RANK & NULLITY CALCULATOR **Members** 1. Nunthatinn Veerapaiboon (Poon) 01324092 2. Atchariyapat Sirijirakarnjaroen (Beam) 01324084 3. Nachayada Pattaratichakonkul (May) 01324073 4. Petch Śuwapun (Diamond) 01324097 5. Thanawin Pattanaphol (Win)01324096

THEORETICAL FOUNDATION

- Span & Linear Combination
- 2 Rank & nullity
- 2 Linear Dependence & Independence

SPAN & LINEAR COMBINATION

If you have a set of vectors $\{V_1,V_2,\ldots,V_n\}$, their span is the collection of vectors that can be expressed in the form:

$$\{C_1V_1+C_2V_2+\ldots+C_nV_n\}$$

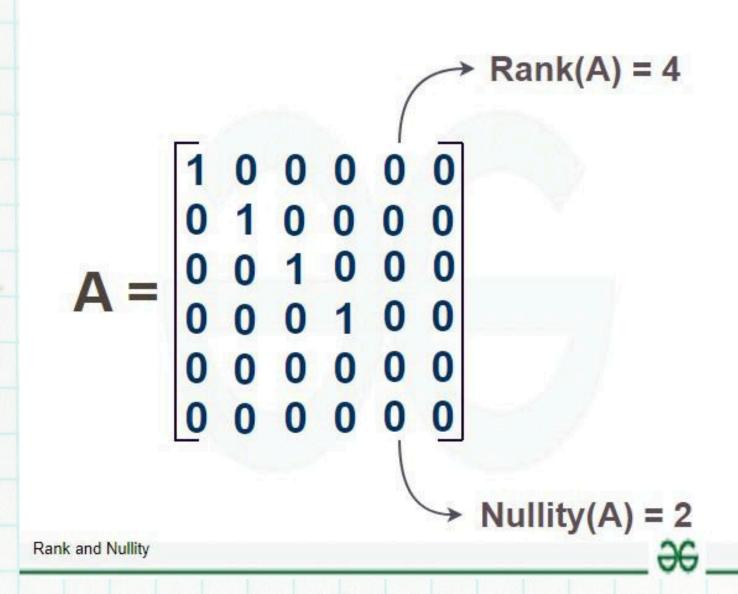
Where c1, c2, . . . , cn are scalars (real numbers). Essentially, the span of these vectors is the set of all vectors that can be formed by scaling and adding the original vectors.

RANK AND NULLITY

The Rank of a Matrix is a fundamental concept in linear algebra that measures the number of linearly independent rows or columns in a matrix. It essentially determines the dimensionality of the vector space formed by the rows or columns of the matrix.

It helps determine:

- If a system of linear equations has solutions.
- The "usefulness" of rows or columns contributes to the matrix's information.



LINEAR INDEPENDENCE

A set of vectors $\{V_1,V_2,\ldots,V_n\}$ is linearly independent if the vector equation

$$C_1V_1 + C_2V_2 + \ldots + C_nV_n = 0$$

has only the trivial solution $C_1=C_2=\ldots=C_n=0$ The set $\{V_1,V_2,\ldots,V_n\}$ is linearly dependent otherwise.

LINEAR INDEPENDENCE PART 2

Default matrix

Augmented matrix

Row echelon form

$$A_1 - 3A_2 + 5A_3 = 0 \ 0A_1 + 1A_2 - 1A_3 = 0 \ 0A_1 + 0A_2 - 1A_3 = 0$$

$$A_1 = A_2 = A_3 = 0$$

Which mean that this matrix is linearly independent.

