
SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Algorithm Efficiency &
Asymptotics Analysis

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

What this course is about...

Algorithm Output

● How do we store data?
○ Easily accessible for algorithmic computations
○ Efficient algorithms when data is large

● Implementation in C

Input DataInput Data

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

What this course is about...

Algorithm Output

● How do we store data?
○ Easily accessible for algorithmic computations
○ Efficient algorithms when data is large

● Implementation in C

Input DataInput Data

● Running time
● Memory

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Running time of An Algorithm
ExchangeSort(A):

n = A.length
For i = 0, …, n-1:

For j = i,...,n-1:
If A[i] > A[j]:

Swap A[i] and A[j]

How do we measure the following algorithm’s running time?

Implement, Run & Time it
✔ Captures the Running Time Precisely
❌ Depends on environments we run on
❌ Depends on the input (size) we run on

Count # operations in terms of input size
✔ Agnostic to environments
✔ Shows dependency on input size
❌ Doesn’t give precise running time
❌ Expression can be a little bit complicated

worst case

^

May not be run based
on the if-else condition

of times this line is run:
(n-1)+(n-2)+...+1
= 0.5n2 - 0.5n times

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Asymptotic Analysis: Intuition

0.5n2 - 0.5n

0.5n2

Asymptotics: “Let’s ignore the lower order term & ignore the constants!”
✔ Agnostic to environments
✔ Shows dependency on input size
✔ Expression can be a little bit complicated
❌ Doesn’t give precise running time

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Asymptotic Analysis: Formalization
Notations Definition Informal description
f(n) = O(g(n)) For some constant c > 0 and n0,

f(n) ≤ c ⋅ g(n) for all n ≥ n0

“f(n) is less than or equal to g(n)
when constants are ignored”

c ⋅ g(n)

f(n)

n0 Example: 0.5n2-0.5n = O(n2)

n2

0.5n2-0.5n

n0

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Running time of An Algorithm
ExchangeSort(A):

n = A.length
For i = 0, …, n-1:

For j = i,...,n-1:
If A[i] > A[j]:

Swap A[i] and A[j]

How do we measure the following algorithm’s running time?

Implement, Run & Time it
✔ Captures the Running Time Precisely
❌ Depends on environments we run on
❌ Depends on the input (size) we run on

Count # operations in terms of input size
✔ Agnostic to environments
✔ Shows dependency on input size
❌ Doesn’t give precise running time
❌ Expression can be a little bit complicated

May not be run based
on the if-else condition

worst case

^

of times this line is run:
(n-1)+(n-2)+...+1
= 0.5n2 - 0.5n timesRunning time: O(n2)

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Asymptotic Analysis: Formalization
Notations Definition Informal description
f(n) = O(g(n)) For some constant c > 0 and n0,

f(n) ≤ c ⋅ g(n) for all n ≥ n0

“f(n) is less than or equal to g(n)
when constants are ignored”

c ⋅ g(n)

f(n)

n0 Example: n2 = O(0.5n2-0.5n)

n2

3(0.5n2-0.5n)

n0

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Asymptotic Analysis: Formalization
Notations Definition Informal description
f(n) = O(g(n)) For some constant c > 0 and n0,

f(n) ≤ c ⋅ g(n) for all n ≥ n0

“f(n) is less than or equal to g(n)
when constants are ignored”

Useful Properties:
1. f(n) = O(g(n)) and g(n) = O(h(n)) ⇒ f(n) = O(h(n))

2. f(n) = O(h(n)) and g(n) = O(l(n)) ⇒ f(n) + g(n) = O(h(n) + l(n))

3. f(n) = O(h(n)) and g(n) = O(l(n)) ⇒ f(n) * g(n) = O(h(n) * l(n))

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Total running time
O(n + n2)

Asymptotic Analysis: Algorithmic Example

Useful Properties:
1. f(n) = O(g(n)) and g(n) = O(h(n)) ⇒ f(n) = O(h(n))

2. f(n) = O(h(n)) and g(n) = O(l(n)) ⇒ f(n) + g(n) = O(h(n) + l(n))

3. f(n) = O(h(n)) and g(n) = O(l(n)) ⇒ f(n) * g(n) = O(h(n) * l(n))

Runs in O(n) time

Runs in O(n2) time
= O(n2)

Function(A):
For i=0 to n:

...
While ...:

...

