
SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Data Structures:
An Abstract View

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Data Structure
Abstract data type
(aka Interface / API)

“Problem statement” “Solution”

● Specifications
● Which data can be stored
● Which operations are

supported & what are the
behaviors of those operations

● Description of how the data is
kept in memory

● Algorithms for performing
each operation

Different data structures for the same
ADT can have different running time

ADT is useful as abstraction for
building algorithm on top of it

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Example ADT: Set
● Set S of items
● Operations support:

○ Search(S, k):
■ Return whether k belongs

to the set
○ Insert(S, x):

■ Insert item x into the set
○ Delete(S, x):

■ Remove item x from the set
if it belongs to the set

{}

{4}

{4, 5}

Insert(S, 5)

Insert(S, 4)

Find(S, 3)

{5}

Find(S, 4)

Delete(S, 4)

True

False

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Example ADT: Set
● Set S of items
● Operations support:

○ Search(S, k):
■ Return whether k belongs

to the set
○ Insert(S, x):

■ Insert item x into the set
○ Delete(S, x):

■ Remove item x from the set
if it belongs to the set

Example Application
Implement a system for registering users

Register(emailAddress) should
register the user if the email address has
not been registered before.

Register(emailAddress):
If Search(S, emailAddress):

Return False // Fail
Insert(S, userEmailAddress)
Return True // Succeed

Time complexity depends on the data
structure for set… Will come back to this later

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Queue, Stack & Linked List

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Queue
● Queue of items
● Operations support:

○ Enqueue(Q, x):
■ Add x to the back of the queue

○ Dequeue(Q):
■ Remove the item at the front of

the queue
■ Return that item

● If empty, return NULL
○ Front(Q):

■ Return item at the front of the
queue (without removing it)

(ADT)

First-In First-Out (FIFO)

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Queue
● Queue of items
● Operations support:

○ Enqueue(Q, x):
■ Add x to the back of the queue

○ Dequeue(Q):
■ Remove the item at the front of

the queue
■ Return that item

● If empty, return NULL
○ Front(Q):

■ Return item at the front of the
queue (without removing it)

(ADT)

First-In First-Out (FIFO)

3 6

3

empty

3 6 2

6 2

Enqueue(Q, 3)

Dequeue(Q) 3

Enqueue(Q, 6)

Enqueue(Q, 2)

front back

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Stack
● Stack of items
● Operations support:

○ Push(S, x):
■ Add x to the top of the stack

○ Pop(S):
■ Remove the item at the top of

the stack
■ Return that item

● If empty, return NULL
○ Top(S):

■ Return item at the top of the
stack (without removing it)

(ADT)

Last-In First-Out (LIFO)

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Stack
● Stack of items
● Operations support:

○ Push(S, x):
■ Add x to the top of the stack

○ Pop(S):
■ Remove the item at the top of

the stack
■ Return that item

● If empty, return NULL
○ Top(S):

■ Return item at the top of the
stack (without removing it)

(ADT)

Last-In First-Out (LIFO)

3 6

3

empty

3 6 2

3 6

Push(S, 3)

Pop(S) 2

Push(S, 6)

Push(S, 2)

bottom top

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Stack
● S has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

Initialize(S):
Create S.arr of size 5
S.size = 0

Stack
● Stack of items
● Operations support:

○ Push(S, x):
■ Add x to the top of the stack

○ Pop(S):
■ Remove the item at the top of

the stack
■ Return that item

● If empty, return NULL
○ Top(S):

■ Return item at the top of the
stack (without removing it)

(ADT)

Last-In First-Out (LIFO)

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Stack
● S has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

Initialize(S):
Create S.arr of size 5
S.size = 0

5 can be changed to arbitrary number
of items we expect the stacks to hold

Push(S, 3)

size = 0

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Stack
● S has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

Push(S, x):
S.arr[S.size] = x
S.size ++

Push(S, 3)

Pop(S)

size = 0

3

3 6

3 6 2

size = 1

Push(S, 6)

size = 2

Push(S, 2)

size = 3

Running time: O(1)

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Stack
● S has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

Pop(S):
If S.size = 0:

Return NULL
S.size --
Return S.arr[S.size]

Push(S, 3)

Pop(S) 2

Push(S, 6)

Push(S, 2)

size = 0

3

3 6

3 6 2

3 6 2

size = 1

size = 2

size = 3

size = 2

Running time: O(1)

Pop(S):
If S.size = 0:

