787,0.127,0.877,0.542,0.365 +North Macedonia,2021,5.535,9.724,0.809,66.500,0.793,0.188,0.884,0.563,0.303 +North Macedonia,2022,5.167,9.749,0.850,66.700,0.723,0.068,0.937,0.555,0.277 +North Macedonia,2023,5.403,9.776,0.883,66.900,0.738,0.123,0.917,0.517,0.272 +Norway,2006,7.416,11.056,0.959,69.400,0.960,0.101,0.397,0.767,0.197 +Norway,2008,7.632,11.066,0.936,69.800,0.947,0.010,0.503,0.763,0.155 +Norway,2012,7.678,11.041,0.948,70.600,0.947,0.139,0.368,0.798,0.213 +Norway,2014,7.444,11.048,0.941,71.000,0.956,0.173,0.405,0.802,0.194 +Norway,2015,7.603,11.057,0.947,71.200,0.948,0.249,0.299,0.796,0.209 +Norway,2016,7.596,11.060,0.960,71.250,0.954,0.125,0.410,0.809,0.209 +Norway,2017,7.579,11.076,0.950,71.300,0.953,0.228,0.250,0.800,0.203 +Norway,2018,7.444,11.077,0.966,71.350,0.960,0.086,0.268,0.786,0.212 +Norway,2019,7.442,11.082,0.942,71.400,0.954,0.103,0.271,0.782,0.195 +Norway,2020,7.290,11.063,0.956,71.450,0.965,0.068,0.271,0.777,0.216 +Norway,2021,7.362,11.096,0.948,71.500,0.936,0.166,0.263,0.769,0.207 +Norway,2022,7.295,11.119,0.927,71.550,0.939,0.182,0.314,0.759,0.211 +Norway,2023,7.249,11.125,0.952,71.600,0.938,0.219,0.245,0.756,0.228 +Oman,2011,6.853,10.539,,62.340,0.916,0.008,,,0.295 +Pakistan,2005,5.225,8.252,0.591,53.200,0.630,,0.844,,0.237 +Pakistan,2007,5.671,8.314,0.479,53.720,0.396,0.081,0.794,0.583,0.310 +Pakistan,2008,4.414,8.309,0.373,53.980,0.335,0.092,0.848,0.533,0.321 +Pakistan,2009,5.208,8.315,0.522,54.240,0.388,0.069,0.874,0.516,0.349 +Pakistan,2010,5.786,8.308,0.571,54.500,0.364,0.292,0.852,0.527,0.372 +Pakistan,2011,5.267,8.314,0.510,54.760,0.376,0.022,0.857,0.473,0.358 +Pakistan,2012,5.132,8.331,0.542,55.020,0.367,0.157,0.842,0.510,0.332 +Pakistan,2013,5.138,8.359,0.607,55.280,0.448,0.091,0.792,0.474,0.274 +Pakistan,2014,5.436,8.390,0.552,55.540,0.543,0.131,0.677,0.475,0.295 +Pakistan,2015,4.823,8.423,0.562,55.800,0.587,0.076,0.717,0.469,0.329 +Pakistan,2016,5.549,8.465,0.627,56.075,0.634,0.084,0.793,0.503,0.332 +Pakistan,2017,5.831,8.495,0.690,56.350,0.713,0.035,0.714,0.489,0.308 +Pakistan,2018,5.472,8.540,0.685,56.625,0.773,0.058,0.799,0.470,0.377 +Pakistan,2019,4.443,8.548,0.617,56.900,0.685,0.112,0.776,0.489,0.424 +Pakistan,2020,4.624,8.518,0.594,57.175,0.767,0.003,0.833,0.470,0.376 +Pakistan,2021,4.487,8.563,0.608,57.450,0.764,0.007,0.743,0.518,0.307 +Pakistan,2022,4.931,8.604,0.590,57.725,0.745,0.000,0.865,0.469,0.368 +Pakistan,2023,4.549,8.588,0.553,58.000,0.661,0.070,0.889,0.504,0.417 +Panama,2006,6.128,9.806,0.951,66.860,0.882,-0.056,0.912,0.826,0.232 +Panama,2007,6.894,9.901,0.937,67.020,0.640,0.074,0.915,0.789,0.149 +Panama,2008,6.931,9.977,0.922,67.180,0.707,0.051,0.881,0.776,0.150 +Panama,2009,7.034,9.971,0.905,67.340,0.721,0.006,0.889,0.839,0.144 +Panama,2010,7.321,10.010,0.928,67.500,0.755,-0.017,0.880,0.841,0.146 +Panama,2011,7.248,10.099,0.876,67.660,0.829,0.000,0.840,0.853,0.180 +Panama,2012,6.860,10.174,0.897,67.820,0.783,-0.011,0.796,0.838,0.207 +Panama,2013,6.866,10.224,0.896,67.980,0.811,0.010,0.814,0.860,0.226 +Panama,2014,6.631,10.256,0.873,68.140,0.894,-0.007,0.847,0.799,0.254 +Panama,2015,6.606,10.294,0.883,68.300,0.847,-0.016,0.810,0.777,0.264 +Panama,2016,6.118,10.325,0.882,68.400,0.884,-0.111,0.837,0.813,0.244 +Panama,2017,6.568,10.362,0.912,68.500,0.900,-0.178,0.841,0.795,0.242 +Panama,2018,6.281,10.382,0.904,68.600,0.861,-0.139,0.837,0.841,0.223 +Panama,2019,6.086,10.398,0.886,68.700,0.883,-0.208,0.869,0.841,0.244 +Panama,2021,6.553,10.323,0.899,68.900,0.811,-0.152,0.861,0.834,0.218 +Panama,2022,5.979,10.412,0.891,69.000,0.899,-0.128,0.887,0.821,0.259 +Panama,2023,6.543,10.455,0.887,69.100,0.852,-0.147,0.871,0.829,0.257 +Paraguay,2006,4.730,9.154,0.895,64.880,0.691,0.056,0.841,0.752,0.303 +Paraguay,2007,5.272,9.197,0.863,64.960,0.699,0.121,0.930,0.812,0.219 +Paraguay,2008,5.570,9.250,0.889,65.040,0.649,0.046,0.891,0.798,0.259 +Paraguay,2009,5.576,9.237,0.900,65.120,0.718,0.016,0.857,0.803,0.186 +Paraguay,2010,5.841,9.331,0.889,65.200,0.726,0.065,0.780,0.826,0.176 +Paraguay,2011,5.677,9.360,0.869,65.280,0.666,0.179,0.756,0.823,0.190 +Paraguay,2012,5.820,9.339,0.931,65.360,0.748,0.188,0.774,0.849,0.213 +Paraguay,2013,5.936,9.405,0.939,65.440,0.909,0.034,0.903,0.874,0.224 +Paraguay,2014,5.119,9.443,0.959,65.520,0.759,-0.013,0.762,0.876,0.216 +Paraguay,2015,5.560,9.458,0.914,65.600,0.806,-0.019,0.863,0.832,0.219 +Paraguay,2016,5.801,9.485,0.940,65.650,0.854,-0.082,0.756,0.833,0.197 +Paraguay,2017,5.713,9.518,0.902,65.700,0.891,-0.008,0.810,0.820,0.232 +Paraguay,2019,5.653,9.519,0.892,65.800,0.876,0.017,0.882,0.790,0.275 +Paraguay,2020,5.501,9.497,0.907,65.850,0.865,0.054,0.829,0.767,0.269 +Paraguay,2021,5.576,9.523,0.908,65.900,0.888,0.015,0.857,0.806,0.248 +Paraguay,2022,6.138,9.513,0.899,65.950,0.922,-0.014,0.839,0.821,0.238 +Paraguay,2023,6.214,9.549,0.889,66.000,0.902,-0.004,0.835,0.833,0.240 +Peru,2006,4.811,8.979,0.875,66.460,0.668,-0.076,0.895,0.675,0.420 +Peru,2007,5.214,9.054,0.756,66.720,0.638,-0.082,0.931,0.730,0.361 +Peru,2008,5.129,9.134,0.777,66.980,0.638,-0.072,0.896,0.701,0.354 +Peru,2009,5.519,9.138,0.799,67.240,0.638,-0.084,0.880,0.758,0.320 +Peru,2010,5.613,9.210,0.812,67.500,0.757,-0.066,0.881,0.744,0.330 +Peru,2011,5.892,9.263,0.756,67.760,0.773,-0.128,0.824,0.742,0.331 +Peru,2012,5.825,9.313,0.764,68.020,0.703,-0.084,0.867,0.705,0.398 +Peru,2013,5.783,9.361,0.797,68.280,0.703,-0.071,0.870,0.741,0.390 +Peru,2014,5.866,9.374,0.819,68.540,0.722,-0.141,0.878,0.743,0.319 +Peru,2015,5.577,9.394,0.798,68.800,0.802,-0.095,0.884,0.744,0.378 +Peru,2016,5.701,9.419,0.803,68.975,0.830,-0.139,0.866,0.791,0.338 +Peru,2017,5.711,9.429,0.830,69.150,0.827,-0.160,0.895,0.768,0.394 +Peru,2018,5.680,9.449,0.845,69.325,0.830,-0.184,0.906,0.783,0.380 +Peru,2019,5.999,9.452,0.809,69.500,0.815,-0.135,0.874,0.794,0.375 +Peru,2020,4.994,9.323,0.749,69.675,0.806,-0.094,0.912,0.736,0.481 +Peru,2021,5.694,9.436,0.819,69.850,0.812,-0.090,0.880,0.784,0.369 +Peru,2022,5.892,9.453,0.823,70.025,0.764,-0.180,0.884,0.755,0.378 +Peru,2023,5.936,9.459,0.787,70.200,0.757,-0.061,0.919,0.765,0.370 +Philippines,2006,4.670,8.562,0.795,61.360,0.828,0.058,0.841,0.756, +Philippines,2007,5.074,8.606,0.801,61.420,0.852,-0.027,0.880,0.736,0.378 +Philippines,2008,4.589,8.630,0.798,61.480,0.861,0.078,0.817,0.774,0.384 +Philippines,2009,4.880,8.626,0.775,61.540,0.874,-0.001,0.805,0.791,0.311 +Philippines,2010,4.942,8.679,0.805,61.600,0.893,0.028,0.812,0.829,0.294 +Philippines,2011,4.994,8.699,0.789,61.660,0.883,0.068,0.783,0.808,0.358 +Philippines,2012,5.002,8.748,0.813,61.720,0.914,0.048,0.771,0.811,0.351 +Philippines,2013,4.977,8.796,0.846,61.780,0.907,0.016,0.756,0.796,0.332 +Philippines,2014,5.313,8.842,0.813,61.840,0.902,-0.020,0.787,0.787,0.334 +Philippines,2015,5.547,8.887,0.854,61.900,0.912,-0.056,0.755,0.796,0.351 +Philippines,2016,5.431,8.938,0.821,61.925,0.908,-0.076,0.792,0.807,0.290 +Philippines,2017,5.594,8.987,0.851,61.950,0.926,-0.146,0.711,0.753,0.341 +Philippines,2018,5.869,9.032,0.846,61.975,0.918,-0.112,0.726,0.756,0.393 +Philippines,2019,6.268,9.075,0.845,62.000,0.910,-0.087,0.748,0.765,0.341 +Philippines,2020,5.080,8.958,0.781,62.025,0.932,-0.114,0.744,0.793,0.327 +Philippines,2021,5.965,8.999,0.778,62.050,0.905,-0.012,0.721,0.790,0.323 +Philippines,2022,5.995,9.057,0.819,62.075,0.952,-0.155,0.757,0.833,0.301 +Philippines,2023,6.184,9.102,0.796,62.100,0.932,-0.038,0.768,0.800,0.324 +Poland,2005,5.587,9.844,0.922,66.200,0.782,,0.983,0.611,0.282 +Poland,2007,5.886,9.973,0.913,66.560,0.772,-0.053,0.925,0.665,0.238 +Poland,2009,5.772,10.041,0.917,66.920,0.821,0.068,0.898,0.649,0.246 +Poland,2010,5.887,10.073,0.955,67.100,0.795,-0.003,0.905,0.686,0.234 +Poland,2011,5.646,10.122,0.905,67.280,0.868,-0.072,0.908,0.659,0.224 +Poland,2012,5.876,10.137,0.936,67.460,0.811,-0.032,0.888,0.711,0.267 +Poland,2013,5.746,10.146,0.912,67.640,0.776,-0.142,0.916,0.675,0.242 +Poland,2014,5.750,10.184,0.924,67.820,0.875,-0.069,0.898,0.681,0.223 +Poland,2015,6.007,10.228,0.893,68.000,0.793,-0.098,0.810,0.631,0.240 +Poland,2016,6.162,10.258,0.917,68.175,0.871,-0.096,0.848,0.666,0.224 +Poland,2017,6.201,10.308,0.882,68.350,0.831,-0.127,0.639,0.566,0.203 +Poland,2018,6.111,10.365,0.863,68.525,0.870,-0.260,0.720,0.622,0.176 +Poland,2019,6.242,10.409,0.878,68.700,0.883,-0.237,0.696,0.613,0.168 +Poland,2020,6.139,10.390,0.953,68.875,0.767,-0.014,0.787,0.677,0.329 +Poland,2021,5.978,10.461,0.936,69.050,0.732,0.122,0.744,0.700,0.277 +Poland,2022,6.666,10.513,0.886,69.225,0.800,-0.209,0.667,0.594,0.140 +Poland,2023,6.685,10.527,0.890,69.400,0.775,-0.232,0.662,0.556,0.155 +Portugal,2006,5.405,10.359,0.905,68.340,0.882,-0.184,0.880,0.647,0.333 +Portugal,2008,5.717,10.383,0.886,68.820,0.646,-0.223,0.933,0.667,0.309 +Portugal,2010,5.095,10.367,0.864,69.300,0.721,-0.112,0.948,0.681,0.265 +Portugal,2011,5.220,10.352,0.856,69.540,0.875,-0.179,0.962,0.671,0.279 +Portugal,2012,4.994,10.314,0.866,69.780,0.774,-0.103,0.959,0.631,0.370 +Portugal,2013,5.158,10.310,0.867,70.020,0.788,-0.124,0.946,0.665,0.348 +Portugal,2014,5.127,10.324,0.862,70.260,0.847,-0.132,0.941,0.663,0.358 +Portugal,2015,5.081,10.346,0.866,70.500,0.800,-0.169,0.941,0.629,0.371 +Portugal,2016,5.447,10.369,0.905,70.625,0.838,-0.231,0.922,0.659,0.326 +Portugal,2017,5.711,10.406,0.900,70.750,0.905,-0.182,0.881,0.608,0.294 +Portugal,2018,5.920,10.435,0.887,70.875,0.877,-0.267,0.880,0.646,0.318 +Portugal,2019,6.095,10.462,0.876,71.000,0.882,-0.240,0.915,0.675,0.300 +Portugal,2020,5.768,10.374,0.875,71.125,0.913,-0.244,0.867,0.614,0.383 +Portugal,2021,6.183,10.425,0.895,71.250,0.892,-0.211,0.872,0.629,0.284 +Portugal,2022,5.953,10.484,0.862,71.375,0.903,-0.139,0.893,0.638,0.316 +Portugal,2023,5.954,10.504,0.895,71.500,0.847,-0.176,0.889,0.661,0.309 +Qatar,2009,6.418,11.434,0.894,64.360,0.865,0.230,0.184,0.673,0.258 +Qatar,2010,6.850,11.551,,64.700,,0.095,,, +Qatar,2011,6.592,11.625,0.857,65.040,0.905,0.000,,0.661,0.328 +Qatar,2012,6.611,11.617,0.838,65.380,0.924,0.149,,0.683,0.322 +Qatar,2015,6.375,11.532,,66.400,,,,, +Romania,2005,5.049,9.733,0.838,64.500,0.800,,0.957,0.576,0.346 +Romania,2007,5.394,9.901,0.736,64.860,0.686,-0.194,0.949,0.575,0.277 +Romania,2009,5.368,9.958,0.812,65.220,0.606,-0.203,0.967,0.545,0.270 +Romania,2010,4.909,9.924,0.689,65.400,0.566,-0.091,0.974,0.539,0.344 +Romania,2011,5.023,9.973,0.753,65.580,0.650,-0.148,0.964,0.501,0.294 +Romania,2012,5.167,9.997,0.740,65.760,0.645,-0.120,0.959,0.520,0.343 +Romania,2013,5.082,10.003,0.778,65.940,0.655,-0.135,0.952,0.541,0.329 +Romania,2014,5.727,10.047,0.753,66.120,0.754,-0.107,0.958,0.565,0.331 +Romania,2015,5.777,10.083,0.787,66.300,0.796,-0.147,0.962,0.627,0.312 +Romania,2016,5.969,10.117,0.809,66.425,0.822,-0.120,0.949,0.607,0.258 +Romania,2017,6.090,10.201,0.811,66.550,0.839,-0.165,0.926,0.632,0.231 +Romania,2018,6.151,10.266,0.818,66.675,0.845,-0.224,0.921,0.649,0.298 +Romania,2019,6.130,10.309,0.842,66.800,0.848,-0.228,0.954,0.605,0.244 +Romania,2020,6.785,10.277,0.869,66.925,0.863,-0.161,0.918,0.668,0.256 +Romania,2021,6.549,10.341,0.835,67.050,0.871,-0.187,0.928,0.674,0.264 +Romania,2022,6.437,10.396,0.830,67.175,0.836,-0.173,0.941,0.615,0.258 +Romania,2023,6.489,10.431,0.826,67.300,0.849,-0.202,0.905,0.628,0.271 +Russia,2006,4.964,9.988,0.895,58.740,0.643,-0.312,0.935,0.534,0.232 +Russia,2007,5.223,10.071,0.885,59.180,0.593,-0.289,0.933,0.546,0.193 +Russia,2008,5.619,10.122,0.882,59.620,0.643,-0.311,0.924,0.570,0.166 +Russia,2009,5.158,10.041,0.908,60.060,0.617,-0.289,0.954,0.540,0.169 +Russia,2010,5.385,10.084,0.909,60.500,0.613,-0.302,0.937,0.567,0.171 +Russia,2011,5.389,10.126,0.883,60.940,0.626,-0.284,0.935,0.564,0.165 +Russia,2012,5.621,10.163,0.901,61.380,0.609,-0.298,0.938,0.563,0.174 +Russia,2013,5.537,10.179,0.881,61.820,0.661,-0.295,0.934,0.592,0.180 +Russia,2014,6.037,10.168,0.932,62.260,0.744,-0.270,0.869,0.617,0.151 +Russia,2015,5.996,10.146,0.924,62.700,0.685,-0.177,0.913,0.609,0.130 +Russia,2016,5.855,10.146,0.911,63.075,0.714,-0.187,0.925,0.587,0.142 +Russia,2017,5.579,10.163,0.896,63.450,0.731,-0.151,0.862,0.651,0.195 +Russia,2018,5.514,10.191,0.909,63.825,0.729,-0.153,0.865,0.615,0.199 +Russia,2019,5.441,10.213,0.910,64.200,0.715,-0.122,0.848,0.632,0.200 +Russia,2020,5.495,10.188,0.887,64.575,0.714,-0.078,0.823,0.621,0.190 +Russia,2021,5.448,10.247,0.862,64.950,0.671,0.053,0.808,0.590,0.190 +Russia,2022,6.044,10.225,0.920,65.325,0.776,-0.074,0.767,0.614,0.211 +Russia,2023,5.865,10.209,0.854,65.700,0.750,0.056,0.733,0.616,0.190 +Rwanda,2006,4.215,7.087,0.718,53.500,0.915,,0.299,0.701,0.189 +Rwanda,2008,4.363,7.213,0.486,54.700,0.752,0.014,0.286,0.633,0.221 +Rwanda,2009,4.030,7.247,0.559,55.300,0.766,-0.004,0.410,0.658,0.112 +Rwanda,2011,4.097,7.343,0.570,56.500,0.829,-0.042,0.161,0.608,0.154 +Rwanda,2012,3.333,7.401,0.637,57.100,0.835,-0.015,0.081,0.624,0.132 +Rwanda,2013,3.466,7.423,0.750,57.700,0.904,-0.031,0.117,0.728,0.167 +Rwanda,2014,3.596,7.459,0.748,58.300,0.894,-0.026,0.078,0.748,0.134 +Rwanda,2015,3.483,7.520,0.678,58.900,0.908,0.022,0.095,0.692,0.206 +Rwanda,2016,3.333,7.554,0.665,59.225,0.911,0.022,0.159,0.715,0.285 +Rwanda,2017,3.108,7.568,0.517,59.550,0.908,0.048,0.214,0.724,0.358 +Rwanda,2018,3.561,7.625,0.616,59.875,0.924,0.053,0.164,0.765,0.308 +Rwanda,2019,3.268,7.692,0.489,60.200,0.869,0.060,0.168,0.717,0.418 +Saudi Arabia,2005,7.080,10.679,0.868,61.200,,,0.505,0.681,0.243 +Saudi Arabia,2007,7.267,10.646,0.892,61.600,0.622,0.002,,0.718,0.232 +Saudi Arabia,2008,6.811,10.668,0.823,61.800,0.532,-0.024,0.508,0.607,0.202 +Saudi Arabia,2009,6.148,10.610,0.921,62.000,0.639,-0.111,0.445,0.683,0.319 +Saudi Arabia,2010,6.307,10.627,0.880,62.200,0.678,-0.034,,0.645,0.297 +Saudi Arabia,2011,6.700,10.706,0.830,62.400,0.603,-0.144,,0.699,0.240 +Saudi Arabia,2012,6.396,10.737,0.867,62.600,0.560,-0.123,,0.692,0.225 +Saudi Arabia,2013,6.495,10.744,0.827,62.800,0.661,-0.085,,0.691,0.276 +Saudi Arabia,2014,6.278,10.763,0.818,63.000,0.762,-0.077,,0.663,0.313 +Saudi Arabia,2015,6.345,10.790,0.820,63.200,0.820,-0.050,,0.668,0.327 +Saudi Arabia,2016,6.474,10.793,0.890,63.400,0.774,-0.138,,0.725,0.266 +Saudi Arabia,2017,6.294,10.770,0.840,63.600,0.814,-0.138,,0.703,0.306 +Saudi Arabia,2018,6.356,10.773,0.868,63.800,0.855,-0.198,,0.696,0.288 +Saudi Arabia,2019,6.561,10.758,0.912,64.000,0.891,-0.153,,0.674,0.238 +Saudi Arabia,2020,6.560,10.709,0.890,64.200,0.884,-0.117,,0.702,0.251 +Saudi Arabia,2021,6.445,10.749,0.859,64.400,0.902,-0.108,,0.728,0.228 +Saudi Arabia,2022,6.382,10.820,0.900,64.600,,-0.032,,0.677,0.205 +Saudi Arabia,2023,6.953,10.829,0.884,64.800,,0.028,,0.737,0.240 +Senegal,2006,4.417,7.930,0.760,55.500,0.736,-0.059,0.805,0.687,0.225 +Senegal,2007,4.680,7.931,0.718,55.800,0.698,-0.009,0.827,0.718,0.199 +Senegal,2008,4.683,7.941,0.756,56.100,0.612,-0.037,0.879,0.669,0.252 +Senegal,2009,4.335,7.942,0.810,56.400,0.557,-0.044,0.918,0.708,0.228 +Senegal,2010,4.372,7.948,0.760,56.700,0.777,-0.085,0.851,0.670,0.143 +Senegal,2011,3.834,7.934,0.602,57.000,0.641,-0.168,0.870,0.696,0.180 +Senegal,2012,3.669,7.946,0.711,57.300,0.668,-0.042,0.852,0.722,0.214 +Senegal,2013,3.647,7.943,0.823,57.600,0.636,-0.058,0.837,0.694,0.165 +Senegal,2014,4.395,7.976,0.856,57.900,0.692,-0.052,0.700,0.696,0.157 +Senegal,2015,4.617,8.010,0.702,58.200,0.720,-0.117,0.765,0.710,0.208 +Senegal,2016,4.595,8.045,0.839,58.500,0.744,-0.092,0.794,0.781,0.245 +Senegal,2017,4.683,8.089,0.744,58.800,0.687,-0.050,0.825,0.751,0.291 +Senegal,2018,4.769,8.122,0.739,59.100,0.629,-0.080,0.805,0.724,0.247 +Senegal,2019,5.489,8.140,0.688,59.400,0.759,-0.025,0.796,0.768,0.332 +Senegal,2020,4.757,8.127,0.621,59.700,0.797,-0.052,0.855,0.816,0.268 +Senegal,2021,4.903,8.164,0.645,60.000,0.759,0.026,0.821,0.812,0.265 +Senegal,2022,4.907,8.179,0.609,60.300,0.758,0.049,0.854,0.813,0.287 +Senegal,2023,5.093,8.200,0.668,60.600,0.798,0.048,0.836,0.825,0.258 +Serbia,2007,4.750,9.536,0.844,65.280,0.453,-0.171,0.905,0.528,0.334 +Serbia,2009,4.380,9.571,0.770,65.560,0.373,-0.184,0.961,0.466,0.435 +Serbia,2010,4.461,9.583,0.726,65.700,0.463,-0.176,0.965,0.446,0.415 +Serbia,2011,4.815,9.611,0.773,65.840,0.440,-0.191,0.977,0.458,0.410 +Serbia,2012,5.155,9.609,0.819,65.980,0.461,-0.136,0.952,0.447,0.371 +Serbia,2013,5.102,9.642,0.828,66.120,0.533,-0.106,0.908,0.505,0.403 +Serbia,2014,5.113,9.631,0.783,66.260,0.532,0.066,0.912,0.473,0.326 +Serbia,2015,5.318,9.654,0.816,66.400,0.546,-0.068,0.859,0.472,0.303 +Serbia,2016,5.753,9.692,0.895,66.525,0.614,-0.074,0.890,0.492,0.298 +Serbia,2017,5.122,9.718,0.884,66.650,0.685,-0.084,0.851,0.485,0.326 +Serbia,2018,5.936,9.767,0.853,66.775,0.740,-0.106,0.864,0.527,0.296 +Serbia,2019,6.241,9.815,0.903,66.900,0.753,-0.046,0.813,0.474,0.242 +Serbia,2020,6.042,9.813,0.852,67.025,0.843,0.142,0.824,0.579,0.358 +Serbia,2021,6.245,9.895,0.890,67.150,0.850,0.261,0.806,0.568,0.311 +Serbia,2022,6.546,9.928,0.896,67.275,0.782,0.074,0.801,0.514,0.275 +Serbia,2023,6.441,9.961,0.895,67.400,0.807,0.085,0.782,0.526,0.206 +Sierra Leone,2006,3.628,7.122,0.561,46.280,0.679,0.097,0.836,0.535,0.381 +Sierra Leone,2007,3.585,7.177,0.686,46.660,0.720,0.243,0.830,0.635,0.290 +Sierra Leone,2008,2.997,7.205,0.591,47.040,0.716,0.144,0.925,0.588,0.370 +Sierra Leone,2010,4.134,7.245,0.812,47.800,0.726,0.008,0.910,0.497,0.290 +Sierra Leone,2011,4.502,7.277,0.782,48.180,0.770,0.001,0.855,0.495,0.300 +Sierra Leone,2013,4.514,7.557,0.708,48.940,0.720,-0.075,0.856,0.540,0.423 +Sierra Leone,2014,4.500,7.577,0.869,49.320,0.681,0.030,0.786,0.622,0.334 +Sierra Leone,2015,4.909,7.324,0.611,49.700,0.624,0.047,0.825,0.626,0.414 +Sierra Leone,2016,4.733,7.361,0.657,50.500,0.681,0.103,0.863,0.616,0.456 +Sierra Leone,2017,4.090,7.374,0.652,51.300,0.711,0.076,0.848,0.607,0.495 +Sierra Leone,2018,4.306,7.384,0.650,52.100,0.716,0.093,0.856,0.533,0.466 +Sierra Leone,2019,3.447,7.412,0.611,52.900,0.718,0.072,0.874,0.521,0.438 +Sierra Leone,2021,3.714,7.387,0.609,54.500,0.659,0.106,0.851,0.538,0.448 +Sierra Leone,2022,2.560,7.400,0.502,55.300,0.660,0.097,0.862,0.494,0.505 +Sierra Leone,2023,3.467,7.412,0.601,56.100,0.694,0.101,0.866,0.504,0.430 +Singapore,2006,6.463,11.168,0.904,71.580,0.757,0.132,,0.689,0.267 +Singapore,2007,6.834,11.213,0.921,71.760,0.867,0.287,0.064,0.588,0.114 +Singapore,2008,6.642,11.178,0.845,71.940,0.661,0.040,0.066,0.627,0.256 +Singapore,2009,6.145,11.149,0.866,72.120,0.776,-0.081,0.035,0.450,0.208 +Singapore,2010,6.531,11.267,0.864,72.300,0.846,-0.024,0.060,0.527,0.131 +Singapore,2011,6.561,11.306,0.904,72.480,0.822,-0.155,0.099,0.404,0.144 +Singapore,2013,6.533,11.356,0.808,72.840,0.827,0.109,0.242,0.663,0.148 +Singapore,2014,7.062,11.382,0.822,73.020,0.835,0.148,0.133,0.774,0.180 +Singapore,2015,6.620,11.399,0.866,73.200,0.887,0.144,0.099,0.736,0.142 +Singapore,2016,6.033,11.422,0.925,73.300,0.904,0.137,0.047,0.745,0.111 +Singapore,2017,6.378,11.465,0.897,73.400,0.926,0.129,0.162,0.750,0.179 +Singapore,2018,6.375,11.496,0.903,73.500,0.916,-0.073,0.097,0.731,0.107 +Singapore,2019,6.378,11.497,0.925,73.600,0.938,0.020,0.070,0.674,0.138 +Singapore,2021,6.587,11.587,0.876,73.800,0.879,0.060,0.145,0.697,0.160 +Singapore,2022,6.333,11.590,0.852,73.900,0.873,0.088,,0.688,0.209 +Singapore,2023,6.654,,0.916,74.000,0.861,,0.153,0.667,0.190 +Slovakia,2006,5.265,9.989,0.954,65.620,0.542,-0.054,0.946,0.586,0.308 +Slovakia,2010,6.052,10.152,0.920,66.500,0.636,-0.106,0.907,0.603,0.277 +Slovakia,2011,5.945,10.177,0.917,66.720,0.727,0.006,0.907,0.588,0.287 +Slovakia,2012,5.911,10.188,0.926,66.940,0.620,-0.032,0.907,0.585,0.302 +Slovakia,2013,5.937,10.193,0.909,67.160,0.598,-0.055,0.915,0.612,0.277 +Slovakia,2014,6.139,10.219,0.924,67.380,0.635,-0.130,0.914,0.619,0.267 +Slovakia,2015,6.162,10.268,0.943,67.600,0.587,-0.132,0.928,0.632,0.269 +Slovakia,2016,5.993,10.286,0.945,67.825,0.700,-0.065,0.917,0.688,0.232 +Slovakia,2017,6.366,10.314,0.913,68.050,0.714,-0.059,0.920,0.709,0.213 +Slovakia,2018,6.235,10.352,0.922,68.275,0.758,-0.172,0.910,0.670,0.253 +Slovakia,2019,6.243,10.375,0.933,68.500,0.771,-0.133,0.926,0.676,0.252 +Slovakia,2020,6.519,10.340,0.954,68.725,0.762,-0.081,0.901,0.695,0.274 +Slovakia,2021,6.419,10.390,0.951,68.950,0.742,0.042,0.896,0.692,0.241 +Slovakia,2022,6.091,10.409,0.961,69.175,0.732,-0.129,0.841,0.665,0.263 +Slovakia,2023,6.261,10.425,0.941,69.400,0.753,-0.136,0.825,0.647,0.235 +Slovenia,2006,5.811,10.399,0.936,68.560,0.936,0.037,0.708,0.608,0.307 +Slovenia,2009,5.830,10.406,0.919,69.040,0.896,-0.025,0.804,0.583,0.303 +Slovenia,2010,6.083,10.415,0.917,69.200,0.896,0.024,0.845,0.592,0.295 +Slovenia,2011,6.036,10.421,0.931,69.360,0.907,-0.031,0.893,0.587,0.285 +Slovenia,2012,6.063,10.392,0.925,69.520,0.904,-0.025,0.891,0.598,0.284 +Slovenia,2013,5.975,10.381,0.932,69.680,0.890,0.030,0.918,0.625,0.274 +Slovenia,2014,5.678,10.407,0.908,69.840,0.888,0.047,0.909,0.594,0.291 +Slovenia,2015,5.741,10.428,0.901,70.000,0.896,0.002,0.892,0.644,0.261 +Slovenia,2016,5.937,10.459,0.934,70.175,0.904,-0.060,0.838,0.597,0.272 +Slovenia,2017,6.167,10.505,0.928,70.350,0.921,-0.031,0.829,0.582,0.286 +Slovenia,2018,6.249,10.545,0.941,70.525,0.942,-0.125,0.839,0.601,0.275 +Slovenia,2019,6.665,10.572,0.949,70.700,0.945,-0.108,0.785,0.622,0.228 +Slovenia,2020,6.462,10.521,0.953,70.875,0.958,-0.090,0.797,0.575,0.314 +Slovenia,2021,6.761,10.598,0.955,71.050,0.851,0.026,0.754,0.643,0.261 +Slovenia,2022,6.723,10.650,0.942,71.225,0.930,0.099,0.762,0.625,0.242 +Slovenia,2023,6.746,10.664,0.911,71.400,0.931,0.031,0.750,0.615,0.256 +Somalia,2014,5.528,6.830,0.611,47.660,0.874,0.020,0.456,0.689,0.207 +Somalia,2015,5.354,6.937,0.599,48.100,0.968,0.016,0.410,0.764,0.187 +Somalia,2016,4.668,6.981,0.594,48.500,0.917,0.069,0.441,0.773,0.193 +Somaliland region,2009,4.991,,0.880,,0.746,,0.513,0.708,0.112 +Somaliland region,2010,4.657,,0.829,,0.820,,0.471,0.632,0.083 +Somaliland region,2011,4.931,,0.788,,0.858,,0.357,0.691,0.122 +Somaliland region,2012,5.057,,0.786,,0.758,,0.334,0.687,0.152 +South Africa,2006,5.084,9.455,0.913,46.000,0.649,-0.094,,0.724,0.223 +South Africa,2007,5.204,9.497,0.788,46.900,0.690,-0.169,0.859,0.658,0.210 +South Africa,2008,5.346,9.518,0.810,47.800,0.749,-0.106,0.866,0.712,0.206 +South Africa,2009,5.218,9.490,0.877,48.700,0.739,-0.165,0.904,0.656,0.231 +South Africa,2010,4.652,9.508,0.917,49.600,0.739,-0.213,0.791,0.698,0.124 +South Africa,2011,4.931,9.527,0.858,50.500,0.835,-0.166,0.819,0.720,0.230 +South Africa,2012,5.134,9.537,0.907,51.400,0.590,-0.175,0.838,0.711,0.178 +South Africa,2013,3.661,9.548,0.839,52.300,0.714,-0.089,0.800,0.740,0.167 +South Africa,2014,4.828,9.546,0.881,53.200,0.794,-0.128,0.820,0.730,0.243 +South Africa,2015,4.887,9.539,0.898,54.100,0.862,-0.138,0.853,0.717,0.161 +South Africa,2016,4.770,9.536,0.875,54.625,0.774,-0.082,0.813,0.743,0.301 +South Africa,2017,4.514,9.543,0.870,55.150,0.787,-0.141,0.865,0.709,0.268 +South Africa,2018,4.884,9.546,0.841,55.675,0.753,-0.063,0.841,0.736,0.283 +South Africa,2019,5.035,9.536,0.848,56.200,0.738,-0.147,0.820,0.727,0.268 +South Africa,2020,4.947,9.458,0.891,56.725,0.757,-0.030,0.912,0.761,0.294 +South Africa,2021,5.599,9.496,0.922,57.250,0.704,-0.148,0.892,0.784,0.173 +South Africa,2022,5.581,9.508,0.887,57.775,0.713,-0.071,0.908,0.744,0.239 +South Africa,2023,5.076,9.503,0.839,58.300,0.748,-0.109,0.861,0.708,0.255 +South Korea,2006,5.332,10.309,0.775,70.020,0.715,-0.058,0.799,0.545,0.338 +South Korea,2007,5.767,10.360,0.827,70.240,0.656,-0.065,0.803,0.612,0.226 +South Korea,2008,5.390,10.382,0.754,70.460,0.524,-0.108,0.771,0.554,0.239 +South Korea,2009,5.648,10.385,0.811,70.680,0.600,-0.102,0.787,0.596,0.209 +South Korea,2010,6.116,10.446,0.816,70.900,0.677,-0.039,0.752,0.626,0.130 +South Korea,2011,6.947,10.474,0.809,71.120,0.682,-0.054,0.827,0.587,0.168 +South Korea,2012,6.003,10.493,0.775,71.340,0.618,,0.844,0.610,0.206 +South Korea,2013,5.959,10.519,0.797,71.560,0.642,-0.056,0.832,0.589,0.189 +South Korea,2014,5.801,10.544,0.738,71.780,0.623,-0.049,0.834,0.575,0.283 +South Korea,2015,5.780,10.567,0.768,72.000,0.616,-0.041,0.841,0.561,0.244 +South Korea,2016,5.971,10.592,0.811,72.275,0.591,0.020,0.862,0.583,0.233 +South Korea,2017,5.874,10.620,0.807,72.550,0.538,0.008,0.851,0.546,0.235 +South Korea,2018,5.840,10.645,0.798,72.825,0.600,-0.095,0.797,0.579,0.217 +South Korea,2019,5.903,10.663,0.783,73.100,0.706,-0.061,0.718,0.593,0.236 +South Korea,2020,5.793,10.655,0.808,73.375,0.711,-0.112,0.665,0.550,0.247 +South Korea,2021,6.113,10.697,0.811,73.650,0.717,-0.033,0.685,0.566,0.221 +South Korea,2022,5.950,10.725,0.810,73.925,0.723,0.002,0.747,0.585,0.233 +South Korea,2023,6.112,10.742,0.799,74.200,0.762,-0.004,0.714,0.603,0.245 +South Sudan,2014,3.832,,0.545,52.880,0.567,,0.742,0.578,0.428 +South Sudan,2015,4.071,,0.585,53.000,0.512,,0.710,0.553,0.450 +South Sudan,2016,2.888,,0.532,53.175,0.440,,0.785,0.594,0.549 +South Sudan,2017,2.817,,0.557,53.350,0.456,,0.761,0.565,0.517 +Spain,2005,7.153,10.544,0.961,70.400,0.916,,0.777,0.694,0.241 +Spain,2007,6.995,10.585,0.957,70.640,0.782,-0.099,0.784,0.717,0.264 +Spain,2008,7.294,10.577,0.948,70.760,0.834,-0.155,0.683,0.649,0.260 +Spain,2009,6.199,10.530,0.929,70.880,0.749,-0.133,0.798,0.645,0.336 +Spain,2010,6.188,10.527,0.950,71.000,0.796,-0.144,0.840,0.645,0.322 +Spain,2011,6.518,10.516,0.944,71.120,0.819,-0.128,0.846,0.667,0.356 +Spain,2012,6.291,10.485,0.937,71.240,0.755,-0.065,0.844,0.644,0.366 +Spain,2013,6.150,10.474,0.929,71.360,0.759,-0.107,0.916,0.663,0.372 +Spain,2014,6.456,10.491,0.948,71.480,0.738,-0.034,0.854,0.683,0.335 +Spain,2015,6.381,10.529,0.956,71.600,0.732,-0.078,0.822,0.705,0.285 +Spain,2016,6.319,10.558,0.942,71.725,0.768,-0.054,0.819,0.630,0.301 +Spain,2017,6.230,10.585,0.903,71.850,0.756,-0.038,0.791,0.601,0.302 +Spain,2018,6.513,10.604,0.910,71.975,0.722,-0.081,0.777,0.636,0.357 +Spain,2019,6.457,10.616,0.949,72.100,0.778,-0.054,0.730,0.636,0.316 +Spain,2020,6.502,10.491,0.935,72.225,0.783,-0.127,0.730,0.671,0.317 +Spain,2021,6.470,10.544,0.926,72.350,0.782,-0.076,0.729,0.639,0.324 +Spain,2022,6.337,10.592,0.934,72.475,0.781,-0.001,0.673,0.636,0.320 +Spain,2023,6.456,10.609,0.912,72.600,0.779,-0.004,0.675,0.655,0.325 +Sri Lanka,2006,4.345,8.937,0.864,62.280,0.724,0.055,0.838,0.639,0.216 +Sri Lanka,2007,4.415,8.992,0.838,62.760,0.736,0.103,0.847,0.590,0.220 +Sri Lanka,2008,4.431,9.040,0.816,63.240,0.834,0.156,0.861,0.656,0.153 +Sri Lanka,2009,4.212,9.065,0.830,63.720,0.799,0.299,0.690,0.661,0.172 +Sri Lanka,2010,3.977,9.133,0.814,64.200,0.738,0.252,0.769,0.704,0.163 +Sri Lanka,2011,4.181,9.207,0.842,64.680,0.823,0.138,0.760,0.730,0.175 +Sri Lanka,2012,4.225,9.282,0.824,65.160,0.800,0.155,0.823,0.761,0.197 +Sri Lanka,2013,4.365,9.316,0.809,65.640,0.834,0.262,0.842,0.776,0.208 +Sri Lanka,2014,4.268,9.373,0.805,66.120,0.868,0.291,0.791,0.785,0.187 +Sri Lanka,2015,4.612,9.410,0.863,66.600,0.902,0.312,0.859,0.789,0.235 +Sri Lanka,2017,4.331,9.514,0.823,66.800,0.827,0.083,0.844,0.729,0.270 +Sri Lanka,2018,4.435,9.529,0.833,66.900,0.859,0.096,0.856,0.773,0.302 +Sri Lanka,2019,4.213,9.521,0.815,67.000,0.824,0.043,0.863,0.753,0.315 +Sri Lanka,2020,4.778,9.468,0.842,67.100,0.803,-0.050,0.768,0.758,0.285 +Sri Lanka,2021,4.103,9.492,0.812,67.200,0.771,-0.013,0.849,0.733,0.312 +Sri Lanka,2022,3.985,9.409,0.825,67.300,0.740,0.038,0.900,0.715,0.321 +Sri Lanka,2023,3.602,9.364,0.790,67.400,0.754,0.050,0.922,0.709,0.353 +State of Palestine,2006,4.716,8.201,0.818,,0.547,,0.858,0.492,0.431 +State of Palestine,2007,4.151,8.181,0.712,,0.365,-0.083,0.844,0.515,0.412 +State of Palestine,2008,4.386,8.275,0.666,,0.358,-0.075,0.753,0.513,0.403 +State of Palestine,2009,4.470,8.337,0.738,,0.468,-0.091,0.797,0.474,0.466 +State of Palestine,2010,4.703,8.363,0.822,,0.504,-0.121,0.752,0.553,0.381 +State of Palestine,2011,4.751,8.452,0.751,,0.522,-0.131,0.750,0.499,0.388 +State of Palestine,2012,4.647,8.598,0.782,,0.542,-0.163,0.730,0.560,0.379 +State of Palestine,2013,4.844,8.595,0.761,,0.454,-0.163,0.780,0.537,0.365 +State of Palestine,2014,4.722,8.618,0.775,,0.657,-0.163,0.804,0.505,0.380 +State of Palestine,2015,4.695,8.683,0.766,,0.556,-0.173,0.774,0.536,0.369 +State of Palestine,2016,4.907,8.738,0.818,,0.608,-0.151,0.812,0.544,0.378 +State of Palestine,2017,4.628,8.734,0.824,,0.632,-0.186,0.831,0.534,0.416 +State of Palestine,2018,4.554,8.718,0.819,,0.655,-0.163,0.814,0.528,0.419 +State of Palestine,2019,4.483,8.716,0.833,,0.653,-0.135,0.829,0.538,0.400 +State of Palestine,2022,4.908,,0.860,,0.695,,0.836,0.584,0.362 +State of Palestine,2023,4.851,,0.831,,0.708,,0.808,0.580,0.378 +Sudan,2009,4.455,8.457,0.911,57.460,0.710,0.046,0.701,0.688,0.245 +Sudan,2010,4.435,8.465,0.855,57.700,0.648,-0.073,0.737,0.589,0.221 +Sudan,2011,4.314,8.527,0.818,57.940,0.583,-0.053,0.663,0.532,0.249 +Sudan,2012,4.550,8.458,0.813,58.180,0.412,-0.072,0.734,0.511,0.242 +Sudan,2014,4.139,8.471,0.811,58.660,0.390,-0.080,0.794,0.461,0.303 +Suriname,2012,6.269,9.874,0.797,62.840,0.885,-0.088,0.751,0.730,0.250 +Sweden,2005,7.376,10.724,0.951,71.000,0.964,,,0.742,0.151 +Sweden,2007,7.241,10.791,0.917,71.080,0.910,0.141,0.289,0.735,0.177 +Sweden,2008,7.516,10.778,0.923,71.120,0.912,0.120,0.314,0.763,0.134 +Sweden,2009,7.266,10.725,0.903,71.160,0.864,0.216,0.292,0.761,0.151 +Sweden,2010,7.496,10.775,0.970,71.200,0.905,0.136,0.253,0.788,0.200 +Sweden,2011,7.382,10.799,0.921,71.240,0.941,0.156,0.269,0.762,0.179 +Sweden,2012,7.560,10.785,0.929,71.280,0.944,0.127,0.254,0.796,0.170 +Sweden,2013,7.434,10.789,0.916,71.320,0.936,0.154,0.324,0.782,0.184 +Sweden,2014,7.239,10.805,0.933,71.360,0.945,0.197,0.250,0.793,0.208 +Sweden,2015,7.289,10.838,0.929,71.400,0.935,0.206,0.232,0.766,0.191 +Sweden,2016,7.369,10.846,0.912,71.525,0.918,0.141,0.246,0.752,0.201 +Sweden,2017,7.287,10.858,0.914,71.650,0.935,0.165,0.239,0.756,0.175 +Sweden,2018,7.375,10.866,0.931,71.775,0.942,0.072,0.263,0.747,0.161 +Sweden,2019,7.398,10.875,0.934,71.900,0.942,0.085,0.250,0.775,0.202 +Sweden,2020,7.314,10.846,0.936,72.025,0.951,0.084,0.203,0.717,0.222 +Sweden,2021,7.439,10.893,0.932,72.150,0.953,0.172,0.191,0.763,0.190 +Sweden,2022,7.431,10.912,0.949,72.275,0.939,0.232,0.213,0.750,0.163 +Sweden,2023,7.161,10.902,0.927,72.400,0.926,0.147,0.253,0.739,0.194 +Switzerland,2006,7.473,11.056,0.951,71.160,0.919,0.284,0.408,0.742,0.212 +Switzerland,2009,7.525,11.065,0.938,71.340,0.891,0.118,0.342,0.741,0.202 +Switzerland,2012,7.776,11.094,0.947,71.520,0.945,0.131,0.323,0.793,0.176 +Switzerland,2014,7.493,11.111,0.959,71.640,0.949,0.053,0.283,0.788,0.189 +Switzerland,2015,7.572,11.116,0.938,71.700,0.928,0.102,0.210,0.794,0.166 +Switzerland,2016,7.459,11.126,0.928,71.900,0.934,0.081,0.302,0.758,0.206 +Switzerland,2017,7.474,11.130,0.950,72.100,0.925,0.173,0.316,0.734,0.196 +Switzerland,2018,7.509,11.151,0.930,72.300,0.926,0.094,0.301,0.756,0.192 +Switzerland,2019,7.694,11.155,0.949,72.500,0.913,0.029,0.294,0.743,0.171 +Switzerland,2020,7.508,11.124,0.946,72.700,0.917,-0.073,0.280,0.730,0.193 +Switzerland,2021,7.328,11.158,0.934,72.900,0.908,0.024,0.287,0.747,0.183 +Switzerland,2022,6.884,11.170,0.881,73.100,0.848,0.128,0.235,0.710,0.180 +Switzerland,2023,6.969,11.169,0.904,73.300,0.891,0.104,0.247,0.745,0.185 +Syria,2008,5.323,8.658,0.712,68.620,0.661,0.116,0.680,0.562,0.338 +Syria,2009,4.979,8.656,0.842,66.860,0.748,0.076,0.688,0.491,0.292 +Syria,2010,4.465,8.733,0.934,65.100,0.647,0.002,0.743,0.489,0.225 +Syria,2011,4.038,8.735,0.576,63.340,0.530,0.125,0.741,0.521,0.496 +Syria,2012,3.164,8.578,0.588,61.580,0.467,0.310,0.673,0.451,0.705 +Syria,2013,2.688,8.419,0.585,59.820,0.455,0.219,0.663,0.354,0.622 +Syria,2015,3.462,8.492,0.464,56.300,0.448,0.036,0.685,0.363,0.643 +Taiwan Province of China,2006,6.189,10.602,0.882,68.680,0.630,-0.035,0.846,0.683,0.094 +Taiwan Province of China,2008,5.548,10.600,0.830,69.140,0.642,-0.022,0.785,0.682,0.169 +Taiwan Province of China,2010,6.229,10.681,0.831,69.600,0.677,-0.001,0.821,0.738,0.136 +Taiwan Province of China,2011,6.309,10.693,0.863,,0.761,0.030,0.755,0.727,0.112 +Taiwan Province of China,2012,6.126,10.718,0.825,,0.698,0.016,0.803,0.702,0.140 +Taiwan Province of China,2013,6.340,10.724,0.817,,0.690,-0.003,0.841,0.754,0.124 +Taiwan Province of China,2014,6.363,10.749,0.870,,0.693,0.089,0.866,0.767,0.108 +Taiwan Province of China,2015,6.450,10.779,0.885,,0.701,0.017,0.857,0.750,0.129 +Taiwan Province of China,2016,6.513,10.768,0.895,,0.719,-0.049,0.811,0.743,0.108 +Taiwan Province of China,2017,6.359,10.774,0.891,,0.760,-0.070,0.743,0.715,0.114 +Taiwan Province of China,2018,6.467,10.781,0.896,,0.741,-0.179,0.736,0.746,0.093 +Taiwan Province of China,2019,6.537,10.797,0.893,,0.814,-0.131,0.718,0.762,0.093 +Taiwan Province of China,2020,6.751,,0.901,,0.799,,0.711,0.743,0.083 +Taiwan Province of China,2021,6.247,,0.866,,0.818,,0.675,0.667,0.123 +Taiwan Province of China,2022,6.607,,0.883,,0.800,,0.658,0.717,0.095 +Taiwan Province of China,2023,6.655,,0.872,,0.795,,0.641,0.748,0.111 +Tajikistan,2006,4.613,7.591,0.724,60.500,0.702,-0.096,0.768,0.494,0.195 +Tajikistan,2007,4.432,7.648,0.727,60.600,0.818,-0.007,0.659,0.619,0.133 +Tajikistan,2008,5.064,7.705,0.701,60.700,0.816,0.010,0.723,0.488,0.160 +Tajikistan,2009,4.575,7.724,0.676,60.800,0.744,-0.007,0.792,0.475,0.203 +Tajikistan,2010,4.381,7.766,0.759,60.900,0.784,0.054,0.679,0.483,0.192 +Tajikistan,2011,4.263,7.817,0.751,61.000,0.776,-0.127,0.672,0.573,0.166 +Tajikistan,2012,4.497,7.867,0.729,61.100,0.749,-0.081,0.717,0.583,0.198 +Tajikistan,2013,4.967,7.916,0.701,61.200,0.693,0.055,0.764,0.578,0.170 +Tajikistan,2014,4.896,7.958,0.810,61.300,0.853,-0.007,0.698,0.587,0.196 +Tajikistan,2015,5.124,7.993,0.844,61.400,0.847,0.013,0.742,0.633,0.196 +Tajikistan,2016,5.104,8.036,0.857,61.550,0.703,0.001,0.632,0.587,0.220 +Tajikistan,2017,5.829,8.082,0.663,61.700,0.832,0.116,0.718,0.581,0.278 +Tajikistan,2018,5.497,8.133,0.875,61.850,,-0.074,0.578,0.632,0.220 +Tajikistan,2019,5.464,8.182,0.880,62.000,,-0.054,0.490,0.663,0.178 +Tajikistan,2020,5.373,8.203,0.790,62.150,,-0.054,0.550,0.652,0.344 +Tajikistan,2021,5.287,8.271,0.883,62.300,,-0.071,0.499,0.655,0.240 +Tajikistan,2022,5.176,8.328,0.865,62.450,,-0.003,0.397,0.710,0.220 +Tajikistan,2023,5.379,8.371,0.871,62.600,,-0.054,0.482,0.638,0.231 +Tanzania,2006,3.922,7.459,0.783,50.760,0.787,-0.030,0.649,0.725,0.209 +Tanzania,2007,4.318,7.497,0.708,51.420,0.716,-0.016,0.707,0.702,0.220 +Tanzania,2008,4.385,7.525,0.774,52.080,0.562,0.253,0.930,0.740,0.178 +Tanzania,2009,3.408,7.551,0.837,52.740,0.607,0.305,0.903,0.733,0.161 +Tanzania,2010,3.229,7.587,0.813,53.400,0.597,0.135,0.866,0.667,0.146 +Tanzania,2011,4.074,7.632,0.883,54.060,0.736,-0.050,0.816,0.720,0.145 +Tanzania,2012,4.007,7.647,0.832,54.720,0.577,0.209,0.887,0.641,0.195 +Tanzania,2013,3.852,7.683,0.803,55.380,0.654,0.051,0.859,0.707,0.191 +Tanzania,2014,3.483,7.717,0.789,56.040,0.654,0.107,0.878,0.693,0.241 +Tanzania,2015,3.661,7.743,0.790,56.700,0.759,0.145,0.906,0.607,0.192 +Tanzania,2016,2.903,7.775,0.638,57.150,0.775,0.175,0.739,0.649,0.246 +Tanzania,2017,3.347,7.807,0.705,57.600,0.800,0.112,0.654,0.662,0.255 +Tanzania,2018,3.445,7.828,0.675,58.050,0.807,0.150,0.612,0.702,0.221 +Tanzania,2019,3.640,7.855,0.687,58.500,0.850,0.097,0.589,0.679,0.243 +Tanzania,2020,3.786,7.844,0.740,58.950,0.830,0.293,0.521,0.667,0.271 +Tanzania,2021,3.681,7.857,0.619,59.400,0.822,0.110,0.546,0.648,0.246 +Tanzania,2022,3.616,7.872,0.600,59.850,0.856,0.133,0.584,0.707,0.195 +Tanzania,2023,4.042,7.893,0.663,60.300,0.862,0.122,0.609,0.702,0.210 +Thailand,2006,5.885,9.452,0.894,66.380,0.863,0.326,0.935,0.750,0.164 +Thailand,2007,5.784,9.498,0.889,66.560,0.870,0.386,0.898,0.784,0.180 +Thailand,2008,5.636,9.507,0.832,66.740,0.868,0.421,0.933,0.777,0.145 +Thailand,2009,5.476,9.493,0.893,66.920,0.868,0.520,0.904,0.808,0.166 +Thailand,2010,6.217,9.559,0.898,67.100,0.860,0.532,0.917,0.821,0.182 +Thailand,2011,6.664,9.561,0.884,67.280,0.927,0.396,0.923,0.834,0.117 +Thailand,2012,6.300,9.624,0.906,67.460,0.847,0.376,0.909,0.733,0.138 +Thailand,2013,6.231,9.645,0.926,67.640,0.781,0.452,0.925,0.782,0.141 +Thailand,2014,6.985,9.649,0.933,67.820,0.900,0.548,0.920,0.768,0.169 +Thailand,2015,6.202,9.675,0.866,68.000,0.885,0.312,0.914,0.884,0.174 +Thailand,2016,6.074,9.705,0.908,68.075,0.924,0.352,0.878,0.811,0.218 +Thailand,2017,5.939,9.741,0.877,68.150,0.923,0.208,0.884,0.776,0.232 +Thailand,2018,6.012,9.780,0.873,68.225,0.905,0.255,0.907,0.783,0.198 +Thailand,2019,6.022,9.798,0.903,68.300,0.898,0.305,0.877,0.792,0.208 +Thailand,2020,5.885,9.733,0.867,68.375,0.840,0.270,0.918,0.770,0.326 +Thailand,2021,5.638,9.746,0.883,68.450,0.836,0.290,0.943,0.719,0.298 +Thailand,2022,6.007,9.770,0.867,68.525,0.881,0.299,0.868,0.773,0.218 +Thailand,2023,6.282,9.807,0.873,68.600,0.926,0.338,0.889,0.811,0.217 +Togo,2006,3.202,7.342,0.435,50.240,0.628,-0.030,0.850,0.571,0.348 +Togo,2008,2.808,7.312,0.291,51.120,0.287,-0.078,0.932,0.398,0.379 +Togo,2011,2.936,7.406,0.303,52.440,0.584,-0.093,0.832,0.479,0.395 +Togo,2014,2.839,7.509,0.444,53.760,0.663,-0.108,0.795,0.537,0.443 +Togo,2015,3.768,7.540,0.479,54.200,0.772,-0.092,0.733,0.597,0.416 +Togo,2016,3.879,7.569,0.509,54.700,0.730,-0.031,0.815,0.610,0.483 +Togo,2017,4.361,7.587,0.508,55.200,0.717,-0.066,0.726,0.614,0.426 +Togo,2018,4.023,7.613,0.596,55.700,0.612,-0.031,0.809,0.602,0.446 +Togo,2019,4.179,7.637,0.539,56.200,0.617,0.041,0.737,0.606,0.444 +Togo,2021,4.037,7.667,0.603,57.200,0.619,0.037,0.766,0.628,0.417 +Togo,2022,4.239,7.700,0.579,57.700,0.696,0.002,0.713,0.594,0.414 +Togo,2023,4.365,7.725,0.547,58.200,0.665,-0.071,0.685,0.546,0.362 +Trinidad and Tobago,2006,5.832,10.172,0.887,61.780,0.840,0.139,0.917,0.750,0.229 +Trinidad and Tobago,2008,6.696,10.240,0.858,62.540,0.838,0.085,0.959,0.802,0.184 +Trinidad and Tobago,2011,6.519,10.206,0.863,63.680,0.775,0.076,0.900,0.827,0.134 +Trinidad and Tobago,2013,6.168,10.293,0.883,64.440,0.847,0.121,0.948,0.764,0.286 +Trinidad and Tobago,2017,6.192,10.174,0.916,65.700,0.859,0.010,0.911,0.763,0.248 +Tunisia,2009,5.025,9.238,,66.220,0.781,-0.127,0.722,, +Tunisia,2010,5.131,9.257,0.863,66.300,0.624,-0.143,0.732,0.697,0.249 +Tunisia,2011,4.876,9.224,0.715,66.380,0.603,-0.207,0.913,0.513,0.248 +Tunisia,2012,4.464,9.252,0.614,66.460,0.568,-0.184,0.899,0.490,0.327 +Tunisia,2013,5.246,9.265,0.648,66.540,0.536,-0.214,0.886,0.435,0.239 +Tunisia,2014,4.764,9.284,0.680,66.620,0.589,-0.239,0.783,0.424,0.321 +Tunisia,2015,5.132,9.283,0.609,66.700,0.711,-0.233,0.815,0.514,0.320 +Tunisia,2016,4.521,9.283,0.702,66.750,0.614,-0.172,0.811,0.532,0.378 +Tunisia,2017,4.124,9.294,0.717,66.800,0.478,-0.226,0.869,0.367,0.377 +Tunisia,2018,4.741,9.310,0.733,66.850,0.650,-0.199,0.840,0.536,0.365 +Tunisia,2019,4.315,9.316,0.610,66.900,0.659,-0.217,0.889,0.459,0.433 +Tunisia,2020,4.731,9.214,0.719,66.950,0.668,-0.206,0.877,0.519,0.439 +Tunisia,2021,4.499,9.249,0.711,67.000,0.591,-0.206,0.933,0.451,0.336 +Tunisia,2022,4.261,9.267,0.755,67.050,0.474,-0.233,0.908,0.458,0.304 +Tunisia,2023,4.505,9.282,0.702,67.100,0.482,-0.226,0.882,0.461,0.364 +Turkmenistan,2009,6.568,8.955,0.924,59.780,,-0.105,,0.695,0.152 +Turkmenistan,2011,5.792,9.146,0.964,60.420,,0.015,,0.577,0.122 +Turkmenistan,2012,5.464,9.233,0.946,60.740,0.786,-0.126,,0.541,0.117 +Turkmenistan,2013,5.392,9.312,0.846,61.060,0.705,-0.075,,0.552,0.160 +Turkmenistan,2014,5.787,9.392,0.909,61.380,0.805,0.029,,0.614,0.154 +Turkmenistan,2015,5.791,9.437,0.960,61.700,0.701,0.090,,0.633,0.301 +Turkmenistan,2016,5.887,9.479,0.929,61.800,0.749,0.002,,0.560,0.255 +Turkmenistan,2017,5.229,9.525,0.908,61.900,0.720,0.063,,0.488,0.350 +Turkmenistan,2018,4.621,9.569,0.984,62.000,0.858,0.257,,0.567,0.189 +Turkmenistan,2019,5.474,9.615,0.982,62.100,0.892,0.282,,0.494,0.183 +Türkiye,2005,4.719,9.800,0.820,66.100,0.623,,0.877,0.479, +Türkiye,2007,5.623,9.891,0.792,66.420,0.459,-0.183,0.800,0.592,0.395 +Türkiye,2008,5.118,9.887,0.645,66.580,0.415,-0.194,0.785,0.510,0.345 +Türkiye,2009,5.213,9.825,0.755,66.740,0.456,-0.232,0.853,0.454,0.316 +Türkiye,2010,5.490,9.893,0.795,66.900,0.515,-0.192,0.811,0.532,0.327 +Türkiye,2011,5.272,9.986,0.692,67.060,0.446,-0.247,0.649,0.512,0.380 +Türkiye,2012,5.309,10.018,0.739,67.220,0.471,-0.221,0.702,0.506,0.335 +Türkiye,2013,4.888,10.082,0.795,67.380,0.541,-0.235,0.698,0.551,0.392 +Türkiye,2014,5.580,10.111,0.863,67.540,0.649,-0.029,0.764,0.410,0.377 +Türkiye,2015,5.514,10.150,0.851,67.700,0.653,-0.021,0.806,0.391,0.382 +Türkiye,2016,5.326,10.166,0.880,67.875,0.644,-0.070,0.764,0.414,0.390 +Türkiye,2017,5.607,10.225,0.876,68.050,0.644,-0.242,0.671,0.393,0.313 +Türkiye,2018,5.186,10.246,0.847,68.225,0.529,-0.181,0.805,0.379,0.351 +Türkiye,2019,4.872,10.245,0.792,68.400,0.631,-0.141,0.760,0.347,0.368 +Türkiye,2020,4.862,10.257,0.857,68.575,0.510,-0.119,0.774,0.332,0.440 +Türkiye,2021,4.367,10.357,0.736,68.750,0.447,-0.039,0.810,0.297,0.471 +Türkiye,2022,5.093,10.404,0.830,68.925,0.470,-0.195,0.767,0.311,0.390 +Türkiye,2023,5.463,10.429,0.860,69.100,0.523,-0.159,0.748,0.344,0.349 +Uganda,2006,3.734,7.370,0.760,48.740,0.747,-0.046,0.807,0.552,0.254 +Uganda,2007,4.456,7.422,0.845,49.580,0.708,-0.006,0.881,0.670,0.228 +Uganda,2008,4.569,7.476,0.813,50.420,0.578,-0.060,0.848,0.623,0.240 +Uganda,2009,4.612,7.513,0.852,51.260,0.760,-0.043,0.840,0.594,0.296 +Uganda,2010,4.193,7.538,0.830,52.100,0.801,-0.020,0.855,0.628,0.251 +Uganda,2011,4.826,7.599,0.882,52.940,0.733,0.026,0.830,0.618,0.254 +Uganda,2012,4.309,7.608,0.885,53.780,0.649,0.075,0.838,0.709,0.265 +Uganda,2013,3.710,7.614,0.878,54.620,0.763,0.046,0.820,0.647,0.346 +Uganda,2014,3.770,7.634,0.821,55.460,0.834,0.003,0.898,0.635,0.397 +Uganda,2015,4.238,7.654,0.747,56.300,0.758,0.128,0.873,0.679,0.353 +Uganda,2016,4.233,7.667,0.754,56.775,0.739,0.125,0.811,0.665,0.410 +Uganda,2017,4.001,7.663,0.740,57.250,0.772,0.053,0.816,0.689,0.400 +Uganda,2018,4.322,7.690,0.740,57.725,0.729,0.072,0.856,0.687,0.390 +Uganda,2019,4.948,7.719,0.805,58.200,0.704,0.132,0.826,0.689,0.385 +Uganda,2020,4.641,7.714,0.800,58.675,0.687,0.140,0.878,0.705,0.425 +Uganda,2021,4.225,7.717,0.793,59.150,0.711,0.081,0.835,0.699,0.359 +Uganda,2022,4.425,7.733,0.781,59.625,0.720,0.135,0.836,0.708,0.439 +Uganda,2023,4.467,7.759,0.827,60.100,0.848,0.067,0.912,0.726,0.376 +Ukraine,2006,4.804,9.414,0.852,60.920,0.624,-0.265,0.929,0.551,0.249 +Ukraine,2007,5.252,9.499,0.820,61.240,0.494,-0.249,0.968,0.559,0.208 +Ukraine,2008,5.172,9.527,0.860,61.560,0.487,-0.273,0.929,0.545,0.186 +Ukraine,2009,5.166,9.367,0.845,61.880,0.460,-0.249,0.962,0.545,0.189 +Ukraine,2010,5.058,9.411,0.884,62.200,0.484,-0.197,0.954,0.472,0.227 +Ukraine,2011,5.083,9.468,0.859,62.520,0.579,-0.236,0.933,0.539,0.220 +Ukraine,2012,5.030,9.472,0.898,62.840,0.564,-0.231,0.896,0.509,0.193 +Ukraine,2013,4.711,9.474,0.897,63.160,0.569,-0.225,0.937,0.572,0.225 +Ukraine,2014,4.297,9.424,0.877,63.480,0.533,0.078,0.927,0.543,0.249 +Ukraine,2015,3.965,9.325,0.909,63.800,0.431,-0.039,0.952,0.531,0.241 +Ukraine,2016,4.029,9.353,0.885,63.925,0.503,0.005,0.891,0.550,0.220 +Ukraine,2017,4.311,9.381,0.858,64.050,0.599,-0.008,0.937,0.528,0.235 +Ukraine,2018,4.662,9.420,0.901,64.175,0.663,-0.080,0.943,0.550,0.222 +Ukraine,2019,4.702,9.458,0.883,64.300,0.715,-0.087,0.885,0.549,0.201 +Ukraine,2020,5.270,9.426,0.885,64.425,0.784,0.121,0.946,0.629,0.285 +Ukraine,2021,5.311,9.469,0.879,64.550,0.770,0.166,0.922,0.575,0.250 +Ukraine,2022,4.637,9.281,0.863,64.675,0.829,0.408,0.852,0.527,0.390 +Ukraine,2023,4.672,9.423,0.839,64.800,0.772,0.370,0.922,0.490,0.385 +United Arab Emirates,2006,6.734,11.433,0.903,64.860,0.898,-0.043,0.203,0.694,0.275 +United Arab Emirates,2009,6.866,10.952,0.885,65.040,0.849,0.015,0.339,0.718,0.287 +United Arab Emirates,2010,7.097,10.909,0.912,65.100,0.878,0.051,0.355,0.701,0.233 +United Arab Emirates,2011,7.119,10.965,0.881,65.160,0.889,0.063,,0.702,0.216 +United Arab Emirates,2012,7.218,11.001,0.856,65.220,0.920,,,0.719,0.224 +United Arab Emirates,2013,6.621,11.041,0.864,65.280,0.936,,,,0.291 +United Arab Emirates,2014,6.540,11.072,,65.340,,,,, +United Arab Emirates,2015,6.568,11.128,0.824,65.400,0.915,0.192,,0.722,0.296 +United Arab Emirates,2016,6.831,11.174,0.849,65.550,0.949,0.120,,0.739,0.245 +United Arab Emirates,2017,7.039,11.173,0.836,65.700,0.962,0.206,,0.737,0.208 +United Arab Emirates,2018,6.604,11.178,0.851,65.850,0.944,0.043,,0.723,0.302 +United Arab Emirates,2019,6.711,11.181,0.862,66.000,0.911,0.118,,0.730,0.284 +United Arab Emirates,2020,6.458,11.122,0.827,66.150,0.942,0.049,,0.702,0.298 +United Arab Emirates,2021,6.733,11.152,0.826,66.300,0.951,0.150,,0.697,0.217 +United Arab Emirates,2022,6.738,11.216,0.798,66.450,0.932,0.168,,0.715,0.242 +United Arab Emirates,2023,6.728,11.236,0.776,66.600,0.886,0.155,,0.655,0.304 +United Kingdom,2005,6.984,10.661,0.979,69.100,0.922,,0.398,0.779,0.262 +United Kingdom,2007,6.802,10.693,0.970,69.220,0.838,0.331,0.498,0.686,0.241 +United Kingdom,2008,6.986,10.684,0.954,69.280,0.759,0.325,0.548,0.724,0.218 +United Kingdom,2009,6.907,10.630,0.964,69.340,0.816,0.336,0.559,0.739,0.231 +United Kingdom,2010,7.029,10.646,0.955,69.400,0.841,0.397,0.587,0.753,0.176 +United Kingdom,2011,6.869,10.649,0.949,69.460,0.900,0.331,0.438,0.742,0.174 +United Kingdom,2012,6.881,10.656,0.935,69.520,0.889,0.366,0.425,0.739,0.184 +United Kingdom,2013,6.918,10.668,0.937,69.580,0.905,0.341,0.568,0.719,0.252 +United Kingdom,2014,6.758,10.692,0.910,69.640,0.857,0.349,0.484,0.740,0.251 +United Kingdom,2015,6.515,10.707,0.936,69.700,0.833,0.294,0.456,0.740,0.219 +United Kingdom,2016,6.824,10.721,0.954,69.800,0.821,0.244,0.458,0.732,0.230 +United Kingdom,2017,7.103,10.739,0.937,69.900,0.813,0.285,0.419,0.712,0.210 +United Kingdom,2018,7.233,10.750,0.928,70.000,0.838,0.220,0.404,0.736,0.228 +United Kingdom,2019,7.157,10.760,0.943,70.100,0.854,0.264,0.485,0.739,0.251 +United Kingdom,2020,6.798,10.639,0.929,70.200,0.885,0.196,0.490,0.717,0.225 +United Kingdom,2021,6.867,10.713,0.854,70.300,0.815,0.252,0.448,0.684,0.266 +United Kingdom,2022,6.722,10.754,0.863,70.400,0.857,0.308,0.426,0.723,0.270 +United Kingdom,2023,6.658,10.759,0.886,70.500,0.874,0.270,0.490,0.719,0.272 +United States,2006,7.182,10.921,0.965,66.780,0.911,,0.600,0.775,0.261 +United States,2007,7.513,10.931,,66.760,0.872,0.191,0.633,0.756,0.232 +United States,2008,7.280,10.923,0.953,66.740,0.878,0.249,0.668,0.774,0.227 +United States,2009,7.158,10.888,0.912,66.720,0.831,0.195,0.665,0.753,0.262 +United States,2010,7.164,10.906,0.926,66.700,0.828,0.238,0.690,0.776,0.231 +United States,2011,7.115,10.914,0.922,66.680,0.863,0.155,0.697,0.737,0.273 +United States,2012,7.026,10.929,0.903,66.660,0.823,0.208,0.710,0.765,0.260 +United States,2013,7.249,10.941,0.925,66.640,0.792,0.268,0.747,0.776,0.260 +United States,2014,7.151,10.956,0.902,66.620,0.866,0.215,0.702,0.786,0.281 +United States,2015,6.864,10.975,0.904,66.600,0.849,0.213,0.698,0.769,0.275 +United States,2016,6.804,10.985,0.897,66.475,0.758,0.138,0.739,0.737,0.264 +United States,2017,6.992,11.001,0.921,66.350,0.868,0.191,0.681,0.755,0.268 +United States,2018,6.883,11.024,0.904,66.225,0.825,0.110,0.710,0.757,0.292 +United States,2019,6.944,11.042,0.917,66.100,0.836,0.138,0.707,0.755,0.244 +United States,2020,7.028,11.005,0.937,65.975,0.850,0.028,0.678,0.722,0.295 +United States,2021,6.959,11.061,0.920,65.850,0.816,0.188,0.687,0.740,0.277 +United States,2022,6.693,11.078,0.900,65.725,0.736,0.189,0.701,0.712,0.267 +United States,2023,6.521,11.089,0.861,65.600,0.721,0.185,0.722,0.706,0.284 +Uruguay,2006,5.786,9.640,0.912,66.780,0.807,-0.125,0.477,0.701,0.306 +Uruguay,2007,5.694,9.702,0.875,66.860,0.786,-0.178,0.614,0.710,0.274 +Uruguay,2008,5.664,9.769,0.879,66.940,0.808,-0.156,0.597,0.685,0.264 +Uruguay,2009,6.296,9.808,0.924,67.020,0.825,-0.131,0.544,0.722,0.255 +Uruguay,2010,6.062,9.880,0.893,67.100,0.832,-0.171,0.471,0.738,0.231 +Uruguay,2011,6.554,9.928,0.891,67.180,0.851,-0.093,0.556,0.702,0.252 +Uruguay,2012,6.450,9.960,0.865,67.260,0.871,0.054,0.615,0.692,0.214 +Uruguay,2013,6.444,10.002,0.917,67.340,0.888,-0.056,0.586,0.743,0.253 +Uruguay,2014,6.561,10.031,0.902,67.420,0.904,-0.086,0.533,0.788,0.251 +Uruguay,2015,6.628,10.032,0.891,67.500,0.917,-0.045,0.673,0.812,0.300 +Uruguay,2016,6.171,10.045,0.900,67.500,0.886,-0.085,0.676,0.735,0.283 +Uruguay,2017,6.336,10.060,0.914,67.500,0.898,-0.104,0.627,0.742,0.280 +Uruguay,2018,6.372,10.060,0.917,67.500,0.876,-0.109,0.683,0.775,0.275 +Uruguay,2019,6.600,10.067,0.933,67.500,0.903,-0.107,0.599,0.764,0.222 +Uruguay,2020,6.310,10.002,0.921,67.500,0.908,-0.094,0.491,0.721,0.265 +Uruguay,2021,6.502,10.054,0.914,67.500,0.899,-0.054,0.606,0.746,0.263 +Uruguay,2022,6.671,10.103,0.905,67.500,0.878,-0.055,0.631,0.775,0.267 +Uruguay,2023,6.662,10.122,0.908,67.500,0.904,-0.050,0.662,0.753,0.265 +Uzbekistan,2006,5.232,8.256,0.903,61.340,0.784,-0.125,0.609,0.650,0.195 +Uzbekistan,2008,5.311,8.402,0.894,61.820,0.831,-0.033,,0.647,0.187 +Uzbekistan,2009,5.261,8.463,0.905,62.060,,0.003,0.610,0.646,0.159 +Uzbekistan,2010,5.095,8.508,0.903,62.300,,-0.040,0.519,0.665,0.152 +Uzbekistan,2011,5.739,8.554,0.924,62.540,0.934,0.032,0.522,0.663,0.123 +Uzbekistan,2012,6.019,8.608,0.933,62.780,0.914,-0.047,0.463,0.650,0.118 +Uzbekistan,2013,5.940,8.662,0.963,63.020,0.950,-0.043,0.434,0.686,0.130 +Uzbekistan,2014,6.049,8.712,0.952,63.260,0.954,0.052,0.536,0.713,0.106 +Uzbekistan,2015,5.972,8.764,0.968,63.500,0.980,0.366,0.471,0.778,0.103 +Uzbekistan,2016,5.893,8.804,0.945,63.800,0.984,0.199,,0.771,0.147 +Uzbekistan,2017,6.421,8.831,0.942,64.100,0.985,0.114,0.465,0.745,0.203 +Uzbekistan,2018,6.205,8.870,0.921,64.400,0.970,0.308,0.520,0.746,0.209 +Uzbekistan,2019,6.154,8.910,0.915,64.700,0.970,0.295,0.511,0.751,0.220 +Uzbekistan,2020,5.842,8.910,0.850,65.000,0.928,0.190,0.642,0.678,0.279 +Uzbekistan,2021,6.185,8.962,0.896,65.300,0.927,0.183,0.662,0.698,0.233 +Uzbekistan,2022,6.016,8.996,0.879,65.600,0.959,0.306,0.616,0.741,0.225 +Uzbekistan,2023,6.385,9.026,0.909,65.900,0.927,0.247,0.650,0.752,0.202 +Venezuela,2005,7.170,9.316,0.955,65.500,0.838,,0.720,0.803,0.233 +Venezuela,2006,6.525,9.467,0.946,65.460,0.798,-0.037,0.646,0.837,0.178 +Venezuela,2008,6.258,9.719,0.922,65.380,0.678,-0.232,0.776,0.818,0.224 +Venezuela,2009,7.189,9.567,0.945,65.340,0.677,-0.124,0.828,0.792,0.180 +Venezuela,2010,7.478,9.748,0.932,65.300,0.768,-0.163,0.754,0.847,0.130 +Venezuela,2011,6.580,9.859,0.931,65.260,0.766,-0.235,0.772,0.823,0.199 +Venezuela,2012,7.067,9.862,0.932,65.220,0.804,-0.201,0.743,0.844,0.176 +Venezuela,2013,6.553,9.802,0.896,65.180,0.642,-0.230,0.837,0.812,0.238 +Venezuela,2014,6.136,9.366,0.904,65.140,0.570,-0.191,0.827,0.797,0.244 +Venezuela,2015,5.569,8.532,0.911,65.100,0.512,-0.089,0.813,0.837,0.223 +Venezuela,2016,4.041,7.602,0.902,64.925,0.458,-0.060,0.890,0.676,0.392 +Venezuela,2017,5.071,5.943,0.896,64.750,0.636,0.050,0.844,0.697,0.363 +Venezuela,2018,5.006,5.935,0.887,64.575,0.611,0.068,0.828,0.723,0.374 +Venezuela,2019,5.081,5.527,0.888,64.400,0.626,0.124,0.839,0.730,0.351 +Venezuela,2020,4.574,,0.805,64.225,0.612,,0.811,0.689,0.396 +Venezuela,2021,5.108,,0.812,64.050,0.596,,0.824,0.698,0.389 +Venezuela,2022,5.949,,0.899,63.875,0.770,,0.798,0.754,0.292 +Venezuela,2023,5.765,,0.885,63.700,0.757,,0.825,0.758,0.300 +Vietnam,2006,5.294,8.554,0.888,64.180,0.886,-0.006,,0.657,0.204 +Vietnam,2007,5.422,8.613,0.856,64.260,0.918,0.068,0.754,,0.206 +Vietnam,2008,5.480,8.658,0.805,64.340,0.889,0.180,0.789,0.624,0.218 +Vietnam,2009,5.304,8.701,0.815,64.420,0.834,-0.083,0.838,0.481,0.190 +Vietnam,2010,5.296,8.752,0.787,64.500,0.831,-0.027,0.743,0.671,0.216 +Vietnam,2011,5.767,8.804,0.898,64.580,0.818,0.084,0.742,0.494,0.193 +Vietnam,2012,5.535,8.847,0.775,64.660,0.856,-0.131,0.815,0.546,0.221 +Vietnam,2013,5.023,8.890,0.759,64.740,0.920,-0.048,0.771,0.689,0.165 +Vietnam,2014,5.085,8.941,0.792,64.820,,-0.022,,0.634,0.241 +Vietnam,2015,5.076,8.999,0.849,64.900,,0.064,,0.583,0.232 +Vietnam,2016,5.062,9.053,0.876,65.000,0.894,-0.112,0.799,0.487,0.223 +Vietnam,2017,5.175,9.111,,65.100,,,,, +Vietnam,2018,5.296,9.173,0.832,65.200,0.909,-0.063,0.808,0.614,0.191 +Vietnam,2019,5.467,9.235,0.848,65.300,0.952,-0.148,0.788,0.658,0.186 +Vietnam,2020,5.462,9.254,0.765,65.400,0.945,0.063,0.791,0.699,0.286 +Vietnam,2021,5.540,9.271,0.799,65.500,0.897,0.104,0.798,0.651,0.280 +Vietnam,2022,6.267,9.341,0.879,65.600,0.975,-0.182,0.703,0.774,0.108 +Vietnam,2023,6.325,9.392,0.845,65.700,0.956,-0.159,0.655,0.710,0.120 +Yemen,2007,4.477,8.212,0.825,58.720,0.673,0.006,,0.524,0.379 +Yemen,2009,4.809,8.250,0.756,58.640,0.644,-0.056,0.832,0.511,0.374 +Yemen,2010,4.350,8.414,0.727,58.600,0.659,-0.107,0.853,0.514,0.308 +Yemen,2011,3.746,8.264,0.663,58.560,0.638,-0.174,0.754,0.416,0.285 +Yemen,2012,4.061,8.179,0.682,58.520,0.706,-0.172,0.793,0.413,0.263 +Yemen,2013,4.218,8.166,0.694,58.480,0.543,-0.179,0.885,0.478,0.266 +Yemen,2014,3.968,8.159,0.638,58.440,0.664,-0.166,0.885,0.527,0.276 +Yemen,2015,2.983,7.772,0.669,58.400,0.610,-0.138,0.829,0.458,0.321 +Yemen,2016,3.826,7.552,0.775,58.175,0.533,-0.144,,0.401,0.228 +Yemen,2017,3.254,7.243,0.790,57.950,0.595,-0.128,,0.368,0.295 +Yemen,2018,3.058,7.444,0.789,57.725,0.553,-0.127,0.793,0.409,0.315 +Yemen,2019,4.197,7.448,0.870,57.500,0.651,-0.106,0.798,0.481,0.213 +Yemen,2022,3.590,,0.872,56.825,0.607,,0.788,0.460,0.255 +Yemen,2023,3.532,,0.825,56.600,0.583,,0.771,0.447,0.341 +Zambia,2006,4.824,7.834,0.798,46.760,0.721,-0.012,0.785,0.664,0.226 +Zambia,2007,3.998,7.879,0.688,47.420,0.682,-0.073,0.948,0.653,0.246 +Zambia,2008,4.730,7.918,0.624,48.080,0.717,0.051,0.890,0.707,0.206 +Zambia,2009,5.260,7.971,0.782,48.740,0.696,-0.101,0.917,0.693,0.123 +Zambia,2011,4.999,8.054,0.864,50.060,0.663,-0.001,0.882,0.771,0.204 +Zambia,2012,5.013,8.094,0.780,50.720,0.788,0.004,0.806,0.676,0.250 +Zambia,2013,5.244,8.111,0.761,51.380,0.770,-0.108,0.732,0.727,0.308 +Zambia,2014,4.346,8.124,0.706,52.040,0.812,-0.014,0.809,0.639,0.327 +Zambia,2015,4.843,8.121,0.691,52.700,0.759,-0.042,0.871,0.634,0.382 +Zambia,2016,4.348,8.127,0.767,53.125,0.812,0.119,0.771,0.688,0.372 +Zambia,2017,3.933,8.130,0.744,53.550,0.823,0.137,0.740,0.660,0.387 +Zambia,2018,4.041,8.139,0.718,53.975,0.791,0.045,0.811,0.662,0.351 +Zambia,2019,3.307,8.123,0.638,54.400,0.811,0.074,0.832,0.674,0.394 +Zambia,2020,4.838,8.066,0.767,54.825,0.750,0.054,0.810,0.679,0.345 +Zambia,2021,3.082,8.082,0.619,55.250,0.833,0.138,0.824,0.656,0.349 +Zambia,2022,3.728,8.101,0.717,55.675,0.889,-0.009,0.716,0.660,0.309 +Zambia,2023,3.686,8.115,0.664,56.100,0.854,0.092,0.814,0.653,0.359 +Zimbabwe,2006,3.826,7.460,0.822,40.400,0.431,-0.063,0.905,0.669,0.297 +Zimbabwe,2007,3.280,7.413,0.828,41.600,0.456,-0.069,0.946,0.589,0.265 +Zimbabwe,2008,3.174,7.210,0.843,42.800,0.344,-0.077,0.964,0.571,0.250 +Zimbabwe,2009,4.056,7.313,0.806,44.000,0.411,-0.065,0.931,0.660,0.218 +Zimbabwe,2010,4.682,7.495,0.857,45.200,0.665,-0.081,0.828,0.699,0.122 +Zimbabwe,2011,4.846,7.617,0.865,46.400,0.633,-0.077,0.830,0.699,0.211 +Zimbabwe,2012,4.955,7.745,0.896,47.600,0.470,-0.091,0.859,0.613,0.177 +Zimbabwe,2013,4.690,7.755,0.799,48.800,0.576,-0.093,0.831,0.624,0.182 +Zimbabwe,2014,4.184,7.748,0.766,50.000,0.642,-0.062,0.820,0.661,0.239 +Zimbabwe,2015,3.703,7.747,0.736,51.200,0.667,-0.111,0.810,0.639,0.179 +Zimbabwe,2016,3.735,7.735,0.768,51.675,0.733,-0.082,0.724,0.685,0.209 +Zimbabwe,2017,3.638,7.754,0.754,52.150,0.753,-0.084,0.751,0.734,0.224 +Zimbabwe,2018,3.616,7.783,0.775,52.625,0.763,-0.055,0.844,0.658,0.212 +Zimbabwe,2019,2.694,7.698,0.759,53.100,0.632,-0.051,0.831,0.658,0.235 +Zimbabwe,2020,3.160,7.596,0.717,53.575,0.643,0.003,0.789,0.661,0.346 +Zimbabwe,2021,3.155,7.657,0.685,54.050,0.668,-0.079,0.757,0.610,0.242 +Zimbabwe,2022,3.296,7.670,0.666,54.525,0.652,-0.073,0.753,0.641,0.191 +Zimbabwe,2023,3.572,7.679,0.694,55.000,0.735,-0.069,0.757,0.610,0.179 diff --git a/fall-2024/math/mat-206/00020/MAT-206-00020.ipynb b/fall-2024/math/mat-206/00020/MAT-206-00020.ipynb new file mode 100644 index 0000000..4701e0f --- /dev/null +++ b/fall-2024/math/mat-206/00020/MAT-206-00020.ipynb @@ -0,0 +1,402 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 215, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import pingouin as pg\n", + "\n", + "from scipy.stats import bartlett, levene" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Reading and preprocessing data" + ] + }, + { + "cell_type": "code", + "execution_count": 216, + "metadata": {}, + "outputs": [], + "source": [ + "DataWhr2024 = pd.read_csv(\"DataWhr2024.csv\")\n", + "UnM49 = pd.read_csv(\"UnM49.csv\", sep=';')" + ] + }, + { + "cell_type": "code", + "execution_count": 217, + "metadata": {}, + "outputs": [], + "source": [ + "DataWhr2024.loc[DataWhr2024[\"Country name\"].str.startswith(\"Hong\"), \"Country name\"] = \"Hong Kong\"\n", + "DataWhr2024.loc[DataWhr2024[\"Country name\"].str.startswith(\"Somaliland\"), \"Country name\"] = \"Somaliland\"\n", + "DataWhr2024.loc[DataWhr2024[\"Country name\"].str.startswith(\"Taiwan\"), \"Country name\"] = \"Taiwan\"" + ] + }, + { + "cell_type": "code", + "execution_count": 218, + "metadata": {}, + "outputs": [], + "source": [ + "UnM49 = UnM49[['Country or Area', 'Sub-region Name', 'Region Name']]\n", + "UnM49 = UnM49.rename({'Country or Area':'Country name', 'Sub-region Name':'Subregion', 'Region Name':'Continent'}, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 219, + "metadata": {}, + "outputs": [], + "source": [ + "UnM49.loc[97, \"Country name\"] = \"Bolivia\"\n", + "UnM49.loc[33, \"Country name\"] = \"Congo (Brazzaville)\"\n", + "UnM49.loc[34, \"Country name\"] = \"Congo (Kinshasa)\"\n", + "UnM49.loc[124, \"Country name\"] = \"Hong Kong\"\n", + "UnM49.loc[125, \"Country name\"] = \"Macao\"\n", + "UnM49.loc[126, \"Country name\"] = \"North Korea\"\n", + "UnM49.loc[145, \"Country name\"] = \"Iran\"\n", + "UnM49.loc[46, \"Country name\"] = \"Ivory Coast\"\n", + "UnM49.loc[133, \"Country name\"] = \"Laos\"\n", + "UnM49.loc[129, \"Country name\"] = \"South Korea\"\n", + "UnM49.loc[173, \"Country name\"] = \"Moldova\"\n", + "UnM49.loc[217, \"Country name\"] = \"Netherlands\"\n", + "UnM49.loc[175, \"Country name\"] = \"Russia\"\n", + "UnM49.loc[164, \"Country name\"] = \"Syria\"\n", + "UnM49.loc[26, \"Country name\"] = \"Tanzania\"\n", + "UnM49.loc[116, \"Country name\"] = \"United States\"\n", + "UnM49.loc[193, \"Country name\"] = \"United Kingdom\"\n", + "UnM49.loc[111, \"Country name\"] = \"Venezuela\"\n", + "UnM49.loc[140, \"Country name\"] = \"Vietnam\"" + ] + }, + { + "cell_type": "code", + "execution_count": 220, + "metadata": {}, + "outputs": [], + "source": [ + "_ = pd.DataFrame(\n", + " {\n", + " \"Country name\": [\"Kosovo\", \"Somaliland\", \"Taiwan\"],\n", + " \"Subregion\": [\"Southern Europe\", \"Sub-Saharan Africa\", \"Eastern Asia\"],\n", + " \"Continent\": [\"Europe\", \"Africa\", \"Asia\"],\n", + " }\n", + ")\n", + "\n", + "UnM49 = pd.concat([UnM49, _], axis=0)\n", + "UnM49 = UnM49.reset_index(drop=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Merging the datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 221, + "metadata": {}, + "outputs": [], + "source": [ + "# Data\n", + "Dat = pd.merge(DataWhr2024, UnM49)\n", + "\n", + "# Data of 2023\n", + "Dat2023 = Dat[Dat['year'] == 2023]\n", + "Dat2023 = Dat2023.reset_index(drop=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Question 1**" + ] + }, + { + "cell_type": "code", + "execution_count": 222, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "μSE: 5.678\n", + "\n", + "One-sample t-test result:\n", + " T dof alternative p-val CI95% cohen-d BF10 \\\n", + "T-test -0.075657 8 two-sided 0.941549 [5.02, 6.34] 0.025219 0.322 \n", + "\n", + " power \n", + "T-test 0.050515 \n", + "\n" + ] + } + ], + "source": [ + "# Step 1: Southeast Asia Mean (μSE) and Hypothesis Testing\n", + "Dat2023SEA = Dat2023[Dat2023['Subregion'] == 'South-eastern Asia']['Life Ladder']\n", + "\n", + "mu_se = Dat2023SEA.mean()\n", + "\n", + "t_test_result = pg.ttest(Dat2023SEA, 5.7)\n", + "\n", + "print(f\"μSE: {mu_se:.3f}\\n\")\n", + "print(f\"One-sample t-test result:\\n{t_test_result}\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Question 2**" + ] + }, + { + "cell_type": "code", + "execution_count": 223, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "σ²SE: 0.731, σ²LA: 0.194\n", + "\n", + "Levene's test result:\n", + " W pval equal_var\n", + "levene 3.141025 0.088534 True\n", + "\n" + ] + } + ], + "source": [ + "# Step 2: Variance (σ²SE, σ²LA) and Hypothesis Testing\n", + "Dat2023LA = Dat2023[Dat2023['Subregion'] == 'Latin America and the Caribbean']['Life Ladder']\n", + "\n", + "sigma2_se = Dat2023SEA.var(ddof=1)\n", + "sigma2_la = Dat2023LA.var(ddof=1)\n", + "\n", + "f_test_result = pg.homoscedasticity([Dat2023SEA.values, Dat2023LA.values], method='levene')\n", + "\n", + "print(f\"σ²SE: {sigma2_se:.3f}, σ²LA: {sigma2_la:.3f}\\n\")\n", + "print(f\"Levene's test result:\\n{f_test_result}\\n\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Question 3**" + ] + }, + { + "cell_type": "code", + "execution_count": 224, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "μLA: 6.297\n", + "Two-sample t-test result:\n", + " T dof alternative p-val CI95% cohen-d \\\n", + "T-test -2.040107 10.186481 two-sided 0.068122 [-1.29, 0.06] 1.022676 \n", + "\n", + " BF10 power \n", + "T-test 1.597 0.672925 \n", + "\n" + ] + } + ], + "source": [ + "# Step 3: Mean (μLA) and Hypothesis Testing\n", + "mu_LA = Dat2023LA.values.mean()\n", + "t_test_ind_result = pg.ttest(Dat2023SEA, Dat2023LA)\n", + "\n", + "print(f\"μLA: {mu_LA:.3f}\")\n", + "print(f\"Two-sample t-test result:\\n{t_test_ind_result}\\n\")" + ] + }, + { + "cell_type": "code", + "execution_count": 225, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "np.int64(138)" + ] + }, + "execution_count": 225, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Dat2023['Continent'].dropna().count()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Question 4**" + ] + }, + { + "cell_type": "code", + "execution_count": 243, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ANOVA Table:\n", + " Source SS DF MS F p-unc np2\n", + "0 Continent 90.218922 4 22.554730 34.218881 1.271847e-19 0.50718\n", + "1 Within 87.664444 133 0.659131 NaN NaN NaN\n", + "\n", + "Post-Hoc Analysis:\n", + "Means by Continent:\n", + "Continent\n", + "Africa 4.485\n", + "Americas 6.336\n", + "Asia 5.433\n", + "Europe 6.454\n", + "Oceania 7.001\n", + "Name: Life Ladder, dtype: float64\n", + "Intercontinental Mean (μ): 5.621\n", + "Intercontinental Variance (τ²): 0.793\n" + ] + } + ], + "source": [ + "import pingouin as pg\n", + "import pandas as pd\n", + "import numpy as np\n", + "'''\n", + "# Define the mapping of sub-regions to continents\n", + "sub_region_to_continent = {\n", + " 'Southern Asia': 'Asia',\n", + " 'South-eastern Asia': 'Asia',\n", + " 'Eastern Asia': 'Asia',\n", + " 'Central Asia': 'Asia',\n", + " 'Southern Europe': 'Europe',\n", + " 'Western Europe': 'Europe',\n", + " 'Eastern Europe': 'Europe',\n", + " 'Northern Europe': 'Europe',\n", + " 'Latin America and the Caribbean': 'America',\n", + " 'Northern America': 'America',\n", + " 'Sub-Saharan Africa': 'Africa',\n", + " 'Northern Africa': 'Africa',\n", + " 'Australia and New Zealand': 'Oceania'\n", + "}\n", + "\n", + "# Map the 'Subregion' values to continents\n", + "Dat2023['Continent'] = Dat2023['Subregion'].map(sub_region_to_continent)\n", + "'''\n", + "# Drop rows with missing values in 'Continent' or 'Life Ladder'\n", + "anova_data = Dat2023[['Continent', 'Life Ladder']].dropna()\n", + "\n", + "# Perform the ANOVA test\n", + "anova_result = pg.anova(data=anova_data, dv='Life Ladder', between='Continent', detailed=True)\n", + "\n", + "# Print the ANOVA table\n", + "print(\"ANOVA Table:\")\n", + "print(anova_result)\n", + "\n", + "# Extract the relevant ANOVA results for sum of squares (SS)\n", + "ss_between = anova_result['SS'].iloc[0] # Sum of Squares between\n", + "ss_within = anova_result['SS'].iloc[1] # Sum of Squares within\n", + "\n", + "# Extract the degrees of freedom (df) for between and within\n", + "df_between = anova_result['DF'].iloc[0] # Degrees of freedom between\n", + "df_within = anova_result['DF'].iloc[1] # Degrees of freedom within\n", + "\n", + "# Extract the mean squares (MS) for between and within\n", + "ms_between = anova_result['MS'].iloc[0] # Mean square between\n", + "ms_within = anova_result['MS'].iloc[1] # Mean square within\n", + "\n", + "# F-statistic\n", + "f_stat = ms_between / ms_within\n", + "\n", + "# Post-hoc analysis if the null hypothesis is rejected\n", + "if anova_result['p-unc'].iloc[0] < 0.05: # If H0 is rejected\n", + " # Group statistics\n", + " continent_means = anova_data.groupby('Continent')['Life Ladder'].mean()\n", + " # Aggregating count, mean, and variance for each continent group\n", + " DatGroup = anova_data.groupby(\"Continent\")[\"Life Ladder\"].agg([\"count\", \"mean\", \"var\"]).reset_index()\n", + "\n", + " # Extract the necessary columns for calculation\n", + " count_values = DatGroup[\"count\"]\n", + " mean_values = DatGroup[\"mean\"]\n", + " var_values = DatGroup[\"var\"]\n", + "\n", + " # Intercontinental mean (μ) calculation\n", + " n_tot = len(anova_data) # Total number of observations\n", + " J = len(DatGroup) # Number of continents/groups\n", + " n_Bar = n_tot / J # Average sample size per group\n", + "\n", + " mu = anova_data['Life Ladder'].mean()\n", + "\n", + " # Intercontinental Variance (τ²)\n", + " tau_squared = (ms_between - ms_within) / n_Bar\n", + "\n", + " # Print results\n", + " print(\"\\nPost-Hoc Analysis:\")\n", + " print(f\"Means by Continent:\\n{continent_means.round(3)}\")\n", + " print(f\"Intercontinental Mean (μ): {mu:.3f}\")\n", + " print(f\"Intercontinental Variance (τ²): {tau_squared:.3f}\")\n", + "else:\n", + " print(\"\\nGlobal Analysis:\")\n", + " global_mean = anova_data['Life Ladder'].mean()\n", + " global_variance = anova_data['Life Ladder'].var(ddof=1)\n", + " print(f\"Global Mean (θ): {global_mean:.3f}\")\n", + " print(f\"Global Variance (σ²): {global_variance:.3f}\")\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/fall-2024/math/mat-206/00020/MAT-206:00020 - Thanawin Pattanaphol.odt b/fall-2024/math/mat-206/00020/MAT-206:00020 - Thanawin Pattanaphol.odt new file mode 100644 index 0000000000000000000000000000000000000000..7fcd638863d005f2c978c3c9095dab5a4a05c400 GIT binary patch literal 39191 zcmb4q1CS`q(&gB;ZQFC_j&0kv=ZF*3Q_*$kx!