Therefore, this matrix has a full rank of 3 and nullity of 0

IMPLEMENTATION

Normal way: Gaussian Elimination & REF

```
def gaussian_elimination(matrix):
    rows = len(matrix)
    cols = len(matrix[0])
   processing_matrix = [row[:] for row in matrix] # deep copy
   r = 0 # current row for pivot
    c = 0 # current column for pivot
    while r < rows and c < cols:
        # Find pivot in column c at or below row r
       pivot_row = None
        for k in range(r, rows):
            if processing_matrix[k][c] != 0:
               pivot_row = k
               break
        if pivot_row is None:
            # Entire column is zero, move to next column
            print(f"Pivot at column {c+1} is zero, cannot eliminate this column.")
            c += 1
            continue
        if pivot_row != r:
            processing_matrix[r], processing_matrix[pivot_row] = processing_matrix[pivot_row], processing_matrix[r]
           print(f"Swapped R{r+1} with R{pivot_row+1} because pivot was zero.")
            print_matrix(processing_matrix)
```

```
cur_pivot = processing_matrix[r][c]
   print(f"Select pivot at index [{r+1}][{c+1}]: {cur_pivot}")
    if cur_pivot != 1:
       print(f"R{r+1} <- R{r+1} / {cur_pivot}")</pre>
       for j in range(c, cols):
            processing_matrix[r][j] /= cur_pivot
        print_matrix(processing_matrix)
   # Eliminate rows below
    for k in range(r + 1, rows):
        factor = processing_matrix[k][c]
        if factor == 0:
            continue
        print(f''R\{k+1\} \leftarrow R\{k+1\} - (\{factor\}) \times R\{r+1\}'')
       for j in range(c, cols):
            processing_matrix[k][j] -= factor * processing_matrix[r][j]
        print_matrix(processing_matrix)
    # Move to next pivot row and next column
    r += 1
    c += 1
return processing_matrix
```

