300 lines
11 KiB
Java
300 lines
11 KiB
Java
|
package org.bouncycastle.pqc.math.linearalgebra;
|
||
|
|
||
|
import java.security.SecureRandom;
|
||
|
|
||
|
/* loaded from: classes6.dex */
|
||
|
public class GF2nPolynomialField extends GF2nField {
|
||
|
private boolean isPentanomial;
|
||
|
private boolean isTrinomial;
|
||
|
private int[] pc;
|
||
|
GF2Polynomial[] squaringMatrix;
|
||
|
private int tc;
|
||
|
|
||
|
public boolean isTrinomial() {
|
||
|
return this.isTrinomial;
|
||
|
}
|
||
|
|
||
|
public boolean isPentanomial() {
|
||
|
return this.isPentanomial;
|
||
|
}
|
||
|
|
||
|
public int getTc() throws RuntimeException {
|
||
|
if (this.isTrinomial) {
|
||
|
return this.tc;
|
||
|
}
|
||
|
throw new RuntimeException();
|
||
|
}
|
||
|
|
||
|
public GF2Polynomial getSquaringVector(int i) {
|
||
|
return new GF2Polynomial(this.squaringMatrix[i]);
|
||
|
}
|
||
|
|
||
|
@Override // org.bouncycastle.pqc.math.linearalgebra.GF2nField
|
||
|
protected GF2nElement getRandomRoot(GF2Polynomial gF2Polynomial) {
|
||
|
GF2nPolynomial gcd;
|
||
|
int degree;
|
||
|
int degree2;
|
||
|
GF2nPolynomial gF2nPolynomial = new GF2nPolynomial(gF2Polynomial, this);
|
||
|
while (gF2nPolynomial.getDegree() > 1) {
|
||
|
while (true) {
|
||
|
GF2nPolynomialElement gF2nPolynomialElement = new GF2nPolynomialElement(this, this.random);
|
||
|
GF2nPolynomial gF2nPolynomial2 = new GF2nPolynomial(2, GF2nPolynomialElement.ZERO(this));
|
||
|
gF2nPolynomial2.set(1, gF2nPolynomialElement);
|
||
|
GF2nPolynomial gF2nPolynomial3 = new GF2nPolynomial(gF2nPolynomial2);
|
||
|
for (int i = 1; i <= this.mDegree - 1; i++) {
|
||
|
gF2nPolynomial3 = gF2nPolynomial3.multiplyAndReduce(gF2nPolynomial3, gF2nPolynomial).add(gF2nPolynomial2);
|
||
|
}
|
||
|
gcd = gF2nPolynomial3.gcd(gF2nPolynomial);
|
||
|
degree = gcd.getDegree();
|
||
|
degree2 = gF2nPolynomial.getDegree();
|
||
|
if (degree != 0 && degree != degree2) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
gF2nPolynomial = (degree << 1) > degree2 ? gF2nPolynomial.quotient(gcd) : new GF2nPolynomial(gcd);
|
||
|
}
|
||
|
return gF2nPolynomial.at(0);
|
||
|
}
|
||
|
|
||
|
public int[] getPc() throws RuntimeException {
|
||
|
if (!this.isPentanomial) {
|
||
|
throw new RuntimeException();
|
||
|
}
|
||
|
int[] iArr = new int[3];
|
||
|
System.arraycopy(this.pc, 0, iArr, 0, 3);
|
||
|
return iArr;
|
||
|
}
|
||
|
|
||
|
protected void computeFieldPolynomial2() {
|
||
|
if (testTrinomials() || testPentanomials()) {
|
||
|
return;
|
||
|
}
|
||
|
testRandom();
|
||
|
}
|
||
|
|
||
|
@Override // org.bouncycastle.pqc.math.linearalgebra.GF2nField
|
||
|
protected void computeFieldPolynomial() {
|
||
|
if (testTrinomials() || testPentanomials()) {
|
||
|
return;
|
||
|
}
|
||
|
testRandom();
|
||
|
}
|
||
|
|
||
|
@Override // org.bouncycastle.pqc.math.linearalgebra.GF2nField
|
||
|
protected void computeCOBMatrix(GF2nField gF2nField) {
|
||
|
GF2nElement randomRoot;
|
||
|
GF2nElement[] gF2nElementArr;
|
||
|
if (this.mDegree != gF2nField.mDegree) {
|
||
|
throw new IllegalArgumentException("GF2nPolynomialField.computeCOBMatrix: B1 has a different degree and thus cannot be coverted to!");
|
||
|
}
|
||
|
boolean z = gF2nField instanceof GF2nONBField;
|
||
|
if (z) {
|
||
|
gF2nField.computeCOBMatrix(this);
|
||
|
return;
|
||
|
}
|
||
|
GF2Polynomial[] gF2PolynomialArr = new GF2Polynomial[this.mDegree];
|
||
|
for (int i = 0; i < this.mDegree; i++) {
|
||
|
gF2PolynomialArr[i] = new GF2Polynomial(this.mDegree);
|
