
SYS-102 Basic Computer Architecture
Assessment Activity SYS-102:00070

Instruction Set Architecture

Name: (Win) Thanawin Pattanaphol Student ID: 01324096

CPU Architecture and Registers

Register Register Full Name Explanation

PC Program Counter Holds the address of the following instruction to execute.

A Accumulator General purpose for holding temporary data that is being
processed.

MAR Memory Address
Register

Holds the address for accessing in memory

MDR Memory Data
Register

Holds data read from or written to memory.

CR Checksum Register Register for storing checksum during calculation and
verification.

IP Instruction Pointer Pointer to the current instruction being executed.

Memory Layout

0x00 – 0x0F (Instructions – 16 bits) 0x10 – 0x15: 6-bit message 0x16 (checksum)

Instruction Set Architecture (ISA)
Instruction Format:

• Opcode (4 bits) – Determines the operation
• Operands (12 bits) – Specifies register and/or memory address involved in the

operation.

Instruction Opcode Operands Explanation

LD 0b0001 A, address Loads data from address to A

STR 0b0010 A, address Store value from register A to address

MOV 0b0011 A, B Move data from B to A

ADD 0b0100 A, B Add content of B and A and store result in A

XOR 0b0101 A, B Performs XOR operation between A and B
and store result in A

JMP 0b0110 address Jumps to specified memory address.

HLT 0b0111 none Halts the CPU

CMP 0b1000 A, checksum Compares the value in register A with
checksum value in memory.

SYS-102 Basic Computer Architecture
Assessment Activity SYS-102:00070

Instruction Set Architecture

Name: (Win) Thanawin Pattanaphol Student ID: 01324096

Message Verification

Here is an example program that process a 6-character message, one character by one,
calculate a checksum and compare it with the given checksum.

; Checksum register
LD CC, 0x00 ; Set checksum to 0
LD MAR, 0x10 ; Set start address for message

; Loop through the 6 characters
LOOP:

LD MAR, A ; Load current character into A
ADD CC, A ; Add value of char into checksum
MOV CC, A ; Store updated checksum in CC
ADD MAR, 1 ; Move to next memory address
CMP MAR, 0x16 ; Check if we’ve proceeded all chars
JMP LOOP ; Load if not finished

; Load transmitted checksum
LD A, 0x16 ; Load transmitted checksum
CMP CC, A ; Compare computed checksum with the

 transmitted one
JMP MATCH ; Jump if match

ERROR:
JUMP ERROR ; Goes into infiinite loop

MATCH:
HALT ; Stop the CPU if successful

Explanation

- First Section: Setting the value of register the checksum register to zero (default value) and
set the start address for the message to the first character (0x10)

- Second Section: Looping through all the characters. In each iteration, we add the value of
the character to the checksum register, move to the next character and add the next
character’s value to the checksum register and repeat.

- Third Section: Comparing if the calculated checkup and the transmitted checksum in the
0x16 bit is equal or not. If so, jump to the match section which halts the CPU, if not, jump to
the error section that results in an infinite loop.

