Name: (Win) Thanawin Pattanaphol

Student ID: 01324096

Counter Circuit

A counter circuit counts in binary up to a maximum value (according to its number of bits) and resets to zero and counts up again.

2 D Flips flops can store up to <u>4 unique states</u>, thus, it means that the counter will reset after every 4 iterations.

The truth table below demonstrates how states are updated in relation to the clock signals – 8 clock signal example:

Clock Pulse	Qo	Q ₁	D0 / Q ₀ '	D1 / Q ₁ '
0	0	0	1	1
1	1	1	0	0
0	1	1	0	0
1	0	1	1	0
0	0	1	1	0
1	1	0	0	1
0	1	0	0	1
1	0	0	1	1

Truth table consisting of state changes that occurs when clock signal goes from 0 to 1 with comparison to the values that will occur in the next cycle.

	Preser	Next State			
Q ₀	Q ₁	D ₀ / Q ₀ '	D ₁ / Q ₀ '	Qo	Q ₁
0	0	1	1	1	1
1	1	0	0	0	1
0	1	1	0	1	0
1	0	0	1	0	0

We can observe that the next state values of Q_0 and Q_1 corresponds to the values of the following present state values, which, we can use them to make a state diagram.

Student ID: 01324096

State diagram for the counter circuit

Name: (Win) Thanawin Pattanaphol

Student ID: 01324096

7 segment display decoder

A 7 segment display decoder circuits converts binary inputs into outputs that turns on specific parts of the display.

$$A = Q_{1}' + Q_{0}$$

$$B = Q_{1}' + Q_{0}'$$

$$C = Q_{0}'$$

$$D = Q_{1} XNOR Q_{0}$$

$$E = 1$$

$$F = Q_{1} + Q_{0}$$

$$G = Q_{1}' + Q_{0}'$$

Here, we can see that most decoders takes at most two inputs from the counter states and are already at their most simplified state – no simplicated needed. These decoders can be divided into different categories.

- 1. C segment gets its value directly from Q0
- 2. E segment will always be on as its value is one
- 3. A, B, F, and G segments get their value from the OR gates.
- 4. D gets its value from an XNOR gate.

As the logic for each segment has been identified, a truth table can now be constructed to identify the values for each state transition. Each state is represented in the form (Q_1 , Q_0 and Q_1' , Q_0')

State	А	В	С	D	E	F	G
(00, 11)	1	1	1	1	1	0	1
(11, 00)	1	0	0	1	1	1	1
(10, 01)	0	1	1	0	1	1	0
(01, 10)	1	1	0	0	1	1	1

Taken from the truth table, we can visualize it on a 7-segment display as below.

Name: (Win) Thanawin Pattanaphol

Student ID: 01324096