=+Sta4&dJ!#N$&ru>@WX+Ul@OppskIGxv8_mzp8O$qW?>C zHqdvV|L<8i|AuAfU~B4N?CAKPnOOghX=~?f_fMn$pDpSe8X8*}|LwNzf9mVM8=;An zt-h1-e`5W+emXkoJ30S9#`o`9bF#Iy`u~^8KP)?a8)K{gAQk+7BTaK_eN$scdI57M zYkfP%|3!v?fcV!u`dj{gUr>LMqthQNV@EnSYpW}4OWT9iI}e|ry#drK@U{3)u}d8X zvlfoc=8Vn#ctJiqv#{nhx%}UA_MJW511UnhRXi?p`D^eUmeVk%9Q4z%i|~BENSz)- z|H!Dhv%-;my9F+U4v}nWNBMO8jCJ7rxP67-uewMQbw;Z@iP=$gYGqPPi~i0$zMz;f z-M8pOC(@KH89A_b$dty|k-qWCl1L@LO-PM~eU2Vsv>t%-@?qPOHYACC5xc$Pmb`03 z7pE4k)u<|lvXD1Sc9O!C0vs5KA@H)Pdk9T{A>q4qnv#>bcMeC&tPyTB!IZhOSfP8? zI1`Jp!juhGkkm?H<2Tr;E1o!m1z6H$&!OpV?v=9{)`8<2R_l{NGJ~nedQ@@U71jP)9U4c=UAQ}epeo|?N;!}zhL9g_rJdHdlmS)K z=S>->Z6QDIn5?$Q(Qsvl4%}Y58`k^y^{Y9Zie$xK@Q=9Gs91F_W6sdPm}#Bl1oIs6 ziNU!2a4SXRT`RU#_=vVBiIB%2IJPjMY84SEPsz3g1hp}|3$RiGdmj)iX>uzatuZ|W zL_%FA<|gHWV11uwZI?c@xzJFuo&|5QoK6Kv}ff!jAJWLYu8cQ zfGzt7qRSzU{I@4~jc5b6LLbRy)dN`&v?3O!c0o!j$z47)R>DUo)^Fl*weJ+HY&@J8 zDn&_8+Ym)HaHE<}vHMQ{I7Gz0;D=BSd3g?8IxML+T#^hS90D9uNC{oyO;`!n(B@Dh zfPm2en|Gb5YzM!D6)~R)5JeXpuh$ViQCEB}Wld2WgBSLA84ZV2H@IW=xEu7)tq#R{ zee35MfC+JT0Ap2QTIJ;@)*Mvof1)82XUlv;3+6kQs5%qaYTdsmp`x~WnRSlp>E`h4R}!nCcm2Qb+!ej98R^6WuJIAND+*Egwct|)b6STVK;dJdhw8McwvkSrJ*JsMwk?wY&gWF^?hn2{zRfTO>zLfN9xBz zASiL;oSzB|>cx_C$Y{X64zgBM)1vbj6V__Y!PgpBNS9DFDO&EPFZobTZRNun@SI?z zMe~nb?M;f1-n}lYQuXNb#N9QcYfUYF_*8B(-2glg%z48UR^Z@`0fd?5eh?BEefrxw z*HB3YfX@CezJJQmDu+t%9&?TO%{?4w8A)9uFkcgb68jk#{nbuWx`HsmXm$sz6Iy7* zD7_tCy0B(|1Zz5n8+@+inI{&)@SD`u#jFuD747zxR#7oX=H zDHyjR)#?k33Tpf8>rQ80qVvP_e}W5L42kH2DT^1C#|u1$%DlCGuEw1yS=u0Pt=vpr za60RlBu6)@osnW!!k$BWNJwrkwW+&NdaLT#Xp7p0v&Jvly$90DaSzclw1d(mw4<~| zZZpeoph4Dpn4)B5s$sV6t_bZ%1XMD2tDx`AzA6Mw;3aI~`BOun?ZB%pkW-lH)PH9S z2_7W^3v}#9?*X{t>_-Kle*>1$y}(+-Qy-nCVJ@4@sT!*}TjtIfDfgtP5{`3U##QZP zIdg}L@{&>J)(0o23vG!P*$7v$0$US$mnDTLdq+cnZbC4wO8*kT{(20S5m@x>lDQW- z{;UaOQNPinO8_+!`hGw*JWsEqrL;Um)Qc`R+add%Q}Qv)FX7c2KI)JkvuKj=#-x=j zZ@sQgW6O@C=n_XyKI<6l>_CUyV+b#rxowzrl6pgG!eRL8TG820^-`}E&-F#{0{Rr5 z-!vR&R=_pQzHu22Ow{A>`>;oE#=Tg>LRuw5MQ1L=+2TiieeOgh@p8U@ZIb2Z*P*|a zZ1!cMpLx-p&%xHW+4wMQfj#M!rSBG7d+$(nE&|xbnF=ICMS{fQ3Og>ImR_`l*^qf} zn#+eRxI`VtglNGN6Xs@hJG$In@moBS z-^z}L9tZwx04jde_>_&(nu3gu6@9b?iMaNc)-vs?{!xAMq7_yER~pa1g92}$%BYN< zt7FRrj{gPk{(;H=z{7oQLggT>ZtBAF*rg5ui=eb0pTan*QDwz(km)=cnHD2g22~Z% zUS{pXWJW@t7IPYgt88!br_fWt6t5=I$*%iYfi5vSbA=7HKMub>OjN5~TLU?wIzULS zfY#57L?j^BSDjp1--FWHbF^r)knh=^Qq?6`QjmboxGo*l<>2Q8hrRMLr2@(I1{cvunN+1z5&PFPpKQG@nXhWa^=HN2~c= zvvI=@`9%b$caf$(*Z%Yu7d9M0!4hOHLC#qPhuCGVK+^kJL5v7zF=$lfdly;s8z(Tp z0Bwr4^6@v%?QF2XhIxobWG-`#7$D|KW}T$N>EP1f*OiA-?^KV6pdz@E+|%SmRXIxgV=|%IwoboPZoYeCe?X-Zek;(^l#p zXL2@HY$rL(_uNX|96P=?Nqs2Ou>8ImSn=MmyVxckh;KPM4Y}*r{S{&;xG{6M+9RS) z|GUn~|Ga3NUDDqkT7eb`^-#>Z>OsN!29slg`rLquQF4y!hSMaxf1;KH8R2cK< ztFCzYbiTVUXi>rEqq3I1TngdbSd)qgG?K=o7*0+5ag9fdOlFC27(atF5@-Ix2@>Av zyj)g+poo23i-zRX=eI!ZTODDKr?D)|jq;7YcSlG$E#V^T<0fZmMa$ngkHDB4thPDRqz^Azi9I?aCB2`j4e z$>j}Wi=>RJrzzc=uGtli+>l04*!Y#Fc_(V5BX?M`s}hKjl|0G441Dz*7Jd0|SKk`j zy`GD?9x<->g)h9Kd+vofQ;;Y%sI{~?K1++!iA$mL9@l*WJ{JtH&kuJHbK1<03S-Kd z#_~$@0gxh8%i;QgCittGA7D92a0vEFKOYik0Dw|H0D%8#ApJYt8s@KVZLM!(Zer}{ zMCV{+GL3q{@t|6S zc_+Ft<4PZAG@`z=Pl?5ll5||mtm%xJtAnnsXoG8gwV4_}9rw;6peTo`-PMMQQ#Uz? zmL0}wrXiogE&YK*}9>gbu(?NFHF zBc0u@+H0+V9nT~)_iICU=Y^rW9pXg2Or~qu^A7GmKPTUGGe4O7HH|JpR==kUOy6Tq z8t?IyMQi>MU*n6}JSZRlKmhQ665n6>0vOubIQ?V4{$rbHOD7yOr*+@d{HA0rORFLr zf{#N&buDox!{c7V^PsA7eopomliN=xGV-@@J~=EujD5J)x2*X`8?4f9BCsyPL!_oD7AG;82`!=8owrdqf36% zD1VcZ^7DuZJ1|Oq;QL+yD$X=jA`bQ=%D|;>n8V23aXQst#d-a*a?#Y??3_ORp0M-$ zCnq_sqjG1W%+wrVPtJRK$Wp$aDf88cnTq3AISHJ3yPn5sRre)bC~*5KH?y4CA=;pt0yAG!GQpT~dL*R@ zA~v}j|0>7Bh?97{z~=$glNyC|^KH>a^l{@-9dzc@%c$F;4}8{s%*zUB7fV=k#Sxg2 zdW?bw-3Yi?xByo`_h;8$<&}gh&9VR#TD#glP5N+0L^XVMyG%i3VNv-3#hXjd-rcss z9HkDv(HP5nX0iVuU+CaSovutbp?3AW8UmCLO zl5vIFN;WIHrtxb2G8dEdWs5?c~!vQ@t4SubWNEB({ zlp|#!Tsn@Vi-F6Ur#S%CL{2Nm=yqda%mmv>a_+WRx8^C+nGU!iR*Inm>rjWH)V_fL z)Hu&JLL|*Ml!3CL*#E04HBV4iM zuC6$Dr~R55i-UXY({o}FYXv?46#GFWDeRx-5>w-wBLH;ggzwH_6JrSpeYl@~CU!F| zSzP~>!`_G^x^%J@vzsOD#o{0u600HTSQ`C^zpYMnS=rU_h5R)AEW6F^Q@VD9RN|Jr zf7E&E3-+C<@;N(>oK4beE*Cq9xIxy+#@raqI&#{)sD=-1Q7d_d2@vrm0{!o&V8wF8a%>X?J+GYAt* z^$9zZ)`MFuGx2ts$!WVw?(wp40r{3X|mr z6%doXY4v+K;^El;g9qdxw^A$-q^Bivrzc4jNgbS5FrBV_<*n>FahN~BbXwhVz}s1w zvnp6UFu~y7oxMjJIiVx-H@_#mM7s=Sw~W7n-Xs6o$^nBrlnWm38W+0HE}|giA}@uc z2bK?kn&rT^=p#71#1q~Iej}RF2Xo##AuhodbO+%Kp8K*d1&tb?mx4Bfopn&AnF3#^ zs+Qc{r?CPw={R&bZm5(6owhUo5OTQq)LA(l$CF5RL9O0YS{Yrbn+Ri>wa*dg5*#d9 z)4b&0LK-d#H9;tDs!B9W z#YU%nKFNeS-nh3!O)0#+53rN<8CRf)oBtrpWNvr(CI&`Hi6 z?s!Lu1Lv22c$l3MRg@lhM2#wZ#X4ge%IKQq!mtbl5fU_!(ANsxvH-_qw!P7eXUIz@aye?Em3o4bnLw+S1H9i&!^=SuS%dx`~@bdB%dB9n-u zpt54NC-5bpyhp?X9Cx0Y2iu_H-eV0N>mMx-b%=Q9y~O6DESfp16cpu(d`2#DC@me_ z7EsM!SBia**WpW((x&4p1_ex0;ZT&`p1+mb6;vi`Bwoc7jGj?Ni#HdEmGH;ef~Zr| za?#)4Iau61&j{a)-29wiT1qMFS3NpYXqMv`Tld^FijFBPLrJ)FP_BJ}BvoP%O(hfF zi!bq979a1CmzYS3k1VfIyDduh70Al=mG3QCVCv*3P3f?+dgSD$D>r$5OB|byYByS8 z{k=sksDBESZ=27;S3|AwUD17-<}PMwrT4krQ^27XVG$AR4K`))k+^NS%ugwzR={y! zyx$5Z$#5ONh;k?OXO>vE9is9HStP_k6?OL*9%F5r#E<_qnsRM@LAsR#?T9(mHG|g zpg(x*G&MNyaPVM@Vm(Fn(_J}w5}04_k@DAFWURLg(~O5re2X6E*NF`haR$EZsNV z2J*c=7O&K@zBp7EFf^{BqKS~JOOj5Wp`}ZL7?GtIf``#ACm&QAvP3!^)y*OfCOQ-Z zL(QU}W@L1>%kK<^hZV84YvKij*-k^N4Pm#~4Qoi=Wyd?5(8`pq%l9^hM!HW*4?CCR zJ$dkD)BB8NAPxm1iz$BFzZNQnS=+d_W7VRrC;+7YP^2~T!cUY1H%p^?8u1OtGW!AO zjRmr=y*GyV?ujzCRnE10r67{H63GNxhr_P1a6*};r%MTAInl^c0LgA5nDn`;Vk2O| z@f2^*Zn48t@`U8=uP99@c2$hjqKze}H4c;K)=_vMAP9-{#XN6IYH4TP@!lLCx1h+? zQNm%6jOu$ENXAtFDT!nd`eKzJT4N`kb*%6;Be#w7{Z&W1*RUN6NYC;kBmOoEk?f5P zY0ZS|1=*^5qCzdx&fg*s%6Wl+EJjL(l4(+uV+swk{2f0M4I+K>GBz+50#puh;HfFy zSE+C**y(@wLP5wpTKINyrIWQD94u-DQTSTiPSy<`y#vT%mrB3W$sDChfVfc~C|zU( znUS+ICx}r+2+B_|X<*B5))~a#*6F(WyN#2Jk(q0H5}blpp$-*ifDxB9#6qCm9uym| z7=byIz#*l`sBepqggr=m_aj_A)QVy^xxXQhGx#-l&XYCZ=ja-P1ur)8hT7A!gXE(M zt59tMP!nsiI4=UI(=g34uDuzZ(}=-J%k%>KJB*f&q|{>$_VCK_))ced01>Z(^6|#! zb3@k+&iYhvgNLZcP^?8xI{;gJcFEs|2Bsh<0LX`M@fj_2eFiFRK?!mI1!fPBsI_~a zh@p!=0HPi8DBVXsHIzV!5=KT11gEJzAF7qI9N_WZwPtv9dCCuR`*ZPE6KuAGg=wTn zG_M;JLXO~N^qjSRBaymhcuY{fczc8RMq6~qK%INmWn@L`ZIdw2_&~MYKn)^0|0}ij z)G<+RN&fQ2eRGGo6(JfKGl2e(L|M3h0`OzT7a}PjM`UHZx>zG*O#nd~R35rRBvYfn zqpxp67(3~0CO67~(=f0SYqpV`a*+|)0}fr=CV_G8x{e!r@&V>?4z;b+N!tN2w@Fe+ z#n$osx{<|H0;7zIxvgH=_4Ux_Mt8GXoX7f^Qs5+uZjWH7Ro7GNeav}>ga3ebO@-!m zEp1~6$JjwGScfU8VWE0EBZHLT>z#1piBW$b2CD-&@q;*m@(jgs5;N4QbUH_Y8M>fWr`IjeVaJPHhhn#`20s~L*J;2`fqDCi0jMpY&AH~{+g6* zFfk4+eh6a*-@(|Qpt5JQh=cjF8z4Fiws%f?C%@g0^Pz7jsa`C4w-whQ8LWXbU_z!N zs=`R|FdrSl=Q{<|%Yke9dr3ewr%VWF@YV<)-|xb$g*E?tHu+}yqgVbxB6LS5SQ>`V zuzW+hJWMVWt{*y}M=hz6%v4!?NCq1UPQ=icJO;NlMhi3sYH)shWHQZjZ&V|prZt*w z!0$V%U{Z}$_Ch%>*3L-cdzS))zdz}R0H~^5;{>6J0b;LcLY~i14(^>)U`Sd~CiXw1 z+bg5OP?XSruTqj_(&5yha6=TJo5^)*Lb@e35+2DGW+`x^sHROJ{`E@!J<0d2`bW$h z4Ig9^h}fe!_;{yoLvpI;BV~q82HMfRxX4Jn*8#{Iv7(39SYn0S5@EFDrAE)@n-b)j zt?|+uvP+Nb6Yzv^PjDD=oAgOs*@*kXn}>w@&#n8z)_JWkj7N&*$iVK_44@AwqZc{y zg5&R}Y;-OH1y3>s_mZT#Tby0bSoPkpT+cbs@so_diuSaM;*@gfJKRNHsIddQA6)-< z8Os`Ir0Hog=lwX>iFhB(G+?0dSu``o`Y@+&9k>>6LA{U<7lYj9?dTtl@>z0!&!v72IB* z6M*5yD@R|zqnLxV=LK7x-h3|!0qDh~tX=B8Iyoefx^X)1e{G zKK?f}bz&9QlVB^xd}mIRE7}p7B8SKyVoa|lKwBOT+GM(0^OPmtB|?kO6c z9@O9sx?6)OevVv%Ql4SF8v^41`>n8HiDzKn~GCymql zG)~%*->PB?ct4bFCS8tpwQE546cg@*QCu5!(!iT(KA2teR`L=gslGKhd6OHy?1P!+ zzs&<|w6hWj^9y>z5~HoKU}z`av{@DA7mNerJr4X()tOM%Imh8cpGYZJQyQ`Ku+^PF z38C6}OnA-;`xSRqxRIx`TYHb8=SAoOKB<0Q*-xeDdUt>N{Nu6l=$u#ig9reC6Z)S# zHvbArFm}@a$6XVZC>fK%fD-ibg^GBE7KzWHhiIZ0)t*{T%$n35fwMtq6BZT8Z1n8~ zS))&;?i4cf1^1F2k?^_aP_9Bh&bpp14N$qUWSFm9cvX)6h8w z%lui0bqw0j#H0xQJY4Txxkod!S^le|+?E7XE~z~o3xF7c>{-G5;bq&1VS;H^m3&cy zJ79$}xKj}ZDEL9@rQ|1y;kp{0@fST>bb!J7HLGRZOIVQNrmN7ZwJa)y2uUD=&>EUS zFtSKI1UZVn7~^ywt|%R7N1Z}2M1*-_5oDoxJPBuNZC*wEx-0&#MAMa?3b*Zi+f!~L zz7aC^UXL6%)FcZi5Wd}lU%f?4<&K)FJZD{seD9Y4aTHN@f!#djj@_5uB~GGa7W|hM zrau&Wfa086j&Ws80xU-svLIxXzd{AWk>cV=@|d`d%rf_?wr0Cs+BYW8dK7e#zlVDzIh8|W%miS%Ak}u`3R^LwMUv0FbRt%OdvTvwSp*+~Uk$3eFp2AWZ zFk166IZ1FBaHr<_(wc`a(v(<7=E zV4)Zxf5!#5qN8tqBv5<<{xgM|V1zVbfdBvuK>pJd`p0MLXzb)V z81Eh3xd9J}YikZ`ci+HZT1Xs%skQDjOu%ioOU`EUK%bs?aI^8EB4+s)O8r~0W*V<| zk_`BqY~-h7$jSr}pGurA-pWou+%&cGv61nwTIbvD`?LERcoUvv#6<&SV@NZf-Chrz z{q5b0^(CT$5hUHw%4*EL!V2>^--@?V6NTA{6$^UN761Crv4;5fJ454hFO3Qn(}uN; zwJ}XY@}+`^hzN^U7tTeD1}w4qhqR!+k&uv*rOyWor`N`tL9_}OWX;c?eirhii6Y$O ziJs3|HOcRj-|k|gY_@1I;%g&NGHuT!`pxwk#v2}d-4CcEE3~0`;?xtipFBghiE|0# zM`LGedwU`0#i?Jyu6ma(<8+iS{KMYu%C~o8LmjS1fjhpLQZ2F{r~6xP=8R_nWob`@ zB76bIN~e&mtgys}C=l9hk8A-3T@S@P*NPnETR()~@xp za9o{PH>US4oovb{RV0Q9eE8@)<5}G=*N2ytt*hE|4lZs^PC81J3B;f^_%!@9l5XH* zUs?77@@lKY{4N7-w((cVzj%M~QIdUTFpePzS9xqMs_8-{av9h#?XXZuKDz7mBtHf- z#?+v#Ww@A!jbe9rU8CPX1I1(e`i}~3*1!7dAL|0lci+x4j8(b(=;>&MkiFhxDzt zK{5IThvJbh8@ZQ+MIcA!9*&2rtFgztCcAZS42FYJmR?g9!Vi|`g{EAQ_Eb0B^}#k1 zIB@pD-`g7D1d#3SY4kbAzjMA#OncE3@XuoXru3h}Mqpe`W()%u!hyGJ2- zcriY0a_`Vw7>65?LY?=)L}ckP;Bi57as`D1W*ls7RMRMxmeo~KM;SgxEpaUt0Fn=% zfebuME}Z(*yrxnfhM!O9{LoP(^}}(xNNe=|k$xaP*gz#wEg7(SZck&LOSX4Y z#3DFQfGgs1W%x0a<%R}DVwFi3y*MOn5oV%Y#3?$1OdOR5o`_me79_im(m%gFL7<@= zvRe9XL9rEIvB04FP}<^rdxI~dE`Si+F+}%sG1yqy4sxUvkr;IAF7-CoG?RpD9Jz7F z5^5b0s!$gd@Q5(9{A%UpA{Hv0$eFhm(EvXE`ZIH&E-W{Q;C&-9T|l&!84y)hiZ{B) z|A`5Sip22|ltw}wqDvSFDF{u;A0|T(lrGo{u@x6~utBss6-Pnnc`CA9!KZOiT^U@< z1X!{yeY%0c?B4q@y7@~4U~GAS2@2s5y9ZP4PwbhC>D^)w8{(#jv}$kL$%TZRK^7TVWsr3yrSn zwlWK%TktrrJH1yL>gdS8TQbosXjY9hV^;wNDoLD=2S9M+Mc}82$hESJd$!8;z1Nxz z=~6wJb*HBCHVKpzyfxQTT_KJ+B437Rk1u4^XmI8m@(>;*$l?p<74)FxB|n*~`v9${ zy`?m4j{(Ez2L)P7&y!UnM=_*@wtH`o-wCkbqT72uD|=zgb+68`cwn|77g(9X+9F^o zVE^Pm*$@Wd8fb>BVsvO!EAS7;2bE(Gz`e84h?Oy}_l8IY$`Fra+%f=TSs0 zmhA1)KXj?O`k?d2|K02+T|hW(e_uwL zbOB{QJF>J}&zv5T&ss0JM4+qsQ0OOeB5~A(1nY|ZmQ0%nUoabbBT<)-815B2LrIJB zN`9+~;^aPhBw#47x#)P$D&z=SA;k2t9>e84czRtu}qlYph~YTthyiyg7MuY;W%4p&`Ow1Rf;tJwi}SVQA?a(g@a( z-E!ew#Ui}-vqU)RPleop!O7Rr`LOM9d55>O>l^+*T0xn|G07%406+};e`y8(742GS zcHRMD_BYb?Z~7;oQpwEO+Q3HN+{%&O>AxVIosDUjoQx^wW@a899w8wiNl8gXMMX_b zO+!ONOG`^fM@J72kAQ%HzngkOLPADHMnOSAMMXtJLqkVL$H2hA#KgqH!otSJ#=*hC z#l^+L!^8LY_uu+|etzr(MHc@eNINlgM*sk5Xi z?)z`x|Ks()`2Rio|ERtt2Q4z$68A!o_UN_tTe561^ZuPFTRH}eBtOUO^u+v|=w{ygL`yVdgd3*mI$ zq_LAL)b{$YEUoK|Z}~-d;H=N_aYpP{$kMHP+p-DG$y>@5n=j+!O zFffLGyX26mYzNcr+d)qQ;Lumz)N2M~M@G*Nyk6j6`YMBfv`Hw=XN}BosLJPy{s7MB zh}V76F6`qGyh_;?-**YVVrZUr(7DIQ>`#Eh;LR8NuL+;CPo^)Q^Y4){=5GB7u+27S zJ5xi0IiakAruIp*N^$nH6;3XO#N0I_GjoPWP&mkz3&Rvd?<`6j)U#SdV?_5%z03_h zyvV!pk{+ee)+7cQhUqJi1CWDFnSTqv`SnovOsR4%pWE8!6ed@0SUqkG-KPGYeEPIM zx-v#! zSGD-u`N1XpQ_)W!|KX9ltN%6`ex`t>{MWv<@Fn;5ALkcX1gUZ`{A3%Ziql7GfFXoBa6a7XU$;sgEPD;DPGdd}T1h zL6yivBGKnyy;gPa3Z_~jh{)QO_0d#To_x#A-c;`43|{HQ@@1!Ugl!5w`~}0b%7#A3 zNVbeyrcYD|IK8);JaxmPTfIjBS;`?y2WhEU)Te zSsfE>3{Ha>?*wu7NQ+Kv-K7n`xyw|@gRrRf^5XVA;(4LXxyg^lxe(tl=@L$(%x&_M zl`<~N6Vp_CC*`y8wX!p_N16qxe*O%t#%WMI&D$}Th>5MltCRGeEP6p#OY43aoamY!5hH!M;KC)3yzN|+wQ*RD{g za+-eF^lB^A{TSjJ|IoD`R+Z<;roC^M&N(W0yzzPVp!jG{9UbOz1rZ+vxSftnUw!m4 zpy_Ejw;#PAMnbV^l+ePX5+|S4$C=*fV2U&h%6}EaQdLIFX_{gb7UT6syfnP`V8fi8 zEV$vDD4(L|9sG=&o!926hE)?(#>{mzJLyvzB(od0t9Ydo$G=H(TK-52Z9JZ!uFbr? zW%ahgG8~Lq-X&ZmYRS&O)PNRz>=Lf)aF2QJky+))&Jf3cX@5yLQsnfURj$B@d@NKY zml-!4q@@|a_7Gq+Q7ESvkF*-_A7^?+=~TA6!zg=6nVwfx*BwM&aIo9xo`&0FKi)z^ ziQ|s~IGOm+K3F7(l0UPumH$=%w9&72$y>pPiq-q@ZlVX>sNukG+2*&cmgQJqdUpC$ z7)WGmK#F<*Lh-M_5Q6y?K^IJ;31uXK5`d?W4|o%`=R`kC6Tq&VYD^|kxA3WdM#)33 zabrC<@@oMUwfxTr>f8x#3gupc(;T_7lZ#(u!tIb`TE&X8QJf)!jrLd+7Job=I{tQ> zcyes3X)5c{uEnwNoH==Oc3Cyq#|QLq)UF97V(5s=UU9-SGwuriNJ zYS*^_??Ae`ld>Qc%uu~_UPe@Ewe=DzF&OQN2{yTK!x`B^nuH5e>ZG=EQ1t@kxz+S3 z58EFYCXIv3+0b8fg73kM(c_nZ9#WYiPKg>xQ*>xjXc+sQF>t;wVc0Pi$Y~d*R9m@* zGLO*UX2y!V@v4GA2a#-RR`H8$A-WKe>^rX?OVNys-vR@RDPXm>JZ~=i<~Qh1WItBW zOz=K@NC!hZcVxZMH@)BJCc9@`paS`Is>RNzJGPNTm8+|S5&ID_~p=q8l4pwswY4O1uxnVX*Nz9ZOwYQnaX?DGw zVZ#C~Qp`ZFZvAoogon-;KZX;XQ?0JiY;bG`cN+A{ixJ!L;M=UMWE}jAZLIHjU;@Ap zk=ZP0dciXUFS(3w(6qMb2LZ;#o)Qk5g3=M3FALRo`&NiEG?)qSE;Dv!Y7)-70rJ;q zTPJ+_L!Csp?|8&ak|6|*i8$86%$iYykB0Pm+~Bh4QpNIL5=bB#A#aiKcbi}M+O5$) zNrEuLjM=~<55XPxZ5`VaHQjoj_18|@6I*EHNq80*dTepM61DZ7_CMXRp#XGR3`DSh zkdV`cE?GZxnEq*?DEl)t`k-WSR=-uCD8Dzh0~~3!lmNW_i$J8gR#mXmgFaS{ncm<$ zvDt!2hY;xR&o>1sBJq-#f4cmtq~_yq@ec352+0qThz|F`6s}I8=A`dcs!c{b>BC^7 z{Uq{U^4tNQ@lxpALI;a)B@DIt0JDtAYPcJL@uSWcDZ2zxE;+iTCE17B^GkQ*oQMGk z)1PsyVPHlY1t#(9>&oj%y*cg?Pn<5)@9`{$QCpiNfDXlrn(!UcsWl30jZq1LI$Qw? zuF+(@kVWttf5ml-kKA7V5Th}uJ;;k`b$)$CVHljJTFdABHPq8i*!v%2G3S^?WIhBNgu$=iF zYNrGd;d+@_Z4O0hy@=BELPps^9#i4e_{@7889T4E5>{s@AmcL3v953ktK=L?o1%vF zT!b}BiEgO$D|lAKbP_5$xUPBj6LUff@A_!1-j2%eI5J)y%A|m`diOE59RC&H3t3cg z+Q^N`ip+F$77UMcp`J0@Ncx&}FOg-`mm)-|eV8X`TfPimW;4GUzdddSI0p+?aD|E^ z>o_emrL`MYV)U^Io2W5QH4$B-w60dIf=KPqMtXwA$uf8mQlkjhQW&h%5b0RS%H-;t|}$ zmfQ(uhUOAO_FS9kh1;+XCUiRcfN6--4-?LqcE}Fj#QZrtL#Z1x!|=Y-t0I^^e@)F} zWz!sV+KGXNVFBJ|=^fpCzKYP~dXjB&Nz7nm`Lud%{n^{?SbeQ}5m&m2-c-4nTI$t&+tCzdW)UkrO#YQki$TKV zhMtoc6?mLlil-k&xd93Se4BCfh>(_qi6{S+8tglvK_rgeZKFW>t=#^;v%W0k<}jzC z(tw~JmVao`S~Hl+iVhE$TDfaIlFxxTc*o&ZoPRuaCQ^d_To}!1_74C8(5%{R6M_sOP@MpZ@7guPc+8&v6vEyj3pY%3hK>%|~i>{sspqWQ+hC=jh8~i0_*Oe9H=frm+ zn+tqBrr}@sv&;fdg=x@Hua6k|m4846O?{8aEaZmZ;79@$;x{^}T4Q$M|&&9n=Y!q*j0SVdv~Hi*7Q10r$S{oBRy!XHG7x?dbWB{-jgU z|Kui0*et2d5xB&B6udDAhf8QqBlqth{qi3t`@`J@|7t#LGl_62CAV4+l4}OmJ&>Bk>4}+cIJShsK zMA1BqMRS*MxKpVU>spO-Rq8*Md33hCbB$=??Dy*Ua$BTyD%^NW#U)$l@%nW49!t4d zZoPEN5D*r5(;UllG`6U*Zj?xZCyupMIGHQwIJ9e~9_l+;-&miNSXn{-=lg@PzGw zB9dlKAM5qC0K3<^*$eYV!t_a5?na$GeWwrJ*z^8u#8c9pI^4tC{jehBqt%S;<$);( z@lFUOlz86e2-i1POepQe-UHkD^M2s+b4k9~;KVLq5hFf{v?p+xSq1Wa+Z21tj*8{TAZK+wmkqa>aD zYXrXzY}O+L#+nxxKp01!Ur%xt8H_DLE^XXoo(=_=)a;_rh3?c=s0xkV77%&woCueLtZeodD0vJqp6GY2N6F}?(>cl6%mw(O4zrwEXC{9xD>2wW+qZ2$x zZPMbXCKBR+B=}`CVGKVJ@wgTone*tCbY1w_!ChlZd>n%Y-8{Iku1Wo|9tbn@hg>F| z_`+*!BtWRV4nQ}QWP&5I^NReoug6$GYtf^U^t?7=ERJ-L=C&Lk=liV}3r2KC)^BB$ zsp4cD>lYN0jI`~FMgH8I1u=bxp{B2ITj?+pUYf#2XwQ84#1wl*pY6+yiYr;@-mg!l{WG_b%01Aw}j^l?h(3McjMKF)@}%p(Iyix>1|r zp`X+u%vs%~e9YT7s^{`DeSvhg;UB@J;1(DvN)_h7Q_Aza$^qL@df2_^Gk<|ueS4eh z2V6Uq{c^aaH}Y`MIkt5@tnYvJQjGKl1_dD3OCc&%h!!V=QAOY!MiXzvawn)xFt5RG zsCXPG0ocigf}=={A7Q+Tt(6b(PKSosNwwOO=s8d6R7p}!(r`&tyl;q#LzwSN|0Rhj5ck!z>?eid7Mm+HCij|@t$ugrW8m5m=KqfAwgFsIT*A~bf(Eo z152?_%>z;dA_Uv`9dXQlgApgW%V8wZ<Rh?L43U$4wNk`ebtD*E zPLO(m0~?#h%Tz+@yx8}|__Ex~W*FX4vY%J;s#2p;%SPh`c*amC_oVK*1lkE7E?iej z?Tx0)w$Gw*2cXkKX**WPzK|puNJnt>kXckCcZKK`+KcH6kV}o2P8oA2kO$qF8#?JE zTb*Y-Ge+sJsEVUu@1`Z+uQHW^=~coWGK_*5^y&C3PJZ`1cib-Dcu#I`-b z`TnZ&SDlM<*L~L)Pwnd7d#%-&yKUhDu#YPV#QHd7mY+d z-HihVpO^kWwyPn#@KC<=zfOvb(C5btmi{6tuD#JHJe1zYt?@{{oP6hDJ$SsQymz|J zo6~yGjV!|X#@ZKtH@Mn!_IO*#3##0Qzie&k52yiB2+OY}pLe*d0yX}s-Sy0N^*_tj z=)P(ee(L{LpUHSZ-Ab29HRPYvr>78E7%P+mHvJ*#P~q4sqNLUbUqz~dtTDf|gVY#Y zn>J67PkE?g$k&@V(b#twLV;feA zC%sL=m4I&#Q>$<)L#QiD1kWhzlMS_ta>)fyiIP{kl31UzNn^4BVm0iX2AbO5knbb~ z+=4Z0bfve~O>yw;Iv`|_R7CDrIng2dmUx4h)kMDtdh4h|*^Olr(&Vb1=JGP>8{=_pII>OV*9jJ}5fk#BT}8(g?#q17xfYS=Vw zkKOJLvh29wREzlD8t+mB`dG*1fBUQU%Hmh!UHl}OUx-^U9FR6}U~W&$4Z<`;R*BCL#)6=9cl&;k1jWDQZF$y2;lWo1=F?J)W=Gr=N>K?!m$bBC_sH+pWW6nhv8 zmmnb-WvOHh(g}fS>f6ptb3jCKeuN0+Nk0c_x=FZ;-;A~WUaZ{oPnUEoJ$GA@D>c5Q zI$#iyuSDVG$D$2y@?Ns`kltgkD4W&b4z0iW>m!w9UI%UK@(v4f~Q?=*;k>r@Cq+W2H&e;l$Cd00oNduDH}>M0_6l7$^P zyto@hI>t}8o5)QjR~Q#cMo=B1&nld{_^X@2y{xo&x+lGq(bd(x|Ki9B)L@)L=9V7a zA7v#Z43st&vl--x^-4NRNJ>XAj=z=UU!OH(_uNtorWNqp~=qf>asm&JL^YZB$%1*6hJGx z++jr|e#WC_?S`m;?MvWBYK}@1uNHbaIn3!xYs+&J>p&XQsVqF<5Lbej&z2h?GrhonEznw){mb=rQz6^oyJDKUqWMfFMUIHBJ zK9pR+p0>*Dk7a4a&r4|y>4~PyOU~DBLl15tWM3bn1n@twvs)MMAIPu-!(O%6vq*yAyF*lc!gx!-#4S257g*-7)h&Nx4E zt;G0HOHGYCwhQE-Eic6)FNHhoV^d3YE(<+X|IuCUs~n=iYx0-`n%pZhNNw%E{WdJhNd!`Zzk^kS zp@Zs#Y0$MPaLhySw=e~Z%HS>TLydSK)NVmwAWPB8o|hv+2$7cVrya~jNcD6Cec-V)G1K=vCZsyZF#$%TgL5r z{?tX|^!kz64s(mr3|ax8Bef}0iqyk*hl~7B-kU>urEe;nFehnS0_Jtss+na2TJ-@k zG<(~??IBCNpN4|r%D|_^cbYa}Rr4NSm_zt|h^@L%b%@fMu@`K1$V>>V>K^XF!f>>B zP6}WNz7&9bDV+S%L`q+Ef&~CMBxI1zA%=I#d?