
SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Pointers in C

*Adapted from Dr. Sally’s slides

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

c

Pointers in C
MemoryIndex

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014

“Address”

char c;

char * pC;

pC = &c;

c = ‘B’;

printf(“%c”, *pC); \\ Will print ‘B’

*pC = ‘C’;

pC

‘B’

1003

‘C’

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Pointers in C
● To create a variable that will hold an address:

data-type-name * varname;
int * pCount;
CAT_T * catArray;

● All pointers are addresses. This means that all pointer values are positive integers.
● To find out the address of a variable: &variableName

○ E.g., pCount = &count; /* get address of count */
● To get or set the data stored at an address: *pointerVariableName
● E.g.,

int result = *pCount; /* get data stored at address pCount */
pCount = 10; / set new value into address referenced by pCount */

Common Mistake:
● char a, b;
● char * a, b;

If you want both to be pointers:
● char * a, * b;Only a is pointer, b is char value!

Both a, b are char values

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Pointers & Arrays in C
The following are equivalent in C:

char myCharArray[] ⇔ char * myCharArray ⇔ &myCharArray[0]
int myIntArray[] ⇔ int * myIntArray ⇔ &myIntArray[0]
char * charPtrArray[] ⇔ char ** charPtrArray ⇔ &charPtrArray[0]
DATE_T dateArray[] ⇔ DATE_T * dateArray ⇔ &dateArray[0]

So we can do, e.g.,

char* newString = calloc(strlen(oldString)+1,sizeof(char));
for (i = 0; i < strlen(oldString); i++)
 newString[i] = oldString[i];

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Dynamic Allocation in C

*Adapted from Dr. Sally’s slides

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Dynamically Allocation in C: Calloc
Use void * calloc(int elementCount,int elementSize)
● calloc allocates elementCount * elementSize consecutive bytes and

sets their values to 0
● calloc returns the address of the first allocated byte, or NULL for error

#define ARRAYSIZE 300

int* myValues = calloc(ARRAYSIZE,sizeof(int));

if (myValues == NULL)

{

 /* handle error condition */

}

...

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Dynamically Allocation in C: Other functions
void * malloc(int totalBytes)

● Almost same as calloc(elementCount, elementSize)
● Except: Does not initialize value to zeros

char * strdup(char* stringToCopy)

● For allocating memory and copying into stringToCopy its value
● In other words, almost the same as

char* newString = calloc(strlen(oldString)+1,sizeof(char));
for (i = 0; i < strlen(oldString); i++)
 newString[i] = oldString[i];

● Except: Arrays created with strdup() should be treated as read-only

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Releasing Memory with free()
● Memory is a limited resource
● When no longer need, dynamically-allocated memory should be released
● To do this, use the free() function.

void free(void* pointerToDynamicMemory);

● The argument is the pointer returned from a call to calloc()
● Good practice: Free memory at the end of functions, in a single block of code

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Common Mistakes
● Not checking the allocated pointer

○ Always check after a call to calloc (or malloc or strdup) to make sure
that the returned value is not NULL.

○ If the pointer is NULL, the memory allocation failed.
■ You should handle this as an error. Do not continue processing.

● Not freeing allocated memory when you are done with it
○ This is called a memory leak.
○ Memory is "leaking" out of the available pool, taken out but never returned.
○ In a small program, this usually won't be noticed (but it is still a bug)
○ In a large (real-world) program, memory leaks can have many serious

consequences, including unexpected failures and reduced performance.

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Common Mistakes II
● Using a dynamically allocated pointer after it has been freed

○ Once you call free() on a pointer, you must not use that pointer again
○ Set your pointers to NULL after you call free

free(names1);
names1 = NULL;

○ A related problem is freeing the same pointer twice
● Calling free on a pointer that was not dynamically allocated

int x = 100; // declares an integer variable
int* pX = NULL; // declares an int pointer variable
pX = &x; // sets the value of the pointer to the address of x
…
free(pX); // Will crash!! pX does not point to dynamic memory!

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

For Self-Study: Memory in C
C has three separate pools of memory
● Static memory

○ Holds data items declared outside any function
○ Can access anywhere in program
○ Allocated as part of the compile/link process
○ Lifetime: entire execution of the program

● Stack memory
○ Holds data items declared within a function or block
○ Can access only within that function or block (or within nested blocks)
○ Allocated when execution enters the block & Released when execution leaves the block
○ Lifetime: only during the time code in the function/block is executing

● Heap memory
○ Significantly larger capacity than stack memory
○ Holds data items created by calls to calloc, malloc, etc.
○ Allocated when program calls calloc, released when program calls free
○ Lifetime: determined by the programmer

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Example
#define MAX_ELTS 20
int values[MAX_ELTS];

void doSort(int numbers[])
{
 int tmp=0;
 ...
}

void doPrint(int numbers[])
{
 FILE* pF = NULL;
 …
}

int main()
{
 int i;
 char input[64];
 for (i = 0; i < MAX_ELTS; i++)
 {

 fgets(input,sizeof(input),stdin);
 sscanf(input,"%d",&values[i]);

 }
 doSort(values);
 doPrint(values);
}

Static data items in RED

Stack data items in GREEN

This example does not use the heap

SEC-107: Fundamental Data Structures and Algorithms Pasin Manurangsi

Stack memory during execution