Return NULL
S.size --
Return S.arr[S.size]

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Queue
● Queue of items
● Operations support:

○ Enqueue(Q, x):
■ Add x to the back of the queue

○ Dequeue(Q):
■ Remove the item at the front of

the queue
■ Return that item

● If empty, return NULL
○ Front(Q):

■ Return item at the front of the
queue (without removing it)

(ADT)

First-In First-Out (FIFO)

(Data structure)
Array-based

Queue Attempt I
● Q has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Queue Attempt I
● Q has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

Initialize(Q):
Create Q.arr of size 5
Q.size = 0

Enqueue(Q, 3)

size = 0

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Queue Attempt I
● Q has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

Enqueue(Q, x):
Q.arr[Q.size] = x
Q.size ++

Running time: O(1)

size = 0

size = 1

Enqueue(Q, 3)

Dequeue(Q)

size = 2

Enqueue(Q, 6)

size = 3

Enqueue(Q, 2)

3

3 6

3 6 2

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Queue Attempt I
● Q has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

Dequeue(Q):
If Q.size = 0:

Return NULL
currentTop = Q.arr[0]
Q.size --
for i = 0 to Q.size:

Q.arr[i] = Q.arr[i+1]
Return currentTop

size = 0

size = 1

size = 2

size = 3

Enqueue(Q, 3)

Dequeue(Q)

Enqueue(Q, 6)

Enqueue(Q, 2)

3

3 6

3 6 2

size = 2

3

6 2 2

Dequeue(Q):
If Q.size = 0:

Return NULL
currentTop = Q.arr[0]
Q.size --
for i = 0 to Q.size:

Q.arr[i] = Q.arr[i+1]
Return currentTop

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Queue Attempt I
● Q has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

size = 0

size = 1

size = 2

size = 3

size = 2

Dequeue(Q):
If Q.size = 0:

Return NULL
currentTop = Q.arr[0]
Q.size --
for i = 0 to Q.size:

Q.arr[i] = Q.arr[i+1]
Return currentTop

Running time: O(n)

Enqueue(Q, 3)

Dequeue(Q) 3

Enqueue(Q, 6)

Enqueue(Q, 2)

3

3 6

3 6 2

6 2 2

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Queue
● Q has three attributes

○ arr: an array of items
○ size: # of items
○ front: index of the front

Enqueue(Q, 3)

front = 0
size = 0

Initialize(Q):
Create Q.arr of size 5
Q.front = 0
Q.size = 0

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Queue
● Q has three attributes

○ arr: an array of items
○ size: # of items
○ front: index of the front

Enqueue(Q, 3)

Dequeue(Q)

3

3 6

3 6 2

Enqueue(Q, x):
Q.arr[Q.front+Q.size] = x
Q.size ++

Running time: O(1)

front = 0
size = 0

front = 0
size = 1

Enqueue(Q, 6)
front = 0
size = 2

Enqueue(Q, 2)

front = 0
size = 3

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Queue
● Q has three attributes

○ arr: an array of items
○ size: # of items
○ front: index of the front

Enqueue(Q, 3)

Dequeue(Q) 3

Enqueue(Q, 6)

Enqueue(Q, 2)

3

3 6

3 6 2

3 6 2

Dequeue(Q):
If Q.size = 0:

Return NULL
Q.front ++
Q.size --
Return Q.arr[Q.front-1]

Running time: O(1)

front = 0
size = 0

front = 0
size = 1

front = 0
size = 2

front = 0
size = 3

front = 1
size = 2

Dequeue(Q):
If Q.size = 0:

Return NULL
Q.front ++
Q.size --
Return Q.arr[Q.front-1]

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Stack
● S has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

Initialize(S):
Create S.arr of size 5
S.size = 0

5 can be changed to arbitrary number
of items we expect the stacks to hold

How about queue?
If queue size is always ≤ 5,
is our data structure ok?

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Queue
● Q has three attributes

○ arr: an array of items
○ size: # of items
○ front: index of the front

Enqueue(Q, 3)
Dequeue(Q)
Enqueue(Q, 8)
Dequeue(Q)
Enqueue(Q, 1)
Dequeue(Q)
Enqueue(Q, 2)
Dequeue(Q)
Enqueue(Q, 5)

front = 0
size = 0

3 8 1 2 5
front = 4
size = 1

At any point, queue size ≤ 2
but still results in overflow!