-k z(A5;v|MBJsX3AHOIoK3>@z{-lt}XX`iF26aX33GPu~X*j(5gFED$av334flcP2fl$Xp=mlvs;j87H#*Ckobz|iZiT==|`pfw=LE}q{|1#Lqr9W|EE$z0{<-ybF zqg_froMs&1^I^9R>Y?|;Z!*;{0|yyyoyfjS-k;F~!_mW&_gH?HBO)*fP(&2y`Bg%f zxiNVuImz)1GnYq)q?pLd8_SkB7DaAbiw+?6}SdeDp&C-4HX{j_Zk^N%)A)8t!XDSLiz`6S z`_2$GuNA=Bmov@Qhb(#XdJJ3N|K^EaI~^*EqMR38)jrLixLnq?^h0P~A)C0~)x#pS zCALey=p|Y=@fE7Hy2^n*VFe`hcYE2d&}%eN@UhuW(nkwXG%tz+CsZ|t98~#*vb0NI z^CAiw9kO95l~^Du6*Fa#9dt&4)Ui^9p)3B z5rXw<+NNBM+3xE9vH&G61+&7zcPA?I%1GP~sqL)>F5sM#IVt33s_75dUvZ^(*`c;F zWG1DZ=#FOQfrh~`<~MFu7A}~YBfa-3 z$7hfxrnOiRcKsR7RPXmU8duMGyJ;MAVP(ZYWA$$J_BP@PPAJ|XMXfJ`MEu{?*R=Y_ zg5S^GQS3K;E^(QjgOZHOx--qXd5v{K>E7clBQuF<^a1q!5p9T42i%O!SS(Twm*f0clqQ@L(?BQswU9A6rqcWJ)yj-pc)PEr%vM zHyqUH``19*N~{j&*ycAT$ZHxAypv7HV0=UFC1lU`B!`bC#JC+qXZQT(%qyof!n0Pl zptIkSai@B53B)R;8rV`E2!&xDTa)y6V8?ZXNTwY^K=D$d-w~?UR5S#VGlW_qxf#rm zXH;1~#*2|kT@UR?$n*=XcuE;6Rlwip;} zxMFixX5ic%WY%(-$_{@wSa-}y-Ta`kLhNyOI zD#FG*X{r$R7Dkz8;EuetkX;1-m9)p-0QAXX>m|2!A%b{e|?q174d`{ zNsuR-LaJ+~$ETsfjsM@QViUYl>gmQuL#txo!BOXX`TQ`oC}&LZkwV*ye5c;QpP~Mb z*7AvFJvUr>a!TjiwefZ%mD?U|Du~FAmt}#!<~fWSZ2$W3`r3>W!zEpcduCnd)TA!M z2WRVE{f&xbp4*L+!M8#3UE{6S`4g9-HhQV3ry}bw6)unm&@HWZJKUr(|I2@b{^WsW{ys5*=Y|%UR29|XkZB}#; z)P?zI$vmfU+c-BOjPxro+}DoGICA&J;{-w<%=8wQX@q2HO*?${_EQ%ss(q$PVhKOj zMt*^Z5~lIZJpkLwMFQxsDYtBuXFBk+U zx63*hRg#&ym)r`m%#k6cDX9BaX?*@nEKUi!^(;*(o)7+`i`(l0^?4yC>d&&(@g}Y* zo1ZGU{Gy1ysIJrgv2Aw%1Rdx`5VGs$3P`Be9i7T}IQ+9oa?l8JCNIYHlHHP8^ut%R zstF6#wEH?-UD&ue-pe|tPR|qUZW{fb_#?$oZ&f#Iaa+MI%eQppe_A9fS+t8+F$_L1 z+v=+rte#+Sb6FDL4#QeTOt~F1;fz_7eL}kuy#@`v6Kfh=D>2Lv>{xoZRfAI2Xx3b9 z1MV9doK`KRhH(7+j_PQhbQ|R9Dix58*|xJ*FB}_r+6)mV9hB+Uz+x!-(S-jLbjkym zo^T575pje_KoG(Pzju^`X{!NJb5E7A3{wX;iyc)VH@ZT<4@aufW|GaP7Skl$VIev1 zhvR&K?&!brkPic<03^iGHz1nM*UQoc6{hW>CFJ2&fC5v?Z4m~Fyjx)Xv)aEF{eFb4 zrI}OQv-qZX#x~PlwulPD!QRj2e|xG?DY=m3b1?U-9fTKHKEquPeKv-HJC#i_%->Q> zB_Nli6R&H9Gjt7G@q|CXIH{sQ2PTohRd)^t+xV|>U;_V9i>Iy|pUmaFqJDXk$n)&9 z`xd!sgL6Opz35+WekAsu2vX2R>+zXh{mCxD8mO|qXBYbK*Ob%Zie>QS%dd)l3hg=<4-@MlS5d zy^l4ij~QCa@uw7s-;(pW(Q6@}N1>7zYHG0v+Yw9hevfiL7Dj-4YQYhtMLfl2u~=Wx z=kq3WKJu}2BUQWze`g0{~Dm2HC_qz-!_$;+UQg8>gZT#%l zi-kf&mSVe$V?FiDq$?aSaq)F(N+U+=P;cC=is{%~xd^)St1)#S=IBh~n0z?Ql((hn zm;||SWTs*V*H4-4^c|29Q%Dfv0{49o2QvEZ{EU*z$+40&PyE&Vw015}7ewo<5fX}! z&(%8$6unT#zX%*N$rwYy{sf_9NP|b`Mw{?*Ye2ioE605pKbRQpsenICb1m>Q8KHUG z5u3{(#kAPO$a~LA>$=f00c-S_jI5<|MHE20ip1ck%oew-9ZVQP5JIdd{g0E+G>#tg zgl}?N0`hT7uAhjlzM@@9OIpo8Y*jZ@*U(`(N_thjs1Ll`UY4rG*zXFwp8kMV_C82m z3L~WA`lo-(Mt1}Tmu>sj{e%O{?8+u|52Qn3X~LoSJ=KLXUp z_Ht7Odcm%7>zDmUuZMPHE{V#`qxMyA_nJL+2e(30PRtv!0Qra(5tT-%=XU`FoI8># zw^R!o4>N0D@6OA@k4*briWwU{{~jfbc~C1?VX;vCHk5kag^k1lRLkjY!f|apQE>B$8=d5KpizwdzckEb_m|>2wSKMP;_%zFGhz2)xwh z+yT*s7u~hW;%(|S)7cJca!soyt1bpa6m|=ZP=7p*(>)cqZU}D+HR zU8j9VUVFQgd=2KV{t?xM0wM4<6pVk<#@Ro9EUl+wZ)1_c;4>|@`1O4IF!S5 zoAf*YNoS;N;f@8&U6FMIH=K;rvf|D`c*$AGM_yH!rFJ#(q$#o=GF@wscnT4vRU2e3 zIsAkreygB|h8bc|0LnzFQ5ijfkB|+aw~=U@ok;FWQB9YDt`~}*6VNobUm2(6hAlv zQ-F6qVDL=^J;AG-GH(kvXvEGwz#}tTeg2PKdYAQhy=hw%f-MWxz&^JlfCOoU)OF|2 zDdshsVBGNpv+FfFI%%aP&B(l#c>+~^emx_*BlIn7S|?b$-UeQ6 zK4~1IYjx$Fo+lh75-sq;LFT`+-j1%xJVegb-4Am!DN#aeG`?;v(~wH5T@u3ex`!KS z9wbwFCRS0@+r&hcP`53D&PL}+VkMONQlZ&AE_ec(8!Qm;5YlxsY8=eu5WQk?Uxb+$kl#t~^oaAcQgBCTWKcjdYOm4-J}jN~ zsBY$m>7xp7nVMR1+OZhseDobx$$R)dnamoS7aCqEYi=%C)D4oG5F%`;R+-?H>V5jq ztR7i*E^2V9#veZ>srOY1FLhFTPH4lBPnl#gQ>CPC)u5*8=_pwYD%S%z@W>oK;RelY zw{#piBX-%OZf5Ej1@P;n@Lx0a3;gzmIp$1A{5@oZ)vZAES}9B#Mg-ggY%k50E=_1> zP<`xr3j?`|H?p*NA@r6#Ii&nrkRTekY(f{HC87-a6#iQw@_6wlX}O;7XcHKd(BK3G zJ4y}wSsEpVf#`oxD1_;zM3&cg`w)e&dN4GwQYDeJ;15cqqL8{x$NXb%8_!VE=P2#j zwq(*vrK5bx>OLz^mdhs}fTi?ujhj8M)g56@J87xqnKY>DsqwJ%TB+m;=J^LPlNpBh z$jJTEJTy4?aPg;3E29=#mVPF`vd#xAPrDp(xcD_=ymp>Re4)WK%k8`?M# zFI2mtTMP&ZF|;X-!`?*Gf2)Ohmg{m$6S;#Iec~@N2twiB6PbD=D(7LK$|7bP^X5nb zlv&(UxVBAF2h@#&nzmlOEDNB}-Xcuy!UsHQCuT8+rUf8 z;2iJ-F7y5hvr~tW(RAxe%6HZC0>^MRYqzRQ@e#Gp!_6;b=rSK*C~nK>>D3iilk2`8FMEC@ISCXOO6^&+Zy{f)yXuI!Wrf^rq-M`-1L>D4g9 z8rL&2V%lBlN`J6)n=nX4Gl)tZ3xG|Bl0nQi1ve;=6X7BdAxFoHnk)n3RX^20O%cRSlw#6_)z9Ck;R# zBZU=L3Pig`Vi}(oLb9$QsxLrS>DE<9sKK6svc!zb-5RXg2-qfu#UUfDMs1DK4s*3T zeD4l}4tmekOXpcY5hCnoC>>>E7`|Ga!Z{J`RrNw8Ec8Rjr1rrCWS<{1HA%83=Mf#p zb5bN;jg2&mre>)c>KQZh7Ovg*zR9SYE~|}{EYuWZXv@ZGIWGd6`X#d~k?6s^b8XzI zyLpz{ShR2pE~la+>G6d&zB-_T+% z9^l0$R*H>LzTD>Va?vPmRf61PIG?;opv+7U?ShfxpsHjOw=}+LG!XwZl zR$AihB;4zF;=cbpLh8vX11IDw(;CkX3_hB|~d@ZdF^eTAp(0tv=_1!i(fi zI9O0L36BiPX(@P+vZ3|8A+OTM%CQuN?{#+-*;;zkI zy|yXBe%*dXUk0j13O)(77QJl8P!*^~cTspdtp&Z(QZ#hExtYT*7f;V6Swg~bBj)Bh zj%aT24!F)+EtM;h=EVwjGW(Y=mI-Fw^8TADIa$oI-C?nu^^EEG$}M|HRC7O6H2b(` zrhVI>gPp*0O^)RBDjE!@itp^+f1_LUb$_*FH!ze^6A+-b_#CTwV_@Pji=bMvG^DZ) zc7bwJREG9)WH7Esrp1;yo>vRqf4s%DDj+fO>VkUvFlS2ukRP^Rb+p-r$4Ni9gHdm` zQWC9BeElfNQapDHlhzPzuzKChOYK5JAjq8o`=BVa%JcHt*6K;ZEnwu15RU*k@Mc=~ zbSVMfrr~m+zF_{BlBl%KwD%2C!TiDqBQ3L5w7wT5uI=uYWRL5Ne5>;!JK7H0;?q&YzmsW!J+WO$@~yMM0A|B%Dg;>Cb;|8>vjE$<0(lHJ#;Vu?~VkLekDu;^WLcAayX zN9b(PCX`c2h-*VXqRaL=+2{;KmMHaBCV^7NPVP5CTO8>Jb4Y6Yk6vxDAt_&)sRQ^J zLWYh8pCG<+@G9)b4H1&iRF2&Ocn}w*9Qg=FFmNaw+$r9BToyeqaYVNsf)nXgRcJEY zLC`YW*TKngK3b;A0HQos(`Xo_pg3?HWY|dk$*`H~d8TQ|!$mf|z|uwSI&_pCd+$V` z41*^j0?4|C3g(6q0M9G7Czg7cxK}!Vd9sSES~+!%l*n&^KtM_%1$lqCgxX00(zhVS zuVUyR2Y4(+enUWk#}*xC?%ec8N?&a(<`-USy(Ul)dI!*+-^+>Y}U zH}WV;-mKVA7OMmhG8|cyfYuf@jG9o6L3o)*(|JP@c9&u)-31=F%D+=bw@p^{A-mE} z2S(HJHcvx{PGd?h^av}6gv`&<$CGc%%xQ%mMm!9PI?N6YIkq(fvqX)#lw_Xy`Z4n( z-N1h6XipT_M9uwTTq(+URQXG`Aw;P6lrKf3T(#FITV$_H(z4rlgu=OXCaa%mWlUzQ zChkkn91?(7;ykjAwajDT`Ov(Vm3K)Rs}=@tdJGTDZfPqCYHAZImS|Z5ZJaU6;1BV3 zSGCn+LjWhUIBRD@2NJ^t&Polu8PScRRZ`n0_aFFz$Ci58iJ>^dr^PR+QsvsA>y7B0 zJXU+izv4cDfQFKH?GxWfw%qG1}z;;vq%P~HY*;9 zs{a1d^&a=kc>e0izu(S`8@&Ar_|FdO14fT`>IvR(iww9$-fPpmcAvi2f!=k#MPGAam_rm{7gCK~o>>B(;4$BP;?u>U zZgu)F{@jj81NZNjrspiMKdP*qrGjJLWX+@?mNz_dTywLV2ZKB?U&c326m{CLcfGB;ZW72 z=+GrA&>Ho+h0eA%0|40BwwHiR-93g)#1i;F$eeg$g84(GZhO;RDw>iIoMQXGve0c6 zXcn4aWOj%H!8%4$)$imhG(SMO&C0ahLbmS0kvV7a z%`T3J3w12K(S4@h1`2FFXQCY-kC~;=1)=i5#AZ#1ycQ5plCk{V(qIbKWnTk0>wYz( z#p8%a%2~0bIZ-F@7E&k7Kv8=+8cYfCEjX{MVi=OQpae zg#BK7aiZ%@vY3-vnsJBP*R;^rLom8M(x&32*Q6sLkZ8>bg^(}xTQ55GbLJelQhRsq z3|;Zb20$UY5_@=1P$MVR;yinbL}fLQ%LJ!lL|OC09Ue-C{O9B;W2*y9dFtp+Tn%!5D()LELj2N-TJ2nH2h5RR*J1c4Y&k%O!zZ6F% zsdAZGeY-`;5x!r?$ZDpN4EQQ<&YJ2`rTUJPIF*GB6(o(#XAF}hCnV~WwWfn$Dt;1$hKhA{EvtLz z5a+*4+H|9^3JQ0Vf5 zHG(rhW9`ckgv^y=Y1PHZHTCz5{P}#&Cy7xS^wd(ngUDzK_hN4o$K<6VAx4-f(({) zc8j;VEZ;*J#+HMqgyy7f^);8(1y@mcJ>#FdqnWRu#f_Pc;k=H&W`VMT@(Z~?6}Dkf z;GqJ@1Z_4$L3o$9arUcs%pb$5`Ac?&&o2E1M@|AN>_Ufs=})M~Z*Fw1FA>5piXG|p z12d~z8n_W7W~~EFcv3w*MU<`gTo(Wz7mMDTl>Up>*ITHO`|MwoPjU`O+%GA=v6%^? zUCZ+*;xK+crTCJdHDNMI+9ec!h#Hs2e3p^;U2dgaQ`1WBstD(s!@}rXdsK-PvTJE9ke#DJ2n15E zb44_LOzfR!(e>##8)&p(;;&F)6DjVCeUu$L-&n89@XD?<^3{ldn$adEf9_RGGI+^P z32LbsKwUp!wxOSi2G=cu{-Fpn>SKwafZP0!v6v~U#m}v6z=e~>@oP={fv)VJzJ?v2 zuu9_hZ#3gZe$d1_GrWmh4Xh_uB(V5CcFHqA`deS$I@#QV)v{r@*dx8EQRlcJJd8+ zbND*>)_6$__Kzqr2o~~fcm)B^0y>g#*k-29oViEt+W;fo*KZ6BnR{>c{UWn`i}Sl%XnkfI-&O zQTjRNSOx~6nIpa(>Hg>UpVPC&;}QZf8ft3ZwW_&8!_GN5nI=@oSLgD?(k-4etUl#W zB{+wjjhG-Vw14iyS-uGDG30)Kebwef+E)3wCF`?VTr@GcB%oY6ZH0^0LZwqemO)q~ zNJz9$k6@KNlXPW9X%CjP)ajDPJt>NP0-6#UlU%jdn_@12NsDHNyeD&ztTJiY-&_ur_x?mtVt z#~UlwxTJSs$GiU<(*HZA|L^73r%~EE{oKzCQvY%5!7d@fOAliNmt2m+`Lf_tYQ~$K z&GuA`ii`%C^o!K1=IFS0Kcv-sb?TXWRVtZLZ_>E56w6Ep2J(_FF&mSBK7lTE7pw6UWQ(U zX^~&dVsUC)0J!muCvLfZdhAG|=~RQ82Bk|yn~s1VwuG-kOF24^hyMviytxkp){Oza ziW`4#4iyoeGa4K8_^BN>CTyJfRTlPZm+hDj$0dL=MDq7hyybUK7I{W~UwOgZA2LT5 z6y+oPEMjo$hVq?9#5li>Cn(qNJ>-bT=46rnx|K5+_9wIBuqKbKc*&W$9p}SO@pq6O zz>aI0g5F!l;0^BlMOdOJgn-=nNwWM?!!Dk67K2>y3l=nQph{?53{;SpN@SZ=8|&3!`%F4Nsu`+Vph z<`Gg1P9doP*z@{>qcj1@=r+n%mNUc6K8{MO&-tj!DmdD`-it zQY*=XgJH$o=KEEOJcFmc`m100g4T5Z(EIXH}8$L-9Ksn$3l<8T1 zX@xV_J+b#EfG2Zl7c*|KsjAsTN$;oN@4wUm*XKh==+Mu@zqK~~Po!y5iEJtEpxuqGo(<|KHxT}dTiVDj2SJVCUR24yx2ze2qLs-XVf+wUKi{;b(T%k2QF6l zY19F+E#CRQ92I9#NJdL=LAjt3MSeTJurrF1YKo#6+aMdq2qmu?{HBFHZ6o|#H6*we zVG}Fi;KNchfcmJe;$8%0T?~CO*0R_1Ur*%%^j+ITr)BpVMi7$HTF6XVI;oOZMIj8? z)p)8=^?Jp10%#` z1PvRJ?UP;ga_znSliOrl>5GNkfr;oHISp6N|4p)VPRmKfIi7BGDFlYP`i8Dzb^eqV z4bOJhLxqlhIx4@;GT%JN;?Wt|_qkbU$M46IXM>kLkylDxdK=;|6%$rgvKZ;HD73hF zWM!9(-iq6lFO+2;b$L341}g%-j0~;g{^$a+6miuc6av-{C6&4Rn?Fob(E0XvMO4b? z7x}>S!+*+5;#4N8n5Sy+|5Ynob^Fu$O6*kTyW+H8%R&>DsAEorA8sN>_@Wohn2dte zBk4IQbn~@ww%gAnv?>XFM4sl#&di_y4K`q=3m+z%(y&z_9=>${y*=$pxq7ZXsiW%E zseIH3z30uMuT(_h#K#jK;O3JS0bP&G;o_ymcyC3Xi`kA#i>&u{Fm7H|F<^2lmB*Ih6lPc z<*aUUKR+E11$H@z3tZbA9B#5`sxHiD3;)Y}_lxM_X7#*(kT^F7a&uqR&5h1Oc)z^P zggm^%KCHGL#!_^CcC)vU1`=bBoMnq$wjRzxF}A*F({5lVXq?N^_CN1<9r|alzVKL($pjzTN9e?@Z%C|5M6rfN)H@wNa@*X&iER6UpF=8#&@QK zA9I*Z%_O`#O^mn%B$3KKX|;=K{b>8v2c)N6Dx(g+Y=2EsD>dG8q!;N z;0SA%;;Yiggq8a%*mI;g3>wRSqKtuA+S$spEP@jnq5C_OeLrznr}VLu658Ha?uUbaX^f9k`ByP$ZU1t7QuKX$_SMd#35! zRGs@h3LDvXAsnJSG_zEKS0E*P^0uP#TdGJB6n>aEzu@?Ap>w2Gg8U&mB*5BE-=JFMkqIyL#-T%27-FA;bI$61bkw$O!LTVNaN zNvjS4CVi`O>_|&2Lq!^GvdO8a4*x49xNH0tpg*xg!Z{4B*`Z^`71b&}!HtyCLbVMb zjtvAY#E+{`J5fqYat5@e{sy`VW zqo|IrBhUj?D}I)DZ+2EeK!C3pG9iLomPQ{MX+S!WVC3`LurF$Cc!$=oR7<6+QcQp4 zzeiPR1qp3}e8{7dD^K$hGbeA8$yPZD4kz$8t%ShAHY3kLt3=^lmc0ZF@)v9P1=a0DA|u5(C&P}aH-1yxsn{}xM@h^Kawy-DDCOiq*tmSdU76n}p= zTjb8iUzi2BOBEgePmUdpD{nvVLmBY)J;dp^s_xhCRZXuXS+{vc!a)dT=$-4Uu# zzIcx;*T_~qnsisB6jQjN6s2k==Y=BUp3bqNb%u|}K-26dI?H{up*)u~LGwu?&Duum zF7IV;p~mNctt*A2NHnG2xUuj|Eq39m|M{b7|MRbzrEU9r@c46;=E*Yc%n^0`tx)iD zAMY!|%H%L|06#E@Y1~&F$Izd3XOe5Df66O;e_GIBRQ&w~cyAFr&dbhYAaGTi*C<-z zr%Q-l{Igb2yqnPIGf|f*?tgVFXVc{?==gU*zTm1!3HoN%VbIbBS%mi4%s^J-xIL0k>#tmN{v;si-${+aUHRs9>Z zRbQB+^5_WE;xXM_lgK}?yc6|qCLSSg8s9?+E;t42qmP=m3))>D$| zfYAAGV^q1vY~lsmfn2yJ=yIq7y7GVYN6^>FphEHv6ReeOoi6O6HCPf{Y(j+KU=6gv zQM@rhJI^tf&b6SL-_z)6G?k1z+YCBz*%$F;M^&o@l24^gX_PZx=45p4&!oMx$)Kb) z#DxzlTXThYZ{|jMX}hF*M#$!8;3w2xctTf922crUET12o4k%EZmHcLKoGU5YEKphW zC|WdRHn%VT9Ay+QQ(9x}R786P5#wZqN(|`=Ttvgu;DN}R24*saBpR0lE9d}O?e{l$ zYzHgW)p{KuTZZx4g`8j(&1XVDQLvX`$Tn~$8Qn-8!2QRBWBHuTx-_NQ zk9?z-m~2(5+)fWBK5&h&beahmdDeiAJ%{G*5E;y0491^pW%8eS1X0;PBna=q#-De? z{r9Pf-j_W@AVc@Cj`!JE-!%oy0!mN!&7SzT`u}D#4`)r{U*Y)&`kg*Wexp3oR(ZTm z!Ec_v?Z7P&L*Y4=tb199`rhle0C^r?9&}Y4aX=0EF5ZO?ZSfAX?tP;ufw6jSzZd>; z59r>`i}{2z#W#|@YrNNJ1?DmZS;vmaQ1Zd&{BdNk#Sx;O($F0{jZM3WU{{XoT~<#whe#Z1M`};K3I*x)kn95TNZsO4G)n4wN#kV3 zqaJ%1W0QkZ;6P2?cwwOH0YFmSI7LLj_**O)Mhpk(e5c#Q<8;o_KUkzo_>K^kb44QN z*DyUi`eg7H#x@yIB|OH%MlPS!`qZYpq#Y8|c))SKyo@o((YLevS7cPPp2+ZKU73^w z^TXBxJcvp}E_u>lXZ}7x6g)~>1QAIc`5e*|n1i0Wf#R>ebpG6w&B$S?QWk%Lm4 zrFa+6MCx3agFmsCFI&02DISc2y@96HT`Et#!}X=XQ@n?##3;3>+`YvSN=68$*mL<~ z^=HzhzSq*LniKHtb+^<}WkS}wmDy(>c&Cpg)cJ{-PS+CbUH93h#E8D0ilWC@%{4k5 z2MRtxo_HlKPp*LSy=CgI@!mma!XmObsns2g>IiXNO!85;aWs&If#zYp#r_k*?1WRY zMZyl($idgCfe{ZgALI&RL@uJMqt?kb2?)Vod{LPA5}syM#F_0pe-o1SNo$9vIE7C` zujco5xeDb##y7tiBCC5y%8)YilAMV6@Mul8^MyLIT&yMw=NKXeNfKY2TCy~c*2A;x z7ruQ;>6i)<7st?azU%UV(xKrFjArta9a>;g1EI@Ro~-1E&meA9z+^|Lv?2?|L<$z2 zZqi^0$Y}2CT6mpwhUShF`p*IxQWxsk*CoCre)l6RI=3vMqiggWSwL`sm=d2EEoee4 z{YyMPYEKA=maKr5$>5b4=arH06OR~{3Vc<7WcC(H8WN?cvYzgUME#}tM~qVDw|dLx zEL>k%X2P^w^h6n#k5|%v|5_nVwIF4+L>?5wM&=jk=`FlMCO9wU<(Ko`RXj)LM%XDd z{7^iMBjOnH=lluGzZ`#i&kbzh`lbVOG&EiC;($!-h2kQ*@fhzsX=(iD;Ey(IASO{f zw$~XK#3(>yyFA1x^a7-ND+l?~U99id)g0~3?9@Vje{pd2dv^_dAOq9=iI%u$zRkA` zT(u(mX^HZ}Xjq6C=7jVP;QxxdZ%*_UI{?rA@`uT~w1_&w*-Qw3KsLHgcmXr2yc$FT1P6^CL=%7k@yClX z0SqgL?9Sy0V&6dihH{5dA{E6b21Wc8D;ZQ1`wJXA zg&OEO52sdkrPm^%og9)Q*$YWV0Kb%~|2Mm1Cl>rT&t+W09&cg6hBn@1bMN*@{z+IE zUZN0X%9a$x;1A;!4sos%CP?}oA@09$K4*_W4)rw)+0(^yMV)4n`INpON6{wk`{9WP z&&3ouFH_~=+XRF%(}Ng^@n7lo$|Wl9qRFp|Q3=vhU1OfwAT=rDl`Aw?ang19ndaAh zY73Vsv>ULF3lveD=becz%mU1ZH){8s$$n{zvd+DMYvK#d%lw6k2|f{Q`W z{wq4V-3_$9<$p1NT)5@`Qb_G@PP>9QZ1tuS%VyOc1SBr~->OW1*>4q% zzdQ;S#?J%X(_0M#hSnL^Q%GjLXfH9)-o6c<$Z5>AArq~_13{is-pP4)pHY`8Bi=LE?+t$N43|!Yk+kmW`{_WCU zPq!?t{`P)0h8!*ihKZcb|LTkPOFFRNAr0@^8kq8~xBUwlf4*MBzut(0kzed1869sD z@4lOhtGe&TaMvz0uR7}lmeVr-yy@YTB|MV}TG0p)UK=8!aR=&FXVnnLFrFe8U-Hd; zjEw`x*MICNe|km(tHbJFuS{h-uL7ey$E{{7n<(s@vf%x5YAY_{Q*>yheK3a(y1k99k5T{oz3^i?EVP6L*?8 zXX2EQJ7(JOTE7u%kHGZV!)U4KKo8l?{XEKxnO=M~y9Xa8Xs9NWnzY_j3Qt)N21gi5 zq3qOT&APAFu@@F{k9B=AU*}Y+Zhd@vKBkRd-6dhafL2;#7HB-a=I%|AbyE_kODRPaE6{xli z>;z{Ny;5We&j^v|%YFO><|T5tDHrla`XjcSeHMqe8!nEFK3!q+=N7*0-c4C1@!~s0 zes6M2cESK4!gdB$KCzeOr`t?i=`F^@NHObC>vs!-ZO-+Td*1`t|AUV51AdpEa%L(v z>nonK6uCj;Uz1uPULo#2RzFfd0;RH|vdR-h5#Bm7ug^G3GF;mvSF6VP=Jv~_BMygo z^tmWVKz2uEN#nT3S6>5Q7-3nnif^(* zhmSQMHTAfTrzYgOHl6>3sbfx;msMo%tw5;FVEZRJQ#M+JgDe&6Lp$?Y*~q=B@uk<4 zMNlDyHXf2&ENbE0c)M(D&>3bvri%Ld($+uo&f0XES9}SxkGc8DiK3fA@x|!i@y6-9 z!M5OcwS@1GWGNcV?`iVC(zFiB=6YXkY*IsKr8qQ6q*H+d8Q%%UBH+L_EZm@QnrE&l3rTUq!MYi)kTT$6#bL8p1id_%?0+qh#j3nKPVM{UR3TTi17 zn+iV0UmBiH+%+{ALO-*_u7)08?gAdSueK;sz!&j9IQ)yne-jI(nn@Q#HD}hO>3GRk z>(wybIB4IAYA3Dy;BHYo6(7dxBAUKAQvZ3>Wc6Xtg~=}yb@Owv^Y^Bqrc&(lPn`RT zmjbf(foltuk$`=nlU9q(eALeQKxCBC9?C)o4>dv7i5^`1+@88wi~u?)cTXW1>=0=p4y zea%L8I#(&J8oBGxdEMNvHELA)t_bwq-M#}WRVqWR98&en#jp{m!lkMvrQ z)mf5HUMP<~T|!zex!DZfzZso;JSb_Mk_!ia8K3P$J*E!2&W~XczI07)9`9+!ol-t*3;XPH zef^Vz6YBUw^JA)+W)pnsk#mm>fdg-1nJt&oHx%DBdOTiwUgciNxYdZ}M{@h92Q%o! zO7xh|YeZeAFm0PVUos?$+QWmq))2#_lj-(P3Lgq<-H%bf?^@@1?bw6}Ei_cMdUyuh zvFRe2mO7(F)fqbz`x*FdA>}Xna#!X-?MS!Xr5s ztHnzSnt6p?U83Z)K`Dic6j}?jnp!*>)ATefu!a6L@N#VqAc$(%(ulE_x99H5*@3=} z4(^~N2Pnt$7LB^@*Y@FZK>qUxgO&QePh;4by1mdzU|(*A=JkUHVR! znlvEN{LlGVr8}FrX&q7TKB4_cDV9^2Z|CoT(Qal6RYn|>%oeT>N`a#-@$Z?M@M^Is zkitj9>#9JC26Z-<>5I$67%Nj<^Joz=h36YheEpuEvQF_i@s?(~7dF1NNAKLqzSY1R zRaI!DoLzYJM&f7EuY)|UqxGNl3uWx|4_F)jWScupyOM$~+GNo)j2n-lem^-qFB(r2 z%_Yrj%n+Jn=kIq5am7{iNW?NHAdW;eYCi;9pvNp)(N^8W+?HBEmHe5h$s>Bft?eNt zA6}|^(o8aNwM;V^emU0wMo*a^BcK9yY6UFh0#+c&xnX?xlrDN7LB7#y8!nRBfe2?Y1GH-LRi?EoEJ~}{g<8+I+4j8p?4pW z$4iZ__?IhjrT_rsJl`||YUdWy$KvX2p~lm|eagzYKe+T3Ukb{_gzoml;${Xh=3T8b z+m>Zcl>>rCDqO~Nqsi725}$b%vnywW>E{v{CN9x)FQjGmE?b9zpk&WFXf?RbaWK1& zt1O%4G%!86%8al7th9Z0Xf>`T{}gReciupbF;bdds7L_AypNzOH>Ks!5L;59#eW=y ztqhhc>iP_c&!Lt!#sq2i8QsY@0f|pnVz&a4p@eOlS5l%y>IIB57H@u`jG(|`oL(?C zd2!aeRCsGoZR%nl;;Wq9mcB3bwoi9>FVn!3AZj6FtWo{AS~~iC-o(*{+uZ#$zWZc< za{AjvW<6EKXD!+=pFYL7;;HFp<)cFrx;od<4}FVj_qBTq#NFDO;zAKwXj{0Mb}9L= zLC#PHxJEJ!qSMR!*Di+`PL3`OLq!{jmy!M(246TQTSDq^ef{Rzhk61{;P=LMZ7oz} zlbN*g41&%RYt$)-V##&8n||Ws`LAeI7ZS9mgZgnfPhnMbOK{xj*OYtsEwJ1z=43B3-43jDql6ZAjw2M8tscQ0rS;uX6<0N3yrsD@ z`LM~{-FoeIQ_3<5-$0j0b^O?atXor>?CZ27OKJ1z>MOmSzEk8@N9zoM-XLTC~3XoQb`gcW(`t8%p#+u`ArG zBUbh~tG!)u-WlABh5=ULLRl`y>^DiW=z#`AsTGbhyi35C$MANS1^E%HdUkrEf1B)B z(qg?XSt_NZzSHZ(idAe9@%-Y5h+N0!kp-v*$t3|q{^$6=SqhI%g?mHL(Fiyj!z zf1&gKF#gK;k-U#Cuuq|Tie@nxi7ic_1_XH}r_7?-hK%;>F>R{O82OU-_J*LtB$K(g z#%5$@UX`Oj4zPjhfKmqMzmxzmP>~{&liANWi($_7lI_NI>HA*^-1zJ*A&li%Hv}iB z6d!Ze13eZW_T}`xqYbZ5#3ZtScE50=NaO_J#sGA=>&?R}W>v_IsGLuPbNr+}`*(XZ zBhAch;k%?Nj@ZWoZb_#bOzg_?FDVA)Mh3LH<1U+SWp-M z_-@a9FB@Fy6=a!`_hE%TAFeM9Xg&1Mjfl(S1L)j~7(GTx_MxezfI_%8EAqZ;gD9xK zNSB*|^YWep%iF`wLkGtFwlG_)VQ%uBdv}O8w9&Bhrpe6Bm$Bkcq@NLoUU`+~yzPm3 zdDS*Ebab;yIt%-HkZ44uT`Y8wFh_F}Z)O(<>Wz*->iMuLboF zHh4TD7R~P8DIwCR{?+QeiA4I0`5ZE8EwHB2*q};!Q+v3BREKW0%uJGQ!;kd1JgY&dNlW zaE4hbm(fP#VoK%(Pg{_T_R#z<)Bshg;ZYU^u=!NCqt8;C37n?_|( zjGldiI4yEd7TH^I>pEVK&bdrrn{_-o;zUI&!^VI&c1IxNugCf3=jV4fA3 z#`CJ#PbDG_pGarKfc`MvFabFa4_A}g8K6r&3_x=!b>5eGx(3#r$se<%Hp2p*NpUEN zLSZqSkcMQ>NOt;-^Qru^J4Rr3g?E!Gz`)f9!3vgkucA{|D;>85BdWS63YnxfOBxf{7tQ?H$$~Wln4Oe z{Y%46#+)L{ZD>Q zMw9v*9E77I?EhoA|8G#7zzz`DKeEhuVz#IVN~6DW1BHWaA+BOqp$ItG$@RZr-&2On z%cs6PQ~*G}GC?Tp1eg{9%oX7UgZw2)`u*nn?uXg4>mwtC9Y7Eq`zBxd!*b370RPQ5 zF4i``dj71cOSte)HbV^nSUEZ%AP#>es$U&{)>1vW*3evpOa4cK_gAlLQY zb@jXF_qF}27Tb?VSB3swne98uccOmI9^Z2E4-<*`n+$EBLw4$0H#))tLP$C(vEN?( E3zemx#sB~S literal 0 HcmV?d00001 diff --git a/fall-2024/math/mat-206/00020/MAT-206:00020 - Thanawin Pattanaphol.pdf b/fall-2024/math/mat-206/00020/MAT-206:00020 - Thanawin Pattanaphol.pdf new file mode 100644 index 0000000000000000000000000000000000000000..e5b935ecd5d60bd3282f7e27769bfa9ced44d9ce GIT binary patch literal 97532 zcma&rW6UtX)-LA9wr$(CZQHhO+qP}nwryMQW1PLep0rKcCQT-pl{LR6nM|(Si&Q~G zjFyp(9g1|gWVmOzZ8#r_iGYE?-pC4yhlgIq)Xv<+f`Iuy9VL1(OB)wcCweg(Ll;vK zQ)7D*Q$9W@XBQ_^Lt7}1oKY=l`(rkQzAyFno#0{2q$CIoFp^C%ZI?hgHUW4+_{}?D zZ4^uF5{l1zZsw92aQ$pODB?I`Y2mr+Z2K@p@QuIT?(2O0J|C~|Q&avPOn3jgRXto3 zw=b}R1Fenrxj(<(j<3t?pXECt_t|-zc=xxz@5jfx@$q^6JUsor@86bg@3-|Y^uE{I z@o{+keE0HYKMwH87q8zQ>^t|0)xk|)=(B~bpP%rbUDVfzuP=FcaZo7vT23loCkGWV z&D9Du*Oxi^&+C`xpSSMmpSxSJDqFagM>>cR-Wj0O*C4qCTvhL-I|(4%$m`VtvCqB5 zc}|_~g>&lO6DkT;Ab_AbT5FkcEgN*cAVu|tg@viO64nKwac=-{UKoacBhhO%ltL(?_XT4mx#!IbXsjb(7w&{N@qp20{^zriec=`M?PXwg%hFW{Wh^vt( z{7H}qG?a@Cs4Bq_Vc+6W1%lA(HVwJ5$vPO%(Ad5Mu|!9RT5#N^3yGkU*cWA|lS#$< zFq*3d@i&~XQFlz=w68AUyyIy4QU(1u-b%TeYb2n8KG8n8z45_Kn*J9(SQl_+)nIGi zhDuKsANJZ+aljU&YpR;={?GB%gT&$@QjiAW^ye!(-({d@r+;v6Bx5~~j zN>j${_hPYGc8T3$jr!wUg3UXa{nM!RyEN4H=_PR)@C9V}0#I<;-wUe%R?urw5Fm2l zfyqKP45!TR)B}{K&t0=t3#P0My6A#PnRP{h)7A+H?