||
|
}
|
||
|
do {
|
||
|
randomRoot = gF2nField.getRandomRoot(this.fieldPolynomial);
|
||
|
} while (randomRoot.isZero());
|
||
|
if (randomRoot instanceof GF2nONBElement) {
|
||
|
gF2nElementArr = new GF2nONBElement[this.mDegree];
|
||
|
gF2nElementArr[this.mDegree - 1] = GF2nONBElement.ONE((GF2nONBField) gF2nField);
|
||
|
} else {
|
||
|
gF2nElementArr = new GF2nPolynomialElement[this.mDegree];
|
||
|
gF2nElementArr[this.mDegree - 1] = GF2nPolynomialElement.ONE((GF2nPolynomialField) gF2nField);
|
||
|
}
|
||
|
gF2nElementArr[this.mDegree - 2] = randomRoot;
|
||
|
for (int i2 = this.mDegree - 3; i2 >= 0; i2--) {
|
||
|
gF2nElementArr[i2] = (GF2nElement) gF2nElementArr[i2 + 1].multiply(randomRoot);
|
||
|
}
|
||
|
if (z) {
|
||
|
for (int i3 = 0; i3 < this.mDegree; i3++) {
|
||
|
for (int i4 = 0; i4 < this.mDegree; i4++) {
|
||
|
if (gF2nElementArr[i3].testBit((this.mDegree - i4) - 1)) {
|
||
|
gF2PolynomialArr[(this.mDegree - i4) - 1].setBit((this.mDegree - i3) - 1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
for (int i5 = 0; i5 < this.mDegree; i5++) {
|
||
|
for (int i6 = 0; i6 < this.mDegree; i6++) {
|
||
|
if (gF2nElementArr[i5].testBit(i6)) {
|
||
|
gF2PolynomialArr[(this.mDegree - i6) - 1].setBit((this.mDegree - i5) - 1);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
this.fields.addElement(gF2nField);
|
||
|
this.matrices.addElement(gF2PolynomialArr);
|
||
|
gF2nField.fields.addElement(this);
|
||
|
gF2nField.matrices.addElement(invertMatrix(gF2PolynomialArr));
|
||
|
}
|
||
|
|
||
|
private boolean testTrinomials() {
|
||
|
this.fieldPolynomial = new GF2Polynomial(this.mDegree + 1);
|
||
|
boolean z = false;
|
||
|
this.fieldPolynomial.setBit(0);
|
||
|
this.fieldPolynomial.setBit(this.mDegree);
|
||
|
for (int i = 1; i < this.mDegree && !z; i++) {
|
||
|
this.fieldPolynomial.setBit(i);
|
||
|
boolean isIrreducible = this.fieldPolynomial.isIrreducible();
|
||
|
if (isIrreducible) {
|
||
|
this.isTrinomial = true;
|
||
|
this.tc = i;
|
||
|
return isIrreducible;
|
||
|
}
|
||
|
this.fieldPolynomial.resetBit(i);
|
||
|
z = this.fieldPolynomial.isIrreducible();
|
||
|
}
|
||
|
return z;
|
||
|
}
|
||
|
|
||
|
private boolean testRandom() {
|
||
|
this.fieldPolynomial = new GF2Polynomial(this.mDegree + 1);
|
||
|
do {
|
||
|
this.fieldPolynomial.randomize();
|
||
|
this.fieldPolynomial.setBit(this.mDegree);
|
||
|
this.fieldPolynomial.setBit(0);
|
||
|
} while (!this.fieldPolynomial.isIrreducible());
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private boolean testPentanomials() {
|
||
|
this.fieldPolynomial = new GF2Polynomial(this.mDegree + 1);
|
||
|
this.fieldPolynomial.setBit(0);
|
||
|
this.fieldPolynomial.setBit(this.mDegree);
|
||
|
boolean z = false;
|
||
|
int i = 1;
|
||
|
while (i <= this.mDegree - 3 && !z) {
|
||
|
this.fieldPolynomial.setBit(i);
|
||
|
int i2 = i + 1;
|
||
|
int i3 = i2;
|
||
|
while (i3 <= this.mDegree - 2 && !z) {
|
||
|
this.fieldPolynomial.setBit(i3);
|
||
|
int i4 = i3 + 1;
|
||
|
for (int i5 = i4; i5 <= this.mDegree - 1 && !z; i5++) {
|
||
|
this.fieldPolynomial.setBit(i5);
|
||
|
if (((((this.mDegree & 1) != 0) | ((i & 1) != 0) | ((i3 & 1) != 0)) || ((i5 & 1) != 0)) && (z = this.fieldPolynomial.isIrreducible())) {
|
||
|
this.isPentanomial = true;
|
||
|
int[] iArr = this.pc;
|
||
|
iArr[0] = i;
|
||
|
iArr[1] = i3;
|
||
|
iArr[2] = i5;
|
||
|
return z;
|
||
|
}
|
||
|
this.fieldPolynomial.resetBit(i5);
|
||
|
}
|
||
|
this.fieldPolynomial.resetBit(i3);
|
||
|
i3 = i4;
|
||
|
}