Enqueue(Q, 6)

Overflow!

Circular array trick:
Enqueue starts at the beginning again

6 8 1 2 5

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Circular-Array Trick for Queue

Enqueue(Q, x):
Q.arr[Q.front+Q.size] = x
Q.size ++

Dequeue(Q):
If Q.size = 0:

Return NULL
Q.front ++
Q.size --
Return Q.arr[Q.front-1]

Without circular array

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Circular-Array Trick for Queue

Enqueue(Q, x):
Q.arr[Q.front+Q.size] = x
Q.size ++

Enqueue(Q, x):
Q.arr[(Q.front+Q.size)%5] = x
Q.size ++

Dequeue(Q):
If Q.size = 0:

Return NULL
Q.front ++
Q.size --
Return Q.arr[Q.front-1]

Dequeue(Q):
If Q.size = 0:

Return NULL
Q.front ++
Q.size --
Return Q.arr[(Q.front-1)%5]

● Wrap around array
● a%b = remainder of a divided by b

Without circular array With circular array

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

(Data structure)
Array-based

Stack
● S has two attributes

○ arr: an array of items
○ size: # of items

● Manipulate these correctly for
each operation

Initialize(S):
Create S.arr of size 5
S.size = 0

5 can be changed to arbitrary number
of items we expect the stacks to hold

Array-based data structures
✔ Easy to implement
❌ Need to know data size beforehand
❌ Need careful overflow handling

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

● Each element has 3 attributes:
○ item: item at this element
○ prev: pointer to previous element
○ next: pointer to next element

● The linked list L then has two attributes:
○ head:the first element in L
○ tail: the last element in L

Linked List
(Data structure)

● Sometimes call doubly linked list
● Other variants:

○ Singly linked list: not store prev
○ Sorted linked list: items are sorted

3

prev

next

2

prev

next

4

prev

next

2

next

3

next

4

next

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Linked List
● Each element has 3 attributes:

○ item: item at this element
○ prev: pointer to previous element
○ next: pointer to next element

● The linked list L then has two attributes:
○ head:the first element in L
○ tail: the last element in L

(Data structure)

● Sometimes call doubly linked list
● Other variants:

○ Singly linked list: not store prev
○ Sorted linked list: items are sorted

MemoryIndex
0
1
2
3
4
5
6
7
8
9

3

prev

next

2

prev

next

3
NULL
NULL

Item
prev
next

Item
prev
next

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Linked List
● Each element has 3 attributes:

○ item: item at this element
○ prev: pointer to previous element
○ next: pointer to next element

● The linked list L then has two attributes:
○ head:the first element in L
○ tail: the last element in L

(Data structure)

● Sometimes call doubly linked list
● Other variants:

○ Singly linked list: not store prev
○ Sorted linked list: items are sorted

MemoryIndex
0
1
2
3
4
5
6
7
8
9

3

prev

next

2

prev

next

3
NULL

7

Item
prev
next

4

prev

next

Item
prev
next

Item
prev
next

2
0

NULL

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Linked List
● Each element has 3 attributes:

○ item: item at this element
○ prev: pointer to previous element
○ next: pointer to next element

● The linked list L then has two attributes:
○ head:the first element in L
○ tail: the last element in L

(Data structure)

● Sometimes call doubly linked list
● Other variants:

○ Singly linked list: not store prev
○ Sorted linked list: items are sorted

MemoryIndex
0
1
2
3
4
5
6
7
8
9

3

prev

next

2

prev

next

4

prev

next

3
NULL

7

Item
prev
next

Item
prev
next

Item
prev
next

2
0
3

4
7

NULL

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Linked List
● Each element has 3 attributes:

○ item: item at this element
○ prev: pointer to previous element
○ next: pointer to next element

● The linked list L then has two attributes:
○ head:the first element in L
○ tail: the last element in L

(Data structure)

Initialize(L):
L.head = NULL
L.tail = NULL

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Linked List
● Each element has 3 attributes:

○ item: item at this element
○ prev: pointer to previous element
○ next: pointer to next element

● The linked list L then has two attributes:
○ head:the first element in L
○ tail: the last element in L

(Data structure)

3

prev

next

2

prev

next

4

prev

next

Insert(L, x):
Create a new element u
u.item = x
u.prev = NULL
u.next = L.head
L.head.prev = u
L.head = u

