100 lines
3.8 KiB
Java
100 lines
3.8 KiB
Java
package org.bouncycastle.pqc.math.linearalgebra;
|
|
|
|
/* loaded from: classes6.dex */
|
|
public class PolynomialRingGF2m {
|
|
private GF2mField field;
|
|
private PolynomialGF2mSmallM p;
|
|
protected PolynomialGF2mSmallM[] sqMatrix;
|
|
protected PolynomialGF2mSmallM[] sqRootMatrix;
|
|
|
|
public PolynomialGF2mSmallM[] getSquaringMatrix() {
|
|
return this.sqMatrix;
|
|
}
|
|
|
|
public PolynomialGF2mSmallM[] getSquareRootMatrix() {
|
|
return this.sqRootMatrix;
|
|
}
|
|
|
|
private static void swapColumns(PolynomialGF2mSmallM[] polynomialGF2mSmallMArr, int i, int i2) {
|
|
PolynomialGF2mSmallM polynomialGF2mSmallM = polynomialGF2mSmallMArr[i];
|
|
polynomialGF2mSmallMArr[i] = polynomialGF2mSmallMArr[i2];
|
|
polynomialGF2mSmallMArr[i2] = polynomialGF2mSmallM;
|
|
}
|
|
|
|
private void computeSquaringMatrix() {
|
|
int i;
|
|
int degree = this.p.getDegree();
|
|
this.sqMatrix = new PolynomialGF2mSmallM[degree];
|
|
int i2 = 0;
|
|
while (true) {
|
|
i = degree >> 1;
|
|
if (i2 >= i) {
|
|
break;
|
|
}
|
|
int i3 = i2 << 1;
|
|
int[] iArr = new int[i3 + 1];
|
|
iArr[i3] = 1;
|
|
this.sqMatrix[i2] = new PolynomialGF2mSmallM(this.field, iArr);
|
|
i2++;
|
|
}
|
|
while (i < degree) {
|
|
int i4 = i << 1;
|
|
int[] iArr2 = new int[i4 + 1];
|
|
iArr2[i4] = 1;
|
|
this.sqMatrix[i] = new PolynomialGF2mSmallM(this.field, iArr2).mod(this.p);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
private void computeSquareRootMatrix() {
|
|
int coefficient;
|
|
int degree = this.p.getDegree();
|
|
PolynomialGF2mSmallM[] polynomialGF2mSmallMArr = new PolynomialGF2mSmallM[degree];
|
|
int i = degree - 1;
|
|
for (int i2 = i; i2 >= 0; i2--) {
|
|
polynomialGF2mSmallMArr[i2] = new PolynomialGF2mSmallM(this.sqMatrix[i2]);
|
|
}
|
|
this.sqRootMatrix = new PolynomialGF2mSmallM[degree];
|
|
while (i >= 0) {
|
|
this.sqRootMatrix[i] = new PolynomialGF2mSmallM(this.field, i);
|
|
i--;
|
|
}
|
|
for (int i3 = 0; i3 < degree; i3++) {
|
|
if (polynomialGF2mSmallMArr[i3].getCoefficient(i3) == 0) {
|
|
int i4 = i3 + 1;
|
|
boolean z = false;
|
|
while (i4 < degree) {
|
|
if (polynomialGF2mSmallMArr[i4].getCoefficient(i3) != 0) {
|
|
swapColumns(polynomialGF2mSmallMArr, i3, i4);
|
|
swapColumns(this.sqRootMatrix, i3, i4);
|
|
i4 = degree;
|
|
z = true;
|
|
}
|
|
i4++;
|
|
}
|
|
if (!z) {
|
|
throw new ArithmeticException("Squaring matrix is not invertible.");
|
|
}
|
|
}
|
|
int inverse = this.field.inverse(polynomialGF2mSmallMArr[i3].getCoefficient(i3));
|
|
polynomialGF2mSmallMArr[i3].multThisWithElement(inverse);
|
|
this.sqRootMatrix[i3].multThisWithElement(inverse);
|
|
for (int i5 = 0; i5 < degree; i5++) {
|
|
if (i5 != i3 && (coefficient = polynomialGF2mSmallMArr[i5].getCoefficient(i3)) != 0) {
|
|
PolynomialGF2mSmallM multWithElement = polynomialGF2mSmallMArr[i3].multWithElement(coefficient);
|
|
PolynomialGF2mSmallM multWithElement2 = this.sqRootMatrix[i3].multWithElement(coefficient);
|
|
polynomialGF2mSmallMArr[i5].addToThis(multWithElement);
|
|
this.sqRootMatrix[i5].addToThis(multWithElement2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
public PolynomialRingGF2m(GF2mField gF2mField, PolynomialGF2mSmallM polynomialGF2mSmallM) {
|
|
this.field = gF2mField;
|
|
this.p = polynomialGF2mSmallM;
|
|
computeSquaringMatrix();
|
|
computeSquareRootMatrix();
|
|
}
|
|
}
|