Algorithm Efficiency & Asymptotics Analysis

What this course is about...

- How do we store data?
 - Easily accessible for algorithmic computations
 - Efficient algorithms when data is large
- Implementation in C

What this course is about...

- How do we store data?
 - Easily accessible for algorithmic computations
 - Efficient algorithms when data is large
- Implementation in C

- Running time
- Memory

Running time of An Algorithm

How do we measure the following algorithm's running time?

Implement, Run & Time it

Captures the Running Time Precisely
Depends on environments we run on
Depends on the input (size) we run on

worst case

Count *#* operations in terms of input size

- Agnostic to environments
- ✓ Shows dependency on input size
- X Doesn't give precise running time
- X Expression can be a little bit complicated

Asymptotic Analysis: Intuition

Asymptotics: "Let's ignore the lower order term & ignore the constants!"

- ✓ Agnostic to environments
- Shows dependency on input size
- Expression can be a little bit complicated
- X Doesn't give precise running time

Notations	Definition	Informal description
f(n) = O(g(n))	For some constant $c > 0$ and n_0 , $f(n) \le c \cdot g(n)$ for all $n \ge n_0$	" $f(n)$ is less than or equal to $g(n)$ when constants are ignored"

Running time of An Algorithm

How do we measure the following algorithm's running time?

Implement, Run & Time it

Captures the Running Time Precisely
Depends on environments we run on
Depends on the input (size) we run on

worst case

Count # operations in terms of input size

- Agnostic to environments
- ✓ Shows dependency on input size
- X Doesn't give precise running time
- 🗙 Expression can be a little bit complicated

Notations	Definition	Informal description
f(n) = O(g(n))	For some constant $c>0$ and $n_{_0}\text{,}$ $f(n)\leq c\cdot g(n)$ for all $n\geq n_{_0}$	" $f(n)$ is less than or equal to $g(n)$ when constants are ignored"

Useful Properties:

- 1. f(n) = O(g(n)) and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$
- 2. f(n) = O(h(n)) and $g(n) = O(l(n)) \Rightarrow f(n) + g(n) = O(h(n) + l(n))$
- 3. f(n) = O(h(n)) and $g(n) = O(l(n)) \Rightarrow f(n) * g(n) = O(h(n) * l(n))$

Asymptotic Analysis: Algorithmic Example

Useful Properties:

1. f(n) = O(g(n)) and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$

2. f(n) = O(h(n)) and $g(n) = O(l(n)) \Rightarrow f(n) + g(n) = O(h(n) + l(n))$

3. f(n) = O(h(n)) and $g(n) = O(l(n)) \Rightarrow f(n) * g(n) = O(h(n) * l(n))$

Asymptotic Analysis: Algorithmic Example

Useful Properties:

1. f(n) = O(g(n)) and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$

2. f(n) = O(h(n)) and $g(n) = O(l(n)) \Rightarrow f(n) + g(n) = O(h(n) + l(n))$

3. f(n) = O(h(n)) and $g(n) = O(l(n)) \Rightarrow f(n) * g(n) = O(h(n) * l(n))$

Notations	Definition	Informal description
f(n) = O(g(n))	For some constant $c>0$ and $n_{_0}\text{,}$ $f(n)\leq c\cdot g(n)$ for all $n\geq n_{_0}$	" $f(n)$ is less than or equal to $g(n)$ when constants are ignored"

	Notations	Definition	Informal description
	f(n) = O(g(n))	For some constant $c>0$ and $n_{_0}\text{,}$ $f(n)\leq c\cdot g(n)$ for all $n\geq n_{_0}$	" $f(n)$ is less than or equal to $g(n)$ when constants are ignored"
Equivalent to g(n) = O(f(n))	$f(n) = \Omega(g(n))$	For some constant $c>0$ and $n_{_0}\text{,}$ $f(n)\geq c\cdot g(n)$ for all $n\geq n_{_0}$	" $f(n)$ is less than or equal to $g(n)$ when constants are ignored"

	Notations	Definition	Informal description
Equivalent to g(n) = O(f(n))	f(n) = O(g(n))	For some constant $c>0$ and $n_{_0}\text{,}$ $f(n)\leq c\cdot g(n)$ for all $n\geq n_{_0}$	" $f(n)$ is less than or equal to $g(n)$ when constants are ignored"
	$f(n) = \Omega(g(n))$	For some constant $c>0$ and $n_{_0}\text{,}$ $f(n)\geq c\cdot g(n)$ for all $n\geq n_{_0}$	" $f(n)$ is less than or equal to $g(n)$ when constants are ignored"
	$f(n) = \Theta(g(n))$	$f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$	" $f(n)$ is equal to $g(n)$ when constants are ignored"

Examples:

-	0.5n ² - 0.5n vs n ² :	- $n vs n^2$:	- $\log n vs n$ for any $a > 0$:
	$- 0.5n^2 - 0.5n = O(n^2)$	- $n = O(n^2)$	$- \log n = O(n^a)$
	$- n^2 = O(0.5n^2 - 0.5n)$	- More generally, for all $a \le b$	- 0(1) contains all constants
	- $n^2 = \Theta(0.5n^2 - 0.5n)$	- $n^a = O(n^b)$	- E.g., $35 = 0(1)$

SEC-107: Fundamental Data Structures and Algorithms

Asymptotic: Exercises for Self-Study

Exercises are adapted from CLRS* chapter 3

- 1. Is $2^{n+1} = O(2^n)$?
- 2. Is $2^{2n} = O(2^n)$?
- 3. Is $log(n^2) = O(log n)$?
- 4. Is $(\log n)^2 = O(\log n)$?
- 5. Prove that, if f(n) = O(h(n)) and g(n) = O(l(n)), then f(n) + g(n) = O(h(n) + l(n))
- 6. Prove that $max(f(n), g(n)) = \Theta(f(n) + g(n))$

* Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algorithms. MIT press, 2009.

Model of Computation: Word RAM

Random Access Machine (RAM)

- Random Access Memory (RAM)
 - Can be viewed as a very long array of words each of b bits
 - For SEN-107, not important what b is
 - \circ Can read / write word from / to memory at any location i in time O(1)
 - \circ Arithmetic over words takes O(1) time
 - \circ Can allocate array of length n in time O(n)

Allocate arr[5]

- arr can be thought of as "pointer" to address 3
- arr[i] is simply memory[address(arr) 4]