Specification
● Insert(L, x): insert item

x to the beginning of the list

Insert(L, 7)

prev

next

7

Insert(L, x):
Create a new element u
u.item = x
u.prev = NULL
u.next = L.head
L.head.prev = u
L.head = u

Insert(L, x):
Create a new element u
u.item = x
u.prev = NULL
u.next = L.head
L.head.prev = u
L.head = u

Insert(L, x):
Create a new element u
u.item = x
u.prev = NULL
u.next = L.head
L.head.prev = u
L.head = u

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Linked List
● Each element has 3 attributes:

○ item: item at this element
○ prev: pointer to previous element
○ next: pointer to next element

● The linked list L then has two attributes:
○ head:the first element in L
○ tail: the last element in L

(Data structure)

3

prev

next

4

prev

next

2

prev

next

Specification
● Delete(L, u): delete

element u from the list

prev

next

7

Delete(L, u)

u

2

prev

next

Delete(L, u):
If u.prev != NULL:

u.prev.next = u.next
else:

L.head = u.next
If u.next != NULL:

u.next.prev = u.prev
Remove node u from memory

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Delete(L, u):
If u.prev != NULL:

u.prev.next = u.next
else:

L.head = u.next
If u.next != NULL:

u.next.prev = u.prev
Remove node u from memory

Linked List
● Each element has 3 attributes:

○ item: item at this element
○ prev: pointer to previous element
○ next: pointer to next element

● The linked list L then has two attributes:
○ head:the first element in L
○ tail: the last element in L

(Data structure)

3

prev

next

4

prev

next

Delete(L, u):
If u.prev != NULL:

u.prev.next = u.next
else:

L.head = u.next
If u.next != NULL:

u.next.prev = u.prev
Remove node u from memory

Specification
● Delete(L, u): delete

element u from the list

prev

next

7

Delete(L, u)

Delete(L, u):
If u.prev != NULL:

u.prev.next = u.next
else:

L.head = u.next
If u.next != NULL:

u.next.prev = u.prev
Remove node u from memory

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Linked List-based
Stack

(Data structure)

S has one attribute: a linked-list L

Initialize(S):
S.L = new linked list

Stack
● Stack of items
● Operations support:

○ Push(S, x):
■ Add x to the top of the stack

○ Pop(S):
■ Remove the item at the top of

the stack
■ Return that item

● If empty, return NULL
○ Top(S):

■ Return item at the top of the
stack (without removing it)

(ADT)

Last-In First-Out (LIFO)

Push(S, x):
Insert(S.L, x)

Pop(S):
If S.L.head = NULL:

Return NULL
topItem = S.L.head.item
Delete(S.L, S.L.head)
Return topItem

Pop(S):
If S.L.head = NULL:

Return NULL
topItem = S.L.head.item
Delete(S.L, S.L.head)
Return topItem

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Queue
● Queue of items
● Operations support:

○ Enqueue(Q, x):
■ Add x to the back of the queue

○ Dequeue(Q):
■ Remove the item at the front of

the queue
■ Return that item

● If empty, return NULL
○ Front(Q):

■ Return item at the front of the
queue (without removing it)

(ADT)

First-In First-Out (FIFO)

Linked List-based
Queue

(Data structure)

Q has one attribute: a linked-list L

Initialize(Q):
Q.L = new linked list

Enqueue(Q, x):
Insert(Q.L, x)

Dequeue(Q):
If Q.L.tail = NULL:

Return NULL
frontItem = Q.L.tail.item
Delete(S.L, S.L.tail)
Return frontItem

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Linked List
● Each element has 3 attributes:

○ item: item at this element
○ prev: pointer to previous element
○ next: pointer to next element

● The linked list L then has two attributes:
○ head:the first element in L
○ tail: the last element in L

(Data structure)

Linked List-based data structures
✔ Does not need data size beforehand
❌ Harder to implement
❌ Sometimes result in more overhead in
running time & memory (to manipulate
pointers / allocate new element)

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Time Complexity
Data Structure Push / Enqueue Pop / Dequeue
Array-based Stack O(1) O(1)
Array-based Queue Attempt I O(1) O(n)
Array-based Queue O(1) O(1)
Linked List-based Stack O(1) O(1)
Linked List-based Stack O(1) O(1)

n = number of items in the data structure

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Brain Teasers
1. Can you implement stack using 2 queues?

a. Suppose that the queue supports O(1)-time operations.
What is the running time complexity of your stack?

2. How about the opposite? Can you implement queue using 2 stacks?

