package org.bouncycastle.pqc.crypto.mceliece; import org.bouncycastle.pqc.math.linearalgebra.GF2Matrix; import org.bouncycastle.pqc.math.linearalgebra.GF2mField; import org.bouncycastle.pqc.math.linearalgebra.GoppaCode; import org.bouncycastle.pqc.math.linearalgebra.Permutation; import org.bouncycastle.pqc.math.linearalgebra.PolynomialGF2mSmallM; import org.bouncycastle.pqc.math.linearalgebra.PolynomialRingGF2m; /* loaded from: classes6.dex */ public class McEliecePrivateKeyParameters extends McElieceKeyParameters { private GF2mField field; private PolynomialGF2mSmallM goppaPoly; private GF2Matrix h; private int k; private int n; private String oid; private Permutation p1; private Permutation p2; private PolynomialGF2mSmallM[] qInv; private GF2Matrix sInv; public GF2Matrix getSInv() { return this.sInv; } public PolynomialGF2mSmallM[] getQInv() { return this.qInv; } public Permutation getP2() { return this.p2; } public Permutation getP1() { return this.p1; } public int getN() { return this.n; } public int getK() { return this.k; } public GF2Matrix getH() { return this.h; } public PolynomialGF2mSmallM getGoppaPoly() { return this.goppaPoly; } public GF2mField getField() { return this.field; } public McEliecePrivateKeyParameters(int i, int i2, byte[] bArr, byte[] bArr2, byte[] bArr3, byte[] bArr4, byte[] bArr5, byte[] bArr6, byte[][] bArr7) { super(true, null); this.n = i; this.k = i2; GF2mField gF2mField = new GF2mField(bArr); this.field = gF2mField; this.goppaPoly = new PolynomialGF2mSmallM(gF2mField, bArr2); this.sInv = new GF2Matrix(bArr3); this.p1 = new Permutation(bArr4); this.p2 = new Permutation(bArr5); this.h = new GF2Matrix(bArr6); this.qInv = new PolynomialGF2mSmallM[bArr7.length]; for (int i3 = 0; i3 < bArr7.length; i3++) { this.qInv[i3] = new PolynomialGF2mSmallM(this.field, bArr7[i3]); } } public McEliecePrivateKeyParameters(int i, int i2, GF2mField gF2mField, PolynomialGF2mSmallM polynomialGF2mSmallM, Permutation permutation, Permutation permutation2, GF2Matrix gF2Matrix) { super(true, null); this.k = i2; this.n = i; this.field = gF2mField; this.goppaPoly = polynomialGF2mSmallM; this.sInv = gF2Matrix; this.p1 = permutation; this.p2 = permutation2; this.h = GoppaCode.createCanonicalCheckMatrix(gF2mField, polynomialGF2mSmallM); this.qInv = new PolynomialRingGF2m(gF2mField, polynomialGF2mSmallM).getSquareRootMatrix(); } }