Name: Thanawin Pattanaphol

ID: 01324096

- 1) Find the decimal equivalent to the following binary numbers: 10101, 100101, and 11010. Given a binary number, how would you decide whether it is an even number or an odd number?
 - a) 10101

	 2 ⁴	0 2'	1 2 [°]	0 2'	۱ 2	9
	16	+	4	÷	1	
	16 +	4+1	1 = 2	21		
b)	1001 I 2 ⁵ 32	101 O 2 ⁴	0 2³	। 2° 4	0 2 +	1 2° 1
	32 +	-4+	1 = 1	37		
c)	1101 1 24 16	10 1 2 ³ + 8	(2) 2 +	ー 2' 2	0 2
	16 +	-8+2	2 = 2	26		

The first digit of the binary number (2⁰) will determine if a number is an odd or even value,

2) Find the binary representation (using both forward and backward methods) of the following decimal numbers: 28, 43, 100, and 81.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
---	--

Name: Thanawin Pattanaphol

ID: 01324096

3) How many binary digits are in the number $2^{128} + 1$?

A positive integer N has k bits when $2^{k-1} \le N \le 2^{k-1}$ and can be written in a form of logarithm in base 2 as:

 $k = \lfloor \log_2(N) \rfloor + 1$

Where k, the number of bits, is equal to floor of the logarithm of base 2 of N, which is the highest power of two in the binary representation of N, and +1 takes the exponent to the next higher of two which essentially accounts for the $2^{0 \text{ th}}$ place of your binary power.

We can apply the equation below.

 $k = \lfloor \log_2(2^{128+1}) \rfloor + 1$ k = 129 digits

Our answer is 129 digits.

4) How many binary digits are in the number $2^{128} - 1$?

We can apply the name procedure as shown in (3).

$$k = \lfloor \log_2(N) \rfloor + 1$$
$$k = \lfloor \log_2(2^{128-1}) \rfloor + 1$$
$$k = 129 \text{ digits}$$

5) Translate each of the following decimal numbers into a base 3 representation: 13, 15, 21, 27, 30, and 80.

Name: Thanawin Pattanaphol

ID: 01324096

MAT-207: Discrete Mathematics – Assignment 2

Name: Thanawin Pattanaphol

ID: 01324096

6) What can you say about the base 3 representation of a decimal number that when divided by 9 leaves a remainder of 7?

We can express this question into the equation below:

 $x = 9n + 7; n = 1, 2, 3, \dots$

Here is a range from n = 1 to n = 7.

Expression	x in base 10	x In base 2
x = 9(1) + 7	16	121
x = 9(2) + 7	25	221
x = 9(3) + 7	34	1021
x = 9(4) + 7	43	1121
x = 9(5) + 7	52	1221
x = 9(6) + 7	61	2021
x = 9(7) + 7	70	2121

The first two digits $(2^0 \text{ and } 2^1)$ have the same value of $(21)_3$ while the third digit (2^2) and onwards displays a normal incrementation in base 3.

7) Find the base 5 representation of the following binary numbers: 110010_2 , using backward method.

() Convert base 2 to decimal.
1 1 0 0 1 0 2 =
$$2^{5} + 2^{4} + 2^{7}$$

= $16 + 8 + 2$
= 26
(2) Convert to base 5.
 $5 | 26 | 1 |$
 $5 | 5 | 0 |$
 $5 | 1 | 1 |$
Answer: $(101)_{5}$

MAT-207: Discrete Mathematics – Assignment 2

Name: Thanawin Pattanaphol

ID: 01324096

8) Convert 21022, to base 6 representation, using forward method.
 ① Convert to decimal.

2 1 0 2 2 3
=
$$(2 \cdot 3^{4}) + (1 \cdot 3^{3}) + (2 \cdot 3^{1}) + (2 \cdot 3^{0})$$

= 197

2 Convert decimal to base 6.

$$197 = 36 + 36 + 36 + 36 + 36 + 36 + 6 + 1 + 1 + 1 + 1$$

$$= (5 \cdot 6^{2}) + (2 \cdot 6') + (5 \cdot 6') \qquad 6 = 1$$

$$= (5 2 5)_{3} \qquad 6^{2} = 36$$

6 = 1296