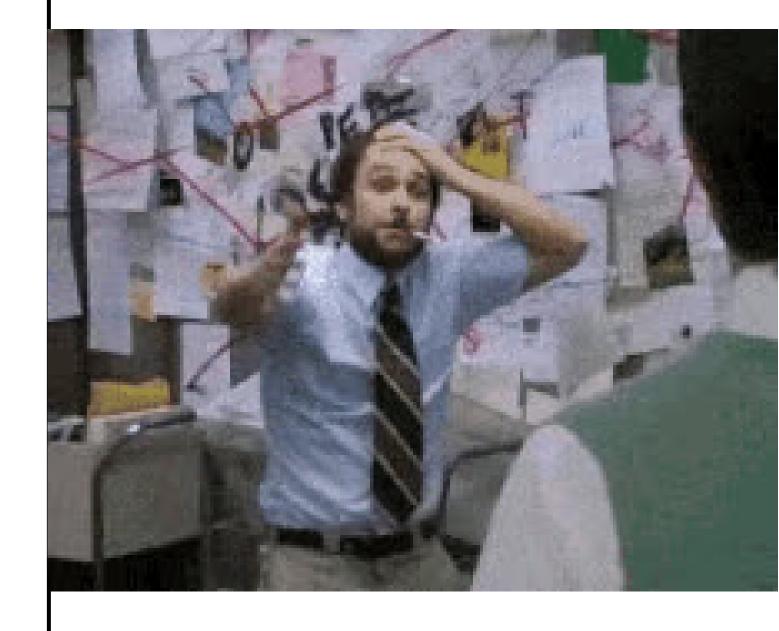
IMPLEMENTATION OUTPUT

```
Original Matrix:
[1, 2, 3]
[0, 0, 4]
[0, 5, 6]
[0, 0, 0]
Select pivot at index [1][1]: 1
Swapped R2 with R3 because pivot was zero.
[1, 2, 3]
[0, 5, 6]
[0, 0, 4]
[0, 0, 0]
Select pivot at index [2][2]: 5
R2 \leftarrow R2 / 5
[1, 2, 3]
[0.0, 1.0, 1.2]
[0, 0, 4]
[0, 0, 0]
Select pivot at index [3][3]: 4
R3 <- R3 / 4
[1, 2, 3]
[0.0, 1.0, 1.2]
[0.0, 0.0, 1.0]
[0, 0, 0]
         --Gaussian Elimination Completed-
Processed Matrix (Row Echelon Form):
[1, 2, 3]
[0.0, 1.0, 1.2]
[0.0, 0.0, 1.0]
[0, 0, 0]
Rank: 3
Nullity: 0
```

```
Original Matrix:
 [1, 2, 1, 0, 3]
[2, 4, 0, 1, 7]
[1, 2, 1, 1, 4]
[0, 0, 1, 1, 2]
Select pivot at index [1][1]: 1
R2 \leftarrow R2 - (2) \times R1
[1, 2, 1, 0, 3]
[0, 0, -2, 1, 1]
[1, 2, 1, 1, 4]
[0, 0, 1, 1, 2]
R3 <- R3 - (1) \times R1
 [1, 2, 1, 0, 3]
 [0, 0, -2, 1, 1]
[0, 0, 0, 1, 1]
[0, 0, 1, 1, 2]
Pivot at column 2 is zero, cannot eliminate this column.
Select pivot at index [2][3]: -2
R2 <- R2 / -2
[1, 2, 1, 0, 3]
 [0, 0, 1.0, -0.5, -0.5]
 [0, 0, 0, 1, 1]
[0, 0, 1, 1, 2]
R4 <- R4 - (1) \times R2
[1, 2, 1, 0, 3]
[0, 0, 1.0, -0.5, -0.5]
 [0, 0, 0, 1, 1]
[0, 0, 0.0, 1.5, 2.5]
Select pivot at index [3][4]: 1
R4 < - R4 - (1.5) \times R3
[1, 2, 1, 0, 3]
[0, 0, 1.0, -0.5, -0.5]
 [0, 0, 0, 1, 1]
[0, 0, 0.0, 0.0, 1.0]
Select pivot at index [4][5]: 1.0
 -----Gaussian Elimination Completed-
Processed Matrix (Row Echelon Form):
[1, 2, 1, 0, 3]
[0, 0, 1.0, -0.5, -0.5]
[0, 0, 0, 1, 1]
[0, 0, 0.0, 0.0, 1.0]
Rank: 4
Nullity: 1
```

```
def print_matrix(matrix)
  for row in matrix:
      print(row)
def count_non_empty_rows(matrix):
  for row in matrix:
          count += 1
def swap_rows(matrix, row1, row2):
  matrix[row1], matrix[row2] = matrix[row2], matrix[row1]
def gaussian_elimination(matrix):
  rows = len(matrix)
  cols = len(matrix[0]
  processing_matrix = [row[:] for row in matrix] # deep copy
   while r < rows and c < cols:
      pivot_row = None
       for k in range(r, rows):
          if processing_matrix[k][c] != 0:
              pivot_row = k
          print(f"Pivot at column {c+1} is zero, cannot eliminate this column.")
           processing_matrix[r], processing_matrix[pivot_row] = processing_matrix[pivot_row], processing_matrix[r
          print(f"Swapped R{r+1} with R{pivot_row+1} because pivot was zero.")
          print_matrix(processing_matrix)
       cur_pivot = processing_matrix[r][c]
       print(f"Select pivot at index [{r+1}][{c+1}]: {cur_pivot}")
      if cur_pivot != 1:
          print(f"R{r+1} <- R{r+1} / {cur_pivot}")
              processing_matrix[r][j] /= cur_pivot
           print_matrix(processing_matrix)
```

```
for k in range(r + 1, rows):
            factor = processing_matrix[k][c]
            if factor == 0:
           print(f''R\{k+1\} \leftarrow R\{k+1\} - (\{factor\}) \times R\{r+1\}'')
           for j in range(c, cols):
              processing_matrix[k][j] -= factor * processing_matrix[r][j]
           print_matrix(processing_matrix)
    return processing_matrix
def main():
   matrix = [
       [1, 2, 1, 0, 3],
   print("Original Matrix:")
   print_matrix(matrix)
   processed_matrix = gaussian_elimination(matrix)
    rank = count_non_empty_rows(processed_matrix)
    nullity = len(matrix[0]) - rank
    print(f"-----Gaussian Elimination Completed-----")
   print("Processed Matrix (Row Echelon Form):")
   print_matrix(processed_matrix)
    print(f"Rank: {rank}")
   print(f"Nullity: {nullity}")
   __name__ == "__main__":
```



Reality Check

rank = np.linalg.matrix_rank(A)

IMPLEMENTATION ???

Easy way: Use a function in numpy library

numpy.linalg.matrix_rank()

```
def matrix_rank_and_nullity(matrix):
    """

    Calculate the rank and nullity of a matrix.
    :param matrix: list of lists or numpy array
    :return: (rank, nullity)
    """

    A = np.array(matrix, dtype=float)
    rank = np.linalg.matrix_rank(A)
    nullity = A.shape[1] - rank # number of columns - rank
    return rank, nullity
```

LESSONS LEARNED

Key takeaways

We got deeper understand on basic of matrices, e.g. nullity, rank, linearly dependent.

Challenges

It's sometimes complicated to implement the mathematical method in programming (step by step)