|
||
|
this.fieldPolynomial.resetBit(i);
|
||
|
i = i2;
|
||
|
}
|
||
|
return z;
|
||
|
}
|
||
|
|
||
|
private void computeSquaringMatrix() {
|
||
|
GF2Polynomial[] gF2PolynomialArr = new GF2Polynomial[this.mDegree - 1];
|
||
|
this.squaringMatrix = new GF2Polynomial[this.mDegree];
|
||
|
int i = 0;
|
||
|
while (true) {
|
||
|
GF2Polynomial[] gF2PolynomialArr2 = this.squaringMatrix;
|
||
|
if (i >= gF2PolynomialArr2.length) {
|
||
|
break;
|
||
|
}
|
||
|
gF2PolynomialArr2[i] = new GF2Polynomial(this.mDegree, "ZERO");
|
||
|
i++;
|
||
|
}
|
||
|
for (int i2 = 0; i2 < this.mDegree - 1; i2++) {
|
||
|
gF2PolynomialArr[i2] = new GF2Polynomial(1, "ONE").shiftLeft(this.mDegree + i2).remainder(this.fieldPolynomial);
|
||
|
}
|
||
|
for (int i3 = 1; i3 <= Math.abs(this.mDegree >> 1); i3++) {
|
||
|
for (int i4 = 1; i4 <= this.mDegree; i4++) {
|
||
|
if (gF2PolynomialArr[this.mDegree - (i3 << 1)].testBit(this.mDegree - i4)) {
|
||
|
this.squaringMatrix[i4 - 1].setBit(this.mDegree - i3);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (int abs = Math.abs(this.mDegree >> 1) + 1; abs <= this.mDegree; abs++) {
|
||
|
this.squaringMatrix[((abs << 1) - this.mDegree) - 1].setBit(this.mDegree - abs);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public GF2nPolynomialField(int i, SecureRandom secureRandom, boolean z) {
|
||
|
super(secureRandom);
|
||
|
this.isTrinomial = false;
|
||
|
this.isPentanomial = false;
|
||
|
this.pc = new int[3];
|
||
|
if (i < 3) {
|
||
|
throw new IllegalArgumentException("k must be at least 3");
|
||
|
}
|
||
|
this.mDegree = i;
|
||
|
if (z) {
|
||
|
computeFieldPolynomial();
|
||
|
} else {
|
||
|
computeFieldPolynomial2();
|
||
|
}
|
||
|
computeSquaringMatrix();
|
||
|
this.fields = new java.util.Vector();
|
||
|
this.matrices = new java.util.Vector();
|
||
|
}
|
||
|
|
||
|
public GF2nPolynomialField(int i, SecureRandom secureRandom, GF2Polynomial gF2Polynomial) throws RuntimeException {
|
||
|
super(secureRandom);
|
||
|
this.isTrinomial = false;
|
||
|
this.isPentanomial = false;
|
||
|
this.pc = new int[3];
|
||
|
if (i < 3) {
|
||
|
throw new IllegalArgumentException("degree must be at least 3");
|
||
|
}
|
||
|
if (gF2Polynomial.getLength() != i + 1) {
|
||
|
throw new RuntimeException();
|
||
|
}
|
||
|
if (!gF2Polynomial.isIrreducible()) {
|
||
|
throw new RuntimeException();
|
||
|
}
|
||
|
this.mDegree = i;
|
||
|
this.fieldPolynomial = gF2Polynomial;
|
||
|
computeSquaringMatrix();
|
||
|
int i2 = 2;
|
||
|
for (int i3 = 1; i3 < this.fieldPolynomial.getLength() - 1; i3++) {
|
||
|
if (this.fieldPolynomial.testBit(i3)) {
|
||
|
int i4 = i2 + 1;
|
||
|
if (i4 == 3) {
|
||
|
this.tc = i3;
|
||
|
}
|
||
|
if (i4 <= 5) {
|
||
|
this.pc[i2 - 2] = i3;
|
||
|
}
|
||
|
i2 = i4;
|
||
|
}
|
||
|
}
|
||
|
if (i2 == 3) {
|
||
|
this.isTrinomial = true;
|
||
|
}
|
||
|
if (i2 == 5) {
|
||
|
this.isPentanomial = true;
|
||
|
}
|
||
|
this.fields = new java.util.Vector();
|
||
|
this.matrices = new java.util.Vector();
|
||
|
}
|
||
|
|
||
|
public GF2nPolynomialField(int i, SecureRandom secureRandom) {
|
||
|
super(secureRandom);
|
||
|
this.isTrinomial = false;
|
||
|
this.isPentanomial = false;
|
||
|
this.pc = new int[3];
|
||
|
if (i < 3) {
|
||
|
throw new IllegalArgumentException("k must be at least 3");
|
||
|
}
|
||
|
this.mDegree = i;
|
||
|
computeFieldPolynomial();
|
||
|
computeSquaringMatrix();
|
||
|
this.fields = new java.util.Vector();
|
||
|
this.matrices = new java.util.Vector();
|
||
|
}
|
||
|
}
|