SCI-121 – Medical Science For Al Engineering Compare Medical Imaging Techniques

ID: 01324096

Name: Thanawin Pattanaphol

Medical imaging technologies play a very important role in modern diagnosis and treatment, most widely used modalities are Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), each of them provides vital but distinct insights into the human body.

CT scanning works via rotating X-ray beams around the patient to capture multiple cross-sectional images, which are then digitally reconstructed into detailed anatomical scans. Because CT relies on ionizing radiation, it is excellent for visualizing bone structures, acute bleeding, lung abnormalities, and trauma evaluation. Its quick scanning time makes it the preferred tool in emergency situations. However, exposure to radiation raises safety concerns, especially for children and pregnant individuals, and CT is less effective at differentiating soft tissues with similar densities.

MRI, on the other hand, does not use radiation. It uses strong magnetic fields and radiofrequency waves to detect signals from hydrogen atoms in the body, producing high-resolution images of soft tissues such as the brain, muscles, ligaments, and internal organs. MRT is appropriate in visualizing neurological disorders, spinal problems, and joint injuries. MRI also provides functional imaging, such as fMRI, which measures brain activity by detecting changes in blood flow information that a CT scan cannot provide. However, MRI is more expensive, slower, and more sensitive to patient motion. The small scanner space and loud noise can cause discomfort or issues for those with claustrophobia or implanted metallic devices.

Both modalities are indispensable and often complementary. CT's strengths lie in speed, affordability, and superior visualization of bone and acute injury; MRI excels in soft-tissue contrast and functional assessment without radiation. Safety considerations further distinguish them: CT involves measurable radiation risk, whereas MRI's primary concerns involve magnetic compatibility and patient comfort rather than long-term biological harm.

In practice, the choice between CT and MRI depends on the medical question of "CT for quick assessment of trauma, stroke suspicion with bleeding, or lung pathology; MRI for detailed evaluation of the brain, spine, joints, and tumors." Together, they form a comprehensive imaging toolkit that supports accurate diagnosis and personalized treatment planning.