+z(oEy6j zd*!p4y5su{M8hd4$zQ&A{X_}E7noj4^^%8UZw1h0rw_{qvD(ny5<cx)lPiA%^B19_E(6XqXGVioV}V z%Q3PQ34UBofSe-3OQ|;wPSX8JM6r#n+FBX)Oi%?OINEJS zp(dRWY7DX=rrS>Cn^@}c+djG98L&#E^NY!q92vp?q|%76i+1mPF<~dGPKpJMLnuum zwOCLXcu5iIEL^BNq)GF5c08d%^_Jx(Qr?2rJ%)B&aj(9+NsPsgW`nG?!KfWg0JoEP zi4=%ah=T&6UL|MXw}PVyl8=+uxR{Bav4$FPVw`=8vg{)H@}~7<(!lOTO^JC5fz+Rk zkUoO(8bySx*wC?8EZv)4DdH^bCS|DQ(r=%q>a$k;itForLi3jrQl#0z5kxS>%o zFMAhxJ7H4Eg-#9?pmX z6I=6vFIh53aw)6l85#;);)sa=%=i&CNeik8xAnAq0kW6gG=u?V(l!kG#q1d$4mFl2 zaK&LzWd4~(|$;q^)dy8ZK7fT4}kLc^EZv5UvE*oZI!ABrU#(R15v}%AS1D<%&Ot)5}6?wt0HjoB!A}W!<4t(GSkBXcVvF z4^HnZO%{U1p6pVH_5lAQUn-8JX^5#N0Z;fybR#>{{ns(&?hhHb2oTBLl+~Z)x>mm+ zXecteqDSMDeI;Ro^=S~yyC{w#-f)&R@#ZYrb#cwIaHKI7Hc(W5qfCBXxNp8Z2C24L zuGl9x6(I6Dj(6sbS$O#cx^OWky-4vmnuy#|5YlZq*aJ1kO8XR>zeY!Q)gnt=Dc-@E z+%?l-dwq3^L#xllvehwKF(>F!=t4qbM{dbep)0>+!mty>eok=4Bh5=Fq_jW{e-h#X zS*5>P4RAsknJKnqC`~^sE9}>nnJ-&-eH2y*h1SK8BPCISvzRyH3~NfdR>|Z(SYX$? z!E>;9cG2CYHE~WD6QP9jv`oW=dos;TgXN> z)NZoY`fTEu_Q`U}8Zm&Ky6QbBujGua43~K`G6tgU1rxocFW06vn};F+sBjWuav`-kV9Ig z6f<*bw&a6 zYU5oc_hSSdP$Y9qe{=zh>f8eDpE%Gk(3Z-Zow`bk?`Wu8ap=l0s!3{@zrEB zZ4OIGsTl+jDf}nMd5I_Q`Fy|NCPdWQeCUm#M|Y{ByS_Uf0-3K)N-Q?wraU4A10zOR z_|NlybH!o7e+&}spbHV8Xy+Hb`H4%{Qo7fy@yKlP$hO#|uD&Yf&PL16EBK^Sd1Yo-0u=DE?|=ll74 zsc*k}xP5%KpIRwnTTzW=ecjipx_$k2{d|V+U#G`rUek5EX@`&Z_ci@Iyr1Xy{_^zl zdU>8cJKX)}<8f^6@9FpX{@t~CTQy86GJ|mj*sP^BPQLt@5CwR+PTbnVK zjs4rJLHujT;-;QkJU^92;%#?(d3wBjJwD-D`2hL=z9zv8BMC8}0B)W24JiO^ciJriCqLL(B^G+m3fIY#_~Uc*m8@8ejf8I&t1H}U}myzIsi zfo^wOF*M>y_=j_)a2>cXQm8v!`o;o46e2dFQr(&RIGvp?9h-{mPMw=PAW!cyNYNuY za0jA061M@iVKiXernn5{ywdlChGDh!X${$AthpEb`m z*Hu7QZu_>mnVQ@e?TVFh2)HK}OaYvZbpmkR(1uii1s&lLJ)sb=aBTlv3%y$*;nWFK zH9#Jsnb#yN42Ph#J^e8-T^%@|i^{6q%a zf9sH_Z@mSY>B7coi-JOrp;#6-KKb4ol^1zjtHj=6nB$tQfnpqLuy9VNyXaR&T$+h$ zfj{ln-<;q28-IdEdc~9xmuVNgZ-Lq)=6k&H8(bS#q;L`A(D*l!xm*0AyjFP`8p>2` zG%vhQy&*gSu9UI;e(yXGMbeN!WpIKS4D9c;QSj`tZU4b9AOBzE%;R}_`+t@`c!w{P z-NiKm6+E<6*psb8iJo;;u5CNR%5%&CD-E0G`2cW7i`J1L3%Ep9uOU3_7L%S$QxHaj zM;-q8&cQe^73b+W3={N+q?u_*d&z=9viSuMks*tEAJigga&CdNgXuP672Ic6N|B@) zww0m}X{rg}KJj;Y6**=L@jJf?_hiLI&v`(G0SM6Z!X(~|!{uCYFefTgYK(%ObOH*U z2)GA16{5y_CxZCWhwu7|FVbjeFkXv45OD*GH-T~t6*_!Ht{7%{YT{ZP((qJ*0vpy$ z;{n2`=5>Tt@hC>C7-58>8F2Ovs{(`;nbb4ZMLfW>qINv?0h9%veH zf%xUa_#Jd3iLY3qf$kyK-%hV`b&X2ey*0NU(eq7O z6KnRpqURelW6x9D=sETF76RS0X@uzADJ^N*XhpPfM?2U3X3{GwTyr&LYYvggD~`FE zF-B}jb@g#av(|PWy~S0>9PQnYEx2me9L-rKw_pHQ96xhJNL}VEg3EA|``fUV5@) z*^@#CmsfO1{ULE&Fi-UI_I#OyDIQn2LGvg)`j?NYnT(-Oub0fZObG)7OZ<+Enh^ZQ zdn=!Vw_p!@(?4MQ_Nmtd=Ub3CN`o)c3y-9h^RBe}ZaU4^+^wu_!_(e|B4 z9sez$A-CIUx#sN{okG30i=KDTuDT$<9P@UUT##Rnd6MHb%hqFNrY&i$yBu_9j(43ybXfbp3M^I_7}o4qf) zZKiB1HwlOAPO)0Mb%nEg;qRF44$ds4&Eh6LgV=b5**Mxz$l?+taViYLrn6R`iEn+0 zGf4>2Pd44o=?%GkSrFUOT}Gd=+8g}+YswDD&to~}!KlywXSZwgbJ~me&tMbmgI+>cH!syEw04WB_Td8 z>h#mCo=f9nvqhUnu`E+AqV18g)m^e9FZ9K(fvem;Uq-7_7+W`621(%V<#xO@K%1RU z#=TqH1Kp*&$v$|*wQTQ!F}p+`PLPWofwiO7c;8D|J&An#3PGy|ihBFn^KNxd=)NS% zglRDVS%(rE@qg}{^Qtu)K!^F|8)QHcQHTl{J$XU|G?A# zFpHUy;s0b76Vrc9_22gYl^HQHG5&uz>wl+8j0DW=oNOHb_YCQ_7urKdbQ6Hbd2X-X zoZWl>Ca-y2hb>z+dA8Nk$;oz!ExqlMw6svt*>b6@v%Qp{2+*Z3llp4W+9=)yCkq0{+1<6&l--XHHk8KSbuE3D0?|2wJv4}&lk zj!^U??RS?q60RJc&<<3H^zEOUyUT9Ns}o$Isd=E7AU%pr?q;osg(ufZaPRgwUFQae zGw}%^KJE?v%}s{yUpvf+e&Bc0Ep9rDYV#&lh#G>AVS%xCyV=*Ly+9va;XA5uaIvv` z@d1sHx4**j77!`1dtL>5C9%82m@@qao-dbB#=$Le&aZt(-lB6Pa_=s8us} z4xM||_%t-1Kfur5r~I$z$h7)G!qi^S4#ey)+>j+i{X9+fk3t_Ts9D=wo{@5ZrXVHB zpU{OBib#F2_M&nH>`#WFBJ7;lbs`LR0y1L<2JJXb6EWvnfeVVjv?6m;k?BReMm$`x z=!L9K^y?vlm5@6zzm*7^N?>0I++k_6eSz-<=uS9Z*c!YMVre02hute{3li%*ADk~i z3&w8P-3Zu-a4Z1Fy2Tw5UM)-B$)B7X!$NLSyS9yUCKo_vy@ZZ2?NBq7ZO7psubGiF$UzkwC zFrtMD@oNQsFOcxY2>PHlcjoR4>I~i+#aC3#uAAJ=qRsL|pizJ~sTYKq>+%cG7ov%3 zH1-31M)d~dCu?*1;Kwlq`k5oE7g!gV-sn?}Sl5jp(425+L$mZl%5UzmVUUb}H)gL5 z-_On6=KTRa1=O|`*jjd?>V?(|#}^=TP zZq+x2n{OugQ?gI@v)?vnC=R&`lY+1hmcqOjN(cW)eDcKl2Wi}l=@qns(g90lJHY+n z@JIB=^vB0+t=nX6$hF;@uB_-pzdQ{m}m4^2hL*A{H6_-c6W5XPC^0ok^e3 zo(ZcBfo(v&A-%D`oL_x6?L6sx@Y49n_^UZ;VJh?f9_lXD%@<_$XKI<(lL%+^6hQ{AGV#Ki*FGlk(H%sqEBtsxwr2>Q*SAQ)Z{o zPGP6)sqz*2igHv-1Nm47E|}3WIjmkX?}P8^M`Jm{?!^58D*uqi8R@eVI~V5%o;(+I3tIifkQ>1KNuYw9C0XY#eEsz4PWJ%-vC2v zDmN7r%J_J96pTtl16aPdSA#{PNU+EH#?iV>XSV49mdpwYT za9w(l)a21>@}V$9ac>NNWT?MLs)p!TK-d^?Z`?>941gt^P%3mH`QWcFu^Ym_QF2Fd z_9FU%^@383!(I0vf2srKoLaz2_@eH>uRT!n0+Q%XL^B7<-x>kY8I2e48=KpMa&vmSeH4pM_wA`jj(URz!s{|Ha61_3^76x&lqECIv`KyX+W*ugK4eP{DIx} zA#PyQ#;CN(^?{FnVQ)Q;?_Q z%tV=(mzIYL4F>L!J?hCTXecc3(F-bGg>oDVbBiF+jiLfJpAlsghfvNL8Oc+MmMqc~kP*iGm2eTr z9>Y?v0e^*D3sf=qg%81?@Jkx-4D#WzAXww}tPFA5p;?bxx&JeIYEcL7B-WBuEvV8) zo)r>j(E?}%h}{Mj7H{ZEa zZ^o@Hfma6kti@~B_u6vggC3bxy{^~RxHfxR=lBFk+U@`2GW=ec`Uh?8OJZjWinWji zx!QJLA6mx`FQe0^6|k3Kt+gJ1Y+WE7I1@4>m8I`q5SG$nk29W7AglQ*2D+kOhu&Vj<~h231acE9#y#Nfi6*EucN!# zmrqT2TJqDuGXfg&b5FDoFp$|!M{_BWMj^D*9T6ZRf2In1b$;+DVZy_lToKU(WddbP zQ~dF5u{I}pmN$SvE&y~RJUg%*x0Zy_uzyYr)aR%ql1<3m=YHx%NnbE~2ZCgrxaL@v zyCO5YsiL;$-Oe2>JmXR=zzy6kuv-<~beq^Tmq3vKj=s z)!)xXuySX=zt70o?d~ja0Q40fD4*QsUs2{OSCrg5ZtoJm?$?J(wiqofppB{GNfJ=6 z?|WPm*oBe`JmU+oScH>5X$~bAqHKC09GLs5 zkWvhvK#)yD?)&hU((6!1J0N=$k-nTY-Ktmfs&{7U6lDdK6^#dgFN7yWJJ7vQx1yV8 zz35uG?s@mXbK$xC+$YYi;!+iHIO_vte;A}AVaI~49D~N;6S4vd6?T;RFWl26#^B#lLOs7#X{avZ;4r3ZQ>`k`O2#A8(q> zgf;>Xeu`;cW}hmdYi2c9a3E zA^9s2Q#fElucn)ho2Wm>3tSltgeV^JOFK1aYfEf9d{7N1&hV-U>{lvO*^ouUrmdH^ znx3Dot)ZZiU=Q@RXwoQ5NZE|K(B#2^199@Tk?av6IZp-46|1G~>bT}o2_pYD%;>9D zr@zjYY#hN>W{p`9!;tx2euGL_J$Qcc`!KcVp#@>kUmVW+EGY8&9nPxzy7Qy}@%)(a zO5`@2*3*J;fu6IT=%ceIEf>il-m@uRvNwEt;s#oGTnEcj;-90uSCzlO%zn}? z38NK1cIWJIqs6MmOclRn*5qZwQ6cEJZ80zb33zhs6GK1nUPLx$#N-G_c3`{&D;7Oy zVB&_=An05P`8BYbxCz9U9GGb6J#YbE77Sl{H-mW`wEx2XRsO@26M*5pUFtME2AmrN{`{>PG#+tn%U-t*z86pL zQc4_X7*o{(;+;2=S+swu;%qghYi5$O;lRQT$E5)-@VIe+{n`6HxF?1`jyW;-V=ctq zfVYwEd@D?v6JlV)*>+?I0Xw*p*`Cmj3rP~F0VHgjz#J-M*s@>&U)i^d1cN7ba7NLU9tNktjYDY!Dng_x7v+=M=3zk$rCeCd%&`g+8p@_Q&9qUJRLkYGYSAu0;xa^HUxr4anu2Zxf7s0ep}~gacz}p9yZEw5Rb|dm9@&*O z8J6CT85J9{>RBGK8$|1e&&Na#K0NUFG8EL4ldZ#+0#yS&`U+dT?eD{z#{;#xp3ixf z!XPzxJI_jAjrSQM&Q<-y3%Kn&V~%gb{TTN@<>XuV6@BO7#?0}VL@XojwAnl}d|H)g*eOOAqZFUC=zP)jZ z7_hkkil9J+07VN|tX!?~rAZXE?9nlb9Juu1TLV-WvqqTas2K^d5JeB!-&u;95DM1O zKFsoI!Y53gY)66gHcU<%08s{k5^W1V{Sun{la0Cj6O~yW`sI*ZQAG0zQ${q?b1r7onIC?< z`~Ci=>RPY&xca}>4P5=dt$*@8LEUKk9TE;8aWehP&Q{M$IE5DAiC0hwS8oDUZYg1M z5mwOA-ZtE}F=kG$_(iKWk>*W;*YGtqol5sF_^OaA{zKb_qRT92kJ?yMs(&Tp!RkZ!SS6j;IdjYEMxnt}-jJyr{JN(SZ z@V4FX+MiW{+2Q7YG5jX|;VlF6JH```Yg?9bkVR zjT?#0bjIoNsu&Gh6)_Y}IAY!;Rxu8kWf}SrAk9!r&_voyb`u?h&)JWYGsll9M(|qz z-4HfN|B6s;8PFa;Wd_;N1KHaIA0B|>1?SQuTK8ZlMgvXyEoUPz4sl9Yv6NdY#Wv-R z=VH2J_80ide8(yxOfXuT0(krpu_xNAvLDEJBHj*wHR9F_8PLs!k~5HD&DM<&VXlpe zqtqFxD7;eiQ*LQ8M@Gfhlz&-r_?E%qHoXfN%C{-t{R2o=lI4x5!)gmwqQI#BGObP3-Z*W_dx` zY6JAQ_AbY*5*I}wLmSLbH!HdViqq0yxj?W)*GXt5?=6{m{5!hL(^rYd@VvbLRb}?` z)5q1!9_o^wDNtMo)5Gc}uY3P%^j`1%(J=N+qlr zm#~DVUZtuPPeI%tNVuj+k35vvp%`XT54b^}ezt5i%YnS6I*(lx~hUI*t zg1dlo@XqBo$vb8BP7(ejJjNRbJk|TrI|dAovPm7TJ!m~Rfx~=21~z=7t{{>SYX{hQ zZehsld^z9lruTgeUAE7esBXt@aotq3&)P$R>)a@>_wfCLuj@rG=l{Wpqp^J-j&EzF z)jfNm-wg4EzkSr0?4rr%rPUtc3;2F7Gp2y>>Hp7A-}%8LLGgO0OGdX>POYY!`CoQr za%GcyihVT(za}al66PsIXu30H(|U@BTBKt_Iylf6K|T_MM=(#vg;S``@r_zAeekzm zG^uDHN~YM1F_^g*s?qFHhmcNEJwi1BO1c1|0tSP*E4rIrR#xup%FY#@f@2#P#|-&%li80D}eu(bmi)|;eS^4%Vy zmrC|J>yvw(tsxx{+%@J=ofJ6mf?!=r1qF?Vku5O<34Ay|M}i`I-W`IW6OQ!so8o=y zM84VP`EvSy(OpO3@r`29U^m6sg%M8FP1U363#ewLd?CFcfnK1Q%ch6oRM)++9`%D zPlpg@V86+<_sW~&7ZRpJv=ZdVQJZM_kH-XjVt(+v9eXD1^#o_(Y!V8D;ZA2;^Erp| z%f&zmBBVfn#L_@wbL#}K_Y}#(APoacZRn(Kw;g(f7wNjUFAjZ-_*17TdR^Ps& ziYg-Re#Oc~ZyiiEKx)^fh_Q!k7QnAqH44G-JKJnhr z{mQ*c%*Va7Cy6QIG|97$(~38bgRebgLgb+}lo2c?`66Y5PWdBc47eUNjo3bv>fuWc z>!GrKjv=kmdbu*zp+k5#me5hAr|` z4as}H0VL|&!6JI8JXLJQjuD`K@%K#!uMoQ|^RP}OuPs|_I=nLTqZ36ywSftTiMj+C z{X?NLX`A+;Edp*_>ZjCwe4itgc~g4d%fqaqQCO?c-MRDkW7>bA)9AH-)yK}=jn|vy zeJ<~1u%oN7x~FpHdc(Zxf3A)s**6BV1G{Vob*PXW`a1Ot^zAL0V6?q!cH?%@OeLNH zo@t(QFU)7=H`1T!HU7qbh3hwsM*NRh>rK2j1^(#WCZR<0nG z9H|9Hs1K_zwX~m{RxDa3p#X@&RJfwN?3D|$to*=$MQ}Y&Ywv=_QmJ$9OsC4;zYv) z5DUIj{tizAV7b=Zv7P5(mvk4bp1g$NyO!oCm1cXAeT&*(26ZEDHn={c^_Jva!K~jpe z`9Q+;ss}+r<_X}Y{*Q|OEEDCx1X|yyf_*Fp>953$uwTJGTO`j*$AFHEbTCiRfN0FX zse*lM2nwIYpnRlhp3=_VCVP0XU@`KwMJ|qBS)`)Muo&49!hJ3T~d?kFQb6s56C8k5QFSY+#F%P;En0u!GQjwE-U}R4C zj-ElcuH{!4p>!3|*CSo}mZ!2$WU9qolH97~^hQ}IvR!YeOirGxJWEpds8p2kgi(rv*hC-D~1iyyh@$-}PNOEKHY z?g*2Xq1whLM%o{*mYJr4wdyEXJ>JX7FwGz!7`V0p2BS>MRseNj&T%}v5U7-}I zuP~hH;_r++VnhwN(OS=*yf12XVl#s7n8phT@V>N12D$H@p6SpT)dQRsLUofpvM*fs zOuw=>Y2d|E%5Os4k7OTZ9|zy_-VZy7?9?DbAR;qampWxa#*j|jO-trC7hH1q+W$(ppC=Fl zZukxU9ZY~hc3ybNkal!BIr)-p6-G+6yici?t^tU&A($B2C3UqV5f6J4n_OpEUm*tw zyHHsb9Cl-DC1=V2KxP4YLuKSpoD?l?N35dhE{ULo)%W@3OLb6SOEwrX7};1aDJ^r za?39*$8(1`=~gYP`}wuD5^X3~FmHqTtppX<(0JYpzC{3V`$whTWnECF*-*~Viv1;3 zQ!z==0Kv7h`Z?OJCa7OGe{lG}P`7eQOL^Z%{O4srQ>S&wnq>$7+|9W6Z)jt!qDYKiZc%zDxvQ10aE5Bg#Z1QiOt|B? z8-fPi8fk3N3tUQfE)SQ7b8h@XzL4MbPITT6MG|mxyE`%9@$&#LU*=T)qn=MUF}zalUK-lofNHo4_%rI8%gA9u5{o ztY}zBD5LUK4png?7dwqby^`wg9F{~&%XyhNmvysx8i~hwl?SdKI1Zx8z@bmla;Qg4 zOu`y%kiUb9C1R?D2yMNvpe#J=*)WKm0F+k-TWT@Xz!usKWc zmEc0bijFy#IiUzg@n-QJ7S2pJ*-!N0?i2QNe+hmZ-bj8ZZ_b-yN05~AvV)t!OsCG_ ztkIc*)R;PXFJdWCB=6<4D59Os+D3GqL>Ol|-%C)|sGMyieQ%*2^HS4$KPH_`7wbPd z*Ogr^n~JUp%phtdYHH@Fq4iiaUqJbtKH2+PzIFu--Qus})G&(~NP9#7OL19N=c-1jl*fgyYI{rqpxpIr&@|;KD5qjN-!7o3xD4@KL9!=8;ZU z%~ddkd2kf=MkZ_tcEwjtuX?Y@SDFHmz$iIeiOJR}a5UQ3V-lyerZbwtYc;O^=ReuY z(c^9P|&V!QHhdL0>+9<#T3qKpf7<%4~KQo035D(HS#YAp?x8uQ@tO>;ujHZ8r_3V zlUni(RW`-OA_Pb0=o8SS@Jz;?lK1j7@y_bsPs{VvNOq@t2|<=)rX;E9(JA{qyv}Zy zJM!ty&`Z3Of?cPl(`SDA9$#wc1+#c5N@vt@w z8^39IN_-JzrGC1qtHQ0D>9IYVE{ccdOjD)(W1`dRYARshJ|Lq8B>HIZ0WCqSL1piH ztzvxyh~z*Lm1rR?U2i0HF&{JO@`5LD< zcB08Rn`=Rub}P%-$)=go?DKj{j8-M6G7W?{XDZK7!VvY+64Nrns^-WyMq%3^#8E3( zErSRn(%}eUmPBz7Oi4?UDuPH66;ktuP`u3b=Mc>+kO0r@@i`*Q@s|YD0c&10G8nLH zB)haLXc!R5SL-Z}o{qKBR&`9-d}-Il^ENt`mA}<@S_PvU&3zmAlvY!HSqT*iYK{NF z@$AsZYGPLX5^Tv)W7_WI8P%wE*=K)ImRL z8GEW(aJ{-NW;f>{<1Ujk!I|a5_G#BDo>V@kjzWzN73-urfiSILekbaS`|G*Nn(1DF z7s0PsigF#4%I6y%By1DGY)LV_Fz#yV*qo^;T$=?I|6*Fy(IE?4J~BOFYmsT;I^s0V zP?68TeQc6cBh#W?GNzF~wB^brA8RnOQOwCTQ5MC;*+<(&Q(g<<74vEXGEc!XV`VTa zgj-+blp2^tu5GBlly;D;GZvXVK-7ygK0ymtjlk4Q9l;KR=oyu=sX3v}oZ`Y4hvL+l zFeDy#hGCza5|!r211`znU>p13Kt}gHlt8tn&t1*x8l+=Qbp7=USTw_jT zv+R@}9aq4d;Rg98{>l!IAHEa2k$r-6b!5tjs!V2 zGdczhRU+Z6mVzWt=Mt!KVNab2&8$BdMUGa&36`f-juA;mN&8u!&kplmzwv&EO2)RL z>vOukXid+-ve#By+EG#1!a;R=d5?1U`x*0&xx2mD1&&^VMswfo(dy$M&X_fcUa#p~ zY`0kK%DM3>=TLGsohuUdW#>_EGk%&527Z%KIq`W=N6yc0_tH#VK4}e1&yG#F@oT`* z+#qM8Ftw6JyI!YToLK@+FJ^?mi{?K-h?zOImVP0hF3wfGMNT3=B$ew~>;*WF!s^nk8Qc}fR)0^#Eh={(5hXr%Rgl`Ag0Fw zty2YNr_Nu&U*@kv){G6kDk1%u$&If{jq~ob*WpQFh^?Lk{rp`I6n;Q7zM4q=+J%ai zKaxFC?#oVpqXCH*GYU6~ zk&!QEn5b8tWNdKa5J&DLt1~$##@P&gmjA9};gB?bzVyxEfJD*_>~5DC|HyrtB;S4S zTK3KSN;#-dAVM)?cqz{S;zN1Jl0q3?apFXJ*m4ZwpKId_O>9?ZBjJz2RDwT+GY=c8 zG7RQxhWpkVNEj1cw4U`oey^^7_HA9wmo2z;wp#iFv4n{iSzwlr6FW9S@R zQXJdC-qbTHdPnaI9e+YTQSU=Sj}x7Vf1QG8w3!h&nWo3efv8|X8mDWt7&+h&r_Q_U97snI$Jh5tMlg;z1DkozuQTn!<3&! zWov^Hw4r-)4P1g4z!9DaltKc32L`Uy6zMng^m1KJb7 zJdxU|_QWuEbcQ~F;v7)~kz&Ns65$g#VG!@MP~L�V6{E@`U(!u?!6tifNINrXS14 zNnDu#NtRC#x-8#dG#UP`Xmb1=g?voIW+1pQtc01CR>l=O%!3Wa_>l5pvcXo;{N2!` zxjTyJE#%nnT+K-_*Jlr`oW+QNgEKnXh&QjlxoM_m*M11t6=y_1LN|ip) zW_;@@(CtJKHG5JvYL;~4C84+-*aWt!*y3y|cI4{^jq{rj;!}%%$WH075K+CQ7CJ{B zx}J>RH{8=@SGBs1OJt}tb++VmyYpFu^=(tjcV^3p>+#)K>F#v&eQswdzdj}mmGGRL zk44Lh`({jAy@cmrE766a$E*EJZIk7RNPBb`@D?yvn3xu>liX2p5%M$*+L{+?FlrE+ zIJK4LZA900f$4^%4Fa#ztzzzUtSOU8%CnPLUZzp=U7LoINNy=ls6){6`*CARWlA!o zP1Lez-iRbTxd6mDMSfu8$!Ruog6QdT`S!%N&&!7hWm$YEiLfo~%-8XYCqicoK|QZr z-)9x$jB1L9I-YIsOiAZU6me?PWo9^6dA=6rv&&W)SNgmC=pRfAUvu{RY9<2c$&W;| z(&BW{Z1=heJ$qIHX6X~z+)OFejo_XPzWP;gPb6QR3&_U``NK8^fVGPh%P90wII0FA zQH``}hAb9qrZH8D)cOA+?3{xvX}Wda*0iQ=o4ak>wr$(CZQHhO+nAmY4Q1Wn5<56Na(2#fuF+x` z5KhNXQm#>Mfg}x&bnpI3PMn2YyWx;XVY|W5{e}wDBx4OwjFF}5SwTnK zt2Q@AUm&6WHum*OyZ+eUf&$Kgr=NUCorVG3DJ=?G+bE-L9J@_@d{;wT=6I` zksgLwg&3aSDGs{a@b~)MyAso~FTFpic!+vH9b&sg!|nG8h{MVse}+%eWa1bR^N05Kh$se%5=l-qVxltYmqHq8kp zR>?f5J5Uqz4g{`+v6Emf0b523NR#Rai`h-4nv_+TdIRw-R+L#*&x5EnxY!UVdZHZ- zf8Mb8cXRX;tsvEx1Pee!FvhOKPxl)z%q!ex6zCK6G`4{K=Dsch%~#}9@f z28Uh!>KFZ!?hJju_KbAsGcBCPXM?9G`y%&IGN(#RLV9vLiW~jipeJ-%`ps|S?=GDl zEhf`X?I*ZP8MIfp%&mWBg?bFsT@oX{*_-nMsyv(V?TC5xYcPT0VJ~TIcVy zj_hkx69YoO6<`9#4xYtS=`}PF%@Y z$r#W`?nvM$Cyd$=*#x%%A2{I{;lYj|q1ro5&hC`7MzPGfpd>zY)@p#7fg;h3ghxV~FinI+O*BErQ9Y$b`VmXL zaqVNI&0cMFdL|x`R{b%H?<6F}dzuzY;~2xGjhO-$%Hwk-;x<_DyTq%HQ-{%2YIizC zsAKS@h>7}SmKM7vAbELydVj{N$27hUm9Q1RIz3|orNwl3bDeD+K|RCQ@ySI2&dgiY z-s6yj?EqEWQ&s!gc}yzZM4G-UY^Pvr&O5h9pn5=|;H)Sf<-@i}c2oxNbxF?$Tho_rKnpv>n7%^XGFxZ@n_jb0Nxo5EzGfMp!Ng?Bv`R5uOroO~m0kp8 zMRPO)45nLG&N58v+9g%RS*dD8H+Tte6Urf|ce773BF?OJ_}d(fA?Roafh>9crvE+; zYnf_fPh0w~TUi47E=d_g5K=sHqhh znM<%|<=ckRkpNNn5sF7W)R}`Lt?+%eieyalhw@-N<1@}f=TshHbNfmA3F4z#L`OgI zP-2k)bkn@NP4V2e2+O+8DDcmCkN5DN^lt7D;u>B(UicT(qZySvRH;a<$AdY{v+4z`p_CxmR%Gk zgCr}c4>Tw9eT>->y&C_d%FXfvmgv%fGj6e3X>yWNX{$vN@pE~VHG5q4bE0L4 zN|S9f#lAvf;#nzRx=LUjQ9W;+1{f`oL;D4W=vD2ZWYw+so$-e=Jp!}_R2FrPR+ z;Bt&%B3V(~CMMe^nlVh-No1wCl16Fq&$U~LsgK(o7WF0j9MVZQpYh~S!XrczC&`y% zbhc>T7c;VOWB`G@=Yh!kHP-1LQD@ISIKXD__TK}&7``TC?SCdk1Npd@wXEgq+HVl; z{Xui2fgrtw$w7~Hz|{c0jQ;n=Z5jii2Si+StbHp?S0@CJy7 zCDj8SC2{%<&Q)i6y2Bg-9>)3N>E&psC$xExA7_R&BeT*!TOR{+rbc$y?J3j ze-ZXQebm`aFH?CPOot_KzIrJ(=Pa@*1+C5y8#o{6$ty%FrRecv-r*C-_M*`m;R$vy z3J)T{Q@dg$UJzy*d3}ypU0dOG#IE3=^Pu_j(FZtXp`U_bTYJ& z45~#Q-!xKzEP14W4tyW#Ar08M+P@EJAAkuOPu0&69mvtoJMSD`wM%}EJIYO5lHh(x+b6$S(Jlsu=C5>hHL zq!TwZwLIGWJxR4NS4IX&wIIi(I+ALU)y8{by)J&L$?OF9h0Kfu260gbEi{w3>9yP- z%_IPU)Bv+F{YHGyv6$&w4M~+C>-BF|;m9$vgn9@LWhP0rs0!s5NwwN`_99$zLv%X??;Wr>X$ht@+f$etOkug9`zR;fg zC&4kNxIXjG-lG8$#Fv+~1jecRp#;Xu4W-N=|I+;k3GBx+j?7@c-<(_$;LqN@??1D` z690x?6wsjGuYeF1<7*A-M8GtU6=+C{yzOi!@88vIS94HS6BOoPuSWnV~^*%!xykpb(0@{uTy!(uU9)b1#S`0;0)1vj=mL}df>cJhLO`LxcbWQ;RE&5G0Y49m^H&wvKr`nH6}70vUbKCyQr#(!GCV&}g6x=)-;8k; zkU%cs1^S$QYyv62f!O5oj|Fmu3^2t%2Wv;(CoIR#xDiXo_kqXtapzSFZ#>1|^dCgr zhncs7d=N5sF0_%@Hi^FoQB>>-`qG@=&W6H&JLP`+{_XBbK@X-3{W>ErB*{fVPM2LI zYzE*^3V3P+wd6YUmZ*g^zX@z5ZZ?M0cTt#ymggmp^Ta?tkj1xQ z#)`j^oG52OKHY{Q&)IxkM2wYvA~fo^?MwT6;q-$WMt@p_!cV}f;_kIqt>!YF!gB$QMkU5!#0?(f_DN8k!K})I? z;B+Up=0s220w!YR2~G{E+p$E?`oP(`C`M*+*PBvLs@GItFIIk+mIIRaMX1m;RZ_3y!53d;8~cbYpL-# zhdeLc&fZ=KTBVD4YzrLJ77O#)+VEKlES=Q~iE4vbx;|_`~2Hk{T*d>u7nenk@{!Ze#ni&p^JHz{6r_soEUlPfXX2|>eg;RpHkF3+CgF&eV#C;w zkh2_?L}Sk4H;@fq@-{~?9z;N8^9|gzl@uiBjotLZho1u8z4m#&6M6SV(UabxBRcJd zfLkRn=W0lo8-B}WkuqPB(Z||d$@>5}9;7(85pZ01a>>spoqDn_BhO{Y=LJ`%^*rmU zMqb0JWB2cc)lcWR>-X{QlTnvlZ07W(<3-|Wgg&-9GrL9auBY~IN*-Q?KS zw-m?hhU;MsJPC)>fiGt`3BnV%UMq;`Nnnot<=(pSM6BBa=Jb^wDSp#2F275>X09AB zsCe$ecCSOOn3LC%2QO_iHF_&n$&+B>+VRmgp9lKY3%Vk1#!0{V;vQC!ReN5n|1$k{ z(RZ6>y?tF3=uLz^bAje~4Jf@ODs4p=W58FYE3&)m<38akKcYOAezojsnLN&fxZShgar6r4EWjkr;VJ(Z&d?P~@r zp?rF!PD1kSmp7qyT|PJAFHN4k`@X{LPZ>fsGlksw#VuN9Sa{gjE4*{GN(iw~2r22A z7-we}yBmxRGT5gNtBH@Q$X7Y^ln5{)i@W}2e+HhQevO}CmI7A zy%UT-`XXcEYR~=Y_2umJZ7%j<^*u&y^`P!7qQ#3$P%OAbgYwVgPrVHc`oE8NlGj+Q zRF&n?5~t_K_19u&84B$9*H^aIHoEd@i+wn7GFTCyZ{o3Mp(+DH%2x|g3F6D3%No*KT60R2-ex~CBOaz|iy>nL$IRhVfPfe=5 zxDNKk@gFu>+O6{a>WvJ_0H^R4<@qLnJ%Ll0LtG=F{2HAdE@&smxM|31YwFE7#8aqKm!FQx*|#AbtrEJK2y}hmXKW%xID+* z{<1q3Z}u4*2ZAN*kcAxRUu>|xy2i;;YPipY<=kBnTT`3J&UCZJ+urEWhXgVbUWLH@ zsUahD;zFvyvbhC(zq#!*fOMq}Soz85uTZaLHBUa}bZR;Q499haW7T8XBZ2N| z82qT{4|aBXsSJ5{cLT-Jta(gFiA?c^6WPgTV0F=W^|CCXv8$3b+CXE2GPRl z>~<2l>|kSINr+eVE=P&mV9~U$v|=iji7X`SyJ47?X)vkO z{fvI;MdpQUu_|mRRAlLtR9WRU@fxa=7PySvd}v^M>#Qwu)WSNs!k?OI8SDV> z?usOXEa2_ch(9=|ynxt*oM?ktrr7LgF*2B%Y&BvD&Mo)-cA40|wqJw<7ApjoKg`(jEV<`3b2{PbkMl>Qi z{>@>)yx>|#>Uf9*7~pWsqNcf|2IQWs=M@1RZtMx2hde;W2Oc)eHS&SEB}d=)LKCNT zp})Oz=KJOBz?DhnenNOrPKG=PJi#25n)k_K6#M$-h|f*e%-18-=M_;DT>>J7Hs@@m zj_wALFMWjZH`>USH5q%`kh1^Y`V*Whb|cWLMStV{DES63N)W#(BS*pN310PlLlR&{ zLjMPX(eNoAR@CJjGC$PYJ6RX{M*cNe7lH<%Pk0Zb!SAwM{cqWYU1H_@J}&_yamE6+ zBUzR54X=pM`foU#Z@bN{jtF}Nx=N^~JTVSL4E=L_pf}K0PxNr)$Zz~t@Z{%#nOb?Nfh zXu@ak?EBtOjEDH8^g zE_I(ICnJ24L4WN9(46vlq1teB6)^q220m-!cSSq|MU)kEhYW46Un?`O{gfvnwbkX5E8riF+)h?}I8j5RFI#YzAvCR#igBL_`;75{V*F zfzrm3q>*HC7&M&R<(H8k# zG$#0^%|8c@c~YpYVUVmnEwR zZDqzXRp~D?@#8MCktFVeJxD_#@i{A$4SUy4ehk}~5UCQyt$rm;wW}Hzw4x7OS znQQ#c5T3pXH@4A~0J`zjCgGJXt(31vmBy5#roa@=GTvgWRarB6%bmkW@?r5|@?o{$ zZne1@EaejwJQX}8N;hLEjanqk#zrL7v5EdUVfYv!z?^;=mimJL2gRX&xL(5J>c$XvFL1AKhYi zdJwz--im76LqeDcL^dS~AcwyUYINiPL8FkIjvo}ZfiHMabprYdu!oLNLCj;wu*Y=a zBFD24%{1$OGPsZp>J#E$N`|RPE0{CvJ000nFa`uVAP22rUo~kaZV@LXY+WNeh!te) zZ^UU55)-@Es3J4CPUWxp!w3Q8(1%_WC_(Mnf?<@g4!nHux0En&0^a7mJ7h3Fx$y?I zy)d1~y|01B$F*Tf(jqk>HmvuRGGwUkNu0PB%#O)3#E{Q$NRSm12_!^dhCsd_AIjz* zUbL8d!$#ZY-Em`L3R&~N&G^4R{l5bIdj*GRgajyfrGBxQcdIaiJ=Q@!&OtotA)Md9 zo#*xY@%xtliJLPOMKs-LkB*~3$^AyrOFcv3-g*f#2=pJM7MNHViMxg(EKy4C7NMqpm0unOdCqN^n z2}qu$Cf1NMxJmS+9*l+VR)ptf;=M^1oUjtPkk3AYcX26l7CUf5EI2dG?S&rg3j^da zB$2yP>CVa2;6ai%DUrNH?l5Qx*g=kTSrcq>N!c-0IOD zJ_Pq+UK)lk*_XbTDa+Y- z?