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Useful Properties:
1. f(n) = O(g(n)) and g(n) = O(h(n)) ⇒ f(n) = O(h(n))

2. f(n) = O(h(n)) and g(n) = O(l(n)) ⇒ f(n) + g(n) = O(h(n) + l(n))

3. f(n) = O(h(n)) and g(n) = O(l(n)) ⇒ f(n) * g(n) = O(h(n) * l(n))

Asymptotic Analysis: Algorithmic Example

O(n) iterations

Runs in O(n2) time

Total running time
O(n * n2)
= O(n3)

Function(A):
For i=0 to n:

...

...

...

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Asymptotic Analysis: Formalization
Notations Definition Informal description
f(n) = O(g(n)) For some constant c > 0 and n0,

f(n) ≤ c ⋅ g(n) for all n ≥ n0

“f(n) is less than or equal to g(n)
when constants are ignored”

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Asymptotic Analysis: Formalization

Equivalent to
g(n) = O(f(n))

Notations Definition Informal description
f(n) = O(g(n)) For some constant c > 0 and n0,

f(n) ≤ c ⋅ g(n) for all n ≥ n0

“f(n) is less than or equal to g(n)
when constants are ignored”

f(n) = Ω(g(n)) For some constant c > 0 and n0,
f(n) ≥ c ⋅ g(n) for all n ≥ n0

“f(n) is less than or equal to g(n)
when constants are ignored”

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

- log n vs n for any a > 0:
- log n = O(na)

- O(1) contains all constants
- E.g., 35 = O(1)

Asymptotic Analysis: Formalization

Equivalent to
g(n) = O(f(n))

Notations Definition Informal description
f(n) = O(g(n)) For some constant c > 0 and n0,

f(n) ≤ c ⋅ g(n) for all n ≥ n0

“f(n) is less than or equal to g(n)
when constants are ignored”

f(n) = Ω(g(n)) For some constant c > 0 and n0,
f(n) ≥ c ⋅ g(n) for all n ≥ n0

“f(n) is less than or equal to g(n)
when constants are ignored”

f(n) =ϴ(g(n)) f(n) = O(g(n)) and f(n) = Ω(g(n)) “f(n) is equal to g(n) when
constants are ignored”

- 0.5n2 - 0.5n vs n2:
- 0.5n2 - 0.5n = O(n2)
- n2 = O(0.5n2 - 0.5n)
- n2 = ϴ(0.5n2 - 0.5n)

- n vs n2:
- n = O(n2)

- More generally, for all a ≤ b
- na = O(nb)

Examples:

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Asymptotic: Exercises for Self-Study
Exercises are adapted from CLRS* chapter 3

* Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algorithms. MIT press, 2009.

1. Is 2n+1 = O(2n)?
2. Is 22n = O(2n)?
3. Is log(n2) = O(log n)?
4. Is (log n)2 = O(log n)?
5. Prove that, if f(n) = O(h(n)) and g(n) = O(l(n)),

then f(n) + g(n) = O(h(n) + l(n))
6. Prove that max(f(n), g(n)) = ϴ(f(n) + g(n))

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

arr

Model of Computation: Word RAM
Random Access Machine (RAM)
● Random Access Memory (RAM)

○ Can be viewed as a very long array of
words each of b bits
■ For SEN-107, not important what b is

○ Can read / write word from / to memory
at any location i in time O(1)

MemoryIndex
0
1
2
3
4
5
6
7
8
9

10

○ Arithmetic over words takes O(1) time
○ Can allocate array of length n in time O(n)

memory[9]

Allocate arr[5]

● arr can be thought of as “pointer” to address 3
● arr[i] is simply memory[address(arr) + i]

arr[2]