~_sWqMJUBX1=u36mm1(onbduM%>GOPyTW4%^CKa$655zq`9!x3{~$3v45naA~3N! ztY^j#nWpZdY( zS5c4sAf6&mX{s8HBAOagnL)4N3%o_wy1l!tkZtyE0(|YB_miwvZv*HMln)*59hb{_w*OC?6L(EI?5%Js)QR4s0-ul3oSxX*o-FW#@qSrF!sw=hrEt@^jJQyL;4yT zaQ{GZbU&T|660tPnA&vrJ75Vu?1E7nVnKk%AU9-QVgh{lSu_`qEiVF%x7u00F z>Z1NW&&4#w6iA3%Fd_&}kxgZCe6U@fT41zx>9N1o|JZ_ZiS&FVA<8Py`@wMk69lB) zn3PS*rshx?m0`)UW`k_2$@O}ktGH5mGI~-?qLGR5cUq1B2JiE56Bclb9{MWtn@a9u z=f7BN-+!UXms)mY@(Lr`h7NAw^3jahoHQIX!j53IgNtw|>69;#Y~p0(XkqVc_tzQb zZ&%j9#)Mu_;GZA0vW1O_ldOrGqMeO_t-KPgpq;g`j55qW4l-s=1k8VfzX^hZcJ5lV zEG+Bce0Bx^3#$&jgtLLQg^_@*nY9T40ES+`$;iaknSh;x0fzpcMgQs0 zGBU8j&|@rHcxRQ$iy}eU)1v@au~wL^i-`*uQ(4 znp3+ZoMQShdA5?%To~Del6t!+d4-BR1fAhbFU_+2 zo`8>TJ}Biv9%Suhp|?eL39;$y^FrxqL)rq=9G(?&Ki|BYo_>e|qQV0U5pf@S=ah`{ zvVICyZm#6);ibBqNPU6aRDlZ76NM=_Z&*TuCO=r0Sy$AM~^D#UEZK#dMk7z>aFfPp% zo0b0>md=R8#5ErFm==FhJ0;lAD+)6HhMgnY&_izW3p`1@tYb2Mk}FUBWHDLS%ZuOO zE4sO?dmg{cO9Xv4TQ<9=PuSoaXeyt%R%2soIT2-p}I30PTK37D9e2w47# z_22D3`Yf#f>i<15|DF5q#?Hh9!^F-(z{mplSKfcl`={1F`K%0o>-;nJxBXLxk&W$N zV}H;6N6g9!^G~gRul>(a=U?*v@BQ~zMHqTzI~7}te+-)b4*iFB)Bi1dmjC|S z{?p)zk&*SE%>PCD{{`!1VQ1%H{hzSj%TEvYI73taDJg2<(?PrZ^GpX-Y+hS4BaFN4G>MqYc?msJ9 zKLz;&p|DkLwuqcR=uUy(DT9s6Rv&76?yk!$F@sTxpd{+lyByv#AveWX35UrMJ5N4c zc66$wOh078=8MS2iwtqyVP&n;0=($jgDz^f9UqZL5pegfL%55uy;NOvo~yscpm?5u zg7@4^)>eAdocvOW9^A3E2TNzWF|rwxKQQ?gAYfo(aeWlls72 zu$Cc_oyg`SSo8abQIpEliG{yZbqP@fp9_2_!e{r99vHDioaT+n;adv4=4l=vIQ^T= zxqNXQDEzVJktu?E!Ubf;BS}vM9^gA+AB*;ilqe!K=k4l&?<|CS#seFZ@B?=PZF9IG z8j{QLe6VrHux|yELEf#&0)ENg?M^5di!4kaC)ovERGmJvvwI-UKy1B>#}S#6zcDiA zQ_mxi&k4u`nUi|r=!NkK^Dal&{+ev(Ny46Ib_V;zY4f+i+obc*asaalR^IDZ<>q|d zJ;I;=fg`#TzXW%xT7C<_GD)=VG3G;($B+@bS3nQejoKX$)gFvYN|?w6l+^#cM4KJ5Nl1>>L!i};=?#=E%;V?r1^xVDdqB_z>)T`0Gjx@u%keh6dzMG% zxGSV`hSrSroM&}LedCNipE^Z-K>xrj@=v$3-%HXa=3w$bf3U%r3GQqYybOtdwgE^E znS=S-2~a<(`>QG+yt)JHMm->Cot#9tcwNWeAJGxM8K5hqDniBAIe$lnIi zj9eXn@`m<&r!&7nKJ_|fu^u(hhNboVvFJA_ZG^S|40jB7%yv0*se7G$lp3Lgj4$KO z+5tHMG-)cpXDuQpK>vZMl@HJ04Za)w{lk)X9LKbUW)5QAu{Bm_xV5RR@wuK)-*5WS zNzSP+nOUlnL~g2+j8*2txY6W}Ot?N6XhZd>4EMILlnpWf7yd4*_V`mXXZurg(p03fd1g-VC|3HE&0*d%K`dd zJg#PGu7%+$Biqmo-Z9BvmM`#yp;`mi2Jj2dAfCzI0pgfLQljF^OzJk7hxS`14OJGc z7UlOsN5gI5?bGd^bUyUha0&9WOgHmw*aT_PR>2pca&)5nl8*coBrpVi$et2VgxErr zf0v)Y#hco+J~V$f93&7H62P*>9nCg$kJ}si18vBTQWw6Dt{bT?Xit{g->#qSFzXNQ zi|(5j(B>0`FVf#KO)u;pzOj2lH^2A}`xt?SVSmiy7!pZGP6$d}WN1iJHv#!tW#GL$ zGJa08Vib&J2u(8_)2@z(t{b*ST^ZpU_s#T9_fGguGH3@%Ik0Ra+0wcZKSMktU)x+W zMW`)OXpnmd-!(2%(k9WR>Js|!d-A^pJY-8#StZpZ>yUdXu~H%cx4!W#ncsPSAB@cuG&w7_v3GHS(oY516R~e zH0w#UbcO50l{qZS*kd%y;IlXF4u3@y>!AN-mVwuro1obJ#xy&T*4IALba^YEUOSXIzx z2537ZdXl;R`QXLc|G~x^bOT!L05W$FIQ?51jSmjP4aaL9<65ZaMVI98IP&8&6gIW5><^5ukHOHtwsc&TM0F5l@CCV4s zJXt#MGvH^xMU20UZ>UrP+z!Ia*X8g%n32?O>NbS^6ANnqT0Zl+zOL8`fXx@7&*T(M zIWiU$b~kcy8uYYt0=OIN&lh)p9xT>?T0V*@aBH*Rj_aVOfx(CW4>kUZZ=jEFq5e18 z7r9d^n*M1l5rx>`?O7HO({r#7FYFK1B6xcr@EuYfqE}4I5!GOJgTtTxcX~xr1~aep z6ng=d`My&NYwcjmnn2Urkd(cQ4A>EWy1;v4F`Gfpxj~OTu-UKyH$F*f{6E%)uvpMn zhu7xcCf*fzqIUu(u*vO&sLA?RJuo$+&}4amU);8i0G0e*Bv;c&64}(CIPX}#;HyP? z2U|dPbE17<-YA2t4`MGq*ynsgcQ~6vpCI;TS4US#d}5}j2z(FolIkLIMbry<`Fo~K zMHEa7c^vE;!%u@Sk9eKNcefJss)a5|*ueL^ad;^bK+muQaYqXNJ6r86(pcx%LTK3_ zds8Iu>w5Km2c9DtQRopZOr>kmRkNxps>x|4l2VHm#tuZfC{d#S;`DaowN0JXZ&jlu zE##lLXvS!kD36;cLXR4sS$KYH*L=^pVCzTrT85_#q1z;Avx-a*M-(=B$ zekBN)H`iJtfIW~ca45If>g0*Zfs5Y}NNMDi->adK%@2}9Raeo+ZiMheFuZ`3rj2fC zcq0fp!YW^mC!U{YH%4HN$AWDr7_D6qvPq+{vbKNoz8Z-j)b69IcZ32rg+DuFhN&zY zft9!jGj7H(;IV+~lwnWD*l~J?ic@tRU8w@C>Y~$P9d>O=VtjC*Xfqi1oUz#QAUC!x z*K55Plqc^hTWHlKnC0L^5p7;P|vqFuknc4Z$nN-B#lQdn;?*XUbGZV2T-Sv6!t;vf zdU*r7>1G25e2jWn6>u{q^SwUMp67(X&%I9j*G41m`l2>EP1b4s(q1Ri_W^=nS}rmI5=Fhx z7bLku#Bk76o^;fq=3?LM#5KGU-&7q={f=AS^*J2$w z5*iY+Li*li@A1>QGUIE(6LLdy!~%U2W2L_nQ> z%X5n#m}8&^qNO#`#Sula4fZ$yL?tsCas(#m(4}-k9l#noz*7E!@aAY7d6lyqwK~2x zvpSAh%h#;GKjEjAcz@vafnvTqoaYF@w|0pWu_s1%YP`)I-vG!l*Z( zAB|qu>`fbhU<)FaZfKZvZ@C3N<}po7!2I+Dy>X%P@y%O1djOU=QGNj-t6MtwfdT6| z4e$-xGX}hT62Dv&(%r$TQlX?fa2`Q`PelXjA}ogldvy1gy2qP7#*Zq7Jb9WhXv`2U zoH?cxVjyVZhDFK5M0#7bqYVf{pT}fJ($g1&8v*a$7JPV*Mtzwl86&>A#SftDQId(v zc5$vgJ7{6P;bXsWeOT^a9OQ9*K5ym1A=mfFca*f0w1(FH7#VdXI!wTSp&E}LR>K(% zn{Yp1o}bp~k%^*0bP*A%SW4b4rILQlE`9WsJwfVoOR10ltt$0a{SsqIASR1zatpQ|6k$TeLe?n3-Fbd0yif3#E)sJ zOLs$)k%KR{?6JX&d$u&s-Fq=;>EXuh67Gk(-j({dyO^GK9;w6O?Xm!6K!t%STvL?~ z>}Vvcnnb5>7kia=CN%+rs;Y`IgJOs_rCBj=-@aM#@5*Zb2iu|_n9-bdqamLG7KznA zR3@gtv~^1v+uhMu-vp{sSKG&F0ww!tK;XW9iHL}->G|h>P zwUpxd4yU%9#;n~#((VE16K3LkQl=cqP8(kK#@Hf~MY^Z=W&;~794ikNopyg1@;j$T(?RLgl@nf2r9u47sJ% zD}!$}NlX|szj0r9CK(@pOul0NViG=%!}=v_Rt?qj+BJ%fNn_HLUu!++mHOUp#aVf{ z)t|q7up_}~BW#0N+$XhBZc_c9DqkH8bJZNaKGR0H1}$Nrx9O0G#mDyfbjKDTQS8L^ z?2L7`31$vK+^QUM)1!rsBtK>}80R2ox7MoX%WgsG`Z#g(e$xnKB!?f&1)6*~&z5KG{k6H~mG?NROZ}P)>aDC>#)Z`?nWmUM{ogpTwK_Vr3QL5mZV+H zmaUILotMcCCJ+WIVE9nXn3lXn1WV3+PL(h@@o~x>W<#3XZ(RvJbjcuH%UIjpSlm8o zGEYWbBDaiQ@>V51iKe041Ed*DugD;iIyF&6&@X5z^wzKIE;2IIv@RFKd*IZD!)F~% zk5#!G6s}O$+FEF6`|J$2k_L`o!)m_z_rl$r$wdBcQn`&tol4rrggr<1*NZrnRhCUp zQ)3SjIB6bvxqCZBkqknwm(Y>4en| z23$gjdpLo%eROJ21Z|k0qA7Q(9;`eYuN!LI9i5P%pO~p08}H8FE!Qie>_RBcebvbr{a$#YCLA3Ox>vmx|VjIinlToV-EM${;s!HL#!sk-ld2 zVnRkCKU}opYIp)!el1oF2sLG~Q&1*A-Z9d32u3Tc2iYZa*O1h806Z#>+6vfkP0F&Q zI!}r0d3DH|WL9Xw9P?3EJ(Ps4+ytgW)6h2c+SE4fTJh$< z&ebo-W7Bo`h3r1|I_*Q_xKE>~KxvioCS>(WwVUKU;5u4*)*$1UEK~(2k2|Ee9%8OS zo|&NurDj)TnrK9_G;hOZ+s1GHMP`I8h4_v*lJNI)1|Oho*(`F1`2$ zqF^Z$DALWIEV(sZLM4Vjr4Deze8bddc06r*GRHpsGjTil_xPY4$>`RhwNUEAt%rCBQyrCFKjuvFYIV} zp1*Q8emzxzzUMUmz%VqIdn>3tbi8~!sESHKFT8f&WjzY;+UlCD1l^?MgA%+bL`emR zMvHp(ihrWe+0a5YjhT4F!E{G&*%f>Cj)s#Xb?2nT#1EDnS?vM4E z=qw=vU@gWtkY*{@VzFD73G0{BS>J5Vml z%9`jaJF0_O0cQ*mvHK!@>F<;!$q=rLFFTe9mMWK)Xk-XjF`2I9XB)dtpql8zBO;g2 z0pEhwD^pA=IiXx_GmiX%u~5fKBUe^%S;lY~&K6k^mk43LppcqNWF6O3Zpw)&o-&>~ zx|%dOH;FYl6Cu4QsWQP2&S>zy5KNpbDY zrKwBOY@4i2zFfs}GNfcxDwicyfFzM&TD3E+aB(Vqu4kPFxlDys@@&Mw zkma(r1Ln*3$X{Wl%sRz{!sU`H6iS!N>GpW!ND7RY(P45Lqp6rPYEVNi5l`3|$(B?( zvm=wehny-UP(nSTDJ_=?YL&|GgxF4p%jHohm2{KB=>iW|$}N}s(r|tY{ z8$W&)*fE%KCT z>+$XMu|9tfV46-TmWm`6!PU=_45WUk5v6M10t(|q2mfx4$cX26K2Gqjyh=!K;1lo^ zpP&&8gre|Ko#b=4r6q5vtIJtLdu63`u_(nzx?jqWLJ<;tewmRp?-S8QQYsX|fQGUU z8io)U8cK7JmgU$28)4r_0P&&xfz1{Sp#yNgX%ww1n@I~x(g2&gO zwyTYU(3C7feznYKP!1}vBFmCVSzk^JQCC~eZcwW=c1_SG#YC{lClLZ`dzZ^ zcLDFr6Xuy{gkzqX3YVuW1XM}aNEeq-JFP%TE`ME6PJvoZ!CX!`X1RqSUKZ+QkrOYA zrMwKeX-qfuaMM6HZ7A`L73M^YFw!JOELL8Yp9-|57fcI6AB@4A$Zd-e;Bku8GHPn&hp;!!E#A4hec{10M}5tbg2AfIWts_JHcbLoOR1BF^_J9)roq4EanN$ z@ylZ#?VNx+<_Q3EEG7dbk)pb^r=-D!0;L(+;$R@4(`l7fOHei_$3t?g144G6{0%uL zA7Q>DI%64ku*e&0i*?3&W86S&Fg6rpQH+l(bD<~kDsZSR zU%RViqhQghN@h+>Gm04{S2ypfZ7MBcLQPF2I&Xmo9ecTDNzHW=+n0LnFtH+GT`Rt7 zN8b$-?hcC^xXf9r@uEj(J96`E(Zn3)I#?Zys9Fr%r+-|}+@jvCXOs^p^ymR>1WHq> zctY!M1B5eRT68%@7GvXNS5v!Nu<;-&Ta?b|5 zf!W~R;E|_%wZ2y01CsllPe>kf${6hSSiDZ&=T~^0I$uC$3m`AU>*T%>2AClQ5bvT@ zTWiokc5UbY;?M{a6&-Sgl&)rKx`I)bS>d-@ym1fZ0Z0nu;XNxn`#qfJI1@#d$&Yh8 zW_ip3xgQc%cTk9kp9Rk481ewhRh5$rhE=*U7}xk|zGj?k+mdimfkag~s6x>D6s?W} zIAH!Y{x!?;wLd|OcgZ?*+Yz4D7k3rp46oc|gy^>-#rH!ISnSd!|Hg#^1ud2j8>g}W6 zKI-i&F5p10{FTxLU^z$Wg5u(;%Kt4gbc(4ez=g^xf(vyaU3j2su!+Y4w?JH9XxVifeCdF*iZijn|FEqNB8cg=!wdT3osy_ z*K&NfX{PY;-EfCJ4bEjCE*9A9}&3igj#@$#)4~X2NLPQd{u}54q^q{v5)pVo zABqUc70LCA-sFd&52ODG{UfR-5r&QBG~N%K-ZEb@8CzZ9w%fhV0H5TPVRtwY&W0CT zAGbbkdps;xg(`!UkybPp&yzLFX9b%g^P=-&x5@_i0sS4JTcfwe29gi)_mIe;=lElx zW6>9rKM4IG`cCMb=*grPNjRC*%vlv7Sws<)#>%bre7(L+vOu=Pwjj1!wU@uuw%fit zaBJw+@IcbKOL2>JSD4i(+VNHVReDaLkcY#OP)Lboj0f{py@wY9K97K62@ldKwH}?< z?(uj>CT}?;k4AvW-64v$P*9M|j>0*=9Efl_8T-843i0 zX`9_-v)Nh1sBAD8RSD;G-AX)y4;~&x-Lb$3mWyW5nQF7+{dW8v`y2N6?5zE+ zV9GXvozDuo5awaf3AwLQmxZ3gJPIQ-UMs3aWoktji{XJV6CS}IA6D#$q~yne;g@5l zs1#5X4@A#InJC$|g{0B_GIGx8Y>VN67$y{q5EFrz8I7Hc$zq+wPw&o?_hV$I-tHJ1 zKYezrqtABMF=pq9mjgT?*ml}6#-Al>EI-E`Jl(JdjV~OB=Io#o5F{KqVY_!}f&Z2h zi=<#F`24Rqa>9>OUc8SkiT#w%AdL8tFmF=V0y}i(5ST`CwCT=TFEC8RI5TX`hKOON zu7l=m;pPF|yYrdJ`J>fnq-;4b<-ogBH)YDH8wXgz$%i8vJW%e_zw*5@Tf|a>56||P z*Ji_0&>A zLi$k(;XMo)-<9-2p~qWnFVj(LQ53bVx@I;k<%P6;CdR@qd?7%Y*7Y++Gx z1!Gp1EffvMtl~ipzekvce1aEY0<>`y zhqb2z_4Q-A0L4Fl=Olk6rPPw=XCvhBnm`6wbnrJ_;dy1_&t;Z`OwP!>4F1c}pAP=& z2POS=F?w@_rqD&ie?ZnmrZz2?`@@`=_5?jmgHIJRt&QdDBHn8me79(H|)8t>6 z8tx_J#N&BdEaVmq(3@_Nbe~F1i72(%h$Tj9HBwT^SfI&_gqR|oYb1xmw9Abuc|vC~ zaez;T$&;tr6XPdOq{d#!Q%LWQ@~@`iCoVi#wOc8FXra3K0=si$@&iiKI0_a!IX^ZL zTdxYMbWUtuZ^F$cOp6m;SPEsUoLEBXBMD^|C6qpr7<25gl-88eM_~CUrH_n8x9bA> zh@RKfj-Tx480Am!uXGf47+_cdE;LYqI(2phUcoT6?g#Y`+FvxkXc@78V3+N4cpvI$v8h%`jN1E+>_?ykUON{AV+3?lw7p zgj9fH#e|^7>SW42IUz0L+h(Hx3y`jVFz#j8bE#YYLkZl8F2|&UO%_ zc$VA~89!Z1ks}11#(HZOfil2KO-?fU`a4iRrF=4Gp!DfkLWZ0rgu_7UmsbGsQ;Fxi z^;Rb8o1u>c1{#vfioRUAx!4-xUYht>)A+aBXT+i_S7lbLV%GUA>t~0%0iR5MIx&Ym z&K>~TIm`I-a21v!R!*yi+ED;9QjjtVIW|H{D)lGPNe})7h!vG;BM95I zP#G1e4XFU(Lu>gQagC==1yAOW1>@vc;!DbDW<$&^ll2v{rFh;sW3qqT(*T)R_F!J%fA>XL) zq)+1OtbVzr08~6BwEM{l3@sx2Z`P^(H&)A&vvi6Sg;cprBM+5@)!}rgTvjUJlm@hn zqC&tWs-%F>)ZIHucmww90N`Uo8FK}_q+>RbYdo+R76|Q(UCh>@k349da}3 zJS@9RYAFFnHCJjsMy4zY5aN3G5sI@9YQgsC5tOC0Y zA#Iomxx&hjG_2Q|1mwmJ0b3Mcv&q0_)bIj!vY?q&Rsq>1pwUg@^M|MOz8Vm8K-uB? zWuks7vsHSH@*3?mhN~@GZChRPj&>mV$eD}6#p|<9P-a5Isp$Q)cCyh-;8jZDwY;pN z!s;i~oPn;2d+Ig@aS#d`qHOY z)zv<7-47;yv;VtiZ|@|W-gE#so#aj+xW8OD53x>uk~My- z3EotbTU^9TT{!YklYU=i2>!9V+$_CZAO^rL%z3M^re)So(L_KV|;Fuw|jZj;2 z{$K&tM|$!`&lN5{ODM4Z*V@ZwP1M#V9a^u=5!GY8@y6e;-8au?Z@Esgx~OH%T@zRReBy@_cvGnHBfQ~zKOfrj7}?Dn znEWj#k!(O!%u>;AxHo}ySjVVXq~oF}CW*J=Rz{((9>GoG$%?892kYck*jCtAI952N z5{*QQibkusEvhY=E!u6mUQe&LH`SZoEx$#zOS4ORlWtf13GRsuZ_s2kWtwt##$Dzv zPvI0(%n2UB8;ccZX5bl2Etj^ZJ!x;+H@$3n`E1SXqD87Dnx*`b*pj&0i@l69<1Keq zEV3=KFLJb(UY5D6?6UI9DwbDjS(PegR5@b-l~6q`magtM^c!~vACNtedNBP&YBc&% z(W~*%>NC}*`SL0!>S3G*@Ee%HJ2A$`(FofjYRVrfaXH;RUZ=-%+)aGS><^iWVBFPO zlUl8ftBbT;SV0YG0FNUijh3*1s7b**gGGPw3za>+8kdCtn0^Tfju1qj+odwFy9CE9BK@vWyWY& zl~80*Oh*_KBWSWTIF-ff3{t5R@dyuWicT9V3K@V^k*A~?3>b~FBz*2#Z+?9S%8>3B zuTrhitmRk5IlzbnWum?uUR0}Wx-6I0Wiy~CQpEZ|lF6McTdW?2@-4ZWD6)V)<6(0A zOC%f&7jESedXs%RWaxP2vURt{XMFg=Z7qL(ep;FLyAHcs7796*9oe|!%azrUiErLL z_tdvGZm+UBd`iiNiTJMlm+!n}My6%Qnk(c8A*o8x+NAD;RwW}hdX5m%RIWs+cjG5ubb%_Y<;OnG zpC{+Gi$~v$U$|MkRF=Ey#LAT_L1ohhLsrN&m!%5JDaKXiFfPTxf`j5;2fdK$P*VEA zAeV;)$_WY5+zr&Qfvg!MilK0ZOe_>V8w`=~g?CIrTC6cA^~{>*U3Ec20;~a%SUjdXjGz5 z$Zn_Y(JEC+mC7d&l2nU^Fkq)%ybtCuhv~+!!R`ne3~k0iBQpTnkdY-!kdSACfC&n} zyt8m`K6mdE=2A@_f7Xy4quf>zsreL!hbhB5T{^u>=Wroj@8sPsM0bXPbtgP|0qvJo zS|x$<0$&8kUsmqRb4z-%Rl}~*`7GXucH&RP+pcSz*Ozcr&c=1^wec%kvdh_f#(%zV zmP;S#dwF1H`|Shx!Mai>4vjxN&{i>*k$Q)lRSu9@^zfUHcEyF^p zQaMYxMEL;sc+vipY&3Ny&Ike$eB}0{YVwrWSR=FwmkVo@8-;6xeQ2NXl<04=%FO}CYBKk!xnz#(bwG6WE&*7B({+Y6vtPf)fj{}AH)^#gP6 zJN1w6Zg15IHb-28^~C_$&SKTXnWVI4Rccw|r9&GpUE4JMv+sQm&zkpS?v&!QcfUsA z`!)P_LvOZq-4A~F3&6S=pk}Y8yNWM~Jw6J_KKjzZCq~QdzApXh3c1(G`204n)8O;l zy-w^4D7;R+FJRC!43^vM^aX*P!o8g%N$q|`uY5p$O3qG_OQCIm9oZG~QTa(gk-57S zbgNHJ5Hv{(mI={Kik5c?y}kk8DIc5mwfQ=IEMaq*u3y720LGxN-r^m71b5IaK}rec zj*y5Rx^P?WqPJpXsk3C5tH+;9FACc%~-C(2k zbN5g?;VlCQNwz}|S&$F2V!O(za^J$=%m190Y~#0?cJU7wA2h$_e9iqPFSqFpCbx%` znei^itsW*SmwKJZ=a+e%8ehQbvwNdjt%k8jEfyqq)wCKgGVlh$kT!@02_X01(C2}M z=0JWARSaMufO`Y`1E&IPz-Og9s8)(DtdyO#LgR9nhI&eAw@M%JlfBd28^MeBPU9Uw zz!VVem_C~=?2|e?Ix`5&`L~$BVf9aW*Cbs@+=aLU_>BNuEEZ-ce^lfH0?i3QCJrghd zY~uGXyt&c^WR?}%af6%m_?*cP*k>i{5RZcB_;8mT=BspAA~6#~qj8L2ooG-vP*@Bz zVz@KBKYS|8h4sW+y8`u~ooFxGk0i(*I*vUU=c%`OWAmXCKAAUmo=2UFgMpww$VeH? zVn!+p0p;oRI9aJNtP82aHoMi%NPV1sCGtugE3runHj5f;K`gAqPB~}>-nQ86e%!2M0O`@&Sw%>Nj#vz+%W457N5TmU#;`O)=De!*eM=Z6=!49yE|ABOPJ+gog z!haRD7$8Z(V2MJmW>|C_{~e+?iw3P$C+f@7x}CZ~-F_XXvs;fdL3}#jxdg(-PV>15 z2}=XkPrcEgcRcz!j5%~>g(*6NnY!k62G8*sYc88$I;$*7S;!HZ$$kH8pY7_eA}1h> zyW|??*Y^|&9xtH}7Xnl)fi{-nxyO)l^3j*crGc`Bd;&@ObjIelLcdD>(f?sc-7Jrd;M)&HqdXd6P9Hj% z#_18Z>V(cpWk!1@m8`s!bRWm_cDbc?`p54h^Y+ znZ|?QPaY%=7Vj@+ioyTL3fWHbSc3Vzs1(ca{<6_BrVNeX8PAHw7mbY3o*@AGK>*za6wA1`q!c)e{T0@RCQhDYfnev2{I!@~M1$;qY$j3<~A#FIU1Yk^Y#VfH# z2R5H7vJxv5Nojf|_G;WKDesVH8pt!i>*<*EqrQ0DIJK!~p*wrNsmFL0t0lirLa&&R zaicek)>R+8=^IOD9^Wz0d)LHAyH}-rc8C6IYp7_={Q-wJe&2kdb>HmkJ0D)h&DnkL z6|Kwfd8Fj%wL{lG(GYPbXD7DEmiJlokw~3O|5HpK1N120TBE&jIIZ-6K{~& zR9UOdHNDIxf@UY0&SSB}WHqv8*^@G@n^%a>fxX6OH86y#om%KnmMQA;tb2{uHrDgGJG_g6Uy)GJBa9nKzjCm_IXe z#_m0i?>vvKPS@n{RmVJfNI-}VLMqpe_vJ{tXZI@bi;6cC3}EH<_-Vp>(s>7jGsEYi z9NuBS!w%u?+L~RwWXCI7asig?=XPLvP=Z-sIYM+yf%T)8DhL1o#QI7r2*2K_>eS~OUP8a1Mh6?M2sjmB7cI4P`YBiJPx zWO9>CCYQ4utZs7T)nLtY_$x??RCu4LkzlDpE|tn9oLbF2hnt~C<#>&#QYdsR-p3wb z8FmE!U9{m^IsiJ{3Ha)ij@3y;8J5|#7xZ#p4ej9?=wh(G&(o*#z)Iy#tH=9m^jSUa z(p||o2TVP&>U285X#M0eN+UqF#kkuxaQtHXTA6%K^G8sAFf){$jW4mLsMfwfW(nqLuGNvPnd z4c_bN*=mQC?2}a%UIyoo5hIfZaQ+;X?oI+dSKalSSHJcG zlQGQPKCk_j_PQ0xFS$a@RvbLg{qD2Fw>`P%>Cb*QvHkihm}580@A~c4`yct)RZ9{u z3d>*>IS8X*Ls4{2EZVBrro2jfgW{dghd_g~cn5n8ca7y{D_0|rN+oQ-9<@tZVTBw6 zD_nn62;*>A2fcj9AsdnqvgD9XgAwV)03k|L4pbx-F=A0?(f*=SMO=}cjDwQ|<@n&V zQ3SSlzfoqi$IcTc=Q`$%pUzV!6zRic&vkZTTPZ)GRZ^#vOlaEa30FvAaJxJ%Myd~K z!XZTfa6Ru_iF{hH1(o5I*kuq_BEMR=u-l9B$RC@vtgJBS33Z|`GXyI#nD7{R#83L3 zz3-;Szp)`W_~qMvwD!6m-PZNOU0C;z4dXvD%xcOsFWr6Xj_^{+x{#*z>)+qK>eSFv zw?B2+A?!YiXHP5}Z`if4^S3io-+bWde+n=c4U@l>e4B6@jN!0SC-pKp{`s&4dw31- zxzB37j76qp$R4*LOCJX1p9QH6yboLCs_c^%>?0SFY~{o_lqoNxW+FvR@kSv~_TPrj zyk~suaqBVLbB-b3r!vWt_GcW=OO8s9$s|un9+y5Td&>N{Me?w0P&a6J$TH}YtT(T= zZsE2o2Yiy{mZjD08@$v`iAf*pOwpvB~Ebbt0G?#s(f-hc!+{$#N9igUkb^;?SFg8iMSlm|l|D?+-M zj$EfONaX;*W25|N?TM*_n$dU3jZ^+r^1JBv{V`afNE$>g8@OZAAmk*E<#!6{)zSQ! z4XMW4xzj`~^#}JapCv(BZE>Qo9Ye2QZL}S>X)AM)fbT~+!cOL5O zETd+1bX-vSi z28{PRPUjw+)YQO&T|2JNcBBgT=|d5dB^)w`LzbuuMNB~#&hNmGZ5Px}AB10UpNAY7 z1qfFRL!|STl3H-f&WMeay}s ze{8^?2nM4KE1Bi9Yj(e|wV}AmQ|`OcXe?R#*38)i2DeN!an0;KD2Dzd8n2gQ7cy~- zTIX@Q%}`*7zTGjXG-bh{-ycyq5{wGDLMiI4@%qYk2KNVtf}=r>`WO`?qL-6cj6nYA zj2^GsH8S~+qXbA?LBJlr%e|ZS(nryP7wf#e-hJLTyqwo-wwNpmy8jn67UZOWL8bI$B0OgOo~{km=k>_l}Qow1(tY6d@OegMm*zrj8aQT zDEcZlL>3vck{2HSkUfOL78kXEnIS>U+edC$GRGxU#}j1^&!gVf()K$a3&tBvLF2bt zRz3Fe%<{`R*7}k)O(nt0*R5o48$YmoQTa8@@$u$m^*8@lH|gafgt)`7)?{#nSSyyV zbzS9pIQ^vUne=n%Q|0m{_FiePY^QvuVn8||+biFzPz1eBx6dE)I^({8oZ|758Kj#%!AHtY9mBg&?qNYZ_kMuy05%dZ`}imEjt+7>MF_Z$fxHD{ zf;=1jtf>ta8a5w>mue%X|!9yjDHYF zZkdR#as{Fjb;~1GAvI&i#4{l)FRo(yuJ=Sk6TjHdX4a7rT?up>*@g3Ak68ar4jbA% z>peRqJEc3_w{v&6W#vq{Z!x=ASnAv0+9uiV+QsZ~>~VdAeL_KY&vb-7BT~H07OUK( zVOW+h8hXKJ5?D^~Ih-z5X5%E_yYG-7_>9MaQ?s!~5jr0K4l%#;`4ES4wA`#CMDze~ z_4seV)d#Q`=nOCc%LxATD9`NoVIRpvR0tx!pJ#Zx|2V!Ee@GG7>5h58R&)^Ff-?F! zx|&edl)cA#N>%TY=Vf-Cr~5=rKkjGxg&Xh<%ngE+5`dI)CTp!~1J`3%?dg^Dx+O%I z50?34T<+3?Y)Z1u6h#MXDQ36NpIFz96%XIM^rlNTZ@;D|8E`~WE%UY>eB`z(pU0eJ z?o&r2kK8)4;pjl5a$%_}&il#^?!5Nr)x|P~j>VTJPvai+GE$*95IUk%#fl2Cx?CaF zmakCYeToALMsc(Hifaf^(x-ulEJdLUAC;q&NMDh^oO?^25=p*9V#T8{#wzsEF~m)t zI%IUtkdXHzaj@9sSi%-5W+GA3soAgjA%2Z{8^6t*(g4woRTybR4a-P4ZUo;gI#|ZU zvJA&+B;u@c$?vcf4C(JMdCr3$Ji1?nRd%)HIP(EwnLmhX#PJ-tDzl%HaL+UEBXyoK zCujSoDJyiA@ZWKMEM7bHmbh>kXp3Zv^d`woQZ7F%ns2LxT84~$1^NWd^ zUVQJwZGGuQ8MkC^_@6Iu-*YBARYW4*bpY9WfFrS^FyO0e#N+K4D>B|pQKTnxjekHj zpdN4xIBy6Ig!g2gv_0y0JakBX*zs)mxybjF-&6fUW04^xmTDM>B4W{49U)Cf+k$V$ zH)?LyK8du`P&IBrEx0+l0$&=rEOQ0A03=m)Xnhl?=!RQMp*okQaOV%TJYa<$>oRfQ6Y=1YD9b zZ56G9R@Q1SJC6U9pEiUOJxiy|*y*#m-CN3iT64T-X*}ie>n)tz9P&v5E0I^`UWpT? zqLnCVNCVT!2`jOOY}Ljs#Vb)tUz}rxrcTgvOemoTaQ?uXfT_%qU#RG{p-@Gh8zQ`s zF)xpb?u_BxU+ehMli&Qo#;1p}bANg8rHxCrj6F;CyL zf5}ZR4)@P}WW%lV*YxdueS6pD8;3#Dbf-lEv~TfUG#rDZ#&9zQw7 z9)S^brA(<#WJKK!oJ=gjD~hm}+^wV%k8TM>B0^o*6KOz7RgvB#@R+laO}s3x#_D#K zMKYUJxk8FXDV8R^MYss*gI=#!zyrddz#xGahJ;b!q#zMGV~=gR__VtJbYFk|x_SRt zhd#dtf-ZRG+~0=?S!vG05um%g+#u`Jqom3UuO`jiyuEUESun8FY%mw6jhdM=CgM$g zyHcVFIJ^-hHnRtQ{NwsWq@vLjyL_T~Zp0Z31}#(~(5n5@UE~=iz{~2%)6CBSUP`#K zJiJ6Q6kakSx!cHKdb*71`+Tf(I^+>G@sId)4`D^#)`ee>iLV~T`5!59olQI$=_qLeA4%2;QnH#3lt>M|o(5O--hDqh#Tu6-r=O6V7Xw}S5^-sj#A zydV59p)%AaIue_TcO>@Wz06*Az)UdofNOX0-lT@y*HW?ywbZ3d{J{TOK<;8KCWFi3 zw#S@_2Ne%09~SNo+#OUI;+kk;PNFrlB6D@@>clPDCjtjDAF%Jc)G>L92YrX}U@uN# z29MzQF#1k%1Up21kXwRmAI2oSAU?n*F^jW%v zNO*$N7hIRBUnVMpfk05BGHEob!sV&<-0i83{)_HUfi=GkmK1>RLGj!+m@69d3cOw_ z^Xh#rERD%sFoiuXB#TO1ICpqSkvzR6^_lDw{uBLYQ4T1jetJb}nP}gK_c8m}eX55v zgXTfUpmWgmp#T2BzG8JpI}sa(fP#T&s#G8qye;u?@Zki|S%mV^M+JLU5w&NrsLV2; zoH_A84k|lBnN5OMf+|H;&3g>BT7hWfsgW~F4SP126S5S@8EUd!V$3G;5^shLxx91+ zD8c|m7_te$K+>EMbvlTq%d)%%%F&Pv&WHvLl%s(-plo`oJ}-vx;y;{|%Sf(-O>MMV zrxrePlB>@Y9<&4_7hVTr27TeHE^AsMcvsx@`ggW2+UPS|H9nu~k(G^0yC!~9T>S90 z74tHB-k@d=O#I;PE9MkeMPtcXtG>SDL66dbXWf41CE3Qy2dlG7`yR0Bv^H|ShXVF{pdx8f zy5Kf}tF3Ikw5M`wxc5>*72RmP$+owA&x{)z_qN>9daw0f+k>qm+%d^v>tWk#Wv{i2 zUV8G5W$`}#^jUEBlSe)| z(PiWB6G3LRJUK=oym>!Q;zMLWM2877W;)vA{ebS`1m_%nBlKPfeEP{wO8$gz>Xff= z_Hs?j((1-wxyx;}VM#btT9PR#D`BN|;nr|6R1{tkTI9m6X@C%0%I67aCax9GbV;oX zwH42Ep#||p0&cK1x$xr1QWsvb)Lrd_=+0?qZpj=0x6CQ85Se=FSrTI*doI=XNpHLqQGd!O8cxSsxD`ig|$Qi3>@NgiOdoHr0Tvu6$(^7m2;_f2z; zyG=5wG!V$+B5Ceag8Zh=E65HK{AemXbx1^sa_NOGaF;Jyeq#TPoiE3=tW?74;#XC@ z@@T`Xgx8mL_5OHzN6!^s`Rt{eTU7dT*^07w7Mtg+ZYXP;yRtDe@sCuxdi8e>Kb